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New lattice data for thdl, and3,, potentials at short distances are presented. We compare perturbation
theory to the lower static hybrid potentials and find good agreement at short distances, once the renormalon
ambiguities are accounted for. We use the nonperturbatively determined continuum-limit static hybrid and
ground state potentials at short distances to determine the gluelump energies. The result is consistent with an
estimate obtained from the gluelump data at finite lattice spacings. For the lightest gluelump, we obtain
AR (vi=2.5 1) =[2.25+0.10(latt.y- 0.21(th.y- 0.08(Aws) Iro * in the quenched approximation witty *
~400 MeV. We show that, to quote sensible numbers for the absolute values of the gluelump energies, it is
necessary to handle the singularities of the singlet and octet potentials in the Borel plane. We propose to
subtract the renormalons of the short-distance matching coefficients, the potentials in this case. For the singlet
potential the leading renormalon is already known and related to that of the pole mass; for the octet potential
a new renormalon appears, which we approximately evaluate. We also apply our methods to heavy-light
mesons in the static limit and from the lattice simulations available in the literature we obtain the quenched
result ARY(v;=2.5r5' 1) =[1.17+ 0.08(latt.)= 0.13(th.)* 0.09(A ) Iro *. We calculatem, mrs(my s) and ap-
ply our methods to gluinonia whose dynamics are governed by the singlet potential between adjoint sources.
We can exclude nonstandard linear short-distance contributions to the static potentials, with good accuracy.
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[. INTRODUCTION scheme. However, analogously to the situation with the static
singlet potential, the convergence of the perturbative series
In recent years, we have witnessed growing interest in thef the octet potential does not appear very promising. This is
physics of gluelumps and static hybrid potentials. In manya general problem when different scales are factorized, and
cases this has been driven by increasingly reliable latticén particular perturbative from non-perturbative ones. The
simulations of their propertiegl—7]. These results expose bad convergence is also related to the problem of factorizing
models of low energy QCD to stringent tests and thereforgon-perturbative quantities, without defining their perturba-
enhance our understanding of the underlying dynamics. Théve counterpartg14], and is usually believed to be due to
short distance physics of the static hybrid potentials is othe existence of singularities in the Borel transform of the
particular importance. In this region, hybrids and gluelumpsperturbative quantity. These singularities appear to be due to
are intimately related and well suited to investigate the interscales of ordee™ "X (the typical scale of the perturbative
play between perturbative and non-perturbative physics. Aguantity in an n-loop calculation. In Ref[15] one of the
short distances, one is faced with widely separated scales:present authors proposed that, since these singularities are
1r>Aqcp- In such situations, effective field theories related to energy scales much lower than the ones that are
(EFTs are particularly useful since they enable the physicsupposedly included in the perturbative object, they should
associated with the different scales to be factorized in a verpe subtracted from it and introduced in the matrix elements
efficient and model independent way. One EFT designed tof the effective theory. This program has been worked out for
deal with the kinematical case of interest to us correspondthe pole mass and the static singlet poteritil,16. Here
to potential nonrelativistic QCMPNRQCD) [8] in the static ~ we apply the same approach to the static octet potential. This
limit [9]. will allow us to determine absolute values for the gluelump
In Ref.[9] the gluelumps and the short distance regime ofmasses from the spectrum of the static hybrids, as well as to
the static hybrids were studied within this EFT frameworkstudy up to which scale one can use perturbation theory to
and general features identified. Some results known from théescribe hybrid potentials.
past[5,10—13 were recovered within a unified framework  This paper is organized as follows. In Sec. Il we will work
and in some cases extended. out the role of gluelumps in pPNRQCD, and how gluelumps
One can go beyond this analysis and use lattice data pluand hybrid potentials are interrelated. In Sec. Ill we will then
the knowledge of théperturbativg octet potential to obtain sketch how our lattice data have been obtained, before dis-
numerical values for gluelump masses in a particulacussing and classifying renormalons and power corrections
in the continuumMS scheme as well as in a lattice scheme in
Sec. IV. In the same section we will also generalize the
*Electronic address: g.bali@physics.gla.ac.uk renormalon subtracted (RS) scheme of R&§] to the case
"Electronic address: pineda@ecm.ub.es of the octet potential and discuss the scale dependence. In
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Sec. V we will obtain the gluelump masses in the RS scheme
and relate these results to the lattice scheme. We will com-
pare to previous literature and predict the gluelump spec-
trum. In Sec. VI we will determine the binding energy of
static-light mesons as well as the bottom mass, before wi
discuss generalizations to and relations with adjoint poten
tials, gluinonium and other objects with relevance to short-

distance QCD in Sec. VII.

II. HYBRID POTENTIALS AND GLUELUMPS

PHYSICAL REVIEW D 69, 094001 (2004

T2
_ pexp[ —igJ_letho(R,t)} (5)

denotes the Schwinger line in the adjoint representatibn,
?epresents some gluonic field, and P represents the path or-
dering prescription; for examples see Table IV in Sec. V C.
Equation(3) allows us to relate the energies of the static
hybridsEy to the energies of the gluelumps,

ARS=[Ep(r)—E(1)]=[Vo(r) = Ve(n)]+0(r?).  (6)

We discuss the relationship between hybrid potentials and

gluelumps at short distances. First we consider the EFT pi

cIhis equation encapsulates one of the central ideas of this

ture, before we discuss the symmetries that are relevant iR2Pe'- The combinatioB — Es iszrenormalon-free in pertur-
the non-perturbative case. Finally we compare these expe@ation theoryfup to possibleO(r) effectd, and can be cal-

tations to lattice data.

A. pNRQCD and gluelumps

The pNRQCD Lagrangian at leading order imland in
the multipole expansion readi8,9]

LpNRQCD:f d3r d?’RTI’[ST(Io"o—VS)S-i-OT(IDO—VO)O]

1
—f d*RoF4 F#2+0(r). (1)

45w

All the gauge fields in Eq(1) are evaluated iR andt, in
particular FrrA=FAA(R,T) and iDy0=id,0
—g[A¢(R,t),0]. The singlet and octet potentialg;, i

culated unambiguously non-perturbatively: the ultraviolet
(UV) renormalons related to the infrar@i®R) renormalons of
twice the pole mass cancel each other. Howekgrcontains
an UV renormalon that corresponds to the leading IR renor-
malon ofV,.

The shapesof some of the Ey(r) have been computed
on the lattice, for instance, in Refd—6]. On the other hand,
the values oflsome A, have also been computed within a
variety of models as well as in lattice simulatioffs2,17.
Consistency would require that the values /of; obtained
from Ey—E and the values of\ directly obtained from
gluelump computations should agree. This will be checked in
Sec. VB.

Gluelump states are created by a static source in the octet
(adjoind representation attached to some gluonic contidit
such that the state becomes a singlet under gauge transfor-

=s,0 are to be regarded as matching coefficients, which demations. This is what would happen to heavy gluinos in the
pend on the scale,s separating soft gluons from ultrasoft static approximation. Hence sometimes gluelumps are also
ones. In the static limit “soft” energies are @(1/r) and referred to as gluinoballs or glueballinos in the literature.
“ultrasoft” energies are ofO(a/r). Notice that the hard Without further information, their energy is only fixed up to
scalem plays no role in this limit. The only assumption made a global constant. Only the energy splittings between differ-
so far concerns the size of i.e. 1> Aqcp, such that the ent states have well defined continuum limits in lattice simu-
potentials can be computed in perturbation theory. Also notéations. In lattice regularization at a lattice spaciaghe
that throughout this paper we will adopt a Minkowski space-normalization ambiguity is reflected in a linear divergence
time notation. «a~ ! while in dimensional regularization one encounters an
The spectrum of the singlet state reads UV renormalon. In the HQET(heavy quark effective
theory), picture of a heavy-light meson one faces a similar
problem. In this situation one also has a static sodircéhe
fundamental representation in this casehich has to be
wheremgg denotes an on-shefDS) mass. One would nor- attached to some light-quartand gluonig content to be-
mally apply pNRQCD to quarkonia and in this casgg COMe a singlet under gauge transformations. The binding en-

represents the heavy quark pole mass. For the static hybridergy/T is again only defined up to a global constgt#] and
the spectrum reads only its sum with the pole mass is unambiguous:

Eo(r)=2mos+V(r)+0(r?), )

En(r)=2mogt Vo(r) + A3S+O(r?), ) Mg= My, os+ ACS+O(1/my). 7)
where We will investigate this situation in Sec. VI.
ASSE lim i &i_l_ln(Ha(T/Z)cﬁ(T/Z,— T/2)Hb(—T/2)>. B. Symmetries of hybrid potentials and gluelumps
T The spectrum of open QCD string states can be com-
4) pletely classified by the quantum numbers associated with

the underlying symmetry group, up to radial excitations. In

H(TR2—TI2)=p(TI2R,—TI2R) this case, these are the distance between the end points, the
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gauge group representation under which these end points TABLE |. Expected degeneracies of hybrid potentials at short
transform(in what follows we consider the fundamental rep- distance, based on the level ordering of the gluelump spectrum.
resentation and the symmetry group of cylindrical rotations Note that if ,the 3~ gluelump turned out to be lighter than thé 2
with reflectionsD..,. The irreducible representations of the then theX, ,II} A, ,®, potentials would approach the'3 state
latter group are conventionally labeled by the spin along thevhile the [ T, A | potentials would approach the’2 instead.
axis A, whereX ,I1,A refer toA=0,1,2, respectively, with a

: : PC H Ty
subscripty=g for gerade(even PC=+ or »=u for un- 2Nt particleJ Open stringA ;
gerade(odd) PC= — transformation properties. AIN=1 1*- S0 I,
representations are two dimensional. The one-dimensbnal 1~ S5
representations have, in addition to thejuantum number, a P E’QH,’ Z
o, parity with respect to reflections on a plane that includes ot~ 23 ’H? ’Ag
the two end points. This is reflected in an additioralsu- . e e

. . : o . 3 s, J0LALLD
perscript. The state associated with the static singlet potential 0+ uor e
transforms according to the representaﬁ@ while the two 4 - B 24
lowest-lying hybrid potentials are within t&, andX., rep- . 2 I1g.8g.Pg.Tg
resentations, respectively. 1 RN

In contrast, point-like QCD states are characterized by the
PC ;
J7* of the usuaIO(3)®tCt_rotat|fotr;] group as ;NetlL as by the operator which is non-local, even in the 0 limit, at present
gauge group representation ot the source. In th€ pure gaug&s ot gpyious to us how this non-perturbative state can be
sector, gauge invariance requires this representation to haYr?terpreted in terms of the local states we are considering in
vanishing triality, such that the source can be screened to

) ) . is paper, certainly an open question that should be ad-
singlet by the glue. States created by operators in the S'ngl?fressed in the future.
representation are known as glueballs, octet states as glue-
lumps. In contrast to gluelump states, where the octet source
propagates through the gluonic background, the normaliza-
tion of glueball states with respect to the vacuum energy is We would like to establish if lattice data on hybrid poten-
unambiguous. tials reproduces the degeneracies expected from the above
Since D,,,CO(3)®C, in the limit r—0 certain hybrid discussion in the short distance region. In the limit 0, any
levels must become degenerate. For instance, in this limigiven A=1 hybrid potential can be subduced from alfy
the 3, state corresponds to #¢=1"" state withJ,=0  state withJ=A and PC=+ for »=g or PC=— for 5
while the IT, doublet corresponds to it3,==*1 partners. =u representations. For instance thg, is embedded in
The gauge transformation property of the hybrid potentiall™~,1~*,2" 7,27 ..., The situation is somewhat different
creation operator will also change in this lIimB®3*=1  for A=0 states, which have the additiorg) parity: theEg
@8, such that hybrids will either approach gluelunus. representation can be obtained from™Q1~—,2" %, .. ,Eg
Eq. (3)] or glueballs, in an appropriate normalization. In thefrom 0~ ~,17*, - S3F from 0F7,17F,-.. and 3, from
case of glueballs the correct normalization can be obtained—+ 17~ ... e list all combinations of interest to us in
by considering the differencBy(r) —Es(r) from which the  Table I. The ordering of low-lying gluelumps has been es-
pole mass cancels. We will discuss the situation with respeahblished in Ref.[12] and reads with increasing mass:
to gluelumps in detail in Sec. IV. 17~ 1 "2 -2t 3"",0"",4 ,17", witha 3~ state in
In perturbation theory, the ground state potential correthe region of the 4~ and 1" *. The 2"~ and 3"~ as well
Sponds to the Singlet potential while hybrld potentials will as the 4~ and 1 states are degenerate within present
have the perturbative expansion of the octet potential. ~ statistical uncertainties. The continuum limit gluelump
Recently, Philipser19] suggested to non-perturbatively masses are displayed as circles at the left of Fig. 1, where we
generalize the octet potential, employing a definition that rehave added thearbitrary overall constant 2.264 to the
sembles the perturbative one, after gauge fixing to the Lagjyelump splittings to match the hybrid potentials. The simi-
placian Coulomb gauge. He proved that this construction igarity of this value to our estimate of the gluelump energy in
equivalent to a gauge invariant correlation function whosesec. v A is purely accidental.
eigenvalues will resemble masses of physical states. In the jyge, Kuti and Morningstafl] have, for the first time,
limit r — 0 the suggested operator will be an adjoint temporakomprehensively determined the spectrum of hybrid poten-
Schwinger line, dressed with a non-local but symmetricijals. We convert their data, computed at their smallest lattice
gluon cloud, with thel”© quantum numbers of the vacuum. spacinga,~0.2 fm, into units ofr ,~0.5 fm[20]. Since the

A similar construction is mentioned in the second paragraphesults have been obtained with an improved action and on
of Sec. VI, as a possible non-perturbative normalization

point for gluelump energies. The static “octet” potential sug-

gested in Ref{19] will have theX ; symmetry and, up 0 a  IThe splittings between all states with respect to e Bround
different non-perturbative offset, the same perturbative eXstate have been extrapolated to the continuum limit in Rl and
pansion and power term/renormalon structure as the hybrigle add our own extrapolations for the 4 and 1° * states to these,
potentials discussed below. Due to the nature of its creatiobased on the tables of this reference.

C. Hybrid and gluelump mass splittings
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' ' ' ' . ' tentials. To firmly establish their ordering one would have to
investigate radial excitations in additional lattice hybrid
channels and/or clarify the gluelump spectrum in more de-

tail. Should the 2~ and 3"~ hybrid levels be inverted then
(EJ' JI0,A,,®,) will converge to the 3~ while

(S0, ,A]) will approach the 2. We note that the or-
dering of the hybrid potentials, with a lo%_ , makes the

first interpretation more suggestive.

Finally theX " potential seems to head towards the"0
gluelump but suddenly turns downward, approaching the
(lighter) sum of the ground state potential and scalar glueball
[21,22 instead. The latter type of decay will eventually hap-
pen for all lattice potentials but only at extremely short dis-
tances. We also remark that all potentials will diverger as

FIG. 1. Different hybrid potential§l] at a lattice spacing,, —0. Th's_ does not affect our _comparlson with trle gluelump
~0.2 fm~0.4ry, wherer,~0.5 fm, in comparison with the glue- €Sults, since we have normalized them toltheg'> , poten-
lump spectrum, extrapolated to the continuum lifiig] (circles, ~ tials at the shortest distance availatilehe gluelump values
left-most data points The gluelump spectrum has been shifted by are plotted at =0 to simplify the figure).
an arbitrary constant to adjust the 1 state with thell, and3 On a qualitative level the short-distance data are very con-
potentials at a short distance. In addition, we include the sum of th&istent with the expected degeneracies. From the figure we
ground state ¥;) potential and the scalar glueball masg: « see that at~2ry~1fm the spectrum of hybrid potentials
[21,22. The lines are drawn to guide the eye. displays the equi-distant band structure one would qualita-

tively expect from a string picture. Clearly this region, as
anisotropic lattices witta,~a,/4, one might expect lattice well as the crossover region to the short-distance behavior
artifacts to be smatfl,at least for the lower-lying potentials. ro<r<2rq, cannot be expected to be within the perturbative
Hence we compare these data, normalize&4e(ry), with  domain: at best one can possibly imagine perturbation theory

the continuum expectations of the gluelun[pl%]. The full  to be valid for the left-most two data points. With the excep-
lines are cubic splines to guide the eye while the dashed linegion of thell,, I1; and®, potentials there are also no clear
indicate the gluelumps towards which we would expect thesigns for the onset of the short distance tiéhavior with a
respective potentials to converge. positive coefficient as expected from perturbation theory.
The first seven hybrid potentials are compatible with theFurthermore, most of the gaps within multiplets of hybrid
degeneracies suggested by Table I. The next state is tricki@otentials, that are to leading order indicative of the size of
since it is not clear whether2 or 3"~ is lighter. In the the non-perturbative? term, are still quite significant, even
figure we depict the case for a light 2. This would mean atr=0.4r; for instance the difference between thg and
that ) .I1/,A,) approach the 2~ while TI, potentials at this smallest distance is about 6,28

(s, 1", Al @) approach the 3~. Note that of the latter ~110 MeV.

four potentials only data fofl;; and ®, are available. Also _ ~ _

note that the continuum statés,, II/. and @, are all ob- D. The difference between thell, and X hybrids

tained from the samg, lattice representation. For the pur-  From the above considerations it is clear that for a more

pose of the figure we make an arbitrary choice to distributeyuantitative study we need lattice data at shorter distances. In

the former three states among tBg,E;, andE/ lattice po-  this paper we have obtained these for the lowest two gluonic
excitations,I1, andX | (see Sec. Il We display their dif-
ferences in the continuum limit in Fig. 2. We see how these

%0n the lattice the relevant symmetry groupDs;, rather than  approach zero at smal) as expected from the short distance
D.., (see, e.g., Ref23]). In the continuum limit theA,,, potentials  expansion. pNRQCD predicts that the next effects should be
will correspond ta% , , theA,,, potentials ta% , and theE,, poten-  of O(r?) (and renormalon-fréeln fact, we can fit the lattice

tials toll,,, wheren=u,g. The radial excitations could in principal data rather well with aAEj _s+=Ay _s-r? ansatz for
u g u u

correspond to higher spin potentials and in fact one of the threeShort distances, with slogeee Fig. 2,

r'rg

observed excitations d&, will correspond to theb,, ground state.
In all other cases, associating the lowest possible continuum spin to A =0 920.5§, -3 ®)
a given lattice potential seems to agree with the ordering suggested -3, T4-0520

by the gluelump spectrurtas well as in the large distance string

limit [1]). B;,, andB,,, both correspond tad . In either casdas  where the error is purely statisticé@ttice). This fit has been
well as forAé), at the short distances displayed in the figure, thedone using points <0.5r,. By increasing the fit range to
two lattice representations agree with each other, supporting the<0 g, the following result is obtained:

view that violations of rotational symmetry are small. In this case
we only display the lattice representations with better statistical

o -3
accuracy, i.e. th&{)s. A3 (0.83£0.29r, 7, 9
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FIG. 2. Splitting between the ; and thell, potentials, extrapo- FIG. 3. Continuum limit extrapolation of the difference between

lated to the continuum limit, and the comparison with a quadratic ﬁtthel'[u and theS potentials Vg = r[1+0(a%r?)] as described in
to ther <0.5r data points (, '~ 0.4 GeV). The big circles corre-  the text[Eqs.(10) and(11)]. The Jugeet al. data are from Ref1].
spond to the data of Juge al.[1], obtained at finite lattice spacing
a,~0.3%,. The errors in this case are smaller than the symbols. brid creation operators to optimize the overlap with the
o . ground statg4]. The Il potential has been determined on
indicating stability of the result of E¢8). axis as well as along a plane diagorak,, = (1,1,0), while
n order4to estimate systematic errors one can add a quafhe s~ potential has only been obtained on axis. Typically
tic term:br® (only even powers of appear in the multipole e achieved ground state overlaps of around 65% for both
expansion of this quantijy If the result is stable, our deter- potentials aj3=5.8 and between 85% and 90% at the larger
mination of Ay s should not change much. Actually this 14 g values. Typical fit ranges for one-exponential fits to
is what happens. If we fit up to=<0.5,, we obtain the correlation functions for thell,(X,) potential were 8
central valueAHu,Eur8=0.93 with a very small quartic co- <t/a,<18 (9<t/a,<14) at §=5.8, 9<t/a,<24 (11
efficient, br3=—0.05. If we increase the range to  <t/a,<21) atp=6.0 and 13<t/a,<30 (15<t/a,<25) at
<0.8&,, we obtain the same central valud, _s-ri  B=6.2. Forall further details of the analysis we refer to Ref.
v [24] where potentials between sources in non-fundamental

=0.93, but with a slightly bigger quartic termbrg representations o§U(3) were extracted using exactly the

=—0.18. Introducing the quartic term enhances the stabilitySame methods.

of Ayr,—s under variations of the fit range. From this dis- g psequently, the potentials as well as the differences be-
cussion we conclude that the systematic error is negligibletween potentials have been extrapolated to the continuum
in comparison to the error displayed in our result E8). limit. As one such example we display the difference be-
We remark that within the framework of static pNRQCD tween thell,, and the singlet potential in Fig. 3 for distances
and to second order in the multipole expansion, one can rg—<r,. In this extrapolation we somewhat deviate from Ref.
late the slopéA;; s to gluonic correlators of QCD. [24]: we follow Ref.[25] in removing the lattice artifacts to
leading order inng, by plotting the data as a function of the
inverse lattice Coulomb propagator,
lll. LATTICE DETERMINATION OF HYBRID
POTENTIALS -1
: (10

1

We extract the hybrid potentials in two sets of simula-
tions, using the Wilson gauge action on an isotropic lattice
with volume 24;_>< 48 at=6.2 (a~0.14) as well @ On  (ather than of. The lattice Coulomb propagator for the Wil-
three anisotropic lattices with spatial lattice spacirgs ggp gauge action is given by
~0.33,0.23,0.1%,, respectively, with anisotropg,~4a..

The former result has been obtained in the context of the 3
study of Ref[4] (and has been published in RE3]) while :47Tf” d°Q  codQR)
the simulation parameters, statistics and smearing of the lat- ~m (273 Q\’

ter runs are identical to those of Ref24]: (8,&p) - 4, sin —)
=(5.8,3.2,(6.0,3.2,(6.2,3.25). The isotropic data are used i 2

as a consistency check and in Sec. IV D, while we extrapo-

late the data obtained on the anisotropic lattices to the corand agrees with the continuumRLfunction up toO(a?/r?)
tinuum limit. lattice artifacts.R=r/a denotes an integer-valued three-

Some time was spent on improving the shape of the hyvector and theQ;=q;a, are dimensionless. For tHé, po-

1
R

11)
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TABLE Il. Values ofV, , with v=1/r: exact resul{where availablpand the estimate using E4.9). We
also display the estimates ®f ,, with v=1/r (extracted from Ref[15]).

Von=rVon Voo Vo Vo2 Vos Vo
exact ;=0) 0.166667 0.305472 1.27419

Eqg. (19 (ns=0) 0.110552 0.244266 1.14193 6.97413 54.4562
vs,n= er,n vs,o vs,l vs,z vs,s ‘\75’4

exact (1;=0) —1.33333 —2.44378 —11.7893

estimate (;=0) —1.20643 —2.66564 —12.4616 —76.1075 —594.2718

tential this procedure removes violations of rotational sym-power divergences on the lattice and the analogous lattice
metry within the statistical errors and brings the plane-scheme. Finally we discuss the running of the gluelump mass
diagonal points in line with the on-axis data. Unfortunately,from one scale to another.
we cannot perform a similar internal test for the potential
which we only determined for on-axis separations. A. OS scheme for the octet potential

The next step involved fitting differences between hybrid

potentials ancﬁg, AEy=Ey—Es -, for r=2a to the phe- The octet potential in the caser Aqcp can be com-
g

puted order by order in perturbation theory. Nevertheless, it

nomenological interpolation, is not an IR safe obje¢R6]. Its perturbative expansion reads
Co+cgIn(r) 5 -
AEy(r)=cyt ————Fcqr?, (12 Vo(rivud= >, Vonaltl, (13
n=0 '

with parameters; . We then extrapolated these interpolating,,nere we have made explicit its dependence on the IR cutoff
curves to the continuum limit, assuming the leading oafpr vys and ag= a(v), where we define

dependence. This was done separately for different pairs of"
two lattice spacings. The central value of the extrapolation is dag ag
given by the result obtained from th&,~0.3%, and a, VEZ—Za;[ﬁoEﬂLBl
~0.16( data sets. The error is estimated by the squared sum

of the statistical error of the fine lattice data set and than what follows we will always identifyas with ays. The
difference between the above extrapolation and an extrap@st two coefficientsV, o, V, 4 are known, as well as the

constrained and hence the latter systematic uncertainty inyote, however, that these leading logarithms are not associ-
creases. The resulting error band is depicted in Fig. 3. Reagyed with to the first IR renormalon. Faf, , there exists a
suringly, thea,~0.16, data are already in agreement with preliminary computatiori28], '

the continuum limit and the,~0.23, data agree within

2

as
| 4.,
4ar

errors: the fine lattice data set effectively already corresponds 1

to the continuum limit. The more precise isotropic reference Vo,2= = —5— V521t Vo2, (14)
data @~0.14 ;) are also close to the continuum limit. We Ne—1

also notice that the first three data points of the coarse lattice

data by Juget al.[1] (a,~0.3%) are compatible with our SV e — i g 21C2E (15)
extrapolation. The same observations hold true for3fje °Z" 2N, (4m)2 T Ay’

potentials.

Rather than representing the continuum limit extrapolatedvhich we will use in what followsVy , has been computed
potentials by error bands, in the remaining parts of this papein Ref. [29]. For V, 3, we will use the renormalon-based
we add the difference betwedfinite a) interpolation and estimate that we obtain in Sec. IV @able ).

(continuum limih extrapolation to the fine lattice data points  Studying the convergence of perturbation theory of the
and increase their errors by the systematic uncertainty inectet potential in the OS scheme, conclusions similar to

volved in the extrapolation. those in Ref.[16] are obtained. The poor convergence is
demonstrated in Fig. 4, where we try two choices of the scale
IV. STATIC OCTET POTENTIAL v. In part(a) we usev=w;, where
We will discuss the octet potential in the OS (“pole uizr’*1=6.60451~2.6 GeV (16

mass”) scheme, compute the normalization constant of the
renormalon and generalize the RS renormalon subtractecbrresponds to the shortest distancefor which the con-
schemd 15] to this case. We will also discuss the structure oftinuum limit extrapolated lattice potentials are available. In
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1 rVi(r)

0.4 o

0
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

b) r/ry

FIG. 4.1¢V,(r) (the octet potential in the OS schena tree leveldashed lines one loop(dashed-dotted lingstwo loops(dotted line$
and three loopsgestimaté plus the leading single ultrasoft logarith{golid lines. (a) corresponds to the scale=»; [cf. Eq. (16)] and (b)
to v=1/r. In both cases;/us=2.5r51. Only the solid curves depend on this choice.

part (b) we vary v=1/r. Obviously the curves depicted in The structure of the renormalon is equal to the singlet one.
the two parts of the figure agree with each other at’
~0.15,. Note the difference in the vertical scale.

B. Static octet potential normalization constant

This is due to the fact that the number of octet fields is
conserved at leading order in the multipole expansion and
that the masgpotentia) does not renormalize at this order.
Therefore the values of the coefficierisc;,c,, ... above

are the same as for the case of the static potential and the

We define the Borel transform of the octet potential aspole mass and can be found in Rdf$5,30,31. We display

follows: them here for ease of reference:
0 - tn
=f dte VUsB[V,](t), B[Vo](t)=>, Von—. B1
0 n=o0 il =—7F, (20)
(17 2%
The behavior of the perturbative expansion EcB) at large _ 1 (b1
orders is dictated by the closest singularity to the origin of its €1= 4ng B_o_'BZ ' (2D
Borel transform, which happens to be located=al«/3,.
This singularity has two sources: one is a UV renormalongng
which cancels with the renormalon of twice the pole mass,
the other is an IR renormalon that cancels with the UV renor- 1 1
malon of the gluelump energy. This result follows from the Cop=——— 45031ﬂ2 Zﬂoﬁ%ﬁz
structure of the effective theory and the consequent factor- b(b—1) 3
ization of the different scales in E(B). Being more precise, 5
the behavior of the Borel transform of the static octet poten- +B3(— 23+ B5) — 2B5B3)- (22)

tial near the closest singularity to the oridin=1/2 where

we defineu= Bot/(47)] reads

BVl () =Ny,

+cy(1—2u)%+

S+

er[14—(:1(1—2u)

(analytic term,

(18)

The only difference with respect to the static singlet potential
is the value ofNVO. The cancellation of the renormalon in

Eq. (3) requires

2N+ Ny, +N, =0, (23)

whereN, is the normalization constant of the renormalon of
the gluelump massB[ A ] reads the same as E({.8), with

where byanalytic term we mean a function that is analytic the replacemenNV —N,). Therefore, unlike in the static
up to the next IR renormalon at=3/2. This dictates the singlet potential case, we cannot fi, from the knowledge
behavior of the perturbative expansion at large orders to b%f N,, alone. Yet we wil (approxmately determmeNV

v “ij Bo\"I'(n+1+D) b
on = W' 27 T [T (nip)
b(b—1)

T b (ntb-1)

Cot---

19

from low orders in perturbation theory of the octet potentlal.
Note also thalN, is independent oH, the specific gluonic
content of the gluelump, since it only depends on the high
energy behavior, which is universal. To leading non-trivial
order one obtainsNV0= Cal2—C¢ ,Ny=—C,/2.

In analogy to Refd.15,16,32 we define the new function,
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N (X) N ing coefficients of the effective theory. This clashes with the
0.14 Vo \ logic of scale separation in the EFT formalism. The solution
0.13 \ advocated in Ref.15] was to subtract this behavior from the
S matching coefficients. At the practical level this was imple-
Biaild \ -’:_____\_________ mented by subtracting the Borel plane singularities of the
0:11F Ny ™™ - \, S matching coefficients. In Ref§15,1€ this has been worked
0.1 \\ out for the pole mass and the static singlet potential and we
N refer to these references for the definitions and further de-
¢.03 Ny tails. In particular Eq(2) reads
0.6 0.8 1 1.2 1.4 1.6 1.8 2
X Es(r)=2mgg(v¢) + Vg el ve) +O(r?), (26)
FIG. 5. x=vr dependence oNy_for n(=0 at LO (dashed- where
dotted ling, NLO (dotted ling and NNLO (dashed ling
Mgs( V) = Mog— OMgg( V), 27
Dy (u)=2> Dg’gunz(l—2u)1+bB[vg°>](t(u)) Vs rel;ve) = V(1) +26mgg(vy), (28)
n=0

and(in the above equation we have already used the fact that
the renormalon of the singlet potential cancels with the one
of minus twice the pole mas3

:NVOV[1+Cl(l—2u)+C2(1—2u)2+ o]
+(1—2u)**Px (analytic term, (24)

and try to approximately determiri‘si\,0 by using the first

three coefficients of this series. In analogy to R¢i&,16],
we fix v=1/r and obtain{up to O(u®)| -1,

OMgg( V)
< Bo\" 11 <  T(n+1+b—k)
—nzl NM(@) ag (Vf)go Ckm-

Ny,=0.1666670.0624292-0.00976333-0.114001. (29)

(25)
The convergence is rather good and, moreover, we have Iéor the static hybrids, the spectrum reads
sign alternating series. In fact, the scale dependence is be-
coming milder when we go to higher ordefsee Fig. 5.
Note that if the two-loop coefficient, , had been equal to
that of the singlet casg29] (with color factor Ci—C,a/2
—Cy), we would have obtainely =0.146542.

We can now compute estimates fof, , by using Eq.

En(r)=2mgg(vi) + Vo rd 1 v) + AR (v1) +O(r?),
(30)

Obviously, we have to define the octet potential and the glue-
lump mass above. In the RS scheme the octet potential reads

(19). These, as well as estimates g ,, are displayed in o
Table Il for ng=0. We can see that the exact results are Vo re 7)) =Vo— 8Vo rs= >, VRSt (31)
reasonably well reproduced. Hence we feel confident that we ' ’ n=0
are near the asymptotic regime dominated by the first IR
renormalon and that for higher our predictions will accu- where
rately approximate the exact results.
In order to avoid large corrections from terms depending * Bo\" ['(n+1+b—k)
on v,s, the predictions should be understood with=1/r Vo rs= > Ny Vf(_) al v D G
=1 o "\ 24 K=0 I'(l+b—k)

and later on one can use the renormalization group equations
for the static potential27] to keep track of thev,s depen-
dence.

(32

This specifies the gluelump mass which reads
C. RS scheme for the octet potential Aﬁs( v)=Ap— SArd V1), (33
In Sec. IV A we have demonstrated the poor convergence
of the perturbative expansion of the octet potential in the OSyhere
scheme. This bad behavior is usually believed to be due to
the singularities in the Borel transform of the perturbative
expansion. Nevertheless, these singularities are fake sincactually, throughout this paper we use the RS’ scheme as defined

they cancel with singularities in the matrix elements. On then Ref.[15] instead of the RS scheme, since we believe this to have
other hand, this lack of convergence of perturbation theora more physical interpretation. For simplicity of notation we will,

arises because at higher orders in perturbation theory smallabwever, refer to this modified scheme as the “RS scheme,” omit-
and smaller momenta contribute to the short-distance matching the “prime.”
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%415 Vo,Rs /
0.3f
0.2r
0.1
ol
0 0.2 0.4 0.6 0.8 1

FIG. 6. roV, rs at tree level(dashed lines one loop(dashed-
dotted line$, two loops (dotted line$ and three loopgestimate
plus the leading single ultrasoft logarithisolid lineg. For the scale
of ayv), we setv=y; (stable behavior at large distantem v
=1/r (diverging at large distancesWe keptvf:2.5r(§l fixed.

OARs( V1)
< Bo\" i1 =  D(n+1l4+b—k)
=2 NAW(Z) () 2 SRk
(34)

Note that the potentials an/tdﬁs depend orv; which, in the

PHYSICAL REVIEW 69, 094001 (2004

constant for this comparis@nin this figure the errors of
En (r)—En(r’) for r>r’ are purely statistical while the
(strongly correlatedsystematic error of the continuum limit
extrapolation is only displayed for the first data point
[En (r')—Ep(r')=0], where it is largest.

The price we pay to obtain convergent expansiongdn
for the potentials is the introduction of power-like terms
(proportional tov;, with logarithmic corrections This be-
havior very much resembles that of lattice regularization
with a hard cutoff which we discuss below.

D. Lattice scheme for the octet potential

It is conceptionally illuminating also to consider the situ-
ation in lattice regularization. In this case, the inverse lattice
spacinga ! results in a hard UV cutoff of the gluon mo-
menta. Feynman diagrams are UV finite and EFT matrix el-
ements are manifestly renormalon-free as long as they are
obtained in non-perturbative numerical simulations. The
price paid is the existence of power divergencea ?,
which cannot be eliminated in the continuum limit.

The analogy with the previous sections can be made quite
evident. In particular, all the quantities that we have defined
in the OS and RS schemes can also be defined in a lattice
scheme. There are some differences, however. The lattice
queIumpAh(a) has a power divergence to start witkthich
can be traded in for a renormalon ambiguity when subtracted

context of pNRQCD, can be thought of as a matching scalén perturbation theory In this sense it is similar t& 2%(vy).
between ultrasoft and soft physics. In what follows, we will While formally many expressions resemble those of the RS

set vf=2.5r51. Results for different values of; can be

obtained using the running ow, which is renormalon in-

dependent.

Analogously to the discussion of R¢fl6], we can study

casea ! plays a slightly different role than, that separates
soft from ultrasoft scales sinae<r<v; *. Another differ-
ence is that at finite lattice spacings the potentials remain
finite asr—0. In particular, we will see that gluelumps are

the convergence of the perturbative expansion in the R&1er—0 limits of hybrid potentialdat finite lattice spacing
scheme. In Fig. 6 we can see that the stability is greatlyn Perturbation theory as well as non-perturbatively. This
improved, compared to the OS scheme discussed in the pr§hould not be surprising since the-0 limit at finite lattice
vious section. No matter whether we choose to work withspacing corresponds to the situatiota. This means that

agv;) or ag1/r), the expansions converge towards the saméhe ultraviolet cutoff~a

~1is much smaller tham~* and

curve. In Fig. 7 we can also see that they agree with théhat the dynamical degrees of freedom are only the ultrasoft
continuum limit lattice daté&we have to subtract an unknown ©ones. Actually, in this situation;; and 1A play an analogous

fo[Vo,rs(r) - Vors(r')] + C

0 ’

0 0.25 0.5 0.75 1
r/ro

FIG. 7.1o[ Vo rdr) — Vo rer')]+C at tree leveldashed lines
one loop(dashed-dotted lingstwo loops(dotted line$ and three
loops (estimate plus the leading single ultrasoft logarithaolid

lines) compared with the non-perturbative continuum-limit results
for Enu(r)fEHu(r’) (symbols with error bajs For the scale of

aqv), we setv=v;=1/r" (stable behavior at large distantes
v=1/r (diverging at large distancesA (small) constantC is arbi-
trarily adjusted to show agreement with the lattice data.

role.

Let us illustrate the above by first considering perturba-
tion theory, before discussing the scale separation and how
the lattice scheme translates into other schemes, at finite lat-
tice spacings as well as in the continuum limit.

For simplicity we will consider the Wilson discretization
of the continuum action. In this case the “lattice Coulomb
term” [ 1/R], takes the form Eq(11). For instance, one can
calculate the finite valug,1/0], =3.17 . . . .Using this nota-
tion, one finds the lattice results

1
Voo (1) =20mgg(a) ~ Craa * ﬁ} [1+0(ay)]
L

(35
Vo (r;a)=25m5,(a)
C 1
+ 7’*—(:f wa = L[1+O(a|_)],
(36)
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we can then achieve formal correspondence to E2f3.and
(2), respectively,

where the “self-energy” is given by

c [1
aé‘métaﬁaF?aL ol T Eq(r)=2m(a)+V,(r;a)+0(r?) (47)
L
_ \/ . 2
c a o =2mgpgt Vg (r;a)+0(r?), (48
oM v1+vzﬂ+v3(4w)2 o where the above two equations are correct up(d 5cpa%)

andO(a?/r?) lattice corrections.
(37 We can relate the heavy quark mass in the lattice scheme

S . — _ to the OS scheme,
Note that unlike in dimensional regularization, by using a

hard cutoff, such power divergencies appear naturally as part
of the perturbative expansion. Equatiof®5) and (36) are
both known toO(«?) and Eq.(35) (as well as the difference smi,(a) contains the same renormalon mggs, such that
V,—V,) is also known approximately t@(aﬁ), up to  Eq.(49 has good convergence properties when expanded in
O(ala?/r?) lattice correctiong33]. In pure gauge theory terms ofag. mi(a) is proportional toa™*, with logarithmic
with Wilson action, the coefficients of the expansion of as well asO(a?) lattice corrections. One can convent (a)

m,(a) =mMog— dmL.(a). (49

oms,. read[18,33—35

v,=3.175915 . . ., (39
v,=0.210035) X 10°, (39
v3=20.43)x 1C°. (40)

a =3/(27B) denotes the lattice coupling at a ﬁﬂél
which can be translated into other schemes such &sby
means of a perturbative computation,

aga™t) ad(a™t)
ap=aga )| 1-b, — (b= 2b})———+ -
(4m)?
(41)
with [36]
b,~73.93539066, (42)
b,~b?+1388.1645. (43)

Let us now consider the singlet case. We have

E;;u;a)=vs,L(r;a>+AQCD[O<AéCDrZ,Aécoaz,azlrm,
(44)

where A ocp represents a generic non-perturbative scale lik
ro*. The last two terms account for possible non-
perturbative lattice artifacts, which vanishas:>0. From the
we can non-
perturbatively obtain the heavy quark mass in a lattic

quarkonium energy Ei(r) at r>a,

scheme
1 ) ,
m,(a)= 5 [E«(r)—E;+(r;2)]+0(a /r?). (45
[¢]

By redefining

Vsi(r;a)=Vg, (r;a)—26m5,(a), (46)

e

order by order in perturbation theory into saws(v), with-
out renormalon ambiguity.

In the lattice scheme we also havE}(O;a)

=V, (0;a)=0: the sources are “smeared out” or% a scale
since the gluon, due to the UV cutoff, cannot resolve struc-
tures smaller than the lattice spacing. Consequently, the Cou-
lomb term does not diverge as-0 but approaches a finite
value in units ofa. In perturbation theory, in the limit

—0, the lattice[ 1/R], term exactly cancels with @nl:

the perturbative expansion ofg (r;a), Eq. (35 above,
does not contain the renormalon associated with the pole
mass. Non-perturbatively, in the limit—0 the Wilson loop

becomes a time independent constant, such Iﬂiai(o;a)
9

=0 too. Asr>0 the perturbativeVy  acquires a power
term.

Next we consider the hybrid case. We can calculate the
gluelump mass in perturbation thedry,

SA,(a) a2+
a La:—aL— PO
2 0L
Ca a
=5 a|vitvag |+, (50

wherev, andv, are the same as for the casedhl,,, and

can be found in Eqgs(38) and (39) above. Note that the
O(ag’) term is expected to be different and is not known at
present. However) , is related to the difference betwe¥y
andV, such that any difference with respect to theof Eq.
(40) above will be suppressed by a color factoNi/

The tree level expression faf, | is displayed in Eq(36).

Swhile the perturbative expansion ®f, was unaffected by

the renormalon of the pole mass, the on&/gf contains the
same renormalon as the expansion&, . For r>a the
renormalon-free combinatioW, | (r;a)— dA (a) plays the

“In the context of perturbation theory we do not distinguish be-
tween different gluelumps since the mass splittings have an entirely
non-perturbative origin.
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role of Vygrdr;vs) in Eq. (30. At r=0 we have,

. . H=X * 4
Vo(0;a)=6A (a) as well as the non-perturbative equality, H= nu“ o
L LO:v=a' —e- 1
Er (0;2)=E;-(0;a)=Ag(a). (51) i
i NNLO:v =a === ]
We redefine LO:v=25T, | e |
NLO:v =251 --=--

Voo(r;a)=V, (r;a)— SA (a)—28m-(a), (52) . NNLO:v=25rg " -

to achieve formal correspondence with E(®.and (6):

Eh(r;a)—E§+(r;a)
9

= AR() +[Vo,(1;2) = Vs (r;2)]+0(r2). t 2 38 4 5 6 7
(53
FIG. 8. Splitting between the lowest two hyb@s and Bi1§
Note thatE,(r;a) =Ey(r) —2m,(a) + O(a?/r?), in analogy potentials(pentagons and squajeas a function ofr/a [see Eq.

. U ra_CA 1
Vo(ria)=Vs (ra)= - aa

to Eq. (45). The combination (10)] at a fixed lattice spacinga~0.13%,, in comparison to
1 1 Vo(ria)=Vsi(ra)=Vo(ra)=Ve(r;a)+ oA (a) at tree
Hf[ﬁ )
(54) bols correspond to the respective gluelumps, non-perturbatively
(square with pentaggrand in lattice perturbation theofgiamonds

+O(a2) level (dashed lines, diamongsone loop (dashed-dotted lines,
' circles and two loopgdotted linesy >a estimates The open sym-

vanishes forr =0 and is renormalon-free. The same holdsand circles.

true for Eh(o;a)—E;‘;(O;a)—Ah(a)=0: Eq. (53) is not

only valid for r >a but also for r=0. We have tive expectation fov, | (r;a)— Vg (r;a). The latter pertur-
bation theory will suffer from the same renormalon
AR(a)=A3+ A (). (55  ambiguity aséA,(a) and the difference between perturba-

o tion theory and non-perturbative data correspond:&\@&.
Note that the ag)ovez equation is only CLO”ECt up tOLnO”The left-most pointsopen symbols correspond to the\g
perturbativeO(Agcpa®) contributions toArg. Again Ay luelump, plotted at_/a=[1/0]L~0.315.
is renormalon-free but has a power divergence. By subtractg The e\;aluation was done both in terms @f(a~!) and
ing 6A(a) order by order in perturbation theory one can ag(vy) where Vf:2.5,61%0.3‘h—1. To simplify the figure

obta!n an on shell, N !OUt. at the price of a renormalon we disregard the uncertainty in the determinationAGjs

ambiguity. Note the similarity between the above equatlon_0 602(48) 1 [37]. At leading order(LO) and next-to
0. 5 ) 2

and Eq.(33). leading order(NLO) lattice perturbation theory results are

In Fig. 8 we compare non-perturbative data on the split-_~ - ; . S
ting between hybrid potentials with respect to the grounoava'lable[33] (diamonds and squanesSince everything is

. e _ 71 . .
state potential with the perturbative expectation. The dat®lotted as a function of/a=[1/R]_" all diamonds lie ex-

have been obtained by us on an isotropic latticggat6.2 ~ actly on top of the dashed continuousa curves while at
L small distances there are differences between the dashed-

with lattice spacinga~0.13#,. Both gaps, Er, EEJ dotted NLO curves and the exact NLO resultgcles. In
(squaresand ng—E; (pentagonsare plotted as a func- addition we plot ther>a limits to next-to-next-to leading
! Y order (NNLO) (dotted curves The shapes of the perturba-

tive curves remain qualitatively stable while the normaliza-
tion is not convergent as the order of the expansion is in-
%reased and is also strongly affected by the scale6f).
This behavior reflects the presence of the renormalon of
A9S, quite similar to what we can see in Figiatt

By comparing with the renormalon-free right-hand side
(rhg) of Eq. (53) a better convergence can be achieved. How-
ever, such a comparison is only possible uth(mg) as we
do not exactly know thé)(ag) contribution to the counter-
term 8A (@) in the lattice scheme. Instead we choose to
(53) will still apply for r '~ 1> Aqgep; however, Eq/(51) wil demonstr_ate the quality of _the_perturbative expansion in Fi_g.
become modified; it would apply to the first radial excitations in the9 Py adding global normalization constants to all curves in
hybrid channels rather than to the ground states, until finally arounduch a way that agreement is produced /@= \/E (We
a~ry/12 a continuum of two-glueball states is encountered. shall return to the question of renormalon cancellation in

tion of r/a [see Eq.(10)]. The differences are indicative of
the size of the expected non-perturbati@ér?) contribu-
tions. We compare the non-perturbative data to the perturb

5Based on the results of Sec. V B below as well as of [Rf],
we know that the 1~ glueball will become lighter than the glue-
lump A',g(a) arounda<r ~r,/7, when using the Wilson action. In

fact we discussed a similar situation in Sec. Il C, for E@ po-
tential. This limit is not yet relevant for thl , and>; potentials at
the lattice spacings covered in this paper. In the @ase., Eq.
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' " " 7 " formulas elaborated above apply under the replacement
HH_=HZU 4 RS—L. To illustrate this quasi-continuum limit, we elimi-
n=y = nate thea ! dependence from the expressions altogether,
LO:v=a"' —» Ch °eP P g
_ NLO-v =g —o— 1 which is straightforward:
= NNLO:v=a’’ L
By Loty pisE ! g Ey(r)=2m,(a)+E;(r:a) (56)
= 5 NLO:v =25 r0'1 -]
W[ = NNLO:v =251y - =2my(v; H+ Vg (r;v; H+0(r?),
© i (57)
e where
&
A S Vs (rivg )=V (r;a) = 26mig(a) + 20mbe( vy 1),
1 2 3 4 5 6 7 (58

N | my (v ) =my () + omg(a) — oM vy ).
FIG. 9. Splitting between the lowest two hybrids and E1§ (59
potentials(pentagons and squajeas a function ofr/a [see Eq.

(10] at a fixed lattice spacinga~0.13%,, in comparison with ~Note that the running from one scale to another is
Vo (ria)—V, (r;a)+C at tree level(dashed lines, diamonis renormalon-free. For the hybrid case we can directly write

one loop(dashed-dotted lines, circleand two loopsdotted lines,

_ -1 L1y ~1
r>a estimates The vertical normalizatiol© has been adjusted to En(r)=2my(v; ) +[Vo(r;vs )= AL (v )]

produce agreement ala= \/E The open symbols correspond to +AH(V;1)+O(r2), (60)

the respective gluelumps, non-perturbativébguare with penta-

gon) and in lattice perturbation theolgiamond and circles where the combinatiol, | — §A replaces the/, s of Eq.
(30).

Ah(a) in Sec. V B) Indeed the differences between NNLO  Finally, we mention that the situatian=0 on the lattice
and NLO are smaller than those between NLO and LOresembles the<v; ! continuum situation. Unlike in the
Moreover, at higher orders the scale dependence is reduceghntinuum, however, on the lattice, everrat0, all observ-
The v=a"! curves seem to describe the data better at smafbles remain finite aa~* provides us with a hard UV cutoff.
r while the v=v; curves seem to work better at largeiUp
to distances as big as=r,~7.3a the perturbative curves E. Scale dependence
seem to have an accuracy better than the non-perturbative as we have mentioned in the previous sections, the run-
uncertainties, estimated by the dlffererﬁzg:(r)— En,(r). ning of pole mass and gluelump energies with in the RS

We mentioned above that while formally the lattice spac-scheme, and with, in the lattice scheme, is renormalon-free.
ing a~ ! appears in the same places in the lattice scheme aBherefore, the functional dependence can be described by a
the scalev; did in the RS scheme of Sec. IV C, these two convergent expansion in perturbation theory. Nevertheless, in
scales should not be confused with each otheaa@s>r !  order to achieve the renormalon cancellation, the same scale
>v¢>Aqcp. Conceptionally we have been discussing ther has to be used in the perturbative expansion. This produces
situation in which the potentials are evaluated in perturbatioriarge logarithms if the scaleg andv; are widely separated
theory at scale> v; while AES is an ultrasoft matrix ele- and, eventually, some errors, if one works to finite order in
ments, associated with physics at scales smallerthaithe  perturbation theory. In the RS scheme, there exists a solution
lattice encapsulates the same physical picture. For instanct this problem. Even thougldmgg(v¢) suffers from the
to each finite order in perturbation thednW, (r;a) renormalon ambiguity, the differencdmgg(vs) — Smgyv¢)
=% 26mg,(a) andV, (0,a)=JA (a): the power contri- is renormalon-free. We can perform a resummation of
bution to the lattice massm&,,, (whose perturbation theory is éMrs(v) With any prescription to avoid the singularity in
affected by the IR renormalon of the on-shell massrre-  the Borel plane since it will cancel in the difference. We will
sponds to the UV behavior of the potentials while the powerf@ke here the principal valu®V) prescription, which yields
contribution toAt| (whose perturbative expansion has the P 5
UV renormalon ofA[r®) is associated with the low energy  smRY(v() =N, vsaq ,,f)SEO Ce Dbs( _ ,Bo:t )_1},

= S
(61)

behavior ofV, . This is the same renormalon/power term
structure as in the continuum OS/RS schemes.
For a<r<A5éD lattice effects become invisible and the where

Dy(X) =xe{cos 7b)T'(—b) = x[T(—b)—T(—b,x)]}

®In fact this is one way to define@n,, in perturbation theory: (62
the r-independent part of the Fourier transform of the momentum
space lattice potenti@B3]. and
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FIG. 10. —omgd(vy) + Smed(vy) at LO (dashed ling NLO FIG. 11. —dmgg(v) + dmgg(v{) at LO (dashed ling NLO

(dashed-dotted lineand NNLO (dotted line according to the sum (dashed-dotted lineand NNLO (dotted ling in perturbation theory
in Eq. (61). We takev! =9.76 ;1 [see Eq.(64) with v= ] versus the principal value resulsolid
. . - . 0 .

line). We takev;=9.76,".

T'(b,x)= fwdttb—le—t (63) A similar behavior holds if, instead afmgg, we study
X 5ARS'

For the lattice scheme we cannot perform an analytical

denotes the incomplet® function. resummation as high.er order terms are unlfnown. On.the

The first term in Eq(62) corresponds to\ys, once in- other hand, there exist non-perturbative lattice determina-

troduced in the sum of Eq(61). It cancels from the tions of the static masses\(a) and &a)=A(a)] for
combination’, smby(v¢) — SmaY(v;), and we will not con- different .Iattice spacings. They proyide us with non-
Sider |t any |0nger_ The sum of E@l) represents soﬂer and perturbatlve measurements Of the runr“ng aga|n5t Wh|Ch the

softer singularities in the Borel plane. Therefore, we expecfinite order results can be tested. It is also possible to relate

at least the differencémi(v;) — SmEY(v!) to convergeal-  results in both schemes by perturbative renormalon-free ex-

though, obviously, we have no mathematical proof of)this pre.ssions. We will investigate poth the running within the.
Since the first three terms are known we can check if thiddttice scheme and the translation between both schemes in
actually happens. We can see that this is so with a higi?€cs: V B, VIAand VI C below.
degree of confidence in Fig. 10.

We can also compare SmR(v¢) + dmpa(v;) with the V. PHENOMENOLOGICAL ANALYSIS
corresponding difference, calculated at finite order in pertur- OF THE GLUELUMP SPECTRUM

bation theory: We will determine the lowest gluelump enerdy from

two different observables in two different schemes: from the

— Mgy vf) + SMeg(v¢) non-perturbative differencéy; (r)—Es+(r) in the con-
u 9

vl — v V= v tinuum limit in the RS scheme as well as from gluelump

=— Tvsvlaﬁ( V)_{TVS’Z energiesA'é(a) obtained at finite lattice spacings in a lattice
scheme. The lattice and RS schemes can be translated into

vl vl each other and we find internal consistency. We finally

ve Bo [ v f Bo £l 3

+ > ?I ol iy ?I > Vga(ag(v)+---. present results on the whole gluelump spectrum and compare

our findings to previous literature.
(64) The situation discussed here is similar to the one encoun-
tered in the “binding energy” in static-light systems which

We depict this comparison in Fig. 11, where we takey; ~ We Will address in Sec. VI. These mesons very much re-
to minimize one of the logarithms. We see how the finiteS€Mble gluelumps, with the only difference that the source is
order results approach the PV cuf/ehich we will use in 1N the fundamental representauon and screened by a light
what follows wherever we need the running. quark rather than by a gluonic operator.

A. Determination of AR from the static potentials

"One may wonder if this cancellation materializes itself in practice We intend to determine\ from the hybrid potentials
since we only know the first three terms of the series. However, W&k this purpose we will usBe out,=0 lattice continuum

.che?clfed t.hIS numerically and the results turned out to be wrtualMimit data OnAE; (r)=Ey (r)—Es-+(r) as obtained in Sec.
indistinguishable. u u g

8cor finite order computations we take, with one, two, three, Ill. Using this difference allows us to eliminate the power
etc. loop running according to the orderdg at which we work. If ~ divergence that appears in lattice simulations of the poten-
instead, we user, with four-loop running(the highest accuracy tials (or, in the continuum OS scheme, the renormalon asso-
known until now the convergence to the PV result is accelerated. ciated with the pole magsNote that the difference has a
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5 R between the two contributions, the ultrasoft matrix element
ro[ Vo,rs(r) - Ve ms(r) + AB] Ag and the soft Wilson coefficient,— Vs, at a given order
of perturbation theory. This is why we have to specify the
scheme, the RS scheme in our case, which we use to elimi-
nate(or to reducg this ambiguity.
Obviously, Ag is a function of the scale;. We fix v;
=2.5,"' and the final result at this scale reads

' ABS=[2.25+0.1Qlatt.) = 0.21(th.) = 0.08 A7) Ir o *
: (66)

1
0 0.25 0.5 0.75 1 1.25 1:5

r/ro Note thatAg is the only fit parameter. Also note that the
above value corresponds to the=0 case. The errors of this
determination stem from several sour¢fs the above fit we
use lattice data up to distances of around Q.5

(1) “latt.” denotes the statistical error of the fit- 0.10.

(2) “th.” stands for the theoretical errors.

We first consider the error due to the truncation of the
perturbative serieghigher orders in perturbation theory/scale

well defined continuum limit. It is also interesting to see thatd€Pendence We obtain a first estimate by performing the

the large distance linear term is cancelled as well. At thd*€rturbative expansion ia(»;) or in a((1fr). This provides
same timeA g will still additively contribute to this combi- US With an estimate of neglected subleading Ioganthmg. Ac-
nation, see Eq(6). In order to extract this non-perturbative tually, '”l POth cases one and the same numbef
constant, the perturbative difference between octet and sirs2.2% ¢, is obtained, which we take as our central value.
glet potentials has to be subtracted. For a reliable determind-he effects of higher orders in perturbation theory are esti-
tion, the perturbative series has to be well defined and shoWated by considering the convergence of the determination
convergence. However, this is complicated by the contribuof AE® at each order in perturbation theory. Working with
tion from the renormalon discussed above and can only beg(7;), the seried2.43,2.37,2.28,2.25s obtained. This se-
achieved in a scheme where such renormalon singularitiedes seems to show convergence for the last terms. In any
are taken into account. We have worked out the RS schenase, the corrections are small. Working witly(1/r), the

FIG. 12. Splitting between thH , and thezg potentials and the
comparison with Eq(65) for v=1; [see Eq.(16)] at v;=2.5r; .
ro[(VO,RS—VSVRS)(r)+AES] is plotted at tree leve{dashed ling
one loop (dashed-dotted line two loops (dotted ling and three
loops (estimate plus the leading single ultrasoft logarith(aolid
line).

in Sec. IV C, which is well suited for this purpose. series{2.00,2.40,2.31,2.25s obtained. This series is clearly
We fit Ag using the following equalitysee Figs. 12 and convergent although the corrections are larger than when us-
13 for the quality of the fjt ing a4 v;) as the expansion parameter. To be conservative
. we will take the difference between the last two terms as the
Enu(r)—Ezg(r)IAB (i) + Vo rdl;v5) = Vs rdI v5), error made by truncating the perturbative seriesd.06.

(65  There is also some source of error from the normalization

constant of the renormalon of the singlet and octet potential.
where the non-perturbatively obtained left-hand ditie) is  For the singlet potentigffollowing Ref.[15]) we estimate a
renormalon-free but on the rhs the renormalon can be shiftedi0% error in Ny, which produces a-0.10 error. For the

octet potential, the error is very small compared with other
R sources of error. Even if, conservatively, we consider the
ro[Vo,rs(r) - Ves(r) + A Y

general shift produced by settingV, ,=0 (note that this

also accounts for the error in perturbation theory of the octet

static potentigl our result only changes by 0.01/0.02. We

» will neglect this error to avoid double counting. In the above
: 5 analysis we have neglected non-perturbative effects. On gen-

eral grounds they have the short-distance structure,

e T —

Sy

N W st

[ay

RS RS
0 __Vs

+Br2. (67)

~r2
\ Sopl(En, ~Es )=t F(
0 0.25 0.5 0.75 1 1.25 1.5

r/fo The Br? term is due tor-OTEO type contributions in the

FIG. 13. Splitting between thH,, and theX | potentials and the PNRQCD Lagrangiar(see ReTf.[9] for detaily. The other
comparison with Eq(65) with v=1/r for v;=2.57% rof(Vors  €/MIN Eq.(67) is due tor- O'ES type contributions. This
~V4r9(r)+ AR is plotted versug at tree level(dashed ling ~ Produces a perturbative mass gépis the convolution of a
one loop (dashed-dotted line two loops (dotted line and three  Short distance and a long distance piece, depending on the
loops (estimatg plus the RG expression for the ultrasoft logarithms ratio of VES— VSS over the masses of the gluelumps. For the
(solid line). purpose of estimating the uncertainty it seems reasonable to

AQCD
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TABLE IIl. The inverse lattice spacing, the mass of the 1gluelumpASj in the lattice scheme, as well
as its conversion to the RS scheme to different orders in perturbation theory. NNNLO* stands for an estimate
obtained neglecting ILVE corrections, for details see the text. In the last column, we state the values of
ARS(a™') using Eq.(66) and the running according to the PV prescription, B8fl). The errors only
incorporate the statistical uncertainties as well as the 8% uncertairky#n,, added in quadrature, but no
estimates of “theoretical” errors.

-1

a trg AEro=ARTo(LO) AR o(NLO)  ARS(NNLO) A (NNNLO*) AR5,
2.94 5.3310) 1.5919) 2.8212) 2.3715) 2.41(10)
5.27 6.9905) 1.9717) 3.2010) 2.8912) 2.8913)
7.32 8.3605) 2.21(17) 3.5510) 3.2513) 3.1613)
keep only the leading term in this expansion. This is equiva- B. Determination of A5 from Af

lent to having a quadratic contribution, There exists a direct determination Af(a) (the 1"~ or

B gluelump by Foster and Michadll2]. The numerical val-
ues are displayed in Table Ill, where we used the segia
values as were used in this reference. It is clear from the
discussion in Sec. IV D that these are perfectly sensible num-
bers if incorporated into a global scheme with renormalon
If we introduce this term into the fit, we obtaigAg~2.30  cancellation, for instance, with the potentials also defined in
[working with a(1/r)] with AHU,E;:—OAr(f. We take the lattice scheme as in Sec. IV D. In doing this we are able

the difference as an indication of the error due to non{0 independently determingg in a different scheme. Con-
perturbative effects. By summing linearly all the above er-Sistency would require that after translating the lattice into

Sop(Ent, ~Es2)=An, 5% (68)

rors we obtaint 0.21. the RS scheme the results should agree with each other. We
(3) “Agg”: this error is due to the uncertainty ingg  Will check this in this section. _
=[0.602t0.48]r51 [37]: +0.08. The master formula that relates the lattice and the RS

We have performed the fit using lattice data within a win-Sceéme readénown up to NNLQ

dow of inverse distances ranging from abayt=2.6 GeV RS\ y— AL ay_ L RS

down to vi~1 GeV. From the plotsee Figs. 12 and 13 Aplr) =A@~ [oAg@)+ oAGTr) ). (69

one can actually see that the curves follow the lattice data up RS . _

to valuesr=<r,. This corresponds to very low energies Both A{;>and Ay, have a power-like dependency ep and
(<500 MeV). Being conservative, we will not use data de-a_*, respectively, but are renormalon-frek}; exactly and
termined at these low energies without a better understanding > within the precision of our estimation of the renormalon
of the dynamics. Nonetheless, such a fit would actually procontribution. This implies that the combinatidi\ | + §A g
duce very similar numbers to the ones quoted above. This idoes not contain a renormalon either if calculated in a con-
even more so if a quadratic term is included. In generalsistent way:5A (a) and SARY(v¢) contain one and the very
introducing more lattice points reduces the statistical errorsame renormalon contributiaiwith negative relative sign
(“latt.” ). Including a quadratic term will reduce the theoret- The sum of both terms, expanded in termsagfhas good
ical error onAg since some of the changes that occur whenconvergence propertigsising the same normalization point
altering the order of perturbation theory can be absorbed intto enforce the renormalon cancellation at each order in per-
a variation Of/-\nu—zg- However, the addition of a second fit turbation theory. The explicit expression at NNLO reads

parameter increases the statistical error and also the uncer-
tainty due toAys. We conclude that while the individual A (a)+ AR vy)
errors depend on the precise fitting details the total error

i A _
remains remarkably stable. =22 ta )

One might ask whether, in addition thg, a reliable 2
value ofAHu,gg can be obtained. This, however, would re- C.al
quire more lattice data at short distances as well as a more + 7A 4—{vz+vl[—b1+ 2BoIn(va)]}
detailed understanding of thié renormalon of the static sin- ™

glet potential. _ _
We do not consider thE ; data in this section as we have T (V1= Vo)

already established in Sec. Il D that the difference with re-

spect to thell, potential is proportional ta? to leading ) _

order. Hence we cannot obtain any independent new inforVhere thev; can be found in Eqs(38) and (39), b, in Eq.

mation on Ag from these data that have larger statistical(42) andV,; andVs, in Table Il. An estimate of th@(ag)

errors. term can be obtained from E(/8) below, under the replace-

v+, (70)
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FIG. 14. The lowest gluelump mass; as obtained on the lat- FIG. 15. Perturbative running of the binding enerdyin the

tice (diamonds, as well as converted into the RS scheme at NLO|attice scheme, in comparison with lattice data, starting at the small-
(squares NNLO (pentagons and NNNLO* (NNNLO estimate,  est available lattice spacing. The NNNLO error band incorporates
circles. The error band corresponds to the result Adf® of Eq.  the error due to the uncertainty inys [37], and the statistical error.
(66), without the “theoretical” error, run to different scales, accord-
ing to the PV prescription, Eq61). The dashed lines, drawn to NNLO cases, larger corrections. This is mainly due to the
guide the eye, are explained in the text. fact that within the present window of energies the values
obtained forayv) from Ays from a one- or two-loop run-
ments,C;i—Cp andeHZ(Vs. Vo, I) This estimate will ning are significantly different from those from the three-
be subject taO(1/N?) correctlons to the coefficients. loop running(which is close to four loop The lattice pre-

In principle, »; anda~! need not be equal but we will diction of Ays that we use as an input applies to very high
take them similar to avoid large logarithms. The large nu-energles such that it is important to run down to v
merical values of, andb, are mainly due to contributions =2.5rg * as precisely as possible.
from lattice-specific tadpole diagrams that arise because the Within present errors we can fit the data with straight lines
breaking of Lorentz symmetry becomes particularly evidenbut there will be logarithmic COFFeCUOﬂS and, in the gluelump
at UV scales=a !. This often results in badly convergent dataABro, additionalO(a?) =0(v; 2) lattice artifacts. The
perturbative series when expanded in termsfa). How-  figure reveals that at the lattice spacings investigated these
ever, the convergence is vastly improved, once the series &e tiny, relative to the linear slope. Except for these lattice
reexpressed in terms of a more “physical” coupling like corrections the running oig is non-perturbatively accurate.
afa H=a[1- blaE/(477) +...] (see, e.g. Refs. Needless to say that the power dependenca dnis univer-
[33,38). This is also evident from Eq(70) asv,~3.17, sal for all gluelumps, such that gluelump mass splittings
(vo—bqv )/ (47)~—1.97 (and [vs—2byv,— (b, have a well defined continuum limit, which is also confirmed
—2b)v,]/(4m)?~14.5. in Ref.[12].

We can now translate thA" values obtained by Foster In lattice perturbation theory we can calculate the “run-
and Michae[12] into the RS scheme The results are shownning” of the queIump data t®(a?) [and up toO(ey) if we
in Table Il and are also displayed in Fig. 14. “NLO” and neglectO(1/NZ) effectd. There is a renormalon ambiguity in
“NNLO?” refer to translating from the lattice scheme to the the absolute value. However, the slope is not affected by this.
RS scheme via Eq70) to O(ag andO(a?), respectively.  If we take the value\(7.325*)~8.3a 5" from Table III
Obviously, to leading orderAg is scheme independent. and perform the running with NNNLO* accuracy, we obtain
“NNNLO*” stands for an estimate obtained assuming that the dashed line that joins the “LO” R$L) points. We can
the next-to-next-to-next-to leading ord®&NNLO) contribu-  see that this parametrization is quite close to the non-
tion to SA | is equal to the NNNLO contribution tém" with perturbatively evaluated data. Moreover, there is overall con-
the replacement of the overall factGf—C, . This is correct  vergence, with higher order terms being numerically smaller
up to O(1/N ) effects. Finally, the conversion from the lat- in the lattice scheme. We will discuss this in more detail in
tice to the RS scheme has been performed using the fouBec. VI, in the context of the static-light binding enelzgkl
loop running ofag at v=a~ 1= ;. This accelerates the con- which has a similar perturbative expansion, up to an overall
vergence to the RS results. If, instead, we usertheop  factorC;/C,, see Fig. 15.
running of a4 that is consistent with the order of the calcu- In Fig. 14 we also compare the value obtained in Sec. V A
lation, we still see convergence but with, in the NLO andabove[Eq. (66)], with running according to the PV prescrip-

tion Eq. (61), with the results obtained directly from the
lattice determination of the gluelump mass via E&). We
Note that the counting here differs from that used in Fig. 11, insee clear convergence with alternating signs from (d@a-
the RS scheme, where we label®da?) as “LO.” monds, NLO (squares NNLO (pentagonsand NNNLO*
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(circles towards the result calculated from thg, and E; TABLE IV. Absolute values for the gluelylmp masses in the
potentials in the previous section and its runnifgror  continuum limit in the RS scheme at=2.5,"~1GeV, inrq
band. Our NNNLO* estimates already agree with this error Units and in GeV. Note that an additional uncertainty of about 10%
band. The dashed lines connecting the NLO, NNLO angshould be added to the last column to account for the quenched
NNNLO* points are the corresponding transformations Ofapproximation. We also display examples of creation operators
the curve through the LO points and just drawn to guide théor these states. The curly braces denote complete symmetrization
eye. Al errors displayed in Fig. 14 are statistical only, plus® (e indices.

the uncertainty on\ . Within the theoretical errors of Eq. JPC H ARS, ARSI Gev

(66) (+0.21r, 1), in fact we already find agreement at the HO H
NNLO level. In Secs. VI A and, in particular, Sec. VIC, we 17~ B; 2.2539) 0.8715)
will analyze the running of the binding energy of static-light 1~ E 3.1841) 1.2516)
mesons in more detail; see also Fig. 18. 27" D;Bj, 3.6942) 1.4517)
We obtain an independent second prediction/‘férsfrom 2+~ DyE;, 4.7248) 1.8619)
the gluelump data. The statistical errors are smaller in thg*- D;D;By 4.7245) 1.8618)
gluelump case than those we encountered from the corp++ B2 5.0246) 1.9918)
tinuum potentials. In a first step we obtain the fit parameterg—- D,D;DiBy, 5.41(46) 2.1318)
1 (BAE); 5.4551) 2.1520)

ARS(7.32,1)=[3.21+0.04latt.) + 0.4 th.)

. -1
*0.1qAw)Iro " 7D lattice spacings the latter disadvantg@énich at present is,

however, not the dominant onean in principle be over-
come. In conclusion, it is nice to observe perfect agreement
AL(a)= AR v+ SAL(a)+ SAR , 79 _between the two preQ|ct|ons, which enhances our _confldence

H(@)=Agtv) +oAG(@) Rvo] (72 in the methods applied and adds further credibility to our
{ error estimates.

from a global NNNLO* fit,

where we have chosen= v;=7.32,*. We can then conver

this result into
C. Higher gluelump excitations

ARS=[2.31+0.04att) +0.33th) “31§ Awe)Irg !, Now that we have fixed the energy of the lightest glue-
(73 lump, we can quote absolute values for the remaining glue-
lump spectrum using the results of Foster and Michag].
We display our predictions in Table IV where the errors cor-
respond to the sum of the individual uncertainties, added
linearly. The dominant uncertainty is that 4§, as the mass
differences between the different gluelumps have been deter-
the error encountered when varying the fit rafiges exclud- mined with very good accuracy. Needless to say that these
results are scheme and scale dependent. The quoted numbers

ing the left-most data poijt=0.01. o —1_ .
(2) “th.” is the sum of perturbative and non-perturbative _refer 0 the RS scheme withy=2.5r, “~1 GeV. With the

errors. As perturbative errors we take the difference betwee'lji]format'on presented in this paper they can be run to differ-

NNLO and NNNLO* results (-0.20) as well as a 10% un- Snlt scailr(]ats.go\r/ esﬁg oifn r?f?{e_n;9e4v;\//le 3IsoHc§)vn\<ler:e\(/:iv these
certainty inNy, — Ny, (*=0.18). To investigate possible non- alues into Lev unitsusingr = € ,)' owever, we

. s ° . . i note that one should add a scale uncertainty of about 10% to
perturbative effects we include af term into the fit. We

. o . , them to account for the fact that all results have only been
estimate an additionat-0.04 uncertainty from this source. gpiained in the quenched approximation.

for vi= 2.5rgl, using the PV running in the RS scheme. This
compares well with the result from the potentials, E&p).
The errors displayed in Eq.71) above are due to the
following sources:
(1) “latt.” is the sum of the statistical error£0.03) and

Adding thes“e three errors linearly results-ir0.42. Note that the gluelump operators can be represented in
() Aws stands for the uncertainty due to the error of \o:ms of gluonic field§9,39). In general one and the same
Apsro [37]: +0.10. gluelump can be created by infinitely many different adjoint

Whereas the statistical error is smaller in this determi”abperatorsH. Within each channel we displagpne of the
tion than the one of Eq66) and the uncertainty due to the |gyest dimensional such choies in the table. The basic
error of A5 is comparable in size, the systematics are 'es%uilding blocks are the covariant derivati@ (with JPC
well under control, which is reflected in the large theoretical _ 1~*, dimension 1, the chromomagnetic fielé; (1*",
error. First of all, for the lattice gluelumps we only have the yimension 2 and the chromoelectric fiel; (1~ ~, dimen-
perturbative result t®(a?2) with an estimate of th@(a3)  sjon 2. The curl of the electric field has the quantum num-
term while in Sec. V A we knew th@(a?) results and have pers of the magnetic field, such that on the lattice all states
an estimate of th®(a¢) terms. Furthermore, as the previous can be created by operators that are local in time. Further-
analysis was based on observables with a well defined commore,D-B andD- E can be eliminated, the first because it is
tinuum limit, we circumvented the problem of disentanglingidentically zero, using the Jacobi identity, the second by ap-
the a~! “running” of Agro from O(AéCDaz) lattice arti-  plying the equations of motion. One example: the lowest
facts. With gluelump data on more and, in particular, finerdimensional operator that creates thie 3state isD;iD By,
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where the curly braces denote the sum over all 10 symmetri€he same holds true fokg ; however, for the higher excita-
permutations of the indices. This includes three termdions the agreement with the results of Foster and Michael is
D;=;D;B;=0 such that indeed there remain only seven in-less convincing.
dependent operators to create this seven-dimensional repre- In Ref. [11], lattice correlation functions that are needed
sentation. Also note thd2;;B;, andDE;, each only contain 10 calculate relativistic corrections to the static potential were
five independent operators, consistent with2, etc. used in order to check the validity of the stochastic vacuum
It is interesting to see that the level ordering roughly cor-M0del in the Gaussian approximation. Under this assump-
responds to the lowest dimension of the creation operatoF'O”’ which was to some extent tested in this reference, these

once the equations of motion are used to eliminateEtfield correlation functions could be related to gluonic field
[9]. This makes thé field “heavier” than aB field, increas- strength correlators and upper limits for the gluelump masses

C . : were obtained:Ag(n;=0)=<1.64(16) GeV and\g(n;=0)
ing its dimension by one. The 3 gluelump (two deriva- B . i .
tives and oneE which corresponds to dimension five, after =1.04(15) GeV, respectively: the ordering of the gluelumps

_— . . . is wrong, however; the upper limits quoted are in no contra-
SUbS.t'tUtng.) IS not mclude_d into the tabl_e as no controlle_d diction to our resultgor indeed to a different ordering
continuum limit extrapolation was possible. However, its

mass at fixed finite lattice spacing is in the same ball park as, In Ref. [44] & constituent quark model was used. The
It hi ithin a 200— MeV ith th
that of the other dimension five states, 4 and 1 *, in esults roughly agre@ithin a 200-300 MeV erromwi €

£ this ni ! ; splittings predicted by Michael and Foster and the hybrid
support of this nave operator counting picture. spectrum at short distancésee Ref[40] for some criticism

of this evaluation For the lightest gluelump they obtain
D. Comparison with previous results Ag~1.4 GeV.
We shall relate our results to previous determinations of \We have seen how different determinationsAgf result
the gluelump masses. All these suffer from the problem ofn values ranging from less than 1 GeV up to nearly 2 GeV.
obtaining the global constant and, in none of these, thdhese numbers are all scheme dependent. This may explain
scheme was clearly defined, such that they need not yield tHée huge differences between different results. Our result
same results that we obtain. provides strong constraints on vacuum models. Furthermore,
In Ref. [39] the gluelumps were studied within a string the RS scheme provides a unified framework to study the
model. One general feature of this approach is the excess 8Pn-perturbative effects in an unambiguous and model inde-
predicted states. This seems to be a problem of this mod@endent way.
since it does not appear to be compatible with QCD, or more
precisely with its realization for this kinematical regime: pN- VI. STATIC-LIGHT SYSTEMS
RQCD[9] (see also the discussion in Rp40]). The predic-
tion of this model, Az(n;=0)=1.87 GeV, is by a factor of
two larger than our result.
In Ref.[41], the same value for the electric and magnetic
correlation length is obtained:Ag(ns=0)=Ag(n;=0)

The situation discussed above very much resembles the
one that one encounters in heavy-light mesons in the static
limit. In this case, the adjoint source is replaced by a funda-
mental source which is not screened by gluonic fields but by
=0.90(5)(10) GeV, from lattice simulations using the cool- a light Dirac quark ins_teadA light Higgs scalar_ in the fl.m.'.
ing method. The number fok g coincides with ours. How- damental representatl(?n Yvould be_an alternative pos.sm)lhty.
ever, the splitting between chromoelectric and chromomagl? these systems the binding energyof the; ~ state(which
netic correlators is unaccounted for. From the results ofVill correspond to pseudoscalar and vector heavy-light me-
Foster and Michael one would then assign a systematic err&Ons, once b, corrections and the spin of the heavy quark
of the order of this splitting~400 MeV: clearly a better &re taken into accounplays a role similar to that of thag
conceptional understanding of how “cooling” removes shortdiscussed above. The experimental mass oBteesonMg
distance fluctuations, without destroying essential infrared@n be factorized into
physics, would be useful. On the other hand, it is comforting

that numbers similar to our results are obtained in this ap- Mg=A+m,+O(1/imy), (74)
proach, which is also meant to subtract the perturbative con- —
tributions from the low energy matrix element. where bothA and m, depend on scheme and scale. In the

In Ref.[42] a sum rule analysis of the electric and mag_literature(see, e.g. Ref18]) the binding energy in the lattice
netic correlator was made. The main result wasn;=0)  scheme is referred to @&a)=A"(a), which is renormalon-
=(1.9+0.5) GeV. It should be noted that the value/ofis  free but has aa ! power divergence. For the Wilson action
on the lattice is now smaller by 5%, compared to the valueandn;=0 this dm5,(a) power term is known t@(a?) in
used in this analysis. Taking this into account we find thisperturbation theoryEqgs.(37)—(40)]. Subtracting this pertur-
result compatible with our§l.2516) GeV], within errors.  bative result introduces renormalons.

Moreover, in this analysis, evidence fa&g>Ag was re- It is also possible to define the binding energy in an en-
ported. tirely non-perturbative renormalon-free and power-term free

In Ref. [43], an MIT bag model calculation was used to way, for instance by subtracting the energy of a temporal
obtain the gluelump spectrum. No errors were assigned t&chwinger line in Coulomb or Landau gaudgé). In fact the
this evaluation. The value ohg is about 500 MeV larger same can be achieved in the case of the lowest gluelump
than ours and quite consistent with the sum rules evaluatioomass, either by subtracting the energy of an adjoint
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TABLE V. The inverse lattice spacinfp1], the static-light binding energih"=¢ [34,48-50Q in the lattice scheme, as well as its
conversion to the RS scheme to different orders in perturbation theory. In the last column, we state the vafiéa df) using the PV
running, Eq.(61), of the result, Eq(76), in the RS scheme. The errors only incorporate the statistical uncertainties as well as the 8%
uncertainty inAysro [37], added in quadrature. The values in the last column, which have been obtained from the ph{/s®aand B
meson masses, have additional errors inherited fron{Eg), which, however, will only result in an overall upward or downward shift and
will not affect their differences.

Ref. a'rg Alr, ARSr o(NLO) ARS o(NNLO) ARS o(NNNLO) ARSr,
[50] 2.93 2.4% 6) 0.7910) 1.347) 1.16 8) 0.991)
[34] 2.93 2.22 4) 0.56 9) 1.11( 5) 0.93 6) 0.991)
[34] 4.48 2.86 4) 0.83 8) 1.37 6) 1.23 6) 1.163)
[48] 5.37 3.28 6) 1.03 9) 1.59 7) 1.45 8) 1.224)
[34] 6.32 3.44 8) 0.9611) 1.539) 1.4009) 1.284)
[48] 7.36 3.8398) 1.1011 1.7009) 1.5710) 1.344)
[49] 7.36 3.8711) 1.1413) 1.7412) 1.61(12) 1.34(4)
[34] 8.49 4.24 8) 1.2411) 1.879) 1.7410) 1.4014)
[48] 9.76 4.4910) 1.2013 1.8511) 1.7212) 1.4505)
Schwinger line in a fixed gaugesee also Ref[19]) or by AR =251 =[0.92+0.2th) "¢ Apg) Irg L.
subtracting the on-shell mass of an adjoint Polyakov-Wilson (76)

line, encircling a compactified lattice dimension. From an

EFT point of view, however, one would like to combine a

non-perturbative low energy result with a perturbative calcu- |n what follows we will extractA RS from lattice data of
lation at high energies. For instance, to quote a value for thgtatic- light mesons. After addressing thequark mass we
b quark mass in thé/S scheme, the UV renormalon of the will conclude with a more detailed study of the running in
binding energy is required to cancel the IR renormalon of thehe lattice and RS schemes, using precision data from the
OS mass and hence a perturbative subtraction is essentigtatic potential within an energy range,<2yv;=rq/a
the renormalon of the expansion of the power divergence is<15.

the same as the one that is encountered in the conversion

from the OS mass into th®1S mass. This procedure has o

been implemented in the past in calculations of thguark A. Determination of ARS

mass from lattice simulations in the static lirhit8]. We will use Eq.(76) as our starting point for the,=0
The b quark mass has also been obtained in perturbativgjyation. In order to compare with lattice results in the

QCD in the RS scheme a4 =2 GeV from theY (1S) sys-  quenched approximation we will employ the=0 running

tem using EFT415]. Subtracting this value from the spin- of XRS(vf) and keep in mind that on top of the errors stated

averaged mass of i meson yields above one might expect an additional 10% quenching error.
A'(a) has been calculated on a variety of lattice spacings
KRS( vi=1 GeV)=[0.365=0.085th.) tg.ggiAM_s)] GeV. by diffe_rent pollaboration$34_,48_—5(). The main source of
' (75) uncertainty in these determinations is the extrapolation to
zero light quark mass. We used thg/a values from the
interpolation of Ref[51] to assign the scafé.The results are
This number is different from the value quoted in Ra5],}°  displayed in Table V and are roughly consistent with each
since here we have performed the running’te=1 GeV us-  other, with the exception of the coarsest lattice paipt
ing the PV prescription and not includéd(1/m,) correc- ~2.93a that corresponds t@=>5.7. Here the raw data of
tions into the fit(these two effects partially compensate eachRef. [50] are more accurate but the chiral extrapolation of
othep. Using the PV prescription allows us to perform the Ref.[34] should be better controlled.
logarithm resummation for the renormalon related terms. We multiply the values obtained fakjsr, of Ref. [12]
However, the result strongly depends on the valud gk . (that are displayed in Table )Iby the color factorC;/C,.
Equation(75) has been obtained from the physidaland At 8=5.7,6.0 and 6.2, respectively, we obtain the numerical
B systems, not in the quenched approximation. The scalealues 2.37), 3.11(2) and 3.722). The corresponding val-
=394+20 MeV[20,46,41 is also obtained fronY phe- ues in Table V read 2.45(f).224), 3.286) and
nomenology. Reexpressed in termsrgfwe get 3.83(8)3.87(11) where for botl3=5.7 and=6.2, two

0again, note that what we call the RS scheme here corresponds*'These values slightly differ from those quoted in H&£] used
to the RS scheme of Ref[15]. in Table Ill, which cover a smaller window of lattice resolutions.
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independent determinations exist. The qualitative agreement Similar to the discussion in Sec. V B, we can translate the
is remarkable: not only the perturbative expansionsSAf  results from the lattice scheme into the RS scheme. The mas-
and dmg,; are dominated by terms that are proportional toter formula in this case is very similar to E@9) and reads

the respective Casimirs of the gauge group representation ¢known to NNNLO),

the static source but also the non-perturbative values them-

selves. In fact also in the RS scheme the result (Ef) is AR vy =AY(a)—[dmga(a)— dmed(v)],  (77)
close to the value displayed in E@76), multiplied by
CA/C;=9/4. with
Cf Cf a_l Vi
SMga@) — dMpg(v) = —v1a tayv) +[— —[vot+viBi(va) ]+ _Vs,l} ai(v)
2 2 47 2

~ ~ Bo Vi
Vg2~ Vs1—In| —
T v

} ad(v)

. (79

Cf a 1 Vg
+4{— {v3+20,B,(va)+v[By(va)+B2(va)+ b3} + —
2 (4m)? 2

where itself becomes large. An accurate conversion between the
two schemes can therefore neither be obtained at extremely
fine nor at very coarse lattice spacings. Settingv;, the
difference between NLO and NNLO translation is minimized
for 3=ryv;=4 while that between NNLO and NNNLO is
minimal for 7.5sryv=<9, where the widths of these bands
are determined by our uncertainty in the valueAgfst .

We choose to translate the lattice scheme results into the
RS scheme by means of a global NNNLO fit to thg/a
Ala’)=Aa)—[smia(a)— smi(a’)]. (8o =5 le. p=6.0 data, expanded in terms of(v

=9.7661), where we seb¢=v. The result reads

Bi(x)=—b;+2B;_4In(x), =12, (79

and the coefficient¥/,; and Vs, can be found in Table II.
The coefficientsy; and b; can be found in Eqs(38)—(40)
and Eqgs.(42) and(43), respectively.

Equationg77) and(78) also relate results obtained at dif-
ferent lattice spacings to each other,

To illustrate this we display thd “(a) values of Table V in
Fig. 15, together with the expected running, starting at the

finest, i.e. rightmost, lattice point at LO, NLO, NNLO and ARS(9.76-1)=[1.7+0.09 latt) + 0.18 th
NNNLO. The NNNLO error band contains both the statisti- 79.78,7)=[1.7+0.08latt) £ 0.18th)
cal error and that due to the uncertaintyag(a). The run- +0.04 Aj)]ro t. (81)

ning is done in each order in a self-consistent way to the

given order inag, according to Eq(78) (without theV/S,i
terms. We UsedV:9.76'61 and the initial valueus( V) was Note that_/TRS is the on|y fit parameter.

calculated fromAysro using the four loop running. We ob-  The dashed curves in Fig. 16 correspond to such a
serve convergence and, moreover, the series is sign alterna§NNLO fit to the LO results, subsequently transformed in
ing. To NNNLO, except for the lower lying of the two the same way as the data points to NLO, NNLO and
ro/a~2.93 data points, there is no contradiction betweenyNNLO. The error band corresponds to the result of Eq.
data and the expectation. However, the points of R¥4]  (g1), without the theoretical error, run to different energies,
have a slightly more pronounced slope such thatrigkg  ysing the PV prescription, of E¢61): unlike the band dis-
~2.9,4.5 and 6.3 pointsd=5.7,5.9 and 6.Llie below the  played in Fig. 14 above, this is not the result of an indepen-
curve while ther,/a~8.5 point (3=6.3) lies somewhat dent determination. We would also have found agreement
above. with the result of Eq(76), but only within the large theoret-
We also display the data of the table in Fig. 16, in analogyical errors of this un-quenched determination.
to Fig. 14, but we disregard the LO result that is already At high order in the perturbative expansion and at high
displayed in Fig. 15. The size @img,(a) —dmgs(a™!) in-  energies one would expect the slope of the non-perturbative
creases linearly ina~', with logarithmic corrections: at running in the lattice scheme, translated into the RS scheme,
coarse lattice spacings there might be significant perturbativey approach that of the running within the RS scheme. Dis-
O(a?) and non-perturbativ®(a®/r2) corrections affecting carding the four data points of R¢884], Fig. 16 nicely con-
the slope of this function while at fine lattice spacings thefirms this expectation. We will investigate this running with
slope can be determined accurately but #ine difference  higher accuracy in Sec. VI C.
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2 — r , , , - , where we have translated E@2) into physical units for
%} v;=1GeV and also added an extra theoretical error of
o g — +30 MeV, due to Irh, corrections, combined quadratically
15F ; “““ . with the theoretical error inherited from the lattice determi-
i 2 . I T nation of ARS. From this number we can compute tMS
2 § ¢ . {,' scheme result,
< # . L6 My, ws(Mp ws) =[ 4191+ 29(latt.) £ 47(th.) = 1(Ags)] MeV,
o | . NNLO —e— | (84)
' NNNLO +—e— _ S
' where we have performed any running and manipulation
with nf=4 and used the PV prescription to rog gsfrom 1
' =% 4 5 © 7 8 8§ i GeV up to the bottonMS mass'? In this way higher order
vip=a'r terms in the relation between tidS and the RS mass are

minimized. If instead one determines, ys(my, ws) directly
FIG. 16. The binding energy\, obtained on the lattice and from its perturbative relation witm, r(1 GeV) one obtains
converted into the RS scheme at NLGquares NNLO (penta- @ somewhat larger result, but with sizable higher order terms.
gony, NNNLO (circles and the result of Eqi81), run to different ~ Note that some of the theoretical errors, such as the uncer-
scales using the PV prescriptigneglecting the “theoretical” er-  tainty of st’ are correlated with the running af;.
rors). The dashed lines are eXpIained in the text. Obvious|y one has to allow for quenching errors:'\m
one might assume a@(10%) effect on the binding energy
The errors of the determination E@1) above stem from which amounts to 50 MeV in Eq83). However, this might

the following sources: be an underestimate since the running of the mass with the
(1) “latt.” is the sum of the statistical error£0.03) and scale in then;=0 case is very different from that fam;

the error encountered when varying the fit ranggiro =4 and the relative effect ol <m,, due to a different

=4.48,5.37,6.32 £0.05): +0.08. running, is larger than that on the quark mass. To illustrate

(2) “th.” is the sum of perturbative and non-perturbative this we also work consistently with;=0 and obtain
errors. As the perturbative error we take the difference be-

tween NNLO and NNNLO results. Varying the fitrangeas = o
above this difference never exceett.04. We also study My fas( Mo irs) = [ 4339 2 latt.) = 49(th.) * 9(As) ] M(%\é')
the error due to the uncertainty NVS obtaining=0.06. To

investigate possible non-perturbative effects we include a
a2 term into the fit. We estimate an additiona.08 uncer- 1
tainty. Adding these three errors linearly results+if.18. Note that we have used thg=0 value Ags=0.602,~ to
(3) “ A" stands for the uncertainty in the determination ©Pt@in the above results. Using the=5 QCD world aver-
of Aysfo [37]: +=0.04. ageag(M,)=0.118 insteadrunning it across the bottom fla-
Using the running in the RS schentee note that the vor threshold down to 1 GelVthe central value of Eq84)

error due to the uncertainty dfi, almost cancels in the Would read,m, gs(mp gms)=4113 MeV. The difference be-
s tween these two values may also be indicative of the typical

size of the error due to quenching.
We feel that 1 GeV might be a more natural scale to

q‘his differs from the value of Eq84) by almost 150 MeV.

running, we obtain

XR5(2.5rgl)=[1.17t 0.09 latt.) = 0.13'th.) obtain ann¢{=4 prediction from the quenched model than 4
GeV and hence we prefer the central value of B4). After
+0.09 Ajg)Irot (82 all, the quenched model has been adjusted to reproduce low

energy QCD phenomenology and indeed E@$) and (82)
agree with each other within errors. However, as discussed
above and as indicated by the 150 MeV difference from us-
ing a different perturbative running, such predictions have to
be consumed with some caution. Equat{8d) demonstrates
the precision that can be achieved in lattice simulations of
B. Comment on theb quark mass static-light mesons with sea quarks to NNNLO. Obviously,

We cannot resist the temptation to obtain a value for thethe latt.” error can systematically be reduced. Note that,

RS scheme bottom quark mass, using Efd) and our
quenched result, Eq82). We obtain

from the value of Eq(81). Thisn;=0 result compares rea-
sonably well with the phenomenologicaj=4 value of Eq.
(76) and its error is of a comparable size.

We ignore the charm mass threshold. Since the charm quark

my, r(1 GeV)=[4849+ 32(latt.) = 60(th.) mass is not much heavier than 1 GeV this is a small effect anyhow,
' completely paled by our dominant source of uncertainty, rthe
+35Amps)] MeV, (83 =0 approximation.
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TABLE VI. The inverse lattice spacing, the estimate of the static-light binding energy in the lattice
schemexboﬁ E§+(r0)/2+A, Egs.(86) and (87), as well as its conversion to the RS scheme to different
orders in perturbgtion theory. The errors only incorporate the statistical uncertaintiesﬁgat(reb) data, as
well as the 8% uncertainty iNysr o [37], added in quadrature. The overall error due to the uncertainty in
which does not affect the running oft, is not displayed.

a'rg Abof o ARSr o(NLO) ARS o(NNLO) ARS o(NNNLO)
1.95 2.1110) 0.6414) 1.3010) 0.9912)
2.42 2.3510) 0.81(12) 1.3910) 1.1611)
2.94 2.51(4) 0.86(8) 1.40(5) 1.22(6)
3.80 2.81(5) 0.95(8) 1.49(5) 1.33(6)
4.47 3.02(3) 1.00(7) 1.54(4) 1.39(5)
5.35 3.29(2) 1.05(7) 1.61(4) 1.46(5)
7.30 3.84(2) 1.13(7) 1.73(4) 1.59(5)
9.89 4.53(2) 1.21(8) 1.87(5) 1.73(6)
12.74 5.23(3) 1.26(9) 1.99(6) 1.85(7)
14.36 5.4710) 1.1613 1.9212) 1.7812)

with NNNLO perturbative results, the dominant theoreticalerror and, since no chiral extrapolation is involved, with vir-
uncertainty(apart from the sea quark contgrg due to i,  tually no systematic uncertainties. However, we do not know
corrections. the absolute normalizatioh. We reanalyze the lattice poten-
tials of Refs[46,57) to correctly account for the propagation
of the uncertainty of ; into the combinatiorloEE;(ro). By

. . . L

To leading order, the singlet static eneigyis the sum of matching  the lattice  potential EE;(rO)/zz(ZBSG
twice the heavy quark mass and the singlet potential(BEg. io_014)51 to /T'-:(3.844t0.065)'51 at B=6.2 (ry/a
while Mg is the sum of the quark mass and the binding~7.3), where we have two independent results for the latter
energyA, Eq.(7). Consequently, in the OS (RS) schervgs quantity[48,49, we obtain
contains twice the leading renormal@ower term of A. In
QCD with sea quarks this is also evident from the large A=(0.988t0.067)r51. (87
distance behavior, whefgy(r) will approach M.

In the lattice scheme, the non-perturbative enelEg'y

9

C. The running of A from the static lattice potential

For ease of comparison with Sec. VI A, we display the re-
differs from E; by twice the quark mass, E@S5), and con-  syiting A5 (a) in Table VI as well as in the figures. The

tains the same power term as the static-light enetdy  additional uncertainty due to the errorAnshould be kept in
(times twg. One can explicitly verify this in perturbation mind.

theory. In QCD with sea quarlE§+(r) will approach 2" We dispIayA_Lpot in Table VI, together with conversions
[¢]

for r=r,, wherer, denotes the distance associated withi"© the RS scheme, according to E8/) and (78). The
“string breaking” and is implicitly defined byE(r) data are also depicted in Fig. 1iull diamonds, together

=2Mg. We find the static potentid¥6,52 EEJ to exceed With the results from the static-light energiKé (open dia-

— B N monds. Except for the four data points of Ref34] at
the values of 2~ of Ref.[48] atr>r.=(2.25:0.15¥0, @ | /5> 9 456.3 and 8.5, whose slope is somewhat incom-
distance that is statistically indistinguishable from the Valuepatible with the results from the other references as well as

re~2.3o, obtained in simulations witm;=2 light sea ity perturbation theory(as we already noticed in Sec.
quarks(3,13]. VI A), we find agreement between the non-perturbative run-

. T L L L . el
The difference 2 _E2+(r0)_E2;(rc)_Ezg+(r0) IS8  ning of Ex(ro)/2 and that ofAl, down to the lowest scales.
constant, up tdd(a®) lattice artifacts. In what follows we This need not be so since in principle the results may differ

will investigate the running of by O(a?/r3) lattice terms. We also compare this running
1 with the expectation from the valukys~0.602,* (solid
A_Lpot(a)= §E§+(r0;a)+A, (86) line), where we use the normalization suggested by the cen-
9

tral value of Eq.(81), AR (»;=9.76,1)~1.70,*.

As can be seen there is no contradiction between the lat-
tice data and NNNLO perturbation theory down to scales as
can be determined more precisely thah in terms of com-  low as 24 * and as high as 15*. This agreement is quan-
puter time it is cheaper to obtain with the same statisticatifiable: a one-parameter NNNLO fit to thee 1> 5r51 data

as a function ofa™!. The static lattice potentiey +(ry)/2
9
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NNLO —e— & - il
4 £ NNNLO —e— ~ | 151 ; 4% g |
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2 3t P e & 1 _;TI ;§ = J
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§)‘ ,T'& NLO —=—
2 L® ° . /A:g:.:g | T NNLO —e—
e &= & 0.5 r NNNLO +—e—i ]
’g’g_'r«r" ) - & B
1ot S
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2 4 6 8 10 12 14 2 4 6 8 10 12 14
Vifg =2 fo vig=ar,
FIG. 17. The binding energy\ Eqg. (86), in the lattice FIG. 18. The binding energir,, Eq. (86), translated into the

schemg(full diamonds, in comparison wittA" of Sec. VI A(open RS scheme at NLQsquares NNLO (pentagons and NNNLO
diamonds. The constant\ has been adjusted by requiring agree- (circles. We have neglected an overall error in the vertical scale of
ment between the two data setsrgt=7.3a. The uncertainty ofA +0.06%,*, due to the uncertainty of, that does not affect the
=(0.988* 0.067)51 is not included into the errors. NLO, NNLO running. The dashed lines correspond to the NNNLO running in the
and NNNLO refer to transformations iy, into the RS scheme to  lattice scheme with yrs= 0.602, *, where we used the fit result of
different orders in perturbation theory. The solid line corresponds td=q. (88), ARS(9.7&51) ~ 1.7351, as normalization. The error band
the NNNLO expectation withAys~0.602,", and the central corresponds to the prediction of E¢B1), ARY9.765%)=(1.70
value of Eq.(81), ARY(r;=9.76 ;) =1.7a, 1. +0.04),*, and includes the uncertainty due tbys=(0.602
+0.048)y,* (but no other errobs

(setting Ays=0.602, %) yields x?/Npr=3.53/4, with the

value translated into the RS scheme for ease of comparisorPrescription of the running in the RS schethewith
AR5(9.7651)=(1.70i 0.04)rgl, run to different scales, us-
ing Aps=(0.602¢ 0.048)61. Note that the errors that we

KR5(9.7&51)=(1.711L 0.0Drg . (89) display in this case are only due to the uncertaintyrin

with all other error sources of E¢B1) (as well as the uncer-
tainty of A) ignored.

Including all available data results j?/Npg=6.91/9 with We find excellent agreement between data and the pre-

KRS(9'76,81):(1'70__,_0'01)|,61. The errors of the above dicted running. In fact, one can in principle determiag

. . . _l .
examples are purely statistical. The uncertaintiesvimnd o™ the logarithmic corrections to the * running of the
. binding energy: in dedicated lattice simulations of the short
Aws as well as theoretical errors are unaccounted for. If w

) 5 istance static potential tremendous statistical accuracy can
go to NNLO we obtain the”/Np values of 16.3all data  pe achieved and tiny lattice spacings are acces§iig

points, 23.0 @ *>5ry ") and 6.7 &~ *>9r;"). Also, the  Even using our static singlet potentids,57 that are less
predicted value ofAR9.7& ,')r, becomes somewhat un- accurate than those of this recent reference, a two-parameter
stable, ranging from 1.76all data points 1.79 @ ' NNNLO fit to the a *>5r;" data yields Ays=(0.590
>5ry1), up to 1.91 & *>9r;%): within the accuracy of +0.036y,% and AR9.76,%)=(1.73+0.04x, with
the data it is essential to go to at least NNNLO in perturba-y?/Npg = 3.35/3. Including the whole energy range, down to
tion theory. a*1~2r51, results in Ays=(0.627+ 0.026)“6l and

In Fig. 17 and. Table VI we have also d_isplayed the fejKR5(9.76“51)=(1.68t 0.02),*, still with very acceptable
suls, ransiatod o he RS, soleme o deren orders 14,608, T resuts GA™ are i petct agree-
This figure very much resembles Fig. 16, only that now th ment with those obtained in Eqe31) and (88). Moreover,

. ) She fits are consistent with the value of R¢B7], Aws
error bars are smaller as we discard the errodpfwhich =(0.602+0.048Y,*, within statistical errors smaller than

will only affect the overall value ofA but not the running e uncertainty of this reference value.

with the scale. The dashed lines correspond to NNNLO per-

turbation theory in the lattice scheme withys= 0.60251,

and the central value of E¢88) as normalization point. This 13¢5 ,—9.76 ;1 we find some differences between the
running perfectly agrees with the data down to very I0OWNNNLO running in the lattice schem@lashed black lineand the
energies. As already observed in Sec. VI A, we also find nicgy prediction (error bang, due to large logarithms in the differ-
convergence foa 1=3r*, as the order of the perturbation ence, Eq(80), where we have not attempted a logarithmic resum-
theory is increased. The error band corresponds to the PMation.
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In conclusion, we have demonstrated that the running of Ea(r)=2mg, (a)+ Ek(r;a) (92
the binding energy in the lattice scheme can be reproduced '
with incredible accuracy in NNNLO perturbation theory, in =2m§,L(a)+VA,S,L(F;a)+O(f2) (93
terms of ag. This accuracy is possible since, unlike in the
case of the binding energy itself, there is no leading renor- =2mg re( V1) T Vas, re(M; ) +0(r2), (99

malon contribution to its running. Down to energies of about
1 GeV we do not see any sign of a break-down of perturbawhere the normalization dE(r) with respect taE(r) can
tion theory or evidence of significant non-perturbative con-be obtained from the gluinonium spectrum. Obviously,
tributions to the running. We have also confirmed that the ) ~

theoretical errors estimated in Eq81) and(82) are indeed r"m Ea(r)=2Mg, (95)
conservative. o

while for the bottomonium energy in QCD with sea quarks
VII. GLUINONIUM AND OTHER RELATED ISSUES one obtaingup to 1M, corrections and neglecting radial and

We already mentioned that gluelumps are interesting irgluonlc excitations

the context of bound states, including heavy adjoint particles, lim E(r) = lim E4(r)=2Mg. (96)
such as gluinos of supersymmet8§USY) models(even if it F oo F oo
is quite likely that they will decay before any kind of had-
ronization takes plage In this case, to leading order in In combining Eq.(94) with Egs.(26) and(30) we obtain the
HGET (heavy gluino effective theojythe gluino mass can important equality,
be obtained from the relation,

Ea(r)+2[Eg(r)—Eq(r)]

_ A0S _ ARS
M&=Ag™ Mg.05= A1)+ Mrdv), ®9) =Vasrdlvi) +2[ Vo rdrive) = Vs rdl; v5) ]

in a scheme of ch_oice that @nihen be converted into the +2Mg+0(r?), (97)

mass in, say, thé1S schememg(myg), analogously to the

discussion of Sec. VI. We will I|m|t most of the discussion where we have used the fact thdig =g gs+ ABS andEg

below to the RS and OS schemes but translation into Iattm%{EH Es- }. The effect of Smgg cancels from the combi-

schemes is straightforward. , nation Eg— E and 5Agg from Ex+2E, . Since the glue-
Mg denotes the mass of the lightéspin-averagedglue-  paling mass is a physical observable this implies that, up to
ballino. Note that in this context the glﬂelump energy O(r?) corrections, the combinationV,, ((r)+2[V(r)
plays the same role as the binding energylid for heavy-  —v(r)] is scale independent and free of renormalon and
light mesons. We hava [X(vf) = A% 8Agg(vs) and hence  power contributions: the UV renormalon o, is cancelled
by the UV renormalon oW while the leading IR renorma-
Mg,rs( V1) = Mg o5t SARg(V1): ©0  on of V,, which we studied in this paper, is cancelled by

2
omg rs= — 6ARs in the glueballino case corresponds to theor?e-half O_f th.e uv rgnprmalop OVp,s- In faCt’3t°O(“S_)
SMgs Of heavy-light mesons. We can also write down thethis combination explicitly vanishes and t «;) term is
above equations in the lattice scheme in which case, using/PPressed by a color factormE.
the same conventions as in other parts of this pager, In the above equatioBg(r) corresponds to thH, or X,
=6A_ . hybrid levels. For a gener#,;(r) we would have to replace
In addition to glueballinos one can imagine gluino-gluinothe Mg on the rhs by the mass of the excited glueballino in
bound states: gluinonid,. Their dynamics is dictated by the the respective channel. At—« the rhs of Eq.(97) will
following Lagrangian: approach 2z, see EQs(95) and(96).
We wish to compare our expectation with lattice data.
. This can either be done after an extrapolation of these to the
LpNRQCDr:f dr dBRTr{SFT("?O_VA’S)SF continuum limit or at finite lattice spacing in the lattice
scheme. Reexpressing H§7) in terms of the energy levels
as determined in the lattice schenj&a(r)= E,';(r'a)
+2myg . (a), etc)], and using the conventions of Sec. IV D,
this amounts to

+0r4"(iDg=Vao)Ora+---}, (9D

at leading order in b and in the multipole expansion. This
is analogous to Eq(l), replacing the static sources in the
fundamental by static sources in the adjoint representation.
This means that there will be further multiplets in Eg1)
that we will not consider in this paper.

The singlet potential between two adjoint sourmss(r)

ER(r;a)+ 2[Ef, (ria) —E5 (1)~ Ag(@)]

=VasL(r;a)+2[Vy(r;a)— oA (a)— Vg (r;a)]

has been calculated in perturbatlon theor;Ol(n ) and the +0(r?)+

corresponding energEA(r,a) was determined in lattice

simulations(see, e.g. Refl24]). Up to lattice artifactsa? =0(r?)+0(a/NZ) + O(Adcpa?) +O(a?/r?).
we can write (998
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Both the lhs and rhs of the above equation are explicitly free k=(0.84+ O.18)r52. (102
of a~ ! power termgand of leading renormalohdn fact the
rhs vanishes in perturbation theory, to at Ie@(:tvglNg). As  Ther dependence is so weak that on the 1% error level of the
indicated in the equation, in general there will be non-lattice data we are unable to discriminate between different
perturbativeO(a?/r?) as well asO(AZQCDaZ) lattice arti- parametrizations. However, we can determine the gluelump
facts, in addition to th@©(r?) corrections from higher terms mass rather precisely;g(ao,ar)=(7.75i 0.05+ 0.07)r51,
in the multipole expansion. where the second error reflects the uncertainty in the lattice
The above combination is extremely interesting as fordetermination ofy/a,. In fact the same can be done for the
smallr there should only be a quadratic but no linear term.a,~0.23, anda,~0.33, data sets. The respective results
At r=2r, the adjoint string will break and the Ihs of the read AL=(6.71+0.04+0.09),* and AL=(5.75+0.10
equation will approach zero like rl/In the intermediate re- i0.05)r51, respectively. The data are in agreement with a
gion 0.5,<r<2r, one would expect two non-perturbative |inear slope ina~! but, unfortunately, at present we only
contributions, a linear term from the slope®f(r), withan  know the NLO perturbation theory for the anisotropic case.
effective string tensiofi24], oer=[3.09+0.10/r5 %, as well  After subtracting twice these gluelump energies, we find
as a Iv term that dominantly originates from the difference scaling of the coarse lattice data with the results depicted in
between static hybrid and singlet potentials and whose coethe figure, within error bars of comparable size.

ficient will approach 2r asr—«, in an effective string In particular, from the fit to the funnel type parametriza-
model expectation. In fact far~r, one would expect this tion we see that the data leave little room for perturbation
1/r term still to dominate over the linear term. theory style short-distance Coulomb terms. This is in agree-

We wish to compare this expectation to numerical datament with our expectation. However, miraculously there is
Unfortunately, on isotropic lattices where we know the glue-also no evidence for a quadratic term in the 0.9, data
lump mass in the lattice scheme we did not compute thend, in fact, we can set the limits Oﬁ@r8>—0.18 for such
adjoint potential while on our anisotropic data sets all potena contribution, from the <0.7r, data. We believe that the
tials, singlet, adjoint and hybrid, are available but the gluesmallness of this term is accidental as had we replaced the
lump mass is unknown. In Fig. 19 we display the combina- by theS, potential, it would certainly be present; see
tion E,ﬁ(r)+2[Ehu(r)—E§+(r)] as a function ofr=r[1 Sec. Il D. One can, however, speculate that there might be a

+0(a2/r?)], Eq.(10), at our finest anisotropic lattice spac- cancellation ofr? effects and thaill, does not receive a

ing, a,~0.16 ,~4a, which, within errors, is compatible significantr? contribution in the multipole expansion. This
witr’1 tﬁe cbntiguumTIimit sée Sec. Il anci RéR4]. Note issue should be addressed in future theoretical and numerical

that there is an additional 1% overall error on the ordinateotUdies with enhanced accuracy. L
and the abscissa due to the conversion from lattice units into 1€ observed slope at larger distances0(84 ) is
units ofr, that we do not display. much snjzzaller than that of th(_e adjoint potentlfal in this region
From Eq.(98) we would expect the combination shown to (=3.0%¢ ), in agreement with our expectation that the 1/
approach the gluelump energy in the lattice Schaﬁjﬁa), contribution from the difference T:'(Hu— EEJ) cannot be ne-
asr—0. We see that the approach towards this limit is re-glected.
markably flat. In fact, excluding the> 0.9, data, which are There is no evidence of a linear non-standard short-
clearly in the non-perturbative regime anyway, we are unablélistance term for <0.9, at least not of the size expected
to resolve deviations of the data from a constant. Note than various model$53]. A possible explanation of the absence
the units on the ordinate, 0.@1~80 MeV, are quite small. of such a term from our calculation of a quantity that van-
A linear plus quadratic fit, ishes to low orders in perturbation theory would be that
ag(q) itself receivesO(1/g%) corrections(see Refs[53]).
EL(r)+2[EL (r)—Es+(r)]=2A5+cr?, (99 We remark to this end thais is not a physical observable. In
’ ’ the MS scheme it is perturbatively defined. The difference

to r<0.5r data, yields betweenag and any non-perturbative generalization of this
coupling, which would allow inclusion of such singularities,
2AE2(15-51t 0_10)“;1, c=(0.07+ 0.70)r53. will necessarily not be universal but depend on the prescrip-

(100  tion used. However, we are investigating a physical observ-
able here that is scheme independent.
A purely phenomenological fit to the same functional form  Combinations of different potentials that lead to renorma-

for all distances results in lon and low order perturbation theory cancellations are cer-
. tainly an arena worthwhile studying for a determination of
2A5=(15.45-0.06r,*, ¢=(0.38+0.07)r;°, higher order terms in the multipole expansion and for testing

(101)  the validity of the standard operator product expansion pic-
o ) ) ture. As we shall detail below many such combinations exist.
while in a physically completely unmotivated funnel param-  There are also hybrid excitations in the adjoint channel.

etrization, 25 +e/r +kr, we obtain The perturbation theory in this case is richer than for poten-
. . tials between fundamental sources &s8=1®808® 10
2Ag=(14.95-0.20r, ", e=(0.08£0.04), ®10* @27 in addition to singlet and octet, we have another
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. N and simple constituent-gluino models might fail terribly. Un-

or - fortunately, in nature we do not encounter such particles. It
L 22AB+ Gr ! would, however, be most entertaining to confirm this expec-
2Ag+cCri,r<rgf2 —— d tation in lattice simulations.

VIIl. CONCLUSIONS

We report compelling evidence that for distances around
1 GeV ! the gluonic excitations of the static potential are in
the short distance regime. We are able to obtain a value for
the lowest-lying mass\ g of the bilocal gluonic correlation
functions with well controlled uncertainties, by fitting to the
difference between thdl, and Eg potentials. The RS
0 02040608 1 12 14 16 scheme result reads

Iy

ARS(n;=0)=[2.25+0.1Qlatt.) = 0.21(th.)

FIG. 19. The combinatiorEx(r)+2[E}; (r)—Es+(r)], EQ.
_ u g

(98), as a function of =r[1+0(a?/r?)], Eq. (10), together with

various fits on an anisotropic lattice with resolutiay ~4a, for vf=2.5r§l%l GeV. Translated into physical units this

~0.16,. reads

octet, two decuplet fields and a 27-let which have to be in- ..

cluded into Eq(91). Consequently, adjoint hybrid potentials As (1 GeV)=[887+39(latt) = 83(th.) = 32(A )] MeV.

cannot only have the octet perturbative expansion but some (104

will correspond to decuplets and others to 27-lets. Note that

0,
the decuplet representation is not self-adjoint but has vanis Note that one ?hOUId also add an extra error Of. order 1.0/0
ing triality as it should be due to quenching to these numbers. With the information

The renormalon of the octet potential between admin%resented in this papes; can be run to different scalésee

+0.08 Ag)Irot (103

sources is the same as in the fundamental case but the de'¥- 14. We also obtain values for the masses of other glue-

cuplet and 27-plet adjoint potentials contain new renormal“MPS: listed in Table 1V, as well as for the non-perturbative

— 0.53. -3 : :
lons, which are related to those of the singlet potentials be§|°peAHu—EJ_0'92tO-5%0 of the quadratic difference be-

tween color charges in these respective representations. THigeen the lowest two hybrid potentials.
exactly resembles the situation discussed above where the In order to state sensible numbers fog, the scheme for
adjoint singlet potential contains the same renormalon as thée renormalon cancellation has to be specified. Otherwise,
fundamental octet potential. In fact one can define an infinitevery different numbers can be obtained, as we can see from
tower of states with different renormalons following this a comparison of the result in the lattice and the RS schemes.
construction, a theoretically interesting enterprise but noOne can translate from one scheme into the other in a
likely to be of much direct phenomenological use. renormalon-free way, order by order in perturbation theory

The inclusion of the octet states of E§J1) is necessary and check whether both results are consistent with each
for any consistent pPNRQCD calculation of gluino pair pro- other. We have been able to confirm this. If we use the glue-
duction near threshold at NL{54]. At NNLO the decuplet lump results from Foster and Michagl?2] at finite lattice
and 27-plet fields will also play a role. In fact such contribu-spacing, we obtain A§Y(2.5r%)=[2.31+0.04(latt.)
tions, depending on the mass of the gluifamd on its exis-  +0.33(th.)" §1§Awms)Irg*, which is perfectly compatible
tence, might be of bigger importance than in the caseatof Wwith the result of Eq(103), albeit with slightly larger errors.
production because there are more of them. This is an excit- We also investigate the binding energy of heavy-light me-
ing and very cleancut situation sinoé andr ! are bigger sons in the static limit and to NNNLO in the conversion. We
by a factor~C,/C; than for quarkonia, such that all “soft” arrive at similar conclusions. For the binding energy we ob-
physics is clearly and extremely safely within the perturbatain then;=0 value,
tive domain. o

Let us finally mention that\ g, the binding energy of the AR(v=2.5,)=[1.17+0.09 latt.) + 0.13 th.)
lightest glueballino, determines the size of the splitting be- _q
tween the adjoint singlet potential and the lowest adjoint +0.09Ams)Iro (105

hybrid potential at short distances, the latter of which, unfor- =~ , )
tunately, has never been determined in lattice simulationd¥hich is in good agreement with the phenomenological

This is very different from the case of fundamental sources/@Ue, obtaine_ngrom the experim(ir:)trftls) andj meson
where binding energies of heavy-light systems,are much ~ SyStemg15], A™=[0.92+ 0-22(_th-)—011§(AM_S_)]ro :

smaller than the gaps between ground state and hybrid exci- e have demonstrated the internal consistency of our ap-
tations. In “hadrinos,” which contain stable adjoint sources, proach. Lattice predictions fokg and A" at different lattice
gluonic excitations would hence play a very prominent rolespacings have been studied. We have shown that the pertur-
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bative series, Eq(80), relating A5(a) and A(a) with of EFTs are pNRQCD in the kinematic domaimy?

Ag(a’) and AL(a’), respectively, in the lattice scheme is =Aqcp<Mw, translating glueballino masses into RS\

free of renormalon singularities and has nice convergencgluino masses within HGETheavy gluino effective theoly
properties, as indicated by the consistency with the nonOf converting heavy-light meson masses into quark masses
perturbatively obtained values. In particular this means thatvithin HQET.

from the knowledge o\ and A" at a given lattice spacing ~ We observe that\g~(Ca/C;)A~mg/2, wheremg de-
values at different lattice spacings can accurately be prélotes the mass of the lightest glueball. The first similarity is
dicted. We have studied the conversion of lattice prediction§'0t necessarily surprising since there are technical parallels
for AL and A' into the RS scheme. This conversion is also?€WeeMg, which corresponds to the binding energy of an

dictated by a perturbative series which is free of renorma@djoint source, and, the energy of a fundamental source.
lons. We have verified that the values in the lattice schemdVe do not intend to advocate a constituent gluon picture.
indeed approach the results in the RS scheme with a convelevertheless, it may seem reasonable that the binding energy
gent pattern and, remarkably, the-scale dependence pre- of the glue to an adjoint source has about half the size of the
dicted by the RS scheme is reproduced, within errors. W&nergy of an entirely gluonic state. It should, however, be
remark that for thes;-scale running it is possible to obtain a noteq that the latter is an unamblguqusly defined state in the
resummed non-perturbative expression in which the renofhysical spectrum while for the binding energy we nec-
malon is cancelled and at the same time the logarithm resun@SSarily encounter the scheme and scale dependence that we
mation is performed. discussed. , , _ o

We stress that the RS scheme used here is designed to We have also investigated the scenario of gluinonia and
smoothly converge toNS-style dimensional regularizatipn other excitations m_non—fundamental qhannels. While glw—
perturbation theory at low orders ing; after all, the renor- nos might not exist in nature and certamly do not.forr'n light
malon effect only sets in asymptotically at large orders inbound states, such that phenomenological applications are

bation th Diff | tar and for A b limited, from a theoretical and conceptual point of view the
perturbation theory. Different values farg and forA canbe  oiqtence of this part of the spectrum is very interesting. The
obtained in other schemes but only at the inconvenience q

having | . . dard” bation th clusion of such potentials allows one to identify many
aving large corrections to “standard” perturbation theory at;,hinations in which renormalons and other un-wanted

Iovgl orders. In this sense we conS|der_our approach natlz s ntributions vanish, opening up a window to the study of

ra}I ; thg RS schemg incorporates salient features of bo't on-perturbative short distance physics.

dimensional and lattice regularization. The approach readily

benefits from results computed in thdS scheme, the

scheme in which perturbative quantities are usua_lly known to ACKNOWLEDGMENTS
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