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While the naive factorization assumption works well for many two-body nonlep®nieson decay modes,
the recent measurementBf-D*)°M° with M=, p, andw shows a large deviation from this assumption.
We analyze th®&—D™*)M decays in the perturbative QCD approach based oktliactorization theorem, in
which both factorizable and nonfactorizable contributions can be calculated in the same framework. Our
predictions for the Bauer-Stech-Wirbel parametefs;/a;|=0.43-0.04 and Argé,/a;)~—42° and
|a,/a;|=0.47+0.05 and Argé,/a,) ~ —41°, are consistent with the observgd- D 7 andB— D* 7 branch-
ing ratios, respectively. It is found that the large magnitladé¢ and the large relative phase betwegranda,
come from color-suppressed nonfactorizable amplitudes. Our predictions ﬁ?mE*OpO,D*Ow branching
ratios can be confronted with future experimental data.
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|. INTRODUCTION scaleu runs to VAm,<my, A=mg—m, being theB me-

son andb quark mass difference.

Understanding nonleptoni® meson decays is crucial for ~ (3) Annihilation diagrams contribute to large short-
testing the standard model, and also for uncovering a trace dfistance strong phases through ti&+(P)(S—P) penguin
new physics. The simplest case is two-body nonlept@ic operators.
meson decays, for which Bauer, Stech, and WirlR$W) (4) The sign and the magnitude &@P asymmetries in
proposed the naive factorization assumpti@®) in their  two-body nonleptoni® meson decays can be calculated, and
pioneering work[1]. Considerable progress, including the we have predicted relatively largeP asymmetries in th&
generalized FA2-4] and QCD-improved FAQCDP [5], —K®*)z [14,17 and w7 modes[15,16,18.
has been made since this proposal. On the other hand, a All analyses involving strong dynamics suffer larger the-
technique to analyze hard exclusive hadronic scattering wagretical uncertainties than we would like. How reliable are
developed by Lepage and Brodslg] based on the collinear these predictions? This can be answered only by comparing
factorization theorem in perturbative QGBQCD. A modi-  more of our predictions with experimental data. For this pur-
fied framework based on the; factorization theorem was Pose, we study thB—D®*)M decays in PQCD, wher is
then given in[7,8], and extended to exclusi® meson de- @ pseudoscalar or a vector mesorDA) meson is massive,
cays in[9-12]. The infrared finiteness and gauge invariance2nd the energy release involved in two-body charmed decays
of the ky factorization theorem was shown explicitlyip3]. 'S not very large. If predictions for these decays agree rea-
Using this so-called PQCD approach, we investigate the dysonably well with experimental data, PQCD should be more

namics of nonleptoni® meson decaygl4—16. Our obser- cpnvincing for two-boldy charmless decays. Sincg pe”QU‘F‘
vations are summarized as follows diagrams do not contribute, there are fewer theoretical ambi-

(1) The FA holds approximately for charmleBsmeson guities, such as the arguments about chiral or dynamical en-

decays, as our computation shows that nonfactorizable cor@-ﬁgfni':f ndte C;:;Sefsk'%% nﬂ:r?or\(/aagcijrléyctm PQCD analyses in

tributions are always negligible due to the cancellation be- Note that the FA is expected to break down for charmed
tween a pair of nonfactorizable diagrams. nonleptonicB meson decaygl9]. The FA holds for charm-
(2) Penguin amplitudes are enhanced, as the PQCD foljgsg decays because of the color transparency argument: con-
malism includes dynamics from the region where the energy;j,tions from the dominant soft region cancel between the
two nonfactorizable diagrams, where the exchanged gluons
attach to the quark and the antiquark of the light meson

*Electronic address: yykeum@eken.phys.nagoya-u.ac.jp emitted from the weak vertex. For charmed decays with the
"Electronic address: krmt@k2.sci.toyama-u.ac.jp light meson replaced by B™*) meson, the two nonfactoriz-
*Electronic address: hnli@phys.sinica.edu.tw able amplitudes do not cancel due to the mass difference
SElectronic address: lucd@ihep.ac.cn between the two constituent quarks of thE*) meson.
IElectronic address: sanda@eken.phys.nagoya-u.ac.jp Hence, nonfactorizable contributions ought to be important.
TMailing address. This observation leads further to the speculation that strong
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phases in th&—D*)M decays, if there are any, arise from
nonfactorizable amplitudes. In charmless decays, strong :W c_
phases come from annihilation amplitudes through t8e ( -
+P)(S—P) penguin operators, since nonfactorizable ones
are negligible as explained above. Annihilation amplitudes
should not be the source of strong phases for charmed de-
cays, which do not involve theSt-P)(S—P) penguin op- FIG. 1. B—D®) transition througtb quark decay into a quark
erators. and a virtualw boson.
In this paper we shall apply the PQCD formalism to the
two-body charmed decay—D™*)M with M=, p, and We write theB (D*)) meson momentur®,; (P,) in the
. PQCD has predicted strong phases from the annihilatioight-cone coordinates as
amplitudes for charmless decays that are consistent with the
recently measuredCP asymmetries in theBl— '™ Mg mB( M2 ) )
modes. It is then interesting to examine whether PQCD also Pi=—(1,10y), Py=—0| 1—,0]. 2
gives the correct magnitude and strong phases from the non- \/E \/E mé

factorizable amplitudes implied by the isospin relation of the

B—D®)M decays. Compared to the work iil], the con-  The picture associated with tiB—D*) transition is shown

tributions from the twist-3 light meson distribution ampli- i Fig. 1, where the initial state is approximated by the

tudes and the threshold resummation effect have been take@mponent. Thé quark decays into a quark and a virtual

into account, and more modes analyzed. The power counting; noson, which carries the momentgnSince the constitu-

;Unlqeslofoédc?:ggfaﬁ mislzr;dqr?%gi’to‘i?V;Stf‘(r)l:]clfg:jn[]m?;é alrte i ents are roughly on the mass shell, we have the invariant
i i izati ulas. It wi 2 N .

be IZhg/wn that nonfactorizablg contributions to charmed de'2SS6%i ~O(A%), =1 and 21 wherek; (ko) is the mo-

cays are calculable in PQCD, and play an important role ifnentum of the spectatat quark in theB (D™)) meson. The

explaining the isospin relation indicated by experimentalabove kinematic constraints lead to the order of magnitude of
data. The predictions for thB—D*%p°D*% branching Ki andk, [20]
ratios can be confronted with future measurements.

In Sec. Il we review the progress in the study of two-body Ki~(A,AA),
charmed nonleptoni8 meson decays in the literature. The
PQCD analysis of the above decays is presented in Sec. lll m m
by taking theB— D 7 modes as an example. Numerical re- kMN( B A D(*)X,K) 3
sults for all theB—D®*)M branching ratios and for the ex- Mpx)  Me

tracted BSW parametees; anda, are collected in Sec. IV.

In Sec. V we compare the PQCD approach to exclusive The lowest-order diagrams contributing to tBe-D )

meson decays with others in the literature. Section VI is thdorm factors contain a hard gluon exchange betweerb thie

conclusion. The Appendix contains the explicit expressiong quark and thed quark as shown in Fig. 2. The quark

of the factorization formulas. undergoes scattering in order to catch up with ¢hguark,
forming aD*) meson. With the parton momenta in Eg),
the exchanged gluon is off shell by

II. REVIEW OF PREVIOUS WORKS

A. PQCD approach to B—D®) form factors

Mg
k)2~ —
To develop the PQCD formalism for charm&meson (ki—ka) Mpx)

decays, we have investigated tBe-D*) transition form
factors in the large recoil region of ti2™) meson20]. We  which has been identified as the characteristic scale of the
briefly review this formalism, which serves as the basis 0f,5.q kernels. From Eq1), we havemg/m$)>1, and the

(%) i (%) iti i . .
the B—~D™M analysis. TheB— D™’ transition is more 54 kernels are calculable in perturbation theory. It has been
complicated than th&— 7 one, because it involves three

A2, (4

scales: the8 meson massg, the D*) meson massip ), W W

and the heavy meson and heavy quark mass differénce

=mg—My~Mpx)—Mm, of the order of the QCD scale 3 3

Agep, Mpe) (M) being theD®™) meson ¢ quark mass. b X: c b X c

We have postulated the hierarchy of the three scales E g
Mg=>Mp)> A, 1 a d a E

. _ o FIG. 2. Lowest-order diagrams contributing to tBe—D®)
which allows a consistent power expansiomig)/mg and  form factors. Quite a lot of momentum must be transferred to the

in /T/mD(*). spectatord quark through the hard gluon exchange.
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found that the applicability of PQCD to tHe— D*) transi-
tion at large recoil is marginal for the physical massas
andmp ) [20].

Infrared divergences arise from higher-order corrections 1
to Fig. 2. The sof{collineay type of divergence is absorbed 0.8 :’
into the B (D™*)) meson wave functiongg(x;,b;) 0.6 ::f
[ #p)(X2,b5) ], which is not calculable but universal. The 04 X
impact paramete; (b,) is conjugate to the transverse mo- 0.2 & \
mentumk,t (ko) carried by thed quark in theB (D*)) 0 \W\\\‘\t&f.

ORI
R

meson. It has been shown, from the equations of motion for IR g‘.}:?;’
““s“‘\‘.“‘“‘t“\ >

the relevant nonlocal matrix elements, thaig(x;,b,)
[ Pp)(X2,b5)] has a peak at the momentum fractign
=k{/P] ~Almg (x,=Kkj /P5 ~Almpw)) [20].

The form factors are then expressed as the convolution of FIG. 3. QCD demands the presence of a Sudakov factor, which
the hard kernel$! with the B and D*) meson wave func- is the amplitude for a quark-antiquark color dipole not to emit real
tions in thek; factorization theorem, gluons in the final state. For a large transverse separétidhe
quark and the antiquark do not shield each other’s color charge and
are likely to radiate. In this region Sudakov suppression is strong.

R%>
%

FoO)(q7) = | dadr®acbde(,b0)
A dynamical effect, the so-called Sudakov suppression, fa-
XH(X1,X2,b1,02)pp)(X2,b5).  (5)  vors the configuration in whicky is not small[8]. The end-
point singularity then disappears as explained below.
The D*) meson wave function contains a Sudakov factor When an electron undergoes harder scattering, it tends to
arising fromk; resummation, which sums the large double'@diate more photons. Hence, the scattering amplitude for
logarithms an?(mgh,) to all orders. TheB meson wave radlatmg no photo.ns must be suppressed by a factpr yvhose
function also contains such a Sudakov factor, whose effect igffect increases with the electrgn energy. In QED th's is the
negligible because B meson is dominated by soft dynamics. Well-known Sudakov suppression factor, the amplitude for
The hard kemels involve a Sudakov factor from thresholc®" €lectron not to emit a photon in hard scattering. In the
resummation, which sums the large double logarituin?, ~ current QCD case of thB—>D(*) transition, it is thec-d
or an?; to all orders. This factor modifies the end-point quark-antiquark color dipole that undergoes hard scattering.
behavior of theB and D™*) meson wave functions effec- When the color dipole is larger, it tends to radiate more glu-
tively, causing them to diminish faster in the smajl, re-  Ons. Since the final state contains only a sirg&’ meson,
gion. real gluon emission is forbidden in the hard decay process.
Similarly, the transition amplitude must involve a Sudakov
factor, whose effect increases with the size of the color di-

pole, i.e., with the separatidm betweenc andd. That is, a

It has been pointed out that if Fig. 2 is evaluated in theconfiguration with a smaller separatidnor with a larger
collinear factorization theorem, an end-point singularity ap-relative transverse momentutk; is preferred in theB
pears[21]. In this theorem we have the lowest-order hard— D®) transition at large recoil. Then the virtual particles
kernel involved in the hard kernel remain sufficiently off shell, and
Eqg. (5), with Eqg. (7) inserted, is free from the end-point
singularity.

The corresponding Sudakov factor can be derived in
PQCD as a function of the transverse separatiand of the
momentum fractionx carried by the spectator quafl@],
from the left diagram in Fig. 2, which leads to a logarithmic whose behavior is shown in Fig. 3. The Sudakov factor sup-
divergence, as th®*) meson distribution amplitude be- presses the largeregion, where the quark and the antiquark
haves likegp+)(X) X, in the smallx, region. This singu- are separated by a large transverse distance and the color
larity implies the breakdown of collinear factorization, and shielding is not effective. It also suppressesxhel region,
ky factorization becomes more appropriate. Once the partowhere a quark carries all of the meson momentum and tends
transverse momentk; are taken into account, E@6) is  to emit real gluons in hard scattering. The Sudakov factors
modified into from ky resummation(22] for the B and D®*) mesons are

associated with only light spectator quarks, since the double
HO (X, Xy, Ky ,Kor) ngarithms arise from the overlap of thg soft {and mess-
el linean divergences. These factors, being universal, are the
mé same as in all our previous analyses.
o > 5 = (7 Similarly, the smalix region corresponds to a configura-
[X1X2mg + (Kyr—Kat) “][X2mg + K57] tion with a soft spectator, i.e., with a large color dipole in the

B. End-point singularity and Sudakov factor

1
H(O)(Xlaxz)oc Y] (6)
X1X5
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longitudinal direction. The probability for this large color
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andfy, theB°—D* 7~ (class-} andB°—D%# (class-2

dipole not to radiate in hard scattering is also described by gecay amplitudes are expressed as
Sudakov factor, which comes from threshold resummation

for the hard kernels. For the derivation of this Sudakov fac- o Gr
tor, refer to[23]. For convenience, it has been parametrized AB=D 77 )=i —Vcbvjd(mé—m%)
as[24] \/5
21+2C1"(3/2+C) xfﬂFBD(mi)al(Dq-r), (12)
Si(X)= —=——[x(1=x)]°, (tS)
JaT(1+c)

with the constant=0.35. The above parametrization is mo-

tivated by the qualitative behavior @,: S;(x)—0 asx

—0,1[23]. Since threshold resummation is associated with
the hard kernels, the result could be process dependent. It h
been observeR5] that its effect is essential for factorizable

_ Gr
V2A(BY— DOm0 = — i —= VeV 4(ma—m?)

V2

X foFB7(md)ay(D ), (13

fhere the parametees, anda, are defined by

decay topologies and negligible for nonfactorizable decay Ci(w) Co(p)

topologies.

C. Factorization assumption

We review the basics of the FA for ti2B—D®*)M de-
cays. The relevant effective weak Hamiltonian is given by

G
Het=— VeV Ca()O1(10) + Co( ) O )], (9)

V2

where the four-fermion operators are
0;=(db)y_a(CU)y_a, Op=(chb)y_a(du)y 4, (10

with the definition @102)y-a=017,(1— ¥5)qz, theV's the
Cabibbo-Kobayashi-Maskaw@KM) matrix elements, and

C, andC, the Wilson coefficients. ThB°—D* 7~ mode is
referred to as the class{tolor-allowed topology, in which

the charged pion is emitted at the weak vertex. Bfe
—D%7% mode is referred to as the clasgedlor-suppressed
topology, in which theD® meson is directly produced.

For theB°>—~D* 7~ mode, O, and a Fierz transformed

0, contribute. For theB°—D%#° mode, O, and a Fierz
transformed O, contribute. Applying the FA[1] or
generalizell FA [2—4] to the hadronic matrix elements, we
have

<D+ T | (gb)va(EU)v7A|§o>
~(D"| (Eb)V—A|§O>< | (EU)V—A| 0),
(D%7%|(db)y_ a(cU)y | B%)
~(7%|(db)y_alBO)(D|(cu)y_al0). (1)

Substituting the definition of th& meson transition form
factorsFBP and FB™ and of the meson decay constafts

a;=Cy(un)+ a,=Cy(u)+ N (14

Ne '
N, being the number of colors. TH2~ — D%~ mode, in-
volving both classes of amplitudes, is referred to as class 3.
The isospin symmetry implies

A(B*—D* 7 )=A(B~—D% )+ V2A(B*-D%#O).
(15

It is straightforward to apply the FA to oth&—D®*)M
modesa,; anda, depend on the color and Dirac structures of
the operators, but otherwise are postulated to be universal
[1,26,27. They have the orders of magnituds (D )
~0O(1) anday(Dm)~0O(1/N.). The consistency of the FA
can be tested by compariag anda, extracted from various

decays. Within errors, the class-1 deca®3—D®*) "M~
with M=, p, a;,Dg, andD} are described using a uni-
versal value|a;|~1.1=0.1, whereas the class-2 decays
B—K®*)M with M=J/y and (2S) suggest a nearly uni-
versal valuela,|~0.2-0.3[28]. The wide range ofa,| is
due to the uncertainty in th8—K®*) form factors. The
class-3 decayB™—D™*)°M ~ with M = 7 andp, which are
sensitive to the interference of the two decay topologies, can
be explained by a real and positive ratig/a;~0.2-0.3,
which seems to agree with the above determinatiofagf
and|a,|. This is the reason the FA was claimed to work well
in explaining two-body charmeB meson decays, before the

class-2 modeB®— DM® with M= 7, 7, andw were mea-
sured.

The recently observeB®— D°M? branching ratios listed
in Table 1[29,3Q revealed interesting QCD dynamics. The
parametefa,| directly extracted from these modes falls into
the range of |ay,(Dw)|~0.35-0.60 and |a,(D*7)]
~0.25-0.50 31]. To maintain the predictions for the class-3
decays, there must exist sizable strong phases between
class-1 and class-2 amplitudgk9], which are Arg@,/a,)
=59° for theD = modes and Argd,/a,) =63° for theD* 7
modes[31]. These results can be regarded as a failure of the
FA: the parametera, in different types of decays, such as

The main difference between the FA and generalized FA is thaB— D™ 7 andB—K®)J/4, differ by almost a factor of 2

nonfactorizable contributions are included in the latter.

in magnitude, implying strong nonuniversal nonfactorizable
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TABLE I. Data (in units of 104 of the B—~D®*)MO°
(M%= 7, ,0) branching ratios.

Decay mode Bell¢29] CLEO[30]
BY_.DOs0 3.1+0.4+0.5 2.74°53%+0.55
B0 D* 070 2775708 2.20°§83+0.79
B°—D% 1.4735+0.3

BY—D*%y 2.0'55+0.4

B°- D% 1.8+0.5°53

BO—D*%%, 3.113+08

effects. It is then crucial to understand this nonuniversality<4<Mw, Which is derived fromA ycp=

PHYSICAL REVIEW D69, 094018 (2004

hard b quark decay kernels with meson wave functions in
both the longitudinal momentum fractions and the transverse
momenta of partons. Our PQCD formulas are derived up to
leading order inag, to leading power inmp/mg and in
Almp, and to leading double-logarithm resummations. For
the Wilson coefficients, we adopt the leading-order
renormalization-group evolution for consistency, although
the next-to-leading-order ones are available in the literature
[32]. For a similar reason, we employ the one-loop running
coupling constantas(,u,)=277/[/31In(M/Ag’(f:) 1 with B
=(33—2ny)/3, n; being the number of active quarks. The
QCD scale is chosen as5,=193 MeV for the scalen,

) =250 MeV for u

and, especially, the mechanism responsible for the large rel& Mo -

tive phases in a systematic QCD framework.

. B=Dax IN PQCD

In this section we take thB— D 7 decays as an example

The leading-order and leading-power factorization formu-
las for the above decay amplitudes are collected in the Ap-
pendix. Here we mention only some key ingredients in the
calculation. The formulas for thB— D 7 decays turn out to
be simpler than those for tti&— 7 ones. The simplicity is

of the PQCD analysis. An intensive study of all other modesattributed to the power counting rules under the hierarchy of

will be performed in the next section. TH&—D# decay
rates have the expressions

3

Mg
I GE[Veo|*|Vudl > A2 (16

T 128
The indices for the classes=1, 2, and 3, denote the modes
B°—D*xw~, B -~D%P° and B —D%r ", respectively.
The amplitudes\; are written as

A= T et Teéexct Mexit Mexe, (17)
V2R5= — (foéin— fatect Min— Mexd, (18
As= T éexit o éintt Mext Mint, (19

the three scales in E@L). The hard kernels are evaluated up

to power corrections of ordek/mp~mp/mg (A/mg is re-
garded as being of even higher pO\)rieFollowing these

rules, the terms proportional tx;~A/mg and to x,

~ A/mp are of higher power compared to the leadiD@l)
terms and are dropped. We have also dropped the terms of
higher powers imr=mp/mg. Accordingly, the phase space
factor 1—r2, appearing in Eq(16) originally, has been ap-
proximated by 1. This approximation is irrelevant in explain-
ing the ratios of thé8— D 7r branching ratios, and causes an
uncertainty in the absolute branching ratios that is much
smaller than those from the CKM matrix elemewt,,| and

from the meson decay constarfitgandf .

Up to power corrections of ordek/mg and A/mp, we
consider only a singl& (D) meson wave function. The non-

with fg being theB meson decay constant. The functions perturbativeB meson and pion wave functions were fixed in

éovty &, and €., denote the factorizable external
W-emission (color-allowed, internal W-emission (color-
suppressed and W-exchange contributions, which come
from Figs. 4a) and 4b), Figs. 5a) and 8b), and Figs. 6a)
and Gb), respectively. The function$f oy, Min;, and My,
represent the nonfactorizable exterislemission, internal
W-emission, andW-exchange contributions, which come
from Figs. 4¢) and 4d), Figs. 5¢) and 8d), and Figs. €c)
and &d), respectively. All the topologies, including the fac-

our previous work[14,15. The unknownD meson wave
function was determined by fitting the PQCD predictions for
the B—D transition form factors to the observé&l—DIv
decay spectrurfi20]. The contributions from the two-parton
twist-3 D meson wave functions, being of higher power, are
negligible. Note that in charmless decays the contributions
from the two-parton twist-3 light meson distribution ampli-
tudes are not down by a power ofrdd. These distribution
amplitudes, being constant at the momentum frackien0

torizable and nonfactorizable ones, have been taken into a@s required by the equations of motion, lead to linear singu-

count. It is easy to find that Eq&l7)—(19) obey the isospin
relation in Eq.(15).
In the PQCD framework based on tlkg factorization

larities in the collinear factorization formulas. The linear sin-
gularities modify the naive power counting, such that two-
parton twist-3 contributions become leading powa4,33.

theorem, an amplitude is expressed as the convolution dh charmed decays the above equations of motion are modi-

T T

5 v 5 v
B E D& B é D" B

(a) (b)

ig
A/
D™
(c)

T

:

(d)

FIG. 4. Color-allowed emis-
sion diagrams contributing to the

)
b B—D®) 7 decays.

B
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D(*) D™ D(,) D™

P \/ 5 \/ ; /_‘ FIG. 5. Color-suppressed
emission diagrams contributing to
B E x B g = B 7 B m the B—D®) 7 decays.

(a) (b) (o) (d)

3

fied [20], and the two-parton twist-B® meson wave func- ity (channel independencef a; anda, assumed in the FA
tions vanish at the end point af Therefore, their contribu- [35] breaks down at subleading power even within e
tions are indeed of higher power. —D®)M decays.

Retaining the parton transverse momekya the nonfac- Replacing the pion in Figs. 4—6 by the(w) meson, we
torizable topologies generate strong phases from non pinchesbtain the diagrams for thB—D®*)p(w) decays. The fac-
singularities of the hard kerne[84]. For example, the vir-  torization formulas for thé8— Dp(w) decay amplitudes are
tual quark propagator in Fig(8) is written, in the principal- also the same as those for tBe—~D# ones but with the

value prescription, as substitutions
1 ¢7T_> d’p,w ' d)qp-r_> ¢,S),a) ) ¢t17_) d)tp,w ) My— mp(w) ’
X3(Xa=X1)M3— (Kot —Kqp+Kar) 2+ i€ (22)
1 . . . . .
=P whereg . (") is the two-parton twist-Ztwist-3) pion dis-
X3(Xp— X1)M3 — (Kor— Ky1+ k)2 tribution amplitude, ¢, , (¢;",) the two-parton twist-2

(twist-3) p and @ meson distribution amplitudes, respec-
—im8(Xa(Xa— X)) ME— (Kor— ka7 +kar)?), (200 tively, m, the chiral enhancement scale, ang,,) thep ()
meson mass. Hence, a similar isospin relation holds:
with X3 being the momentum fraction associated with the
pion. The second term contributes to the strong phase, which 0 - + .10+ 0_.N1O0,0
is thus of short-distance origin and calculable. The first term AB=D pT)=AB =D )+\/§A(B —br )(23)
in the above expression does not lead to an end-point singu-
larity. Note that the strong phase from ER0) is obtained by TheB—D*
keeping all terms in the denominator of a propagator Withou%ted with the
neglectingx,; andx,.

p(w) decays contain more amplitudes associ-
different polarizations. However, at leading
power, the amplitudes associated with the transverse polar-
izations, suppressed by a powerrf+ /mg or of m,/mg,

IV. NUMERICAL RESULTS are negligible. That is, the factorization formulas for e

* .
The computation of the hard kernels in tke factoriza- _>eDs lfb(gi)turzggeii aEre(tzhE Sﬁg,:ee ;Saﬁﬁ e\[/)\/f’e(;)ghgrr"ezvggz_

tion theorem for other charmed decay modes is similar anct]h, ) ] q = (%0 9 ]

straightforward. TheB—D* = decay amplitudes are the tribution changes sign in the"—D™ "« decay amplitude:

same as thd8— D ones but with the substitution of the
mass, the decay constant, and the distribution amplitude, — 0 1

A(B —D®) w)=— T(fD(*)gint"_fBgexc"— Minit Mexd,

Mp—Mpx, fp—=Tps,  Pp(X)— Ppx(Xz). (21) 2 (24)

This simple substitution is expected at leading power under .

the hierarchy in Eq(1): the difference between the two due to the different quark structures between éheneson

channels should occur only @(A/mp). An explicit deriva- ~ (Proportional touu+dd) and thep® meson(proportional to

tion shows that the difference occurs at the twist-3 level foruu—dd).

the nonfactorizable emission diagrams in Fig. 4 and for the In the numerical analysis we adopt the model for Bie
annihilation diagrams in Fig. 6. It implies that the universal-meson wave function

D® D&
D® D®
; ; Q
B> ; 5 5 FIQ. 6 Annihilation diagrams
contributing to theB—D®) 7 de-
B> //‘ cays.
™ K ™ ks
(a) (b) (c) (d)
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TABLE Il. PredictedB— D7 decay amplitudes in units of 18 GeV.

Amplitudes Cp=0.6 Cp=0.8 Cp=1.0
f o foxt 6.90 7.46 8.01
foéint —1.44 —1.44 —1.44
faoxc —0.01-0.03 —0.02-0.03 —0.02-0.03
Myt —0.24+0.57 —0.25+0.60 —0.27+0.65
Mg 3.34-3.02 3.22-3.07 3.10-3.12
Mexe —0.26-0.89 -0.31-0.95 —-0.37-1.02
1/xmg\? w3b? me=1.4 GeV, 75:=1.674x10 1% s,
dp(x,b)=Npx?(1—x)%ex 5l |
° 25) 750=1542<10712 s,
with the shape parameterg and the normalization constant Gg=1.1663%10"° GeV 2,
Ng being related to the decay constdgtthrough
|Vep| =0.043, |V,4=0.974, (28)
fg
f dX¢g(x,0)= : (26)  wherem,, my,, 7+, andrgo denote the top quark mass, the
2V2N, W boson mass, th&8* meson lifetime, and th&° meson

lifetime, respectively. The above meson wave functions and

The D) meson distribution amplitude is given by parameters correspond to the form factors at maximal recoil

3 B BD BD*
#0101 = == TowX(1= X[ 1+ Cote(1- 20, Fo'~03, £7~057, &, ~052 (29
¢ (27)  which are close to the results from QCD sum rul88,39.

We stress that there is no arbitrary parameter in our calcula-
with the shape paramet€l+). The pion ando(w) meson tion, although the value of each parameter is known only up
distribution amplitudes have been derived [B6,37, and  to a range.
their explicit expressions are given in the Appendix. e The PQCD predictions for each term of tBe~Dx de-
meson wave function was then extracted from the light-conecay amplitudes are exhibited in Table II. The theoretical un-
sum-rule(LCSR) results for theB— 7 transition form factor  certainty comes only from the variation of the shape param-
[24]. The range ofCp+) was determined from the measured eter for theD meson distribution amplitude, G:8C,<1.0.
B—D®™)lv decay spectrum at large recoil by employing thelt is expected that the color-allowed factorizable amplitude
B meson wave function extracted above. We do not consider_¢,., dominates, and that the color-suppressed factorizable
the variation ofep(x) with the impact parametds, since the  contribution f &, is smaller due to the Wilson coefficient
available data are not yet sufficiently precise to control thisC,+C,/N.~0. The color-allowed nonfactorizable ampli-
dependence. tude M, is negligible: since the pion distribution amplitude

The input parameters are listed below: is symmetric under the exchangesaf and 1— x5, the con-

tributions from the two diagrams Figs(c} and 4d) cancel

fg=190 MeV, wg=0.4 GeV, each other in the dominant region with smejl. It is also

down by the small Wilson coefficier@; /N.. For the color-

suppressed nonfactorizable contributiow;,;, the above
cancellation does not exist in the dominant region with small

X3, because th® meson distribution amplitudeby(x,) is

not symmetric under the exchangexgfand 1-x,. Further-

fy=240 MeV, Cp=0.8+0.2,

fos=230 MeV, Cpx=0.7+0.2,

fz=132 MeV, f,=f,=200 MeV, more, M., proportional toC,/N.~0.3, is not down by the
- Wilson coefficient. It is indeed comparable to the color-
f,=f,=160 MeV, mg=5.28 GeV, allowed factorizable amplitudé_&.,, and produces a large
strong phase as explained in Eg0). Both the factorizable
m,=4.8 GeV, mp=1.87 GeV, and nonfactorizable annihilation contributions are small,
consistent with our argument in Sec. Il.
mp»=2.01 GeV, m;=1.3 GeV, The predicted branching ratios in Table Ill are in agree-
ment with the averaged experimental dd2®,30,40. We
m,=0.77 GeV, m,=0.78 GeV, extract the parametees; anda, by equating Eqs(12) and
(13) to Egs.(17) and (18), respectively. That is, ous; and
m,=170 GeV, my==80.41 GeV, a, contain not only the nonfactorizable amplitudes as in the
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TABLE lIl. PredictedB— D7 decay amplitudes in units of 18 GeV, branching ratios in units of 16,
|a,/a,|, and relative angle Arg(,/a;) in degrees.

Quantities Cp=0.6 Cp=0.8 Cp=1.0 Data
A 6.39-0.35 6.88-0.39 7.35-0.40

A, —1.53+1.49 —1.49+1.49 —1.45+1.45

Az 8.56-2.45 8.99-2.47% 9.40-2.46

B(B°~D*7") 2.37 2.74 3.13 36804
B(B%— D) 0.26 0.25 0.24 0.280.05
B(B~—D%) 4.96 5.43 5.91 5305
|a,/a;| (without annihilation 0.47(0.51) 0.43(0.46 0.39(0.42

Arg(a,/a;) (without annihilation —42.5° (-61.5°) —41.6° (—63.5°) —41.9° (—65.3°)

generalized FA, but also the small annihilation amplitudes, aso those in Table Ill. TheB—D* = branching ratios are
was first discussed if41]. We obtain the ratiola,/a,| smaller than theB— D ones because of the form factors
~0.43 with 10% uncertainty and the phaseagfrelative to EElD*<§ED as shown in Eq(29). Similarly, the ratio/a, /a,|

a, about Arg@,/a;)~—42°. If the annihilation amplitudes .
faéer. and M, are excluded, we havi,/a,|~0.46 and and the relative phase Argf/a,) are also close to those

Arg(a,/a,)~ — 64°. Note that the experimental data do nc)tassociated with thd8— D decays. We obtain the ratio

fix the sign of the relative phases. The PQCD calculatior/@2/a1|~0.47 with 10% uncertainty and the relative phase
indicates that Argé,/a,) should be located in the fourth about Arg@,/a;)~—41°. Excluding the annihilation am-
quadrant. It is evident that the short-distance strong phas@litudes, we havéa,/a;|~0.5 and Argé,/a;)~—63°.

from the color-suppressed nonfactorizable amplitude is al- The PQCD predictions for th8—D®)p(w) branching
ready sufficient to account for the isospin triangle formed byfatios are listed in Table V, which match the dp4]. The
the B—D = modes. The conclusion that the data hint at aB°—~D*p~ and B-—D% "~ branching ratios are about
large final-state interaction was drawn from an analysigyice theB°—D* 7~ andB~—D%r~ ones because of the
based on the FA19,31,42,43 Hence, it is more reasonable |argerp meson decay constant (/f ,)2~2. The relatively

to claim that the data just imply a large strong phase, but dq, ) o, B°—D®° branching ratio is attributed to the can-
not teII_What mechanlsm generates this pt{@g@' From .the cellation of the above enhancing effect between the color-
viewpoint of PQCD, this strong phase is of short distance uppressed anllV-exchange contributions, consistent with

and produceq from the nonpinched smgularlty of the har he observation made in an analysis based on the topological-
kernel. Certainly, under the current experimental and theoret- ~ - =0 0 .

ical uncertainties, there is still room for long-distance phase@MPlitude parametrizatidd6]. TheB"— D"w branching ra-
from final-state interaction. tio is larger than th&°—D%p° one due to the constructive

The PQCD predictions for th8—D* 7 decay ampli- interference between the color-suppressed contribution and
tudes and branching ratios in Table IV are also consisterihe annihilation contribution as indicated in Eg4). To ob-
with the data[45]. Sincemps and ¢p« are only slightly tain the B—D*p helicity amplitudes and their relative
different frommp and ¢y , respectively, the results are close phases[47], the power-suppressed contributions from the

TABLE IV. PredictedB—D* 7 decay amplitudes in units of 16 GeV, branching ratios in units of
1073, Ja,/ay|, and relative angle Arg(,/a;) in degrees.

Quantities Cp+»=0.5 Cp+»=0.7 Cp+=0.9 Data
A, 6.32-0.42 6.81-0.45 7.30-0.49

A, —1.65+1.61 —1.62+1.59 —1.59+1.57%

As 8.65-2.69 9.10-2.70 9.55-2.70
B(BY—D**7") 2.16 251 2.88 2.760.21
B(B%—D*%79) 0.29 0.28 0.27 0.250.07
B(B-—D*%") 4.79 5.26 5.75 4.600.40
|a,/a,| (without annihilation 0.52(0.55 0.47(0.50 0.43(0.47)

Arg(a,/a;) (without annihilation —40.5° (—61.4°) —40.7° (—63.1°) —40.8° (—64.8°)
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TABLE V. PredictedB— D®*)p(w) branching ratios in units of IG.

Branching ratios Cp=0.6 Cp=0.8 Cp=1.0 Data
B(BY-D*p") 4.10 4.72 5.38 8.01.4
B(B°— D) 0.17 0.17 0.17 0.290.11
B(B~—D%") 7.26 8.15 9.09 1341.8
B(B—D%w) 0.50 0.54 0.56 0.180.06
Branching ratios Cp+=0.5 Cp+=0.7 Cp+x=0.9 Data
B(BY—D**p") 5.32 6.16 7.08 7315
B(BY—D*%0) 0.18 0.18 0.19 <0.51
B(B~—D*%") 9.14 10.32 11.60 15:53.1
B(B—D*w) 0.49 0.53 0.58 <0.74

transverse polarizations must be included. For consistency, fNF=£S4 fEP

the contribution from the longitudinal polarization should be

calculated up to the same power. We shall study this subject fF=g2T' ¢, . (32

in a forthcoming paper. The predictions for thB
—D*%° D*%, decays can be compared with future mea-The soft form factof N, obeying the large-energy symmetry
surement. The latter branching ratio is larger than the formerelations[56], can be estimated in terms of a triangle dia-

for the same reason as for tBe~D%°, D% decays. gram without a hard gluon exchange in the LCE38,57).
However, since the pion vertex has been replaced by the pion
V. COMPARISON WITH OTHER APPROACHES distribution amplitudes under twist expansion, what is calcu-

) ) ) ) lated in the LCSR is not the full soft contribution. The term

In this section we make a brief comparison of the PQCD{F a5 peen expressed as a convolution of the hard-scattering
formalism with other QCD approaches to exclusBeneson  yernel|T’ with the light-cone distribution amplitudes of tBe
decays, emphasizing the differences. For more details, refeheson and of the pion in the momentum fractions, implying
to [48]. As mentioned before, there are two kinds of factor-ihat it is calculable in collinear factorization.
ization theorem for QCD processgk3]: collinear factoriza- The second option is that an end-point singularity indi-
tion, on which the soft-collinear effective theofCET)  cates the breakdown of the collinear factorization. Hence, the
[49,50, LCSR[51,52, and QCDF[5] are based, an#tt | factorization is the more appropriate framework, in which
factorization, on which the PQCD approach is based. Calcuge parton transverse momerka are retained in the hard
lating theB— r form factorF®7 in collinear factorization up kernel, andfE” does not develop an end-point singularity.

to leading power in Mg and leading order invs, an end-  goih £EP and fF are then calculable, and expressed, in the
point singularity occurs. Hence, we define three types of conpocp approach, as

tributions: a genuine soft contributidi¥, a contributionf&"
containing the end-point singularity, and a finite contribution FBT={EP+ fF= 0T ¢, , (33
fF
Br ¢S, fEP. <F where the symbok represents the convolution not only in
FET=f>+ =+ 1 (B0 the momentum fractions, but in the transverse separations.

The hard kernel’ in Eq. (32) is derived from the complete

The second. term cannot cover the cqmplete soft contrlbutlo%ard kernelT by dropping the terms which led to the end-
because it is from a leading formalism. Note that the end-

point singularity exists even in the heavy quark limit. Hence point singularity in the collinear factorization. Certainly, the

. . _'subtraction of these terms depends on a regularization
B meson decays differ from other exclusive processes, whic c
. . o - scheme[55]. The strong Sudakov suppression in the soft
become calculable in collinear factorization at sufficiently

large momentum transfer parton region implies that the genuine soft contributiSris

There are two options to handle the above end-point sinUOt important[8,24. Equation(33) is then claimed to be a

gularity [53]. First, an end-point singularity in collinear fac- Cg?t?oeﬁu;nlggworstizlElig;;jeomrlﬁgnger&%lgs{ ggfxggﬁ ?h:'g
torization implies that exclusiv® meson decays are domi- gum-rule and POCD redictic.)ns for n?aB eson transition
nated by soft dynamics. Therefore, a heavy-to-light form QCD p m

factor is not calculable, antF” should be treated as a soft form _fact_ors justifies that® is indeed negligible. Sin_CéEP

object, like S, In SCET’and QCDFEB™ is then written, up remains in Eq.(33), the form factor symmetry relations at

to O(o; ) asf54 55 ' large recoil are still respected in the PQCD framew@4],
s/ )

which are then modified by the subleading teffn
FBm— fNF fF (31) Therefore, the soft-dominandé&ard-dominancepicture
postulated in LCSRPQCD makes sense in the collinear
with (k) factorization[48]. The two pictures arise from the dif-
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ferent theoretical frameworks, and there is no conflict at allPQCD approach. This framework is based on khdactor-

In other words, the soft contribution refers t8" in SCET,  ization theorem, which is free of end-point singularities and
LCSR, and QCDF, which is large, but f§in PQCD, which  gauge invariant. Thi; factorization theorem is more appro-
'SEFS,ma”-NIhe LCSR can be regarded as a method to evaluafiate, when the end-point region of a momentum fraction is
f="or f™ in the collinear factorizationat least the light- jnartant, and collinear factorization theorem breaks down.
eBy including the transverse degrees of freedom of partons in
the evaluation of . We emphasize that there is no prefer- the evaluation of a hard kernel, and the Sudakov factors from

ence between the two options for semileptoBimeson de- kt a_ln_d threshold resummations, the_virtL_laI part_i(_:les remain
cays, both of which give similar results as stated aboveSufficiently off shell, and the end-point singularities do not
However, in their extension to two-body nonleptoiane- ~ exist. We have explained that there is no conflict between
son decays, predictions could be very different. For exampld;CSR with the soft-dominance picture and PQCD with the
the main source of strong phases in e w7 decays is the hard-dominance picture, since the soft contributions refer to
correction to the weak vertex in QCDF, but the annihilationdifferent quantities in the two theoretical frameworks.
diagram in PQCD. This is the reason QCIDFQCD pre- The derivation of the factorization formulas for th&
dicts a smaller and positivéarger and negatiyeCP asym- . D®*)M decay amplitudes follow the power counting rules
metryC ., [14,58]. It is then possible to discriminate experi- constructed in our previous work on tle—D®*) transition

mentally which theoretical framework works better. form factors. Under the hierarchyB>mD(*)>K, theB and

Next We compare our formalism for two-body_charmedD(*) meson wave functions exhibit a peak at the momentum
nonleptonicB meson decays based on tke factorization

with SCET and QCDF based on the collinear factorizationfractions aroundA/mg and A/mp), respectively. Up to
Currently, the LCSR has not yet been applied to the nonfacleading power irmp)/mg and inA/mp), only a singleB
torizable contribution discussed here, but only to that frommeson wave function and a sind)*) meson wave function
three-parton distribution amplitud¢s9], since the former, are involved. The factorization formulas then become sim-
involving two loops, is more complicated to analyze. Simi- pler than those for charmless decays. Moreover, the factor-
larly, the neglect okt results in end-point singularities in the jzation formulas for all the8— D®*)M modes are identical,
factorizable contributionse, and &y, which need to be except for the appropriate substitution of the masses, the de-
parametrized in terms of thB—D and B— transition  cay constants, and the meson distribution amplitudes. We
form factors, respectively. It also causes an end-point SingUsmphasize that there is no arbitrary parameter in our analysis
larity in the color-suppressed nonfactorizable amplitud€here are in QCDF although all the universal inputs are not
M, if the ¢ quark is treated as being massive. This is Whyyet known precisely. The meson wave functions have been

the color-suppressed modes, i.e., the magnitude and t . : . :
phase ofa,, cannot be predicted in QCDF, and the proof of I_CtgrRmmed either from the semileptonic data or from the

QCDF in the SCET formalism60] considered only the Being free from the end-point singularities, all topologies

— 5
color-allowed mod&®—D" 7. The color-allowed nonfac- ¢ gecay amplitudes are calculable in PQCD, including the
torizable amplitude,, is calculable in QCDF, because the ¢\ syppressed nonfactorizable one. This amplitude cannot
e_nd-pomt singularities can_cel between the pair of d|agramBe computed in QCDF based on the collinear factorization
Figs. .L(C) and 4d). We mention a recent V\(ork on SCE.M]' theorem due to the existence of the end-point singularities
in which the color-suppressed nonfactorizable amplitude haﬁ.Jr a massives quark. We have observed in PQCD that this
been parametrlzgd as an expression similar to(&%). . amplitude, not suppressed by the Wilson coefficigmbpor-
If the ¢ quark is treated as being massless, the end-poinf, -/ 1o C,/N,), is comparable to the dominant color-

si.ngularities.in the pair of co_Ior-suppressed nonfactc_)rizabl%llowed factorizable amplitude. It generates a large strong
diagrams, Figs. &) and 3d), will cancel each other as in the phase from the nonpinched singularity of the hard kernel,

charmless casg83,58. This can be understood by examin- |\ .ot is crucial for explaining the observe@—D*)M

idng the behav.ior of .t?‘e intel?(rand M.‘m in th. (;?12) in the branching ratios. The other topologies are less important: the
ominant region with smalks, noticing that theD meson .|, ajjowed nonfactorizable contribution is negligible be-
distribution amplitudepp(x,) would be symmetric under the  .5,,qe of the pair cancellation and the small Wilson coeffi-

exchangg ok, and 1_,X2 i'n themc—>0 limit. Hoyvgver,'the . cient C;/N;. The color-suppressed factorizable amplitude
nonfactorizable contribution will become negligible in this with the small Wilson coefficienfi,=C;+C,/N, is also

limit, such that the amplitudeMy, although calculable in o yjiginle. The annihilation amplitudes are small, since they
QCDF, is not large enough to explain tBe~D data. Itis -, me from the tree operators.

then obvious that the PQCD approach has made a great Con- ajj oy predictions are consistent with the existing mea-
]Erlbutlpn here. ]Ehbe r;]orrw]factolnzatl)lle c%rrecélonls to the naiv urements. For those without data, such as fhe
actorizations of both the color-allowed and co or-suppresseHD*opo’D*ow modes, our predictions can be confronted

modes can be predicted, and the latter is found to be Very;, ture measurement. As stated before, we predicted the
Important. large strong phases from the scalar-penguin annihilation am-
plitudes that are required by the lar@# asymmetries ob-
served in two-body charmless decays. The success in pre-
In this paper we have analyzed the two-body charmedlicting the strong phases from the color-suppressed
nonleptonic decayHD(*)M with M=, p, andw inthe  nonfactorizable amplitudes for the two-body charmed decays

pion sidg, while thek; factorization is adopted in PQCD for

VI. CONCLUSION
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further supports th& factorization theorem. The conclusion  The factorizable amplitude&., &int, andéey are written
drawn in this work is that the short-distance strong phase ias

already sufficient to account for ti@—D®*)M data. Cer-

tainly, there is still room for long-distance strong phases 1 UA

from final-state interaction. For the application of the PQCDé&gy= 167w Cg \/Fméf dx,dx, b,db,b,db,

approach to other charmed decays, suchasD(S*)K and 0 0

B—D®)f,, refer to[62] and[63], respectively. X g(Xq,b1) ¢>D(X2)[Ee(t(el))h(X1,Xz,bl,bz)S[(Xg)
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1 1/A
— 2
APPENDIX: FACTORIZATION FORMULAS FOR B—Dm  S&x¢ 167TCF‘/Fmeo dXZdX3fo b2dbzb3dbs d(x)

In this appendix we present the factorization formulas for xI—x XD E-(t Yol xXs Xa(1=12) b, b X
the B— D= decay amplitudes. We choose tBemeson,D {7 Xadn(xa)Balta)Nal Xz Xof ) P2,bs]S{x3)
meson, and pion momenta in the light-cone coordinate as + X6 (X3) Ea(t)ha[ X3,%2(1—12),b3,0,]S1(X,)},

. (A5)

E(lrzOT)

Pi=— (1,10, P,=

V2

with the mass ratio ;=mq/mg, the evolution factors,
Mg Ee(t) = ag(t)ay(t)exd — Sp(t) = Sp(t) ],
P3=—(0,1-r%0y), (A1)
2

=

respectively, withr = mp /mg being defined before. The frac-
tional momenta of the light valence quarks in ienesonD E.(t)=ag(t)a,(t)exg — Sp(t)—S.(t)], (AB)
meson, and pion are

Ei(t)=ag(t)a(t)exd —Sg(t) = Sy(1)],

and the Wilson coefficients,

mg
X1E(17010T)+ kir  for &inMint, c c
k= a;=C,+ N—l a,=Cy+ N—Z (A7)
mB Cc [
xlT(O,lpT)Jr k,r forothers,
2 Note thatC,;=0 andC,=1 at the tree level in our conven-

tion. The explicit expressions of the Sudakov factors
mg exgd —S()], exd —S(t)], and exp—S,(t)] from kt resum-
Ko=X2—=(1,007) +Kor, mation are taken frori20,24.
\/E The functionsh, obtained from Figs. @) and 4b), Figs.
5(a) and Jb), and Figs. 6a) and &b), are given by
m
ks=Xg— (0,1—1%,07) +Kar (A2)

V2

respectively. Which longitudinal component kf, ki or

h(xy,Xz,bq,b5)

=Ko( VX1Xomgby)

ki , is relevant depends on the final-state meson to which the X[ 0(by— b)Ko( VXmMaby) o Vxomgh,)
hard gluon attaches. That is, it is selcted by the inner product
ky-ks or ks Ka. + 6(by,—by) Ko \/X—2m3b2)|0( \/X—szbl)], (A8)
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ha(X2,X3,b5,b3)
) 2
= 'E) H(()l)(\/xzxsmsbz)

X[ 0(by—bg) HEY(XsMghy) Jo( v/xsmghbs)

+6(bz—by)HEY( \/X_3me3)Jo( \/X_3me2)] .
(A9)

The hard scalesare chosen as
= max yx,mg, 1/,,1/b,),
t® = max(v/x;mg, 1/b;,1/b,),
t=max \x3(1—r?)mg,1/b;,1/b;),
t=max(\x;(1—r?)mg,1/b;,1/b;),
t=max \/x3(1—r?)mg,1/b,,1/b;),
t)=max(\x,(1—r?)mg,1/b,,1/bs).

(A10)

For the nonfactorizable amplitudes, the factorization for-
mulas involve the kinematic variables of all the three me-

sons. Their expressions are

1
Mey= 32W\/2Ncp\ﬁm§fo [dx]

1/A
X fo b1dbybdbs Xy by) o (Xo) d(xa)

X[X3Ep(ti)hEN(x; ,by)
— (1= X3+ X%2) Ep(t)hP(x; ,b) 1,

1
M= 32m/2NcF\ﬁm§fo [dX]

(A11)

1/A
% | badbybabygex,.br) o0

X[(—Xa—X3) ¢ (Xa) Eq(t{)h{V(x; ,by)
+(1—Xp) p(Xa) Eq(t )P (x; b1,

1
Mexe= 32m/2NcF\ﬂm§fo [dx]

(A12)

1/A
% | badbybabyg(x, by) o)

X[ X3 (X3 Es(tf)h{(x; ,by)

— X2 (X3) Ef(t¥¥) (D (x; b)), (A13)
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from Figs. 4c) and 4d), Figs. 5¢) and 8d), and Figs. &)
and @&d), respectively, with the definition [dx]
=dx,dx,dx;. The evolution factors are given by

1()

Ep(t) = as(t) —g—exf = S(t)[p,=p, ],

z()

Ea(t) = as(t) —g—exf — S(t)|p b, ],

( (A14)

Eq(t) = as(t) —5—exH — S(t)]b,=b,]-
with the Sudakov exponel@=Sg+Sp+S,..

The functionsh’), j=1 and 2, appearing in Eq§A11)—
(A13), are written as

h()=[ 6(b;—b3)Ko(Bmghy) 1 o(Bmghs)

+ 6(bz—b1)Ko(Bmghs)lo(Bmgb;) ]
Ko(Bjmgbs), for Bf=0
X3 im (A15)
- HE(VIBfmgbs),  for B2<0
h{)=[6(b;—b,)Ko(Dmgby)l o(Dmgh,)
+ 6(by—by)Ko(Dmgb,)lo(Dmghy) ]
Ko(Djmghy), for Df=0
x4 i (A16)
- HE(VIDfmgb,), for D?<0
oo .
hi)=j E[e(bl— b,)H{Y(Fmgb,)Jo(Fmgh,)
+ 6(by— bl)Hgl)(Fmez)Jo(Fmel)]
Ko(Fjmgby), for F7=0
i (AL7)
?Hgl)(\/|Fj2|me1), for F7<0

with the variables
BZZX]_XZ,
B =X1X,— XoX3(1—r?),
B2=X1X,— Xp(1—X3)(1-1?),
D?=x;%3(1—r?),
Di=Fi=(x;—Xp)X3(1-r?),
D5=(Xg+X)r* = (1=X3—Xp)X3(1—r?),

F2=XX3(1-r?),
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NONFACTORIZABLE CONTRIBUTIONS TOB—D*)M DECAYS

F%=X1+X2+(1—X1—X2)X3(1—I’2).
(A18)

There is an ambiguity in defining a light-coBemeson wave
function for the nonfactorizable amplitudet,., since both
the componentsk; and k; contribute through the inner
productsk; - k, andk; - k; in the denominators of the virtual

particle propagators. However, a careful examination of the
factorization formula shows that the dominant region is the

one withk,~O(A) andks~O(mg) at leading twist. Hence,
we drop the ternk,-k,. The scales!)) are chosen as

t{)=maxBmg, V| Bf|mg,1/,,1/y),
t{)=maxDmg, V|D?mg,1/b;,1/b,),

tg):ma><(|:mB,\/||:j2|mB,1/b1,1/b2). (A19)

We explain that the factorization formulas presented
above are indeed of leading power under the power counting

rules in[20]. The factorizable amplitudes are as shown in

[20,33. For the nonfactorizable amplitudes, the terms pro-

portional tox; and to 1-Xx3 in M, roughly cancel each

other. This cancellation can be understood by means of the”

PHYSICAL REVIEW D69, 094018 (2004

f
t(x)= ———(1—2x)[1+0.55 10x2— 10x+1)],
¢ (X) 2\/2_NC( x)[ g )]
(A23)
(X)= —— 3t x(1—x)[1+0.18C5%(2x—1)]
N, '
(A24)
fT
t(x)= ———{3(2x—1)2+0.32x—1)[5(2x—1)2—3
®,( 2\/2_Nc{ 3 [5( ]
+0.273—30(2x— 1)%+35(2x— 1)*]}, (A25)
3f, ,
S(X)= 1—2x)[1+0.7610x%— 10x+ 1)
¢, (X) 2\/2_Nc( [ g 1,
(A26)
3f,
Br(x)= X(1—x)[1+0.2C3%(2x—1)], (A27)

V2N,

corresponding expression in collinear factorization theorem:

the first and second terms i, are proportional to

X3 1—X3+Xs

(A20)

X1X5Xs  XyX5(1=Xg) |

For simplicity, X, has been suppressed, when it appears in

the sum together with, or x5. It is found that the first ratio
cancels the * x5 term in the second ratio. That is, thxg
term is in fact leading and not negligible. For a similar rea-
son, the—x, term in M;,; cancels the *x, term. Hence,
the —x5 term is leading. If one drops-x, in M, the
above cancellation disappears, and a fake leading term wi
be introduced.

The pion andp meson distribution amplitudes have been
derived in[36,37):

3f .
x(1—x)[1+0.44C3%(2x—1)

V2N,

+0.25c3%(2x—1)],

D (X)=
(A21)

[1+0.4C3H2x—1)+0.09C3%2x—1)],

f
22N,

(A22)

f

p

3

v _ _ _ 2 _ 2_
¢p(x)—2\/2_NC 4[1+(2x 1)2]+0.243(2x—1)%2—1]
+0.173-30(2x—1)2+352x—1)*]¢, (A28)
(X 3t (1—2x)[1+0.9310x>— 10x+1)]
X)= —2x)[1+0. —1x+1)],
P 42N,
(A29)

with the Gegenbauer polynomials,

1
C3A =531, CAn=g (35t4—30t2+3),

15
g(21t4—1412+ 1).
(A30)

3
c3t=5(5t°-1), CIn)=

We shall assume that the meson wave functions are iden-
tical to thep meson ones in this work.
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