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Lower bounds on the curvature of the Isgur-Wise function
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Using the operator product expansion, we obtain new sum rules in the heavy quark limit of QCD, in addition
to those previously formulated. Key elements in their derivation are the consideration of the nonforward
amplitude, plus the systematic use of boundary conditions that ensure that only a finite nuiibertefme-
diate stategwith their tower of radial excitationscontribute. A study of these sum rules shows that it is
possible to bound the curvaturg=¢"(1) of the elastic Isgur-Wise functios(w) in terms of its slope?
=—¢(1). In addition to the bounds?=2p2 previously demonstrated, we find the better bourid
= $[4p%+3(p?)?]. We show that the quadratic terf{p?)? has a transparent physical interpretation, as it is
leading in a nonrelativistic expansion in the mass of the light quark. At the lowest possible value for the slope
p2=%, both bounds imply the same bound for the curvatufe % We point out that these results are
consistent with the dispersive bounds and, furthermore, that they strongly reduce the allowed region by the
latter for &(w).
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[. INTRODUCTION In this formulav’ is the intermediate meson four-velocity,
the projector
In a recent papdrl] we set a systematic method to obtain
sum rules(SR9 in the heavy quark limit of QCD that relate
the derivatives of the elastic Isgur-WigdV) function &(w)
to sums over IW functions of excited states. The method is
based on the operator product expansiofB [2] applied comes from the residue of the positive energy part of the
to heavy quark transitiong3] and its key element is the Cc-quark propagator ang(w;;) is the elastic Isgur-Wise func-
consideration, following Uraltsej], of the nonforward am- tion that appears because one assumés . 3; and3; are
plitude, i.e., B(v;)—D™(v')—B(vs) with in generalv; the 4x4 matrices of the ground stat® or B* meson and
#v;. Then, the OPE side of the SR contains the elastic IWD" those of all possible ground state or excited state
function &(w;;) and therefore the SR depend in general onmesons coupled t8; and B; through the currents. In for-
three variablesv;, wy, andw;; that lie within a certain mula(2) we have made explicit the=; D andD* mesons
domain. By differentiation relatively to these variablesand their radial excitations.
within the domain and taking the limit to its boundary, one ~ The variablesv;, w;, andw;; are defined as
finds a very general class of SR that have interesting conse-
quences on the shape &fw). wi=vi-v',  Wi=vev',  Wip=vievs. (4)
More precisely, as shown in Réfl], using the OPE—as
formulated, for example, in Ref5] and generalized to;
#v¢ [4]—the trace formalisni6] and arbitrary heavy quark
currents

! _1 !
PL=5(1+d") 3

The domain of (;, w;s, w;;) is[1]

W — v (W2— 2_
leﬁl(ﬁ) r, hl()ti))’ JZZR()E) I, hl(}C,) (1) WiWs¢ (Wi —1)(ws—1)
<wj =<wwi+ V(W= 1)(wf—1). %)
the following sum rule can be written in the heavy quark
limit [1]: There is a subdomain faw, =w;=w:

_ _ w=1, 1sw,<2w?—1. 6
> 2 TBi(w) D™ )T D (0 )T1Bi(v))] ! ©
D=P.V n Calling now L(w;,w;,wj;) the left-hand side(LHS) and

R(w; ,w; ,w;¢) the right-hand sidéRHS) of Eq. (2), this SR
x EM(w;) €M (wy) + other excited state%s writes

= = 26w T By (v )T5P" T 1B, (v,)]. 2 i) = ROV W V) "
where L(w; ,w;,w;;) is the sum over the intermediate
states an®R(w; ,w; ,w;;) is the OPE side. Within the domain
*Email address: leyaouan@th.u-psud.fr (5) one can differentiate relatively to any of the variables
"Email address: oliver@th.u-psud.fr w;, andwig
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GPratr GPTAtTR of the new SR involving the curvature of the IW function.
P P T (8)  Section VI gives the bounds on the curvature and Sec. VI
IWFIWEIW;e W7 IWIWi exposes new implications on tiewave IW functions. Sec-

tion VIII demonstrates that the quadratic term in the new
bound on the curvature has a clean physical interpretation in
Sthe nonrelativistic limit for the light quark. In Sec. IX we
give an example of the fit to the data fBr—D* ¢ v with a
phenomenological ansatz for the IW function that satisfies
the demonstrated bounds. In Sec. X we compare our bounds
o2 with the dispersive contraints on the IW function, and in Sec.
Ew)=1—-p*(w—1)+ ?(W— 1)%2—.... (99 Xl our phenomenological formula for the IW function to the
dispersive approach. In Sec. XII we conclude. Our motiva-
tion in studying the relation of our approach in the heavy
quark limit of QCD to the dispersive approach is in part a
pragmatic one, since this is the most widely used approach to
fit the data(see, for example, Ref12]). Of course, this is
not the unique approach to study the IW function. Other
results in the heavy quark limit of QCD are relevant, namely,
3 the upper bounds on the IW slope coming from Voloshin SR
p?= —&(=7. (100 [13] or from the experimental limits on the kinetic energy
expectation valug14]. Also, one should quote the lattice

A crucial simplifying feature of the calculation was to con- approaches to the IW functidi5].
sider, for the current$l), vector or axial currents aligned

and obtain different SRs taking different limits to the fron-
tiers of the domain. One must take care in taking these limit
as we point out below.

Let us parametrize the elastic Isgur-Wise functiv)
near zero recoil,

From the SR(2), we gave in Ref[1] a simple and straight-
forward demonstration of Bjorkef7,8] and of another SR,
that combined with the former, implied Uraltsev $H. The
Bjorken and Uraltsev SRs imply the lower bound on the
elastic slope

along the.initial and final velocities; andv; . In Ref.[1] we Il. VECTOR AND AXIAL SUM RULES
also obtained, modulo a very natural phenomenological hy-
pothesis, a new bound on the curvature: We choose as initial and final states Beneson,
2 > el Bv)=Pir(~ys), Bivn=Pr.(=y5), (13
o :g”(l);zpzzl_g (11 i\vj i+\—¥s5) Ut f+{—Ys)

here the projector®;,, Py, are defined as in EqJ).
oreover, we take vector or axial currents projected along
thev; andv; four-velocities. Considering the vector currents

This bound was obtained from the consideration in the SR o
the whole tower off P intermediate statel®]. A crucial fea-
ture of the calculation was the needed derivation of the pro
jector on the polarization tensors of particles of arbitrary in-
teger spin10]. 3;=h'? ¢h®  3,=hl) 4 h (14)

Using the SR involving the whole sum over #fl inter- ' '
mediate states, we pursued our study in R&f] and dem-
onstrated that the IW functio&(w) is an alternate series in
powers of (v—1). Moreover, we obtained the bound for the
nth derivative at zero recoil1)"¢(M(1)

and gathering the formulgg8) and(89)—(91) of Ref.[1] we
obtain for the SR2) with the sum of all excited statg$, as
written down in Ref[11]:

2n+1)N +1
o Wi+ Wi 1) 3 5 S (wi Wy i)

12

2n+1
(—1)"eM(1)= %(_1)n71§(n71)>

(O)(N) (\w. ) A6 (n)
rigorously demonstrating the bourfd1) and generalizing X; T2 (W) T (W)
Egs.(10) and(11) to any derivative.

The aim of this paper is to investigate whether the sys- _ _ (€)(N) /10,y (£)(N)
tematic use of the sum rules can allow us to obtain better +e§1 Se(wi Wi 'W'f); T2 (W) T (W)
bounds on the curvature. As we will see below, the answer is
positive. The reason is that only a finite numbeij Bfstates, = (14w +wetwie) §(Wi). (15
with their radial excitations, contribute to the relevant sum
rules and one is left with a relatively simple set of algebraicChoosing instead the axial currents
linear equations. As we will see, this is due to the crucial fact
ghoar:];/\i/s(g)t.jopt particular conditions at the boundary of the leﬁfﬁ) biys h,(fi)). Jfﬁﬁf) 4 1y hl(]c/) (16)

The paper is organized as follows. Section Il is a self-
contained reminder of the formalism exposed in R¢ld. the SR(2) is written as, from the formulaé48) and (92)—
and[11]. Sections Ill, IV, and V are devoted to the deduction (94) of Ref.[1], obtained in Ref[11]:
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w+1
ego Se+1(W; Wy aWif); 7-1(€€+)(1r})2(wi)7-%€+)(1r})2(wf) 5 2 20+ 1Ce(W 1)62 T%€+)(1r})z(w) 7'%2(1[}%(W)
¢ w-1 2 -1 (6)(n) (0)(n)
+(w;— 1)(Wf_1)€§>:l 277 St-1(Wi Wy Wit ) t 421 Ce(w"—1) En: Ty 29 (W) 7y 235(W)
XE: " (w) 7O (wy) =1 (24)
where, from Eqgs(21) and(22)
= = (1w —w+Wig) E(Wir). 17 (12
— 2_1\n —
Following the formulation of heavy-light states for arbi- Sh(W,w, 1) =Cr(w"=1)%  Cy o<=Zni2 Cok=2"2m1 (2n)l
trary j” given by Falk9], we have defined in Ref1] the IW (25)

functions 7{{",(w) and #2{}(w), that correspond to the
orbital angular momenturﬁ of the light quark relative to the Remember that, usually, the first terms in the s(@#) are

heavy quarkj={¢+ % being the total angular momentum of Written in the notatior(18) of Isgur and Wis¢8]:
the light cloud. For the lower values &f one has the iden- 1
tities with the traditional notation of Isgur and Wig]: WT > 1EM(w) 2+ (w—1)
n

TR =éw), FRw)=27i5w), W)= Brys(w),

(9 xS (2L A5 12+ (w DAY+ =1,
where a radial quantum number is implicit. Therefore, the
functions 7{})(w) and 7$(w) correspond, respectively, to (26)

the functions{(w) and 7(w) defined by Leibovich, Ligeti,
Steward, and Wisgl16].
In Egs.(14) and (16) the quantityS, is defined by

Going now to the axial current SRL7), the condition

A
L (Wi Wi aWif)|wif=l,wi=wf=w

Sn:UfVl._.vanTvl...Vn,Ml.--,unviMl...vi (19)

Hn :RA(Wi Wi aWif)|wif:1,wi:wf:w (27)

and the polarization projectd’s " "k:#1"*"#n, given by gives again, dividing this time by ®(—1), the complete
Bjorken SR(24). Notice that one obtains the same SR from
T"l""’nnul'“:un:E g'W*vi g r(Mug-mn - (20)  the vector(14) and the axial currentl6) because, from Eq.

A (25), one has

depends only on the four-velocity . The tensog’(M#1#n (2n+1)Cps1=(n+1)C,,. (28)
is the polarization tensor of a particle of integer spin,
symmetric, traceless, i.eg’®M#1#ng =0 (i#j=<n),
and transverse to’, v, s'M¥1 #n=0 (|<n) [1,10].

Moreover, as demonstrated in the Appendix A of R&f,
S, is given by the following expression:

Ill. EQUATIONS FROM THE VECTOR SUM RULE

In what follows, to look for independent relations, we
make use of the fact that the SR5) and(17) are symmetric
in the exchangev;<w; . Let us first consider the derivatives
of the SR for vector currentgl5) relatively tow;; with the

Sn(w; ,wy ,Wif)=o kZ B Ch k(W= 1)K(wf— 1) boundary conditiow;;=1. Forw;;=1, the domain5) im-
=sK=n .
plies
X W — . \N— 2K
(WIWf Wlf) (21) Wi =W;=W. (29)
with We define, therefore,
(n!)? (2n—2k)!
=(—1)% Ly(Wi , W) =Ly(Wis , Wi ,We) | —w. = w s
n.k ( 1) (2n)! k!(n—k)!(n—2k)!' (22) V( if ) V( if 2 VWi f)lwI We=w
The relation Ru(Wit ,W)=Ry(Wit , Wi , W), —w,—w
v (30)
LYW, We Wit lwes = 1w = we =
W) =2 We then take the@+ g derivatives
ZRV(Wi Wi 1Wif)|Wif=1,Wi=Wf=W (23)
aPraL,, PTIRy
gives, dividing by 2+ 1), the Bjorken SH7,8], now in- WP (QWq WP, gwe (31)
1 wig=w=1

cluding the whole sum of intermediate states:
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and systematically exploit the obtained relations. To get in-
formation on the curvature? of the elastic IW functior(9)
we need to go up to the second order derivatives. Notice that
we could have differentiated first relativewg and taken the
limit w;=1, and then differentiated with respectwo=w;;
=w;. We do not obtain, however, new information from
these sum rules than with the former boundary conditions.
Let us proceed with care and begin with the first order
derivatives. From Eq915) and(31), we obtain the follow-
ing results.
For p=q=0 we obtain a trivial result, while for the de-
rivativesp=1, g=0 we obtain the Bjorken SR for the slope

PHYSICAL REVIEW D 69, 094022 (2004

p?

-bIH
ooll\J

+3 2 [AOWP+ z[famuz (32

The relation to the Isgur-Wise notation is given by Eg).

For p=0, q=1 we geté(1)=£&(1). For apurpose that
will be clarified below, we make explicit the IW functions

1 —

betweenjP=3" states using the notation of Isgur and Wise

&M (w) (18).
Forp=2, q=0:

12
p?=20%+ 5 2 [+ 2 [P (1)P=0.
(33

Forp=1, g=1:

03 S AT 25 AOW A ()
3 n 3 n
-2 O (1 -2 [
- = 2 2P (1)P=0. (34)
Forp=0, q=2:
1-8p+40?+4% [V (DP+82 [H(1)]
(1)(n) 2 32 (1)(n) (L))’
+; [T (1)] +§§ 73 (D737 (1)

+4; O 1)+ 5 S GO

+ = 2 [72)M(1)]?=0. (35)

2 P (36)
2 [P, (37)
2 [ WP, (39)
_2 7.3/)(n)(1 7.3/)(n) (1), (39
_; T(llz)(n) 71/)(n) (1), (40)
2 [P, (4D)
2 [AHOWP (42

We realize that due to the fact that we compute the second
order derivatives in Eq31) (p+qg=2) and use the bound-
ary conditionsw;;=w=1, the series i" states is truncated
and includes at most the=2 state§”=3",5~ correspond-
ing to the unknowng41) and(42). On the other han¢36) is

the square of the derivatives at zero recoil of the lowést
=1", and Eqgs(37) and(38) depend on the IW functions of
the transitions to th@-wave state§”=3"*,3", that are sim-
ply related to the slopp? through Bjorken and Uraltsev SR,
as we write down below again. Finally, we have two other
unknowns(39) and (40) that involve the derivatives of the
P-wave IW functions7$H™(w), #H™(w) at zero recoil.
These quantities were already introduced in R&F.

IV. EQUATIONS FROM THE AXIAL SUM RULE

Let us now consider the derivatives of the SR for axial
currents(17) with the boundary conditiom;; =1, w;=w;
=w—1:

(;p‘*'QLA &D‘FQRA
owli awq B owli awe

(43

=w=1 Wif:W=l
Since all terms in Eq(17) vanish forw;=w;=w;;=1, to
obtain information on the curvature? we will need to go up
to the third order derivatives.

For p=g=0 and forp=1, q=0, andp=0, q=1 the
results are trivial.

Forp=2, =0, andp=qg=1 we get

Equations(33)—(35) are a set of linear equations in the elas-
tic slopep? and the curvature?, and the following quanti-
ties, that are series on the radial excitations, indicated by the

sums ovem: while for p=0, g=2, we get the Bjorken SR

094022-4
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Z [ (1)]2 (49

(DI*+

1 2
173 ; [753™
Both Egs.(44) and (45) imply the Uraltsev SR

1

3 2 (753 (1))~ %E [ABOWP=7. (49

Going now to the third order derivatives, we obtain the fol-
lowing results.
Forp=3, q=0:

o?=22 [7&)M(1)]2 (47)

Forp=2,q=1:

RO

o —22

(1)+62 [ (1)712.
(48)

Forp=1, q=2:

ot 2 €V (D22 [A0())?

+8% ARV 1)+ 3 2 (43711

+ — E [A2™(1)]2=0. (49)

Forp=0, q=3:

—3p%+302+32 [éV ()P+4X [P

()’

+82 531 75E™ (1)

(D)’
Tir2

+ 42 [7_(2)(n) 1)]220_

Equations(47)—(50) depend orp?, ¢? and the same set of
unknowns listed in Eq936)—(42).

+32 VAR W)+ 2 [V

(50

V. LINEARLY INDEPENDENT RELATIONS
Let us concentrate on Eq&33)—(35) and (47)—(50) ob-

tained, respectively, from the vector and axial sum rules.

Using the Bjorken SR45), the relation

§p2—1=§ (7B ()2 (5

PHYSICAL REVIEW D 69, 094022 (2004

obtained from Eqs(32) and(44) and Eqs.(44) and(47) we
finally obtain the following set of linearly independent rela-
tions:

4 :
=-5 2 B W
3 (1)(n) D)’
+5 2 HOWARY ), (52
=3 O ), 53
=22 [ W) (54
2 % 2 (2)(n) 2
p?= 5o+ 2 [ (1)]P=0 (55
4 5 ,
3P 300 2 €V ()P=0 (56

Relations(52) and (53) were obtained in Ref[1], and
relations(54) and (55) in Ref.[11]. The systematic study of
the present paper using all possibiliti&l) and(43) involv-
ing the curvature gives the new equatic®).

VI. BOUNDS ON THE CURVATURE
The last two equation&5) and(56) involve the curvature
with a negative sign and positive definite quantities. Making
explicit in the sum= [ £M’(1)]? the ground state IW func-
tion slope&®’(1)=—p2, one obtains the two equations

4
pP-got+ 2 ARV (P=0, (57
4 5 ,
3PP (PP- 30+ 2 [V ()P=0  (59)
n#0
which imply, respectively, the bounds
5
o= ZPZ, (59
1
o?= £[4p*+3(p*)?]. (60)

The bound(59) was obtained in Ref.1] using the relations
(52 and(53) and making the assumption

-3 O A (1)=0, ®

Later, Eq.(59) was demonstrated rigorously in Rgt1] and
generalized to thath derivative. However, in this latter pa-
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per, only derivatives relatively tav;; were taken, while in
the present work a systematic use of E(&l) and (43) is
carried out.

The inequality(60) is the best of the bounds that we have

obtained fora? for any value ofp?, and is the main result of
this paper. Interestingly enough, both bourid8) and (60)
coincide at the lower bound?=2 implied by the Bjorken
and Uraltsev SR£32) and(46). At the valuep®= 2 one then
gets the same absolute boufick., independent op?) for

a?, namely(11), o= £.

VII. IMPLICATION ON THE P-WAVE IW FUNCTIONS
AT ZERO RECOIL

Let us now express the sums of products of Fheave

Isgur-Wise functions 3~ —3" and their derivatives

2,75 (1) AR (1) and 2, AR (1) 7™ (1) in terms
of p? anda?. From Eqgs(52) and(53) we obtain, using now
the notation of Isgur and Wisg8),

—3

1
-2 AU (1)=30° (62
, 5 1
= )N (1) =——p>+ Zo% (63
X ARBOAY W)=t 50% (63

Using the bound$10) and(11) for p? and o one finds

) 5
-2 A D=3 (64
_2 BB (H=0. (65)

Strictly speaking, these relations do not give information

on the slope of the lowest=0 IW functions 7{%) (1) and

#%'(1). However, if then=0 state dominates the sum, the

inequalities(64) and (65) imply that the slopes{?) (1) and

7(1‘,)2) (1) are negative, as is plausible on physical grounds for

form factors that do not involve radially excited states.

PHYSICAL REVIEW D 69, 094022 (2004

VIII. NONRELATIVISTIC LIMIT OF THE BOUNDS

There is a simple intuitive argument to understand the
term 2(p?)? in the best bound60). Let us consider the non-
relativistic quark model, i.e., a nonrelativistic light quagk
interacting with a heavy quar through a potential. The
form factor—to be identified with the IW function—then has
the simple form

F(k2)=f drgpa'(r)ex;{i

where ¢y(r) is the ground state radial wave function. In the
small momentum transfer limit, the IW variableis written,
in the initial heavy hadron rest frame

mg+m

Mg
k'r ()DO(r)l (68)
q Q

V12 k2
w=lds ——=1+—. 69

7 ol (69
Identifying the nonrelativistic IW functiorgyg(w) with the
form factor F(k?) (68), one finds, because of rotational in-
variance

Enr(W)=1—mZ(0[z?|0)(w—1)

11
+——m<0|z4|o>w 1)%2+..., (70

where|0) stands for the ground state wave function, and we
have neglected in ther—1)? coefficient subleading terms
in powers of 1/(n,z) (internal velocity. Therefore, one has
the following expressions for the slope and the curvature in
the nonrelativistic limit:

This is indeed the case for the Bakamjian-Thomas type ob/sing now completeness,|n)(n|=

guark models, that satisfy IW scalii@7] and Bjorken and
Uraltsev sum rulefl18]. We have conjectured in Rdfl] that

this class of models presumably satisfy all the SRs of the
heavy quark limit of QCD that follow from zero order mo-

ments.

In the Bakamjian-Thomas model one finds for the phe-

nomenologically successful spectroscopic model of Godfrey

and Isgur{19], the numbers

—79(1)7) (1)=0.43, (66)
—r9(1) 740 (1)=0.04 (67)

that by themselves satisfy the preceding bounds, so that the

1
PRR=mg(0lZ7|0),  oje=3m(0[2°|0). (7D
From spherical symmetry one has
1
<0|z“|0>=g<0|r4|0>- (72)
<0|r4|0>=|<0|r2|0>|2+§o|<n|r2|0>|2 (73
n
we again use spherical symmetry
(0[r*0)=9(0[%0)[*+9 >, [(n[Z2|0)[*, (74
n#0,rad

where the latter sum runs only over radial excitations.
Therefore, from Eqs(71)—(74) we can rewriteaﬁ,R as

3
oRr=z{ [M301Z20)[12+mg > [(n|%0)[?}  (75)
) n+0,rad

n=0 state seems to give a dominant contribution to the LHS

of Eqgs.(64) and(65).

or

094022-6
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2

3 3
UNRzg[PﬁlR]2+§m3n£Orad|<n|22|0>|2 (76)

and therefore

3

o\r= g [PRel’. (77)

Notice that, denoting the bound state radiusFbgind the
light quark mass byn,, in the nonrelativistic limit, just from
expressiong71), one can see th@ﬁ,R scales asnéRz, while
or Scales asniR* and both the LHS and the RHS in Eq.
(77) scale in the same way.

Going back to the relativistic bound$9), (60), we ob-
serve that the terms proportional pd are subleading in the

nonrelativistic expansion and correspond to relativistic cor-
rections specific to QCD in the heavy quark limit. In the

nonrelativistic limit p?~mzR?>1, and the power ¢?)? is

leading. We can understand therefore the appearance of the

term 2(p?)? in the RHS of the inequality60).

IX. AN EXAMPLE OF FIT TO THE DATA

An interesting phenomenological remark is that the

simple parametrization for the IW functidd9]

2\
§(W):(m (78)
gives
pz
o?=75+(p?)? (79
that satisfies the inequaliti€§9), (60) if p?>=2, i.e., for all

values allowed fop?. Moreover, interestingly, at the lowest
bound of the slope?=2, Eq. (79 implies precisely the
lowest bound of the curvatuke®= 12, as pointed out in Ref.
[11].

Notice that in Ref[19], within the class of Bakamjian-
Thomas quark models, the approximate fdif8) was found

PHYSICAL REVIEW D 69, 094022 (2004
0.045

0.035
0.03 }
0.025 +

0.02

0.015

1.1 1.2 1.3 1.4 1.5

FIG. 1. Fit to F*(w)|Vy using the phenomenological formula
(78) and the BELLE data foB— D* ¢ v [16], assuming only vio-
lations to the heavy quark limit at=1. The fit gives the results
(81).

As we can see, the determinationBf (1)|Vy| is rather
precise, Whilepi* has a larger error. However, the values

obtained for|V,| and pfc* are strongly correlated. It is im-
portant to point out that the most precise data points are the
ones at largev, so that higher derivatives contribute in this
region. Due to the alternate characterégiv) as a series of
(w—1), one does not clearly see the curvaturespf) in

Fig. 1, but the curve is definitely not close to a straight line.
Linear fits, as are commonly used, should be ruled out at the
view of the bounds that we have found.

We must emphasize that the fit that we present is a simple
exercise in the heavy quark limit. Radiative corrrections and
1/mq corrections that enter in the relation between the actual
function 7 (w) and its heavy quark limi¢(w) should be
taken into account, although this does not seem to be an easy
task[20]. The slopepfc* has to be distinguished from,i1

that is usually tabulatefil6].

with p>=1.02 in the particular case of the spectroscopic

model of Godfrey and Isgur. This gives a curvat(ré) o
=1.55, close to the boun@0), that givess?=1.44, stron-
ger than the boun@9), which impliesa?=1.27.

As a simple example of a fit with the simple functitfs),

we can use BELLE data oB°—D* "e™ v for the product
|Vepl F* (W) [12], as shown in Fig. 1. The functiaR* (w) is
equal to the Isgur-Wise functioé(w) in the heavy quark
limit. Assuming only departures of this limit at=1, i.e.,
fitting &(w) from the data with

V| 7 (W) = [Vep| 7* (1) €(w) (80)

X. COMPARISON WITH THE DISPERSIVE BOUNDS

Considerable effort has gone into formulating dispersive
constraints on the shape of the form factorsBirsD* ¢ v
[21-25. Dispersion relations relate the hadronic spectral
functions to the QCD two-point functions in the deep Euclid-
ean region, and positivity allows to bound the contribution of
the relevant states, leading to constraints on the semileptonic
form factors.

We will now compare our method that gives information
on the derivatives of the Isgur-Wise function with the disper-
sive approach. A first remark to be made is that our approach,

we obtain the following results for the normalization and theP@sed on Bjorken-like SRs, holds the physical regiorof

slope:
F*(1)|V¢p =0.036+0.002, pi*=l.15"_‘0.18 (81

with the other derivatives of(w) fixed by Eq.(78) (Fig. 1.

the semileptonic decay@— D*)¢v andin the heavy quark
limit. However, concerning this last simplifying feature, we
should underline that there is no objection to the inclusion in
the calculation of radiative corrections and subleading cor-
rections in powers of i, .
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The dispersive approach starts from bouimdthe crossed
channelby comparison of the OPE and the sum over hadrons

coupled to the corresponding currégid, BD*, ... . Then,
one analytically continues to the physical region of the semi-

leptonic decays. This is done for a single reference form 0

factor, for example, the combination

B~ Mp

Vi(w)=h, (w)— 23+mo h_(w) 82

that enters theB—D¢v rate. In the heavy quark limit
h_(w)=0, Vi(w)=h_(w)=¢(w). The ratios of the re-
maining form factors td/,(w) are computedn the physical

region by introducing Iing and e corrections to the heavy (

quark limit. The dispersive approach consideyBysical

1«2 1.4 1.6 1.8 2

FIG. 2. The upper(lower) curves are the representations of
w) according to the dispersive approach of Capgenil. [21]
(83)—(86). The upper(lower) curve correspond tp?=—0.17 (p?

quark massesin contrast with the heavy quark limit of our =1.51). The shadowed region is the region forbidden by the Uralt-

method.

sev boung?= %. The remaining allowed region corresponds to Eg.

The two approaches are quite different in spirit and ingg) The curve within this allowed region is our fit, according to
their results. However, it can be interesting to numerically(gg), (86), to BELLE data[11] for #*(w), normalized tow=1,
compare our bounds with the ones of the dispersive apgat gives 7* (1)|V,y| =0.036+0.002, p2, =1.16+0.15, in prac-

proach, as .they.happen to be complementary. We must, hoWze the same fit as Eq81) with the phenomenological formula
ever, keep in mind the differences between the two methodsys).

We have demonstrated in Rgt1] that the IW function£(w)
is an alternating series in powers of{ 1), with the moduli
of the derivatives satisfying the boundk?) and (60).

A. Comparison with the work of Caprini, Lellouch,
and Neubert

Let us consider the main results of R¢P4], that are
summarized by the one-parameter formula

Vi(w
(W) =1-8p%z+ (51p2—10)22— (2520%— 84)7°
Vi(1)
(83
with the variablez(w) defined by
w+1-— \/5 (
7= 84)
W+1+42
and the allowed range fqr? being
—0.17<p?<1.51. (85)

1
§'(1)= 3—2(67/)2— 10), (87)

1
" — 2_
§"(1)= 55(1487p*~372)

(89)
with p? in the range85). From Eqs(87) and(88), using the
notation £(w)=1—p?(w—1)+c(w—1)>+d(w—1)3+--.
one gets the numerical relationi®4] c=1.05%-0.15,
d=—0.972+0.24.

Let us now comment on the implications of our bounds
(12). The first important remark is that, within the simplify-
ing hypothesig86), the rangg85) is considerably tightened
by the lower bound op?= 2 implied by Bjorken and Uralt-
sev sum rules. Therefore, we will consider hereafter, instead
of Eq. (85), the improved range

3 2

that shows that our type of lower bounds are complementary
to the upper bounds obtained from dispersive methods.

Of course, the function/;(w)/V (1) contains finite mass \jthin the hypothesis of the heavy quark limit, the region
corrections that are absent at present in our method. Nevegjowed by the dispersive bounds fétw) with p? within

theless, let us first compare these results with our lowefhe range(85) is obviously much reduced by the boun@s)

bounds(12), assuming the rough approximation

Vi(w)
Vi(1)

=&(w). (86)

Of course, since the expansi®8B) stops at third order im,

it would only make sense in the comparison to go up to the
third derivative ofé(w). Using our notation, the results of
Sec. IV of Ref.[24] for the first derivatives write, from the

expansion83), in terms of the slopg?:

(Fig. 2.

Finally, let us look for the implications of our improved
bound on the curvature, E¢60). Combining the linear de-
pendence obtained from dispersive methd¢8® with the
inequality (60) one obtains the condition

1 1
3—2(67P2—10)> §[4p2+3(pz)2] (90

that gives the range

094022-8
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To compare with our bounds we proceed as we did above.

Since EQ.(96) holds in the heavy quark limit, we s?e@(l)
Interestingly, the condition(90) gives by itself an upper =1 and write the Isgur-Wise function in terms of the coef-
bound forp? that is of the same order than the upper boundicientsa,,:

0.28<p?<1.88. (92)

(85). Moreover, the rangé1) contains the improved range
(89), and things appear to be coherent.

B. Comparison with the work of Boyd, Grinstein, and Lebed

Let us now compare the results of the work of Boyd,
Grinstein, and Lebed with the dispersive metiia8]. In this
work, the QCD part of the calculation includeg and non-
perturbative(condensatecorrections, and new poles below
the annihilation threshold ignored in Rg23], but not in
Ref.[24]. In a form that allows us to make the comparison
with our results, the authors of R¢R25] obtain the following
expansion for the scalar form factor:

To(w)=To(1)+[1.722,—0.7% o(1)](Ww—1)
+[—1.748,+0.21a,+ 0.55 o(1) J(w— 1)+ - - -,
(92)

wheref,(w) has been defined by Caprini and Neutjes],

Tolw(g?)]= fo(d") (©3
(Mg—Mp)MgMp(w+1)
with
fo(@®)=(Mg—MPf.(a®)+a*f_(a*). (94
f.(g%) are the form factors governing the rate

—Dev (q=p—p’'):

(D(P")|V,IB(P))=f.(a*)(p+p"),+T_(q*)(p—p'),-
(95

Heavy quark symmetry implies

Folw(g?)]=&(w). (96)

The coefficients,, in Eq. (92) are defined by the expression
for a generic form factof24,25

o

> anz",

n=0

1

F= 5 el

(97)

where z is defined by Eq.(84). The functionsP(z) and

Ew)=1+(1.72,—0.77(w—1)
+(—1.742,+0.21a,+ 0.55 (W—1)%+ - - -.
(99

Notice that in Eqs.(92) and (99) it does not make much
sense to consider higher powems-1)" (n=3) unless the
correspondinga,, (n=3) are introduced. Then, our lower
bounds(12) are written

3
~1.722,+0.77> 32(~ 1748, + 0.218,+ 0.5

;2(—1.7211+o.77) (100
implying, respectively,
a;=<0.01,
a,=3.17a,—0.33. (10D
Since, from Eqgs(101) and(98) we have
—-1<a;=<0.01 (102

and the coefficient oh; in Eq. (101) is large, the whole
range

(103
is allowed. This seems to support the statement of R&f|.

thata, cannot always be neglected.
Moreover, using the quadratic boui@0), one obtains

¢(z)—respectively, the Blaschke factor and the outer

function—contain the subthreshold singularities in the ann
hilation channel, respectively, tlig, poles and the kinematic

singularities. The basic result of the dispersive approach is

that the coefficients,, of the series obey

> a’<1. (98)
n=0

3(p?)2—6p%+2(1—ay) =<0 (104
and therefore
—0.5<a,<1 (109
giving the range fop? in terms ofa,
1 /1+2325p251+ [1+2a, (106
3 3
and therefore the wide range
0=<p?<2. (107)

For a,=0, implicity assumed in Ref[24], one finds the
range

0.42<p?<1.58, (108

094022-9
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a domain qualitatively consistent with but somewhat narfactor related, up to kinematic factors, §w). Of course,
rower than the corresponding ori@l) obtained from the the results for the coefficients, would differ according to
linear relation between the curvature and the slope given bthe considered form factor.

Ref.[24]. We use the numerical parameters of this paper, and two
In conclusion, there is no contradiction between the dischoices forp? in formula (109, namely,p?=1.023, which
persive bounds and the type of bounds that we have obtainembrresponds to the Isgur-Wise function obtained within the
using Bjorken-like sum rules in the heavy quark limit. The Bakamjian-Thomas scheme from the Godfrey-Isgur spectro-

latter appear rather as lower bounds that are complementaggopic model, as found in RefL9], and p?=1.15 obtained

to the upper bounds of the dispersive approach, considerabfyom the fit of Sec. IX.

tightening the allowed range fqg&? and for the higher de- Denoting the Blaschke factor and outer function for each

rivatives of é(w) as well. form factor by the corresponding subindices, we find, for
p?=1.023, the serie§112) for f,[q%(2)]

XI. A PHENOMENOLOGICAL ANSATZ
FOR THE ISGUR-WISE FUNCTION P.(2)¢.(2)f.[9%(2)]=0.0143-0.017%—0.11642
AND THE DISPERSIVE CONSTRAINTS 0.3277— 01995 — 0.449F5

In light of th i i ion, ing t
n light of the preceding discussion, we are now going to 1234754 ... 114

address the question of whether the phenomenological ansatz
for the IW function proposed in Sec. IX
and forfy[g%(2)]

2\

wel (109 Po(2) 0o(2)fo[q4(2)]=0.0834-0.175@— 0.17252

+0.867%%—1.1600*—0.8943%°

§(W)=(

satisfies, assuming the heavy quark lin86) or (96), the

constraints of the dispersive approach. —0.43465+ - - -. (115
We will follow here the formulation of Boydet al. [25]

and consider the form factoffs (q%) andfy(q?) defined by For p2=1.15 we find, respectively

Egs. (94) and (95). In the heavy quark limit, one has the ' '

eatons P.(2)¢.(2)f.[q%(z)]=0.0143-0.032&— 0.090%>
f.[g%(w)] Mg+ Mp £(w) (110 +0.4294°—-0.577%*—0.030&°
+La%(w) = ——=¢&(w),
2VMeMo +1.38685+ - - - (116

folg2(W)]=(Mg—Mp)VMgMp(w+1)E(w). (111) and

We now denote generically any of these form factors by 20 07— 2
F[g2(w)], or through the transformatiot®4), F[q?(z)]. Po(2) #0(2)To[q7(2)]=0.0834-0.2592+0.0484
We adopt the phenomenological formyE09) for £(w) +0.9094°—2.007%*+ 2.508%°

and define the corresponding ser{63) » 35085+ 17

> a,2"=P(2)¢(2)F(2), (112 Compared to the conditiofl13), we observe two points.

n=0 . . ..

First, the first coefficients have squares well below 1, espe-

cially for f, (g?). That this happens to be the case for this

form factor that has three Blaschke factors, wihiiég?) has
only two, reinforces the idea that one should be closer to the

IW function: when the number of subthreshold poles in-

creases, the form factor should become closer to the Isgur-

Wise function[25]. Second, high powers af have coeffi-

o cients that can be dd(1). Therefore, the phenomenological
2 aﬁgl_ (113 formula (109 is ruled out on strict theoretical grounds. How-
n=0 ever, since the variabledefined by Eq(84) is small in the

whole physical region Z,,=0.056), high powersz"(n

The outer functionsp(z) and the Blaschke factoi(z) for =4) are completely irrelevant in the actual phase space. Our

f. (g% andfy(g?) are given in Ref[25], respectively, by conclusion is that, owing to the fact that the coefficients, up

formula (4.23 and Table 1 and by formul@.25 and Table to orderz® included, satisfy the conditiofi13), the “dipole”

3. We have singled out, (g%) andfy(g?) as given by Egs. formula (109 gives, on phenomenological grounds fair

(110 and (111 but we could have taken any other form enough representation of the form fact¢t&0), (111).

whereP(z) and ¢(z) are the Blaschke factor and the outer
function of the corresponding form factors.

We now want to compare the coefficierds obtained
from Egs. (110, (111), assumingF(z)=£&[w(z)] given by
Eqg. (109, to the condition(98):

094022-10
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XIl. CONCLUSIONS

In conclusion, using sum rules in the heavy quark limit of
QCD, as formulated in Refl1], we have found an improved
bound for the curvature of the Isgur-Wise functiarf
=¢"(1)=%[4p%+3(p?)?] that implies the already demon-
strated[1,11] absolute boundr?=12.

Beyond the simple ansatZ8) introduced above, any phe-
nomenological parametrization @{w) intending to fit the
CKM matrix elemen{V,,| in B—D™*)¢ v should have, for a
given slopep? satisfying the bound10), a curvatures?

PHYSICAL REVIEW D 69, 094022 (2004

satisfying the new boun@0). Moreover, we discuss these
bounds in comparison with the dispersive approach. We

show that there is no contradiction as our bounds restrain the

region for £(w) allowed by this latter method.
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