
PHYSICAL REVIEW D 69, 094018 ~2004!
Nonfactorizable contributions to B\D „* …M decays
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While the naive factorization assumption works well for many two-body nonleptonicB meson decay modes,

the recent measurement ofB̄→D (* )0M0 with M5p, r, andv shows a large deviation from this assumption.
We analyze theB→D (* )M decays in the perturbative QCD approach based on thekT factorization theorem, in
which both factorizable and nonfactorizable contributions can be calculated in the same framework. Our
predictions for the Bauer-Stech-Wirbel parameters,ua2 /a1u50.4360.04 and Arg(a2 /a1);242° and
ua2 /a1u50.4760.05 and Arg(a2 /a1);241°, are consistent with the observedB→Dp andB→D* p branch-
ing ratios, respectively. It is found that the large magnitudeua2u and the large relative phase betweena2 anda1

come from color-suppressed nonfactorizable amplitudes. Our predictions for theB̄0→D* 0r0,D* 0v branching
ratios can be confronted with future experimental data.
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I. INTRODUCTION

Understanding nonleptonicB meson decays is crucial fo
testing the standard model, and also for uncovering a trac
new physics. The simplest case is two-body nonleptoniB
meson decays, for which Bauer, Stech, and Wirbel~BSW!
proposed the naive factorization assumption~FA! in their
pioneering work@1#. Considerable progress, including th
generalized FA@2–4# and QCD-improved FA~QCDF! @5#,
has been made since this proposal. On the other han
technique to analyze hard exclusive hadronic scattering
developed by Lepage and Brodsky@6# based on the collinea
factorization theorem in perturbative QCD~PQCD!. A modi-
fied framework based on thekT factorization theorem was
then given in@7,8#, and extended to exclusiveB meson de-
cays in@9–12#. The infrared finiteness and gauge invarian
of thekT factorization theorem was shown explicitly in@13#.
Using this so-called PQCD approach, we investigate the
namics of nonleptonicB meson decays@14–16#. Our obser-
vations are summarized as follows.

~1! The FA holds approximately for charmlessB meson
decays, as our computation shows that nonfactorizable
tributions are always negligible due to the cancellation
tween a pair of nonfactorizable diagrams.

~2! Penguin amplitudes are enhanced, as the PQCD
malism includes dynamics from the region where the ene
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scalem runs toAL̄mb,mb , L̄[mB2mb being theB me-
son andb quark mass difference.

~3! Annihilation diagrams contribute to large shor
distance strong phases through the (S1P)(S2P) penguin
operators.

~4! The sign and the magnitude ofCP asymmetries in
two-body nonleptonicB meson decays can be calculated, a
we have predicted relatively largeCP asymmetries in theB
→K (* )p @14,17# andpp modes@15,16,18#.

All analyses involving strong dynamics suffer larger th
oretical uncertainties than we would like. How reliable a
these predictions? This can be answered only by compa
more of our predictions with experimental data. For this p
pose, we study theB→D (* )M decays in PQCD, whereM is
a pseudoscalar or a vector meson. AD (* ) meson is massive
and the energy release involved in two-body charmed dec
is not very large. If predictions for these decays agree r
sonably well with experimental data, PQCD should be m
convincing for two-body charmless decays. Since peng
diagrams do not contribute, there are fewer theoretical am
guities, such as the arguments about chiral or dynamical
hancement. Checking the validity of PQCD analyses
charmed decays is then more direct.

Note that the FA is expected to break down for charm
nonleptonicB meson decays@19#. The FA holds for charm-
less decays because of the color transparency argument:
tributions from the dominant soft region cancel between
two nonfactorizable diagrams, where the exchanged glu
attach to the quark and the antiquark of the light mes
emitted from the weak vertex. For charmed decays with
light meson replaced by aD (* ) meson, the two nonfactoriz
able amplitudes do not cancel due to the mass differe
between the two constituent quarks of theD (* ) meson.
Hence, nonfactorizable contributions ought to be importa
This observation leads further to the speculation that str
©2004 The American Physical Society18-1
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phases in theB→D (* )M decays, if there are any, arise fro
nonfactorizable amplitudes. In charmless decays, str
phases come from annihilation amplitudes through theS
1P)(S2P) penguin operators, since nonfactorizable on
are negligible as explained above. Annihilation amplitud
should not be the source of strong phases for charmed
cays, which do not involve the (S1P)(S2P) penguin op-
erators.

In this paper we shall apply the PQCD formalism to t
two-body charmed decaysB→D (* )M with M5p, r, and
v. PQCD has predicted strong phases from the annihila
amplitudes for charmless decays that are consistent with
recently measuredCP asymmetries in theBd

0→p1p2

modes. It is then interesting to examine whether PQCD a
gives the correct magnitude and strong phases from the
factorizable amplitudes implied by the isospin relation of t
B→D (* )M decays. Compared to the work in@11#, the con-
tributions from the twist-3 light meson distribution amp
tudes and the threshold resummation effect have been t
into account, and more modes analyzed. The power coun
rules for charmedB meson decays, constructed in@20#, are
employed to obtain the leading factorization formulas. It w
be shown that nonfactorizable contributions to charmed
cays are calculable in PQCD, and play an important role
explaining the isospin relation indicated by experimen
data. The predictions for theB→D* 0r0,D* 0v branching
ratios can be confronted with future measurements.

In Sec. II we review the progress in the study of two-bo
charmed nonleptonicB meson decays in the literature. Th
PQCD analysis of the above decays is presented in Sec
by taking theB→Dp modes as an example. Numerical r
sults for all theB→D (* )M branching ratios and for the ex
tracted BSW parametersa1 anda2 are collected in Sec. IV
In Sec. V we compare the PQCD approach to exclusivB
meson decays with others in the literature. Section VI is
conclusion. The Appendix contains the explicit expressio
of the factorization formulas.

II. REVIEW OF PREVIOUS WORKS

A. PQCD approach to B\D „* … form factors

To develop the PQCD formalism for charmedB meson
decays, we have investigated theB→D (* ) transition form
factors in the large recoil region of theD (* ) meson@20#. We
briefly review this formalism, which serves as the basis
the B→D (* )M analysis. TheB→D (* ) transition is more
complicated than theB→p one, because it involves thre
scales: theB meson massmB , theD (* ) meson massmD(* ),
and the heavy meson and heavy quark mass differencL̄
5mB2mb;mD(* )2mc of the order of the QCD scale
LQCD, mD(* ) (mc) being theD (* ) meson (c quark! mass.
We have postulated the hierarchy of the three scales

mB@mD(* )@L̄, ~1!

which allows a consistent power expansion inmD(* ) /mB and
in L̄/mD(* ).
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We write theB (D (* )) meson momentumP1 (P2) in the
light-cone coordinates as

P15
mB

A2
~1,1,0T!, P25

mB

A2
S 1,

mD(* )
2

mB
2

,0TD . ~2!

The picture associated with theB→D (* ) transition is shown
in Fig. 1, where the initial state is approximated by thebd̄
component. Theb quark decays into ac quark and a virtual
W boson, which carries the momentumq. Since the constitu-
ents are roughly on the mass shell, we have the invar
masseski

2;O(L̄2), i 51 and 2, wherek1 (k2) is the mo-

mentum of the spectatord̄ quark in theB (D (* )) meson. The
above kinematic constraints lead to the order of magnitud
k1 andk2 @20#

k1
m;~L̄,L̄,L̄ !,

k2
m;S mB

mD(* )

L̄,
mD(* )

mB
L̄,L̄ D . ~3!

The lowest-order diagrams contributing to theB→D (* )

form factors contain a hard gluon exchange between theb or
c quark and thed̄ quark as shown in Fig. 2. Thed̄ quark
undergoes scattering in order to catch up with thec quark,
forming aD (* ) meson. With the parton momenta in Eq.~3!,
the exchanged gluon is off shell by

~k12k2!2;2
mB

mD(* )

L̄2, ~4!

which has been identified as the characteristic scale of
hard kernels. From Eq.~1!, we havemB /mD

(* )@1, and the
hard kernels are calculable in perturbation theory. It has b

FIG. 1. B→D (* ) transition throughb quark decay into ac quark
and a virtualW boson.

FIG. 2. Lowest-order diagrams contributing to theB→D (* )

form factors. Quite a lot of momentum must be transferred to

spectatord̄ quark through the hard gluon exchange.
8-2
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found that the applicability of PQCD to theB→D (* ) transi-
tion at large recoil is marginal for the physical massesmB
andmD(* ) @20#.

Infrared divergences arise from higher-order correctio
to Fig. 2. The soft~collinear! type of divergence is absorbe
into the B (D (* )) meson wave functionfB(x1 ,b1)
@fD(* )(x2 ,b2)#, which is not calculable but universal. Th
impact parameterb1 (b2) is conjugate to the transverse m
mentumk1T (k2T) carried by thed̄ quark in theB (D (* ))
meson. It has been shown, from the equations of motion
the relevant nonlocal matrix elements, thatfB(x1 ,b1)
@fD(* )(x2 ,b2)# has a peak at the momentum fractionx1

[k1
2/P1

2;L̄/mB (x2[k2
1/P2

1;L̄/mD(* )) @20#.
The form factors are then expressed as the convolutio

the hard kernelsH with the B and D (* ) meson wave func-
tions in thekT factorization theorem,

FBD(* )
~q2!5E dx1dx2d2b1d2b2fB~x1 ,b1!

3H~x1 ,x2 ,b1 ,b2!fD(* )~x2 ,b2!. ~5!

The D (* ) meson wave function contains a Sudakov fac
arising fromkT resummation, which sums the large doub
logarithms asln

2(mBb2) to all orders. TheB meson wave
function also contains such a Sudakov factor, whose effe
negligible because aB meson is dominated by soft dynamic
The hard kernels involve a Sudakov factor from thresh
resummation, which sums the large double logarithmasln

2x1
or asln

2x2 to all orders. This factor modifies the end-poi
behavior of theB and D (* ) meson wave functions effec
tively, causing them to diminish faster in the small-x1,2 re-
gion.

B. End-point singularity and Sudakov factor

It has been pointed out that if Fig. 2 is evaluated in t
collinear factorization theorem, an end-point singularity a
pears@21#. In this theorem we have the lowest-order ha
kernel

H (0)~x1 ,x2!}
1

x1x2
2

, ~6!

from the left diagram in Fig. 2, which leads to a logarithm
divergence, as theD (* ) meson distribution amplitude be
haves likefD(* )(x2)}x2 in the small-x2 region. This singu-
larity implies the breakdown of collinear factorization, an
kT factorization becomes more appropriate. Once the pa
transverse momentakT are taken into account, Eq.~6! is
modified into

H (0)~x1 ,x2 ,k1T ,k2T!

}
mB

4

@x1x2mB
21~k1T2k2T!2#@x2mB

21k2T
2 #

. ~7!
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A dynamical effect, the so-called Sudakov suppression,
vors the configuration in whichkT is not small@8#. The end-
point singularity then disappears as explained below.

When an electron undergoes harder scattering, it tend
radiate more photons. Hence, the scattering amplitude
radiating no photons must be suppressed by a factor wh
effect increases with the electron energy. In QED this is
well-known Sudakov suppression factor, the amplitude
an electron not to emit a photon in hard scattering. In
current QCD case of theB→D (* ) transition, it is thec-d̄
quark-antiquark color dipole that undergoes hard scatter
When the color dipole is larger, it tends to radiate more g
ons. Since the final state contains only a singleD (* ) meson,
real gluon emission is forbidden in the hard decay proce
Similarly, the transition amplitude must involve a Sudak
factor, whose effect increases with the size of the color
pole, i.e., with the separationb betweenc and d̄. That is, a
configuration with a smaller separationb or with a larger
relative transverse momentumkT is preferred in theB
→D (* ) transition at large recoil. Then the virtual particle
involved in the hard kernel remain sufficiently off shell, an
Eq. ~5!, with Eq. ~7! inserted, is free from the end-poin
singularity.

The corresponding Sudakov factor can be derived
PQCD as a function of the transverse separationb and of the
momentum fractionx carried by the spectator quark@9#,
whose behavior is shown in Fig. 3. The Sudakov factor s
presses the large-b region, where the quark and the antiqua
are separated by a large transverse distance and the
shielding is not effective. It also suppresses thex;1 region,
where a quark carries all of the meson momentum and te
to emit real gluons in hard scattering. The Sudakov fact
from kT resummation@22# for the B and D (* ) mesons are
associated with only light spectator quarks, since the dou
logarithms arise from the overlap of the soft and mass~col-
linear! divergences. These factors, being universal, are
same as in all our previous analyses.

Similarly, the small-x region corresponds to a configura
tion with a soft spectator, i.e., with a large color dipole in t

FIG. 3. QCD demands the presence of a Sudakov factor, wh
is the amplitude for a quark-antiquark color dipole not to emit r
gluons in the final state. For a large transverse separationb, the
quark and the antiquark do not shield each other’s color charge
are likely to radiate. In this region Sudakov suppression is stro
8-3
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longitudinal direction. The probability for this large colo
dipole not to radiate in hard scattering is also described b
Sudakov factor, which comes from threshold resummat
for the hard kernels. For the derivation of this Sudakov f
tor, refer to@23#. For convenience, it has been parametriz
as @24#

St~x!5
2112cG~3/21c!

ApG~11c!
@x~12x!#c, ~8!

with the constantc50.35. The above parametrization is m
tivated by the qualitative behavior ofSt : St(x)→0 as x
→0,1 @23#. Since threshold resummation is associated w
the hard kernels, the result could be process dependent. I
been observed@25# that its effect is essential for factorizab
decay topologies and negligible for nonfactorizable de
topologies.

C. Factorization assumption

We review the basics of the FA for theB→D (* )M de-
cays. The relevant effective weak Hamiltonian is given b

Heff5
GF

A2
VcbVud* @C1~m!O1~m!1C2~m!O2~m!#, ~9!

where the four-fermion operators are

O15~ d̄b!V2A~ c̄u!V2A , O25~ c̄b!V2A~ d̄u!V2A , ~10!

with the definition (q̄1q2)V2A[q̄1gm(12g5)q2 , theV’s the
Cabibbo-Kobayashi-Maskawa~CKM! matrix elements, and
C1 andC2 the Wilson coefficients. TheB̄0→D1p2 mode is
referred to as the class-1~color-allowed! topology, in which
the charged pion is emitted at the weak vertex. TheB̄0

→D0p0 mode is referred to as the class-2~color-suppressed!
topology, in which theD0 meson is directly produced.

For the B̄0→D1p2 mode,O2 and a Fierz transformed
O1 contribute. For theB̄0→D0p0 mode, O1 and a Fierz
transformed O2 contribute. Applying the FA @1# or
generalized1 FA @2–4# to the hadronic matrix elements, w
have

^D1p2u~ c̄b!V2A~ d̄u!V2AuB̄0&

'^D1u~ c̄b!V2AuB̄0&^p2u~ d̄u!V2Au0&,

^D0p0u~ d̄b!V2A~ c̄u!V2AuB̄0&

'^p0u~ d̄b!V2AuB̄0&^D0u~ c̄u!V2Au0&. ~11!

Substituting the definition of theB meson transition form
factorsFBD and FBp and of the meson decay constantsf p

1The main difference between the FA and generalized FA is
nonfactorizable contributions are included in the latter.
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and f D , the B̄0→D1p2 ~class-1! and B̄0→D0p0 ~class-2!
decay amplitudes are expressed as

A~B̄0→D1p2!5 i
GF

A2
VcbVud* ~mB

22mD
2 !

3 f pFBD~mp
2 !a1~Dp!, ~12!

A2A~B̄0→D0p0!52 i
GF

A2
VcbVud* ~mB

22mp
2 !

3 f DFBp~mD
2 !a2~Dp!, ~13!

where the parametersa1 anda2 are defined by

a15C2~m!1
C1~m!

Nc
, a25C1~m!1

C2~m!

Nc
, ~14!

Nc being the number of colors. TheB2→D0p2 mode, in-
volving both classes of amplitudes, is referred to as clas
The isospin symmetry implies

A~B̄0→D1p2!5A~B2→D0p2!1A2A~B̄0→D0p0!.
~15!

It is straightforward to apply the FA to otherB̄→D (* )M
modes.a1 anda2 depend on the color and Dirac structures
the operators, but otherwise are postulated to be unive
@1,26,27#. They have the orders of magnitudea1(Dp)
;O(1) anda2(Dp);O(1/Nc). The consistency of the FA
can be tested by comparinga1 anda2 extracted from various
decays. Within errors, the class-1 decaysB̄0→D (* )1M 2

with M5p, r, a1 ,Ds , and Ds* are described using a un
versal value ua1u'1.160.1, whereas the class-2 deca
B̄→K̄ (* )M with M5J/c and c(2S) suggest a nearly uni
versal valueua2u'0.2–0.3@28#. The wide range ofua2u is
due to the uncertainty in theB→K (* ) form factors. The
class-3 decaysB2→D (* )0M 2 with M5p andr, which are
sensitive to the interference of the two decay topologies,
be explained by a real and positive ratioa2 /a1'0.2–0.3,
which seems to agree with the above determination ofua1u
andua2u. This is the reason the FA was claimed to work w
in explaining two-body charmedB meson decays, before th
class-2 modesB̄0→D0M0 with M5p, h, andv were mea-
sured.

The recently observedB̄0→D0M0 branching ratios listed
in Table I @29,30# revealed interesting QCD dynamics. Th
parameterua2u directly extracted from these modes falls in
the range of ua2(Dp)u;0.35–0.60 and ua2(D* p)u
;0.25–0.50@31#. To maintain the predictions for the class
decays, there must exist sizable strong phases betw
class-1 and class-2 amplitudes@19#, which are Arg(a2 /a1)
559° for theDp modes and Arg(a2 /a1)563° for theD* p
modes@31#. These results can be regarded as a failure of
FA: the parametersa2 in different types of decays, such a
B̄→D (* )p and B̄→K̄ (* )J/c, differ by almost a factor of 2
in magnitude, implying strong nonuniversal nonfactorizab

at
8-4
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effects. It is then crucial to understand this nonuniversa
and, especially, the mechanism responsible for the large
tive phases in a systematic QCD framework.

III. B\Dp IN PQCD

In this section we take theB→Dp decays as an exampl
of the PQCD analysis. An intensive study of all other mod
will be performed in the next section. TheB→Dp decay
rates have the expressions

G i5
1

128p
GF

2 uVcbu2uVudu2
mB

3

r
uAi u2. ~16!

The indices for the classesi 51, 2, and 3, denote the mode
B̄0→D1p2, B̄0→D0p0, and B2→D0p2, respectively.
The amplitudesAi are written as

A15 f pjext1 f Bjexc1Mext1Mexc, ~17!

A2A252~ f Dj int2 f Bjexc1Mint2Mexc!, ~18!

A35 f pjext1 f Dj int1Mext1Mint , ~19!

with f B being theB meson decay constant. The functio
jext, j int , and jexc denote the factorizable extern
W-emission ~color-allowed!, internal W-emission ~color-
suppressed!, and W-exchange contributions, which com
from Figs. 4~a! and 4~b!, Figs. 5~a! and 5~b!, and Figs. 6~a!
and 6~b!, respectively. The functionsMext, Mint , andMexc
represent the nonfactorizable externalW-emission, internal
W-emission, andW-exchange contributions, which com
from Figs. 4~c! and 4~d!, Figs. 5~c! and 5~d!, and Figs. 6~c!
and 6~d!, respectively. All the topologies, including the fa
torizable and nonfactorizable ones, have been taken into
count. It is easy to find that Eqs.~17!–~19! obey the isospin
relation in Eq.~15!.

In the PQCD framework based on thekT factorization
theorem, an amplitude is expressed as the convolution

TABLE I. Data ~in units of 1024) of the B̄0→D (* )0M0

(M05p,h,v) branching ratios.

Decay mode Belle@29# CLEO @30#

B̄0→D0p0 3.160.460.5 2.7420.32
10.3660.55

B̄0→D* 0p0 2.720.720.6
10.810.5 2.2020.52

10.5960.79

B̄0→D0h 1.420.4
10.560.3

B̄0→D* 0h 2.020.8
10.960.4

B̄0→D0v 1.860.520.3
10.4

B̄0→D* 0v 3.121.1
11.360.8
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hard b quark decay kernels with meson wave functions
both the longitudinal momentum fractions and the transve
momenta of partons. Our PQCD formulas are derived up
leading order inas , to leading power inmD /mB and in

L̄/mD , and to leading double-logarithm resummations. F
the Wilson coefficients, we adopt the leading-ord
renormalization-group evolution for consistency, althou
the next-to-leading-order ones are available in the literat
@32#. For a similar reason, we employ the one-loop runn
coupling constantas(m)52p/@b1ln(m/LQCD

(nf ) )# with b1

5(3322nf)/3, nf being the number of active quarks. Th
QCD scale is chosen asLQCD

(5) 5193 MeV for the scalemb

,m,mW , which is derived fromLQCD
(4) 5250 MeV for m

,mb .
The leading-order and leading-power factorization form

las for the above decay amplitudes are collected in the
pendix. Here we mention only some key ingredients in
calculation. The formulas for theB→Dp decays turn out to
be simpler than those for theB→pp ones. The simplicity is
attributed to the power counting rules under the hierarchy
the three scales in Eq.~1!. The hard kernels are evaluated u
to power corrections of orderL̄/mD;mD /mB (L̄/mB is re-
garded as being of even higher power!. Following these
rules, the terms proportional tox1;L̄/mB and to x2

;L̄/mD are of higher power compared to the leadingO(1)
terms and are dropped. We have also dropped the term
higher powers inr 5mD /mB . Accordingly, the phase spac
factor 12r 2, appearing in Eq.~16! originally, has been ap-
proximated by 1. This approximation is irrelevant in explai
ing the ratios of theB→Dp branching ratios, and causes a
uncertainty in the absolute branching ratios that is mu
smaller than those from the CKM matrix elementuVcbu and
from the meson decay constantsf B and f D .

Up to power corrections of orderL̄/mB and L̄/mD , we
consider only a singleB ~D! meson wave function. The non
perturbativeB meson and pion wave functions were fixed
our previous work@14,15#. The unknownD meson wave
function was determined by fitting the PQCD predictions
the B→D transition form factors to the observedB→Dln
decay spectrum@20#. The contributions from the two-parto
twist-3 D meson wave functions, being of higher power, a
negligible. Note that in charmless decays the contributio
from the two-parton twist-3 light meson distribution amp
tudes are not down by a power of 1/mB . These distribution
amplitudes, being constant at the momentum fractionx→0
as required by the equations of motion, lead to linear sin
larities in the collinear factorization formulas. The linear si
gularities modify the naive power counting, such that tw
parton twist-3 contributions become leading power@24,33#.
In charmed decays the above equations of motion are m
FIG. 4. Color-allowed emis-
sion diagrams contributing to the
B→D (* )p decays.
8-5
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FIG. 5. Color-suppressed
emission diagrams contributing t
the B→D (* )p decays.
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fied @20#, and the two-parton twist-3D meson wave func-
tions vanish at the end point ofx. Therefore, their contribu-
tions are indeed of higher power.

Retaining the parton transverse momentakT , the nonfac-
torizable topologies generate strong phases from non pinc
singularities of the hard kernels@34#. For example, the vir-
tual quark propagator in Fig. 5~d! is written, in the principal-
value prescription, as

1

x3~x22x1!mB
22~k2T2k1T1k3T!21 i e

5PF 1

x3~x22x1!mB
22~k2T2k1T1k3T!2G

2 ipd„x3~x22x1!mB
22~k2T2k1T1k3T!2

…, ~20!

with x3 being the momentum fraction associated with t
pion. The second term contributes to the strong phase, w
is thus of short-distance origin and calculable. The first te
in the above expression does not lead to an end-point si
larity. Note that the strong phase from Eq.~20! is obtained by
keeping all terms in the denominator of a propagator with
neglectingx1 andx2 .

IV. NUMERICAL RESULTS

The computation of the hard kernels in thekT factoriza-
tion theorem for other charmed decay modes is similar
straightforward. TheB→D* p decay amplitudes are th
same as theB→Dp ones but with the substitution of th
mass, the decay constant, and the distribution amplitude

mD→mD* , f D→ f D* , fD~x2!→fD* ~x2!. ~21!

This simple substitution is expected at leading power un
the hierarchy in Eq.~1!: the difference between the tw
channels should occur only atO(L̄/mD). An explicit deriva-
tion shows that the difference occurs at the twist-3 level
the nonfactorizable emission diagrams in Fig. 4 and for
annihilation diagrams in Fig. 6. It implies that the univers
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ity ~channel independence! of a1 anda2 assumed in the FA
@35# breaks down at subleading power even within theB
→D (* )M decays.

Replacing the pion in Figs. 4–6 by ther (v) meson, we
obtain the diagrams for theB→D (* )r(v) decays. The fac-
torization formulas for theB→Dr(v) decay amplitudes are
also the same as those for theB→Dp ones but with the
substitutions

fp→fr,v , fp
p→fr,v

s , fp
t →fr,v

t , m0→mr(v) ,

~22!

wherefp (fp
p,t) is the two-parton twist-2~twist-3! pion dis-

tribution amplitude, fr,v (fr,v
s,t ) the two-parton twist-2

~twist-3! r and v meson distribution amplitudes, respe
tively, m0 the chiral enhancement scale, andmr(v) ther (v)
meson mass. Hence, a similar isospin relation holds:

A~B0→D2r1!5A~B1→D̄0r1!1A2A~B0→D̄0r0!.
~23!

TheB→D* r(v) decays contain more amplitudes asso
ated with the different polarizations. However, at leadi
power, the amplitudes associated with the transverse po
izations, suppressed by a power ofmD* /mB or of mr /mB ,
are negligible. That is, the factorization formulas for theB
→D* r(v) modes are the same as theB→Dr(v) ones with
the substitution in Eq.~21!. Note that theW-exchange con-
tribution changes sign in theB̄0→D (* )0v decay amplitude:

A~B̄0→D (* )0v!52
1

A2
~ f D(* )j int1 f Bjexc1Mint1Mexc!,

~24!

due to the different quark structures between thev meson
~proportional touū1dd̄) and ther0 meson~proportional to
uū2d̄d̄).

In the numerical analysis we adopt the model for theB
meson wave function
FIG. 6. Annihilation diagrams
contributing to theB→D (* )p de-
cays.
8-6
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TABLE II. PredictedB→Dp decay amplitudes in units of 1022 GeV.

Amplitudes CD50.6 CD50.8 CD51.0

f pjext 6.90 7.46 8.01
f Dj int 21.44 21.44 21.44
f Bjexc 20.0120.03i 20.0220.03i 20.0220.03i
Mext 20.2410.57i 20.2510.60i 20.2710.65i
Mint 3.3423.02i 3.2223.07i 3.1023.12i
Mexc 20.2620.89i 20.3120.95i 20.3721.02i
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fB~x,b!5NBx2~12x!2expF2
1

2 S xmB

vB
D 2

2
vB

2b2

2 G ,
~25!

with the shape parametervB and the normalization constan
NB being related to the decay constantf B through

E dxfB~x,0!5
f B

2A2Nc

. ~26!

The D (* ) meson distribution amplitude is given by

fD(* )~x!5
3

A2Nc

f D(* )x~12x!@11CD(* )~122x!#,

~27!

with the shape parameterCD(* ). The pion andr(v) meson
distribution amplitudes have been derived in@36,37#, and
their explicit expressions are given in the Appendix. TheB
meson wave function was then extracted from the light-co
sum-rule~LCSR! results for theB→p transition form factor
@24#. The range ofCD(* ) was determined from the measure
B→D (* )ln decay spectrum at large recoil by employing t
B meson wave function extracted above. We do not cons
the variation offD(* ) with the impact parameterb, since the
available data are not yet sufficiently precise to control t
dependence.

The input parameters are listed below:

f B5190 MeV, vB50.4 GeV,

f D5240 MeV, CD50.860.2,

f D* 5230 MeV, CD* 50.760.2,

f p5132 MeV, f r5 f v5200 MeV,

f r
T5 f v

T5160 MeV, mB55.28 GeV,

mb54.8 GeV, mD51.87 GeV,

mD* 52.01 GeV, mc51.3 GeV,

mr50.77 GeV, mv50.78 GeV,

mt5170 GeV, mW580.41 GeV,
09401
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s

m051.4 GeV, tB651.674310212 s,

tB051.542310212 s,

GF51.1663931025 GeV22,

uVcbu50.043, uVudu50.974, ~28!

wheremt , mW , tB6, andtB0 denote the top quark mass, th
W boson mass, theB6 meson lifetime, and theB0 meson
lifetime, respectively. The above meson wave functions a
parameters correspond to the form factors at maximal re

F0
Bp;0.3, j1

BD;0.57, jA1

BD* ;0.52, ~29!

which are close to the results from QCD sum rules@38,39#.
We stress that there is no arbitrary parameter in our calc
tion, although the value of each parameter is known only
to a range.

The PQCD predictions for each term of theB→Dp de-
cay amplitudes are exhibited in Table II. The theoretical u
certainty comes only from the variation of the shape para
eter for theD meson distribution amplitude, 0.6,CD,1.0.
It is expected that the color-allowed factorizable amplitu
f pjext dominates, and that the color-suppressed factoriza
contribution f Dj int is smaller due to the Wilson coefficien
C11C2 /Nc;0. The color-allowed nonfactorizable ampl
tudeMext is negligible: since the pion distribution amplitud
is symmetric under the exchange ofx3 and 12x3 , the con-
tributions from the two diagrams Figs. 4~c! and 4~d! cancel
each other in the dominant region with smallx2 . It is also
down by the small Wilson coefficientC1 /Nc . For the color-
suppressed nonfactorizable contributionMint , the above
cancellation does not exist in the dominant region with sm
x3 , because theD meson distribution amplitudefD(x2) is
not symmetric under the exchange ofx2 and 12x2 . Further-
more,Mint , proportional toC2 /Nc;0.3, is not down by the
Wilson coefficient. It is indeed comparable to the colo
allowed factorizable amplitudef pjext, and produces a large
strong phase as explained in Eq.~20!. Both the factorizable
and nonfactorizable annihilation contributions are sm
consistent with our argument in Sec. II.

The predicted branching ratios in Table III are in agre
ment with the averaged experimental data@29,30,40#. We
extract the parametersa1 anda2 by equating Eqs.~12! and
~13! to Eqs.~17! and ~18!, respectively. That is, oura1 and
a2 contain not only the nonfactorizable amplitudes as in
8-7
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TABLE III. PredictedB→Dp decay amplitudes in units of 1022 GeV, branching ratios in units of 1023,
ua2 /a1u, and relative angle Arg(a2 /a1) in degrees.

Quantities CD50.6 CD50.8 CD51.0 Data

A1 6.3920.35i 6.8820.38i 7.3520.40i
A2 21.5311.48i 21.4911.48i 21.4511.45i
A3 8.5622.45i 8.9922.47i 9.4022.46i

B(B̄0→D1p2) 2.37 2.74 3.13 3.060.4

B(B̄0→D0p0) 0.26 0.25 0.24 0.2960.05

B(B2→D0p2) 4.96 5.43 5.91 5.360.5

ua2 /a1u ~without annihilation! 0.47 ~0.51! 0.43 ~0.46! 0.39 ~0.42!
Arg(a2 /a1) ~without annihilation! 242.5° (261.5°) 241.6° (263.5°) 241.9° (265.3°)
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generalized FA, but also the small annihilation amplitudes
was first discussed in@41#. We obtain the ratioua2 /a1u
;0.43 with 10% uncertainty and the phase ofa2 relative to
a1 about Arg(a2 /a1);242°. If the annihilation amplitudes
f Bjexc and Mexc are excluded, we haveua2 /a1u;0.46 and
Arg(a2 /a1);264°. Note that the experimental data do n
fix the sign of the relative phases. The PQCD calculat
indicates that Arg(a2 /a1) should be located in the fourt
quadrant. It is evident that the short-distance strong ph
from the color-suppressed nonfactorizable amplitude is
ready sufficient to account for the isospin triangle formed
the B→Dp modes. The conclusion that the data hint a
large final-state interaction was drawn from an analy
based on the FA@19,31,42,43#. Hence, it is more reasonab
to claim that the data just imply a large strong phase, bu
not tell what mechanism generates this phase@44#. From the
viewpoint of PQCD, this strong phase is of short distan
and produced from the nonpinched singularity of the h
kernel. Certainly, under the current experimental and theo
ical uncertainties, there is still room for long-distance pha
from final-state interaction.

The PQCD predictions for theB→D* p decay ampli-
tudes and branching ratios in Table IV are also consis
with the data@45#. Since mD* and fD* are only slightly
different frommD andfD , respectively, the results are clos
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to those in Table III. TheB→D* p branching ratios are
smaller than theB→Dp ones because of the form facto

jA1

BD* ,j1
BD as shown in Eq.~29!. Similarly, the ratioua2 /a1u

and the relative phase Arg(a2 /a1) are also close to thos
associated with theB→Dp decays. We obtain the ratio
ua2 /a1u;0.47 with 10% uncertainty and the relative pha
about Arg(a2 /a1);241°. Excluding the annihilation am
plitudes, we haveua2 /a1u;0.5 and Arg(a2 /a1);263°.

The PQCD predictions for theB→D (* )r(v) branching
ratios are listed in Table V, which match the data@45#. The
B̄0→D1r2 and B2→D0r2 branching ratios are abou
twice theB̄0→D1p2 andB2→D0p2 ones because of th
larger r meson decay constant, (f r / f p)2;2. The relatively
smaller B̄0→D0r0 branching ratio is attributed to the can
cellation of the above enhancing effect between the co
suppressed andW-exchange contributions, consistent wi
the observation made in an analysis based on the topolog
amplitude parametrization@46#. TheB̄0→D0v branching ra-
tio is larger than theB̄0→D0r0 one due to the constructiv
interference between the color-suppressed contribution
the annihilation contribution as indicated in Eq.~24!. To ob-
tain the B̄0→D* r helicity amplitudes and their relative
phases@47#, the power-suppressed contributions from t
f
TABLE IV. PredictedB→D* p decay amplitudes in units of 1022 GeV, branching ratios in units o
1023, ua2 /a1u, and relative angle Arg(a2 /a1) in degrees.

Quantities CD* 50.5 CD* 50.7 CD* 50.9 Data

A1 6.3220.42i 6.8120.45i 7.3020.49i
A2 21.6511.61i 21.6211.59i 21.5911.57i
A3 8.6522.69i 9.1022.70i 9.5522.70i

B(B̄0→D* 1p2) 2.16 2.51 2.88 2.7660.21

B(B̄0→D* 0p0) 0.29 0.28 0.27 0.2560.07

B(B2→D* 0p2) 4.79 5.26 5.75 4.6060.40

ua2 /a1u ~without annihilation! 0.52 ~0.55! 0.47 ~0.50! 0.43 ~0.47!
Arg(a2 /a1) ~without annihilation! 240.5° (261.4°) 240.7° (263.1°) 240.8° (264.8°)
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TABLE V. PredictedB→D (* )r(v) branching ratios in units of 1023.

Branching ratios CD50.6 CD50.8 CD51.0 Data

B(B̄0→D1r2) 4.10 4.72 5.38 8.061.4

B(B̄0→D0r0) 0.17 0.17 0.17 0.2960.11

B(B2→D0r2) 7.26 8.15 9.09 13.461.8

B(B̄0→D0v) 0.50 0.54 0.56 0.1860.06

Branching ratios CD* 50.5 CD* 50.7 CD* 50.9 Data

B(B̄0→D* 1r2) 5.32 6.16 7.08 7.361.5

B(B̄0→D* 0r0) 0.18 0.18 0.19 ,0.51

B(B2→D* 0r2) 9.14 10.32 11.60 15.563.1

B(B̄0→D* 0v) 0.49 0.53 0.58 ,0.74
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transverse polarizations must be included. For consiste
the contribution from the longitudinal polarization should
calculated up to the same power. We shall study this sub
in a forthcoming paper. The predictions for theB
→D* 0r0,D* 0v decays can be compared with future me
surement. The latter branching ratio is larger than the form
for the same reason as for theB→D0r0, D0v decays.

V. COMPARISON WITH OTHER APPROACHES

In this section we make a brief comparison of the PQC
formalism with other QCD approaches to exclusiveB meson
decays, emphasizing the differences. For more details, r
to @48#. As mentioned before, there are two kinds of fact
ization theorem for QCD processes@13#: collinear factoriza-
tion, on which the soft-collinear effective theory~SCET!
@49,50#, LCSR @51,52#, and QCDF@5# are based, andkT
factorization, on which the PQCD approach is based. Ca
lating theB→p form factorFBp in collinear factorization up
to leading power in 1/mB and leading order inas , an end-
point singularity occurs. Hence, we define three types of c
tributions: a genuine soft contributionf S, a contributionf EP

containing the end-point singularity, and a finite contributi
f F:

FBp5 f S1 f EP1 f F. ~30!

The second term cannot cover the complete soft contribut
because it is from a leading formalism. Note that the e
point singularity exists even in the heavy quark limit. Hen
B meson decays differ from other exclusive processes, wh
become calculable in collinear factorization at sufficien
large momentum transfer.

There are two options to handle the above end-point
gularity @53#. First, an end-point singularity in collinear fac
torization implies that exclusiveB meson decays are dom
nated by soft dynamics. Therefore, a heavy-to-light fo
factor is not calculable, andf EP should be treated as a so
object, like f S. In SCET and QCDF,FBp is then written, up
to O(as), as@54,55#

FBp5 f NF1 f F, ~31!

with
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f NF5 f S1 f EP,

f F5fB^ T8^ fp . ~32!

The soft form factorf NF, obeying the large-energy symmetr
relations@56#, can be estimated in terms of a triangle di
gram without a hard gluon exchange in the LCSR@38,57#.
However, since the pion vertex has been replaced by the
distribution amplitudes under twist expansion, what is cal
lated in the LCSR is not the full soft contribution. The ter
f F has been expressed as a convolution of the hard-scatte
kernelT8 with the light-cone distribution amplitudes of theB
meson and of the pion in the momentum fractions, implyi
that it is calculable in collinear factorization.

The second option is that an end-point singularity in
cates the breakdown of the collinear factorization. Hence,
kT factorization is the more appropriate framework, in whi
the parton transverse momentakT are retained in the hard
kernel, andf EP does not develop an end-point singularit
Both f EP and f F are then calculable, and expressed, in
PQCD approach, as

FBp5 f EP1 f F5fB^ T^ fp , ~33!

where the symbol̂ represents the convolution not only i
the momentum fractions, but in the transverse separati
The hard kernelT8 in Eq. ~32! is derived from the complete
hard kernelT by dropping the terms which led to the en
point singularity in the collinear factorization. Certainly, th
subtraction of these terms depends on a regulariza
scheme@55#. The strong Sudakov suppression in the s
parton region implies that the genuine soft contributionf S is
not important@8,24#. Equation~33! is then claimed to be a
consequence of the hard-dominance picture, because a
portion of FBp is calculable. The agreement between t
sum-rule and PQCD predictions for manyB meson transition
form factors justifies thatf S is indeed negligible. Sincef EP

remains in Eq.~33!, the form factor symmetry relations a
large recoil are still respected in the PQCD framework@24#,
which are then modified by the subleading termf F.

Therefore, the soft-dominance~hard-dominance! picture
postulated in LCSR~PQCD! makes sense in the collinea
(kT) factorization@48#. The two pictures arise from the dif
8-9
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KEUM et al. PHYSICAL REVIEW D 69, 094018 ~2004!
ferent theoretical frameworks, and there is no conflict at
In other words, the soft contribution refers tof NF in SCET,
LCSR, and QCDF, which is large, but tof S in PQCD, which
is small. The LCSR can be regarded as a method to eval
f EP or f NF in the collinear factorization~at least the light-
cone distribution amplitudes have been employed on
pion side!, while thekT factorization is adopted in PQCD fo
the evaluation off EP. We emphasize that there is no prefe
ence between the two options for semileptonicB meson de-
cays, both of which give similar results as stated abo
However, in their extension to two-body nonleptonicB me-
son decays, predictions could be very different. For exam
the main source of strong phases in theB→pp decays is the
correction to the weak vertex in QCDF, but the annihilati
diagram in PQCD. This is the reason QCDF~PQCD! pre-
dicts a smaller and positive~larger and negative! CP asym-
metryCpp @14,58#. It is then possible to discriminate exper
mentally which theoretical framework works better.

Next we compare our formalism for two-body charm
nonleptonicB meson decays based on thekT factorization
with SCET and QCDF based on the collinear factorizati
Currently, the LCSR has not yet been applied to the non
torizable contribution discussed here, but only to that fr
three-parton distribution amplitudes@59#, since the former,
involving two loops, is more complicated to analyze. Sim
larly, the neglect ofkT results in end-point singularities in th
factorizable contributionsjext and j int , which need to be
parametrized in terms of theB→D and B→p transition
form factors, respectively. It also causes an end-point sin
larity in the color-suppressed nonfactorizable amplitu
Mint , if the c quark is treated as being massive. This is w
the color-suppressed modes, i.e., the magnitude and
phase ofa2 , cannot be predicted in QCDF, and the proof
QCDF in the SCET formalism@60# considered only the
color-allowed modeB̄0→D1p2. The color-allowed nonfac-
torizable amplitudeMext is calculable in QCDF, because th
end-point singularities cancel between the pair of diagra
Figs. 4~c! and 4~d!. We mention a recent work on SCET@61#,
in which the color-suppressed nonfactorizable amplitude
been parametrized as an expression similar to Eq.~31!.

If the c quark is treated as being massless, the end-p
singularities in the pair of color-suppressed nonfactoriza
diagrams, Figs. 5~c! and 5~d!, will cancel each other as in th
charmless case@33,58#. This can be understood by exami
ing the behavior of the integrand ofMint in Eq. ~A12! in the
dominant region with smallx3 , noticing that theD meson
distribution amplitudefD(x2) would be symmetric under th
exchange ofx2 and 12x2 in the mc→0 limit. However, the
nonfactorizable contribution will become negligible in th
limit, such that the amplitudeMint , although calculable in
QCDF, is not large enough to explain theB→Dp data. It is
then obvious that the PQCD approach has made a great
tribution here: the nonfactorizable corrections to the na
factorizations of both the color-allowed and color-suppres
modes can be predicted, and the latter is found to be v
important.

VI. CONCLUSION

In this paper we have analyzed the two-body charm
nonleptonic decaysB→D (* )M with M5p, r, andv in the
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PQCD approach. This framework is based on thekT factor-
ization theorem, which is free of end-point singularities a
gauge invariant. ThekT factorization theorem is more appro
priate, when the end-point region of a momentum fraction
important, and collinear factorization theorem breaks dow
By including the transverse degrees of freedom of parton
the evaluation of a hard kernel, and the Sudakov factors fr
kT and threshold resummations, the virtual particles rem
sufficiently off shell, and the end-point singularities do n
exist. We have explained that there is no conflict betwe
LCSR with the soft-dominance picture and PQCD with t
hard-dominance picture, since the soft contributions refe
different quantities in the two theoretical frameworks.

The derivation of the factorization formulas for theB
→D (* )M decay amplitudes follow the power counting rul
constructed in our previous work on theB→D (* ) transition
form factors. Under the hierarchymB@mD(* )@L̄, theB and
D (* ) meson wave functions exhibit a peak at the moment
fractions aroundL̄/mB and L̄/mD(* ), respectively. Up to
leading power inmD(* ) /mB and inL̄/mD(* ), only a singleB
meson wave function and a singleD (* ) meson wave function
are involved. The factorization formulas then become s
pler than those for charmless decays. Moreover, the fac
ization formulas for all theB→D (* )M modes are identical
except for the appropriate substitution of the masses, the
cay constants, and the meson distribution amplitudes.
emphasize that there is no arbitrary parameter in our ana
~there are in QCDF!, although all the universal inputs are n
yet known precisely. The meson wave functions have b
determined either from the semileptonic data or from
LCSR.

Being free from the end-point singularities, all topologi
of decay amplitudes are calculable in PQCD, including
color-suppressed nonfactorizable one. This amplitude can
be computed in QCDF based on the collinear factorizat
theorem due to the existence of the end-point singulari
for a massivec quark. We have observed in PQCD that th
amplitude, not suppressed by the Wilson coefficient~propor-
tional to C2 /Nc), is comparable to the dominant colo
allowed factorizable amplitude. It generates a large stro
phase from the nonpinched singularity of the hard kern
which is crucial for explaining the observedB→D (* )M
branching ratios. The other topologies are less important:
color-allowed nonfactorizable contribution is negligible b
cause of the pair cancellation and the small Wilson coe
cient C1 /Nc . The color-suppressed factorizable amplitu
with the small Wilson coefficienta25C11C2 /Nc is also
negligible. The annihilation amplitudes are small, since th
come from the tree operators.

All our predictions are consistent with the existing me
surements. For those without data, such as theB
→D* 0r0,D* 0v modes, our predictions can be confront
with future measurement. As stated before, we predicted
large strong phases from the scalar-penguin annihilation
plitudes that are required by the largeCP asymmetries ob-
served in two-body charmless decays. The success in
dicting the strong phases from the color-suppres
nonfactorizable amplitudes for the two-body charmed dec
8-10
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NONFACTORIZABLE CONTRIBUTIONS TOB→D (* )M DECAYS PHYSICAL REVIEW D69, 094018 ~2004!
further supports thekT factorization theorem. The conclusio
drawn in this work is that the short-distance strong phas
already sufficient to account for theB→D (* )M data. Cer-
tainly, there is still room for long-distance strong phas
from final-state interaction. For the application of the PQC
approach to other charmed decays, such asB→Ds

(* )K and
B→D (* ) f 0 , refer to@62# and @63#, respectively.

ACKNOWLEDGMENTS

The authors are grateful to the organizers of the Sum
Institute at Fuji-Yoshida, Japan, where part of this work w
done, for warm hospitality. This work was supported by t
Japan Society for the Promotion of Science~Y.Y.K.!, by a
Grant-in-Aid for Scientific Research from the Japan Soci
for the Promotion of Science under Grant No. 116402
~T.K.!, by the National Science Council of R.O.C. und
Grant No. NSC-91-2112-M-001-053~H-n.L.!, by the Na-
tional Science Foundation of China under Grants N
90103013 and No. 10135060~C.D.L.!, and by the Ministry
of Education, Science and Culture, Japan~A.I.S.!.

APPENDIX: FACTORIZATION FORMULAS FOR B\Dp

In this appendix we present the factorization formulas
the B→Dp decay amplitudes. We choose theB meson,D
meson, and pion momenta in the light-cone coordinate a

P15
mB

A2
~1,1,0T!, P25

mB

A2
~1,r 2,0T!,

P35
mB

A2
~0,12r 2,0T!, ~A1!

respectively, withr 5mD /mB being defined before. The frac
tional momenta of the light valence quarks in theB meson,D
meson, and pion are

k155 x1

mB

A2
~1,0,0T!1k1T for j int,M int,

x1

mB

A2
~0,1,0T!1k1T for others,

k25x2

mB

A2
~1,0,0T!1k2T ,

k35x3

mB

A2
~0,12r 2,0T!1k3T , ~A2!

respectively. Which longitudinal component ofk1 , k1
1 or

k1
2 , is relevant depends on the final-state meson to which

hard gluon attaches. That is, it is selcted by the inner prod
k1•k3 or k1•k2 .
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The factorizable amplitudesjext, j int , andjexc are written
as

jext516pCFArmB
2E

0

1

dx1dx2E
0

1/L

b1db1b2db2

3fB~x1 ,b1!fD~x2!@Ee~ te
(1)!h~x1 ,x2 ,b1 ,b2!St~x2!

1rEe~ te
(2)!h~x2 ,x1 ,b2 ,b1!St~x1!#, ~A3!

j int516pCFArmB
2E

0

1

dx1dx3E
0

1/L

b1db1b3db3fB~x1 ,b1!

3~$~11x3!fp~x3!1r 0~122x3!@fp
p ~x3!1fp

t ~x3!#%

3Ei~ t i
(1)!h@x1 ,x3~12r 2!,b1 ,b3#St~x3!

12r 0fp
p ~x3!Ei~ t i

(2)!h@x3 ,x1~12r 2!,b3 ,b1#St~x1!…,

~A4!

jexc516pCFArmB
2E

0

1

dx2dx3E
0

1/L

b2db2b3db3fD~x2!

3$2x3fp~x3!Ea~ ta
(1)!ha@x2 ,x3~12r 2!,b2 ,b3#St~x3!

1x2fp~x3!Ea~ ta
(1)!ha@x3 ,x2~12r 2!,b3 ,b2#St~x2!%,

~A5!

with the mass ratior 0[m0 /mB , the evolution factors,

Ee~ t !5as~ t !a1~ t !exp@2SB~ t !2SD~ t !#,

Ei~ t !5as~ t !a2~ t !exp@2SB~ t !2Sp~ t !#,

Ea~ t !5as~ t !a2~ t !exp@2SD~ t !2Sp~ t !#, ~A6!

and the Wilson coefficients,

a15C21
C1

Nc
, a25C11

C2

Nc
. ~A7!

Note thatC150 andC251 at the tree level in our conven
tion. The explicit expressions of the Sudakov facto
exp@2SB(t)#, exp@2SD(t)#, and exp@2Sp(t)# from kT resum-
mation are taken from@20,24#.

The functionsh, obtained from Figs. 4~a! and 4~b!, Figs.
5~a! and 5~b!, and Figs. 6~a! and 6~b!, are given by

h~x1 ,x2 ,b1 ,b2!

5K0~Ax1x2mBb1!

3@u~b12b2!K0~Ax2mBb1!I 0~Ax2mBb2!

1u~b22b1!K0~Ax2mBb2!I 0~Ax2mBb1!#, ~A8!
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ha~x2 ,x3 ,b2 ,b3!

5S i
p

2
D 2

H0
(1)~Ax2x3mBb2!

3@u~b22b3!H0
(1)~Ax3mBb2!J0~Ax3mBb3!

1u~b32b2!H0
(1)~Ax3mBb3!J0~Ax3mBb2!#.

~A9!

The hard scalest are chosen as

te
(1)5max~Ax2mB,1/b1,1/b2!,

te
(2)5max~Ax1mB,1/b1,1/b2!,

t i
(1)5max~Ax3~12r 2!mB,1/b1,1/b3!,

t i
(2)5max~Ax1~12r 2!mB,1/b1,1/b3!,

ta
(1)5max~Ax3~12r 2!mB,1/b2,1/b3!,

ta
(2)5max~Ax2~12r 2!mB,1/b2,1/b3!. ~A10!

For the nonfactorizable amplitudes, the factorization f
mulas involve the kinematic variables of all the three m
sons. Their expressions are

Mext532pA2NCFArmB
2E

0

1

@dx#

3E
0

1/L

b1db1b3db3fB~x1 ,b1!fD~x2!fp~x3!

3@x3Eb~ tb
(1)!hb

(1)~xi ,bi !

2~12x31x2!Eb~ tb
(1)!hb

(2)~xi ,bi !#, ~A11!

Mint532pA2NCFArmB
2E

0

1

@dx#

3E
0

1/L

b1db1b2db2fB~x1 ,b1!fD~x2!

3@~2x22x3!fp~x3!Ed~ td
(1)!hd

(1)~xi ,bi !

1~12x2!fp~x3!Ed~ td
(2)!hd

(2)~xi ,bi !#, ~A12!

Mexc532pA2NCFArmB
2E

0

1

@dx#

3E
0

1/L

b1db1b2db2fB~x1 ,b1!fD~x2!

3@x3fp~x3!Ef~ t f
(1)!hf

(1)~xi ,bi !

2x2fp~x3!Ef~ t f
(2)!hf

(2)~xi ,bi !#, ~A13!
09401
-
-

from Figs. 4~c! and 4~d!, Figs. 5~c! and 5~d!, and Figs. 6~c!
and 6~d!, respectively, with the definition @dx#
[dx1dx2dx3 . The evolution factors are given by

Eb~ t !5as~ t !
C1~ t !

N
exp@2S~ t !ub25b1

#,

Ed~ t !5as~ t !
C2~ t !

N
exp@2S~ t !ub35b1

#,

Ef~ t !5as~ t !
C2~ t !

N
exp@2S~ t !ub35b2

#. ~A14!

with the Sudakov exponentS5SB1SD1Sp .
The functionsh( j ), j 51 and 2, appearing in Eqs.~A11!–

~A13!, are written as

hb
( j )5@u~b12b3!K0~BmBb1!I 0~BmBb3!

1u~b32b1!K0~BmBb3!I 0~BmBb1!#

3H K0~BjmBb3!, for Bj
2>0

ip

2
H0

(1)~AuBj
2umBb3!, for Bj

2<0
~A15!

hd
( j )5@u~b12b2!K0~DmBb1!I 0~DmBb2!

1u~b22b1!K0~DmBb2!I 0~DmBb1!#

3H K0~D jmBb2!, for D j
2>0

ip

2
H0

(1)~AuD j
2umBb2!, for D j

2<0
~A16!

hf
( j )5 i

p

2
@u~b12b2!H0

(1)~FmBb1!J0~FmBb2!

1u~b22b1!H0
(1)~FmBb2!J0~FmBb1!#

3H K0~F jmBb1!, for F j
2>0

ip

2
H0

(1)~AuF j
2umBb1!, for F j

2<0
~A17!

with the variables

B25x1x2 ,

B1
25x1x22x2x3~12r 2!,

B2
25x1x22x2~12x3!~12r 2!,

D25x1x3~12r 2!,

D1
25F1

25~x12x2!x3~12r 2!,

D2
25~x11x2!r 22~12x12x2!x3~12r 2!,

F25x2x3~12r 2!,
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F2
25x11x21~12x12x2!x3~12r 2!.

~A18!

There is an ambiguity in defining a light-coneB meson wave
function for the nonfactorizable amplitudeMexc, since both
the componentsk1

1 and k1
2 contribute through the inne

productsk1•k2 andk1•k3 in the denominators of the virtua
particle propagators. However, a careful examination of
factorization formula shows that the dominant region is
one withk2;O(L̄) andk3;O(mB) at leading twist. Hence
we drop the termk1•k2 . The scalest ( j ) are chosen as

tb
( j )5max~BmB ,AuBj

2umB,1/b1,1/b3!,

td
( j )5max~DmB ,AuD j

2umB,1/b1,1/b2!,

t f
( j )5max~FmB ,AuF j

2umB,1/b1,1/b2!. ~A19!

We explain that the factorization formulas presen
above are indeed of leading power under the power coun
rules in @20#. The factorizable amplitudes are as shown
@20,33#. For the nonfactorizable amplitudes, the terms p
portional to x3 and to 12x3 in Mext roughly cancel each
other. This cancellation can be understood by means of
corresponding expression in collinear factorization theore
the first and second terms inMext are proportional to

2
x3

x1x2
2x3

,
12x31x2

x1x2
2~12x3!

. ~A20!

For simplicity, x1 has been suppressed, when it appears
the sum together withx2 or x3 . It is found that the first ratio
cancels the 12x3 term in the second ratio. That is, thex2
term is in fact leading and not negligible. For a similar re
son, the2x2 term in Mint cancels the 12x2 term. Hence,
the 2x3 term is leading. If one drops2x2 in Mint , the
above cancellation disappears, and a fake leading term
be introduced.

The pion andr meson distribution amplitudes have be
derived in@36,37#:

fp~x!5
3 f p

A2Nc

x~12x!@110.44C2
3/2~2x21!

10.25C4
3/2~2x21!#, ~A21!

fp
p ~x!5

f p

2A2Nc

@110.43C2
1/2~2x21!10.09C4

1/2~2x21!#,

~A22!
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fp
t ~x!5

f p

2A2Nc

~122x!@110.55~10x2210x11!#,

~A23!

fr~x!5
3 f r

A2Nc

x~12x!@110.18C2
3/2~2x21!#,

~A24!

fr
t ~x!5

f r
T

2A2Nc

$3~2x21!210.3~2x21!2@5~2x21!223#

10.21@3230~2x21!2135~2x21!4#%, ~A25!

fr
s~x!5

3 f r
T

2A2Nc

~122x!@110.76~10x2210x11!#,

~A26!

fr
T~x!5

3 f r
T

A2Nc

x~12x!@110.2C2
3/2~2x21!#, ~A27!

fr
v~x!5

f r

2A2Nc

H 3

4
@11~2x21!2#10.24@3~2x21!221#

10.12@3230~2x21!2135~2x21!4#J , ~A28!

fr
a~x!5

3 f r

4A2Nc

~122x!@110.93~10x2210x11!#,

~A29!

with the Gegenbauer polynomials,

C2
1/2~ t !5

1

2
~3t221!, C4

1/2~ t !5
1

8
~35t4230t213!,

C2
3/2~ t !5

3

2
~5t221!, C4

3/2~ t !5
15

8
~21t4214t211!.

~A30!

We shall assume that thev meson wave functions are iden
tical to ther meson ones in this work.
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