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Employing the standard hard-scattering approach and the running coupling method we calculate a class of
power-suppressed correctionsl/Q?", n=1,2,3 ... to theelectromagnetier’y transition form factonFF)
QZFM(QZ) arising from the end-point— 0,1 integration regions. In the investigation we use a hard-scattering
amplitude of the subprocesst y* —)Q"l‘a symmetrized under the exc:han,géH;f2 important for exclusive
processes containing two external photons. In the computations the pion model distribution am{iliisles
with one and two nonasymptotic terms are employed. The obtained predictions are compared with the CLEO
data and constraints on the DA parametlef(sﬂé) and b4(,u§) at the normalization poinpgzl Ge\? are
extracted. Further restrictions on the pion DA's are deduced from the experimental data on the electromagnetic
FFF_(Q?).
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I INTRODUCTION the exclusive processes the scalé (;ﬁ) chosen this way

o . . inevitably depends on the longitudinal momentum fractions
Thesz “meson electromagnetic transition form fac®F)  carried by the hadron constituents. For the photon-meson
VZigaton of which &t large momentum ranster he peryr/2"1S11on We haveuf= Qi and = 0%, because at two
. ) leading order diagrams of the partonic subprocessy*
bative QCD(PQCD methodd1-3] can be applied. Because 9 9 p_ proce 7
—(Q+q, absolute values of the virtual quark and antiquark

of the recent CLEO dati@], where the form factoFM(Qz) . .
was measured with high precision, the interest in this proces%qu""re‘j four-momenta are determined by these expressions.

has been renewed. Thus during the last few years for conPut then the PQCD factorization formula diverges, since
putation of F,.(Q?) the various theoretical methods and O{s,(QZX). [adQ?X)] suffers from end-poinx—0 [x—1]
schemes were propos¢B-9]. The aim here is twofold: to Singularity. The running couplingRC) method solves this
elaborate methods for the calculation Bf,,(Q? within ~ Problem by using a Borel transformation and applying the
PQCD and, at the same time, to extract from experimentaprincipal value prescription. As a result, one obtains the
data information on the pion distribution amplitud®A).  Borel resummed expression for théy transition FF, which
The latter, being independent of a specific exclusive processontains power-suppressed corrections. The RC method in
and universal quantity, is an important input ingredient inconjunction with the infraredIR) renormalon calculus was
studying various processes that involve the pion. used for computation of such power corrections to #le

It is known that in experiments the®y transition was and ny,n' vy transition FF's[5,9], to the electromagnetic
explored at momentum transfers@f~1-10 GeV, which  FF's of the light meson§ (Q2) (M= m,K,p,) [11-14, as
are far from the asymptotic limiQ?— o, where the PQCD  well as to the gluon-gluon;’ meson vertex functiofil5].
factorization formula with the pion leading-twist asymptotic  |n the present work we compute power corrections to the
DA leads to reliable predictions. In the present experimen-y transiton FF employing the version of the hard-
tally accessible energy regimes, power-suppressed corregcattering amplitude symmetrized under replacement

H — 2n — i i - . . .
“fr?s. 1’? =12, ... | %Iay agn |1n_1hp0rtant role in ex-— 2. "2 The symmetrization procedure is important for ex-
plaining the experimental daig5,9). There are numerous . isive processes with two external photdghions in the

: 2
sources of power corrections E,,(Q7). For example, the . scattering Feynman diagrams, because it allows one to
pion higher-twisHT) DA's and higher Fock states generate o4t \ithin the RC method both virtual and real photons

such corre.ctions.' Power corrections can alsq origingte fmr@gluons on the same footing. The latter is required in order
the end-point regl_onx_—>0,1 as a result _of the integration pf to consider ther®y* and#° transitions in a unifying way,
the PQCD factorization expression with the QCD running; o to get in the limitsv—0;1 (w is the asymmetry param-
coupling ag(Q?x) [agQ®x), x=1—x] over the pion's etep from the w°y* transition FF F o+ (Q%w) the FF
quark longitudinal momentum fraction In fact, in order to Fm(Qz) of the 7%y transition. The advocated method was
reduce the higher-order corrections to a physical quantity anglsed in our previous workL5] to investigate the virtual and
improve the convergence of the corresponding perturbatiogn_shell gluons’ meson transitions. In what follows we re-
series, the renormalization scalé (;ﬁ), i.e., the argument fer to this approach as the symmetrized FBRCO method.
of the QCD coupling, in a Feynman diagram should be set This paper is organized as follows: In Sec. Il we introduce
equal to the virtual parton’s squared four-momen{d|. In the symmetrization procedure of the hard-scattering ampli-
tude for thew%y transition. Here we present our results for
the Borel resummefiQ?F .(Q?)]®® FF obtained within the
*Electronic address: agaev_shahin@yahoo.com SRC method. Section Il is devoted to detailed analysis of
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the Q?— o limit of [Q?F,,(Q%)]"™*. In Sec. IV we perform equal to the momentum transf&?, because higher-order
numerical computations and from comparison of our prediccorrections contain terms In(u2/Q?) and such choice elimi-
tions with the CLEO data extract constraints on the paramnates them in hard-scattering amplitudes. As a result, in the
etersh9(1 Ge\?) andb3(1 GeV?), b(1 Ge\?) in the pion  factorization formula only a hadron DA explicitly depends
DAs with one and two nonasymptotic terms, respectively.on the scalm§=Q2.

Further restrictions on the DAs arising from analysis of the  The situation with the renormalization Scaﬂﬁ% is more

pion electromagnetic FF are described in Sec. V. In Sec. Vkyptle. Really, this scale appears, in general, not only in

we make our concluding remarks. higher-order corrections to the hard-scattering amplitude, but
also determines the scale of the QCD couplingw3). In
[l. THE PHOTON-MESON TRANSITION FORM FACTOR order to reduce higher-order corrections to a physical quan-

tity, in exclusive processes the scal«% should be taken
equal to the square of the momentum transfer carried by a
~virtual parton in each leading order Feynman diagram of the
The real photon-pseudoscallr meson electromagnetic nderlying hard-scattering subprocegk0]. For the real
transition FFFy ,(Q®) can be defined in terms of the ampli- photon-meson transition these scales are determined by the

A. The symmetrized version of the hard-scattering
amplitude

tude ', leading order diagrams of the subprocessy*—>q+aand
F“”=ieZFMy(QZ)e“”“'BPaqm, (2 are given by the expressions

for the process wi=Q%, pi=Q3. (2.6)

¥*(Q1) + v(d2) = M(P), (2.2 After these remarks let us turn to our formul&s3) and

(2.4). In accordance with the “tradition,” in this work we set
,u§=Q2 and in what follows omit the dependence of the
hard-scattering amplitude on the scaké. Then, for the
q1ard-scattering amplitude at the next-to-leading ofti#rO)
we get[16]

whereQ?= —q? is the momentum transfer.

At the large momentum transfer the F y(Qz) is given
by the factorization formula of the standard hard-scatterin
approach(HSA) [1],

Fuy( QD) =[TH(%,Q% uf) + TEH(X,Q% uf)1® du (X, uf). 2
(2.3 ag 1R

41

1+Ce

N 1
THOGQAHRI= t(x)}, @7

Here the functiorT,(x,Q?, u2),
Th(x,Q2 ,LL%):Tﬁ(X Q2 M§)+TE|(X Q? ,U«é) (2.4) where the functiori(x) is given by the expression

is the hard-scattering amplitude of the subprocessy* , XInx
- 25 - 2 . . . t(X)=|n X——-—0. (28)
—q+d, ¢m(X,ug) is the meson DAuf is the factorization X

scale, andx=1-x, x being the longitudinal momentum
fraction carrying by the meson’s quark. In E(.3 the HereNis the constant, which depends on the quark structure
shorthand notation of the mesonCg=4/3 is the color factor. The second func-

tion TZ(x,Q?,u2) can be obtained from Eq2.7) using the
N R
TH(X.QZ,,4L§)®¢),\,.(x,,u§):f0 To(x, Q% u2) u(x,u2)dx  replacemenk—x

(2.5 T2(x,Q%,18) =TH(X,Q% u2). (2.9

is used. . . 2
It is evident that a physical quantity, represented by theThe hard-scattering amph_tud@(x,Qz,uR) must be sym-

factorization formula, Eq(2.3) being a sample one, does not metric under exchange—x,

depend on renormalization and factorization schemes and o

scales employed for its calculation. But at any finite order of TH(x,QZ,Mﬁ):TH(x,QZ,Mé). (2.10

the QCD perturbation theory, due to truncation of the corre-

sponding perturbation series, the hard-scattering amplitude The replacement—x, by means of which the function

(24) depends on both the factorizatiW'i and renormaliza- T|2-|(X!Q2!Mé) is found, in generaL has to be app“ed also to

tion ug scales. Since higher-order corrections in PQCD COMine renormalization scaIﬂZR changing it toﬁﬁ. In the stan-

putations, as a rule, are large for both inclusive and exclusiv 2 —
processes, in order to get reliable theoretical prediction’_gard HSA one treats theig and ug scales on the same

within the PQCD by means of the truncated perturbation®Oting by setting them equal, as a rule,@. The choice
series, an optimal choice for these scales, i.e., a choice thata=#a=Q? satisfies both requiremen(®.9) and(2.10) im-
minimizes higher-order corrections, is required. The factorfortant for the hard-scattering amplitude. In the framework
ization scale,uﬁ in exclusive processes is traditionally set of the RC method the scaleq% andﬁge have to be chosen in
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accordance with Eq(2.6). Then the functionTﬁ(x,Qz,,u",; transition FFFMY*(QZ,w) is a function of the photon total
=Q2x) takes the following form: virtuality Q? and asymmetry parameter (see the second
paper of Ref[16]),

ay( Q%)

14Ce — 5

t(x)]. (2.1

N 1
TH(x,Q%) = oix - Q?

Q*=Qf+Q3, o
The second part of the hard-scattering amplitude is given b

the expression ¥h the limits w—0;1 the equality

Fuy(Q%0=0;1)=Fy,(Q)

- (212 must be valid. In order to meet this requirement and describe

the real and virtual photon-meson transitions within the RC
One can see that within the RC method the requirementg]nedth(gdlg ablé:g{llgeg mazﬁgvﬁrﬁg;)ﬁlg-t{] I?hve\zlofrgrriq?i::zr
(2.9 and(2.10 hold as well. ! '

2 -
In the framework of both the standard HSA and RCFMV*(Q ,w) found in the context of the RC method leads to

- . FMY(QZ), computed by means namely of Eq2.14 and
tmhgt?grcrjnmgM y transition FF can be calculated employing (2.15. The symmetrization procedure, being discussed here,

was used in Ref[15] to calculate the virtual and on-shell

o 1 5 5 2 5 5 gluon-»" meson vertex function. In the present work we con-
Fuy( Q) =Th(X.QI)® dm(X, Q)+ TH(X.QT)®ém(X. Q) anirate on the FFu,(Q?), leaving the detailed analysis of

:TJH(X’QZ)(X)d)M(X'QZ)_‘_Ta(ZQZ)@¢M(X,Q2) FMV* (QZ,CU) for a future publication.

adQ%x)
41

t(x)

T2 (x Q2)=ﬁi[1+c
HA, sz F

= 2T&|(X,Q2)® du(x,Q?). (2.13 B. The pion distribution amplitude

i ) Calculation of the FHZM(QZ) requires the knowledge of

In the last step we take into account that the DA of the piory, o pion DAG_(x,Q2), which is one of the key components
is a symmetricpy(x,Q?) = ¢u(x,Q?) function. in Eq. (2.3. It is known [17] that the pion DA can be ex-

The M= 7,7 meson electromagnetic transition FF's panded over the eigenfunctions of the one-loop Brodsky-
were computed within the RC method in Reff§,9]. In this | epage equation, i.e., in terms of the Gegenbauer polynomi-
work we generalize our approach by performing the compug|s {C¥%(2x— 1)},
tation of the 7%y transition FF in the context of the RC
method, but employing instead of E¢2.11) and(2.12) their

)

versions symmetrized undgr— u3 exchange, i.e., br(X,Q%) = hasy(X) 1+n=§ bn(Q)CYA2x~1)|,
(2.1
1 2 N 1 1 2 29
Th(x,Q%)= o2 x 1+ Crg_[ad Q%)+ ad Q) Jt(X) where ¢,¢(x) is the pion asymptotic DA,
219 Basy(¥) = V3 X(1-%), (217)
and with f_=0.0923 GeV being the pion decay constant.

The evolution of the DA on the factorization scdlg is
governed by the functions,(Q?),

i 2 TN T+ o)
1+Crg[ad Q)+ adQ x)]t(x)].

(219 bn(Q?) = by(42)

In the standard HSA Eq$2.14) and(2.15 coincide with Eq.

(2.7) and itsx—x partnerT?(x,Q% u’=Q?), respectively. In Eq.(2.18 {vy,} are anomalous dimensions defined by the
It is also not difficult to demonstrate that Eq2.9), (2.10, expression

and(2.13 hold for the hard-scattering amplitude determined
by the new functiond},(x,Q?) and TZ(x,Q?).

Here some comments concerning the symmetrization pro-
cedure are in order. To clarify this important point let us note
that the virtual and real photons enter into the considering he constantbn(,ug)zbﬂ are input parameters that form the
process(2.2) in an unequal manner. Indeed, thky transi-  shape of DA's and can be extracted from experimental data
tion FF Fy,(Q?) depends only orQ?=—q7 (g5=0). At  or obtained from the nonperturbative QCD computations at

N 1
TA(x,Q%)=— =
Qz X '}’n/BO

as(Qz)
ad ud)

(2.18

n+1

1
1-7 [+ 2].—] (2.19

7n=Cr n+1)(n+2) <

the same time the virtual photon-meson, the normalization poinwg. The QCD coupling constant
a4Q?) at the two-loop approximation are given by the ex-
Y* (1) + ¥*(d) =M (P), pression
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) 4 2B, InIn(Q3/A?) Ki=—30by(Q%) +7b,(Q%)],
a e e——— - |-
° In(Q?/ A2 2 In(QYA?
Pn(QIADL o QTS L K2=30b,(Q%) +280,(Q?)],
HereA is the QCD scale parametgdy and 3, are the QCD K= —60x21b,(Q?), K,=30x21b,(Q?%). (2.24

beta function one- and two-loop coefficients, respectively,
Here the functiond,(Q?) and b,(Q?) are defined by Eq.

2 19 . .
Bo=11— 3Nt B1=51— 3N (2.18 with y,/Bq and y,/ B, being equal to
In the limit Q2—o all model DA’ (2.16) reduce to the Y2 50y, 364 =3
asymptotic form ¢,s(x). The nonasymptotic terms Bo 81 pBo 405 ’

~C¥(2x—1), n=2 determine the deviation of the pion
DA from the asymptotic form at moderate energy regimesand
and depend on the nonperturbative mesonic binding effects.
For the pion in the literature the various phenomenologi- v, 2y, 364
cal DA's were proposel6,7,17—19. Thus, for example, in '3_0: 3’ B_o: 375’ ni=4,
Ref.[18], employing the QCD sum rules method, the follow-

ing pion DA was predicted: below and above the charm quark production threshold, re-

(X, 18) = asy [ 1+0.758342x— 1) spectively.
+0.394L3%(2x~1)], (2.21) C. The 7%y transition FF within RC method
where the normalization pion ig,=0.5 GeV. Computation of the photon-pion transition FF,,(Q?)

The coefficientsh) andbS were also extracted from the imPplies, naturally, integration overin accordance with Eq.
CLEO data on ther®y transition FF in Ref[7]. The authors (2.13. -Havmg |n.serte(i the explicit expression of the hard-
used the QCD light-cone sum rules approach and includedcattering amplitudeTy(x,Q%) (2.14 and the pion DA
into their analysis the NLO perturbative and twist-four cor- (2.23 into Eq.(2.13 we encounter divergences, arising from
rections. They found that in the model with two nonasymp-the singularities of the coupling constamt(Q®x) and
totic terms, at the scalgy,=2.4 GeV, the pion DA has the a(Q?x) in the limits x—0;1. In the standard HSA this

form problem is solved by freezing the argument of the coupling
) oo constant and performing corresponding integrations with
H(X, 110) = dasy(X)[1+0.1C79(2x— 1) ag(Q?) [or afQ?/2)]. In the RC method we allow the QCD
—0.14C§’2(2x— 1], (2.22 coupling to run and therefore have to propose some method

to cure these divergences.

; : ; - As the first step we express the running coupling
Asi n the pion DAs extr from the experimental . A .
s Is seen the pio s extracted from the experimenta (Q%x),' in terms ofa(Q?). This aim can be achieved by

data depend on the used methods and on their accuracy. Afs\< N . 5
though one claims that the meson DA is a proces,sfleplylng the renormahzaﬂon—group equation (Q°x)
independent quantity describing the internal structure of th&zo]' As a result we find

meson itself, exploration of different exclusive processes adQ?) ad Q) By InN[1+Inx/t]

with the same meson leads to a variety of DAs. This means  a(Q?x)= Sl i > - Nyt |
that employed methods have shortcomings or do not encom- 1+Inx/t 2mBo  1+Inxit 05
pass all mechanisms important for a given process. Such (2.29

situation is pronounced in the case of the pion. The investi- o )
gation carrying out in this work intends to improve the situ- Where as(Q®) is the one-loop QCD coupling constant and

_ 2\ — (O A2 :
ation with the 7%y transition FF by taking into account at t=47/Boa{Q%)=In(Q7A%). Equation (2.25 expresses

least one class of power corrections to theFFE(Q?). af(Q?x) in terms ofay(Q?) with an ~a3(Q?) order accu-
To proceed it is convenient to expand the DA16 over  facy. _ N
x and rewrite it in the following form: Inserting Eq.(2.25 into the formula for the transition FF

Eq. (2.13), we obtain integrals, which are still divergent, but
* can be calculated using existing methods. One of tkeze

d.(x,Q%)= Basy(X) 2 Kpx", (2.23  for details Ref[11]) allows one to obtain the form factor as
n=0 a perturbative series ingQ?) with factorially growing co-

where the sum runs over all The new coefficient&, in the efficientsC,~(n—1)!,

case of DA's with two nonasymptotic terms are given by the

expressions N . o . ) .
Similar consideration is valid also for the running coupling

Ko=1+6b,(Q?)+ 150,4(Q?), ag(Q%).
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adQ?) B where the functiorR(u,t) is defined as
Q*F (@)~ E e } 'C,. (226
R(u,t)= 1—ﬂu(1 ve—Int—=Inu). (2.32
However, it is known that a perturbative QCD series with B3
factorially growing coefficients is a signal for the IR renor-
malon nature of the divergences in E&.26). The conver- Having used Eq(2.31) and performed integration over

gence radius of such series is zero and its resummatiofor the scaledr®y transition FF we get
should be performed by employing the Borel integral tech-

nigue. Namely, one has to determine the Borel transform ) ) * K,
B[Q?F ,,](u) of the corresponding seri¢g1] Q°F,,(Q )=\/§wa n+1 38, J due "'R(u,t)
* n-1 ©
B[QZFM](U)=n§=‘,lan, (2.27) X 3 Kl Ag(u) +Aqu)]) (2.33

and in order to define the sum E(.26, or to find the a6 the term- A, (u) appears in the result of the integration
resummed expression for the form factor, one has to invert
of the second term in Eq2.14), whereas the term-A,(u)

2
BLQ™F (1) to get owing to the third term in Eq(2.14). The functionsA,(u)

w AU andA,(u) have the following forms:
[Q%F,, (QZ)]'eS~P.v.f duexg - ——
! 0 Board Q%) 42 q
2 An(u)= —B(2 B) - >B(1,8)
X B[Q*F,](u). (2.28 " g pnery 9P PR
Because the coefficients of the series Ej26) behave like —9B(2,n+1—u)
C,~(n—1)!, the Borel transform(2.27) contains poles lo-
cated at the positivel axis of the Borel plane, which are 2 2 N 1
exactly the IR renormalon poles. Therefore the inverse Borel = T1—u)d n +2-u)8 +2-u)2
transformation2.28 can be computed only after regulariza- (n+1-w= (n+2-w)* (n+2-w)
tion of these pole singularities. One of the methods of such 9
regularization, adopted also in the present work, is the prin- T hFl—wmEa—w’ (2.34
cipal value prescription. In other words, the IR renormalon
divergences in Eq(2.28 have to be removed by computing gng
the integral in the sense of the Cauchy principal value. Only
after this regularization the inverse Borel transformation de- P
fines the resummed FF. A (u)= —B(2-u,B) B(l u,B)
Fortunately, these intermediate operations can be omitted B B=n+1 9B B=n+2
with the help of the following operations. Namely, let us
introduce the inverse Laplace transformations of the func- —9B(2—u,n+1)
tions In Eq(225), l.e., :B(n+ 1,2— U){(lﬂ(n+1)_lﬂ(n+3_u))2
1 0 +¢'(n+1)—¢'(n+3—-u)
=T J duexd —u(t+z)Ju’" !, Rev>0, v v ’
(t+z)* T Jo 229 —B(n+2,1-u)[#(n+2)— y(n+3—u)]
2.2
—-9B(2—u,n+1), (2.35
and
where B(x,y) is the beta functionB(x,y)=I(x)I'(y)/
In[t+z] o I'(x+y) and y(z)=d[InT'(2)]/dz
duexd —u(t+2z)](1— ye—Inu)u, . = .
(t+z)2 0 The functionsA,(u) andA,(u) contain the poles on the

(2.30 positive real axis of the plane Indeed, the functioi\,(u)
has the finite number of triple, double, and single poles lo-
whereI'(z) is the Gamma functlonyE 0.577 216 is the cated at the pointsi;=n+2 and triple and single ones at
Euler constant, andz=Inx [or z=Inx in the case of Uo=n+1. In order to reveal the pole structure of the func-

a4 Q%)]. Then, using Egs(2.29 and (2.30 for the QCD  tion A,(u), it is convenient to use the following formulas
coupling a(Q?x) we find[9,15] [23]:

L R ~u _
adQ X):Efo due ""R(u,t)x™ Y, (2.3 W(2)=—yet(z— 1)2 0 (k+1)(k+2)’
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* 1 wheref,,(Q) are the moment integrals,

V(=2 o (2.36

p (9
fp(Q)z—J dkkP~ta(k?). (2.40
Here we write down, as an example, the funct'fég(u), QFJo

which after some manipulations takes the form The integrald ,(Q) were calculated in Ref22] using the IR

o 1 5 matching scheme:
Ag(u)=(2-u)| > N n
&0 (k+1)(k+3—u) mr\P Bo
fo(Q=| 5| folu)+adQ) X |5—=adQ?)
1= 1 Q n=o [ 27Pp
S 2-u kzo (k+3—u)? X[n'=T'(n+1,pIn(Q/u))], (2.4
1 = 1 1 wherey, is the infrared matching scale ah@n+ 1,2) is the
+ - incomplete Gamma function. In E.41) {f,(u,)} are phe-
1-ui=o (k+1)(k+3-u) 1-u nomenological parameters, which represent the weighted av-
y'(1)—8 erage ofayk?) over the IR region 8ck<<u, and act at the
+ ) (2.37 same time as infrared regulators of the right-hand &ri¢S
2-u of Eq. (2.39. The first term on the right-hand side of Eq.

o ~ _ o (2.41) is the power-suppressed contribution fig(Q) and
Now it is clear thatho(u) contains the infinite number of the models the “soft” part of the moment integral. It cannot be
double poles located afy=k+3 and the single ones &  calculated within the perturbative QCD, whereas the second
=1,2k+3. The similar analysis can be fuffilled for term on the RHS of Eq(2.41) is the perturbatively calcu-
A,(u),n>0 as well. Hence by employing Eq2.31) we lable part of the functiori,(Q), representing its hard pertur-
have transformed the end poirt-0;1 divergences in Eq. bative “tail.” In other words, the IR matching scheme allows
(2.13 into the IR renormalon pole divergences in E2.33.  one to estimate power corrections to the moment integrals by
The integral in Eq(2.33 is the inverse Borel transformation explicitly dissecting them out from the full expression, and
(2.28), where the Borel transfortB[QZF,Ty](u) of the NLO introducing new nonperturbative parametefi{w,). The
part of the scaled FF is definddp to constant factgras same moment integrafg(Q) computed in the framework of
the RC methodLHS of Eq.(2.39], contain information on
_ both their soft and the perturbative components. Therefore
BIQ2%F ., J(W~R(u,t) X KA (W+A(W]. (239  we can state that the scaled and resumme@F33 contain

n=0 power corrections~1/Q?". In phenomenological applica-
tions both the IR matching scheme and the RC method can

The IR renormalon dlverger)ce_s in E@.33 must_ b_e e pe employed. But the RC method has an advantage over the
moved by means of the principal value prescription. The

; . A IR matching scheme, because it allows one to compute the
inverse Borel transformation after such regularization, as w

have just pointed out above, becomes the resummed for(r:f;%mCtlonSfp(Q) without introducing the new nonperturba-

factor[Qsz(Qz)]res. Therefore all integrals over here- tive parameterg,, andf (u,). Moreover, using this method,

after have to be understood in the sense of the Cauchy prir'ﬁhe paramete_rﬁp(u,()j tlherr|15ellve_s can k()je Cal.futlj?ted In good
cipal value. agreement with model calculations and available experimen-

. 5 o res . tal data[15,24].
su;—;risgégr?:f)srlrzgigngﬂ((g?”)]n= 1C2° ntalniot?ﬁesp::c;vl\gadr- But_ the principal \{alue prgscriptiqn it_s_elf generates in the
FF, implicitly existing in the QCD factorization formula each integral oveu higher-twist ambiguities,
(2.3). The detailed discussion of relevant problems can be D, (Q?)
found in Refs[9,15]. Here, for completeness, we outline the NE qu—,
important points of this analysis. To make the discussion of q Q2
this question as transparent as possible, let us for a moment _ o _
neglect the nonleading terma2(Q?) in Eq.(2.25 and con-  Where®4(Q?) is a calculable function fixed by the residue
sequently make the replacemeRu,t)—1 in Eq. (2.31).  of the integral at the pole,=q andN, is some numerical
Then the integrals in the scaled and resummed FF with mulconstant. The ambiguities taken into account in E433
tiple IR renormalon poles at,=n can be easily expressed in modify the Borel resummed®y transition FF, yielding
terms of the integrals with a single IR renormalon pole at the
same poinfsee Egs(3.6) and (3.15], so that our formula [QZFWV(QZ)]res_)[QZFW(Qz)]res+[QZFWV(QZ)]HZTA
(2.33 will consist of some linear combinations of the inte- (242

©

grals, The HT term depends on the known functidds,(Q?)} and
_ut coefficients{Ky} and on the unknown numerical constants
A'_wae duzlf (Q) (2.39 {Ng}. In accordance with the “ultraviolet dominance as-
BolJo n—u n Al ' sumption” this HT ambiguity allows one to estimate higher-
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twist corrections to the scaled form factQrF,,.(Q?) com-

ing from sources another than end-point integration. By
fitting the constantgN,} to experimental data one can de-
duce some information concerning the magnitude of such
corrections.

ll. ASYMPTOTIC LIMIT OF THE RESUMMED =%y
TRANSITION FF

PHYSICAL REVIEW D69, 094010 (2004

due ""Aq(u)

2 1
(1 u)3 (2—u)® (2-u)?

=,
e

9 9

_+
1-u 2-

(3.5

As we have emphasized above, the resummegl tran-  The integrals in Eq(3.5) with the triple and double poles can
sition FF contains the power corrections appearing due to thge reduced to ones with single poles:

end-point integration. These corrections in the region of a

the experimental datb,9,12,13. But it is also evident that
in the asymptotic limitQ>—o, where all higher-twist cor-
rections should vanish, the standard HSA with froagfQ?)

moderate momentum transféf are essential for explaining f

and the pion asymptotic DAp,s,(X) leads to the correct f

expression for ther®y transition FF. Consequently, in the
limit Q?>—o from the resummed FF we have to regain the
asymptotic one.

In the limit Q?>—o the pion DA goes to its asymptotic
form, i.e.,

Q%2

d),T(X,QZ) - ¢as%x)a 3.9

which in the terms of the coefficients,, means

(n—u)®  2n2 2n

(n—u)? n AN

e Udu 1 Inx In2x li(\")

2 AN

e Vdu 1 LY fwe“‘du li(A")
= n t = 1
0

n-u A"
(3.9

where the first two equalities are obtained performing inte-
grations by parts. Here the logarithmic integhg¢) is de-
fined as

li($)= PVJ fat (3.7)

Int’

and A=Q?%/ A%. Now using the expansion df ({")/¢"
inverse powers of g [15],

Ko—1, K,—0, n>0. (3.2

liem 1 & m
We take also into account that in this limit the subleading o ~n In¢ & (nin éz)m’ M>1, (3.8
term in the expansion af(Q?x) througha(Q?) has to be
neglected. In other words, in the lim@?—~ we have to and keeping in the expressions
fulfill the replacement
li (A" li(\"
P sy |n2)\¥’ |n)\¥,
_ _ )\n )\n
J due “R(u,t) — due Ut (3.3
0
terms up toO(1/In\) order, we get
After these operations the resummed FF takes the following Q= 5 1
form: -
I, — SN (3.9
[Q%F,(Q?)]"s The situation with the second integral,
Q%2—w
— 3f_N 1+—f due “t[Ao(U)ﬂLAo(U)]] l,= fwdue‘“tﬂo(u), (3.10
0

(3.9

is more subtle. In this case, instead of using the explicit form

But Eq.(3.4) is not the final expression, because in the inte-
gral abovet=In(Q%A? and itsQ?— limit still has to be
computed.

To this end, we start from the simple case and con5|der

the integral

094010-7
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from which Eq.(3.10 has been derived. We are going to The expression3.19 without the factor 1/Ir\ is nothing
explain our technique, analyzing one of the components ofnore thanA,(u) at u=0. The following operations are

the functiont(x). Namely, let us calculate th@2—o limit trivial and lead to
of the integral

QPox 5 1
% 1 l, > — = —. 3.2
I2=J’ due*”tJ dxxtYIn?(1—x). (3.12 2 21In\ (329
0 0
. ] As is seen, both the functiohg andl, have the same limits.
Having expanded F{1—x) in powers ofx, Consequently, for the resummed FF we find
Q%o 5
2 k+1
In"(1=x) E k+1[¢<k+1) AC L (313 [QPF,(Q)]® — 2@[1— gas«:ﬁ)}, (3.2
we obtain in deriving of which the value of the constaNt
1
fo dxx " MIn?(1-x) N=\12(e?-e?) (3.22

o 1 for the pion has been utilized. Equati@®21) can be readily
= 2 [(k+1)— ¢(1)]k . (3.14  obtained within the standard HSA employing the pion
k= +3-u asymptotic DA. Our analysis proves that in the asymptotic
limit the Borel resummed FF leads to the correct expression
(3.21), which we consider as one of justifications of the sym-
= . _ut metrization procedure. It is also worth remarking that the
22 L[,p(kJr 1)_¢(1)]J' du “old” version of the hard-scattering amplitud@&;(x,Q?)
k=1 k+1 ok+3—-u [see Eqgs(2.11) and(2.12)] gives the correct asymptotic FF
as well, that is evident from EQq(3.9. Hence in the
asymptotic limit both the ordinary and symmetrized RC
methods describe correctly the?y transition FF, the differ-
ence between them being sizeable at the moderate values of
and using the leading order term in expansi@r®), in the  the momentum transfeQ*~a few Ge\f.
limit Q?>— we get

Substituting Eq(3.14) into the integrall 3,

( k+3)

—22 k+1[w<k+1> WO (315

0? - IV. EXTRACTING THE PION DA FROM THE CLEO DATA

1 1
13 — 22 I(Jrl[w(k+1) zp(l)]k+3 i (3.16 In this section we present the pion phenomenological
DA extracted from the CLEO data within the SRC method.
Q our calculations below we shall use the following values

Now, having repeated the described above operations in tH 5% the parametera. and u:

reverse order, it is easy to see that

% 1 11 A,=0.25GeV, ud=1 Ge\’. (4.1
22, —[k+1)— (D) ]——= —
k=1 T As is known(see for review Ref(25]), the IR renormalon
calculus can be applied for the estimation of power correc-
j dxxIn?(1—x). (3.17  tions to some physical quantity in the region of the high
X momentum transfer®?s A2. Our choice for the parameters
In other words, the asymptotic lim@>— transforms the (4.1 leads to the requirement @6>1. Because the recent
integrall% in accordance with the rule CLEO data[4] on the 7%y transition FF lie in the domain
1.64<Q?< 10 Ge\?, we include them into our numerical
Q% 1 analysis to deduce the pion model DAs. Namely at these
Iz — mj dxxIn?(1-x). (3.18  moderate momentum transfers the power corrections play the
0 important role, modifying both quantitatively and qualita-

. . . 2 2 . . .
The same conclusion is valid also for the other terms frondively predictions forQ“F ;,(Q°) obtained within the stan-

Eq. (2.8). Summing up, we derive the limit of the integia] ~ dard HSA. 0 o o
The Borel resummedr”y transition FF implies summa-

tions ovem andk, the latter arising from-A,(u) terms. The
'2 - l_f dxxt(1=x) summation oven does not create problems, because in our
studies we use the pion asymptotic and model DA's with one
= mB(laz)({[lﬂ(l)— H(3) P+ ¢ (1)— ¢ (3)} and two nonasymptoti_c terms. Therefore t_he max?mal value
of nin the sum isN,,,,=0 and 2, 4, respectively. It is worth
—[(2)— 4(3)]—9). (3.19 noting that Eq.(2.33 is a general expression valid for the
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FIG. 2. The Ir areas in thdJ-bS plane of the input parameters.

. The shaded area is found from analysis of the CLEO data on the

2 2 2

Q F’W(th) as a tfﬁnctl_on 0fQ. T[h? cur;els A?I and ASZS\;,E my transition FF. The region bounded by the dashed lines is ex-

gg:rr]epsup?)ndusSItr(])gtheeFF;:IOQb?;ﬁgg \(/)vilt(r:ﬂr? tﬁenérdineafyugg approachtraded from the data on the pion electromagné@it) FF. The
. . dot-dashed line is the di | determined b .

whereas for calculation of the curve ASY the SRC method is em- ot-dashed line is the diagonal determined by &)

ployed. The upper dashed line shows the model-indepen@ént

—oo limit for the FF. The data are borrowed from Rg4).

FIG. 1. The scaled and resummedy transition form factor

ists and some admixture of nonasymptotic terms in the pion
DA is needed to explain the data.

. L . . In Fig. 2 we depict(the shaded arg¢ahe 1o area for
pion DA's with an arbitrary number of nonasymptotic terms'values of the input parametebg, bg in the bg-bg plane.

The next terms-Cp(2x~1), n>4 can be easily included This means that the®y transition FF computed in the con-

into our scheme by modifying only expressions of the coef- . . L
ficientsK,, andN,.,.. Contrary to the case with, at fixedn text of the SRC method employing the pion model DA's with

summation overk runs fromk=0 to k= and has to be Gegenbauer coefficients belonging to the shaded region de-

. scribes the CLEO data with aslaccuracy.
truncated at somle,,,. In other words, the results of numeri- In Fig. 3 we plot the & area for thexv transition EF
cal computations depend dg,.,. In order to check their 9. P Y

: Sn 0 0_ ;
sensitivity to a chosen value &,.,, we have performed |ts_er:f. The central CUT"ES W'”Ezbgfg 22439 (tge(z)SDﬁs
calculation of the FF witfk,,,,=50 andk,,,=100. We have with one nonasymptotic tefmandbz =0.25b,=—0.05(the

found that for the pion asymptotic DA the ratio DAs with two nonasymptotic termsare _also showrz). One
sees that the shapes of the curves wif=0 and b3<0

~ [Qszy(Qz)]res(kmax: 100) wr differ from each other. Indeed, the curves whf}<0 are

[Q°F ,(Q)]™*(Kmax=50) ' 0,20 —— . : .

R(Q%)

at Q?°=1 Ge\? is equal to R(1 Ge\?)=1.0027 and to

R(10 Ge\?)=1.0011 atQ?=10 Ge\’. We have obtained a <_

similar picture employing the pion various model DAS. o

Since the correction tQ*F ,.(Q?) origiggting from the next o —
k=51-100 terms does not exceer 30 * of those from the /_-/—'/
first k=0-50 ones, in humerical computations we kgl G151 1

=50. Such output is understandable, because in the re
summed FF dominate contributions from the nearesti to
=0 IR renormalon poles.

We start our analysis of they transition FF from the
pion asymptotic DA in order to reveal the impact of the
symmetrization procedure on the predictions, as well as tc 016
find out how large is the deviation of these predictions from s 4 6 8 10
the data points. Our results are shown in Fig. 1. As is seen QZ (GeV 2)
the scaled and resummed EF¥F,.(Q? computed using
the SRC method in the region of the momentum transfers FiG. 3. The scaled and resumme8ly transition FF veQ2. The
1.64<Q?<5 Ge\” are considerably larger than the one ob-shaded area demonstrates tegion for the FF. Correspondence
tained by means of the ordinary RC approach. As a resuletween the curves and the input parameters is: for the solid line
the deviation of the curve ASY from the data points areb9=0.25,b3=—0.05; for the dashed line)=0.16,b3=0; and for
smaller than that of ASY. Nevertheless, such deviation ex- the dot-dashed line5=0.23,b3= —0.05.
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0,20 ' ' - ' sponding to{Ng}=—-0.6 (Ng}=0.6) atQ?<3.5 GeV is
b02=0.16, b 04=0 larger(smalley than the FF without such corrections and are
smaller (largen for Q?>3.5 Ge\,. The HT ambiguities,
obeying the “lo constraint” do not exceed the level
~*+5% of the transition FF at the momentum transférs
=164-2 GeV¥ and reach only ~¥1.8% at Q2
=9-10 GeV.

V. THE ELECTROMAGNETIC FORM FACTOR F .(Q?)

In this section we compute the pion electromagnetic FF
F.(Q? in the framework of the RC method in order to
extract further constraints on the parametg}s bj.

0.10 : , . . : , . . The FFF_(Q?) is the important quantity characterizing
2 4 6 8 10 the pion, which was thoroughly investigated in the context of
Q’ (GeV?) PQCD[24,26,27. It was also studied in various experiments
[28,29. Within the RC method FF'$,(Q?) of the light

FIG. 4. The scaled and resummed form fag@3F ,,,(Q?) with mesonsM = 7,K,p, were considered in Ref$11-13,24.
and without HT ambiguities. The solid line describes FF withoutTherefore below we outline only main stages of the RC
HT ambiguities. The broken lines are found employing Ej42 analysis of the FFFM(Q2)_
and numerical constan{®,} shown in the figure. In the standard HSA the FF_(Q?) is given by the fac-
torization formula

sharper relative to ones Wllho 0. Therefore the bound- 1 1 . 5 ) )
aries of the b area are determined by superposition of F=(Q )—JO dXJO dyer(y, Q) TH(X,y,Q%) ¢(X,Q%).

curves of these two types. Our analysis in the case of the (5.1)
DAs with one nonasymptotic term leads to the following
estimation: HereTy(x,y,Q?) is the hard-scattering amplitude of the sub-

processqq’ +v*—qq’,Q%=—q? is the momentum trans-
fer, g being the four-momentum of the virtual photon. In Eq.
q (5.1 the factorlzatlon scale from the very beginning is cho-
sen equal tquZ=Q?.
At the leading order of PQCD the amplitudg(x,y,Q?)
has the form

b9=0.16+0.02, b3=0. (4.3

In the case of DA's with two nonasymptotic terms allowe
values ofbY,b? cover the shaded area in Fig. 2. Below we
write down sample values of the parameters,

bd=0.2, bJe[—0.02-0.04],

16mC | 2 a(up) 1 a(ud)
2\ — _ —
b5=0.25, bje[—0.05-0.07], Th(xy,Q9)= 1355 "3 w0 | (5.2
and In accordance with the ideology of the RC method the
0_ _ _ argument of the QCD coupling in E¢6.2) has to be chosen
b9=0.3, bJe[—0.09-0.1]. oS
The “diagonal” of the 1o area is determined by the expres- o~
sion pE=xyQ@, uh=xyQ= (5.3
b%+1.480=0.16, b [0,—0.11] (4.4 ~Such choice allows one to get rid of terms
~In(ny2/Eé), In(xyQ¥/uZ) appearing in the amplitude
and is shown in Fig. 2 by the dot-dashed line. Th(x,y,Q?) at the next-to-leading order of PQCD and mini-

As we have noted above, the principal value prescriptiormizes the higher-order corrections Fg,(Q?). We can also
generates HT ambiguities that in conjunction with the “ul- adopt the scheme
traviolet dominance assumption” can be used to estimate HT o
corrections to the form factor originating from another u§=xQ2, ;E,:xQZ, (5.4
source(for example, from the pion HT DAs We have per-
formed relevant computations as a sample, for the pion DAbtained from Eq(5.3) by freezingy. In the framework of
with one nonasymptotic terrh9 2(1 Ge\®)=0.16 and{Ng} the standard HSA one freezes bothxgf and compute the
=+0.60=1,2,...,50 (Fig. 4. We find that the values form factor with u3=u%=Q? (or Q%/4) [26].
{Ngj==0.6 determlne the upper and lower bounds for the In the above we have chosenas the running variable.
constants{Nq} in order that FF's remain within theodl  Alternatively, we can fixx and choose as the running one
region. Thexy transition FF with HT ambiguities corre- or to compute the mean value of the sum of the FF’s calcu-
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lated using both possibilities; due to the symmetry of 0,7 — T T T

Th(x,y,Q?) and Eq.(5.1) itself with respect ta,y we will Na
get the same result. Of course, the second ofBioh leaves T 064 i
in the NLO correction some logarithmic terms, but it leads to o

better agreement with the experimental data than the choic 0,5
(5.3 [13]. Therefore in our computations we use the option
(5.4). Since in the considering process the partonic hard sub
process contains only one external virtual photon, we do nof
perform the symmetrization of the hard-scattering amplitude.
Stated differently, below we write down the expression
[Q%F _(Q?)]"S, obtained in the framework of the ordinary
RC method.

The Borel resummed pion electromagnetic FF's are deter-

mined by the formuld13] 0.1 : T — - . - .
0 2 4 6 8 Lo
) 2 (167f ,)? % Q (GeV')
Fnr res——— T > K\B(2+l,1
[Q Q%] Bo =0 1B ) FIG. 5. The pion scaled and resummed electromagnetic FF

Q%F (Q?) as a function 0fQ2. The shaded area is therlregion

for the form factor. The data are taken from Re¢&8] (the circles

and [29] (the rectangles In the 1o analysis only the solid data

points are used. For the central solid line the input parameters are
(5.9  b3=0.23,b3=—0.05. For comparison the FF obtained by means of

the asymptotic DA is also plotted.

The integrand in Eq(5.5) has a finite number of the single

IR renormalon poles. In fact, the sums in the general expres- )

sion (5.5) in practice run up to SOME .y, Nmax, Which for — duction experiments through a model-dependent extrapola-

DA's with two nonasymptotic terms ate,,,=Nma=4. The  tion to the pion pole. Moreover, the poin®>2 Ge\? are

maximum number of IR renormalon poles results from theimprecise suffering from the large errors and, in addition,

term ~B(6,1—u). The latter can be rewritten in the follow- there are big gaps between data points themselves. The data

X, an due “'R(u,t)B(2+n,1—u).
n=0 0

ing way: on the FFQ?F_(Q?) reported recently by th&_ Collabo-
ration do not change the whole picture, because the highest
r'e)r(i—u) 120 value of Q2 at which the measurements were performed is
B(6,1-u)= T(7-u  (1-u2-u)---(6-u)’ Q?=1.6 Ge\t. Therefore, to improve the precision of the

1o analysis under the circumstances, we include into our

making our statement evident. It is implied that the polefitting procedure data poin@?=1.18 GeV and slightly ex-
divergences are removed by the principal value prescriptiorzéed in this way the range of validity of the RC method. But
In the asymptotic limiQ%— o from the resummed FF we because our curves describe the data at such low values of
recover the standard HSA expression. In fact, acting alon§? as well, we find our approach justified. Finally, let us note
the line described in the detailed form in Sec. Ill, we get that the datum poinQ?=9.77 GeV is also included into
our scheme and it strongly restricts the tegion.

3 The results of our numerical calculations are plotted in
3(2,1)f due “'B(2,1-u).  Figs. 5 and 2. The & area for the pion scaled electromag-
0 netic FF and the central curve with the Gegenbauer coeffi-

Q% 2
[QF Qe — o)

59 cientsbY=0.23p%= —0.05 are demonstrated in Fig. 5. The
From Egs.(5.6) and (3.8) we obtain 1o region for the parameterlsao,bi)1 of the pion DA’ is
shown in Fig. 2. They obey, for example, the following con-
Q% straints:
[Q°F Q)] — 16mfladQ?), (5.7

_ _ b9=0.16, bje[—0.045-0.05],
which can be found in the context of the standard HSA by

employing the pion asymptotic DA.

To perform the numerical analysis of the scaled and re-
summed pion FRQ?F _(Q?) and extract constraints on the
pion DA's from such consideration, we need to specify theand
experimental data that will be used in the fitting procedure.
Unlike the 7%y transition FF, where we have precise CLEO b9=0.28, bge[—0.047;-0.061.
data for large momentum transfers, the situation with the
Q%F _(Q?) is somewhat controversial. Thus the correspond- The overlap of the & regions in Fig. 2 determines therl
ing data were obtained indirectly from the pion electropro-area in the planb3-b, within which both ther®y transition

b9=0.2, bJe[—0.039-0.058,
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0,7 . — - — . . B[Q?F,,](u) corresponds to power correctionl/Q?" con-
‘R b’ =0.23.b" =-0.05 | tained in the scaled and resummed FF. Since, in the consid-
g 0,6 - 2 F 4 . ering process the Borel transform has an infinite number of
NO’ IR renormalon poles, the expressith33), in general, con-
0,5 {Nq}=0.1 . tains power corrections-1/Q?", n=1,2, .. .. In numeri-
cal computations we have truncated the corresponding series
0,4 - at nh»=50. As an important consistency check, we have
proved that the result obtained within the SRC method in the
03 asymptotic limitQ2— reproduces the standard HSA pre-
] ] diction for the transition FF. This provides justification for
024 | the symmetrization procedure applied in the RC method.
We have compared our predictions with the CLEO data
0.1 : ‘ : . : . . . and obtained restrictions on the input parameters of the pion
2 4 6 8 10 DAs with one and two nonasymptotic terms. Further con-
Q’ (GeV?) straints on the admissible set of DA's have been extracted

from the data on the pion electromagnetic FE(Q?). We
solid line is the original FF witth=0.23p}= —0.05. The broken (5.8) describe the experimental data on both QRF , (Q?)
lines include the HT ambiguities with constardisl,;}=0.1 (the o inph ’T
dashed ling and {Nq}=20.08, (the dot-dr;sf?c}ed Iim(e q andQ°F.(Q?) FF's with the 1o accuracy.
—12....6. It is important that DAs extracted from the CLEO data
are suitable for explanation of the pion electromagnetic FF,

and the pion electromagnetic FF's are in agreement with th¥/hereas 'in the context of the standard HSA for describing
corresponding data at the level of & Accuracy. As is seen, €S€ FF’'s one has to pose on the pion DA contradictory

B . B B 2 .
this area is rather restricted and the values of the parametef@strictionsfor to model soft contributions 6 .(Q) using
bg and bﬁ are mechanisms beyond the scope of the perturbative QGD

fact, in the framework of the standard HSA the pion
b9=0.235+0.035, bJ=—0.05+0.01. (5.8  asymptotic DA considerably underestimates the data on the
electromagnetic FR?F_(Q?). In order to cover a gap be-
The FFQ2F_(Q?) is more sensitive to HT ambiguities tween the data and theoretical curves one has to introduce

than thew®y transition FF. Actually, in Fig. 6 fob=0.23 ~ model DAs with positive and large input parameters, the
andbl= —0.05 the scaled FF, corrected by the HT ambigu-Chernyak-Zhitnitsky DA[l?J being one of the prominent
ities, is plotted. These ambiguities foN,}=0.1 and{N,} ~ €xamples. At the same timep,s(x) overestimates the
= —0.08 reach*(5.6-3.6)% of the FF in the regiop? CLEO data onQ®F,,(Q% and, on the contrary, model
~1.2—1.6 GeV and = 1% in the domain 9—-10 G&V It is DAs with negative input parameters are needed. The RC
worth noting that the estimation of the HT ambiguities aremethod solves this problem due to power corrections taken
obtained within the “Xr constraint” (see the previous sec- into account in both of these quantities. Really, the power
tion). In general, admissible values of the constditgl and  corrections arising from the end-point integration regions at
of the input parametersd, b’ are strongly correlated. moderate momentum transfers significantly enhance the pion
electromagnetic FIF12,13. They also enhance the absolute
value of the NLO contribution to the FIFM(Qz). Since the
V]. CONCLUDING REMARKS contribution of the NLO term t& ..(Q?) is negative, power
corrections effectively reduce the leading order contribution
In this work we have calculated the power corrections totg FF's. It turns out that for some model DAs these effects
the =’y transition FF, originating from the end-point regions |ead to a satisfactory description for both of these FF's.
x—0,1 due to integration of the standard HSA factorization  The investigation performed in this work has allowed us
formula with the QC!I) running coupling over 'Ehe longitudi- {4 describe the form factors._.(Q?) (for Q?=1.64 Ge\?)
nal momentum fractiorx, carrying by the pion’s quark. To andF _(Q?) (for Q2=1.18 GeV?) in the context of the same

this end, we have employed the RC method combined Wmﬂheoretical scheme and by means of the same DAs. We have

techniques of the IR renormalon calculus. We have used thgchieved a quite satisfactory agreement with the available

symmetrized under replacemepiz— ug version of the experimental data. Theoretical computations have been car-
hard-scattering amplitude of the partonic subprocgss ¥ ried out using the leading ordéfor F_(Q?)] and the NLO
—qg+q. [for FM(QZ)] expressions for the hard-scattering amplitudes

We have obtained the Borel resummed expressiomf the partonic subprocesses. An accuracy of our theoretical
[QZF,W(Qz)]res for the transition FF. For this purpose in the predictions may be improved by including into analyses the
inverse Borel transformation we have removed IR renormaNLO and NNLO terms, respectively. These problems form
lon divergences by means of the principal value prescriptiondirections for improving the developed theoretical frame-
Each IR renormalon polai;=n in the Borel transform work and require separate detailed investigations.
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