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Lower bounds on the curvature of the Isgur-Wise function

A. Le Yaouanc,* L. Oliver,† and J.-C. Raynal
Laboratoire de Physique The´orique Universite´ de Paris XI, Baˆtiment 210, 91405 Orsay Cedex, France

~Received 18 July 2003; published 27 May 2004!

Using the operator product expansion, we obtain new sum rules in the heavy quark limit of QCD, in addition
to those previously formulated. Key elements in their derivation are the consideration of the nonforward
amplitude, plus the systematic use of boundary conditions that ensure that only a finite number ofj P interme-
diate states~with their tower of radial excitations! contribute. A study of these sum rules shows that it is
possible to bound the curvatures25j9(1) of the elastic Isgur-Wise functionj(w) in terms of its sloper2

52j8(1). In addition to the bounds2> 5
4 r2, previously demonstrated, we find the better bounds2

> 1
5 @4r213(r2)2#. We show that the quadratic term35 (r2)2 has a transparent physical interpretation, as it is

leading in a nonrelativistic expansion in the mass of the light quark. At the lowest possible value for the slope
r25

3
4 , both bounds imply the same bound for the curvatures2> 15

16. We point out that these results are
consistent with the dispersive bounds and, furthermore, that they strongly reduce the allowed region by the
latter for j(w).

DOI: 10.1103/PhysRevD.69.094022 PACS number~s!: 12.38.Lg, 11.55.Hx
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I. INTRODUCTION

In a recent paper@1# we set a systematic method to obta
sum rules~SRs! in the heavy quark limit of QCD that relat
the derivatives of the elastic Isgur-Wise~IW! function j(w)
to sums over IW functions of excited states. The method
based on the operator product expansion~OPE! @2# applied
to heavy quark transitions@3# and its key element is the
consideration, following Uraltsev@4#, of the nonforward am-
plitude, i.e., B(v i)→D (n)(v8)→B(v f) with in generalv i
Þv f . Then, the OPE side of the SR contains the elastic
function j(wi f ) and therefore the SR depend in general
three variableswi , wf , and wi f that lie within a certain
domain. By differentiation relatively to these variabl
within the domain and taking the limit to its boundary, o
finds a very general class of SR that have interesting co
quences on the shape ofj(w).

More precisely, as shown in Ref.@1#, using the OPE—as
formulated, for example, in Ref.@5# and generalized tov i
Þv f @4#—the trace formalism@6# and arbitrary heavy quark
currents

J15h̄v8
(c) G1 hv i

(b) , J25h̄v f

(b) G2 hv8
(c) ~1!

the following sum rule can be written in the heavy qua
limit @1#:

H (
D5P,V

(
n

Tr@B̄f~v f !G2D (n)~v8!#Tr@D̄(n)~v8!G1Bi~v i !#

3j (n)~wi !j
(n)~wf !1other excited statesJ

522j~wi f !Tr@B̄f~v f !G2P18 G1Bi~v i !#. ~2!

*Email address: leyaouan@th.u-psud.fr
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In this formulav8 is the intermediate meson four-velocit
the projector

P18 5
1

2
~11v” 8! ~3!

comes from the residue of the positive energy part of
c-quark propagator andj(wi f ) is the elastic Isgur-Wise func
tion that appears because one assumesv i5” v f . Bi andBf are
the 434 matrices of the ground stateB or B* meson and
D (n) those of all possible ground state or excited stateD
mesons coupled toBi and Bf through the currents. In for-
mula ~2! we have made explicit thej 5 1

2
2D andD* mesons

and their radial excitations.
The variableswi , wf , andwi f are defined as

wi5v i•v8, wf5v f•v8, wi f 5v i•v f . ~4!

The domain of (wi , wf , wi f ) is @1#

wi ,wf>1,

wiwf2A~wi
221!~wf

221!

<wi f <wiwf1A~wi
221!~wf

221!. ~5!

There is a subdomain forwi5wf5w:

w>1, 1<wi f <2w221. ~6!

Calling now L(wi ,wf ,wi f ) the left-hand side~LHS! and
R(wi ,wf ,wi f ) the right-hand side~RHS! of Eq. ~2!, this SR
writes

L~wi ,wf ,wi f !5R~wi ,wf ,wi f !, ~7!

where L(wi ,wf ,wi f ) is the sum over the intermediateD
states andR(wi ,wf ,wi f ) is the OPE side. Within the domai
~5! one can differentiate relatively to any of the variableswi ,
wf , andwi f
©2004 The American Physical Society22-1



n-
it

-
,

he

n-
d

h

o

ro
in

n
e

ys
tte
r

m
ai
ac
th

lf

on

n.
VII

ew
n in
e

es
nds

ec.
e
a-
vy
a

h to

er
ly,

SR
y

e

ng
ts

LE YAOUANC, OLIVER, AND RAYNAL PHYSICAL REVIEW D 69, 094022 ~2004!
]p1q1rL

]wi
p]wf

q]wi f
r

5
]p1q1rR

]wi
p]wf

q]wi f
r

~8!

and obtain different SRs taking different limits to the fro
tiers of the domain. One must take care in taking these lim
as we point out below.

Let us parametrize the elastic Isgur-Wise functionj(w)
near zero recoil,

j~w!512r2~w21!1
s2

2
~w21!22••• . ~9!

From the SR~2!, we gave in Ref.@1# a simple and straight
forward demonstration of Bjorken@7,8# and of another SR
that combined with the former, implied Uraltsev SR@4#. The
Bjorken and Uraltsev SRs imply the lower bound on t
elastic slope

r252j8~1!>
3

4
. ~10!

A crucial simplifying feature of the calculation was to co
sider, for the currents~1!, vector or axial currents aligne
along the initial and final velocitiesv i andv f . In Ref.@1# we
also obtained, modulo a very natural phenomenological
pothesis, a new bound on the curvature:

s25j9~1!>
5

4
r2>

15

16
. ~11!

This bound was obtained from the consideration in the SR
the whole tower ofj P intermediate states@9#. A crucial fea-
ture of the calculation was the needed derivation of the p
jector on the polarization tensors of particles of arbitrary
teger spin@10#.

Using the SR involving the whole sum over allj P inter-
mediate states, we pursued our study in Ref.@11# and dem-
onstrated that the IW functionj(w) is an alternate series i
powers of (w21). Moreover, we obtained the bound for th
nth derivative at zero recoil (21)nj (n)(1)

~21!nj (n)~1!>
2n11

4
~21!n21j (n21)>

~2n11!!!

22n

~12!

rigorously demonstrating the bound~11! and generalizing
Eqs.~10! and ~11! to any derivative.

The aim of this paper is to investigate whether the s
tematic use of the sum rules can allow us to obtain be
bounds on the curvature. As we will see below, the answe
positive. The reason is that only a finite number ofj P states,
with their radial excitations, contribute to the relevant su
rules and one is left with a relatively simple set of algebr
linear equations. As we will see, this is due to the crucial f
that we adopt particular conditions at the boundary of
domain~5!.

The paper is organized as follows. Section II is a se
contained reminder of the formalism exposed in Refs.@1#
and@11#. Sections III, IV, and V are devoted to the deducti
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of the new SR involving the curvature of the IW functio
Section VI gives the bounds on the curvature and Sec.
exposes new implications on theP-wave IW functions. Sec-
tion VIII demonstrates that the quadratic term in the n
bound on the curvature has a clean physical interpretatio
the nonrelativistic limit for the light quark. In Sec. IX w
give an example of the fit to the data forB→D* ,n with a
phenomenological ansatz for the IW function that satisfi
the demonstrated bounds. In Sec. X we compare our bou
with the dispersive contraints on the IW function, and in S
XI our phenomenological formula for the IW function to th
dispersive approach. In Sec. XII we conclude. Our motiv
tion in studying the relation of our approach in the hea
quark limit of QCD to the dispersive approach is in part
pragmatic one, since this is the most widely used approac
fit the data~see, for example, Ref.@12#!. Of course, this is
not the unique approach to study the IW function. Oth
results in the heavy quark limit of QCD are relevant, name
the upper bounds on the IW slope coming from Voloshin
@13# or from the experimental limits on the kinetic energ
expectation value@14#. Also, one should quote the lattic
approaches to the IW function@15#.

II. VECTOR AND AXIAL SUM RULES

We choose as initial and final states theB meson,

Bi~v i !5Pi 1~2g5!, Bf~v f !5Pf 1~2g5!, ~13!

where the projectorsPi 1 , Pf 1 are defined as in Eq.~3!.
Moreover, we take vector or axial currents projected alo
thev i andv f four-velocities. Considering the vector curren

J15h̄v8
(c) v” ihv i

(b) , J25h̄v f

(b) v” fhv8
(c) ~14!

and gathering the formulas~48! and~89!–~91! of Ref. @1# we
obtain for the SR~2! with the sum of all excited statesj P, as
written down in Ref.@11#:

~wi11!~wf11! (
,>0

,11

2,11
S,~wi ,wf ,wi f !

3(
n

t,11/2
(,)(n) ~wi !t,11/2

(,)(n) ~wf !

1 (
,>1

S,~wi ,wf ,wi f !(
n

t,21/2
(,)(n) ~wi !t,21/2

(,)(n) ~wf !

5~11wi1wf1wi f !j~wi f !. ~15!

Choosing instead the axial currents

J15h̄v8
(c) v” ig5 hv i

(b) , J25h̄v f

(b) v” fg5 hv8
(c) ~16!

the SR~2! is written as, from the formulas~48! and ~92!–
~94! of Ref. @1#, obtained in Ref.@11#:
2-2
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(
,>0

S,11~wi ,wf ,wi f !(
n

t,11/2
(,)(n) ~wi !t,11/2

(,)(n) ~wf !

1~wi21!~wf21! (
,>1

,

2,21
S,21~wi ,wf ,wi f !

3(
n

t,21/2
(,)(n) ~wi !t,21/2

(,)(n) ~wf !

52~12wi2wf1wi f !j~wi f !. ~17!

Following the formulation of heavy-light states for arb
trary j P given by Falk@9#, we have defined in Ref.@1# the IW
functionst,11/2

(,)(n) (w) and t,21/2
(,)(n) (w), that correspond to the

orbital angular momentum, of the light quark relative to the
heavy quark,j 5,6 1

2 being the total angular momentum o
the light cloud. For the lower values of,, one has the iden
tities with the traditional notation of Isgur and Wise@8#:

t1/2
(0)~w![j~w!, t1/2

(1)~w![2t1/2~w!, t3/2
(1)~w![A3t3/2~w!,

~18!

where a radial quantum number is implicit. Therefore,
functions t1/2

(1)(w) and t3/2
(1)(w) correspond, respectively, t

the functionsz(w) and t(w) defined by Leibovich, Ligeti,
Steward, and Wise@16#.

In Eqs.~14! and ~16! the quantitySn is defined by

Sn5v f n1
•••v f nn

Tn1•••nn ,m1•••mnv im1
•••v imn

~19!

and the polarization projectorTn1•••nk ,m1•••mn, given by

Tn1•••nn ,m1•••mn5(
l

«8(l)* n1•••nn«8(l)m1•••mn ~20!

depends only on the four-velocityv8. The tensor«8(l)m1•••mn

is the polarization tensor of a particle of integer spinJ5n,
symmetric, traceless, i.e.,«8(l)m1•••mngm im j

50 (i 5” j <n),

and transverse tov8, vm i
8 «8(l)m1•••mn50 (i<n) @1,10#.

Moreover, as demonstrated in the Appendix A of Ref.@1#,
Sn is given by the following expression:

Sn~wi ,wf ,wi f !5 (
0<k<n/2

Cn,k~wi
221!k~wf

221!k

3~wiwf2wi f !
n22k ~21!

with

Cn,k5~21!k
~n! !2

~2n!!

~2n22k!!

k! ~n2k!! ~n22k!!
. ~22!

The relation

LV~wi ,wf ,wi f !uwi f 51,wi5wf5w

5RV~wi ,wf ,wi f !uwi f 51,wi5wf5w ~23!

gives, dividing by 2(w11), the Bjorken SR@7,8#, now in-
cluding the whole sum of intermediate states:
09402
e

w11

2 (
,>0

,11

2,11
C,~w221!,(

n
t,11/2

(,)(n) ~w!t,11/2
(,)(n)~w!

1
w21

2 (
,>1

C,~w221!,21(
n

t,21/2
(,)(n)~w!t,21/2

(,)(n)~w!

51, ~24!

where, from Eqs.~21! and ~22!

Sn~w,w,1!5Cn~w221!n, Cn5 (
0<k<n/2

Cn,k52n
~n! !2

~2n!!
.

~25!

Remember that, usually, the first terms in the sum~24! are
written in the notation~18! of Isgur and Wise@8#:

w11

2 (
n

@j (n)~w!#21~w21!

3(
n

$2@t1/2
(n)~w!#21~w11!2@t3/2

(n)~w!#2%1•••51.

~26!

Going now to the axial current SR~17!, the condition

LA~wi ,wf ,wi f !uwi f 51,wi5wf5w

5RA~wi ,wf ,wi f !uwi f 51,wi5wf5w ~27!

gives again, dividing this time by 2(w21), the complete
Bjorken SR~24!. Notice that one obtains the same SR fro
the vector~14! and the axial current~16! because, from Eq
~25!, one has

~2n11!Cn115~n11!Cn . ~28!

III. EQUATIONS FROM THE VECTOR SUM RULE

In what follows, to look for independent relations, w
make use of the fact that the SR~15! and~17! are symmetric
in the exchangewi↔wf . Let us first consider the derivative
of the SR for vector currents~15! relatively towi f with the
boundary conditionwi f 51. Forwi f 51, the domain~5! im-
plies

wi5wf5w. ~29!

We define, therefore,

LV~wi f ,w![LV~wi f ,wi ,wf !uwi5wf5w ,

RV~wi f ,w![RV~wi f ,wi ,wf !uwi5wf5w .
~30!

We then take thep1q derivatives

S ]p1qLV

]wi f
p ]wqD

wi f 5w51

5S ]p1qRV

]wi f
p ]wqD

wi f 5w51

~31!
2-3
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and systematically exploit the obtained relations. To get
formation on the curvatures2 of the elastic IW function~9!
we need to go up to the second order derivatives. Notice
we could have differentiated first relative towi and taken the
limit wi51, and then differentiated with respect tow5wi f
5wf . We do not obtain, however, new information fro
these sum rules than with the former boundary condition

Let us proceed with care and begin with the first ord
derivatives. From Eqs.~15! and ~31!, we obtain the follow-
ing results.

For p5q50 we obtain a trivial result, while for the de
rivativesp51, q50 we obtain the Bjorken SR for the slop
r2

r25
1

4
1

2

3 (
n

@t3/2
(1)(n)~1!#21

1

4 (
n

@t1/2
(1)(n)~1!#2. ~32!

The relation to the Isgur-Wise notation is given by Eq.~18!.
For p50, q51 we getj(1)5j(1). For apurpose that

will be clarified below, we make explicit the IW function
betweenj P5 1

2
2 states using the notation of Isgur and Wi

j (n)(w) ~18!.
For p52, q50:

r222s21
12

5 (
n

@t5/2
(2)(n)~1!#21(

n
@t3/2

(2)(n)~1!#250.

~33!

For p51, q51:

r22
4

3 (
n

@t3/2
(1)(n)~1!#22

8

3(n
t3/2

(1)(n)~1!t3/2
(1)(n)8~1!

2(
n

t1/2
(1)(n)~1!t1/2

(1)(n)8~1!22(
n

@t3/2
(2)(n)~1!#2

2
24

5 (
n

@t5/2
(2)(n)~1!#250. ~34!

For p50, q52:

128r214s214(
n

@j (n)8~1!#218(
n

@t3/2
(1)(n)~1!#2

1(
n

@t1/2
(1)(n)~1!#21

32

3 (
n

t3/2
(1)(n)~1!t3/2

(1)(n)8~1!

14(
n

t1/2
(1)(n)~1!t1/2

(1)(n)8~1!1
8

3 (
n

@t3/2
(2)(n)~1!#2

1
32

5 (
n

@t5/2
(2)(n)~1!#250. ~35!

Equations~33!–~35! are a set of linear equations in the ela
tic sloper2 and the curvatures2, and the following quanti-
ties, that are series on the radial excitations, indicated by
sums overn:
09402
-
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e

(
n

@j (n)8~1!#2, ~36!

(
n

@t3/2
(1)(n)~1!#2, ~37!

(
n

@t1/2
(1)(n)~1!#2, ~38!

2(
n

t3/2
(1)(n)~1!t3/2

(1)(n)8~1!, ~39!

2(
n

t1/2
(1)(n)~1!t1/2

(1)(n)8~1!, ~40!

(
n

@t3/2
(2)(n)~1!#2, ~41!

(
n

@t5/2
(2)(n)~1!#2. ~42!

We realize that due to the fact that we compute the sec
order derivatives in Eq.~31! (p1q52) and use the bound
ary conditionswi f 5w51, the series inj P states is truncated

and includes at most the,52 statesj P5 3
2

2, 5
2

2 correspond-
ing to the unknowns~41! and~42!. On the other hand~36! is
the square of the derivatives at zero recoil of the lowestj P

5 1
2

2, and Eqs.~37! and~38! depend on the IW functions o

the transitions to theP-wave statesj P5 1
2

1, 3
2

1, that are sim-
ply related to the sloper2 through Bjorken and Uraltsev SR
as we write down below again. Finally, we have two oth
unknowns~39! and ~40! that involve the derivatives of the
P-wave IW functionst3/2

(1)(n)(w), t1/2
(1)(n)(w) at zero recoil.

These quantities were already introduced in Ref.@1#.

IV. EQUATIONS FROM THE AXIAL SUM RULE

Let us now consider the derivatives of the SR for ax
currents~17! with the boundary conditionwi f 51, wi5wf
5w→1:

S ]p1qLA

]wi f
p ]wqD

wi f 5w51

5S ]p1qRA

]wi f
p ]wqD

wi f 5w51

. ~43!

Since all terms in Eq.~17! vanish forwi5wf5wi f 51, to
obtain information on the curvatures2 we will need to go up
to the third order derivatives.

For p5q50 and for p51, q50, andp50, q51 the
results are trivial.

For p52, q50, andp5q51 we get

r25(
n

@t3/2
(1)(n)~1!#2 ~44!

while for p50, q52, we get the Bjorken SR
2-4
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r25
1

4
1

2

3 (
n

@t3/2
(1)(n)~1!#21

1

4 (
n

@t1/2
(1)(n)~1!#2. ~45!

Both Eqs.~44! and ~45! imply the Uraltsev SR

1

3 (
n

@t3/2
(1)(n)~1!#22

1

4(n
@t1/2

(1)(n)~1!#25
1

4
. ~46!

Going now to the third order derivatives, we obtain the f
lowing results.

For p53, q50:

s252(
n

@t5/2
(2)(n)~1!#2. ~47!

For p52, q51:

s252(
n

t3/2
(1)(n)~1!t3/2

(1)(n)8~1!16(
n

@t5/2
(2)(n)~1!#2.

~48!

For p51, q52:

s21(
n

@j (n)8~1!#212(
n

@t3/2
(1)(n)~1!#2

18(
n

t3/2
(1)(n)~1!t3/2

(1)(n)8~1!1
2

3 (
n

@t3/2
(2)(n)~1!#2

1
48

5 (
n

@t5/2
(2)(n)~1!#250. ~49!

For p50, q53:

23r213s213(
n

@j (n)8~1!#214(
n

@t3/2
(1)(n)~1!#2

18(
n

t3/2
(1)(n)~1!t3/2

(1)(n)8~1!

13(
n

t1/2
(1)(n)~1!t1/2

(1)(n)8~1!12(
n

@t3/2
(2)(n)~1!#2

1
24

5 (
n

@t5/2
(2)(n)~1!#250. ~50!

Equations~47!–~50! depend onr2, s2 and the same set o
unknowns listed in Eqs.~36!–~42!.

V. LINEARLY INDEPENDENT RELATIONS

Let us concentrate on Eqs.~33!–~35! and ~47!–~50! ob-
tained, respectively, from the vector and axial sum rul
Using the Bjorken SR~45!, the relation

4

3
r2215(

n
@t1/2

(1)(n)~1!#2 ~51!
09402
-

.

obtained from Eqs.~32! and~44! and Eqs.~44! and~47! we
finally obtain the following set of linearly independent rel
tions:

r252
4

5 (
n

t3/2
(1)(n)~1!t3/2

(1)(n)8~1!

1
3

5 (
n

t1/2
(1)(n)~1!t1/2

(1)(n)8~1!, ~52!

s252(
n

t3/2
(1)(n)~1!t3/2

(1)(n)8~1!, ~53!

s252(
n

@t5/2
(2)(n)~1!#2, ~54!

r22
4

5
s21(

n
@t3/2

(2)(n)~1!#250, ~55!

4

3
r22

5

3
s21(

n
@j (n)8~1!#250. ~56!

Relations~52! and ~53! were obtained in Ref.@1#, and
relations~54! and ~55! in Ref. @11#. The systematic study o
the present paper using all possibilities~31! and~43! involv-
ing the curvature gives the new equation~56!.

VI. BOUNDS ON THE CURVATURE

The last two equations~55! and~56! involve the curvature
with a negative sign and positive definite quantities. Maki
explicit in the sum(n@j (n)8(1)#2 the ground state IW func-
tion slopej (0)8(1)52r2, one obtains the two equations

r22
4

5
s21(

n
ut3/2

(2)(n)~1!u250, ~57!

4

3
r21~r2!22

5

3
s21 (

n5” 0
uj (n)8~1!u250 ~58!

which imply, respectively, the bounds

s2>
5

4
r2, ~59!

s2>
1

5
@4r213~r2!2#. ~60!

The bound~59! was obtained in Ref.@1# using the relations
~52! and ~53! and making the assumption

2(
n

t1/2
(1)(n)~1!t1/2

(1)(n)8~1!>0. ~61!

Later, Eq.~59! was demonstrated rigorously in Ref.@11# and
generalized to thenth derivative. However, in this latter pa
2-5
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per, only derivatives relatively towi f were taken, while in
the present work a systematic use of Eqs.~31! and ~43! is
carried out.

The inequality~60! is the best of the bounds that we ha
obtained fors2 for any value ofr2, and is the main result o
this paper. Interestingly enough, both bounds~59! and ~60!
coincide at the lower boundr2> 3

4 implied by the Bjorken
and Uraltsev SRs~32! and~46!. At the valuer25 3

4 one then
gets the same absolute bound~i.e., independent ofr2) for
s2, namely~11!, s2> 15

16 .

VII. IMPLICATION ON THE P-WAVE IW FUNCTIONS
AT ZERO RECOIL

Let us now express the sums of products of theP-wave
Isgur-Wise functions 1

2
2→ 1

2
1 and their derivatives

(nt3/2
(1)(n)(1)t3/2

(1)(n)8(1) and(nt1/2
(1)(n)(1)t1/2

(1)(n)8(1) in terms
of r2 ands2. From Eqs.~52! and~53! we obtain, using now
the notation of Isgur and Wise~18!,

2(
n

t3/2
(n)~1!t3/2

(n)8~1!5
1

3
s2, ~62!

2(
n

t1/2
(n)~1!t1/2

(n)8~1!52
5

12
r21

1

3
s2. ~63!

Using the bounds~10! and ~11! for r2 ands2 one finds

2(
n

t3/2
(n)~1!t3/2

(n)8~1!>
5

16
, ~64!

2(
n

t1/2
(n)~1!t1/2

(n)8~1!>0. ~65!

Strictly speaking, these relations do not give informati

on the slope of the lowestn50 IW functionst3/2
(0)8(1) and

t1/2
(0)8(1). However, if then50 state dominates the sum, th

inequalities~64! and ~65! imply that the slopest3/2
(0)8(1) and

t1/2
(0)8(1) are negative, as is plausible on physical grounds

form factors that do not involve radially excited states.
This is indeed the case for the Bakamjian-Thomas type

quark models, that satisfy IW scaling@17# and Bjorken and
Uraltsev sum rules@18#. We have conjectured in Ref.@1# that
this class of models presumably satisfy all the SRs of
heavy quark limit of QCD that follow from zero order mo
ments.

In the Bakamjian-Thomas model one finds for the ph
nomenologically successful spectroscopic model of Godf
and Isgur@19#, the numbers

2t3/2
(0)~1!t3/2

(0)8~1!50.43, ~66!

2t1/2
(0)~1!t1/2

(0)8~1!50.04 ~67!

that by themselves satisfy the preceding bounds, so tha
n50 state seems to give a dominant contribution to the L
of Eqs.~64! and ~65!.
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VIII. NONRELATIVISTIC LIMIT OF THE BOUNDS

There is a simple intuitive argument to understand
term 3

5 (r2)2 in the best bound~60!. Let us consider the non
relativistic quark model, i.e., a nonrelativistic light quarkq
interacting with a heavy quarkQ through a potential. The
form factor—to be identified with the IW function—then ha
the simple form

F~k2!5E drw0
1~r !expS i

mq

mq1mQ
k•r Dw0~r !, ~68!

wherew0(r ) is the ground state radial wave function. In th
small momentum transfer limit, the IW variablew is written,
in the initial heavy hadron rest frame

w>11
v82

2
511

k2

2mQ
2

. ~69!

Identifying the nonrelativistic IW functionjNR(w) with the
form factor F(k2) ~68!, one finds, because of rotational in
variance

jNR~w!>12mq
2^0uz2u0&~w21!

1
1

2

1

3
mq

4^0uz4u0&~w21!21•••, ~70!

whereu0& stands for the ground state wave function, and
have neglected in the (w21)2 coefficient subleading term
in powers of 1/(mqz) ~internal velocity!. Therefore, one has
the following expressions for the slope and the curvature
the nonrelativistic limit:

rNR
2 5mq

2^0uz2u0&, sNR
2 >

1

3
mq

4^0uz4u0&. ~71!

From spherical symmetry one has

^0uz4u0&5
1

5
^0ur 4u0&. ~72!

Using now completeness(nun&^nu51,

^0ur 4u0&5u^0ur 2u0&u21 (
n5” 0

u^nur 2u0&u2 ~73!

we again use spherical symmetry

^0ur 4u0&59u^0uz2u0&u219 (
n5” 0,rad

u^nuz2u0&u2, ~74!

where the latter sum runs only over radial excitations.
Therefore, from Eqs.~71!–~74! we can rewritesNR

2 as

sNR
2 5

3

5 H [mq
2u^0uz2u0&u] 21mq

4 (
n5” 0,rad

u^nuz2u0&u2J ~75!

or
2-6
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sNR
2 5

3

5
@rNR

2 #21
3

5
mq

4 (
n5” 0,rad

u^nuz2u0&u2 ~76!

and therefore

sNR
2 >

3

5
@rNR

2 #2. ~77!

Notice that, denoting the bound state radius byR and the
light quark mass bymq , in the nonrelativistic limit, just from
expressions~71!, one can see thatrNR

2 scales asmq
2R2, while

sNR
2 scales asmq

4R4 and both the LHS and the RHS in Eq
~77! scale in the same way.

Going back to the relativistic bounds~59!, ~60!, we ob-
serve that the terms proportional tor2 are subleading in the
nonrelativistic expansion and correspond to relativistic c
rections specific to QCD in the heavy quark limit. In th
nonrelativistic limit r2;mq

2R2@1, and the power (r2)2 is
leading. We can understand therefore the appearance o
term 3

5 (r2)2 in the RHS of the inequality~60!.

IX. AN EXAMPLE OF FIT TO THE DATA

An interesting phenomenological remark is that t
simple parametrization for the IW function@19#

j~w!5S 2

w11D 2r2

~78!

gives

s25
r2

2
1~r2!2 ~79!

that satisfies the inequalities~59!, ~60! if r2> 3
4 , i.e., for all

values allowed forr2. Moreover, interestingly, at the lowes
bound of the sloper25 3

4 , Eq. ~79! implies precisely the
lowest bound of the curvatures25 15

16 , as pointed out in Ref
@11#.

Notice that in Ref.@19#, within the class of Bakamjian
Thomas quark models, the approximate form~78! was found
with r251.02 in the particular case of the spectrosco
model of Godfrey and Isgur. This gives a curvature~79! s2

51.55, close to the bound~60!, that givess2>1.44, stron-
ger than the bound~59!, which impliess2>1.27.

As a simple example of a fit with the simple function~78!,
we can use BELLE data onB̄0→D* 1e2n̄ for the product
uVcbuF* (w) @12#, as shown in Fig. 1. The functionF* (w) is
equal to the Isgur-Wise functionj(w) in the heavy quark
limit. Assuming only departures of this limit atw51, i.e.,
fitting j(w) from the data with

uVcbuF* ~w!5uVcbuF* ~1!j~w! ~80!

we obtain the following results for the normalization and t
slope:

F* ~1!uVcbu50.03660.002, rF*
2

51.1560.18 ~81!

with the other derivatives ofj(w) fixed by Eq.~78! ~Fig. 1!.
09402
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As we can see, the determination ofF* (1)uVcbu is rather
precise, whilerF*

2 has a larger error. However, the valu
obtained foruVcbu andrF*

2 are strongly correlated. It is im
portant to point out that the most precise data points are
ones at largew, so that higher derivatives contribute in th
region. Due to the alternate character ofj(w) as a series of
(w21), one does not clearly see the curvature ofj(w) in
Fig. 1, but the curve is definitely not close to a straight lin
Linear fits, as are commonly used, should be ruled out at
view of the bounds that we have found.

We must emphasize that the fit that we present is a sim
exercise in the heavy quark limit. Radiative corrrections a
1/mQ corrections that enter in the relation between the ac
function F* (w) and its heavy quark limitj(w) should be
taken into account, although this does not seem to be an
task @20#. The sloperF*

2 has to be distinguished fromrA1

2

that is usually tabulated@16#.

X. COMPARISON WITH THE DISPERSIVE BOUNDS

Considerable effort has gone into formulating dispers
constraints on the shape of the form factors inB̄→D* ,n
@21–25#. Dispersion relations relate the hadronic spect
functions to the QCD two-point functions in the deep Eucl
ean region, and positivity allows to bound the contribution
the relevant states, leading to constraints on the semilept
form factors.

We will now compare our method that gives informatio
on the derivatives of the Isgur-Wise function with the disp
sive approach. A first remark to be made is that our approa
based on Bjorken-like SRs, holdsin the physical regionof
the semileptonic decaysB̄→D (* ),n and in the heavy quark
limit. However, concerning this last simplifying feature, w
should underline that there is no objection to the inclusion
the calculation of radiative corrections and subleading c
rections in powers of 1/mQ .

FIG. 1. Fit toF* (w)uVcbu using the phenomenological formul

~78! and the BELLE data forB̄→D* ,n @16#, assuming only vio-
lations to the heavy quark limit atw51. The fit gives the results
~81!.
2-7
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The dispersive approach starts from boundsin the crossed
channelby comparison of the OPE and the sum over hadr
coupled to the corresponding currentB̄D̄, B̄D̄* , . . . . Then,
one analytically continues to the physical region of the se
leptonic decays. This is done for a single reference fo
factor, for example, the combination

V1~w!5h1~w!2
mB2mD

mB1mD
h2~w! ~82!

that enters theB̄→D,n rate. In the heavy quark limi
h2(w)50, V1(w)5h1(w)5j(w). The ratios of the re-
maining form factors toV1(w) are computedin the physical
region by introducing 1/mQ andas corrections to the heavy
quark limit. The dispersive approach considersphysical
quark masses, in contrast with the heavy quark limit of ou
method.

The two approaches are quite different in spirit and
their results. However, it can be interesting to numerica
compare our bounds with the ones of the dispersive
proach, as they happen to be complementary. We must, h
ever, keep in mind the differences between the two meth
We have demonstrated in Ref.@11# that the IW functionj(w)
is an alternating series in powers of (w21), with the moduli
of the derivatives satisfying the bounds~12! and ~60!.

A. Comparison with the work of Caprini, Lellouch,
and Neubert

Let us consider the main results of Ref.@24#, that are
summarized by the one-parameter formula

V1~w!

V1~1!
>128r2z1~51r2210!z22~252r2284!z3

~83!

with the variablez(w) defined by

z5
Aw112A2

Aw111A2
~84!

and the allowed range forr2 being

20.17,r2,1.51. ~85!

Of course, the functionV1(w)/V1(1) contains finite mass
corrections that are absent at present in our method. Ne
theless, let us first compare these results with our lo
bounds~12!, assuming the rough approximation

V1~w!

V1~1!
>j~w!. ~86!

Of course, since the expansion~83! stops at third order inz,
it would only make sense in the comparison to go up to
third derivative ofj(w). Using our notation, the results o
Sec. IV of Ref.@24# for the first derivatives write, from the
expansion~83!, in terms of the sloper2:
09402
s

i-

y
p-
w-
s.

er-
r

e

j9~1!5
1

32
~67r2210!, ~87!

j-~1!52
1

256
~1487r22372! ~88!

with r2 in the range~85!. From Eqs.~87! and~88!, using the
notation j(w)512r2(w21)1c(w21)21d(w21)31•••

one gets the numerical relations@24# c>1.05r220.15,
d>20.97r210.24.

Let us now comment on the implications of our boun
~12!. The first important remark is that, within the simplify
ing hypothesis~86!, the range~85! is considerably tightened
by the lower bound onr2> 3

4 implied by Bjorken and Uralt-
sev sum rules. Therefore, we will consider hereafter, inst
of Eq. ~85!, the improved range

3

4
<r2,1.51 ~89!

that shows that our type of lower bounds are complemen
to the upper bounds obtained from dispersive metho
Within the hypothesis of the heavy quark limit, the regio
allowed by the dispersive bounds forj(w) with r2 within
the range~85! is obviously much reduced by the bounds~89!
~Fig. 2!.

Finally, let us look for the implications of our improve
bound on the curvature, Eq.~60!. Combining the linear de-
pendence obtained from dispersive methods~87! with the
inequality ~60! one obtains the condition

1

32
~67r2210!>

1

5
@4r213~r2!2# ~90!

that gives the range

FIG. 2. The upper~lower! curves are the representations
j(w) according to the dispersive approach of Capriniet al. @21#
~83!–~86!. The upper~lower! curve correspond tor2520.17 (r2

51.51). The shadowed region is the region forbidden by the Ur
sev boundr2> 3

4 . The remaining allowed region corresponds to E
~89!. The curve within this allowed region is our fit, according
~83!, ~86!, to BELLE data@11# for F* (w), normalized tow51,
that givesF* (1)uVcbu50.03660.002, rF*

2
51.1660.15, in prac-

tice the same fit as Eq.~81! with the phenomenological formula
~78!.
2-8
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0.28&r2&1.88. ~91!

Interestingly, the condition~90! gives by itself an upper
bound forr2 that is of the same order than the upper bou
~85!. Moreover, the range~91! contains the improved rang
~89!, and things appear to be coherent.

B. Comparison with the work of Boyd, Grinstein, and Lebed

Let us now compare the results of the work of Boy
Grinstein, and Lebed with the dispersive method@25#. In this
work, the QCD part of the calculation includesas and non-
perturbative~condensate! corrections, and new poles belo
the annihilation threshold ignored in Ref.@23#, but not in
Ref. @24#. In a form that allows us to make the comparis
with our results, the authors of Ref.@25# obtain the following
expansion for the scalar form factor:

f̃ 0~w!5 f̃ 0~1!1@1.72a120.77f̃ 0~1!#~w21!

1@21.74a110.21a210.55f̃ 0~1!#~w21!21•••,

~92!

where f̃ 0(w) has been defined by Caprini and Neubert@23#,

f̃ 0@w~q2!#5
f 0~q2!

~MB2MD!AMBMD~w11!
~93!

with

f 0~q2!5~MB
22MD

2 ! f 1~q2!1q2f 2~q2!. ~94!

f 6(q2) are the form factors governing the rateB̄
→D,n (q5p2p8):

^D~p8!uVmuB~p!&5 f 1~q2!~p1p8!m1 f 2~q2!~p2p8!m .
~95!

Heavy quark symmetry implies

f̃ 0@w~q2!#>j~w!. ~96!

The coefficientsan in Eq. ~92! are defined by the expressio
for a generic form factor@24,25#

F~z!5
1

P~z!w~z! (
n50

`

anzn, ~97!

where z is defined by Eq.~84!. The functionsP(z) and
w(z)—respectively, the Blaschke factor and the ou
function—contain the subthreshold singularities in the an
hilation channel, respectively, theBc poles and the kinematic
singularities. The basic result of the dispersive approac
that the coefficientsan of the series obey

(
n50

`

an
2<1. ~98!
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To compare with our bounds we proceed as we did abo
Since Eq.~96! holds in the heavy quark limit, we setf̃ 0(1)
51 and write the Isgur-Wise function in terms of the coe
ficientsan :

j~w!>11~1.72a120.77!~w21!

1~21.74a110.21a210.55!~w21!21•••.

~99!

Notice that in Eqs.~92! and ~99! it does not make much
sense to consider higher powers (w21)n (n>3) unless the
correspondingan (n>3) are introduced. Then, our lowe
bounds~12! are written

21.72a110.77>
3

4
2~21.74a110.21a210.55!

>
5

4
~21.72a110.77! ~100!

implying, respectively,

a1<0.01,

a2>3.17a120.33. ~101!

Since, from Eqs.~101! and ~98! we have

21<a1<0.01 ~102!

and the coefficient ofa1 in Eq. ~101! is large, the whole
range

21<a2<1 ~103!

is allowed. This seems to support the statement of Ref.@25#
that a2 cannot always be neglected.

Moreover, using the quadratic bound~60!, one obtains

3~r2!226r212~12a2!&0 ~104!

and therefore

20.5&a2<1 ~105!

giving the range forr2 in terms ofa2

12A112a2

3
&r2&11A112a2

3
~106!

and therefore the wide range

0&r2&2. ~107!

For a250, implicitly assumed in Ref.@24#, one finds the
range

0.42&r2&1.58, ~108!
2-9
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a domain qualitatively consistent with but somewhat n
rower than the corresponding one~91! obtained from the
linear relation between the curvature and the slope given
Ref. @24#.

In conclusion, there is no contradiction between the d
persive bounds and the type of bounds that we have obta
using Bjorken-like sum rules in the heavy quark limit. Th
latter appear rather as lower bounds that are complemen
to the upper bounds of the dispersive approach, consider
tightening the allowed range forr2 and for the higher de-
rivatives ofj(w) as well.

XI. A PHENOMENOLOGICAL ANSATZ
FOR THE ISGUR-WISE FUNCTION

AND THE DISPERSIVE CONSTRAINTS

In light of the preceding discussion, we are now going
address the question of whether the phenomenological an
for the IW function proposed in Sec. IX

j~w!5S 2

w11D 2r2

~109!

satisfies, assuming the heavy quark limit~86! or ~96!, the
constraints of the dispersive approach.

We will follow here the formulation of Boydet al. @25#
and consider the form factorsf 1(q2) and f 0(q2) defined by
Eqs. ~94! and ~95!. In the heavy quark limit, one has th
relations

f 1@q2~w!#>
MB1MD

2AMBMD

j~w!, ~110!

f 0@q2~w!#>~MB2MD!AMBMD~w11!j~w!. ~111!

We now denote generically any of these form factors
F@q2(w)#, or through the transformation~84!, F@q2(z)#.

We adopt the phenomenological formula~109! for j(w)
and define the corresponding series~97!

(
n50

`

anzn5P~z!w~z!F~z!, ~112!

whereP(z) andw(z) are the Blaschke factor and the out
function of the corresponding form factors.

We now want to compare the coefficientsan obtained
from Eqs. ~110!, ~111!, assumingF(z)5j@w(z)# given by
Eq. ~109!, to the condition~98!:

(
n50

`

an
2<1. ~113!

The outer functionsw(z) and the Blaschke factorsP(z) for
f 1(q2) and f 0(q2) are given in Ref.@25#, respectively, by
formula ~4.23! and Table 1 and by formula~4.25! and Table
3. We have singled outf 1(q2) and f 0(q2) as given by Eqs.
~110! and ~111! but we could have taken any other for
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factor related, up to kinematic factors, toj(w). Of course,
the results for the coefficientsan would differ according to
the considered form factor.

We use the numerical parameters of this paper, and
choices forr2 in formula ~109!, namely,r251.023, which
corresponds to the Isgur-Wise function obtained within
Bakamjian-Thomas scheme from the Godfrey-Isgur spec
scopic model, as found in Ref.@19#, andr251.15 obtained
from the fit of Sec. IX.

Denoting the Blaschke factor and outer function for ea
form factor by the corresponding subindices, we find,
r251.023, the series~112! for f 1@q2(z)#

P1~z!w1~z! f 1@q2~z!#50.014320.0179z20.1164z2

10.3277z320.1995z420.4497z5

11.2347z61••• ~114!

and for f 0@q2(z)#

P0~z!w0~z! f 0@q2~z!#50.083420.1750z20.1725z2

10.8673z321.1600z420.8943z5

20.4346z61•••. ~115!

For r251.15 we find, respectively,

P1~z!w1~z! f 1@q2~z!#50.014320.0326z20.0907z2

10.4294z320.5779z420.0306z5

11.3868z61••• ~116!

and

P0~z!w0~z! f 0@q2~z!#50.083420.2599z10.0484z2

10.9094z322.0079z412.5089z5

22.3596z61•••. ~117!

Compared to the condition~113!, we observe two points
First, the first coefficients have squares well below 1, es
cially for f 1(q2). That this happens to be the case for th
form factor that has three Blaschke factors, whilef 0(q2) has
only two, reinforces the idea that one should be closer to
IW function: when the number of subthreshold poles
creases, the form factor should become closer to the Is
Wise function@25#. Second, high powers ofz have coeffi-
cients that can be ofO(1). Therefore, the phenomenologica
formula~109! is ruled out on strict theoretical grounds. How
ever, since the variablez defined by Eq.~84! is small in the
whole physical region (zmax.0.056), high powerszn(n
>4) are completely irrelevant in the actual phase space.
conclusion is that, owing to the fact that the coefficients,
to orderz3 included, satisfy the condition~113!, the ‘‘dipole’’
formula ~109! gives, on phenomenological grounds, a fair
enough representation of the form factors~110!, ~111!.
2-10
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XII. CONCLUSIONS

In conclusion, using sum rules in the heavy quark limit
QCD, as formulated in Ref.@1#, we have found an improved
bound for the curvature of the Isgur-Wise functions2

5j9(1)> 1
5 @4r213(r2)2# that implies the already demon

strated@1,11# absolute bounds2> 15
16 .

Beyond the simple ansatz~78! introduced above, any phe
nomenological parametrization ofj(w) intending to fit the
CKM matrix elementuVcbu in B→D (* ),n should have, for a
given sloper2 satisfying the bound~10!, a curvatures2
.

s.

icl

e

09402
f

satisfying the new bound~60!. Moreover, we discuss thes
bounds in comparison with the dispersive approach.
show that there is no contradiction as our bounds restrain
region forj(w) allowed by this latter method.
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