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High-precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions
at next-to-next-to leading order
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We compute the rapidity distributions ¥f andZ bosons produced at the Fermilab Tevatron and the CERN
LHC through next-to-next-to leading order in QCD. Our results demonstrate remarkable stability with respect
to variations of the factorization and renormalization scales for all values of rapidity accessible in current and
future experiments. These processes are therefore “gold-plated”: current theoretical knowledge yields QCD
predictions accurate to better than 1%. These results strengthen the proposaMoand& production to
determine parton-parton luminosities and constrain parton distribution functions at the LHC. For example,
LHC data should easily be able to distinguish the central parton distribution fit obtained by MRST from that
obtained by Alekhin.
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[. INTRODUCTION sion of electroweak measurements and will dramatically
boost the sensitivity of new physics searches. To fully utilize
Drell-Yan production of lepton pairs through electroweakthese results, precise theoretical predictions \rand Z
(EW) gauge bosons at hadron colliders occupies a specigross sections are needed. Current calculations are limited by
place in elementary particle physics. Historically, the Drell-uncertainties in parton distribution functions, as well as
Yan mechanisnfil] was the first application of parton model higher-order QCD and EW radiative correctidrd].
ideas beyond deep inelastic scattering and was later the route Parton distribution functionéPDF9 are determined from
to discovery of tha andZ bosong2]. Currently, it provides & global fit to a variety of data; unfortunately, there is no
; P _ direct experimental information for the combined values of
precise determinations c_)f several staqdard ma@8#l) pa 6?2 (10 Gev®) and Bjorkenx (10-4—10 %) that are rel
rameters and places stringent constraints on many forms .
new physics. Studies &/ production at the Fermilab Teva- evant for electroweak physms at the LHC. PDFs for the;e
tron lead to determinations of the mass and width of\the parameter values are obtained through perturbative evolution

. - " . — . of fits to PDFs at lower values @?, using the Dokshitzer-
EETDO; with premsmrggczrg%etll'flr\]/e W'tt.h CfE Re\l;e t_colllder Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation. The
< measurements,2,o,9. The ratio ot production cross complete results for the DGLAP evolution kernels at next-
sections forW and Z bosons, weighted by their leptonic

) . ) . . to-next-to leading orde(NNLO) are not yet available. An
branching fractions, is very accurately predicted in the Stanépproximate set of evolution kernels is Used instie).

dard model and has been studied extensively at the Tevatron There are currently two sets of PDFs extracted with

[7]. The rapidity distribution for produced bosong8] and  NNLO precision, using these approximate kernels. The
the charge asymmetry in leptons fraMproduction[9] have  martin-Roberts-Stirling-ThornéMRST) set [13] utilizes a
also been measured at the Tevatron; both distributions angroad variety of data; the drawback of this procedure is that
sensitive to the distribution of partons within the proton.the data set includes observables for which NNLO QCD cor-
Searches for nonstandard contributions to the production rai@ctions are not known. Alekhin's PDF44] are based on
of lepton pairs with invariant masses larger thdg, ; can be  deep-inelastic-scattering data only; this data set is somewhat
used to detect additional gauge bosons, such ag'ttstates  restricted, but higher-order QCD corrections can be included
that appear in many extensions of the SM. More generallyconsistently{15]. The two PDF sets lead to slightly different
these searches constrain possible contact interactions bgt the few percent levepredictions for the total rate oV
tween quarks and leptons arising from new physics at energgnd Z production at the Tevatron and LH@6,17. We take
scales beyond those currently accessjlg. this difference as a rough estimate of the current uncertain-
With run Il of the Tevatron producing data, and with the ties in the PDFs needed for Tevatron and LHC physics; the
CERN Large Hadron CollidefLHC) scheduled to begin op- individual PDF fits now also contain intrinsic uncertainty
eration shortly, an enormous numbenwfandZ bosons will  estimate14,16.
soon be collected. This will significantly increase the preci- The QCD corrections to EW gauge boson production
have been studied by several groups. The complete NNLO
corrections to the total cross section were computed some

*Email address: babis@slac.stanford.edu time ago[18,19. However, the total cross section is not an
"Email address: lance@slac.stanford.edu experimental observable, and significant extrapolations are
*Email address: kirill@phys.hawaii.edu required to compare this prediction to experiment. Ideally,
SEmail address: frankjp@pha.jhu.edu one would like an event generator, at least at the parton level,
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which retains the full kinematics of the process and incorpotion of lepton pairs throughV and ,y*) exchange at both
rates higher-order radiative corrections. Although there hathe Tevatron and LHC through NNLO in QCD. Although
been some recent progress towards this goal at NNLGhese distributions are still not the fully differential results
[20,21,22,23,2% its completion will probably not occur for needed for a Monte Carlo event generator, they allow a large
some time. number of the physics issues discussed above to be ad-

NLO QCD corrections to more differential quantities in dressed.
EW gauge boson production, including the vector boson ra- Our method extends the optical theorem to allow the tools
pidity distribution, were computed in Rdi25]. A generali- developed for multiloop computations to be applied to the
zation of this result to/ and Z production at the Tevatron calculation of differential distributions. We represent the ra-
and LHC yields NLO corrections of approximately 20%-— pidity constraint by an effective “propagator.” This propaga-
50% and scale variations of a few percent. Since the NLQor is constructed so that when the imaginary part of the
corrections are rather large, while the residual scale depefiorward scattering amplitude is computed using the optical
dence is small, the actual reliability of the NLO results hasiheorem, the “mass-shell” constraint for the “particle” de-
been somewhat unclear. Even taking the NLO scale variascriped by this propagator is equivalent to the rapidity con-
tions seriously, it is apparent that our knowledge of highergint in the phase-space integration. We then use the meth-
order QCD corrections to EW gauge boson production i,jq described in Ref30] for computing total cross sections,
accurgte to at best a few pgrcent. keeping the fake particle propagator in the loop integrals and

This few percent precision n our knowledge of both deriving the rapidity distribution as the imaginary part of the
PDFs and radiative corrections must be compared to th?orward scattering amplitude. We remark that the rapidity
needs of the Tevatron and LHC physics programs. Whe . = "~ . . . . :

distribution for inclusive production of Higgs bosons at had-

mass should be measured with a precision=80D MeV dur- lid hich in the h ¢ K imation i
ing run Il in each Tevatron experimef®6]; this uncertainty ron cofliders, which in the heavy top quark approximation Is

will be further decreased ta 15 MeV at the LHJ27]. Such ~ Known at NLO[31], can be computed at NNLO by precisely
a measurement strengthens the constraints that the precisilf Same technique; indeed, all the basic integrals encoun-
EW data imposes on the Higgs boson mass and on marf§reéd in the two problems are identical. _
indirect manifestations of new physics. A precise theoretical We find that the NNLO corrections to ttw andZ rapid-
prediction forMW requires know|edge of thW transverse |ty distributions are small for most values of rapldlty This is
momentum Spectrum, as well as a good understanding of ﬂ@nsistent with the results found in REIS] for the inclusive
relevant PDFs. To calibrate the detector response for theross section. However, the magnitude of the corrections can
measurement of the/ decay products, both the rapidity and reach a few percent for certain invariant masses and collision
p, spectra of theZ must also be well understod@6]. energies, indicating that they are required for the precision
At the LHC, many additional measurements will also re-desired in experimental analyses. The residual scale depen-
quire theoretical predictions accurate to a percent or bettedences of the rapidity distributions are below the percent
The extremely large cross section for the Drell-Yan processevel for all but the largest physically allowed rapidities. The
at the LHC allows measurements of tdeboson rapidity — theoretical uncertainty is therefore dominated by our impre-
distribution and of the pseudorapidity distribution of chargedcise knowledge of the PDFs. We study the effect of varying
leptons originating fromlV decays to constrain PDFs at the the PDF parametrization; we use several fits provided by
percent level. In effectv and Z production can serve as a poth MRST and Alekhin. The different MRST sets yield re-
parton-parton “luminosity monitor” [28]. The inferred g jts for the rapidity distributions that vary by1% at the
parton-parton luminosities can then be used to precisely prg-ic. the Alekhin set gives results that differ from those of
dict rates for_ interactions with a similar |n|t|:_;1I state as Drell- MRST by 2%—8.5% as the rapidity is varied. The anticipated
Yan productlon,_sgch as gauge boson pair product|(_)n p.roéxperimental uncertainties at the LHC are sufficiently small
cesses. Uncertainties in the overall proton-proton Iummosnyt
which is hard to measure precisely at the LHC, will cancel
out in this approach.

o distinguish between such PDF sets. EW gauge boson pro-
duction can therefore provide important information about

It is apparent from the above examples that the Tevatroﬁqe P_DFS at the values @@° and x reI_evant for cqlhder
and LHC physics programs require NNLO calculations for€<Periments. Finally, we study the efficacy of various ap-
differential distributions in kinematic variables: knowledge Proximations to the complete NNLO result. We find that the
of inclusive rates is insufficient. Although the inclusive ratescMmmon approximation of including only soft gluon correc-
for several processes, including Drell-Yan production of lep-ions does not accurately reproduce the full result for phe-
ton pairs, are known at NNLO in QCD, until very recently homenologically interesting parameter choices.
no complete calculation of a differential quantity existed at Our paper is organized as follows. In Sec. Il we introduce
NNLO. Such a calculation is quite challenging technically,our notation. We discuss our method of calculation in detail
and traditional methods for the computation of phase-spaci Sec. lll. We describe the collinear renormalization of the
integrals cannot handle problems of this complexity. In Refpartonic cross section in Sec. IV. In Sec. V we present some
[29] we described a powerful new method of performinganalytic results for the partonic rapidity distributions. Nu-
such calculations and applied it to Drell-Yan production inmerical results for th&V andZ rapidity distributions at both
fixed-target experiments. We present here in detail the conthe Tevatron and LHC are given in Sec. VI. We present our
putation of the rapidity distributions for Drell-Yan produc- conclusions in Sec. VII.
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II. NOTATION m\2/

We consider the production of electroweak vector bosons =

V at hadron colliders:
my is the invariant mass o¥/, and S=(P;+P,)? is the
h;+h,—V+X, (2.1 square of the center-of-mass energy of the colliding hadrons
h, andh,, which carry moment&, andP,, respectively.
where X stands for any number of additional hadrons, or As we will see in the next section, it is beneficial to rep-
partons in the perturbative calculation. Tdye;V coupling at  resent the rapidity constraint in a covariant form. To do so,

the tree level is described by the interaction vertex we introduce the variabla, where
Vi=igvCij v*(vi + &' ys), (2.2 e g2y 2.9
X2

where the indiceg j denote the quark flavors:
In the center-of-mass frame of the two colliding hadrons, it

i,j={u,ud,d,...}. (2.3  takes the simple Lorentz-invariant form
The matrixC;j; is the unity matrix wherV=1vy,Z and is the U= Pv-P1 2.9
Cabibbo-Kobayashi-MaskawdCKM) matrix whenV=W. py- Py’ :
Numerical values for the required CKM matrix elements are
given in Sec. VI. wherep;=x,P; and p,=x,P, are the momenta of the in-
The vector and axial coefficients for up- and down-typecoming partons, andy is the momentum o¥. The partonic
quarks are center-of-mass energy is=(p;+p,)2=SxXx,. The par-

tonic u distributions are obtained by integrating the partonic

y_ 2 Y , 1 Y matrix elements over the phase space of the final-state par-
vi=3 =0, vi=-3, a3=0 ticles with a fixed value of::
doy, 1 5 o Pv'P1
et Sait g, ai= -1 e Kl
(2.10
vi=—1+ fsinz O, aZ=1, H_erell/\/labﬂwaz denotes the square of the scattering am-
3 plitude, averaged over spins and colors of the colliding par-
tons.
1 1 The allowed values ofi are
vxv=v\év=—, ax\/: a‘é\’: - —. (2.9
v2 v2 1
ZSus —, (2.11
The rapidity of the vector bosov is defined as z
. 1| £t Dz) , with
2 Og E_pz ’ ( 5) m\2/ T
7= —= (2.12
whereE andp, are, respectively, the energy and longitudinal S XX
momentum ol in the center-of-mass frame of the colliding 5
hadrons. The cross section for the production of the vector
boson can be written as the convolution of partonic hard r<z<l1. (2.13
scattering cross sections with hadronic parton distribution
functions: Inverting Egs.(2.9) and (2.12, the arguments X ,x,) of
doy,/dY in Eq. (2.6) are given by
v J<1/2) |n(1/7)degV
(112)n 7 dy’ JreY Jre Y
X1= , Xo= . (214)
Vzlu Vuz

dUV_ ! ! (hy) (hp)
W_% f\;evﬁ;evdxldxzfa (X)) T = (X2) The boundary values di, u are only achieved for spe-
v cial kinematics(see Fig. 1. Forz=1, m\2,=s, and there can
doap be no additional partons radiated in tWeboson production
X2). (2.6 process; the kinematics is that of the Born-level procgss
—V. We refer to the limitz— 1 as thesoftlimit, since any

Here, additional partons must carry little energy. The boundary
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1.25— —
i Born kinematics ]
1.00 |— — ) .
r 1 FIG. 1. (Color onling Variables(z, u) used to
L i describe the kinematics of the vector boson rapid-
r 1 ity distribution at the parton level. The physical
0.75 — — PR P
L ] region is hatched. The point=z=1 corresponds
N F 1 to no additional radiation or Born-level kinemat-
i ] ics. The left edgeu=2z corresponds to radiation
0.50 — — of partons collinear with incoming parton 2. The
i ] right edgeu = 1/z corresponds to radiation collin-
+ - ear with parton 1. The arrows show flows rel-
0.25)— RSEERSIIRRE PRSI SSS . evant for the_ co_nvolutlon integrals encountered in
L i mass factorizatiorisee Sec. V.
O ! ! N
0.00 L] L 2 i i i 1 1 1 1 1 1 4 b 1 1 1 1
] 1 2 3 4
u

=z corresponds to production of\aboson along with one or (i) Real-real, which contains interferences of tree-type
more partons radiated collinear with incoming parton 2, withdiagrams withv and two additional partons in the final state:

momentum (X z)p,. That is, insertingpy=p,+2zp, into e AAA A AL n
Eqg. (2.9 leads tou=z. Similarly, the boundaryu=1/z is 900, 000
achieved when the additional partonic radiation is collinear 0. 090

with incoming parton 1. We refer to the limits—z andu
—1/z ascollinear limits. The virtual-virtual contribution to the rapidity distribution
is identical to its counterpart in the total cross section, which
has been computed previougli8]. The new features of the
rapidity distribution are the real-virtual and real-real compo-
nents, which now have nontrivial kinematic constraints. Un-
til very recently no systematic technique for their evaluation
existed; this was the major reason for the lack of progress.
However, since the calculation of the inclusive Drell-Yan
closs section, our ability to calculate diagrams of the virtual-
rtual type has progressed greatly. New algorithms for the

Ill. METHOD

We evaluate the partonic rapidity distributions of Eq.
(2.10 through NNLO in perturbative QCD. The NLO cor-
rections have been previously evaluated in R2&]. How-
ever, the calculation of the NNLO corrections is intractable
using current techniques. We describe here a new meth

ppv_verful enOl.Jgh to handle this problem: We express the M%valuation of two-loop diagrams of the saff@] and more
pldlty constramt as the mass-shell copdltlon of a fake “par'complicated topologie§33,34 have been developed. It is
ticle.” This permits the use of the optical theorem to trans-,,\"\vall understood how to organize the evaluation of ge-

form the matrix elements into cut forward scattering nerjc myitiloop amplitudes using integration by parts and
amplitudes. We can then apply methods developed for mul e, jnvariance reduction algorithni84,35,36,37 and

Filoop integration to eva}luate the;_e amplitudes. We .describﬂow to compute the resulting master integrals using either
in detail below the required modification of the rapidity con- the Mellin-Barne$ 38,39 or the differential equation method
straint, the simplification of the forward scattering amplitude[40 37, Our method renders the real-virtual and real-real

using integration-by-parts reduction algorithms, and the,qqtinutions amenable to the same techniques.
evaluation of the resulting master integrals.

We begin by describing the three distinct contributions
that enter at NNLO, to illustrate the difficulties that arise.

(i) Virtual-virtual, which contains interferences of dia- We follow the approach introduced in Refs.
grams with only the electroweak bosdhin the final state:  [30,41,31,2% we replace all nontrivial phase-space integra-

tions by loop integrations. To accomplish this we represent
all delta functions constraining the final-state phase space by

A. Construction of the modified forward scattering amplitude

1 1 1
(i) Real-virtual, which contains interferences with tfie o(x) 27 \x—i0 X+i0)' @D
boson and one additional quark or gluon in the final state:
VW In the evaluation of total cross sections we only have delta
3 functions which put the final-state particles on their mass
o shell:
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G w2 2 tors with oppositéd e prescriptions. These cut conditions are
J dIlf o l_f[ J d®ps 67 (pf—mp), (3.2 accounted for at the very end of the calculation, after using
generic multiloop methods to simplify the two-loop expres-
sions. We generate the diagrams for the forward scattering
positive energy conditiof;>0. Using Eq.(3.1), each such aMPlitude usingQGRAF [42]. We then apply the Feynman

delta function becomes a difference of two propagators witf{Ul€S: introduce the rapidity “propagator” of E¢3.4), and
opposite prescription for their imaginary part: perform color and Dirac algebrewe use conventional di-
mensional regularizatigrusingrForm [43]. This generates a

where we work ind=4—2e dimensions and* includes the

1 large number of integrals with cut propagators which we
8(p?—m?)— >—— —~—(c.c). (3.3  must evaluate. The evaluation of these integrals is discussed
pf—mi—i0 in the next section. Our treatment gf in dimensional regu-

. . . . . larization follows the discussion in R€f18], to which we
When calculating differential quantities, there are additionaleater the reader for further details.

constraints on the phase space. The distribution constraints
can usually be expressed through delta functions with
Lorentz-invariant arguments that are polynomial in the mo-
menta of the final-state particles; we then transform them An essential part of the calculation is the reduction of the

B. Reduction to master integrals

into propagators using E@3.1). integrals to a small set of independent master integrals using
For the rapidity distribution of the massive boson we subAinear algebraic relations among them. This procedure is rou-
stitute tinely applied in computations of virtual amplitudes, such as
in the virtual-virtual contribution. Our representation of the
Pv-P1 Pv- P2 real-virtual and real-real terms makes it possible to evaluate
1) —u|— ——(c.c). (3.9 . -
Pv- P2 py-(pr—up,)—io them in a similar manner.

We first apply partial fractioning identities to reduce the

The above substitution introduces a propagator with a scalafenominators of the integrands to a linearly independent set.
product in the numerator and a denominator linear in thePartial fractioning is always applicable to box diagrams with
momentum ofV. However, the multiloop methods we em- the introduction of the rapidity constraint. Seven independent
ploy are not sensitive to such irregularities in the form of thescalar products can be formed from the two external mo-
propagators; they only require that the propagator of Egmentap,, p, and the two loop moments, | (omitting the
(3.4) be polynomial in the momenta. Substituting E@33)  constant scalar producfs-p;). On the other hand, box to-
and(3.4) into Eqg.(2.10, we obtain a forward scattering am- pologies with the rapidity propagator have eight terms in the
plitude with “cut” propagators originating from both the on- denominator. Thus the eight terms obey one linear relation,
shell conditions on the final-state particles and the rapiditywhich can be used to perform a partial fraction decomposi-
constraint. Pictorially, the three different contributions can betion whenever all terms entering the relation appear as de-
represented by diagrams similar to the following ones: nominators. This step allows us to eliminate one of the uncut

(i) Virtual-virtual propagators in favor of the rapidity propagatMhenever a

: cut propagator or the rapidity propagator does not appear in
= ; the denominator of an integral, that integral may be set to
: zero, by anticipating the delta function constraintSrom
this procedure we derive 11 major topologies for the real-real
contributions, 2 major topologies for the real-virtual contri-
butions, and 2 for the virtual-virtual contributions. All non-
box diagrams are subtopologies of the above set.
g We obtain additional recurrence relations using
integration-by-partgIBP) identities[35,36. If k, | are the
loop momenta of the two-loop integrals in the forward scat-
tering amplitude angb,, p, are the incoming momenta, we

N : can write eight IBP identities of the following form for each
integral:

“

We have associated an additional “rapidity” propagator with 0= f ddk d9 — % (3.5

theV boson, which we represent by a straight line just to the I, KA

right of the cut from the usual wavicut) V boson propaga-

tor. In the above diagrams, cut propagators represent diffewith »*=k*, [# and g#=k*, |#, p{, p5. Each integral

ences of two complex conjugate terms, propagators on difeontains some cut propagators. However, since differentia-

ferent sides of the cut have different prescription for theirtion with respect to the loop momenta is insensitive to the

imaginary part, and the initial and final states are identical. prescription for the imaginary part of propagators, the appli-
The three contributions are now expressed as two-loogation of IBP reduction algorithms and the taking of cuts

amplitudes in which the cuts denote differences of propagacommute[30]. This fact allows a straightforward derivation

(ii) Real-virtual
VWA
g

(iii) Real-real

[s1s1¢1+1%)

TETOY
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of reduction relations for phase-space integrals. Similarly, wes that we can discard all integrals in which the cut propaga-
can derive Lorentz-invariance identitig7] for phase-space tors, or the rapidity propagator, are eliminated or appear with
integrals; however, for the Drell-Yan rapidity distribution negative power$30]. After performing the reductions, we
they are not linearly independent of the IBP relations andbtain 5 master integrals for the virtual-virtual, 5 for the
provide no additional information. real-virtual, and 19 for the real-real contributions.

To solve the system of equations formed by the IBP rela-
tions we use an algorithm introduced by Lapojd]. We
construct a large system of explicit IBP identities, which we
then solve using Gauss elimination. This system should in- All virtual-virtual master integrals were known prior to
clude a sufficient number of equations to reduce all the intethis calculation. The only nontrivial one is the crossed-
grals of the forward scattering amplitudes to master integraldriangle master integral, which was calculated in Refs.
A detailed description of the algorithm can be found in the[45,46). A list of all virtual-virtual master integrals can be
original paper of Laport434]; we have implemented a cus- found in the appendix df30].
tomized version iMAPLE [44] andFORM [43]. An important For the real-virtual contributions we find the following
simplification of the reduction procedure in the present casenaster integrals:

where solid lines correspond to massless scalar propagatorghe real-virtual master integrals can be evaluated by using

Eq. (3.1 to reinstate the delta-function constraints. We then

1 must perform a one-loop integral and a two-particle phase-

- 7 2o space integral; both are straightforward. The most compli-

cated loop integral is a massless one-loop box diagram with
one external leg off shell, which is known to all ordersein

[47]. The real-virtual phase-space integration is simple be-

C. Master integrals

1 cause the polar angle for the-22 process is fixed by the
= % rapidity constraint, leaving only a (12¢)-dimensional azi-
pT—my muthal angular integration. It is thus straightforward to de-
rive analytic expressions for the real-virtual master integrals
and dashed lines denote the rapidity propagator which are valid to all orders ia.
1 The real-real phase-space master integrals were unknown

- prior to this calculation. A few can be evaluated directly; for
Py-[P1—up;] example, the two simplest master integrals

=f dlqydiq,d®q,8°(p1+pr—av—q1—42)

X 8% (q3—m3) 67 (q3) 87 (3) 8(qy-[p1—up2]) (3.6)
and
1[1]: >@< :j ddt]vdd¢11dd¢125d(l71+P2_‘1V_¢11_¢12)
X(q1+q2)8" (q7—my) 8" (41) 8" (q3)8(qy-[p1—up>]) (3.7
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have the following hypergeometric integral representation: 1/e poles which cancel against the real-virtual and real-real
1/e singularities. For example,

‘Q’d—ZQd—lSV_ZE (u_ Z)1+ V—26(1_ uz)1+ v—2€

I[V]: d 1-2 Ve —1-2e_ 1 1_22 e
2%1+u) [\/G(\/G+\/E)(1+ uz)]tre , du(u—2z) == 53 . (3.19
XK,(6), (3.9
Since we are interested in the rapidity distribution, we do not
with integrate oven. We must therefore extract these singularities
from the real-real master integrals. To do so, we factor out
the leading behavior of the integra] in the limitsu—z and
2 a1 u—1/z, keeping the exact dependence:
Qg= T2’ (3.9
X(zu)=(u-2)""*(1-uz)""P<F(zu). (3.19
1 . . .
_ v _ _ —e The integeram, nare characteristic to each master integral,
K.u(8) fo dx xIx(1=x)(1=xd1™% (310 while a=B=2 for all real-real phase-space integrals. The
functions F; are smooth and nonzero at=z and u=1/z,
and and can be calculated as a serieseinin the nonsingular
regions of phase space we need only calculate the first few
terms in thee expansion up to the order where polyloga-
_ _ rithms of rank 2 appear. However, at z andu=1/z addi-
= (\/G \/E)(l \/u—z) . (3.11) tional 1/e coefficients may be generated, andiatz=1 ad-
(Vu+z)(1+uz) ditional 1/€? poles may appear. These requireexpansion
o ] of F; up to a transcendentality of rank 3 or 4. We therefore
Expanding ine, we obtain split the master integrals into four different terms:
Ko(8)=1+ ¢ 3— (6—D)In(1—-9) L2 (6—1)In%(1-6) )(i:XiSOﬁ+Xi(:0||(Z)+Xicoll(l/z)+Xihard. (3.16
0 ¢ 5 € 5
) Here
(6—1)In(1—6) (6—2)Liy(5) a2
-3 5 5 9%
XM= (u—2)™ *(1-uz)" FeFR(L])  (3.17)
+0(e), (3.12
is potentially singular at the limitsu=z, u=1/z, and
and u=z=1,
L e (F#-Din(l-8) 55+2 A= (u=2)" (1= 2)" PLF(2.2) - F(LD)
Ki(8)==+—| — > + (3.18
2 2 & 26
E[(P-1)I¥(1-8)  (F—1)n(1- ) can only become singular at=z,
+— 5
2 { 52 26° 1 \m-ae
(P—2)Liy(5) 35+2 w2 Xi°°”<l’z>=(;—z) (1-u" P{F(z,12) - F(1D]
3
+ 52 +9 15 — |+ 0(€”). (3.19
(3.13  can only become singular at=1/z, and
In the expression for the scattering amplitude, some of the qhard_ o g soft_ s coll(z) _ 4 coll(1iz) (3.20
I I I I I "

master integrals are multiplied by coefficients which become

singular at the phase-space boundaries. For example, whefismooth in all singular limits. We extract the explicite1/

the I[v] master integrals get multiplied by W{2)°>"” or  terms from the “coll” and “soft” terms by replacing the:
1/(1—uz)?*”, the matrix elements become singular W&t yariable with

=z or u=1/z, respectively. These singularities are regulated
by the noninteger powers of the{ z) and (1-uz) prefac- _ u—z (3.20
tors in Eq.(3.8). Upon integrating oven andz, they generate y (1-2)(1+u)’ '
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where Osy=<1. We then apply identities of the form

In" x
X

6_I'1

n!

1
X 1re=Z5(x)+ >,
€ n

: (3.22

+

for x=y, 1-y, and 1-z. The advantage of using the vari-
abley instead ofu is thaty separates the singularities @t
=z and u=1/z, which overlap whenz=1. [At next-to-
leading order and for the real-virtual two-particle phase
space at NNLO, the variablgis related to the 2>2 partonic
center-of-mass scattering angté by y=(1+cos6*)/2.]
Although a deeper expansion éfis required for the mas-
ter integrals in the collinear and soft regions, the calculation
is simplified since in the collinear regions the result has a
nontrivial dependence on only the varialzlein the soft re-  9J7(Z,U)
gion, the 7 have no dependence on eitheor z. For ex- au
ample, while it is difficult to expandC, () to higher orders
in e for generics, in the soft region5— 0 it can be computed
in terms of gamma functions in closed form:

Jz

T(1+v—eT(1—¢)

K0)= T(2+v—2¢)

(3.23

aJ(z,u)

PHYSICAL REVIEW D 69, 094008 (2004

1

X
c

1

2i

1 1
X—i0 x+i0

. (3.26

We can now differentiate7(z,u) with respect toz and u,
obtaining

1 1

(k=12

dj, 4d
fd kd |Lk2

1
X 2
(I+p1+p2)

2.2
—my)

|

=fddkdd|[ 21 5
k _mv

I

|

-1
K-(p1—upy)

L

-1
(K- (py—upy))?

L

[(1+pp)?’
(3.27

1
(k=1)?

C

1

(1+py+py)?

K- p2
[(+p)?
(3.289

X

We have ses=(p;+p,)?=1 in these expressions. Neither

integral
D. Differential equation method

on the right-hand side of Eq8.27) and(3.28 is a

master integral. However, using IBP we can reduce them to

The two real-real master integrals of the previous subsedn® master integrals/, 1[0], andI[1] using the reduction

tion were calculated by deriving a simple hypergeometric?dorithm of Sec. Il B. We then obtain a system of two par-

integral representation starting from their definition as phasetidl_differential equations which determines the functional

space integrals. However, this is not practical for most masgependence aff on the two kinematic variablez u
ter integrals. In more complicated cases we resort to the

method of differential equations. This method was developed dJ7(z,u)  2e

for loop integrald40,37); however, the representation of Eqg. Jz u_ZJ(z,u)
(3.1) for delta-function constraints allows its application to
phase-space integrations in a straightforward maf8ey. (1-2€)u[(1+3zu+4z)e—1-zu—-27]
We consider the following master integral as an example: 2ez(U—2)(1—u2)
X101z )+ Ao 2NN, 4y, )
Z,u Z,u
' 2ez(u—2z)(1—uz Y
J(z,u)=J d’ayd®q,d°q,6%(p1+ P2~ dy— a1~ dz) e2(u=2)(1-uz)
(3.29
X 8% (q5—m§) 87 (a]) ¥ (a3) 8(ay-[p1—up2])
aJ(z,u) 2¢
1 - _
(3.29 Jau u—zJ(Z’u)

X—Z'
(1 +av—p1)

After applying the transformation of E@3.1), this integral
becomes

(1-2€)[(7+4z—3zu)e—3—2z+zU]
2e(u—2z)(1—uz)

(1-2€)(2—3e¢)

X1[0](z,u)+ 2eu—2)(1-uz) I[1]1(zu).
2=mj c (k=D2] [ (14+p1+p2)?] The general solution of Eq3.29 is
- ! = o —2¢
xL-(pl—upZ) (+p)? @25  J2WZ| 57| (47D
wherek=—qy, |=—qgy—0q;, and we denote x{ jzdzl(U—Zl)zsﬂ(Zl,U)wLf(u)+c ' (3.3
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where Q4_1/29"2)2B(z,u) is the inhomogeneous part of Finally, we must determine the constant of integratibrin
the differential equation in Eq.3.29. We can evaluate the principle, this requires an explicit calculation at a specific

integral in Eq.(3.3)) as a series ir after we rewriteB using
the expressions fdf »] from Sec. Il C. We obtain

Aq(z,u)

€

R= sz z;(u— 21)2613(21 u)=
with

Ai(z,u)= %[In(r)—ln(r+t)]

and

1 1

Ag(z,u)=— E[In(r)+ln(2)]ln(1+r2)+ Eln(r)

1

X[2In(r)+In(2)—4]— Eln(t)ln(r)

+Ap(z,u)+0O(e),

(3.32

(3.33

1
+ 5[In(2)+4—|n(r)+|n(r2+ 1)]In(r +1t)

1 1
- Elnz(r+t)+ EIn(t)In(r+t)—Li2

1 t 1 r—t
+5Li2 —F +£Li2{— +Li,
1 jr=tj 1 [(r=0r
I T

We have introduced the notation=+/u andt=\z. Substi-
tuting the solution of Eq(3.31) into the differential equation

2r2
r2+1

(r+t)r

r+1

(3.39

of Eq. (3.30, we derive a differential equation fofr(u)
which we can again solve order by orderdnWe find

f(u)= f1(u)

c +fo(u)+O(e),

with

fl(u)=%ln(1+r2)—ln(r)

and

24

2

r
fo(u):Liz[_r2]+Li2

(3.39

(3.39

1} —Li,[r?]+ %Inz(r2+ 1)

—In?(r)+4In(r)— %[In(r2+ 1)+21In(r)]In(2)

+[In(r)—2]In(r?+1).

(3.3

kinematic point7(zy,ug). However, in many cases we can
extract the constant of integration by comparing to the
asymptotic behavior of all rapidity phase-space integrals at
u=z=1, which is identical to that of the basic master inte-
gral I[O]:

lim PSz,u)=c(u—2z)""2¢(1-uz)™ 2. (3.39

zZ,u—1

The e power of theu—z and 1—uz factors is determined by
the number of dimensiond=4— 2¢; adding more propaga-
tors to the basic master integi@l0] can only alter the inte-
gersn, mof the asymptotic scaling. We note that the pres-
ence of the constant of integratiGnn Eq. (3.31) violates the
scaling of Eq.(3.38. We can therefore evaluateby requir-
ing that all the terms in Eq3.31) that violate Eq(3.38 in

the limit z—1, u—1 cancel. We obtain

77_2

2
In 2+2

+0(e). (3.39

ol
T4

There are master integrals for which the solution of the ho-
mogeneous differential equation gives a scalingiatz=1
which is consistent with Eq3.38) for arbitrary values of the
constantC. For these master integrals, we must deterndine
by performing an explicit evaluation in the vicinity of this
kinematic point.

As discussed previously, we often need to calculate mas-
ter integrals in their soft or collinear limits to higher orders in
e. For example, the integral/ is typically divided by an
explicit (u—2z) factor in the matrix elements, requiring an
expansion in its collinear limiu—z which includes the
ordere term. We could extend the outlined calculation 6f
for genericz, uto include theO(e) term and then take the
limit u—z. However, this would involve expressing the re-
sult for genericz, uthrough generalized polylogarithms of
rank 3 with two variables; taking the— z limit would col-
lapse them to rank-3 polylogarithms with only the argument
z. We can avoid the two-variable rank-3 polylogarithms by
solving the differential equations directly in thie—z limit.

We express the-dependent term in the general solution of
Eq. (3.3 in the form

u
R= —f dzy(u—21)*B(z;,u) (3.40
z
and perform the change of variables

z;=z+(U—2)\. (3.41
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Next we expand the integrand un—z and keep only the do;; dai<_0> as dgi(l> as ngi@
leading term. Only the col#) limits of the boundary inte- = S|t = —+0((as)®),
. . d dy 7)) dY dy
grals I[v] are required, and as explained above, those are (4.4)

known to all orders ire. We can then expand E.40 in ¢

the resulting integration ovev involves polylogarithms with  in terms of the bare ones in Egt.1).

a single argumere and can be performed straightforwardly.  Similarly, to remove the initial-state singularities, we re-
The computation of lim._,, f(u) proceeds as before, utilizing write the hadronic cross section of E@.6) using infrared
equivalent expansions in—z. Finally, the constanf is de- finite partonic cross sections:

termined by matching to the asymptotic behavion (

—2)72(1-2%) "% dffv_z R N UM P 1%
An important check of our results for the master integrals dY £ Jper) ge v XX fy * (X)), = (X2)
is provided by integrating them over the rapidity variable
The master integrals also enter the NNLO corrections to the doy,,
rapidity distribution for Higgs boson production at hadron X_dy (X1.,X2). (4.5

colliders via gluon-gluon fusion, computed in the heavy top

quark approximation. Hence the integrated master integralghe renormalized parton distribution functioh’ are re-
can be expregsed in terms of the master integrals appearig .4 o the “bare” Onegéh) by

in the evaluation of the Higgs boson total cross section. We
have verified that all rapidity-distribution master integrals are Fh_ Mo (4.6)
consistent with the results of R4B0]. The analytic expres- a b ab- '

sions for the master integrals are too lengthy to present her@ye nave introduced the convolution integral
They can be obtained from the authors by request.

1
(f®g)(X)=J dy dz fy)g(2) 8(x—y2), 4.7
IV. RENORMALIZATION AND MASS FACTORIZATION 0

The partonic cross sections of EQ.6), after combining  and we implicitly sum over repeated parton indices. The
the real and virtual contributions up ®(?3), contain 1¢2 functionsT ., are given in theMS scheme by
and 1k poles arising from both ultraviolet and initial-state
collinear singularities. We remove the UV singularities ag Pg(ﬂ}(x)
through renormalization in the modified minimal subtraction Iap(X)=38,p0(1—X)— —
o

(%) scheme and absorb the initial-state singularities into

€

the PDFs using th&S factorization scheme. First, we ex- 2
d th tion in the st l tant: @s\7] 1 00 p© (0)
pand the cross section in the strong coupling constant: + — Zz[(pac®pcb)(x)+ﬁopab(x)]
doyy do? [al\do [al)?de? s 1
av v T\ w)ay Tl ) Tay POl ~ 5 PR 0 [ +0(ad), (4.9

4.9

where the Altarelli-Parisi kernelB{}) can be found in Ref.
The bare strong coupling,, is related to the running strong [48]. Substituting Eq.(4.6) into Eq. (4.5 and comparing

coupling constantrs= ag(w) in the MS scheme via with Eg. (2.6), we find
do?, 1 1 doyg( z  yyu
. . aspBo 9%ab = f f doeq( 2z yiU
al(4m)e”"=aqu 1_?5?4_@(0[5) ) ay (z,u) mﬁdyl v“u_zdyzrca(h) ay \yiys' Vs
XT gp(Y2)- 4.9
with
The convolution integrals follow contours in tkz, U plane,
11 1 as shown in Fig. 1. The, integration, holdingy, fixed,

Bozz— g“f- 4.3 sweeps out a flow such as the one marked “left collinear,”
whereas the/, integration sweeps along a “right collinear”
line. The lower limits of the integration over thg corre-

Here n; is the number of light quark flavors and=ug  spond to the point4,U)=(z/y,y»,(y1/y,)u) striking one of
=up is the combined renormalization and factorizationthe two boundarie§i=Z or U= 1/Z. We solve Eq.(4.9) for
scale. At the end of the calculation, we restore the depenthe finite partonic cross sectiod%,,/dY, recursively, order
dence onug alone, with the aid of the renormalization group by order in theag expansion.

equation. Substituting E@4.2) into Eq.(4.1) and collecting At this point it is straightforward to derive the finite par-
with respect toag gives the coefficients of the renormalized tonic cross sections. We outline below the salient features of
expansion, the calculation. All cross sections referred to in the formulas
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below are finite; we henceforth drop the tilde when referringthe integration. In thej(y) terms, it is convenient to treat

to them. We will also drop 8/dY” to make the formulas plus distributions as follows: for distributions of-1z, we

more compact. set
(i) To O(a?), at least one of the twd,, factors, or

do,,/dY, on the right-hand side of Eq4.9 has a delta

function containing the convolution variable. If neithie,

factor contains a delta function, then only the LO cross sec-

tion enters, withti=Z=1. This forces botly;, andy to be  \yhere the vertical bar indicates that we should take the ap-
set to their lower end pointgz/u and \zu, respectively, S0 propriate term in thes expansion defined in Eq3.22. For

no integration needs to be done. Apart from this case, thgistributions of 1 x arising from the splitting function, we
double integral in Eq4.9) reduces to a single integral of one ge

of the following two forms: a “right” convolution

In"(1—2)

_ \—1+e€
11— —(1-2)

+

, (4.19

en

—>(1—X)_1+a€

: (4.15

a0

1 Z U {—
[O'ab® Pg%)](Z,U)ZJTZdXUab(;,;) Pg::)(x) (41@ 1—Xx n

or a “left” convolution where we now must take th@(a®) term. The most compli-
cated integral we must evaluate, which contains plus distri-

- 1 z - butions in both -z and 1-x, becomes
[Pha®0opcl(z,u)= mdx%b Zxu Phe(X).

1 z —1+e€
(4.1] |1=5(y)f dxf(z/x)(l—;) (1-x) Lrae,
Using the behavior of the partonic cross sections under in- ‘ 4.16
version of rapidity, o4(2,1/U) = opa(2z,U), it is simple to
show that where f(z/x) is finite in all kinematic limits and we have

1 used the delta function to simplify the lower limit of integra-
Z’G) :[PE)r:;)®0-ba](zyu)- (4.12 tion. Performing the variable change=(x—2z)/(1—2z), we

T ap® P .
[ ab bc] obtain

We need only consider right convolutions; we can obtain left 1 .

convolutions by inverting the variable 1= 5(Y)J dalgq(1—-2z)+z]> " “f(z/x[q])
(ii) The convolutions required to obtain a finite NLO cross 0

tsr(]ectfion are of the forn Qe P(?) . The LO cross section has X(1—z) trelrag-lreg_q)-ltae (417
e form

© wherex[ q]=q(1—2z) +z. We can extract the distributions in
O4q*0(1=2){s(y)+6(1-y)}, (413  1-z by using the expansion in E¢3.22. We must also

) ) ) interpret theq and 1—q factors as distributions; we set
where we have used the variabjedefined in Eq.(3.21).

Substitutinga(® into the convolution formula in Eq4.10), 1
we find that the resulting(1—z/x) removes the integration, q =)+ 2
leaving only the product oP{%(z) with the remainder of

o©. We note that this remainder contains eith#y) or  and utilize a similar expansion for4q. We can now expand
5((3-)_ y). To put it another way, in Eq(4.10, since the integrand t_d?(aoe“). Performing the required integra-
0 4q(2/X,u/X) requiresz/x=u/x=1, the terms generated all tions, we obtain the result for this convolution in terms of
haveu=z, corresponding ty=0. The §(1—y) term only  polylogarithms of rank 2 and 3 in the variakte
contributes in the limit of Born kinematics,= z= 1. (b) To obtain convolutions of the fornr{Ho P we
(iii) There are three distinct types of convolutions neededirst return to the form of the NLO cross section before ex-
in the NNLO cross section:o{J®P), [oQ®P{]  pansion ine, which is
®PY), andol})® P . The first of these is simple; as in the
NLO cross section, thé(1—z/x) from the Born cross sec- af]%my‘l‘f(l—y)‘l‘f(l—z)‘2‘2€+~-- . (419
tion removes the convolution integral, and all the terms gen-
erated havei=z. We discuss the remaining cases below inThe ellipsis denotes terms of the fory))® P{?), which are
some detail. needed for an infrared finite NLO cross section; the convo-
(8) We solve the second type iteratively. Th€) @ P{? ution of these withP) has already been discussed, and we
piece was already computed to obtain the NLO cross sectiolignore them here. We have presented dfiecross section;
It contains eithers(y) or 6(1—y), as noted above. It may the qg NLO result differs only in the exponents gf 1y,
also contain distributions in-tz. It is simple to show that and 1-z which appear, and the required convolutions pro-
when performing the second convolution integral using Eqceed similarly to those we now discuss. We again consider
(4.10, 8(1—y)— 8(x—+uz) (and againu=z), removing the case where the splitting function contains a plus distribu-

6!’1

n!

In"g
q

(4.18

+
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tion in 1—x. We rewrite this term using Eq4.15. The NY=1,
integral we must evaluate becomes
, 3 I,Bf M4
7\ —2-2¢ T a2 2 2_n2\25 1202
IZZJJ dx f( Yp)Y,;l 6(1_yp)_1_6(1_;) lGSWCWaQED Mz (M MZ) +FZMZ
X (1=x)"tra (4.20 e vivf  M2(MZ-M3)
~ 8shch, (M2~ M2)2+T2M2’
W-W z zV'z
here
W e ° I'wBY M4 -
dsfiagep Mw (M2—=M§)?+TEMEG, '
X(u—2)
Yp= (X—2)(X+U) (42D \We have used the notatioh’s andI’, for the total widths of

the Z andW, M, and M, for their masses, anBf andB}"
for their branching fractions into leptons. The leptonic vector
andf(z/x,y,) is finite in all kinematic limits. Performing the couplings appearing il are given by

variable changeq=(x—\uz)/(1—uz), the integral be-
comes v/=-1, vi=-1+4s, (5.2)

and sy, and ¢y, represent the sine and cosine of the weak

1 mixing angle, respectively.
|2=f dq f(z,y;x[q])g(z,y;x[ql,e)y 1 ¢ Finally, we require the luminosity functiorisi\f (X1,X5)
0 that enter the hadronic rapidity distribution. These functions
X (1—y) L-el-a)(1—z)~1-eqLl-¢(1—q)~L+ae, contain the PDFs for the partong and appropriate combi-

nations of the electroweak couplings\o We follow closely
(422 the notation of Ref[18]. We first introduce the following
2n¢X 2n; matrices:

where x[q]=q(1—Juz) + Juz. We have absorbed terms

which are finite in all limits into the functioly. We extract ) 1 if qe=1q,
the singularities iy, 1—y, and 1-z using the expansion of C!, ;(q,a)=C!' ;(ay ,q|):{

Eq. (3.22; we again interpret thg and 1—q factors as dis-

tributions and expand them as in E@.18. We can now
expand the integrand in bo#hand e. To obtain the contri-
bution to the NNLO cross section, we take tt¥%a°) term
and expand it ine up to and including the&(€®) piece. The

o

otherwise,

if ax=aqj,
otherwise,

o

Cl Z(ae.an= [

resulting integrals are straightforward to evaluate and again - |quq||2 if €q t €= 1,
give polylogarithms of ranks 2 and 3. The rank-3 polyloga- C{,'V:(qk,q|)= .
rithms only appear in thé(y) terms and are functions af 0 otherwise,
only. _
After performing both the UV renormalization and the if B | qkq||2 if eq=*1+eq,
coII_inear subtrat_:tions discussed above, we obtain finite par- Cyw=(ak,an) = 0 otherwise,
tonic cross sections.
2 =
|quq|| if eq +eq=71,
(dk, ) .
V. PARTONIC CROSS SECTIONS 0 otherwise.

(5.3
The basic quantities we computé?c’'eP"ydMm/dY,

include the probability for the vector bosdhto decay into a

pair of leptons—e.g.Z—1"1" or W' —I"y—and are dif- Here q, is an element of either of the fol-
ferential in both rapidityY anq dllepton—mve_\rlar_n masM.' (J ng ne-c -dimensional  vectors: Q={u,d,s,c,b}, 6
We shall present our results in a format which is normalize

properly for virtual photon productiony* —171~ [see Eq. ={u,d,5,c,b}. In Eq. (5.3, eq, denotes the electric charge
(6.2) below]. For W and Z production, as well as fop-z  Of the element an¥/, Ay indicates the appropriate CKM ma-
interference in thd "1~ channel, we introduce additional trix element. Using these matrices, we can write the luminos-
normalization factord\V, where ity functions as follows:
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Lus(X1,Xx2)= > Cu(a;,q) (v ?+a’?
i,jeQ,Q

X qi(xl)aj(XZ)!

Laa(Xy %)= > Z cl(a,an vy ?+a)?
IeQQ

X qi(X1)qi(X2),

Lac(Xi, %)= > > [CU(a;, a0+ Cl@,a0]
ieQ,Q keQ,Q

X (v"?+a)?)gi(x) T (X,),

LABvec,(leXZ)_ > Z CH(ak, @V vR i (X)) T (X2),
ieQ,Q keQ

LxgadX1,X2)= 2 E Cll(ak,moa’aydi(x)ai(xy),
ieQ,Q €Q

> CU(ai,a) (v *+aHai(x1)g(x,),

ijeQ.Q

ng(xlaXZ):
qu(xl Xp) = I—:q/g(XZ X1),

Léa(xy,x)= > > Cl(ai,qo()?*+a)?
IJEQQ keQ.,Q

X di(X1)dj(X2),

Lya(X1.%)= 2 > CY(q;,q0(v)*+a’?
i,jeQ,Q keQ,Q

X qi(X1)qj(X2),

LlpuedX1. %)= 2 E_Ci\;(%,Qi)vivv}/Qi(Xl)q]'(Xz),
i,jeQ,Q keQ,Q

LipadX1.%2)= 2 2 CU(a,q)a’agi(x)aj(xp),
i,jeQ,Q keQ,Q

PHYSICAL REVIEW D 69, 094008 (2004

L\C/El(xl,xz)= 2 _ Ci\;(Qi -QJ)(Ui\/'2+ aiv,z)
i,jeQ,Q

X q;i(X1)dj(X2),

L\éEz(Xl X2) = L\éEl(Xz X1),

LER(Xq, %) = E E Cc\ v(di gy (v Vi)
ieQQ jeQ,Q
X i(X1)0i(Xz),

ng<x1.x2>=ijEQ CY(a;,a) (v *+ &) g(X1)g(X2).

(5.9

In this formula, a function such ag (Xx;) denotes the ap-
propriate parton distribution function. The labéltakes the
valuesy, Z, andW=*. The electroweak couplings’ anda;’
are given in Eq{(2.4). To obtain they-Z interference lumi-
nosity functions, we must us¥=vy and substituteviy'2
—vvf, viyvij%(viyvjz-i-vJyviZ).

The final ingredients required are the partonic hard cross
sections for the channels corresponding to the luminosity
functions (5.4), do{/dY(z,u) for ij e{NS,B?BC,...,gg}.

We have obtained analytic expressions for these functions;
however, they are quite lengthy, so we refrain from giving
them here. AMAPLE file containing the functions is available
from the authors by request. They have also been imple-
mented inCc++ as part of a numerical program computing
the hadronic rapidity distribution. The bulk of the analytical
complexity stems from the “hard” region, away from the
boundariesz<1 andz<u<1/z (or 0<y<1).

The hard functions contain polylogarithms of rank 2,
Li»(A;i(z,u)), and there are a large number of possible ways
the argumentg,; can depend on the underlying variabigg
In most cases, the arguments are rational functiong of
=z andr =/u, as in the case of the sample integfé, u)
presented in Eq$3.34) and(3.37). In four cases, though, we
have to introduce functions in which the polylogarithmic ar-
guments are significantly more complicated. The four func-
tions of this typeJs, Jo7, Jo1, andJ,, are given by

1 R 1I 24/ 1I 1 In(zf —— . d;—r—2t(1+u) dy+r+2t(1+u)
Js(z,u)= —— 7 n“(z u)—Z n(1+u)|In(z/u)+2In(1+tr)—21In a=r - ar
[ 2t(1+u) [ =2t(1+u) ~[2z(1+u) [—=2z(1+u)
| ———— 2 —Li, — |~ LIz (5.9
d; dy+r r(d,—r) r(d,+r)
whered; = Ju+4z(1+u);
1 ro—rq+rir,—3—-2u dy—2try+rqr—rd;+2t+2tu+r
J27(Z,U) _ Rd In 2 1 1'2 +1n 1 1 1 Y1
2rd4 ro—rqy—rqiro,+3+2u di—2try+rqr+rqd;—2t—2tu—r
r—d;+2tr{)(1+r,—2r
+30n ( 1 1)( 2—2r7) , 5.6
(r+dy—=2try)(1—r,+2ry)
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wherer,=1+u, r,=+5+4u;

- + -
— : _ + 1 - 1 N At ; _ + ; A
\]21(z,u)—Re{z(1+u)X1 In(ta; )In 1-tra; +In(ta; )In 1—tra1) Lio(1—a; )+Liy(1—tra;)+Li(1—a;)
—Liy(1—tra;) |+ (Arz)d=tn) 12 (5.7)
2 1 (1-2)2(1+u)r(r+t) 2 ) '
where
2u \?1 2u \?
X1= — —1, z=|—|,
1+u) z 1+u
2u \?1 2u \?
=i\/1-|—| — z>|— (5.9
1+u/ z 1+u
= __ 2u . 9
& CzZ(1+u)(1=xixg)’ (5.9
and
] o 1 a4 2+u+rd1J 3R " u(u+2)(rp—1) | (1
A2 =22 W g | =TI g e 20t g RN iy Y
(2+u—ur2)(r+d1)\ r(u+2)(dy—r) 1., ., [ =u(u+2)(1+ry)
xIn M T u2tu—rd,) ~gUiml2)TL 2+u—ur,

r(1+ry)(2+u—rd,)|

{=r(u+2)(r+dy) 2+u+rdy iy 2+u+ur, +1 M "
Tt 2+u—rd; B (1+u)(2+u—rd,) I2 (I+u)(2+u—ury,) E[ 1(Xy) =M1 (X)) ]
3
+§772®(u—1) , (5.10
where®(x) is the Heaviside function,
2+u+tur, 2+u+trd;
l,=Inl————, l,=Injlz————,
2+u—ur, 2+u-—rdy
x+x* X+Xx~ X" —x x+x* 1 x+x*t NES2S
M,(X)=Rel —Li,| ——| +Li —Li +Li +—1In —In
1(x) 2l oxt 2\ 2x” 2\ xt - Ixt—x") 4 x—x" X=X~
1 x+x* X+X~ 1 (x+x* (X+X7)(x=x")
——|In?| ——| I — ||+ =In - — ,
2 2X 2X 2 \x—x (xT—x7)
2+u—2r 1 d;+2yz(1+u
x"=— " 1—X—,, Xy=Tp+2ry, X=——— r( ). (5.11)

After the use of polylogarithmic identities, the set of arguments of the remaining polylogariths(i;)L.ican be reduced,

if desired, to
A 1+z 1-u 1-u t t r—t
| € _Z'Z’T’_r’_u’m'T'_F’F'T’
1-tr 1-r r—21 1-t r(1-t) u—z 1—uz 1—tr r(r—t) u—-1 1-u
(5.12

—trr, 2 1+tr’r+t’'r+1" r+1 "1+u’ 14+u’1+u’ 14+u r(r+t)’ 1+tr|’

The arguments of the logarithms that appeaB(@re drawn from a simpler set

Bie{z,1-z1+t,1+zu,r—1r+1,2+u,r —t,r+t,1—tr,1+tr}, (5.13
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but since they can appear in pairs, there are still quite a few terms of the faBJiri(;).

As mentioned above, rank-3 polylogarithms of a single variatdiee generated in the collinear regiams z [ 5(y) termg
andu=1/z [8(1—y) termd. These collinear terms have a similar form to the NNLO total cross section, integrated over
rapidity [18,19. We can write the functions appearingg(a;), in terms of

1+z 1-z 1-z 2z z z 1 1 1+z
2 ' 2 '1+z'1+z' 2'2(1+z)’ 2z'2(1+z)' z

(5.19

ae [ z,—-z1-2z,—-1-21- 72

The rank-2 polylogarithms appearing in the collinear termsstrips, the true function is smooth enough that an analytic

Li,(b;), have the arguments patch is not necessary; instead, when the p@nt) lies in
the strip, we replace its value by the average of two nearby

b e{z g itz oz 1 142 values on either edge of the stfig9]. Finally, the limitu

: T 2 2 27 z |’ —1 is singular, as indicated by the presencerof () in the

(5.195 setB; in Eq. (5.13; there are spurious power-law singulari-
) ) ties as well in this limit.
while the arguments of the logarithms df)(are The expansion of the hard functions in a series almut
=1 can be carried out to very high order and produces an
Cie{z1-21+22+21+27. (5.16 approximation to the integrand which is free of spurious sin-
_gularities. Working to order (% z)2° results in an expression
whose accuracy is completely adequate for predictions for

ties in the soft limitz— 1 and the collinear limitsi—z and ) . ) .
; - typical fixed-target kinematid29] and forW andZ produc-
1/z. However, the complexity of the analytical formulas
-z wev plexity v u tion at the Tevatron. However, for the caseVifand Z pro-

is such that many of the individual terms in the hard func-""" > e
tions have much more severe singularities in these limits—duction at the LHC, the small value of=M{/S~4x10

e.g., several powers of 1/(1z) asz—1. These spurious Means thqt value_s a~0.01 are actually relevant in the
singularities lead to unacceptable roundoff error. For this rea?Umerical integration. We have therefore used the exact, un-
son we construct patching functions, which are used insteag*Panded, representations of the hard functidptus

of the full functions in thin strips near the singular regions.Patchesin order to get sufficient accuracy for the case of the
The patching functions are typically constructed by takingLHC'

the appropriate limits analytically. Figure 2 shows the re-

gions in the(z, u plane V\_/hich havg to be patched. In addi- VI. NUMERICAL RESULTS

tion to the soft and collinear regions, there are two other

types of regions where the singularities are completely un- In this section we present numerical results for Wand
physical. Forz=[2u/(1+u)]?, the variablex; in Eq. (5.8 Z rapidity distributions at both the Tevatron and LHC. We
vanishes, leading to a singularity in functions containinguse the following parametersM;=91.1876 GeV, I';
J,i(z,u). There is an equivalent singularity a=[2/(1  =2.4952 GeV, Bf=0.03363, M,,=80.426 GeV, T
+u)]? in functions containingd,(z,1/u). In this pair of =2.118 GeV, ancB}N=0.1O82. We use th&-pole value of

The hard functions have integrable, logarithmic singulari
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agen(M,)=1/128 for the fine structure constant and setthe relations(2.8), (2.12, (2.14, and(3.21), the integration
sir’ 4,=0.23143, the effective mixing angle measured inOverx; andx, in Eq. (6.2) can be rewritten as
Z-pole asymmetries at LEP and SLB0]. We expect that
these choices account for the bulk of the factorizable elec- Y

" . : . dxydXoN L5 (X1,X2)
troweak radiative corrections, which dominate for nearly
resonant production ofV and Z bosons. A more accurate

description would require a consistent accounting of the :jl dzfdy Fij(z,y)+fﬁeiydzJ’l dy Fj(z,y)
a— Y 0 7 Y 2)

O'V

dY 1172

electroweak correctiongl1]. J7e [re yi(
We also need the following values of the CKM matrix _y @
elements to compute th& cross section: + j”e dszz dy Fij(z.y), 6.3
T y1(2)
[V,4=0.975, |V,d=0.222, |V 4=0.222, Where
|V.d=0.974. (6.1) dayf(zy)

Fij(zy)=3(zy)(1-2) — 55— N"Lij(x1.x2),
The absolute values of the other matrix elements are ob-

tained by requiring unitarity of the CKM matrix. Because the 7(1+2)
collider center-of-mass energy is large, it is possible in prin- J(zy)= 22[1—-y(1-2)[z+y(1-2)]"
ciple to produce top quarks in association with #eor Z;
however, since these processes can be distinguished experi- 7 [z2+y(1-2)]
mentally, we exclude them from consideration. We also omit X;=e"’ > m
top quarks from the virtual corrections and set the number of y
light (masslessquark flavorsn; to 5 in all numerical results [1-y(1-2)]
in this paper. At one loop, the partonic subprocesggs Xp=e '\
—zg andqg— Zq include triangle graphs, weighted by the z[z+y(1-2)]
axial couplingsag for the quarks circulating in the loop. For re2Y_ 22
massless quarks, these contributions cancel generation by yi(2)= ,
generation. The effect of a finite top quark mass on tthe (z+7e”?)(1-2)
—b contribution has been studied previously and found to be oy
negligibly small[18,51], so we omit it here. z(e 7= 1)
ya(2)= (6.4)

In the previous sections we discussed how the rapidity
distributions of electroweak bosons in partonic collisions can
be computed. To obtain results for hadronic collisions, weThis representation is convenient for numerical integration.
must convolute the partonic differential cross sections with We now present results for th& and Z rapidity distribu-
parton distribution functions which describe the probabilitytions. For the NNLO calculations, we use the corresponding
of finding a parton with a given momentum fraction inside set of MRST parton distribution functions. The MRST code
the hadron. The corresponding formula reads contains four different sets of PDFs. As mentioned in the

Introduction, the complete NNLO evolution kernels needed

for a consistent extraction of PDFs at NNLO are not yet
E f XmdszVLi\f(lexz) known. The MRST program contains both the fastest and
1]

(t+e 2z)(1-2)°

d2gV 47TaéED

dMdy  9m?® slowest possible perturbative evolutions, based upon the
doV known moments of the required DGLAP equations. A third
7ij set allows an evolution between these extremes. Finally, a
X——(X1,X2), (6.2

dy fourth PDF set which seems preferred by laEeiet pro-
duction at the Tevatron is included. Unless stated otherwise,

v we use mode 1 of the MRST NNLO PDF code, which cor-

wheredaj;/dY is the partonic cross sectioN,” is the nor- 4s 1o the int diate rate of Ut
malizaton fctor or he boso, andL(x, ) s he cor.  SEONe10 e Memedate e oo
responding luminosity function; these were discussed in the part, P

) ) .~ Sections, including the decay to leptons:
previous section. There are three observable cross sections: 9 Y P

production of aW™, production of aw~, and neutral- d2gV—leptons

current production of a lepton pdir| ~, which receives con- Tamdy (6.9
tributions from bothy andZ exchange as well as from-Z

interference. For the case of on-shell vector bosons, these are evaluated at

It is convenient to change the integration variables in thehe resonance pedad =M,y or M=M. Of course, any ex-
above formula and express the integration oxgerand X, periment will integrate over the resonance profile. If this in-
through the partonic variablesandy. Consider the case of tegral is performed in the narrow-resonance approximation
negative rapidityY; the results fory>>0 can be obtained by and if the y exchange andy-Z interference terms are ne-
substitutingY — —Y in the formulas below. Fo¥ <0, using  glected in the case of thg the result is
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pp - (Z.y*)+X

86 1— | | I ]
3 NLO 1
— - L NNLO .
% = -
60 — —
O
N r T FIG. 3. (Color online The center-of-mass
'a I system (c.m.s) rapidity distribution of an on-
— L G i shell Z boson at the LHC. The LO, NLO, and
% 40— ] NNLO results have been included. The bands in-
~ r T dicate the variation of the renormalization and
% i ] factorization scales in the rangé, /2<u
N i ] <2Mj;.
P 20 — Vs = 14 TeV —
: M=M;
L M/2 £ pu < 2M _
o V 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 J | 1 1 1 1 | 1 \
-4 -2 0 2 4
Y
doV o d2gV—lepton sult is increased by 30% at central rapidities and by 15% for
% o
d_YB' :EFVW . (6.6 Ia}rggr rapldlty va_Iues. They also change the shape of the
M=My distribution, creating a broad peak at central rapidities, as is

visible in Fig. 3. The results stabilize completely at NNLO.

The narrow-resonance conversion factdr,/2 numerically The NNLO corrections decrease the NLO result by only
evaluates to 3.919 GeV for theboson and 3.327 GeV for 1%—-2% and do not affect the shape of the distribution.
theW. One can further integrate Ef.6) over the rapidityY For most of the plots in the paper, in order to estimate the
to obtain the theoretical prediction for the “total cross sec-uncertainties in the NNLO predictions we shall continue to
tion times branching ratio, &Y x B|V. Our total cross section setur=ug=p and vary the common scaje from M/2 to
results for the MRST PDFs, for example, agree with result&M. However, it is useful to consider a broader range of
obtained using the numerical program of R@f8], after we  scale variations, for at least one kinematic configuration. In
omit b quarks from the initial stat§52,53. [We note that Fig. 4 we study dependence pi and ur in more detail for
Egs.(B.13) and(B.16) in the article in Ref[18] are missing the case of on-shell boson production at the LHC, at the
a factor of =%, and the “103” at the end of Eq(B.11)  precisely central rapidity point=0. For each order in per-
should have ax multiplying it. Also, the normalization of turbation theory(LO, NLO, NNLO), using the MRST PDF
the W cross section in EqgA.3) and (A.11) should be a sets we plot three curves, corresponding (b common
factor of 2 larger. All these factors are properly included invariation of the renormalization and factorization scales,
the numerical prograrfil8].] Our program is also capable of ur=pug=pu, but over a larger range gk, M/5<u<5M
integrating over a range of dilepton-invariant masses, with{solid curve$; (i) variation of the factorization scale alone,
out making the narrow-resonance approximation, and weettingug=M; (dashed curvgs(iii) variation of the renor-
shall present one such plot below. malization scale alone, setting-=M (dotted curves

We first present, in Fig. 3, the rapidity distribution fozZa Because the LO result is independentgf ), the third
boson produced on shell at the LHC. The LO, NLO, andcurve is trivially constant at LO and the former two LO
NNLO results have been included. We have equated theurves lie on top of each other. We can see from Fig. 4 that
renormalization and factorization scales, and have variethe tiny NNLO scale variation in Fig. 3 is not peculiar to the
them in the rangél,/2< u<2M,. At LO the scale varia- rangeM/2<u<2M used there. Even extending the range to
tion is large, ranging from 30% at central rapidities to 25% atM/5<u<<5M, for a common variation the bandwidth only
Y=~3. This is reduced te=6% at NLO for all rapidities. At enlarges from 0.5% to 1.2%. Over this same range, holding
NNLO, the prediction for central rapidities stabilizes dra- u fixed and varyingug also produces a quite small range of
matically; the scale variation i50.6%. This increases to 1% values, less than 0.5%. The largest variations are found by
at Y~3 and 3% atY~4. However, it seems that for holding ug fixed and varyingug . These variations are still
Y<3—the rapidity values accessible in LHC experiments—only of order 0.7% over the rand@/2<u<2M, but rise to
the residual scale dependence is no longer a significant thef order 5% at the ends of the extended rangéb<u
oretical uncertainty when the NNLO corrections are in-<5M. The latter are fairly extreme scale choices, however.
cluded. We believe that the range used in the rest of the paper,

The magnitude of the higher-order corrections exhibits &= ug=u and M/2<u<2M, provides a good guide to the
pattern similar to that of the scale variation. The NLO cor-perturbative uncertainty remaining from the terms beyond
rections significantly increase the LO prediction; the LO re-NNLO.
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pp = (Z,7*)+X at Y=0

BO_ T T 1T | TT Il|IIII|IIII|I|II|II|I|IIII|IIII| T T T T | T T 1T | TT II|IIII_

I e NLO //,,__/-:»/./:' ] FIG. 4. (Color online More general varia-

i BTG ) ] tions of the renormalization and factorization
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In Fig. 5 we present the rapidity distribution for on-shiéll to 30% atY=1.5 and to 15% a¥=2.5. The NNLO correc-
production at run Il of the Tevatron. The scale variation istions further increase the NLO prediction by 3%-5% over
unnaturally small at LO; it is 3% at central rapidities and the rapidity rangey <2.
varies from 0.1% to 5% fron¥=1 to Y=2. This occurs This remarkable stability of the rapidity distribution with
because the direction of the scale variation reverses withirespect to scale variation cannot be attributed to the small-
the range ofu considered—i.edo o/du=0 for a value of ness of the NNLO QCD corrections to the partonic cross
w which satisfiedM ,/2< u<2M . This value ofu depends sections. These corrections are the?)/dY terms defined in
upon rapidity, leading to scale dependences which var¥g.(4.1) (after renormalization and mass factorizajioron-
strongly with Y. The scale variation exhibits a more proper voluted with the MRST PDFs and with all partonic channels
behavior at NLO, starting at 3% at central rapidities andincluded. We vary the scale in these terms and normalize this
increasing to 5%—6% at=2.5. At NNLO the scale depen- variation to the NLO cross section. We find that the NNLO
dence is drastically reduced, as at the LHC, and remainsorrections contribute a scale dependence-6% at central
below 1% for all relevant rapidity values. The magnitude ofrapidities. When we form the complete NNLO cross section,
the higher-order corrections is slightly larger at the Tevatrorwhich requires adding these corrections to the con volution
than at the LHC. The NLO prediction is higher than the LO of the do(®/dY and de®)/dY terms of Eq.(4.1) with
result by nearly 45% at central rapidities; this shift decreaseSINLO PDFs, the width of this band is decreased to less

pp » (Z7")+X

20 -I T T T T : ; T T | T T T T I T T T T | T T T T T T T I-

I NNLO i

I NLO |
L N
= 15— —
g L ]
o I Y \ FIG. 5. (Color onling The c.m.s. rapidity dis-
= L // LO A\ i tribution of an on-shellZ boson at run Il of the
- el — 4 ““\ | Tevatron. The LO, NLO, and NNLO results have
g = / . been included. The bands indicate the variation of
= r / \ T the renormalization and factorization scales in the
3 - ' \ 1 rangeM,/2< u<2M,.
2 s Vs = 1.96 TeV \\ ]
© - M = M, -

i M/2 € pu < 2M i

o 1 1 1 | 1 1 1 1 | 1 1 1 1 1 1 1 1 | 1 1 1 1 | 1 1 1
-2 -1 1 2
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FIG. 6. (Color online The fractional contri-
bution of the various NNLO partonic channels to
the entire NNLO cross section f@rproduction at
run | of the Tevatron forw=M;. Hereq;q; de-
notes all quark-quark and quark-antiquark chan-
nels, while qg indicates the quark-gluon and
antiquark-gluon subprocesses. Tégchannel is
numerically small and would be consistent with
Vs = 1.8 TeV zero on this plot.

02— M=M, —
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than 1%. This demonstrates a remarkable interplay betweesence. At NNLO they become quite distinct, and &%
NNLO calculations and parton distribution functions. discrepancy is potentially visible given projected LHC er-
The small size of the NNLO corrections is partly due torors. We note that the difference between the two PDF sets
large cancellations between the various partonic channels. Tgoes not just produce a shift in the overall normalization.
illustrate this, we present in Fig. 6 the fractional contribu-The mode-4 set slightly increases the number of quarks at
tions of the various NNLO partonic corrections to the entirey—0.03 and decreases the number of gluons more substan-
NNLO cross section, at run | of the Tevatron. We include thetjajly in this x range[to compensate for an even larger in-
qgandq;q; (the latter includegiqandqqinitial stateg chan-  ¢rease ig(x) at very largex]. Theqg channel has a negative
nels; thegg subpropess is numerically unlm_portant in this partonic cross section; thus, paradoxically, decreagipg
process. The magnitude of each ordérpartonic correction,  jncreases the gluonic contribution to the cross section. The

boij, can be 7%-8% of the complete NNLO cross sectiony;ark and gluon distribution shifts, plus a 2% increase in
onnLo at central rapidities and can reach 10% of the entire

iCat | dities. Th | sianificantly. h (M), work in concert to increase the mode-4 predictions,
result at farger rapidiies. They cancel signiicantly, NOWEVer, o iy 1o mode 1, foZ production at the LHC at central
and their sum is only=3% of the NNLO result. This cancel- - . .
A LT rapidities and particularly in the range<ly <2.
lation is even larger at LHC energies; in fact, the; andqg Another set of PDFs extracted with NNLO precision has
channels cancel to such an extent that ¢fiesubprocess P

becomes an important contribution to the NNLO corrections.been presented by Alekhiri14]. Only deep-inelastic-

This split into partonic components is admittedly not entirelySCattering data are used in this extraction; the NNLO QCD
physical, as they are linked by initial-state collinear Singu_correctlons can tht_erefore be conS|stent_Iy included. The
larities. However, this degree of cancellation should be ratheMRST global fits utilize processes for which these correc-
sensitive to the PDF set chosen. A different choice of PDE$iONs are not known. This introduces an additional source of
may lead to changes in the cross section that are larger thdReoretical uncertainty into these parametrizations which is
that found by varying the renormalization and factorizationdifficult to quantify. We present in Fig8 a comparison be-
scales. tween the MRST and Alekhin PDF sets for resonzniro-

To investigate how the choice of PDFs affects the NNLOduction at the LHC. We have included the NNLO scale de-
cross section, we first vary the MRST mode. The choicependences for the Alekhin set and for the MRST mode-1 and
corresponding to the fast and slow DGLAP evolutions pro-mode-4 sets; the NLO scale dependences for the MRST
duce negligible shifts in our result, much less than 1% for allmode-1 and Alekhin parametrizations are also displayed. The
rapidities studied and smaller than the residual scale depetarge scale dependences again render all three choices indis-
dence(Similar results have been observed at the level of thdinguishable at NLO. However, significant discrepancies ap-
total cross sectiori13].) However, the choice of MRST pear at NNLO. The difference between the mode-1 and Ale-
mode 4, which provides a better fit to the Tevatron higgh- khin sets is 2% at central rapidities; this increases to 4.5% at
jet data, shifts the NNLQZ production cross section signifi- Y=2 and to 8.5% aly=3. The discrepancies in both nor-
cantly. We present in Fig. 7 the rapidity distributions for malization and shape will be clearly resolvable at the LHC.
LHC Z production using these two PDF choices. Both theAlthough the MRST mode-4 choice is closer to both the
NLO and NNLO results have been displayed; the scale variashape and normalization of the Alekhin set, the differences
tions are also included. The two mode choices are indistinstill range from 1%—-8.5% as the rapidity is increased; this
guishable at NLO, due to the large residual scale deperwill again be observable at the LHC. Electroweak gauge bo-
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FIG. 7. (Color online The rapidity distribu-
tions for Z production at the LHC for the MRST
PDF sets, mode 1 and mode 4. The bands indicate
the NNLO scale dependences, the solid lines de-
note the NLO mode-1 scale dependence, and the
dashed lines indicate the NLO mode-4 scale
variation. The upper lines correspond to the scale
choicex=2M in the NLO cross sections, while
the lower lines indicatg.=M/2.

d?c/dM/dY [pb/GeV]

son production becomes a powerful discriminator betweemrror barg due to thepp luminosity uncertainty. Also, elec-
different PDF parametrizations when the NNLO QCD cor-troweak corrections have not yet been included. Hence the
rections are included. two PDF sets probably cannot be distinguished by this run |
The dilepton rapidity distribution for4,y*) production data. Instead, it is clear from the figure that, for a given PDF
has been measured by CDF at run | of the Tevatron, in aet, the dilepton rapidity distribution around tAenass may
mass window around,, 66<M <116 GeV[8]. To com- be used to “monitor” the luminosity at run Il, for which the
pare with these data, we numerically integrate dvieas well  statistical errors will be significantly smaller than those
asz andy in Eq. (6.3). The result is shown in Fig. 9The  shown.
result of doing thisM integration in a narrow-resonance ap- We now examine the resonant productiorVébosons at
proximation, taking into account the finite-mass end pointsyun Il of the Tevatron. We present in Fig. 10 the rapidity
but neglecting photon exchange, is about 2% loweThe distribution forw" production; the distribution for thgv~
result with the Alekhin PDF set is about 4%—-5% above thecan be obtained by substituting— —Y. Both the scale
MRST result. Naively, the Alekhin set gives a better fit to thevariations and magnitudes of the higher corrections are simi-
data. However, most of the Alekhin and MRST differencelar to those found previously faZ production at the Teva-
here is in the overall normalization, and there is a 3.9% overtron. The scale dependence at LO is again unnaturally small,
all normalization uncertainty in the dataot shown in the ranging from 3% to 5%, becauskr o/du=0 for values of

pp - (Z.y*)+X

L2

T T T T [ T T_T— =<F¥_.T T | T T T T [ T T T 1
- NS

72.5 — L X —
- 5 Alekhin NG .
L i .
— B 7 FIG. 8. (Color online The rapidity distribu-
= WOWNE - tions for Z production at the LHC for the MRST
O r 1 PDF sets, mode 1 and mode 4, and for the Ale-
} C ] khin PDF set. The bands indicate the NNLO scale
B er5— — dependencesn; denotes the MRST mode-1 set,
o . ] while m, indicates the MRST mode-4 set. The
g C ] dashed lines denote the NLO scale dependence
b= 65.0 — —_ for the mode-1 set, and the dot-dashed lines de-
g note the NLO scale dependence for the Alekhin
Nb set. The upper lines correspond to the scale
o ; choicex=2M in the NLO cross sections, while
B the lower lines indicatg.=M/2.
M/2 £ u < 2M
60.0 e v | e iowp | vy e |lwia v lwes ol e, ~
-3 -2 -1 0 1 2 3
Y
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pp - (Z,7%)+X
| NNLO Alekhin02 | |
L NNLO MRSTO1

8

o

60 FIG. 9. (Color online The dilepton rapidity

] distribution for (Z,y*) production at run | of the
§ Tevatron, compared with data from CID8]. The
d 1 LO and NLO curves are for the MRST PDF set.
40 7 The thin NNLO bands are for the MRSTower)
4 and Alekhin(uppe) parametrizations. The bands

correspond to varyind!/2< u<2M.

do/dY [pb]

20— 66 < M < 118 GeV

M/2 S p < 2M
© CDF data (3.9% lumi. error omitted)

0 1 L 1 L | 1 1 1 1 I 1 1 1 1 | 1 1 1 1 | L 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5

Y

w within the parameter space studied. At NLO the scaleAlthough in a realistic experiment only the pseudorapidity of
variations are between 2% and 3.5%; they decrease tihe charged lepton coming from thW decay can be mea-
~0.3%-0.7% at NNLO, depending upon the rapidity cho-sured, much of the sensitivity to the PDFs remains. Skge
sen. The magnitude of the NLO corrections is large, varyings a ratio of cross sections, it might be expected that it is
from 45% at central rapidities te-25% at larger rapidities. rather insensitive to QCD corrections. This is indeed the
The NNLO corrections are also appreciable; they range frontase. At the Tevatron, pp collider, with the assumption of
2.5% atY=0 to 4% at|Y|~2. CPinvariance, the charge asymmetry is an odd functio¥, of
Another observable frequently studied at hadron colliderssince it may be written as

is the W charge asymmetry, defined as dO'(W+)/dY—d0'(W+)/dY|YH,Y_

~dae(WHIdY+da(WH/dY]y v —Aw(—Y).
(6.9

The asymmetry is positive for positivé corresponding to
A simple calculation in the LO approximation reveals thatthe W* boson moving in the same direction as the incident
this quantity is sensitive to the dependence afi(x)/d(x), proton, becausea(x) is larger thand(x) at largex. In Fig.
the ratio of up and down quark distributions in the proton.11, we present the LO, NLO, and NNLO predictions for the

Au(Y
da(WH/dY—da(W™)/dY w(Y)

W)= GowHiavrdoworay: (87

pp » W'+X

100

— i i

q) ke -

o - 1 . .
N - . FIG. 10. (Color online The c.m.s. rapidity
8, B ] distribution of an on-sheW* boson at run Il of
— L 4 the Tevatron. Shown are the LO, NLO, and
% - . NNLO results for the MRST PDF sets. The bands
; 50 — _ indicate the variation of the renormalization and
3 - . factorization scales in the rang®/2<u
b i 7 <2M\,.
a = =

= 25— —
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1.0||||||||||||||||||||||||||

FIG. 11. (Color onling The W charge asym-
metry at run Il of the Tevatron. Included are the
LO, NLO, and NNLO results. The bands indicate
the variation of the renormalization and factoriza-
tion scales in the rangd /2< u<2My. As the
charge asymmetry is rather insensitive to QCD
corrections, the three bands are almost com-
pletely degenerate.

Ay(Y)

Vs = 1.96 TeV |
M = M, ]
M/2 < p < 2M .

aoliscilsaialoccalswrnlsosulsces
-3 -2 =1 0 1 2 3

charge asymmetry at run Il of the Tevatron, together with=2M; in the LO asymmetry yields an approximation to the
their scale dependences. The NLO corrections increase th¢NLO result which is accurate to 1%—2% for essentially all
Born-level result by 2%-4%. The NNLO corrections to the rapidities.

NLO result range from-2% at centraWV rapidities to+1% The NNLO predictions for the rapidity distributions for
at large rapidities. on-shellW* boson production at the LHC are shown in Fig.
The scale variations ohy(Y) are small; to study them, 13 The distributions are symmetric ¥j only the positive

we present in Fig. 12 the scale dependence bandwidths, dggif of the rapidity range is shown fav* and the negative

fined as half for W~. The charge asymmetry is positive for all rapidi-
ties, but is particularly striking around= 3. The behavior of
An(Y, 1=2My) —An(Y, = My/2) the perturbation series is very similar to that discussed pre-
B(Y)= (6.9  viously for Z production at the LHC. Again, the NNLO scale

Aw(Y, u=Mw) variation bandwidths are extremely narrow for central rapidi-

ties, ranging from~0.6% forY<2, to 1.5% afy =3, to 3%
The scale variation is already below 5% for all rapidities atat Y=4.
LO and is below 1% at NLO. The NNLO prediction is ab-  In addition to the study of resonant production of elec-
solutely stable against scale variation, indicating that this obtroweak gauge bosons, both the Tevatron and LHC use high-
servable is potentially a very strong constraint on quarkdinvariant-mass Drell-Yan production of lepton pairs to search
distribution functions. We note that the scale choige for new gauge bosons and lepton-quark contact interactions.

0106 T T T T I T T T T I T T T T | T T T T I T T T T | T T T  §
Vs = 1.96 TeV

M=Mw

Lo 1

0.04

B(Y)

FIG. 12. (Color onling The scale dependence
bandwidths for theW charge asymmetry at the
Tevatron. Included are the LO, NLO, and NNLO
results.

0.02

0.00
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pp = W+X
500 -I T | T T T T T T T T T T T T | T T T T | T I-
LW NNLO W]
5 F B ssss N
L 9050202020020 2020202\ i . .
o I QRN i FIG. 13. (Color online The c.m.s. rapidity
N 002020 20302020202020 202020205\ L . _
P - '00000’:.:.33‘0»%{.33‘ - distributions for production of an on-sheW
o, 300— % 7 boson(left) and on-shelW" boson(right) at the
B L i
- L / 4 LHC, at LO, NLO, and NNLO, for the MRST
) I ] PDF sets. Each distribution is symmetriclinwe
E 200 — — only show half_ the rapidity range in_egch case.
el r 1 The bands indicate the common variation of the
} i ] renormalization and factorization scales in the
- + - rangeMy/2< u<2M,,.
100r Vs = 14 TeV ]
I i = My !
i | | M/2 £ u £ 2M |
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-4 -2 0 2 4
Y

Although these are primarily inclusive searches, rapidity cutsnixed message regarding the importance of the NNLO cor-
are required because of experimental constraints. We thereections. We find that they are small, decreasing the NLO
fore examine the NNLO QCD corrections to off-shell result by less than 0.5% fof<1.5 and increasing it by less
(Z,y*) production at large invariant masses. We present bethan 1% for 1.5 Y<2.8. The small scale dependence of the
low the rapidity distribution forM =250 GeV ¢,y*) pro-  NNLO cross section and the stability of the NLO prediction

duction at the LHC in Fig. 14, and fovl =200 GeV at run Il indicate a complete stabilization of the perturbative result for
of the Tevatron in Fig. 15. The scale dependences are signifM =250 GeV at the LHC.
cantly smaller forM =250 GeV than for resonarzt produc- The results foM =200 GeV ¢, y*) production at run ||

tion at the LHC. The LO scale variation is 12% at centralof the Tevatron exhibit both larger scale dependences and
rapidities and 4% a¥ = 3. Both the NLO and NNLO scale more important higher-order corrections. The LO scale varia-
variations are much less than 1% for all values of rapiditytions are similar to those found at the LHC, ranging from 7%
The magnitude of the higher-order corrections is muchatY=0 to ~15% at larger rapidity values. In contrast to the
larger, however. The NLO result increases the LO predictiorL,HC case, the NLO scale dependences remain fairly large,
by nearly 35% at central rapidities; this correction decreasesarying from 5% at central rapidities to 14% ¥t=2. At

to 10% at largeiy values. This discrepancy between the sizesfNNLO, the scale variations are between 1.5% and 4%, again
of the scale variations and NLO shifts sends a somewhahcreasing for larger rapidities. The magnitude of the NLO

pp - (Z.y*)+X

0.004 T T ¥ T T T T T I T T T T T T T T
I NLO :
- ) NNLO -
o 0.003— —
o L _
~ L 4
'a I LO T FIG. 14. (Color onling The rapidity distribu-
= r il tion for (Z,v*) production at the LHC for an
% 0.002 B ] invariant mas$vl = 250 GeV. The LO, NLO, and
™~ i | NNLO results have been included. The bands in-
% L i dicate the residual scale dependences.
ke — Vs = 14 TeV -
o oot M = 250 GeV 7
- M/2 < pu £ 2M 1
0.000 1 1 1 1 I 1 1 1 1 | 1 1 1 1 | 1 1 1 1
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i NNLO i
% 0.003 _— / NLO \ —_
SO y :
'a L ééy i FIG. 15. (Color onling The rapidity distribu-
= o.002— ’ LO ‘ _ tion for (Z,y*) production at run Il of the Teva-
% L A 4 tron for an invariant massl =200 GeV. The LO,
~ L { - NLO, and NNLO results have been included. The
% + % \ . bands indicate the residual scale dependences.
~ 3 / \ i
t\gz °-°°1_— / Vs = 1.96 TeV ]

i / M = 200 GeV i

L M/2 <us<2M i

0.000 S U S
-2 -1 0 1 2
Y

corrections is over 40% at central rapidities as@0% at  the rapidity distributions forZ,y*) production at the LHC,
largerY values. The NNLO corrections further increase thesplit into its soft, collinear, and hard components, for the
NNLO result by 5%-6% throughout the entire rapidity invariant massed =M, and M=2 TeV. The NNLO cor-
range. rections are thelo(®/dY terms defined in Eq4.1), convo-

Finally, we study the accuracy of various approximationsluted with the MRST PDFs and with all partonic channels
to the complete NNLO correction to the rapidity distribution. included. We present separately the following pieces: sthe
There are three distinct types of terms which appear in theerm, thec, term, theh term, and the sum of thk andc,
result. pieces, which would integrate to the “har@ionsof} part of

(i) Soft(s,): terms which contain either a delta function the total cross section. These terms are normalized to the
or a plus distribution in *z. These terms arise from pro- complete NNLO correction. AM =M, all components are
duction of the vector bosov close to the partonic threshold important. We note that there are large cancellations between
and can be obtained by considering only soft partonic emisthes, term and the remaining pieces. Neither thgiece nor
sions from theqgq— V subprocess. the sum of thes, andc, terms furnishes a good approxima-

(ii) Collinear (c,): terms containing delta functions or tion to the complete result. Generic hard emissions are im-
plus distributions in eithey or 1—y, but not in 1-z. These  portant; this result is expected, since there is a large amount
terms result from the emission of radiation collinear to oneof phase space available. M= 2 TeV, the magnitude of the
of the initial partons. s, term becomes larger compared to the hardgnigrms, as

(i) Hard (h) terms which have no delta functions or expected. However, it still does not furnish a good approxi-
plus distributions. These terms arise from generic scatteringhation to the entire result for all rapidities; the fact that it
events with the emission of hard additional partons in thedoes so for central rapidities arises from an accidental can-
final state. cellation between the hard awg pieces. We observe similar

There is some potential ambiguity in this separation, duébehavior for Tevatron kinematics. We note that at higher in-
to the presence of Jacobian factors in the integration. Weariant masses, the magnitude of the hard term decreases
perform the separation in terms of the functiofg(z,y)  quickly. Thec, term also decreases, but less rapidly. he
appearing in Eq(6.3—i.e., including all Jacobian factors term does not dominate until very large invariant masses are
resulting from the transformation the variablgsy). Thes,  reached.
terms can be obtained by using the soft gluon approximation,
and it is possible to imagine obtaining tieg contributions
from a simplified calculation in which the collinear emission
of V is factorized from a hard scattering piece. The hard We have presented a calculation of the rapidity distribu-
emissions, however, require a full NNLO computation. Intu-tions for electroweak gauge boson production at hadron col-
itively, we expect thes, terms, which are the simplest to liders through NNLO in QCD. This is the first complete
obtain, to dominate for large invariant masses—i.e., as th&INLO computation of a differential quantity needed for
z—1 threshold is approached. We wish to examine whethehigh-energy hadron collider physics. We have discussed in
this contribution, or perhaps tsg andc, terms together, can detail a powerful new technique for calculating differential
furnish a reasonable approximation in phenomenologicalhdistributions. This method is completely automated, pro-
interesting regions of parameter space. duces fully analytic results, and treats the various compo-

We present in Figs. 16 and 17 the NNLO corrections tonents of a NNLO calculation in a unified manner. Our results

VII. CONCLUSIONS

094008-24



HIGH-PRECISION QCD AT HADRON COLLIDERS. .. PHYSICAL REVIEW D 69, 094008 (2004

pp - (Zy*)+X
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*\\ = / \\ h+c, // \\ ~ 7 FIG. 16. (Color online@ The components of
3 R 4 S ] the NNLO corrections to the rapidity distribution
S - htcyts, . for (Z,v*) production at the LHC foM =M.
N g [ < ] The pieces included are the hard plyts,, ¢,
‘g" C g and the sum of tha andc, pieces. The complete

NNLO correction h+c,+s, is normalized to

—~10 unity. We have sep=M.
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will assist in the extraction of parton distribution functions, proximate NNLO DGLAP kernels in the MRST parametri-
parton-parton luminosities, electroweak gauge boson inforzation yields negligible shifts in our results. However, an
mation, and other quantities of interest with the accuracyMRST PDF set designed to provide a better fit to the Teva-
needed for Tevatron and LHC physics. tron highE+ jet cross section produces a difference of about
We have found that the residual scale dependences fd% in rapidity distributions at the LHC. This difference may
resonaniV and Z production at both the Tevatron and LHC be observable, given expected experimental errors.
are below 1% when the NNLO corrections are included; the The deviations induced by instead using Alekhin’s PDF
rapidity distributions are completely stable against higherextraction are more striking. Both the normalization and
order QCD corrections. Only higher-order electroweak corshape of the rapidity distributions obtained with Alekhin’s
rections and mixed QCD-electroweak effects remain to bgarametrization differ from those found with the MRST sets;
included[11]. These distributions are therefore ideal observ-the differences range from 2% to 8.5% as the rapidity is
ables to use to discriminate between different parton distrivaried. These differences should be easily resolvable at the
bution function parametrizations. We have studied severdlHC, given the expected errors. The MRST parametrizations
different NNLO extractions of parton distribution functions are derived from global fits to a variety of data, including
obtained by the MRST group, as well as an NNLO extractiondata from processes for which the NNLO QCD corrections
provided by Alekhin. Varying the evolution rate of the ap- are unknown. We note that the magnitude of the discrepan-

pp - (Zy*)+X

_I T T T T T T T | T T T T T T T I_
i h+cyts, T
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I T e T i FIG. 17. (Color onling The components of
3 i o - o " ’ the NNLO corrections to the rapidity distribution
g _4/ g — R \;_ for (Z,y*) production at the LHC forM
NG 0 il hte, . =2 TeV. The pieces included are the hard part
b i //'/ R T S,, €y, and the sum of thé andc, pieces. The
© ke o \\\__,' complete NNLO correctiot+c, +s, is normal-
Fosi, o amssems 5 = T Seaes i e A ized to unity. We have sgi=M.
- Y -
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cies between the Alekhin and MRST PDF sets is consisterttibution, it is possible to obtain almost full control over the
with the typical size of NNLO QCD corrections. It is con- kinematics of the electroweak boson, as produced in fixed-
ceivable that the inclusion of these corrections into theorder perturbation theory. This is because the NLO QCD
MRST fit might lessen the observed differences. In fact, thecorrections to the double differential distribution
NNLO Alekhin PDF set includes a full error matrigSimilar ~ d2¢/(dY dp,) for electroweak boson production are known
uncertainty estimates are available for the MRST set af55]. It was assumed in Ref55] thatp, #0. It is therefore
NLO). This matrix permits the construction of PDF uncer- not possible to perform the integration oyer to getdo/dY
tainty bands for the vector boson rapidity distributions,using the results of Ref.55] alone. However, the NNLO
whereas here we just employed the central PDF values. Wealculation of the rapidity distribution presented here gives
defer such a study to future work. an unambiguous answer for the integral oyer at fixed

The magnitude of the NNLO corrections to resonantvalues of rapidity and can therefore be used as a normaliza-
gauge boson production ranges from 1%—-2% at the LHC tdion condition. We write
3%—4% at the Tevatron; the corrections for higher-invariant-
mass gauge bosons can reach 5%—6% at the Tevatron. Thesed’ o mod — 0(p. — poUt
contributions must be included to yield a theoretical calcula- dY dp (PPl )dY dp.
tion accurate to~1%, the projected experimental precision
at the LHC. However, the NNLO corrections do not vary do  [pma d’o
strongly with rapidity. The NLO rapidity distribution appears av_ f o dmm
to describe the kinematics quite well. Reweighting the NLO +

distributions by the inclusivek factor K®@=owwio/ono  whered?a/(dY dp) is the distribution computed in Ref.
yields an approximation accurate t81% for all relevant [55), Integratingd®o o4/ (dY dp ) overp, gives the correct
rapidities. The analogous reweighting of the LO results, byresult for the rapidity distribution; however, the “zep-"
K"O= gy 0/010, doesnotfurnish a good approximation pin extends fromp, =0 to p, = pS". Apart from this draw-

to the complete result. The excellent accuracy of the N'—Ooack, Eq.(7.1) provides a simple way to describe the elec-
reweighting technique for the rapidity distribution suggestsyqgweak boson kinematics at NNLO in QCD.

that one applies the fact#t®) to output from a hadron-level oy results are an important theoretical input for physics
Monte Carlo program which incorporates the NLO vector-at photh the Tevatron and LHC. We believe the method we
boson production matrix elements, such MS@NLO 2.2 haye introduced to obtain these results can be used to calcu-
[54]. This simple procedure should give a good picture of thgate other phenomenologically interesting observables. We
structure of the hadronic events accompanying the vectointicipate its application in many other areas of collider
bosons and is likely to approach NNLO precision for suffi- physics.

ciently inclusive observables.

We have also studied the accuracy of approximating the
NNLO corrections by partial results. We have found that
including only virtual and soft gluon corrections, labeled as We thank S. Alekhin, J. Andersen, F. Gianotti, A. Kotwal,
s, in the text, does not yield a good approximation for reso-W. Langeveld, M. Peskin, and W. J. Stirling for useful dis-
nant gauge boson production. Only at very large invariantussions and communications. The work of K.M. is partially
masses do these terms dominate. We estimate that averaggpported by the DOE under grant No. DE-FGO03-94ER-
values of Bjorkerx=0.3—-0.4 must be reached before the 40833 and by the Outstanding Junior Investigator program
component accounts fee80% of the complete NNLO cor- through grant No. DE-FG03-94ER-40833. The work of F.P.
rection for all relevant rapidities. We also note that )¢ is partially supported by NSF grants Nos.
terms do not accurately predict the shape of the NNLO corP420D3620414350 and P420D3620434350. This research
rection, as is apparent from Figs. 16 and 17. was supported by the U.S. Department of Energy under con-

Finally, we note that with our result for the rapidity dis- tract DE-AC03-76SF00515.

2

o(p?=p,), (7.1
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