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High-precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions
at next-to-next-to leading order
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We compute the rapidity distributions ofW andZ bosons produced at the Fermilab Tevatron and the CERN
LHC through next-to-next-to leading order in QCD. Our results demonstrate remarkable stability with respect
to variations of the factorization and renormalization scales for all values of rapidity accessible in current and
future experiments. These processes are therefore ‘‘gold-plated’’: current theoretical knowledge yields QCD
predictions accurate to better than 1%. These results strengthen the proposal to useW and Z production to
determine parton-parton luminosities and constrain parton distribution functions at the LHC. For example,
LHC data should easily be able to distinguish the central parton distribution fit obtained by MRST from that
obtained by Alekhin.
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I. INTRODUCTION

Drell-Yan production of lepton pairs through electrowe
~EW! gauge bosons at hadron colliders occupies a spe
place in elementary particle physics. Historically, the Dre
Yan mechanism@1# was the first application of parton mod
ideas beyond deep inelastic scattering and was later the r
to discovery of theW andZ bosons@2#. Currently, it provides
precise determinations of several standard model~SM! pa-
rameters and places stringent constraints on many form
new physics. Studies ofW production at the Fermilab Teva
tron lead to determinations of the mass and width of theW
boson with precision competitive with CERNe1e2 collider
LEP2 measurements@3,4,5,6#. The ratio of production cross
sections forW and Z bosons, weighted by their leptoni
branching fractions, is very accurately predicted in the st
dard model and has been studied extensively at the Teva
@7#. The rapidity distribution for producedZ bosons@8# and
the charge asymmetry in leptons fromW production@9# have
also been measured at the Tevatron; both distributions
sensitive to the distribution of partons within the proto
Searches for nonstandard contributions to the production
of lepton pairs with invariant masses larger thanMW,Z can be
used to detect additional gauge bosons, such as theZ8 states
that appear in many extensions of the SM. More genera
these searches constrain possible contact interactions
tween quarks and leptons arising from new physics at ene
scales beyond those currently accessible@10#.

With run II of the Tevatron producing data, and with th
CERN Large Hadron Collider~LHC! scheduled to begin op
eration shortly, an enormous number ofW andZ bosons will
soon be collected. This will significantly increase the pre
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sion of electroweak measurements and will dramatica
boost the sensitivity of new physics searches. To fully util
these results, precise theoretical predictions forW and Z
cross sections are needed. Current calculations are limite
uncertainties in parton distribution functions, as well
higher-order QCD and EW radiative corrections@11#.

Parton distribution functions~PDFs! are determined from
a global fit to a variety of data; unfortunately, there is
direct experimental information for the combined values
Q2 (104 GeV2) and Bjorkenx (1024– 1021) that are rel-
evant for electroweak physics at the LHC. PDFs for the
parameter values are obtained through perturbative evolu
of fits to PDFs at lower values ofQ2, using the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi ~DGLAP! equation. The
complete results for the DGLAP evolution kernels at ne
to-next-to leading order~NNLO! are not yet available. An
approximate set of evolution kernels is used instead@12#.

There are currently two sets of PDFs extracted w
NNLO precision, using these approximate kernels. T
Martin-Roberts-Stirling-Thorne~MRST! set @13# utilizes a
broad variety of data; the drawback of this procedure is t
the data set includes observables for which NNLO QCD c
rections are not known. Alekhin’s PDFs@14# are based on
deep-inelastic-scattering data only; this data set is somew
restricted, but higher-order QCD corrections can be includ
consistently@15#. The two PDF sets lead to slightly differen
~at the few percent level! predictions for the total rate ofW
andZ production at the Tevatron and LHC@16,17#. We take
this difference as a rough estimate of the current uncert
ties in the PDFs needed for Tevatron and LHC physics;
individual PDF fits now also contain intrinsic uncertain
estimates@14,16#.

The QCD corrections to EW gauge boson product
have been studied by several groups. The complete NN
corrections to the total cross section were computed so
time ago@18,19#. However, the total cross section is not a
experimental observable, and significant extrapolations
required to compare this prediction to experiment. Idea
one would like an event generator, at least at the parton le
©2004 The American Physical Society08-1
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which retains the full kinematics of the process and incor
rates higher-order radiative corrections. Although there
been some recent progress towards this goal at NN
@20,21,22,23,24#, its completion will probably not occur fo
some time.

NLO QCD corrections to more differential quantities
EW gauge boson production, including the vector boson
pidity distribution, were computed in Ref.@25#. A generali-
zation of this result toW and Z production at the Tevatron
and LHC yields NLO corrections of approximately 20%
50% and scale variations of a few percent. Since the N
corrections are rather large, while the residual scale dep
dence is small, the actual reliability of the NLO results h
been somewhat unclear. Even taking the NLO scale va
tions seriously, it is apparent that our knowledge of high
order QCD corrections to EW gauge boson production
accurate to at best a few percent.

This few percent precision in our knowledge of bo
PDFs and radiative corrections must be compared to
needs of the Tevatron and LHC physics programs. TheW
mass should be measured with a precision of630 MeV dur-
ing run II in each Tevatron experiment@26#; this uncertainty
will be further decreased to615 MeV at the LHC@27#. Such
a measurement strengthens the constraints that the prec
EW data imposes on the Higgs boson mass and on m
indirect manifestations of new physics. A precise theoret
prediction forMW requires knowledge of theW transverse
momentum spectrum, as well as a good understanding o
relevant PDFs. To calibrate the detector response for
measurement of theW decay products, both the rapidity an
p' spectra of theZ must also be well understood@26#.

At the LHC, many additional measurements will also r
quire theoretical predictions accurate to a percent or be
The extremely large cross section for the Drell-Yan proc
at the LHC allows measurements of theZ boson rapidity
distribution and of the pseudorapidity distribution of charg
leptons originating fromW decays to constrain PDFs at th
percent level. In effect,W and Z production can serve as
parton-parton ‘‘luminosity monitor’’ @28#. The inferred
parton-parton luminosities can then be used to precisely
dict rates for interactions with a similar initial state as Dre
Yan production, such as gauge boson pair production p
cesses. Uncertainties in the overall proton-proton luminos
which is hard to measure precisely at the LHC, will can
out in this approach.

It is apparent from the above examples that the Teva
and LHC physics programs require NNLO calculations
differential distributions in kinematic variables; knowledg
of inclusive rates is insufficient. Although the inclusive rat
for several processes, including Drell-Yan production of le
ton pairs, are known at NNLO in QCD, until very recent
no complete calculation of a differential quantity existed
NNLO. Such a calculation is quite challenging technica
and traditional methods for the computation of phase-sp
integrals cannot handle problems of this complexity. In R
@29# we described a powerful new method of performi
such calculations and applied it to Drell-Yan production
fixed-target experiments. We present here in detail the c
putation of the rapidity distributions for Drell-Yan produc
09400
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tion of lepton pairs throughW and (Z,g* ) exchange at both
the Tevatron and LHC through NNLO in QCD. Althoug
these distributions are still not the fully differential resu
needed for a Monte Carlo event generator, they allow a la
number of the physics issues discussed above to be
dressed.

Our method extends the optical theorem to allow the to
developed for multiloop computations to be applied to t
calculation of differential distributions. We represent the
pidity constraint by an effective ‘‘propagator.’’ This propag
tor is constructed so that when the imaginary part of
forward scattering amplitude is computed using the opti
theorem, the ‘‘mass-shell’’ constraint for the ‘‘particle’’ de
scribed by this propagator is equivalent to the rapidity co
straint in the phase-space integration. We then use the m
ods described in Ref.@30# for computing total cross sections
keeping the fake particle propagator in the loop integrals
deriving the rapidity distribution as the imaginary part of t
forward scattering amplitude. We remark that the rapid
distribution for inclusive production of Higgs bosons at ha
ron colliders, which in the heavy top quark approximation
known at NLO@31#, can be computed at NNLO by precise
the same technique; indeed, all the basic integrals enco
tered in the two problems are identical.

We find that the NNLO corrections to theW andZ rapid-
ity distributions are small for most values of rapidity. This
consistent with the results found in Ref.@18# for the inclusive
cross section. However, the magnitude of the corrections
reach a few percent for certain invariant masses and collis
energies, indicating that they are required for the precis
desired in experimental analyses. The residual scale de
dences of the rapidity distributions are below the perc
level for all but the largest physically allowed rapidities. Th
theoretical uncertainty is therefore dominated by our imp
cise knowledge of the PDFs. We study the effect of vary
the PDF parametrization; we use several fits provided
both MRST and Alekhin. The different MRST sets yield r
sults for the rapidity distributions that vary by'1% at the
LHC; the Alekhin set gives results that differ from those
MRST by 2%–8.5% as the rapidity is varied. The anticipa
experimental uncertainties at the LHC are sufficiently sm
to distinguish between such PDF sets. EW gauge boson
duction can therefore provide important information abo
the PDFs at the values ofQ2 and x relevant for collider
experiments. Finally, we study the efficacy of various a
proximations to the complete NNLO result. We find that t
common approximation of including only soft gluon corre
tions does not accurately reproduce the full result for p
nomenologically interesting parameter choices.

Our paper is organized as follows. In Sec. II we introdu
our notation. We discuss our method of calculation in de
in Sec. III. We describe the collinear renormalization of t
partonic cross section in Sec. IV. In Sec. V we present so
analytic results for the partonic rapidity distributions. N
merical results for theW andZ rapidity distributions at both
the Tevatron and LHC are given in Sec. VI. We present
conclusions in Sec. VII.
8-2
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II. NOTATION

We consider the production of electroweak vector bos
V at hadron colliders:

h11h2→V1X, ~2.1!

where X stands for any number of additional hadrons,
partons in the perturbative calculation. Theq̄iqjV coupling at
the tree level is described by the interaction vertex

Vi j
m5 igVCi j g

m~v i
V1ai

Vg5!, ~2.2!

where the indicesi, j denote the quark flavors:

i , j 5$u,ū,d,d̄,...%. ~2.3!

The matrixCi j is the unity matrix whenV5g,Z and is the
Cabibbo-Kobayashi-Maskawa~CKM! matrix whenV5W.
Numerical values for the required CKM matrix elements a
given in Sec. VI.

The vector and axial coefficients for up- and down-ty
quarks are

vu
g5

2

3
, au

g50, vd
g52

1

3
, ad

g50,

vu
Z512

8

3
sin2 uW , au

Z521,

vd
Z5211

4

3
sin2 uW , ad

Z51,

vu
W5vd

W5
1

&
, au

W5ad
W52

1

&
. ~2.4!

The rapidity of the vector bosonV is defined as

Y[
1

2
logS E1pz

E2pz
D , ~2.5!

whereE andpz are, respectively, the energy and longitudin
momentum ofV in the center-of-mass frame of the collidin
hadrons. The cross section for the production of the ve
boson can be written as the convolution of partonic h
scattering cross sections with hadronic parton distribut
functions:

sV5E
~1/2!ln t

~1/2! ln~1/t!

dY
dsV

dY
,

dsV

dY
5(

ab
E

AteY

1 E
Ate2Y

1

dx1dx2f a
~h1!

~x1! f b
~h2!

~x2!

3
dsab

V

dY
~x1 ,x2!. ~2.6!

Here,
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mV

2

S
, ~2.7!

mV is the invariant mass ofV, and S5(P11P2)2 is the
square of the center-of-mass energy of the colliding hadr
h1 andh2 , which carry momentaP1 andP2 , respectively.

As we will see in the next section, it is beneficial to re
resent the rapidity constraint in a covariant form. To do
we introduce the variableu, where

u5
x1

x2
e22Y. ~2.8!

In the center-of-mass frame of the two colliding hadrons
takes the simple Lorentz-invariant form

u5
pV•p1

pV•p2
, ~2.9!

wherep15x1P1 and p25x2P2 are the momenta of the in
coming partons, andpV is the momentum ofV. The partonic
center-of-mass energy iss5(p11p2)25Sx1x2 . The par-
tonic u distributions are obtained by integrating the parton
matrix elements over the phase space of the final-state
ticles with a fixed value ofu:

dsab
V

du
5

1

2s E dP f iMab→V1Xi2dS pV•p1

pV•p2
2uD .

~2.10!

Here iMab→V1Xi2 denotes the square of the scattering a
plitude, averaged over spins and colors of the colliding p
tons.

The allowed values ofu are

z<u<
1

z
, ~2.11!

with

z5
mV

2

s
5

t

x1x2
~2.12!

and

t<z<1. ~2.13!

Inverting Eqs.~2.8! and ~2.12!, the arguments (x1 ,x2) of
dsab

V /dY in Eq. ~2.6! are given by

x15
AteY

Az/u
, x25

Ate2Y

Auz
. ~2.14!

The boundary values of~z, u! are only achieved for spe
cial kinematics~see Fig. 1!. For z51, mV

25s, and there can
be no additional partons radiated in theV boson production
process; the kinematics is that of the Born-level processqq̄
→V. We refer to the limitz→1 as thesoft limit, since any
additional partons must carry little energy. The boundaryu
8-3
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FIG. 1. ~Color online! Variables~z, u! used to
describe the kinematics of the vector boson rap
ity distribution at the parton level. The physica
region is hatched. The pointu5z51 corresponds
to no additional radiation or Born-level kinema
ics. The left edgeu5z corresponds to radiation
of partons collinear with incoming parton 2. Th
right edgeu51/z corresponds to radiation collin
ear with parton 1. The arrows show flows re
evant for the convolution integrals encountered
mass factorization~see Sec. IV!.
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5z corresponds to production of aV boson along with one o
more partons radiated collinear with incoming parton 2, w
momentum (12z)p2 . That is, insertingpV5p11zp2 into
Eq. ~2.9! leads tou5z. Similarly, the boundaryu51/z is
achieved when the additional partonic radiation is collin
with incoming parton 1. We refer to the limitsu→z and u
→1/z ascollinear limits.

III. METHOD

We evaluate the partonic rapidity distributions of E
~2.10! through NNLO in perturbative QCD. The NLO co
rections have been previously evaluated in Ref.@25#. How-
ever, the calculation of the NNLO corrections is intractab
using current techniques. We describe here a new me
powerful enough to handle this problem. We express the
pidity constraint as the mass-shell condition of a fake ‘‘p
ticle.’’ This permits the use of the optical theorem to tran
form the matrix elements into cut forward scatteri
amplitudes. We can then apply methods developed for m
tiloop integration to evaluate these amplitudes. We desc
in detail below the required modification of the rapidity co
straint, the simplification of the forward scattering amplitu
using integration-by-parts reduction algorithms, and
evaluation of the resulting master integrals.

We begin by describing the three distinct contributio
that enter at NNLO, to illustrate the difficulties that arise.

~i! Virtual-virtual, which contains interferences of dia
grams with only the electroweak bosonV in the final state:

~ii ! Real-virtual, which contains interferences with theV
boson and one additional quark or gluon in the final stat
09400
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~iii ! Real-real, which contains interferences of tree-ty
diagrams withV and two additional partons in the final stat

The virtual-virtual contribution to the rapidity distributio
is identical to its counterpart in the total cross section, wh
has been computed previously@18#. The new features of the
rapidity distribution are the real-virtual and real-real comp
nents, which now have nontrivial kinematic constraints. U
til very recently no systematic technique for their evaluati
existed; this was the major reason for the lack of progre
However, since the calculation of the inclusive Drell-Ya
cross section, our ability to calculate diagrams of the virtu
virtual type has progressed greatly. New algorithms for
evaluation of two-loop diagrams of the same@32# and more
complicated topologies@33,34# have been developed. It i
now well understood how to organize the evaluation of g
neric multiloop amplitudes using integration by parts a
Lorentz-invariance reduction algorithms@34,35,36,37# and
how to compute the resulting master integrals using eit
the Mellin-Barnes@38,39# or the differential equation metho
@40,37#. Our method renders the real-virtual and real-re
contributions amenable to the same techniques.

A. Construction of the modified forward scattering amplitude

We follow the approach introduced in Ref
@30,41,31,29#; we replace all nontrivial phase-space integ
tions by loop integrations. To accomplish this we repres
all delta functions constraining the final-state phase spac

d~x!5
1

2p i S 1

x2 i0
2

1

x1 i0D . ~3.1!

In the evaluation of total cross sections we only have de
functions which put the final-state particles on their ma
shell:
8-4
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E dP f } )
f
E ddpf d1~pf

22mf
2!, ~3.2!

where we work ind5422e dimensions andd1 includes the
positive energy conditionEf.0. Using Eq.~3.1!, each such
delta function becomes a difference of two propagators w
opposite prescription for their imaginary part:

d~pf
22mf

2!→
1

pf
22mf

22 i0
2~c.c.!. ~3.3!

When calculating differential quantities, there are additio
constraints on the phase space. The distribution constra
can usually be expressed through delta functions w
Lorentz-invariant arguments that are polynomial in the m
menta of the final-state particles; we then transform th
into propagators using Eq.~3.1!.

For the rapidity distribution of the massive boson we su
stitute

dS pV•p1

pV•p2
2uD→ pV•p2

pV•~p12up2!2 i0
2~c.c.!. ~3.4!

The above substitution introduces a propagator with a sc
product in the numerator and a denominator linear in
momentum ofV. However, the multiloop methods we em
ploy are not sensitive to such irregularities in the form of t
propagators; they only require that the propagator of
~3.4! be polynomial in the momenta. Substituting Eqs.~3.3!
and~3.4! into Eq.~2.10!, we obtain a forward scattering am
plitude with ‘‘cut’’ propagators originating from both the on
shell conditions on the final-state particles and the rapid
constraint. Pictorially, the three different contributions can
represented by diagrams similar to the following ones:

~i! Virtual-virtual

~ii ! Real-virtual

~iii ! Real-real

We have associated an additional ‘‘rapidity’’ propagator w
theV boson, which we represent by a straight line just to
right of the cut from the usual wavy~cut! V boson propaga-
tor. In the above diagrams, cut propagators represent di
ences of two complex conjugate terms, propagators on
ferent sides of the cut have different prescription for th
imaginary part, and the initial and final states are identic

The three contributions are now expressed as two-l
amplitudes in which the cuts denote differences of propa
09400
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tors with oppositei e prescriptions. These cut conditions a
accounted for at the very end of the calculation, after us
generic multiloop methods to simplify the two-loop expre
sions. We generate the diagrams for the forward scatte
amplitude usingQGRAF @42#. We then apply the Feynma
rules, introduce the rapidity ‘‘propagator’’ of Eq.~3.4!, and
perform color and Dirac algebra~we use conventional di-
mensional regularization! usingFORM @43#. This generates a
large number of integrals with cut propagators which
must evaluate. The evaluation of these integrals is discus
in the next section. Our treatment ofg5 in dimensional regu-
larization follows the discussion in Ref.@18#, to which we
refer the reader for further details.

B. Reduction to master integrals

An essential part of the calculation is the reduction of t
integrals to a small set of independent master integrals u
linear algebraic relations among them. This procedure is r
tinely applied in computations of virtual amplitudes, such
in the virtual-virtual contribution. Our representation of th
real-virtual and real-real terms makes it possible to evalu
them in a similar manner.

We first apply partial fractioning identities to reduce th
denominators of the integrands to a linearly independent
Partial fractioning is always applicable to box diagrams w
the introduction of the rapidity constraint. Seven independ
scalar products can be formed from the two external m
mentap1 , p2 and the two loop momentak, l ~omitting the
constant scalar productspi•pj ). On the other hand, box to
pologies with the rapidity propagator have eight terms in
denominator. Thus the eight terms obey one linear relat
which can be used to perform a partial fraction decompo
tion whenever all terms entering the relation appear as
nominators. This step allows us to eliminate one of the un
propagators in favor of the rapidity propagator.~Whenever a
cut propagator or the rapidity propagator does not appea
the denominator of an integral, that integral may be se
zero, by anticipating the delta function constraints.! From
this procedure we derive 11 major topologies for the real-r
contributions, 2 major topologies for the real-virtual cont
butions, and 2 for the virtual-virtual contributions. All non
box diagrams are subtopologies of the above set.

We obtain additional recurrence relations usi
integration-by-parts~IBP! identities @35,36#. If k, l are the
loop momenta of the two-loop integrals in the forward sc
tering amplitude andp1 , p2 are the incoming momenta, w
can write eight IBP identities of the following form for eac
integral:

05E ddk ddl
]

]hm

qm

k2l 2
¯

, ~3.5!

with hm5km, l m and qm5km, l m, p1
m , p2

m . Each integral
contains some cut propagators. However, since differen
tion with respect to the loop momenta is insensitive to
prescription for the imaginary part of propagators, the ap
cation of IBP reduction algorithms and the taking of cu
commute@30#. This fact allows a straightforward derivatio
8-5
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of reduction relations for phase-space integrals. Similarly,
can derive Lorentz-invariance identities@37# for phase-space
integrals; however, for the Drell-Yan rapidity distributio
they are not linearly independent of the IBP relations a
provide no additional information.

To solve the system of equations formed by the IBP re
tions we use an algorithm introduced by Laporta@34#. We
construct a large system of explicit IBP identities, which w
then solve using Gauss elimination. This system should
clude a sufficient number of equations to reduce all the in
grals of the forward scattering amplitudes to master integr
A detailed description of the algorithm can be found in t
original paper of Laporta@34#; we have implemented a cus
tomized version inMAPLE @44# andFORM @43#. An important
simplification of the reduction procedure in the present c
to

s

09400
e

d

-

-
-

s.

e

is that we can discard all integrals in which the cut propa
tors, or the rapidity propagator, are eliminated or appear w
negative powers@30#. After performing the reductions, we
obtain 5 master integrals for the virtual-virtual, 5 for th
real-virtual, and 19 for the real-real contributions.

C. Master integrals

All virtual-virtual master integrals were known prior t
this calculation. The only nontrivial one is the crosse
triangle master integral, which was calculated in Re
@45,46#. A list of all virtual-virtual master integrals can b
found in the appendix of@30#.

For the real-virtual contributions we find the followin
master integrals:
ing
en
se-
pli-
ith

be-

e-
als

own
or
where solid lines correspond to massless scalar propaga

→
1

p2 ,

bold solid lines correspond to massive scalar propagator

→
1

p22mV
2 ,

and dashed lines denote the rapidity propagator

-------- → 1

pV•@p12up2#
.

rsThe real-virtual master integrals can be evaluated by us
Eq. ~3.1! to reinstate the delta-function constraints. We th
must perform a one-loop integral and a two-particle pha
space integral; both are straightforward. The most com
cated loop integral is a massless one-loop box diagram w
one external leg off shell, which is known to all orders ine
@47#. The real-virtual phase-space integration is simple
cause the polar angle for the 2→2 process is fixed by the
rapidity constraint, leaving only a (122e)-dimensional azi-
muthal angular integration. It is thus straightforward to d
rive analytic expressions for the real-virtual master integr
which are valid to all orders ine.

The real-real phase-space master integrals were unkn
prior to this calculation. A few can be evaluated directly; f
example, the two simplest master integrals
~3.6!

and

~3.7!
8-6
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have the following hypergeometric integral representatio

I @n#5
Vd22Vd21sn22e

2d~11u!122e

~u2z!11n22e~12uz!11n22e

@Au~Au1Az!~11Auz!#11n2e

3Kn~d!, ~3.8!

with

Vd5
2pd/2

G~d/2!
, ~3.9!

Kn~d!5E
0

1

dx xn@x~12x!~12xd!#2e, ~3.10!

and

d5
~Au2Az!~12Auz!

~Au1Az!~11Auz!
. ~3.11!

Expanding ine, we obtain

K0~d!511eF32
~d21!ln~12d!

d G1e2F ~d21!ln2~12d!

d

23
~d21!ln~12d!

d
1

~d22!Li2~d!

d
192

p2

6 G
1O~e3!, ~3.12!

and

K1~d!5
1

2
1

e

2
F2

~d221!ln~12d!

d2 1
5d12

2d
G

1
e2

2
F ~d221!ln2~12d!

d2 25
~d221!ln~12d!

2d2

1
~d222!Li2~d!

d2 19
3d12

4d
2

p2

6
G1O~e3!.

~3.13!

In the expression for the scattering amplitude, some of
master integrals are multiplied by coefficients which beco
singular at the phase-space boundaries. For example, w
the I @n# master integrals get multiplied by 1/(u2z)21n or
1/(12uz)21n, the matrix elements become singular atu
5z or u51/z, respectively. These singularities are regula
by the noninteger powers of the (u2z) and (12uz) prefac-
tors in Eq.~3.8!. Upon integrating overu andz, they generate
09400
e
e
en

d

1/e poles which cancel against the real-virtual and real-r
1/e singularities. For example,

E
z

1/z

du~u2z!2122e52
1

2e S 12z2

z D 22e

. ~3.14!

Since we are interested in the rapidity distribution, we do
integrate overu. We must therefore extract these singulariti
from the real-real master integrals. To do so, we factor
the leading behavior of the integralXi in the limitsu→z and
u→1/z, keeping the exacte dependence:

Xi~z,u!5~u2z!m2ae~12uz!n2beFi~z,u!. ~3.15!

The integersm, n are characteristic to each master integr
while a5b52 for all real-real phase-space integrals. T
functionsFi are smooth and nonzero atu5z and u51/z,
and can be calculated as a series ine. In the nonsingular
regions of phase space we need only calculate the first
terms in thee expansion up to the order where polylog
rithms of rank 2 appear. However, atu5z andu51/z addi-
tional 1/e coefficients may be generated, and atu5z51 ad-
ditional 1/e2 poles may appear. These require ane expansion
of Fi up to a transcendentality of rank 3 or 4. We therefo
split the master integrals into four different terms:

Xi5X i
soft1X i

coll~z!1X i
coll~1/z!1X i

hard. ~3.16!

Here

X i
soft5~u2z!m2ae~12uz!n2beFi~1,1! ~3.17!

is potentially singular at the limitsu5z, u51/z, and
u5z51,

X i
coll~z!5~u2z!m2ae~12z2!n2be@Fi~z,z!2Fi~1,1!#

~3.18!

can only become singular atu5z,

X i
coll~1/z!5S 1

z
2zD m2ae

~12uz!n2be@Fi~z,1/z!2Fi~1,1!#

~3.19!

can only become singular atu51/z, and

X i
hard5Xi2X i

soft2X i
coll~z!2X i

coll~1/z! ~3.20!

is smooth in all singular limits. We extract the explicit 1e
terms from the ‘‘coll’’ and ‘‘soft’’ terms by replacing theu
variable with

y5
u2z

~12z!~11u!
, ~3.21!
8-7
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where 0<y<1. We then apply identities of the form

x211e5
1

e
d~x!1(

n

en

n! F lnn x

x G
1

, ~3.22!

for x5y, 12y, and 12z. The advantage of using the var
able y instead ofu is that y separates the singularities atu
5z and u51/z, which overlap whenz51. @At next-to-
leading order and for the real-virtual two-particle pha
space at NNLO, the variabley is related to the 2→2 partonic
center-of-mass scattering angleu* by y5(11cosu* )/2.]

Although a deeper expansion ine is required for the mas
ter integrals in the collinear and soft regions, the calculat
is simplified since in the collinear regions the result ha
nontrivial dependence on only the variablez; in the soft re-
gion, theFi have no dependence on eitheru or z. For ex-
ample, while it is difficult to expandKn(d) to higher orders
in e for genericd, in the soft regiond→0 it can be computed
in terms of gamma functions in closed form:

Kn~0!5
G~11n2e!G~12e!

G~21n22e!
. ~3.23!

D. Differential equation method

The two real-real master integrals of the previous subs
tion were calculated by deriving a simple hypergeome
integral representation starting from their definition as pha
space integrals. However, this is not practical for most m
ter integrals. In more complicated cases we resort to
method of differential equations. This method was develo
for loop integrals@40,37#; however, the representation of E
~3.1! for delta-function constraints allows its application
phase-space integrations in a straightforward manner@30#.
We consider the following master integral as an example

J~z,u!5E ddqVddq1ddq2dd~p11p22qV2q12q2!

3d1~qV
22mV

2 !d1~q1
2!d1~q2

2!d~qV•@p12up2# !

3
1

~q11qV2p1!2 . ~3.24!

After applying the transformation of Eq.~3.1!, this integral
becomes

J~z,u!5E ddkddl F 1

k22mV
2 G

c

F 1

~k2 l !2G
c

F 1

~ l 1p11p2!2G
c

3F 21

k•~p12up2!
G

c

1

~ l 1p1!2 , ~3.25!

wherek52qV , l 52qV2q1 , and we denote
09400
n
a

c-
c
e-
s-
e
d

F1

xG
c

5
1

2p i S 1

x2 i0
2

1

x1 i0D . ~3.26!

We can now differentiateJ(z,u) with respect toz and u,
obtaining

]J~z,u!

]z
5E ddk ddl F 1

~k22mV
2 !2G

c

F 1

~k2 l !2G
c

3F 1

~ l 1p11p2!2G
c

F 21

k•~p12up2!
G

c

1

~ l 1p1!2 ,

~3.27!

]J~z,u!

]u
5E ddkddl F 1

k22mV
2 G

c

F 1

~k2 l !2G
c

3F 1

~ l 1p11p2!2G
c

F 21

~k•~p12up2!!2G
c

k•p2

~ l 1p1!2 .

~3.28!

We have sets5(p11p2)251 in these expressions. Neithe
integral on the right-hand side of Eqs.~3.27! and ~3.28! is a
master integral. However, using IBP we can reduce them
the master integralsJ, I @0#, and I @1# using the reduction
algorithm of Sec. III B. We then obtain a system of two pa
tial differential equations which determines the function
dependence ofJ on the two kinematic variablesz, u:

]J~z,u!

]z
5

2e

u2z
J~z,u!

1
~122e!u@~113zu14z!e212zu22z#

2ez~u2z!~12uz!

3I @0#~z,u!1
~122e!~223e!u

2ez~u2z!~12uz!
I @1#~z,u!,

~3.29!

]J~z,u!

]u
52

2e

u2z
J~z,u!

1
~122e!@~714z23zu!e2322z1zu#

2e~u2z!~12uz!

3I @0#~z,u!1
~122e!~223e!

2e~u2z!~12uz!
I @1#~z,u!.

~3.30!

The general solution of Eq.~3.29! is

J~z,u!5FVd21

2d22 G2

~u2z!22e

3 H Ez

dz1~u2z1!2eb~z1 ,u!1 f ~u!1CJ , ~3.31!
8-8
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where (Vd21/2d22)2b(z,u) is the inhomogeneous part o
the differential equation in Eq.~3.29!. We can evaluate the
integral in Eq.~3.31! as a series ine after we rewriteb using
the expressions forI @n# from Sec. III C. We obtain

R5Ez

dz1~u2z1!2eb~z1 ,u!5
A1~z,u!

e
1A0~z,u!1O~e!,

~3.32!

with

A1~z,u!5
1

2
@ ln~r !2 ln~r 1t !# ~3.33!

and

A0~z,u!52
1

2
@ ln~r !1 ln~2!# ln~11r 2!1

1

2
ln~r !

3@2 ln~r !1 ln~2!24#2
1

2
ln~ t !ln~r !

1
1

2
@ ln~2!142 ln~r !1 ln~r 211!# ln~r 1t !

2
1

2
ln2~r 1t !1

1

2
ln~ t !ln~r 1t !2Li2F ~r 1t !r

r 211
G

1
1

2
Li2F2

t

r
G1

1

2
Li2F r 2t

r
G1Li2F 2r 2

r 211
G

2
1

2
Li2F r 2t

2r
G2

1

2
Li2F ~r 2t !r

r 211
G . ~3.34!

We have introduced the notationr 5Au and t5Az. Substi-
tuting the solution of Eq.~3.31! into the differential equation
of Eq. ~3.30!, we derive a differential equation forf (u)
which we can again solve order by order ine. We find

f ~u!5
f 1~u!

e
1 f 0~u!1O~e!, ~3.35!

with

f 1~u!5
1

2
ln~11r 2!2 ln~r ! ~3.36!

and

f 0~u!5Li2@2r 2#1Li2F r 211

2 G2Li2@r 2#1
1

4
ln2~r 211!

2 ln2~r !14 ln~r !2
1

2
@ ln~r 211!12 ln~r !# ln~2!

1@ ln~r !22# ln~r 211!. ~3.37!
09400
Finally, we must determine the constant of integrationC. In
principle, this requires an explicit calculation at a speci
kinematic pointJ(z0 ,u0). However, in many cases we ca
extract the constant of integration by comparing to t
asymptotic behavior of all rapidity phase-space integrals
u5z51, which is identical to that of the basic master int
gral I @0#:

lim
z,u→1

PS~z,u!5c~u2z!n22e~12uz!m22e. ~3.38!

Thee power of theu2z and 12uz factors is determined by
the number of dimensions,d5422e; adding more propaga
tors to the basic master integralI @0# can only alter the inte-
gersn, m of the asymptotic scaling. We note that the pre
ence of the constant of integrationC in Eq. ~3.31! violates the
scaling of Eq.~3.38!. We can therefore evaluateC by requir-
ing that all the terms in Eq.~3.31! that violate Eq.~3.38! in
the limit z→1, u→1 cancel. We obtain

C5
1

4 F ln2 21
p2

2 G1O~e!. ~3.39!

There are master integrals for which the solution of the
mogeneous differential equation gives a scaling atu5z51
which is consistent with Eq.~3.38! for arbitrary values of the
constantC. For these master integrals, we must determinC
by performing an explicit evaluation in the vicinity of thi
kinematic point.

As discussed previously, we often need to calculate m
ter integrals in their soft or collinear limits to higher orders
e. For example, the integralJ is typically divided by an
explicit (u2z) factor in the matrix elements, requiring ane
expansion in its collinear limitu→z which includes the
order-e term. We could extend the outlined calculation ofJ
for genericz, u to include theO~e! term and then take the
limit u→z. However, this would involve expressing the r
sult for genericz, u through generalized polylogarithms o
rank 3 with two variables; taking theu→z limit would col-
lapse them to rank-3 polylogarithms with only the argume
z. We can avoid the two-variable rank-3 polylogarithms
solving the differential equations directly in theu→z limit.
We express thez-dependent term in the general solution
Eq. ~3.31! in the form

R52E
z

u

dz1~u2z1!2eb~z1 ,u! ~3.40!

and perform the change of variables

z15z1~u2z!l. ~3.41!
8-9
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Next we expand the integrand inu2z and keep only the
leading term. Only the coll(z) limits of the boundary inte-
grals I @n# are required, and as explained above, those
known to all orders ine. We can then expand Eq.~3.40! in e;
the resulting integration overl involves polylogarithms with
a single argumentz and can be performed straightforwardl
The computation of limu→z f (u) proceeds as before, utilizin
equivalent expansions inu2z. Finally, the constantC is de-
termined by matching to the asymptotic behavioru
2z)22e(12z2)22e.

An important check of our results for the master integr
is provided by integrating them over the rapidity variableu.
The master integrals also enter the NNLO corrections to
rapidity distribution for Higgs boson production at hadr
colliders via gluon-gluon fusion, computed in the heavy t
quark approximation. Hence the integrated master integ
can be expressed in terms of the master integrals appe
in the evaluation of the Higgs boson total cross section.
have verified that all rapidity-distribution master integrals a
consistent with the results of Ref.@30#. The analytic expres-
sions for the master integrals are too lengthy to present h
They can be obtained from the authors by request.

IV. RENORMALIZATION AND MASS FACTORIZATION

The partonic cross sections of Eq.~2.6!, after combining
the real and virtual contributions up toO(as

2), contain 1/e2

and 1/e poles arising from both ultraviolet and initial-sta
collinear singularities. We remove the UV singulariti
through renormalization in the modified minimal subtracti
(MS) scheme and absorb the initial-state singularities i
the PDFs using theMS factorization scheme. First, we ex
pand the cross section in the strong coupling constant:

ds i j

dY
5

dŝ i j
~0!

dY
1S as8

p D dŝ i j
~1!

dY
1S as8

p D 2 dŝ i j
~2!

dY
1O„~as8!3

….

~4.1!

The bare strong couplingas8 is related to the running stron
coupling constantas5as(m) in the MS scheme via

as8~4p!ee2eg5asm
eF12

as

p

b0

e
1O~as

2!G , ~4.2!

with

b05
11

4
2

1

6
nf . ~4.3!

Here nf is the number of light quark flavors andm5mR
5mF is the combined renormalization and factorizati
scale. At the end of the calculation, we restore the dep
dence onmR alone, with the aid of the renormalization grou
equation. Substituting Eq.~4.2! into Eq. ~4.1! and collecting
with respect toas gives the coefficients of the renormalize
expansion,
09400
re

s

e

ls
ing
e
e

re.

o

n-

ds i j

dY
5

ds i j
~0!

dY
1S as

p D ds i j
~1!

dY
1S as

p D 2 ds i j
~2!

dY
1O„~as!

3
…,

~4.4!

in terms of the bare ones in Eq.~4.1!.
Similarly, to remove the initial-state singularities, we r

write the hadronic cross section of Eq.~2.6! using infrared
finite partonic cross sections:

dsV

dY
5(

ab
E

AteY

1 E
Ate2Y

1

dx1dx2 f̃ a
~h1!

~x1! f̃ b
~h2!

~x2!

3
ds̃ab

V

dY
~x1 ,x2!. ~4.5!

The renormalized parton distribution functionsf̃ a
(h) are re-

lated to the ‘‘bare’’ onesf b
(h) by

f̃ a
~h!5 f b

~h!
^ Gab . ~4.6!

We have introduced the convolution integral

~ f ^ g!~x!5E
0

1

dy dz f~y!g~z!d~x2yz!, ~4.7!

and we implicitly sum over repeated parton indices. T
functionsGab are given in theMS scheme by

Gab~x!5dabd~12x!2
as

p

Pab
~0!~x!

e

1S as

p D 2H 1

2e2 @~Pac
~0!

^ Pcb
~0!!~x!1b0Pab

~0!~x!#

2
1

2e
Pab

~1!~x!J 1O~as
3!, ~4.8!

where the Altarelli-Parisi kernelsPab
(n) can be found in Ref.

@48#. Substituting Eq.~4.6! into Eq. ~4.5! and comparing
with Eq. ~2.6!, we find

dsab
V

dY
~z,u!5E

Az/u

1

dy1E
Auz

1

dy2Gca~y1!
ds̃cd

V

dY S z

y1y2
,
y1u

y2
D

3Gdb~y2!. ~4.9!

The convolution integrals follow contours in the~z, u! plane,
as shown in Fig. 1. They1 integration, holdingy2 fixed,
sweeps out a flow such as the one marked ‘‘left collinea
whereas they2 integration sweeps along a ‘‘right collinear
line. The lower limits of the integration over theyi corre-
spond to the point (z̃,ũ)[„z/y1y2 ,(y1 /y2)u… striking one of
the two boundariesũ5 z̃ or ũ51/z̃. We solve Eq.~4.9! for
the finite partonic cross sectionsds̃ab /dY, recursively, order
by order in theas expansion.

At this point it is straightforward to derive the finite pa
tonic cross sections. We outline below the salient feature
the calculation. All cross sections referred to in the formu
8-10
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below are finite; we henceforth drop the tilde when referr
to them. We will also drop ‘‘d/dY’’ to make the formulas
more compact.

~i! To O(as
2), at least one of the twoGab factors, or

dsab /dY, on the right-hand side of Eq.~4.9! has a delta
function containing the convolution variable. If neitherGab
factor contains a delta function, then only the LO cross s
tion enters, withũ5 z̃51. This forces bothy1 and y2 to be
set to their lower end pointsAz/u andAzu, respectively, so
no integration needs to be done. Apart from this case,
double integral in Eq.~4.9! reduces to a single integral of on
of the following two forms: a ‘‘right’’ convolution

@sab^ Pbc
~n!#~z,u!5E

Auz

1

dx sabS z

x
,
u

xD Pbc
~n!~x! ~4.10!

or a ‘‘left’’ convolution

@Pba
~n!

^ sbc#~z,u!5E
Az/u

1

dx sabS z

x
,xuD Pbc

~n!~x!.

~4.11!

Using the behavior of the partonic cross sections under
version of rapidity,sab(z,1/u)5sba(z,u), it is simple to
show that

@sab^ Pbc
~n!#S z,

1

uD5@Pbc
~n!

^ sba#~z,u!. ~4.12!

We need only consider right convolutions; we can obtain
convolutions by inverting the variableu.

~ii ! The convolutions required to obtain a finite NLO cro
section are of the formsab

(0)
^ Pbc

(0) . The LO cross section ha
the form

sqq̄
~0!}d~12z!$d~y!1d~12y!%, ~4.13!

where we have used the variabley defined in Eq.~3.21!.
Substitutings (0) into the convolution formula in Eq.~4.10!,
we find that the resultingd(12z/x) removes the integration
leaving only the product ofPbc

(0)(z) with the remainder of
s (0). We note that this remainder contains eitherd(y) or
d(12y). To put it another way, in Eq.~4.10!, since
sqq̄

(0)(z/x,u/x) requiresz/x5u/x51, the terms generated a
haveu5z, corresponding toy50. Thed(12y) term only
contributes in the limit of Born kinematics,u5z51.

~iii ! There are three distinct types of convolutions need
in the NNLO cross section: sab

(0)
^ Pbc

(1) , @sab
(0)

^ Pbc
(0)#

^ Pcd
(0) , andsab

(1)
^ Pbc

(0) . The first of these is simple; as in th
NLO cross section, thed(12z/x) from the Born cross sec
tion removes the convolution integral, and all the terms g
erated haveu5z. We discuss the remaining cases below
some detail.

~a! We solve the second type iteratively. Thesab
(0)

^ Pbc
(0)

piece was already computed to obtain the NLO cross sec
It contains eitherd(y) or d(12y), as noted above. It ma
also contain distributions in 12z. It is simple to show that
when performing the second convolution integral using E
~4.10!, d(12y)→d(x2Auz) ~and againu5z), removing
09400
c-

e

-

ft

d

-

n.

.

the integration. In thed(y) terms, it is convenient to trea
plus distributions as follows: for distributions of 12z, we
set

F lnn~12z!

12z G
1

→~12z!211eU
en

, ~4.14!

where the vertical bar indicates that we should take the
propriate term in thee expansion defined in Eq.~3.22!. For
distributions of 12x arising from the splitting function, we
use

F 1

12xG
1

→~12x!211aeU
a0

, ~4.15!

where we now must take theO(a0) term. The most compli-
cated integral we must evaluate, which contains plus dis
butions in both 12z and 12x, becomes

I 15d~y!E
z

1

dx f~z/x!S 12
z

xD 211e

~12x!211ae,

~4.16!

where f (z/x) is finite in all kinematic limits and we have
used the delta function to simplify the lower limit of integra
tion. Performing the variable changeq5(x2z)/(12z), we
obtain

I 15d~y!E
0

1

dq@q~12z!1z#12e f ~z/x@q# !

3~12z!211e~11a!q211e~12q!211ae, ~4.17!

wherex@q#5q(12z)1z. We can extract the distributions i
12z by using the expansion in Eq.~3.22!. We must also
interpret theq and 12q factors as distributions; we set

q211e5
1

e
d~q!1(

n

en

n! F lnn q

q G
1

~4.18!

and utilize a similar expansion for 12q. We can now expand
the integrand toO(a0en). Performing the required integra
tions, we obtain the result for this convolution in terms
polylogarithms of rank 2 and 3 in the variablez.

~b! To obtain convolutions of the formsab
(1)

^ Pbc
(0) , we

first return to the form of the NLO cross section before e
pansion ine, which is

sqq̄
~1!}y212e~12y!212e~12z!2222e1¯ . ~4.19!

The ellipsis denotes terms of the formsab
(0)

^ Pbc
(0) , which are

needed for an infrared finite NLO cross section; the con
lution of these withPcd

(0) has already been discussed, and
ignore them here. We have presented theqq̄ cross section;
the qg NLO result differs only in the exponents ofy, 12y,
and 12z which appear, and the required convolutions p
ceed similarly to those we now discuss. We again cons
the case where the splitting function contains a plus distri
8-11
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tion in 12x. We rewrite this term using Eq.~4.15!. The
integral we must evaluate becomes

I 25E
Auz

1

dx fS z

x
,ypD yp

212e~12yp!212eS 12
z

xD 2222e

3~12x!211ae, ~4.20!

where

yp5
x~u2z!

~x2z!~x1u!
~4.21!

and f (z/x,yp) is finite in all kinematic limits. Performing the
variable changeq5(x2Auz)/(12Auz), the integral be-
comes

I 25E
0

1

dq f~z,y;x@q# !g~z,y;x@q#,e!y212e

3~12y!212e~12a!~12z!212eq212e~12q!211ae,

~4.22!

where x@q#5q(12Auz)1Auz. We have absorbed term
which are finite in all limits into the functiong. We extract
the singularities iny, 12y, and 12z using the expansion o
Eq. ~3.22!; we again interpret theq and 12q factors as dis-
tributions and expand them as in Eq.~4.18!. We can now
expand the integrand in botha and e. To obtain the contri-
bution to the NNLO cross section, we take theO(a0) term
and expand it ine up to and including theO(e0) piece. The
resulting integrals are straightforward to evaluate and ag
give polylogarithms of ranks 2 and 3. The rank-3 polylog
rithms only appear in thed(y) terms and are functions ofz
only.

After performing both the UV renormalization and th
collinear subtractions discussed above, we obtain finite
tonic cross sections.

V. PARTONIC CROSS SECTIONS

The basic quantities we compute,d2sV→ leptons/dM/dY,
include the probability for the vector bosonV to decay into a
pair of leptons—e.g.,Z→ l 1l 2 or W1→ l 1n l—and are dif-
ferential in both rapidityY and dilepton-invariant massM.
We shall present our results in a format which is normaliz
properly for virtual photon production,g* → l 1l 2 @see Eq.
~6.2! below#. For W and Z production, as well as forg-Z
interference in thel 1l 2 channel, we introduce additiona
normalization factorsNV, where
09400
in
-

r-

d

Ng51,

NZ5
3

16sW
2 cW

2 aQED

GZBl
Z

MZ

M4

~M22MZ
2!21GZ

2MZ
2 ,

NgZ5
v l

gv l
Z

8sW
2 cW

2

M2~M22MZ
2!

~M22MZ
2!21GZ

2MZ
2 ,

NW5
3

4sW
2 aQED

GWBl
W

MW

M4

~M22MW
2 !21GW

2 MW
2 . ~5.1!

We have used the notationsGZ andGW for the total widths of
the Z andW, MZ andMW for their masses, andBl

Z andBl
W

for their branching fractions into leptons. The leptonic vec
couplings appearing inNgZ are given by

v l
g521, v l

Z52114sW
2 , ~5.2!

and sW and cW represent the sine and cosine of the we
mixing angle, respectively.

Finally, we require the luminosity functionsLi j
V (x1 ,x2)

that enter the hadronic rapidity distribution. These functio
contain the PDFs for the partonsi, j and appropriate combi
nations of the electroweak couplings toV. We follow closely
the notation of Ref.@18#. We first introduce the following
2nf32nf matrices:

Cg,Z
ii ~qk ,ql !5Cg,Z

f f ~qk ,ql !5H 1 if qk5q̄l ,

0 otherwise,

Cg,Z
i f ~qk ,ql !5H 1 if qk5ql ,

0 otherwise,

CW6
i i

~qk ,ql !5H uVqkql
u2 if eqk

1eql
561,

0 otherwise,

CW6
i f

~qk ,ql !5H uVqkql
u2 if eqk

5611eql
,

0 otherwise,

CW6
f f

~qk ,ql !5H uVqkql
u2 if eqk

1eql
571,

0 otherwise.
~5.3!

Here qk is an element of either of the fol
lowing nf-dimensional vectors: Q5$u,d,s,c,b%, Q̄

5$ū,d̄,s̄,c̄,b̄%. In Eq. ~5.3!, eqk
denotes the electric charg

of the element andVqkql
indicates the appropriate CKM ma

trix element. Using these matrices, we can write the lumin
ity functions as follows:
8-12
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LNS
V ~x1 ,x2!5 (

i , j PQ,Q̄

CV
ii ~qi ,q̄ j !~v i

V,21ai
V,2!

3qi~x1!q̄ j~x2!,

LB2
V

~x1 ,x2!5 (
i PQ,Q̄

(
k,l PQ

CV
f f~qk ,q̄l !~vk

V,21ak
V,2!

3qi~x1!q̄i~x2!,

LBC
V ~x1 ,x2!5 (

i PQ,Q̄
(

kPQ,Q̄

@CV
i f ~qi ,q̄k!1CV

i f ~ q̄i ,qk!#

3~v i
V,21ai

V,2!qi~x1!q̄i~x2!,

LAB,vec
V ~x1 ,x2!5 (

i PQ,Q̄
(
kPQ

CV
f f~qk ,q̄k!v i

Vvk
Vqi~x1!q̄i~x2!,

LAB,ax
V ~x1 ,x2!5 (

i PQ,Q̄
(
kPQ

CV
f f~qk ,q̄k!ai

Vak
Vqi~x1!q̄i~x2!,

Lqg
V ~x1 ,x2!5 (

i , j PQ,Q̄

CV
i f ~qi ,qj !~v i

V,21ai
V,2!qi~x1!g~x2!,

Lgq
V ~x1 ,x2!5Lqg

V ~x2 ,x1!,

LC2
V

~x1 ,x2!5 (
i , j PQ,Q̄

(
kPQ,Q̄

CV
i f ~qi ,qk!~v i

V,21ai
V,2!

3qi~x1!qj~x2!,

LD2
V

~x1 ,x2!5 (
i , j PQ,Q̄

(
kPQ,Q̄

CV
i f ~qj ,qk!~v j

V,21aj
V,2!

3qi~x1!qj~x2!,

LCD,vec
V ~x1 ,x2!5 (

i , j PQ,Q̄
(

kPQ,Q̄

CV
i f ~qi ,qi !v i

Vv j
Vqi~x1!qj~x2!,

LCD,ax
V ~x1 ,x2!5 (

i , j PQ,Q̄
(

kPQ,Q̄

CV
i f ~qi ,qi !ai

Vaj
Vqi~x1!qj~x2!,
09400
LCE1

V ~x1 ,x2!5 (
i , j PQ,Q̄

CV
i f ~qi ,qj !~v i

V,21ai
V,2!

3qi~x1!qj~x2!,

LCE2

V ~x1 ,x2!5LCE1

V ~x2 ,x1!,

LCF
V ~x1 ,x2!5 (

i PQ,Q̄
(

j PQ,Q̄

CV
i f ~qi ,qj !~v i

V,21ai
V,2!

3qi~x1!qi~x2!,

Lgg
V ~x1 ,x2!5 (

i , j PQ
CV

f f~qi ,q̄ j !~v i
V,21ai

V,2!g~x1!g~x2!.

~5.4!

In this formula, a function such asqi (x1) denotes the ap-
propriate parton distribution function. The labelV takes the
valuesg, Z, andW6. The electroweak couplingsv i

V andai
V

are given in Eq.~2.4!. To obtain theg-Z interference lumi-
nosity functions, we must useV5g and substitutev i

g,2

→v i
gv i

Z , v i
gv j

g→ 1
2 (v i

gv j
Z1v j

gv i
Z).

The final ingredients required are the partonic hard cr
sections for the channels corresponding to the lumino
functions ~5.4!, ds i j

V/dY(z,u) for i j P$NS,B2,BC,...,gg%.
We have obtained analytic expressions for these functio
however, they are quite lengthy, so we refrain from givi
them here. AMAPLE file containing the functions is availabl
from the authors by request. They have also been im
mented inC11 as part of a numerical program computin
the hadronic rapidity distribution. The bulk of the analytic
complexity stems from the ‘‘hard’’ region, away from th
boundaries,z,1 andz,u,1/z ~or 0,y,1).

The hard functions contain polylogarithms of rank
Li2„Ai(z,u)…, and there are a large number of possible wa
the argumentsAi can depend on the underlying variablesz,u.
In most cases, the arguments are rational functions ot
5Az andr 5Au, as in the case of the sample integralJ(z,u)
presented in Eqs.~3.34! and~3.37!. In four cases, though, we
have to introduce functions in which the polylogarithmic a
guments are significantly more complicated. The four fun
tions of this type,J3 , J27, J21, andJ2 , are given by
J3~z,u!5
1

11u
ReH 2

1

4
ln2~z/u!2

1

4
ln~11u!F ln~z/u!12 ln~11tr !22 lnS d12r 22t~11u!

d12r D22 lnS d11r 12t~11u!

d11r D G
1Li2S 2t~11u!

d12r D1Li2S 22t~11u!

d11r D2Li2S 2z~11u!

r ~d12r ! D2Li2S 22z~11u!

r ~d11r ! D J , ~5.5!

whered15Au14z(11u);

J27~z,u!52
1

2rd1
ReF lnS r 22r 11r 1r 22322u

r 22r 12r 1r 21312uD1 lnS d122tr 11r 1r 2r 1d112t12tu1r

d122tr 11r 1r 1r 1d122t22tu2r D
13 lnS ~r 2d112tr 1!~11r 222r 1!

~r 1d122tr 1!~12r 212r 1! D G , ~5.6!
8-13
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wherer 15A11u, r 25A514u;

J21~z,u!5ReH i

z~11u!x1
F2 ln~ ta1

1!lnS a1
121

12tra1
1D 1 ln~ ta1

2!lnS a1
221

12tra1
2D 2Li2~12a1

1!1Li2~12tra1
1!1Li2~12a1

2!

2Li2~12tra1
2!G J 1

~11z!~12tr !

~12z!2~11u!r ~r 1t !
ln z lnS 11z

2 D , ~5.7!

where

x15AS 2u

11u
D 2 1

z
21, z<S 2u

11u
D 2

,

5 iA12S 2u

11u
D 2 1

z
, z.S 2u

11u
D 2

, ~5.8!

a1
65

2u

z~11u!~16 ix1!
; ~5.9!

and

J2~z,u!52J3~z,u!1
1

11u H 2rd1 lnU21u1rd1

21u2rd1
UJ27~z,u!1

3

4
ReF l 1 lnU u~u12!~r 221!

~11u!~21u2ur2!
U2 ln~11u!

3 lnU ~21u2ur2!~r 1d1!

r ~11r 2!~21u2rd1!
U2 l 2 lnS r ~u12!~d12r !

~11u!~21u2rd1! D2
1

6
~ l 1

22 l 2
2!1Li2S 2u~u12!~11r 2!

21u2ur2
D

2Li2S 2r ~u12!~r 1d1!

21u2rd1
D2Li2S 21u1rd1

~11u!~21u2rd1! D1Li2S 21u1ur2

~11u!~21u2ur2! D G1
1

2
@M1~xu!2M1~xl !#

1
3

8
p2Q~u21!J , ~5.10!

whereQ(x) is the Heaviside function,

l 15 lnU21u1ur2

21u2ur2
U, l 25 lnU21u1rd1

21u2rd1
U,

M1~x!5ReH 2Li2S x1x1

2x1 D 1Li2S x1x2

2x2 D 2Li2S x12x

x12x2D 1Li2S x1x1

x12x2D 1
1

4
F ln2S x1x1

x2x1D 2 ln2S x1x2

x2x2D G
2

1

2
F ln2S x1x1

2x1 D 2 ln2S x1x2

2x2 D G1
1

2
lnS x1x1

x2x1D lnS ~x1x2!~x2x2!

~x12x2!2 D J ,

x152
21u22r 1

u
5

1

x2 , xu5r 212r 1 , xl5
d112Az~11u!

r
. ~5.11!

After the use of polylogarithmic identities, the set of arguments of the remaining polylogarithms, Li2(Ai), can be reduced
if desired, to

AiPH 2z,z,
11z

2
,2r ,2u,

12u

11u
,
12u

2
,2

t

r
,

t

r
,
r 2t

2r
,

2tr ,tr ,
12tr

2
,

12r

11tr
,
r 21

r 1t
,

12t

r 11
,
r ~12t !

r 11
,

u2z

11u
,
12uz

11u
,
12tr

11u
,
r ~r 2t !

11u
,

u21

r ~r 1t !
,

12u

11tr J . ~5.12!

The arguments of the logarithms that appear, ln(Bi), are drawn from a simpler set

BiP$z,12z,11t,11z,u,r 21,r 11,11u,r 2t,r 1t,12tr ,11tr %, ~5.13!
094008-14
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but since they can appear in pairs, there are still quite a few terms of the form ln(Bi)ln(Bj).
As mentioned above, rank-3 polylogarithms of a single variablez are generated in the collinear regionsu5z @d(y) terms#

and u51/z @d(12y) terms#. These collinear terms have a similar form to the NNLO total cross section, integrated
rapidity @18,19#. We can write the functions appearing, Li3(ai), in terms of

aiPH z,2z,12z,212z,12z2,
11z

2
,
12z

2
,
12z

11z
,

2z

11z
,2

z

2
,

z

2~11z!
,2

1

2z
,

1

2~11z!
,2

11z

z J . ~5.14!

FIG. 2. ~Color online! Regions in the~z, u!
plane for which the hard functions have to b
patched, because of singular behavior. Besid
the soft limitz→1 and the left and right collinea
edges, there are spurious singularities asu→1
and asz→@2u/(11u)#2 andz→@2/(11u)#2.
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The rank-2 polylogarithms appearing in the collinear term
Li2(bi), have the arguments

biPH z,2z,212z,
11z

2
,2

z

2
,2

1

2z
,2

11z

z J ,

~5.15!

while the arguments of the logarithms ln(ci) are

ciP$z,12z,11z,21z,112z%. ~5.16!

The hard functions have integrable, logarithmic singula
ties in the soft limitz→1 and the collinear limitsu→z and
u→1/z. However, the complexity of the analytical formula
is such that many of the individual terms in the hard fun
tions have much more severe singularities in these limit
e.g., several powers of 1/(12z) as z→1. These spurious
singularities lead to unacceptable roundoff error. For this r
son we construct patching functions, which are used inst
of the full functions in thin strips near the singular region
The patching functions are typically constructed by tak
the appropriate limits analytically. Figure 2 shows the
gions in the~z, u! plane which have to be patched. In add
tion to the soft and collinear regions, there are two ot
types of regions where the singularities are completely
physical. Forz5@2u/(11u)#2, the variablex1 in Eq. ~5.8!
vanishes, leading to a singularity in functions containi
J21(z,u). There is an equivalent singularity atz5@2/(1
1u)#2 in functions containingJ21(z,1/u). In this pair of
09400
,

-

-

a-
ad
.

-

r
-

strips, the true function is smooth enough that an anal
patch is not necessary; instead, when the point~z, u! lies in
the strip, we replace its value by the average of two nea
values on either edge of the strip@49#. Finally, the limit u
→1 is singular, as indicated by the presence of (r 21) in the
setBi in Eq. ~5.13!; there are spurious power-law singular
ties as well in this limit.

The expansion of the hard functions in a series abouz
51 can be carried out to very high order and produces
approximation to the integrand which is free of spurious s
gularities. Working to order (12z)25 results in an expression
whose accuracy is completely adequate for predictions
typical fixed-target kinematics@29# and forW andZ produc-
tion at the Tevatron. However, for the case ofW andZ pro-
duction at the LHC, the small value oft5MV

2/S'431025

means that values ofz;0.01 are actually relevant in th
numerical integration. We have therefore used the exact,
expanded, representations of the hard functions~plus
patches! in order to get sufficient accuracy for the case of t
LHC.

VI. NUMERICAL RESULTS

In this section we present numerical results for theW and
Z rapidity distributions at both the Tevatron and LHC. W
use the following parameters:MZ591.1876 GeV, GZ

52.4952 GeV, Bl
Z50.03363, MW580.426 GeV, GW

52.118 GeV, andBl
W50.1082. We use theZ-pole value of
8-15
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aQED(Mz)51/128 for the fine structure constant and s
sin2 uW50.23143, the effective mixing angle measured
Z-pole asymmetries at LEP and SLC@50#. We expect that
these choices account for the bulk of the factorizable e
troweak radiative corrections, which dominate for nea
resonant production ofW and Z bosons. A more accurat
description would require a consistent accounting of
electroweak corrections@11#.

We also need the following values of the CKM matr
elements to compute theW cross section:

uVudu50.975, uVusu50.222, uVcdu50.222,

uVcsu50.974. ~6.1!

The absolute values of the other matrix elements are
tained by requiring unitarity of the CKM matrix. Because t
collider center-of-mass energy is large, it is possible in pr
ciple to produce top quarks in association with theW or Z;
however, since these processes can be distinguished ex
mentally, we exclude them from consideration. We also o
top quarks from the virtual corrections and set the numbe
light ~massless! quark flavorsnf to 5 in all numerical results
in this paper. At one loop, the partonic subprocessesqq̄
→Zg andqg→Zq include triangle graphs, weighted by th
axial couplingsaq

Z for the quarks circulating in the loop. Fo
massless quarks, these contributions cancel generatio
generation. The effect of a finite top quark mass on tht
2b contribution has been studied previously and found to
negligibly small@18,51#, so we omit it here.

In the previous sections we discussed how the rapi
distributions of electroweak bosons in partonic collisions c
be computed. To obtain results for hadronic collisions,
must convolute the partonic differential cross sections w
parton distribution functions which describe the probabil
of finding a parton with a given momentum fraction insi
the hadron. The corresponding formula reads

d2sV

dM dY
5

4paQED
2

9M3 (
i j

E dx1dx2NVLi j
V~x1 ,x2!

3
ds i j

V

dY
~x1 ,x2!, ~6.2!

whereds i j
V/dY is the partonic cross section,NV is the nor-

malization factor for the bosonV, andLi j
V(x1 ,x2) is the cor-

responding luminosity function; these were discussed in
previous section. There are three observable cross sect
production of aW1, production of aW2, and neutral-
current production of a lepton pairl 1l 2, which receives con-
tributions from bothg andZ exchange as well as fromg-Z
interference.

It is convenient to change the integration variables in
above formula and express the integration overx1 and x2
through the partonic variablesz andy. Consider the case o
negative rapidityY; the results forY.0 can be obtained by
substitutingY→2Y in the formulas below. ForY,0, using
09400
t
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e

the relations~2.8!, ~2.12!, ~2.14!, and~3.21!, the integration
over x1 andx2 in Eq. ~6.2! can be rewritten as

E dx1dx2NVLi j
V~x1 ,x2!

ds i j
V

dY
~x1 ,x2!

5E
Ate2Y

1

dzE
0

1

dy Fi j ~z,y!1E
AteY

Ate2Y

dzE
y1~z!

1

dy Fi j ~z,y!

1E
t

AteY

dzE
y1~z!

y2~z!

dy Fi j ~z,y!, ~6.3!

where

Fi j ~z,y!5J~z,y!~12z!
ds i j

V~z,y!

dY
NVLi j

V~x1 ,x2!,

J~z,y!5
t~11z!

2z2@12y~12z!#@z1y~12z!#
,

x15eYAt

z

@z1y~12z!#

@12y~12z!#
,

x25e2YAt

z

@12y~12z!#

@z1y~12z!#
,

y1~z!5
te22Y2z2

~z1te22Y!~12z!
,

y2~z!5
z~e22Y2t!

~t1e22Yz!~12z!
. ~6.4!

This representation is convenient for numerical integratio
We now present results for theW andZ rapidity distribu-

tions. For the NNLO calculations, we use the correspond
set of MRST parton distribution functions. The MRST co
contains four different sets of PDFs. As mentioned in t
Introduction, the complete NNLO evolution kernels need
for a consistent extraction of PDFs at NNLO are not y
known. The MRST program contains both the fastest a
slowest possible perturbative evolutions, based upon
known moments of the required DGLAP equations. A th
set allows an evolution between these extremes. Finall
fourth PDF set which seems preferred by large-ET jet pro-
duction at the Tevatron is included. Unless stated otherw
we use mode 1 of the MRST NNLO PDF code, which co
responds to the intermediate rate of evolution.

For the most part, we present double-differential cro
sections, including the decay to leptons:

d2sV→ leptons

dM dY
. ~6.5!

For the case of on-shell vector bosons, these are evaluat
the resonance peakM5MW or M5MZ . Of course, any ex-
periment will integrate over the resonance profile. If this
tegral is performed in the narrow-resonance approxima
and if the g exchange andg-Z interference terms are ne
glected in the case of theZ, the result is
8-16
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FIG. 3. ~Color online! The center-of-mass
system ~c.m.s.! rapidity distribution of an on-
shell Z boson at the LHC. The LO, NLO, and
NNLO results have been included. The bands
dicate the variation of the renormalization an
factorization scales in the rangeMZ/2<m
<2MZ .
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V5
p

2
GV

d2sV→ leptons

dM dY U
M5MV

. ~6.6!

The narrow-resonance conversion factorpGV/2 numerically
evaluates to 3.919 GeV for theZ boson and 3.327 GeV fo
theW. One can further integrate Eq.~6.6! over the rapidityY
to obtain the theoretical prediction for the ‘‘total cross se
tion times branching ratio,’’sV3Bl

V . Our total cross section
results for the MRST PDFs, for example, agree with res
obtained using the numerical program of Ref.@18#, after we
omit b quarks from the initial state@52,53#. @We note that
Eqs.~B.13! and~B.16! in the article in Ref.@18# are missing
a factor ofTf5

1
2 , and the ‘‘103’’ at the end of Eq.~B.11!

should have anx multiplying it. Also, the normalization of
the W cross section in Eqs.~A.3! and ~A.11! should be a
factor of 2 larger. All these factors are properly included
the numerical program@18#.# Our program is also capable o
integrating over a range of dilepton-invariant masses, w
out making the narrow-resonance approximation, and
shall present one such plot below.

We first present, in Fig. 3, the rapidity distribution for aZ
boson produced on shell at the LHC. The LO, NLO, a
NNLO results have been included. We have equated
renormalization and factorization scales, and have va
them in the rangeMZ/2<m<2MZ . At LO the scale varia-
tion is large, ranging from 30% at central rapidities to 25%
Y'3. This is reduced to'6% at NLO for all rapidities. At
NNLO, the prediction for central rapidities stabilizes dr
matically; the scale variation is'0.6%. This increases to 1%
at Y'3 and 3% atY'4. However, it seems that fo
Y<3—the rapidity values accessible in LHC experiments
the residual scale dependence is no longer a significant
oretical uncertainty when the NNLO corrections are
cluded.

The magnitude of the higher-order corrections exhibit
pattern similar to that of the scale variation. The NLO c
rections significantly increase the LO prediction; the LO
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sult is increased by 30% at central rapidities and by 15%
larger rapidity values. They also change the shape of
distribution, creating a broad peak at central rapidities, a
visible in Fig. 3. The results stabilize completely at NNLO
The NNLO corrections decrease the NLO result by on
1%–2% and do not affect the shape of the distribution.

For most of the plots in the paper, in order to estimate
uncertainties in the NNLO predictions we shall continue
setmF5mR5m and vary the common scalem from M /2 to
2M . However, it is useful to consider a broader range
scale variations, for at least one kinematic configuration.
Fig. 4 we study dependence onmF andmR in more detail for
the case of on-shellZ boson production at the LHC, at th
precisely central rapidity pointY50. For each order in per
turbation theory~LO, NLO, NNLO!, using the MRST PDF
sets we plot three curves, corresponding to~i! common
variation of the renormalization and factorization scal
mF5mR5m, but over a larger range ofm, M /5,m,5M
~solid curves!; ~ii ! variation of the factorization scale alone
settingmR5MZ ~dashed curves!; ~iii ! variation of the renor-
malization scale alone, settingmF5MZ ~dotted curves!.

Because the LO result is independent ofas(mR), the third
curve is trivially constant at LO and the former two L
curves lie on top of each other. We can see from Fig. 4 t
the tiny NNLO scale variation in Fig. 3 is not peculiar to th
rangeM /2,m,2M used there. Even extending the range
M /5,m,5M , for a common variation the bandwidth onl
enlarges from 0.5% to 1.2%. Over this same range, hold
mF fixed and varyingmR also produces a quite small range
values, less than 0.5%. The largest variations are found
holding mR fixed and varyingmF . These variations are stil
only of order 0.7% over the rangeM /2,m,2M , but rise to
of order 5% at the ends of the extended rangeM /5,m
,5M . The latter are fairly extreme scale choices, howev
We believe that the range used in the rest of the paper,mF
5mR5m and M /2,m,2M , provides a good guide to th
perturbative uncertainty remaining from the terms beyo
NNLO.
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ANASTASIOU et al. PHYSICAL REVIEW D 69, 094008 ~2004!
FIG. 4. ~Color online! More general varia-
tions of the renormalization and factorizatio
scales, for production of an on-shellZ boson at
the LHC, at central rapidityY50. For each order
in perturbation theory~LO, NLO, NNLO!, three
curves are shown. The solid curves depict co
mon variation of the renormalization and facto
ization scales,mF5mR5m, as used in the rest o
the paper, but extending the range of variation
M /5,m,5M . The dashed curves represe
variation of the factorization scale alone, holdin
the renormalization scale fixed atM. The dotted
curves result from varying the renormalizatio
scale instead, holding the factorization scale fix
at M.
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In Fig. 5 we present the rapidity distribution for on-shellZ
production at run II of the Tevatron. The scale variation
unnaturally small at LO; it is 3% at central rapidities a
varies from 0.1% to 5% fromY51 to Y52. This occurs
because the direction of the scale variation reverses wi
the range ofm considered—i.e.,dsLO /dm50 for a value of
m which satisfiesMZ/2<m<2MZ . This value ofm depends
upon rapidity, leading to scale dependences which v
strongly with Y. The scale variation exhibits a more prop
behavior at NLO, starting at 3% at central rapidities a
increasing to 5%–6% atY52.5. At NNLO the scale depen
dence is drastically reduced, as at the LHC, and rem
below 1% for all relevant rapidity values. The magnitude
the higher-order corrections is slightly larger at the Tevat
than at the LHC. The NLO prediction is higher than the L
result by nearly 45% at central rapidities; this shift decrea
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to 30% atY51.5 and to 15% atY52.5. The NNLO correc-
tions further increase the NLO prediction by 3%–5% ov
the rapidity rangeY<2.

This remarkable stability of the rapidity distribution wit
respect to scale variation cannot be attributed to the sm
ness of the NNLO QCD corrections to the partonic cro
sections. These corrections are theds (2)/dY terms defined in
Eq. ~4.1! ~after renormalization and mass factorization!, con-
voluted with the MRST PDFs and with all partonic channe
included. We vary the scale in these terms and normalize
variation to the NLO cross section. We find that the NNL
corrections contribute a scale dependence of'5% at central
rapidities. When we form the complete NNLO cross secti
which requires adding these corrections to the con volut
of the ds (0)/dY and ds (1)/dY terms of Eq. ~4.1! with
NNLO PDFs, the width of this band is decreased to le
e
of

he
FIG. 5. ~Color online! The c.m.s. rapidity dis-
tribution of an on-shellZ boson at run II of the
Tevatron. The LO, NLO, and NNLO results hav
been included. The bands indicate the variation
the renormalization and factorization scales in t
rangeMZ/2<m<2MZ .
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FIG. 6. ~Color online! The fractional contri-
bution of the various NNLO partonic channels
the entire NNLO cross section forZ production at
run I of the Tevatron form5MZ . Hereqiqj de-
notes all quark-quark and quark-antiquark cha
nels, while qg indicates the quark-gluon an
antiquark-gluon subprocesses. Thegg channel is
numerically small and would be consistent wi
zero on this plot.
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than 1%. This demonstrates a remarkable interplay betw
NNLO calculations and parton distribution functions.

The small size of the NNLO corrections is partly due
large cancellations between the various partonic channels
illustrate this, we present in Fig. 6 the fractional contrib
tions of the various NNLO partonic corrections to the ent
NNLO cross section, at run I of the Tevatron. We include
qg andqiqj ~the latter includesqq andqq̄ initial states! chan-
nels; thegg subprocess is numerically unimportant in th
process. The magnitude of each order-as

2 partonic correction,
ds i j , can be 7%–8% of the complete NNLO cross sect
sNNLO at central rapidities and can reach 10% of the en
result at larger rapidities. They cancel significantly, howev
and their sum is only'3% of the NNLO result. This cancel
lation is even larger at LHC energies; in fact, theqiqj andqg
channels cancel to such an extent that thegg subprocess
becomes an important contribution to the NNLO correctio
This split into partonic components is admittedly not entire
physical, as they are linked by initial-state collinear sing
larities. However, this degree of cancellation should be ra
sensitive to the PDF set chosen. A different choice of PD
may lead to changes in the cross section that are larger
that found by varying the renormalization and factorizati
scales.

To investigate how the choice of PDFs affects the NNL
cross section, we first vary the MRST mode. The choi
corresponding to the fast and slow DGLAP evolutions p
duce negligible shifts in our result, much less than 1% for
rapidities studied and smaller than the residual scale de
dence.~Similar results have been observed at the level of
total cross section@13#.! However, the choice of MRST
mode 4, which provides a better fit to the Tevatron high-ET
jet data, shifts the NNLOZ production cross section signifi
cantly. We present in Fig. 7 the rapidity distributions f
LHC Z production using these two PDF choices. Both t
NLO and NNLO results have been displayed; the scale va
tions are also included. The two mode choices are indis
guishable at NLO, due to the large residual scale dep
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dence. At NNLO they become quite distinct, and the'1%
discrepancy is potentially visible given projected LHC e
rors. We note that the difference between the two PDF s
does not just produce a shift in the overall normalizatio
The mode-4 set slightly increases the number of quark
x;0.03 and decreases the number of gluons more subs
tially in this x range@to compensate for an even larger i
crease ing(x) at very largex#. Theqg channel has a negativ
partonic cross section; thus, paradoxically, decreasingg(x)
increases the gluonic contribution to the cross section.
quark and gluon distribution shifts, plus a 2% increase
as(MZ), work in concert to increase the mode-4 predictio
relative to mode 1, forZ production at the LHC at centra
rapidities and particularly in the range 1,Y,2.

Another set of PDFs extracted with NNLO precision h
been presented by Alekhin@14#. Only deep-inelastic-
scattering data are used in this extraction; the NNLO Q
corrections can therefore be consistently included. T
MRST global fits utilize processes for which these corre
tions are not known. This introduces an additional source
theoretical uncertainty into these parametrizations which
difficult to quantify. We present in Fig. 8 a comparison be-
tween the MRST and Alekhin PDF sets for resonantZ pro-
duction at the LHC. We have included the NNLO scale d
pendences for the Alekhin set and for the MRST mode-1
mode-4 sets; the NLO scale dependences for the MR
mode-1 and Alekhin parametrizations are also displayed.
large scale dependences again render all three choices i
tinguishable at NLO. However, significant discrepancies
pear at NNLO. The difference between the mode-1 and A
khin sets is 2% at central rapidities; this increases to 4.5%
Y52 and to 8.5% atY53. The discrepancies in both no
malization and shape will be clearly resolvable at the LH
Although the MRST mode-4 choice is closer to both t
shape and normalization of the Alekhin set, the differen
still range from 1%–8.5% as the rapidity is increased; t
will again be observable at the LHC. Electroweak gauge
8-19
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ANASTASIOU et al. PHYSICAL REVIEW D 69, 094008 ~2004!
FIG. 7. ~Color online! The rapidity distribu-
tions for Z production at the LHC for the MRST
PDF sets, mode 1 and mode 4. The bands indic
the NNLO scale dependences, the solid lines d
note the NLO mode-1 scale dependence, and
dashed lines indicate the NLO mode-4 sca
variation. The upper lines correspond to the sc
choicem52M in the NLO cross sections, while
the lower lines indicatem5M /2.
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son production becomes a powerful discriminator betw
different PDF parametrizations when the NNLO QCD co
rections are included.

The dilepton rapidity distribution for (Z,g* ) production
has been measured by CDF at run I of the Tevatron, i
mass window aroundMZ , 66,M,116 GeV @8#. To com-
pare with these data, we numerically integrate overM as well
as z and y in Eq. ~6.3!. The result is shown in Fig. 9.~The
result of doing thisM integration in a narrow-resonance a
proximation, taking into account the finite-mass end poin
but neglecting photon exchange, is about 2% lower.! The
result with the Alekhin PDF set is about 4%–5% above
MRST result. Naively, the Alekhin set gives a better fit to t
data. However, most of the Alekhin and MRST differen
here is in the overall normalization, and there is a 3.9% ov
all normalization uncertainty in the data~not shown in the
09400
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error bars! due to thepp̄ luminosity uncertainty. Also, elec
troweak corrections have not yet been included. Hence
two PDF sets probably cannot be distinguished by this ru
data. Instead, it is clear from the figure that, for a given P
set, the dilepton rapidity distribution around theZ mass may
be used to ‘‘monitor’’ the luminosity at run II, for which the
statistical errors will be significantly smaller than tho
shown.

We now examine the resonant production ofW bosons at
run II of the Tevatron. We present in Fig. 10 the rapid
distribution forW1 production; the distribution for theW2

can be obtained by substitutingY→2Y. Both the scale
variations and magnitudes of the higher corrections are s
lar to those found previously forZ production at the Teva-
tron. The scale dependence at LO is again unnaturally sm
ranging from 3% to 5%, becausedsLO /dm50 for values of
le-
le
t,
e
nce
de-
in

ale
FIG. 8. ~Color online! The rapidity distribu-
tions for Z production at the LHC for the MRST
PDF sets, mode 1 and mode 4, and for the A
khin PDF set. The bands indicate the NNLO sca
dependences;m1 denotes the MRST mode-1 se
while m4 indicates the MRST mode-4 set. Th
dashed lines denote the NLO scale depende
for the mode-1 set, and the dot-dashed lines
note the NLO scale dependence for the Alekh
set. The upper lines correspond to the sc
choicem52M in the NLO cross sections, while
the lower lines indicatem5M /2.
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FIG. 9. ~Color online! The dilepton rapidity
distribution for (Z,g* ) production at run I of the
Tevatron, compared with data from CDF@8#. The
LO and NLO curves are for the MRST PDF se
The thin NNLO bands are for the MRST~lower!
and Alekhin~upper! parametrizations. The band
correspond to varyingM /2<m<2M .
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m within the parameter space studied. At NLO the sc
variations are between 2% and 3.5%; they decrease
'0.3%–0.7% at NNLO, depending upon the rapidity ch
sen. The magnitude of the NLO corrections is large, vary
from 45% at central rapidities to'25% at larger rapidities
The NNLO corrections are also appreciable; they range fr
2.5% atY50 to 4% atuYu'2.

Another observable frequently studied at hadron collid
is theW charge asymmetry, defined as

AW~Y!5
ds~W1!/dY2ds~W2!/dY

ds~W1!/dY1ds~W2!/dY
. ~6.7!

A simple calculation in the LO approximation reveals th
this quantity is sensitive to thex dependence ofu(x)/d(x),
the ratio of up and down quark distributions in the proto
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.

Although in a realistic experiment only the pseudorapidity
the charged lepton coming from theW decay can be mea
sured, much of the sensitivity to the PDFs remains. SinceAW
is a ratio of cross sections, it might be expected that it
rather insensitive to QCD corrections. This is indeed
case. At the Tevatron, app̄ collider, with the assumption o
CP invariance, the charge asymmetry is an odd function oY,
since it may be written as

AW~Y!5
ds~W1!/dY2ds~W1!/dYuY→2Y

ds~W1!/dY1ds~W1!/dYuY→2Y
52AW~2Y!.

~6.8!

The asymmetry is positive for positiveY, corresponding to
the W1 boson moving in the same direction as the incide
proton, becauseu(x) is larger thand(x) at largex. In Fig.
11, we present the LO, NLO, and NNLO predictions for t
d
ds
d

FIG. 10. ~Color online! The c.m.s. rapidity
distribution of an on-shellW1 boson at run II of
the Tevatron. Shown are the LO, NLO, an
NNLO results for the MRST PDF sets. The ban
indicate the variation of the renormalization an
factorization scales in the rangeMW/2<m
<2MW .
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FIG. 11. ~Color online! The W charge asym-
metry at run II of the Tevatron. Included are th
LO, NLO, and NNLO results. The bands indica
the variation of the renormalization and factoriz
tion scales in the rangeMW/2<m<2MW . As the
charge asymmetry is rather insensitive to QC
corrections, the three bands are almost co
pletely degenerate.
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charge asymmetry at run II of the Tevatron, together w
their scale dependences. The NLO corrections increase
Born-level result by 2%–4%. The NNLO corrections to t
NLO result range from22% at centralW rapidities to11%
at large rapidities.

The scale variations ofAW(Y) are small; to study them
we present in Fig. 12 the scale dependence bandwidths
fined as

B~Y!5
AW~Y,m52MW!2AW~Y,m5MW/2!

AW~Y,m5MW!
. ~6.9!

The scale variation is already below 5% for all rapidities
LO and is below 1% at NLO. The NNLO prediction is ab
solutely stable against scale variation, indicating that this
servable is potentially a very strong constraint on qua
distribution functions. We note that the scale choicem
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52MZ in the LO asymmetry yields an approximation to th
NNLO result which is accurate to 1%–2% for essentially
rapidities.

The NNLO predictions for the rapidity distributions fo
on-shellW6 boson production at the LHC are shown in Fi
13. The distributions are symmetric inY; only the positive
half of the rapidity range is shown forW1 and the negative
half for W2. The charge asymmetry is positive for all rapid
ties, but is particularly striking aroundY53. The behavior of
the perturbation series is very similar to that discussed p
viously for Z production at the LHC. Again, the NNLO scal
variation bandwidths are extremely narrow for central rapi
ties, ranging from'0.6% forY,2, to 1.5% atY53, to 3%
at Y54.

In addition to the study of resonant production of ele
troweak gauge bosons, both the Tevatron and LHC use h
invariant-mass Drell-Yan production of lepton pairs to sea
for new gauge bosons and lepton-quark contact interacti
e
FIG. 12. ~Color online! The scale dependenc
bandwidths for theW charge asymmetry at the
Tevatron. Included are the LO, NLO, and NNLO
results.
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FIG. 13. ~Color online! The c.m.s. rapidity
distributions for production of an on-shellW2

boson~left! and on-shellW1 boson~right! at the
LHC, at LO, NLO, and NNLO, for the MRST
PDF sets. Each distribution is symmetric inY; we
only show half the rapidity range in each cas
The bands indicate the common variation of t
renormalization and factorization scales in th
rangeMW/2<m<2MW .
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Although these are primarily inclusive searches, rapidity c
are required because of experimental constraints. We th
fore examine the NNLO QCD corrections to off-she
(Z,g* ) production at large invariant masses. We present
low the rapidity distribution forM5250 GeV (Z,g* ) pro-
duction at the LHC in Fig. 14, and forM5200 GeV at run II
of the Tevatron in Fig. 15. The scale dependences are sig
cantly smaller forM5250 GeV than for resonantZ produc-
tion at the LHC. The LO scale variation is 12% at cent
rapidities and 4% atY53. Both the NLO and NNLO scale
variations are much less than 1% for all values of rapid
The magnitude of the higher-order corrections is mu
larger, however. The NLO result increases the LO predict
by nearly 35% at central rapidities; this correction decrea
to 10% at largerY values. This discrepancy between the siz
of the scale variations and NLO shifts sends a somew
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mixed message regarding the importance of the NNLO c
rections. We find that they are small, decreasing the N
result by less than 0.5% forY,1.5 and increasing it by les
than 1% for 1.5,Y,2.8. The small scale dependence of t
NNLO cross section and the stability of the NLO predictio
indicate a complete stabilization of the perturbative result
M5250 GeV at the LHC.

The results forM5200 GeV (Z,g* ) production at run II
of the Tevatron exhibit both larger scale dependences
more important higher-order corrections. The LO scale va
tions are similar to those found at the LHC, ranging from 7
at Y50 to '15% at larger rapidity values. In contrast to th
LHC case, the NLO scale dependences remain fairly la
varying from 5% at central rapidities to 14% atY52. At
NNLO, the scale variations are between 1.5% and 4%, ag
increasing for larger rapidities. The magnitude of the NL
in-
FIG. 14. ~Color online! The rapidity distribu-
tion for (Z,g* ) production at the LHC for an
invariant massM5250 GeV. The LO, NLO, and
NNLO results have been included. The bands
dicate the residual scale dependences.
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FIG. 15. ~Color online! The rapidity distribu-
tion for (Z,g* ) production at run II of the Teva-
tron for an invariant massM5200 GeV. The LO,
NLO, and NNLO results have been included. Th
bands indicate the residual scale dependences
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corrections is over 40% at central rapidities and'30% at
larger Y values. The NNLO corrections further increase t
NNLO result by 5%–6% throughout the entire rapidi
range.

Finally, we study the accuracy of various approximatio
to the complete NNLO correction to the rapidity distributio
There are three distinct types of terms which appear in
result.

~i! Soft(sz): terms which contain either a delta functio
or a plus distribution in 12z. These terms arise from pro
duction of the vector bosonV close to the partonic threshol
and can be obtained by considering only soft partonic em
sions from theqq̄→V subprocess.

~ii ! Collinear (cy): terms containing delta functions o
plus distributions in eithery or 12y, but not in 12z. These
terms result from the emission of radiation collinear to o
of the initial partons.

~iii ! Hard (h): terms which have no delta functions o
plus distributions. These terms arise from generic scatte
events with the emission of hard additional partons in
final state.

There is some potential ambiguity in this separation, d
to the presence of Jacobian factors in the integration.
perform the separation in terms of the functionsFi j (z,y)
appearing in Eq.~6.3!—i.e., including all Jacobian factor
resulting from the transformation the variables~z,y!. The sz
terms can be obtained by using the soft gluon approximat
and it is possible to imagine obtaining thecy contributions
from a simplified calculation in which the collinear emissio
of V is factorized from a hard scattering piece. The ha
emissions, however, require a full NNLO computation. In
itively, we expect thesz terms, which are the simplest t
obtain, to dominate for large invariant masses—i.e., as
z→1 threshold is approached. We wish to examine whet
this contribution, or perhaps thesz andcy terms together, can
furnish a reasonable approximation in phenomenologic
interesting regions of parameter space.

We present in Figs. 16 and 17 the NNLO corrections
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the rapidity distributions for (Z,g* ) production at the LHC,
split into its soft, collinear, and hard components, for t
invariant massesM5MZ and M52 TeV. The NNLO cor-
rections are theds (2)/dY terms defined in Eq.~4.1!, convo-
luted with the MRST PDFs and with all partonic channe
included. We present separately the following pieces: thesz
term, thecy term, theh term, and the sum of theh and cy
pieces, which would integrate to the ‘‘hard’’~nonsoft! part of
the total cross section. These terms are normalized to
complete NNLO correction. AtM5MZ , all components are
important. We note that there are large cancellations betw
thesz term and the remaining pieces. Neither thesz piece nor
the sum of thesz andcy terms furnishes a good approxima
tion to the complete result. Generic hard emissions are
portant; this result is expected, since there is a large amo
of phase space available. AtM52 TeV, the magnitude of the
sz term becomes larger compared to the hard andcy terms, as
expected. However, it still does not furnish a good appro
mation to the entire result for all rapidities; the fact that
does so for central rapidities arises from an accidental c
cellation between the hard andcy pieces. We observe simila
behavior for Tevatron kinematics. We note that at higher
variant masses, the magnitude of the hard term decre
quickly. Thecy term also decreases, but less rapidly. Thesz
term does not dominate until very large invariant masses
reached.

VII. CONCLUSIONS

We have presented a calculation of the rapidity distrib
tions for electroweak gauge boson production at hadron
liders through NNLO in QCD. This is the first complet
NNLO computation of a differential quantity needed f
high-energy hadron collider physics. We have discussed
detail a powerful new technique for calculating different
distributions. This method is completely automated, p
duces fully analytic results, and treats the various com
nents of a NNLO calculation in a unified manner. Our resu
8-24
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FIG. 16. ~Color online! The components of
the NNLO corrections to the rapidity distributio
for (Z,g* ) production at the LHC forM5MZ .
The pieces included are the hard parth, sz , cy ,
and the sum of theh andcy pieces. The complete
NNLO correction h1cy1sz is normalized to
unity. We have setm5M .
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will assist in the extraction of parton distribution function
parton-parton luminosities, electroweak gauge boson in
mation, and other quantities of interest with the accura
needed for Tevatron and LHC physics.

We have found that the residual scale dependences
resonantW andZ production at both the Tevatron and LH
are below 1% when the NNLO corrections are included;
rapidity distributions are completely stable against high
order QCD corrections. Only higher-order electroweak c
rections and mixed QCD-electroweak effects remain to
included@11#. These distributions are therefore ideal obse
ables to use to discriminate between different parton dis
bution function parametrizations. We have studied sev
different NNLO extractions of parton distribution function
obtained by the MRST group, as well as an NNLO extract
provided by Alekhin. Varying the evolution rate of the a
09400
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-
i-
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n

proximate NNLO DGLAP kernels in the MRST parametr
zation yields negligible shifts in our results. However,
MRST PDF set designed to provide a better fit to the Te
tron high-ET jet cross section produces a difference of ab
1% in rapidity distributions at the LHC. This difference ma
be observable, given expected experimental errors.

The deviations induced by instead using Alekhin’s PD
extraction are more striking. Both the normalization a
shape of the rapidity distributions obtained with Alekhin
parametrization differ from those found with the MRST se
the differences range from 2% to 8.5% as the rapidity
varied. These differences should be easily resolvable at
LHC, given the expected errors. The MRST parametrizati
are derived from global fits to a variety of data, includin
data from processes for which the NNLO QCD correctio
are unknown. We note that the magnitude of the discrep
n

FIG. 17. ~Color online! The components of

the NNLO corrections to the rapidity distributio
for (Z,g* ) production at the LHC for M
52 TeV. The pieces included are the hard parth,
sz , cy , and the sum of theh andcy pieces. The
complete NNLO correctionh1cy1sz is normal-
ized to unity. We have setm5M .
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cies between the Alekhin and MRST PDF sets is consis
with the typical size of NNLO QCD corrections. It is con
ceivable that the inclusion of these corrections into
MRST fit might lessen the observed differences. In fact,
NNLO Alekhin PDF set includes a full error matrix.~Similar
uncertainty estimates are available for the MRST set
NLO!. This matrix permits the construction of PDF unce
tainty bands for the vector boson rapidity distribution
whereas here we just employed the central PDF values.
defer such a study to future work.

The magnitude of the NNLO corrections to resona
gauge boson production ranges from 1%–2% at the LHC
3%–4% at the Tevatron; the corrections for higher-invaria
mass gauge bosons can reach 5%–6% at the Tevatron. T
contributions must be included to yield a theoretical calcu
tion accurate to'1%, the projected experimental precisio
at the LHC. However, the NNLO corrections do not va
strongly with rapidity. The NLO rapidity distribution appea
to describe the kinematics quite well. Reweighting the NL
distributions by the inclusiveK factor K (2)5sNNLO /sNLO
yields an approximation accurate to<1% for all relevant
rapidities. The analogous reweighting of the LO results,
KNNLO5sNNLO /sLO , doesnot furnish a good approximation
to the complete result. The excellent accuracy of the N
reweighting technique for the rapidity distribution sugge
that one applies the factorK (2) to output from a hadron-leve
Monte Carlo program which incorporates the NLO vect
boson production matrix elements, such asMC@NLO 2.2
@54#. This simple procedure should give a good picture of
structure of the hadronic events accompanying the ve
bosons and is likely to approach NNLO precision for su
ciently inclusive observables.

We have also studied the accuracy of approximating
NNLO corrections by partial results. We have found th
including only virtual and soft gluon corrections, labeled
sz in the text, does not yield a good approximation for res
nant gauge boson production. Only at very large invari
masses do these terms dominate. We estimate that ave
values of Bjorkenx>0.3– 0.4 must be reached before thesz
component accounts for'80% of the complete NNLO cor
rection for all relevant rapidities. We also note that thesz
terms do not accurately predict the shape of the NNLO c
rection, as is apparent from Figs. 16 and 17.

Finally, we note that with our result for the rapidity dis
09400
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tribution, it is possible to obtain almost full control over th
kinematics of the electroweak boson, as produced in fix
order perturbation theory. This is because the NLO QC
corrections to the double differential distributio
d2s/(dY dp') for electroweak boson production are know
@55#. It was assumed in Ref.@55# that p'Þ0. It is therefore
not possible to perform the integration overp' to getds/dY
using the results of Ref.@55# alone. However, the NNLO
calculation of the rapidity distribution presented here giv
an unambiguous answer for the integral overp' at fixed
values of rapidity and can therefore be used as a norma
tion condition. We write

d2smod

dY dp'
5u~p'2p'

cut!
d2s

dY dp'

1Fds

dY
2E

p'
cut

p'
max

dp'

d2s

dY dp'
Gu~p'

cut2p'!, ~7.1!

where d2s/(dY dp') is the distribution computed in Ref
@55#. Integratingd2smod/(dY dp') overp' gives the correct
result for the rapidity distribution; however, the ‘‘zero-p'’’
bin extends fromp'50 to p'5p'

cut. Apart from this draw-
back, Eq.~7.1! provides a simple way to describe the ele
troweak boson kinematics at NNLO in QCD.

Our results are an important theoretical input for phys
at both the Tevatron and LHC. We believe the method
have introduced to obtain these results can be used to ca
late other phenomenologically interesting observables.
anticipate its application in many other areas of collid
physics.
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