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Power corrections to thep0g transition form factor and pion distribution amplitudes
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Employing the standard hard-scattering approach and the running coupling method we calculate a class of
power-suppressed corrections;1/Q2n, n51,2,3, . . . to theelectromagneticp0g transition form factor~FF!
Q2Fpg(Q2) arising from the end-pointx→0,1 integration regions. In the investigation we use a hard-scattering

amplitude of the subprocessg1g* →q1q̄, symmetrized under the exchangemR
2↔m̄R

2 important for exclusive
processes containing two external photons. In the computations the pion model distribution amplitudes~DA’s!
with one and two nonasymptotic terms are employed. The obtained predictions are compared with the CLEO
data and constraints on the DA parametersb2(m0

2) and b4(m0
2) at the normalization pointm0

251 GeV2 are
extracted. Further restrictions on the pion DA’s are deduced from the experimental data on the electromagnetic
FF Fp(Q2).
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I. INTRODUCTION

Thep0 meson electromagnetic transition form factor~FF!
Fpg(Q2) is among the simplest exclusive processes for
vestigation of which at large momentum transfer the per
bative QCD~PQCD! methods@1–3# can be applied. Becaus
of the recent CLEO data@4#, where the form factorFpg(Q2)
was measured with high precision, the interest in this proc
has been renewed. Thus during the last few years for c
putation of Fpg(Q2) the various theoretical methods an
schemes were proposed@5–9#. The aim here is twofold: to
elaborate methods for the calculation ofFpg(Q2) within
PQCD and, at the same time, to extract from experime
data information on the pion distribution amplitude~DA!.
The latter, being independent of a specific exclusive proc
and universal quantity, is an important input ingredient
studying various processes that involve the pion.

It is known that in experiments thep0g transition was
explored at momentum transfers ofQ2;1 –10 GeV2, which
are far from the asymptotic limitQ2→`, where the PQCD
factorization formula with the pion leading-twist asympto
DA leads to reliable predictions. In the present experim
tally accessible energy regimes, power-suppressed co
tions ;1/Q2n, n51,2, . . . , play an important role in ex-
plaining the experimental data@5,9#. There are numerou
sources of power corrections toFpg(Q2). For example, the
pion higher-twist~HT! DA’s and higher Fock states genera
such corrections. Power corrections can also originate f
the end-point regionsx→0,1 as a result of the integration o
the PQCD factorization expression with the QCD runni
coupling as(Q

2x) @as(Q
2x̄), x̄512x# over the pion’s

quark longitudinal momentum fractionx. In fact, in order to
reduce the higher-order corrections to a physical quantity
improve the convergence of the corresponding perturba
series, the renormalization scalemR

2 (m̄R
2), i.e., the argumen

of the QCD coupling, in a Feynman diagram should be
equal to the virtual parton’s squared four-momentum@10#. In
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0556-2821/2004/69~9!/094010~13!/$22.50 69 0940
-
r-

ss
-

al

ss

-
c-

m

d
n

t

the exclusive processes the scalemR
2 (m̄R

2) chosen this way
inevitably depends on the longitudinal momentum fractio
carried by the hadron constituents. For the photon-me

transition we havemR
25Q2x and m̄R

25Q2x̄, because at two
leading order diagrams of the partonic subprocessg1g*

→q1q̄, absolute values of the virtual quark and antiqua
squared four-momenta are determined by these express
But then the PQCD factorization formula diverges, sin

as(Q
2x) @as(Q

2x̄)# suffers from end-pointx→0 @x→1#
singularity. The running coupling~RC! method solves this
problem by using a Borel transformation and applying t
principal value prescription. As a result, one obtains
Borel resummed expression for thep0g transition FF, which
contains power-suppressed corrections. The RC metho
conjunction with the infrared~IR! renormalon calculus was
used for computation of such power corrections to thep0g
and hg,h8g transition FF’s @5,9#, to the electromagnetic
FF’s of the light mesonsFM(Q2) (M5p,K,rL) @11–14#, as
well as to the gluon-gluon-h8 meson vertex function@15#.

In the present work we compute power corrections to
p0g transition FF employing the version of the har
scattering amplitude symmetrized under replacem
mR

2↔m̄R
2 . The symmetrization procedure is important for e

clusive processes with two external photons~gluons! in the
hard-scattering Feynman diagrams, because it allows on
treat within the RC method both virtual and real photo
~gluons! on the same footing. The latter is required in ord
to consider thep0g* andp0g transitions in a unifying way,
i.e., to get in the limitsv→0;1 (v is the asymmetry param
eter! from the p0g* transition FF Fpg* (Q2,v) the FF
Fpg(Q2) of the p0g transition. The advocated method wa
used in our previous work@15# to investigate the virtual and
on-shell gluon-h8 meson transitions. In what follows we re
fer to this approach as the symmetrized RC~SRC! method.

This paper is organized as follows: In Sec. II we introdu
the symmetrization procedure of the hard-scattering am
tude for thep0g transition. Here we present our results f
the Borel resummed@Q2Fpg(Q2)# res FF obtained within the
SRC method. Section III is devoted to detailed analysis
©2004 The American Physical Society10-1
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theQ2→` limit of @Q2Fpg(Q2)# res. In Sec. IV we perform
numerical computations and from comparison of our pred
tions with the CLEO data extract constraints on the para
etersb2

0(1 GeV2) andb2
0(1 GeV2), b4

0(1 GeV2) in the pion
DA’s with one and two nonasymptotic terms, respective
Further restrictions on the DA’s arising from analysis of t
pion electromagnetic FF are described in Sec. V. In Sec
we make our concluding remarks.

II. THE PHOTON-MESON TRANSITION FORM FACTOR

A. The symmetrized version of the hard-scattering
amplitude

The real photon-pseudoscalarM meson electromagneti
transition FFFMg(Q2) can be defined in terms of the amp
tudeGmn,

Gmn5 ie2FMg~Q2!emnabPaq1b , ~2.1!

for the process

g* ~q1!1g~q2!→M ~P!, ~2.2!

whereQ252q1
2 is the momentum transfer.

At the large momentum transfer the FFFMg(Q2) is given
by the factorization formula of the standard hard-scatter
approach~HSA! @1#,

FMg~Q2!5@TH
1 ~x,Q2,mF

2 !1TH
2 ~x,Q2,mF

2 !# ^ fM~x,mF
2 !.
~2.3!

Here the functionTH(x,Q2,mF
2),

TH~x,Q2,mF
2 !5TH

1 ~x,Q2,mF
2 !1TH

2 ~x,Q2,mF
2 !, ~2.4!

is the hard-scattering amplitude of the subprocessg1g*
→q1q̄, fM(x,mF

2) is the meson DA,mF
2 is the factorization

scale, andx̄[12x, x being the longitudinal momentum
fraction carrying by the meson’s quark. In Eq.~2.3! the
shorthand notation

TH~x,Q2,mF
2 ! ^ fM~x,mF

2 !5E
0

1

TH~x,Q2,mF
2 !fM~x,mF

2 !dx

~2.5!

is used.
It is evident that a physical quantity, represented by

factorization formula, Eq.~2.3! being a sample one, does n
depend on renormalization and factorization schemes
scales employed for its calculation. But at any finite order
the QCD perturbation theory, due to truncation of the cor
sponding perturbation series, the hard-scattering amplit
~2.4! depends on both the factorizationmF

2 and renormaliza-
tion mR

2 scales. Since higher-order corrections in PQCD co
putations, as a rule, are large for both inclusive and exclu
processes, in order to get reliable theoretical predicti
within the PQCD by means of the truncated perturbat
series, an optimal choice for these scales, i.e., a choice
minimizes higher-order corrections, is required. The fact
ization scalemF

2 in exclusive processes is traditionally s
09401
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equal to the momentum transferQ2, because higher-orde
corrections contain terms; ln(mF

2/Q2) and such choice elimi-
nates them in hard-scattering amplitudes. As a result, in
factorization formula only a hadron DA explicitly depend
on the scalemF

25Q2.
The situation with the renormalization scalemR

2 is more
subtle. Really, this scale appears, in general, not only
higher-order corrections to the hard-scattering amplitude,
also determines the scale of the QCD couplingas(mR

2). In
order to reduce higher-order corrections to a physical qu
tity, in exclusive processes the scalemR

2 should be taken
equal to the square of the momentum transfer carried b
virtual parton in each leading order Feynman diagram of
underlying hard-scattering subprocess@10#. For the real
photon-meson transition these scales are determined by
leading order diagrams of the subprocessg1g* →q1q̄ and
are given by the expressions

mR
25Q2x, m̄R

25Q2x̄. ~2.6!

After these remarks let us turn to our formulas~2.3! and
~2.4!. In accordance with the ‘‘tradition,’’ in this work we se
mF

25Q2 and in what follows omit the dependence of th
hard-scattering amplitude on the scalemF

2 . Then, for the
hard-scattering amplitude at the next-to-leading order~NLO!
we get@16#

TH
1 ~x,Q2,mR

2 !5
N

Q2

1

x F11CF

as~mR
2 !

4p
t~x!G , ~2.7!

where the functiont(x) is given by the expression

t~x!5 ln 2x2
x ln x

x̄
29. ~2.8!

HereN is the constant, which depends on the quark struct
of the meson,CF54/3 is the color factor. The second func
tion TH

2 (x,Q2,mR
2) can be obtained from Eq.~2.7! using the

replacementx↔ x̄

TH
2 ~x,Q2,mR

2 !5TH
1 ~ x̄,Q2,m̄R

2 !. ~2.9!

The hard-scattering amplitudeTH(x,Q2,mR
2) must be sym-

metric under exchangex↔ x̄,

TH~x,Q2,mR
2 !5TH~ x̄,Q2,mR

2 !. ~2.10!

The replacementx↔ x̄, by means of which the function
TH

2 (x,Q2,mR
2) is found, in general, has to be applied also

the renormalization scalemR
2 changing it tom̄R

2 . In the stan-

dard HSA one treats themR
2 and m̄R

2 scales on the sam
footing by setting them equal, as a rule, toQ2. The choice
mR

25m̄R
25Q2 satisfies both requirements~2.9! and~2.10! im-

portant for the hard-scattering amplitude. In the framewo
of the RC method the scalesmR

2 andm̄R
2 have to be chosen in
0-2
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accordance with Eq.~2.6!. Then the functionTH
1 (x,Q2,mR

2

5Q2x) takes the following form:

TH
1 ~x,Q2!5

N

Q2

1

x F11CF

as~Q2x!

4p
t~x!G . ~2.11!

The second part of the hard-scattering amplitude is given
the expression

TH
2 ~x,Q2!5

N

Q2

1

x̄
F11CF

as~Q2x̄!

4p
t~ x̄!G . ~2.12!

One can see that within the RC method the requireme
~2.9! and ~2.10! hold as well.

In the framework of both the standard HSA and R
method theMg transition FF can be calculated employin
the formula

FMg~Q2!5TH
1 ~x,Q2! ^ fM~x,Q2!1TH

2 ~x,Q2! ^ fM~x,Q2!

5TH
1 ~x,Q2! ^ fM~x,Q2!1TH

1 ~ x̄,Q2! ^ fM~x,Q2!

52TH
1 ~x,Q2! ^ fM~x,Q2!. ~2.13!

In the last step we take into account that the DA of the p
is a symmetricfM(x,Q2)5fM( x̄,Q2) function.

The M[p0,h,h8 meson electromagnetic transition FF
were computed within the RC method in Refs.@5,9#. In this
work we generalize our approach by performing the com
tation of the p0g transition FF in the context of the RC
method, but employing instead of Eqs.~2.11! and~2.12! their
versions symmetrized undermR

2↔m̄R
2 exchange, i.e.,

TH
1 ~x,Q2!5

N

Q2

1

x H 11CF

1

8p
@as~Q2x!1as~Q2x̄!#t~x!J ,

~2.14!

and

TH
2 ~x,Q2!5

N

Q2

1

x̄
H 11CF

1

8p
@as~Q2x!1as~Q2x̄!#t~ x̄!J .

~2.15!

In the standard HSA Eqs.~2.14! and~2.15! coincide with Eq.
~2.7! and itsx↔ x̄ partnerTH

2 (x,Q2,mR
25Q2), respectively.

It is also not difficult to demonstrate that Eqs.~2.9!, ~2.10!,
and~2.13! hold for the hard-scattering amplitude determin
by the new functionsTH

1 (x,Q2) andTH
2 (x,Q2).

Here some comments concerning the symmetrization
cedure are in order. To clarify this important point let us no
that the virtual and real photons enter into the consider
process~2.2! in an unequal manner. Indeed, theMg transi-
tion FF FMg(Q2) depends only onQ252q1

2 (q2
250). At

the same time the virtual photon-meson,

g* ~q1!1g* ~q2!→M ~P!,
09401
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transition FFFMg* (Q2,v) is a function of the photon tota
virtuality Q2 and asymmetry parameterv ~see the second
paper of Ref.@16#!,

Q25Q1
21Q2

2 , v5
Q1

2

Q2
.

In the limits v→0;1 the equality

FMg* ~Q2,v50;1!5FMg~Q2!

must be valid. In order to meet this requirement and desc
the real and virtual photon-meson transitions within the R
method in a unifying way, we adopt in this work Eqs.~2.14!
and ~2.15!, because in the limitsv→0;1 the form factor
FMg* (Q2,v) found in the context of the RC method leads
FMg(Q2), computed by means namely of Eqs.~2.14! and
~2.15!. The symmetrization procedure, being discussed h
was used in Ref.@15# to calculate the virtual and on-she
gluon-h8 meson vertex function. In the present work we co
centrate on the FFFMg(Q2), leaving the detailed analysis o
FMg* (Q2,v) for a future publication.

B. The pion distribution amplitude

Calculation of the FFFpg(Q2) requires the knowledge o
the pion DAfp(x,Q2), which is one of the key component
in Eq. ~2.3!. It is known @17# that the pion DA can be ex
panded over the eigenfunctions of the one-loop Brods
Lepage equation, i.e., in terms of the Gegenbauer polyno
als $Cn

3/2(2x21)%,

fp~x,Q2!5fasy~x!F11 (
n52.4 . . .

`

bn~Q2!Cn
3/2~2x21!G ,

~2.16!

wherefasy(x) is the pion asymptotic DA,

fasy~x!5A3 f px~12x!, ~2.17!

with f p50.0923 GeV being the pion decay constant.
The evolution of the DA on the factorization scaleQ2 is

governed by the functionsbn(Q2),

bn~Q2!5bn~m0
2!Fas~Q2!

as~m0
2!

G gn /b0

. ~2.18!

In Eq. ~2.18! $gn% are anomalous dimensions defined by t
expression

gn5CFF12
2

~n11!~n12!
14(

j 52

n11
1

j G . ~2.19!

The constantsbn(m0
2)[bn

0 are input parameters that form th
shape of DA’s and can be extracted from experimental d
or obtained from the nonperturbative QCD computations
the normalization pointm0

2. The QCD coupling constan
as(Q

2) at the two-loop approximation are given by the e
pression
0-3
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as~Q2!5
4p

b0ln~Q2/L2!
F12

2b1

b0
2

ln ln~Q2/L2!

ln~Q2/L2!
G .

~2.20!

HereL is the QCD scale parameter,b0 andb1 are the QCD
beta function one- and two-loop coefficients, respectively

b05112
2

3
nf , b15512

19

3
nf .

In the limit Q2→` all model DA’s ~2.16! reduce to the
asymptotic form fasy(x). The nonasymptotic term
;Cn

3/2(2x21), n>2 determine the deviation of the pio
DA from the asymptotic form at moderate energy regim
and depend on the nonperturbative mesonic binding effe

For the pion in the literature the various phenomenolo
cal DA’s were proposed@6,7,17–19#. Thus, for example, in
Ref. @18#, employing the QCD sum rules method, the follow
ing pion DA was predicted:

f~x,m0
2!5fasy~x!@110.758C2

3/2~2x21!

10.3942C4
3/2~2x21!#, ~2.21!

where the normalization pion ism050.5 GeV.
The coefficientsb2

0 and b4
0 were also extracted from th

CLEO data on thep0g transition FF in Ref.@7#. The authors
used the QCD light-cone sum rules approach and inclu
into their analysis the NLO perturbative and twist-four co
rections. They found that in the model with two nonasym
totic terms, at the scalem052.4 GeV, the pion DA has the
form

f~x,m0
2!5fasy~x!@110.19C2

3/2~2x21!

20.14C4
3/2~2x21!#. ~2.22!

As is seen the pion DA’s extracted from the experimen
data depend on the used methods and on their accuracy
though one claims that the meson DA is a proce
independent quantity describing the internal structure of
meson itself, exploration of different exclusive process
with the same meson leads to a variety of DA’s. This me
that employed methods have shortcomings or do not enc
pass all mechanisms important for a given process. S
situation is pronounced in the case of the pion. The inve
gation carrying out in this work intends to improve the sit
ation with thep0g transition FF by taking into account a
least one class of power corrections to the FFFpg(Q2).

To proceed it is convenient to expand the DA~2.16! over
x and rewrite it in the following form:

fp~x,Q2!5fasy~x! (
n50

`

Knxn, ~2.23!

where the sum runs over alln. The new coefficientsKn in the
case of DA’s with two nonasymptotic terms are given by t
expressions

K05116b2~Q2!115b4~Q2!,
09401
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K15230@b2~Q2!17b4~Q2!#,

K2530@b2~Q2!128b4~Q2!#,

K35260321b4~Q2!, K4530321b4~Q2!. ~2.24!

Here the functionsb2(Q2) and b4(Q2) are defined by Eq.
~2.18! with g2 /b0 andg4 /b0 being equal to

g2

b0
5

50

81
,

g4

b0
5

364

405
, nf53,

and

g2

b0
5

2

3
,

g4

b0
5

364

375
, nf54,

below and above the charm quark production threshold,
spectively.

C. The p0g transition FF within RC method

Computation of the photon-pion transition FFFpg(Q2)
implies, naturally, integration overx in accordance with Eq.
~2.13!. Having inserted the explicit expression of the har
scattering amplitudeTH

1 (x,Q2) ~2.14! and the pion DA
~2.23! into Eq.~2.13! we encounter divergences, arising fro
the singularities of the coupling constantas(Q

2x) and
as(Q

2x̄) in the limits x→0;1. In the standard HSA this
problem is solved by freezing the argument of the coupl
constant and performing corresponding integrations w
as(Q

2) @or as(Q
2/2)]. In the RC method we allow the QCD

coupling to run and therefore have to propose some met
to cure these divergences.

As the first step we express the running coupli
as(Q

2x),1 in terms ofas(Q
2). This aim can be achieved b

applying the renormalization-group equation toas(Q
2x)

@20#. As a result we find

as~Q2x!.
as~Q2!

11 ln x/t F12
as~Q2!b1

2pb0

ln@11 ln x/t#

11 ln x/t G ,
~2.25!

whereas(Q
2) is the one-loop QCD coupling constant an

t54p/b0as(Q
2)5 ln(Q2/L2). Equation ~2.25! expresses

as(Q
2x) in terms ofas(Q

2) with an ;as
2(Q2) order accu-

racy.
Inserting Eq.~2.25! into the formula for the transition FF

Eq. ~2.13!, we obtain integrals, which are still divergent, b
can be calculated using existing methods. One of them~see
for details Ref.@11#! allows one to obtain the form factor a
a perturbative series inas(Q

2) with factorially growing co-
efficientsCn;(n21)!,

1Similar consideration is valid also for the running couplin

as(Q
2x̄).
0-4
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Q2Fpg~Q2!; (
n51

` Fas~Q2!

4p Gn

b0
n21Cn . ~2.26!

However, it is known that a perturbative QCD series w
factorially growing coefficients is a signal for the IR reno
malon nature of the divergences in Eq.~2.26!. The conver-
gence radius of such series is zero and its resumma
should be performed by employing the Borel integral te
nique. Namely, one has to determine the Borel transfo
B@Q2Fpg#(u) of the corresponding series@21#

B@Q2Fpg#~u!5 (
n51

`
un21

~n21!!
Cn , ~2.27!

and in order to define the sum Eq.~2.26!, or to find the
resummed expression for the form factor, one has to in
B@Q2Fpg#(u) to get

@Q2Fpg~Q2!# res;P.V.E
0

`

du expF2
4pu

b0as~Q2!
G

3B@Q2Fpg#~u!. ~2.28!

Because the coefficients of the series Eq.~2.26! behave like
Cn;(n21)!, the Borel transform~2.27! contains poles lo-
cated at the positiveu axis of the Borel plane, which ar
exactly the IR renormalon poles. Therefore the inverse Bo
transformation~2.28! can be computed only after regulariz
tion of these pole singularities. One of the methods of s
regularization, adopted also in the present work, is the p
cipal value prescription. In other words, the IR renorma
divergences in Eq.~2.28! have to be removed by computin
the integral in the sense of the Cauchy principal value. O
after this regularization the inverse Borel transformation
fines the resummed FF.

Fortunately, these intermediate operations can be om
with the help of the following operations. Namely, let u
introduce the inverse Laplace transformations of the fu
tions in Eq.~2.25!, i.e.,

1

~ t1z!n
5

1

G~n!
E

0

`

du exp@2u~ t1z!#un21, Ren.0,

~2.29!

and

ln@ t1z#

~ t1z!2
5E

0

`

du exp@2u~ t1z!#~12gE2 ln u!u,

~2.30!

where G(z) is the Gamma function,gE.0.577 216 is the
Euler constant, andz5 ln x @or z5 ln x̄ in the case of
as(Q

2x̄)]. Then, using Eqs.~2.29! and ~2.30! for the QCD
couplingas(Q

2x) we find @9,15#

as~Q2x!5
4p

b0
E

0

`

due2utR~u,t !x2u, ~2.31!
09401
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where the functionR(u,t) is defined as

R~u,t !512
2b1

b0
2

u~12gE2 ln t2 ln u!. ~2.32!

Having used Eq.~2.31! and performed integration overx,
for the scaledp0g transition FF we get

Q2Fpg~Q2!5A3 f pNH (
n50

`
Kn

n11
1

4

3b0
E

0

`

due2utR~u,t !

3 (
n50

`

Kn@An~u!1Ãn~u!#J . ~2.33!

Here the term;An(u) appears in the result of the integratio
of the second term in Eq.~2.14!, whereas the term;Ãn(u)
owing to the third term in Eq.~2.14!. The functionsAn(u)
and Ãn(u) have the following forms:

An~u!5
d2

db2
B~2,b!U

b5n112u

2
d

db
B~1,b!U

b5n122u

29B~2,n112u!

5
2

~n112u!3
2

2

~n122u!3
1

1

~n122u!2

2
9

~n112u!~n122u!
, ~2.34!

and

Ãn~u!5
]2

]b2
B~22u,b!U

b5n11

2
]

]b
B~12u,b!U

b5n12

29B~22u,n11!

5B~n11,22u!$~c~n11!2c~n132u!!2

1c8~n11!2c8~n132u!%

2B~n12,12u!@c~n12!2c~n132u!#

29B~22u,n11!, ~2.35!

where B(x,y) is the beta functionB(x,y)5G(x)G(y)/
G(x1y) andc(z)5d@ ln G(z)#/dz.

The functionsAn(u) and Ãn(u) contain the poles on the
positive real axis of the planeu. Indeed, the functionAn(u)
has the finite number of triple, double, and single poles
cated at the pointsu05n12 and triple and single ones a
u05n11. In order to reveal the pole structure of the fun
tion Ãn(u), it is convenient to use the following formula
@23#:

c~z!52gE1~z21!(
k50

`
1

~k11!~k1z!
,

0-5
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c8~z!5 (
k50

`
1

~k1z!2
. ~2.36!

Here we write down, as an example, the functionÃ0(u),
which after some manipulations takes the form

Ã0~u!5~22u!F (
k50

`
1

~k11!~k132u!G2

2
1

22u (
k50

`
1

~k132u!2

1
1

12u (
k50

`
1

~k11!~k132u!
2

1

12u

1
c8~1!28

22u
. ~2.37!

Now it is clear thatÃ0(u) contains the infinite number of th
double poles located atu05k13 and the single ones atu0
51,2,k13. The similar analysis can be fulfilled fo
Ãn(u),n.0 as well. Hence by employing Eq.~2.31! we
have transformed the end pointx→0;1 divergences in Eq
~2.13! into the IR renormalon pole divergences in Eq.~2.33!.
The integral in Eq.~2.33! is the inverse Borel transformatio
~2.28!, where the Borel transformB@Q2Fpg#(u) of the NLO
part of the scaled FF is defined~up to constant factor! as

B@Q2Fpg#~u!;R~u,t ! (
n50

`

Kn@An~u!1Ãn~u!#. ~2.38!

The IR renormalon divergences in Eq.~2.33! must be re-
moved by means of the principal value prescription. T
inverse Borel transformation after such regularization, as
have just pointed out above, becomes the resummed f
factor @Q2Fpg(Q2)# res. Therefore all integrals overu here-
after have to be understood in the sense of the Cauchy p
cipal value.

The expression@Q2Fpg(Q2)# res contains the power-
suppressed corrections;1/Q2n, n51,2, . . . to thescaled
FF, implicitly existing in the QCD factorization formula
~2.3!. The detailed discussion of relevant problems can
found in Refs.@9,15#. Here, for completeness, we outline th
important points of this analysis. To make the discussion
this question as transparent as possible, let us for a mom
neglect the nonleading term;as

2(Q2) in Eq. ~2.25! and con-
sequently make the replacementR(u,t)→1 in Eq. ~2.31!.
Then the integrals in the scaled and resummed FF with m
tiple IR renormalon poles atu05n can be easily expressed
terms of the integrals with a single IR renormalon pole at
same point@see Eqs.~3.6! and ~3.15!#, so that our formula
~2.33! will consist of some linear combinations of the int
grals,

4p

b0
E

0

`e2utdu

n2u
5

1

n
f 2n~Q!, ~2.39!
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where f 2n(Q) are the moment integrals,

f p~Q!5
p

QpE0

Q

dkkp21as~k2!. ~2.40!

The integralsf p(Q) were calculated in Ref.@22# using the IR
matching scheme:

f p~Q!5S m I

Q D p

f p~m I !1as~Q2! (
n50

N F b0

2pp
as~Q2!Gn

3@n! 2G„n11,p ln~Q/m I !…#, ~2.41!

wherem I is the infrared matching scale andG(n11,z) is the
incomplete Gamma function. In Eq.~2.41! $ f p(m I)% are phe-
nomenological parameters, which represent the weighted
erage ofas(k

2) over the IR region 0,k,m I and act at the
same time as infrared regulators of the right-hand side~RHS!
of Eq. ~2.39!. The first term on the right-hand side of E
~2.41! is the power-suppressed contribution tof p(Q) and
models the ‘‘soft’’ part of the moment integral. It cannot b
calculated within the perturbative QCD, whereas the sec
term on the RHS of Eq.~2.41! is the perturbatively calcu-
lable part of the functionf p(Q), representing its hard pertur
bative ‘‘tail.’’ In other words, the IR matching scheme allow
one to estimate power corrections to the moment integrals
explicitly dissecting them out from the full expression, a
introducing new nonperturbative parametersf p(m I). The
same moment integralsf p(Q) computed in the framework o
the RC method@LHS of Eq. ~2.39!#, contain information on
both their soft and the perturbative components. Theref
we can state that the scaled and resummed FF~2.33! contain
power corrections;1/Q2n. In phenomenological applica
tions both the IR matching scheme and the RC method
be employed. But the RC method has an advantage ove
IR matching scheme, because it allows one to compute
functions f p(Q) without introducing the new nonperturba
tive parametersm I and f p(m I). Moreover, using this method
the parametersf p(m I) themselves can be calculated in go
agreement with model calculations and available experim
tal data@15,24#.

But the principal value prescription itself generates in t
each integral overu higher-twist ambiguities,

;(
q

Nq

Fq~Q2!

Q2q
,

whereFq(Q2) is a calculable function fixed by the residu
of the integral at the poleu05q andNq is some numerical
constant. The ambiguities taken into account in Eq.~2.33!
modify the Borel resummedp0g transition FF, yielding

@Q2Fpg~Q2!# res→@Q2Fpg~Q2!# res1@Q2Fpg~Q2!#HT.
~2.42!

The HT term depends on the known functions$Fq(Q2)% and
coefficients$Kq% and on the unknown numerical constan
$Nq%. In accordance with the ‘‘ultraviolet dominance a
sumption’’ this HT ambiguity allows one to estimate highe
0-6
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twist corrections to the scaled form factorQ2Fpg(Q2) com-
ing from sources another than end-point integration.
fitting the constants$Nq% to experimental data one can d
duce some information concerning the magnitude of s
corrections.

III. ASYMPTOTIC LIMIT OF THE RESUMMED p0g
TRANSITION FF

As we have emphasized above, the resummedp0g tran-
sition FF contains the power corrections appearing due to
end-point integration. These corrections in the region o
moderate momentum transferQ2 are essential for explaining
the experimental data@5,9,12,13#. But it is also evident that
in the asymptotic limitQ2→`, where all higher-twist cor-
rections should vanish, the standard HSA with frozenas(Q

2)
and the pion asymptotic DAfasy(x) leads to the correc
expression for thep0g transition FF. Consequently, in th
limit Q2→` from the resummed FF we have to regain t
asymptotic one.

In the limit Q2→` the pion DA goes to its asymptoti
form, i.e.,

fp~x,Q2! →
Q2→`

fasy~x!, ~3.1!

which in the terms of the coefficientsKn means

K0→1, Kn→0, n.0. ~3.2!

We take also into account that in this limit the sublead
term in the expansion ofas(Q

2x) throughas(Q
2) has to be

neglected. In other words, in the limitQ2→` we have to
fulfill the replacement

E
0

`

due2utR~u,t ! →
Q2→`E

0

`

due2ut. ~3.3!

After these operations the resummed FF takes the follow
form:

@Q2Fpg~Q2!# res

→
Q2→`

A3 f pNH 11
4

3b0
E

0

`

due2ut@A0~u!1Ã0~u!#J .

~3.4!

But Eq. ~3.4! is not the final expression, because in the in
gral abovet5 ln(Q2/L2) and itsQ2→` limit still has to be
computed.

To this end, we start from the simple case and cons
the integral
09401
y

h

e
a
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er

I 15E
0

`

due2utA0~u!

5E
0

`

due2utF 2

~12u!3
2

2

~22u!3
1

1

~22u!2

2
9

12u
1

9

22uG . ~3.5!

The integrals in Eq.~3.5! with the triple and double poles ca
be reduced to ones with single poles:

E
0

` e2utdu

~n2u!3
52

1

2n2
2

ln l

2n
1

ln 2l

2

l i ~ln!

ln
,

E
0

` e2utdu

~n2u!2
52

1

n
1 ln l

l i ~ln!

ln
, E

0

`e2utdu

n2u
5

l i ~ln!

ln
,

~3.6!

where the first two equalities are obtained performing in
grations by parts. Here the logarithmic integrall i (z) is de-
fined as

l i ~z!5P.V.E
0

z dt

ln t
, ~3.7!

and l5Q2/L2. Now using the expansion ofl i (zn)/zn in
inverse powers of lnz @15#,

l i ~zn!

zn
.

1

n ln z (
m50

M
m!

~n ln z!m
, M@1, ~3.8!

and keeping in the expressions

ln 2l
l i ~ln!

ln
, ln l

l i ~ln!

ln
,

terms up toO(1/lnl) order, we get

I 1 →
Q2→`

2
5

2

1

ln l
. ~3.9!

The situation with the second integral,

I 25E
0

`

due2utÃ0~u!, ~3.10!

is more subtle. In this case, instead of using the explicit fo
of Ã0(u), we consider the integral

I 25E
0

`

due2utE
0

1

dxx̄12ut~x!5E
0

`

due2utE
0

1

dxx12ut~ x̄!,

~3.11!
0-7
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from which Eq. ~3.10! has been derived. We are going
explain our technique, analyzing one of the components
the functiont( x̄). Namely, let us calculate theQ2→` limit
of the integral

I 2
15E

0

`

due2utE
0

1

dxx12uln 2~12x!. ~3.12!

Having expanded ln2(12x) in powers ofx,

ln 2~12x!52(
k51

`
1

k11
@c~k11!2c~1!#xk11, ~3.13!

we obtain

E
0

1

dxx12uln 2~12x!

52(
k51

`
1

k11
@c~k11!2c~1!#

1

k132u
. ~3.14!

Substituting Eq.~3.14! into the integralI 2
1,

2(
k51

`
1

k11
@c~k11!2c~1!#E

0

` due2ut

k132u

52(
k51

`
1

k11
@c~k11!2c~1!#

l i ~lk13!

lk13
, ~3.15!

and using the leading order term in expansion~3.8!, in the
limit Q2→` we get

I 2
1 →

Q2→`

2(
k51

`
1

k11
@c~k11!2c~1!#

1

k13

1

ln l
. ~3.16!

Now, having repeated the described above operations in
reverse order, it is easy to see that

2(
k51

`
1

k11
@c~k11!2c~1!#

1

k13

1

ln l

5
1

ln lE0

1

dxx ln 2~12x!. ~3.17!

In other words, the asymptotic limitQ2→` transforms the
integral I 2

1 in accordance with the rule

I 2
1 →

Q2→` 1

ln lE0

1

dxx ln 2~12x!. ~3.18!

The same conclusion is valid also for the other terms fr
Eq. ~2.8!. Summing up, we derive the limit of the integralI 2,

I 2 →
Q2→` 1

ln lE0

1

dxxt~12x!

5
1

ln l B~1,2!„$@c~1!2c~3!#21c8~1!2c8~3!%

2@c~2!2c~3!#29…. ~3.19!
09401
of
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The expression~3.19! without the factor 1/lnl is nothing
more thanÃ0(u) at u50. The following operations are
trivial and lead to

I 2 →
Q2→`

2
5

2

1

ln l
. ~3.20!

As is seen, both the functionsI 1 andI 2 have the same limits
Consequently, for the resummed FF we find

@Q2Fpg~Q2!# res →
Q2→`

2 f pF12
5

3p
as~Q2!G , ~3.21!

in deriving of which the value of the constantN,

N5A12~eu
22ed

2! ~3.22!

for the pion has been utilized. Equation~3.21! can be readily
obtained within the standard HSA employing the pi
asymptotic DA. Our analysis proves that in the asympto
limit the Borel resummed FF leads to the correct express
~3.21!, which we consider as one of justifications of the sy
metrization procedure. It is also worth remarking that t
‘‘old’’ version of the hard-scattering amplitudeTH(x,Q2)
@see Eqs.~2.11! and ~2.12!# gives the correct asymptotic F
as well, that is evident from Eq.~3.9!. Hence in the
asymptotic limit both the ordinary and symmetrized R
methods describe correctly thep0g transition FF, the differ-
ence between them being sizeable at the moderate valu
the momentum transfer,Q2;a few GeV2.

IV. EXTRACTING THE PION DA FROM THE CLEO DATA

In this section we present the pion phenomenologi
DA’s extracted from the CLEO data within the SRC metho
In our calculations below we shall use the following valu
of the parametersL andm0:

L450.25 GeV, m0
251 GeV2. ~4.1!

As is known~see for review Ref.@25#!, the IR renormalon
calculus can be applied for the estimation of power corr
tions to some physical quantity in the region of the hi
momentum transfersQ2@L2. Our choice for the parameter
~4.1! leads to the requirement 16Q2@1. Because the recen
CLEO data@4# on thep0g transition FF lie in the domain
1.64<Q2,10 GeV2, we include them into our numerica
analysis to deduce the pion model DA’s. Namely at the
moderate momentum transfers the power corrections play
important role, modifying both quantitatively and qualit
tively predictions forQ2Fpg(Q2) obtained within the stan-
dard HSA.

The Borel resummedp0g transition FF implies summa
tions overn andk, the latter arising from;Ãn(u) terms. The
summation overn does not create problems, because in o
studies we use the pion asymptotic and model DA’s with o
and two nonasymptotic terms. Therefore the maximal va
of n in the sum isNmax50 and 2, 4, respectively. It is worth
noting that Eq.~2.33! is a general expression valid for th
0-8
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pion DA’s with an arbitrary number of nonasymptotic term
The next terms;Cn(2x21), n.4 can be easily included
into our scheme by modifying only expressions of the co
ficientsKn andNmax. Contrary to the case withn, at fixedn
summation overk runs from k50 to k5` and has to be
truncated at somekmax. In other words, the results of numer
cal computations depend onkmax. In order to check their
sensitivity to a chosen value ofkmax, we have performed
calculation of the FF withkmax550 andkmax5100. We have
found that for the pion asymptotic DA the ratio

R~Q2!5
@Q2Fpg~Q2!# res~kmax5100!

@Q2Fpg~Q2!# res~kmax550!
~4.2!

at Q251 GeV2 is equal to R(1 GeV2)51.0027 and to
R(10 GeV2)51.0011 atQ2510 GeV2. We have obtained a
similar picture employing the pion various model DA’
Since the correction toQ2Fpg(Q2) originating from the next
k551–100 terms does not exceed 331023 of those from the
first k50 –50 ones, in numerical computations we setkmax
550. Such output is understandable, because in the
summed FF dominate contributions from the nearest tu
50 IR renormalon poles.

We start our analysis of thep0g transition FF from the
pion asymptotic DA in order to reveal the impact of th
symmetrization procedure on the predictions, as well as
find out how large is the deviation of these predictions fro
the data points. Our results are shown in Fig. 1. As is se
the scaled and resummed FFQ2Fpg(Q2) computed using
the SRC method in the region of the momentum trans
1.64<Q2<5 GeV2 are considerably larger than the one o
tained by means of the ordinary RC approach. As a res
the deviation of the curve ASY from the data points a
smaller than that of ASY* . Nevertheless, such deviation e

FIG. 1. The scaled and resummedp0g transition form factor
Q2Fpg(Q2) as a function ofQ2. The curves ASY and ASY* are
computed using the pion asymptotic DA~2.17!. The curve ASY*
corresponds to the FF obtained within the ordinary RC approa
whereas for calculation of the curve ASY the SRC method is e
ployed. The upper dashed line shows the model-independenQ2

→` limit for the FF. The data are borrowed from Ref.@4#.
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ists and some admixture of nonasymptotic terms in the p
DA is needed to explain the data.

In Fig. 2 we depict~the shaded area! the 1s area for
values of the input parametersb2

0 , b4
0 in the b4

0-b2
0 plane.

This means that thep0g transition FF computed in the con
text of the SRC method employing the pion model DA’s wi
Gegenbauer coefficients belonging to the shaded region
scribes the CLEO data with a 1s accuracy.

In Fig. 3 we plot the 1s area for thep0g transition FF
itself. The central curves withb2

050.16,b4
050 ~the DA’s

with one nonasymptotic term! andb2
050.25,b4

0520.05 ~the
DA’s with two nonasymptotic terms! are also shown. One
sees that the shapes of the curves withb4

050 and b4
0,0

differ from each other. Indeed, the curves withb4
0,0 are

h,
-

FIG. 2. The 1s areas in theb4
0-b2

0 plane of the input parameters
The shaded area is found from analysis of the CLEO data on
p0g transition FF. The region bounded by the dashed lines is
tracted from the data on the pion electromagnetic~EM! FF. The
dot-dashed line is the diagonal determined by Eq.~4.4!.

FIG. 3. The scaled and resummedp0g transition FF vsQ2. The
shaded area demonstrates 1s region for the FF. Correspondenc
between the curves and the input parameters is: for the solid
b2

050.25,b4
0520.05; for the dashed lineb2

050.16,b4
050; and for

the dot-dashed lineb2
050.23,b4

0520.05.
0-9
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sharper relative to ones withb4
050. Therefore the bound

aries of the 1s area are determined by superposition
curves of these two types. Our analysis in the case of
DA’s with one nonasymptotic term leads to the followin
estimation:

b2
050.1660.02, b4

050. ~4.3!

In the case of DA’s with two nonasymptotic terms allow
values ofb2

0 ,b4
0 cover the shaded area in Fig. 2. Below w

write down sample values of the parameters,

b2
050.2, b4

0P@20.02,20.04#,

b2
050.25, b4

0P@20.05,20.07#,

and

b2
050.3, b4

0P@20.09,20.1#.

The ‘‘diagonal’’ of the 1s area is determined by the expre
sion

b2
011.46b4

050.16, b4
0P@0,20.11# ~4.4!

and is shown in Fig. 2 by the dot-dashed line.
As we have noted above, the principal value prescript

generates HT ambiguities that in conjunction with the ‘‘u
traviolet dominance assumption’’ can be used to estimate
corrections to the form factor originating from anoth
source~for example, from the pion HT DA’s!. We have per-
formed relevant computations, as a sample, for the pion
with one nonasymptotic termb2

0(1 GeV2)50.16 and$Nq%
560.6,q51,2, . . . ,50 ~Fig. 4!. We find that the values
$Nq%560.6 determine the upper and lower bounds for
constants$Nq% in order that FF’s remain within the 1s
region. Thep0g transition FF with HT ambiguities corre

FIG. 4. The scaled and resummed form factorQ2Fpg(Q2) with
and without HT ambiguities. The solid line describes FF witho
HT ambiguities. The broken lines are found employing Eq.~2.42!
and numerical constants$Nq% shown in the figure.
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sponding to$Nq%520.6 ($Nq%50.6) at Q2,3.5 GeV2 is
larger~smaller! than the FF without such corrections and a
smaller ~larger! for Q2.3.5 GeV2. The HT ambiguities,
obeying the ‘‘1s constraint’’ do not exceed the leve
;65% of the transition FF at the momentum transfersQ2

51.64–2 GeV2 and reach only ;71.8% at Q2

59 –10 GeV2.

V. THE ELECTROMAGNETIC FORM FACTOR F p„Q
2
…

In this section we compute the pion electromagnetic
Fp(Q2) in the framework of the RC method in order t
extract further constraints on the parametersb2

0 , b4
0.

The FFFp(Q2) is the important quantity characterizin
the pion, which was thoroughly investigated in the context
PQCD@24,26,27#. It was also studied in various experimen
@28,29#. Within the RC method FF’sFM(Q2) of the light
mesonsM5p,K,rL were considered in Refs.@11–13,24#.
Therefore below we outline only main stages of the R
analysis of the FFFM(Q2).

In the standard HSA the FFFp(Q2) is given by the fac-
torization formula

Fp~Q2!5E
0

1

dxE
0

1

dyfp* ~y,Q2!TH~x,y,Q2!fp~x,Q2!.

~5.1!

HereTH(x,y,Q2) is the hard-scattering amplitude of the su
processqq̄81g* →qq̄8,Q252q2 is the momentum trans
fer, q being the four-momentum of the virtual photon. In E
~5.1! the factorization scale from the very beginning is ch
sen equal tomF

25Q2.
At the leading order of PQCD the amplitudeTH(x,y,Q2)

has the form

TH~x,y,Q2!5
16pCF

Q2 F2

3

a~m̄R
2 !

x̄ȳ
1

1

3

a~mR
2 !

xy G . ~5.2!

In accordance with the ideology of the RC method t
argument of the QCD coupling in Eq.~5.2! has to be chosen
as

mR
25xyQ2, m̄R

25 x̄ȳQ2. ~5.3!

Such choice allows one to get rid of term
; ln(x̄ ȳQ2/m̄R

2), ln(xyQ2/mR
2) appearing in the amplitude

TH(x,y,Q2) at the next-to-leading order of PQCD and min
mizes the higher-order corrections toFp(Q2). We can also
adopt the scheme

mR
25xQ2, m̄R

25 x̄Q2, ~5.4!

obtained from Eq.~5.3! by freezingy. In the framework of
the standard HSA one freezes both ofx,y and compute the
form factor withmR

25m̄R
25Q2 ~or Q2/4) @26#.

In the above we have chosenx as the running variable
Alternatively, we can fixx and choosey as the running one
or to compute the mean value of the sum of the FF’s cal

t

0-10
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lated using both possibilities; due to the symmetry
TH(x,y,Q2) and Eq.~5.1! itself with respect tox,y we will
get the same result. Of course, the second option~5.4! leaves
in the NLO correction some logarithmic terms, but it leads
better agreement with the experimental data than the ch
~5.3! @13#. Therefore in our computations we use the opti
~5.4!. Since in the considering process the partonic hard s
process contains only one external virtual photon, we do
perform the symmetrization of the hard-scattering amplitu
Stated differently, below we write down the expressi
@Q2Fp(Q2)# res, obtained in the framework of the ordinar
RC method.

The Borel resummed pion electromagnetic FF’s are de
mined by the formula@13#

@Q2Fp~Q2!# res5
~16p f p!2

b0
(
l 50

`

KlB~21 l ,1!

3 (
n50

`

KnE
0

`

due2utR~u,t !B~21n,12u!.

~5.5!

The integrand in Eq.~5.5! has a finite number of the singl
IR renormalon poles. In fact, the sums in the general exp
sion ~5.5! in practice run up to someLmax, Nmax, which for
DA’s with two nonasymptotic terms areLmax5Nmax54. The
maximum number of IR renormalon poles results from
term ;B(6,12u). The latter can be rewritten in the follow
ing way:

B~6,12u!5
G~6!G~12u!

G~72u!
5

120

~12u!~22u!•••~62u!
,

making our statement evident. It is implied that the po
divergences are removed by the principal value prescript

In the asymptotic limitQ2→` from the resummed FF we
recover the standard HSA expression. In fact, acting al
the line described in the detailed form in Sec. III, we get

@Q2Fp~Q2!# res →
Q2→`~16p f p!2

b0
B~2,1!E

0

`

due2utB~2,12u!.

~5.6!

From Eqs.~5.6! and ~3.8! we obtain

@Q2Fp~Q2!# res →
Q2→`

16p f p
2 as~Q2!, ~5.7!

which can be found in the context of the standard HSA
employing the pion asymptotic DA.

To perform the numerical analysis of the scaled and
summed pion FFQ2Fp(Q2) and extract constraints on th
pion DA’s from such consideration, we need to specify t
experimental data that will be used in the fitting procedu
Unlike thep0g transition FF, where we have precise CLE
data for large momentum transfers, the situation with
Q2Fp(Q2) is somewhat controversial. Thus the correspo
ing data were obtained indirectly from the pion electrop
09401
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duction experiments through a model-dependent extrap
tion to the pion pole. Moreover, the pointsQ2.2 GeV2 are
imprecise suffering from the large errors and, in additio
there are big gaps between data points themselves. The
on the FFQ2Fp(Q2) reported recently by theFp Collabo-
ration do not change the whole picture, because the hig
value of Q2 at which the measurements were performed
Q251.6 GeV2. Therefore, to improve the precision of th
1s analysis under the circumstances, we include into
fitting procedure data pointsQ2>1.18 GeV2 and slightly ex-
ceed in this way the range of validity of the RC method. B
because our curves describe the data at such low value
Q2 as well, we find our approach justified. Finally, let us no
that the datum pointQ259.77 GeV2 is also included into
our scheme and it strongly restricts the 1s region.

The results of our numerical calculations are plotted
Figs. 5 and 2. The 1s area for the pion scaled electroma
netic FF and the central curve with the Gegenbauer coe
cientsb2

050.23,b4
0520.05 are demonstrated in Fig. 5. Th

1s region for the parametersb2
0 ,b4

0 of the pion DA’s is
shown in Fig. 2. They obey, for example, the following co
straints:

b2
050.16, b4

0P@20.045,20.05#,

b2
050.2, b4

0P@20.039,20.058#,

and

b2
050.28, b4

0P@20.047,20.061#.

The overlap of the 1s regions in Fig. 2 determines the 1s
area in the planeb4

0-b2
0, within which both thep0g transition

FIG. 5. The pion scaled and resummed electromagnetic
Q2Fp(Q2) as a function ofQ2. The shaded area is the 1s region
for the form factor. The data are taken from Refs.@28# ~the circles!
and @29# ~the rectangles!. In the 1s analysis only the solid data
points are used. For the central solid line the input parameters
b2

050.23,b4
0520.05. For comparison the FF obtained by means

the asymptotic DA is also plotted.
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and the pion electromagnetic FF’s are in agreement with
corresponding data at the level of a 1s accuracy. As is seen
this area is rather restricted and the values of the param
b2

0 andb4
0 are

b2
050.23560.035, b4

0520.0570.01. ~5.8!

The FFQ2Fp(Q2) is more sensitive to HT ambiguitie
than thep0g transition FF. Actually, in Fig. 6 forb2

050.23
andb4

0520.05 the scaled FF, corrected by the HT ambig
ities, is plotted. These ambiguities for$Nq%50.1 and$Nq%
520.08 reach6(5.6–3.6)% of the FF in the regionQ2

;1.2–1.6 GeV2 and61% in the domain 9 –10 GeV2. It is
worth noting that the estimation of the HT ambiguities a
obtained within the ‘‘1s constraint’’ ~see the previous sec
tion!. In general, admissible values of the constants$Nq% and
of the input parametersb2

0 ,b4
0 are strongly correlated.

VI. CONCLUDING REMARKS

In this work we have calculated the power corrections
thep0g transition FF, originating from the end-point region
x→0,1 due to integration of the standard HSA factorizati
formula with the QCD running coupling over the longitud
nal momentum fractionx, carrying by the pion’s quark. To
this end, we have employed the RC method combined w
techniques of the IR renormalon calculus. We have used
symmetrized under replacementmR

2↔m̄R
2 version of the

hard-scattering amplitude of the partonic subprocessg* 1g

→q1q̄.
We have obtained the Borel resummed express

@Q2Fpg(Q2)# res for the transition FF. For this purpose in th
inverse Borel transformation we have removed IR renorm
lon divergences by means of the principal value prescript
Each IR renormalon poleu05n in the Borel transform

FIG. 6. The pion electromagnetic FF with HT ambiguities. T
solid line is the original FF withb2

050.23,b4
0520.05. The broken

lines include the HT ambiguities with constants$Nq%50.1 ~the
dashed line! and $Nq%520.08, ~the dot-dashed line! q
51,2, . . . 6.
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B@Q2Fpg#(u) corresponds to power correction;1/Q2n con-
tained in the scaled and resummed FF. Since, in the con
ering process the Borel transform has an infinite numbe
IR renormalon poles, the expression~2.33!, in general, con-
tains power corrections;1/Q2n, n51,2, . . .`. In numeri-
cal computations we have truncated the corresponding se
at nmax550. As an important consistency check, we ha
proved that the result obtained within the SRC method in
asymptotic limitQ2→` reproduces the standard HSA pr
diction for the transition FF. This provides justification fo
the symmetrization procedure applied in the RC method.

We have compared our predictions with the CLEO d
and obtained restrictions on the input parameters of the p
DA’s with one and two nonasymptotic terms. Further co
straints on the admissible set of DA’s have been extrac
from the data on the pion electromagnetic FFFp(Q2). We
have concluded that the pion DA’s with the parameters
~5.8! describe the experimental data on both theQ2Fpg(Q2)
andQ2Fp(Q2) FF’s with the 1s accuracy.

It is important that DA’s extracted from the CLEO da
are suitable for explanation of the pion electromagnetic
whereas in the context of the standard HSA for describ
these FF’s one has to pose on the pion DA contradict
restrictions@or to model soft contributions toFp(Q2) using
mechanisms beyond the scope of the perturbative QCD#. In
fact, in the framework of the standard HSA the pio
asymptotic DA considerably underestimates the data on
electromagnetic FFQ2Fp(Q2). In order to cover a gap be
tween the data and theoretical curves one has to introd
model DA’s with positive and large input parameters, t
Chernyak-Zhitnitsky DA@17# being one of the prominen
examples. At the same time,fasy(x) overestimates the
CLEO data onQ2Fpg(Q2) and, on the contrary, mode
DA’s with negative input parameters are needed. The
method solves this problem due to power corrections ta
into account in both of these quantities. Really, the pow
corrections arising from the end-point integration regions
moderate momentum transfers significantly enhance the
electromagnetic FF@12,13#. They also enhance the absolu
value of the NLO contribution to the FFFpg(Q2). Since the
contribution of the NLO term toFpg(Q2) is negative, power
corrections effectively reduce the leading order contribut
to FF’s. It turns out that for some model DA’s these effec
lead to a satisfactory description for both of these FF’s.

The investigation performed in this work has allowed
to describe the form factorsFpg(Q2) ~for Q2>1.64 GeV2)
andFp(Q2) ~for Q2>1.18 GeV2) in the context of the same
theoretical scheme and by means of the same DA’s. We h
achieved a quite satisfactory agreement with the availa
experimental data. Theoretical computations have been
ried out using the leading order@for Fp(Q2)] and the NLO
@for Fpg(Q2)] expressions for the hard-scattering amplitud
of the partonic subprocesses. An accuracy of our theore
predictions may be improved by including into analyses
NLO and NNLO terms, respectively. These problems fo
directions for improving the developed theoretical fram
work and require separate detailed investigations.
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