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Spinning solitons of a modified nonlinear Schro¨dinger equation
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We study soliton solutions of a modified nonlinear Schro¨dinger ~MNLS! equation. Using an ansatz for the
time and azimuthal angle dependence previously considered in the studies of the spinningQ balls, we construct
multinode solutions of the MNLS equation as well as spinning generalizations.
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Solitons and instantons@1# are classical, nonsingular, fi
nite energy solutions of nonlinear field equations. There e
topological solitons and nontopological solitons. The form
are characterized by a conserved topological charge tha
sults~in most cases! from a spontaneous symmetry breaki
of the theory. Examples include monopoles, vortices, a
domain walls. Nontopological solitons@2# have a conserved
Noether charge that result—in contrast to the case of to
logical solitons—from the symmetry of the Lagrangian. E
amples of these are the so-calledQ balls @3#, which are so-
lutions of a complex scalar field theory involving af6

potential.
The topic of classical field equation solutions that are

tating has gained great interest in recent years. It is w
known that the inclusion of gravity can lead to a number
rotating solutions such as the famous Kerr-Newman fam
of rotating black holes as well as globally regular gravitati
solutions, namely, the so-called boson stars@4#. These are
spinning solutions of the coupled Einstein and Klein-Gord
equations. We refer to them as spinning rather than rota
since they are not rotating in the sense of classical mec
ics, but have a time and azimuthal angle dependence o
form exp(ivt1iNu).

However, classical solutions in flat space that are spinn
have only been constructed very recently@9#. These areQ
balls that are rotated in the sense that they have the time
azimuthal angle dependence chosen for boson stars. S
tions with k50,1,2 nodes of the scalar field andN51,2,3
have been constructed numerically. These solutions ar
particular interest because, as shown in Ref.@10#, the topo-
logical solitons in SU~2! gauge theory cannot rotate.

In this paper, we study spinning solitons of a modifi
nonlinear Schro¨dinger~MNLS! equation, which arises, in th
continuum limit, in the studies of solitons on discrete qu
dratic @5,7,6# and hexagonal lattices@8#. These equations
were studied recently ford>2 space dimensions in a rece
paper@11#. In the present paper, we reconsider in detail
cased52 adopting the viewpoint of Ref.@9#. Namely, we
have managed to construct excited solutions for both n
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spinning and spinning solitons. Physical quantities charac
izing the excited solutions are compared to those charac
izing the fundamental solutions.

The modified nonlinear Schro¨dinger ~MNLS! equation in
two dimensions was presented in Refs.@5–8# and reads

i
]c

]t
1Dc1agc~ ucu21bDucu2!50. ~1!

The constantsa andb depend on the underlying geometry
the lattice, wherea52, b51/12 for the quadratic lattice
@5–7#, anda54, b51/8 for the hexagonal lattice@8#. In the
following, we will choosea, b according to the hexagona
lattice.

g is the coupling constant of the system andD denotes the
Laplacian in two dimensions. Equation~1! can be derived
from the functional defined by the following Lagrangia
density:

L5 i S ]c*

]t
c2

]c

]t
c* D1u¹W cu222gucu41

1

4
g~¹W ucu2!2.

~2!

~In fact 2L is the Lagrangian density but we use the co
vention above throughout the paper.! The system has man
conserved quantities@11#, namely the space integral of th
static part of the Lagrangian~2!, which can be interpreted a
the ‘‘static energy’’:

E5E F u¹W cu222gucu41
1

4
g~¹W ucu2!2Gdx dy ~3!

as well as the normn of the solution:

n25E cc* dx dy. ~4!

We notice that by rescalingc→c/Ag, we can scale outg
from Eq. ~1!. ~Of course,E andn are also rescaled then.!

Ansatz.c is a complex scalar field. We choose first
consider it to be given by the~radially symmetric! ansatz

c~ t,r !5eivtf~r !, ~5!

wherer 5Ax21y2. First, we note that the quantity
©2004 The American Physical Society01-1
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Q5
1

i E S c*
]c

]t
2c

]c*

]t Ddx dy ~6!

is conserved for the ansatz~5!, since

Q52vn2. ~7!

So, the action of the solutions constructed within the ab
ansatz appears as a sum of two conserved quantities.

Inserting ansatz~5! into Eq. ~1!, we obtain the following
ordinary differential equation:

f91
f8

r
1

gff82

11gf2
1

4gf32vf

11gf2
50, ~8!

where the prime denotes the derivative with respect tor. This
equation can also be derived from the following effecti
one-dimensional Lagrangian density:

Lns5~11gf2!f8222gf41vf2. ~9!

The form of the potentialV(f)52gf42vf2 is given for
g510 andv51,0,21 in Fig. 1. If we choose eitherg<0 or
v<0, this potential has no local maxima. In a classical m
chanics analog, we can think of this as a particle w
position-dependent mass in ax4 potential. In order to have
localized, finite-energy solutions the functionf(r ) has to
approach a zero of the potential forr→`. This means here
that f(r→`)→0. If we come back to the analog with th
particle, this means that~with r being now the ‘‘time’’! the
particle starts with zero velocityf8(0)50 ~this, in fact, is
one of the boundary conditions used!. It should end up at the
local maximum of the potential~see Fig. 1!. Employing the
same argument as in Ref.@9#, the form of the potential sug
gests further that solutions withk51,2, . . . nodes in the
function f(r ) should also exist forv.0.

It is convenient to also define the total energy of the
lution according to

FIG. 1. The potentialV(f) is shown forg510 andv51.
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Etot5E Lnsr dr du. ~10!

Our numerical results show thatEtot is always positive~see
Sec. III B! andEtot(k50)<Etot(k.0).

Before we discuss the numerical results we present
analytical behavior of the solutions around the origin and
infinity. Close to the originr 50, the functionf(r ) behaves
as

f~r !1!5C01O~r 2!, C5const. ~11!

The asymptotic behavior of the functionf(r ) can easily be
determined from Eq.~8!. The linearized equation is indeed
Bessel equation and leads to the following asymptotic beh
ior:

f~r @1!5J0~x!;
cos~x2p/4!

Ax
if v,0, ~12!

f~r @1!5K0~x!;
exp~2x!

Ax
if v.0, ~13!

where x[Auvur . The function f(r ) therefore oscillates
aroundf50 for v,0 and decays exponentially forv.0.
Both type of behaviors are confirmed by our numeric
analysis.

Note that if the factor (11gf2) is replaced by 1, the
Lagrangian~9! reduces to that of a scalar field in af4 po-
tential. This is known to have no stable solutions; thus af6

potential was introduced@3# in this case. In our model no
suchf6 term is possible, but we have a nonconstant pref
tor of the kinetic term, which leads to the existence of sta
solutions. In the nonlinears model also a term in front of the
kinetic term appears, which results from the fact that
scalar field is constrained.

To construct soliton solutions of our model, we introdu
the following boundary conditions for nonspinning solutio
@8#:

] rf~r 50!50, f~`!50. ~14!

With these boundary conditions, the functionf(r ) can cross
the r axis k times, i.e., multinode solutions are possible.

Numerical results.Without losing generality, we can se
g51 in the following. In Fig. 2, we present the two con
served quantitiesE, n and the value off at the origin,f(0),
as a function ofv for the nonspinning, zero-node solito
solution. We find that the norm forv!1 tends to a finite
value asv→0. It is interesting to connect this result wit
that of Ref.@8#. With respect to this paper, we have resca
c→c/Ag, so that the norms are related byn5Agñ, whereñ
denotes the norm of the unscaled solution. In Ref.@8#, the
conventionñ51 was adopted. Thusn5Ag and in the limit
v→0, the critical value of the norm is equal t
Agcr(N50,k50)'A2.93'1.71, which is exactly what we
find.
1-2



e-
n
a
fe

r

e
nt
elo
nd

an

d

w

the

ian

e

de

f

ite
ef.
ist

ti-

BRIEF REPORTS PHYSICAL REVIEW D69, 087701 ~2004!
In Ref. @9#, solutions were shown to exist only for a sp
cific range ofv. Here, we find no upper or lower bound o
v as long asv>0. For v,0, the equation becomes
Bessel type and the solutions become oscillatory. The dif
ence between Ref.@9# and our results is that in Ref.@9# a f6

potential was introduced, while we have a nonconstant p
factor in front of the kinetic term. Thef6 potential leads to
the restriction inv, while in our model thef4 potential is
not subject to such restrictions.

The first excited solution has a maximum atr 50. It then
crosses zero atr 5r 0 and attains a minimum at, say,r
5r m . The numerical results show thatf(r m);2f(0)/2
andr m;2r 0. For v@1 bothr 0 andr m decrease, so that th
soliton becomes increasingly concentrated around its ce
If v!1 these values get larger and the soliton is more d
calized. Since the norm of the first excited solution also te
to a finite value in the limitv→0, we can conclude~follow-
ing the above arguments for the fundamental solution
adopting the conventions of Ref.@8#! that the first excited
solution exists only for a sufficiently high value ofg, namely

for Ag.Agcr(N50,k51)'4.38. This has to be compare

to Agcr(N50,k50)'1.71 of the fundamental solution.
Finally, we present the total energyEtot of the solutions in

Fig. 5. Clearly, the energy stays positive for allv>0 and the
zero-node (k50) solution has for all values ofv smaller
energy than that of the first excited (k51) solution.

To construct spinning generalizations, we take the follo
ing ansatz@9#:

c5f~r !eivt1 iNu, N integer. ~15!

The equation then takes the form

f91
f8

r
1

gff82

11gf2
1

4gf32vf

11gf2
2

N2f

r 2~11gf2!
50.

~16!

FIG. 2. The conserved quantitiesE,n and the valuef(0) are
shown as functions ofv for the nonspinning solutions withk50
andk51.
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As before, this equation can be equally derived from
following static Lagrangian:

Ls5
11gf2

2
f822gf41

v

2
f21

N2f2

2r 2
, ~17!

where now the potential becomes explicitlyr-dependent due
to the additional term2N2f2/(2r 2). Note that the equality
~7! still holds for this ansatz. The total energyEtot of the
solution again is the space integral of the static Lagrang
Ls .

For r !1, the functionf(r ) behaves as

f~r !1!5r N~CN1O~r 2!!, CN5const. ~18!

Moreover, the asymptotic behavior off(r ) is now deter-
mined by the functionsJN(x) and KN(x), respectively, for
v,0 andv.0.

As a consequence Eq.~1! has to be solved subject to th
following boundary conditions:

f~r 50!50, f~`!50. ~19!

Again, the choice of these conditions allows for multino
solutions.

As for the nonspinning solutions, we chooseg51. The
conserved quantitiesE, n and the value of the derivative o
f(r ) at the origin,f8(0), for the N51 solutions with no
nodes (k50) and one node (k51), respectively, are shown
in Fig. 3. Again, the norm of the solutions tends to a fin
value forv→0. Thus, again employing the language of R
@8#, we conclude that the normalized spinning solutions ex
only for coupling constantsg larger than a critical value
gcr(N,k). As in the nonspinning case, we find that the cri
cal value of thek50 solution is smaller than that of thek
51 solution. In summary, we find for the critical values

FIG. 3. The conserved quantitiesE, n and the valuef8(0) are
shown as functions ofv for the spinning solutions (N51) with k
50 andk51.
1-3
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gcr~0,0!,gcr~1,0!,gcr~0,1!,gcr~1,1!. ~20!

The profiles of the solutions withN51 andk50,1 are
shown in Fig. 4 together with the two nonspinning solutio
The functionsf(r ) have a maximum atr 5r M and we find
that the value of this maximum increases slowly as a fu
tion of v. Again the solution and its first excitation ge
narrower~more spread out! for v@1 (v!1).

In Fig. 5, we present the total energyEtot of the solutions
as a function ofv. Again, as in theN50 case, the energy i
always positive and the energy of the fundamental solu
with no nodes is smaller than that of the first excited so
tion. Comparing the energy of the solution for fixedk and
different N, we find that the nonspinning solution has low
energy than the spinning solution, which is an expected
sult since the spinning adds energy to the solution.

The study of rotating solitons in flat space still has
ceived little attention in classical field theory. Recently, no
topological spinningQ balls have been constructed@9# using
an ansatz used to construct spinning boson stars@4#.

In this paper, we have considered an equation that is
lated to the continuum limit of a system of equations desc

FIG. 4. The profilesf(r ) of the soliton solutions are shown fo
different choices of the node numberk and the parameterN. N
50 are nonspinning solitons.g51.
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ing the interaction of a complex Schro¨dinger-like field with a
quadratic@5–7# or hexagonal lattice@8#. Although the system
is originally not relativistically invariant, the radially sym
metric equations resemble classical static equations of a
linear s model type supplemented by a ‘‘symmetry brea
ing’’ quartic potential.

The pattern of solutions of this nonlinear equation see
extremely rich, containing several families of solutions~for
this see also Ref.@11#!. The solutions are mainly characte
ized by the parameterv defining the harmonic time depen
dence. Remarkably, the function determining the soli
tends to zero in the limitv→0 although the ‘‘norm’’ of the
solution stays finite in the same limit. This phenomenon p
vides a natural explanation of the fact that the solitons st
ied in Ref. @8# exist only for large enough values of th
coupling constant. Among possible generalizations of our
sult we mention the construction of nonspinning and sp
ning solutions ~and their excited solutions! of a three-
dimensional version of the equation and/or the coupling
an electromagnetic field, thus leading to charged solution
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FIG. 5. The total energyEtot of the nonspinning (N50) and the
spinning (N51) solutions withk50,1 nodes is shown as functio
of v.
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