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Spinning solitons of a modified nonlinear Schrdinger equation
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We study soliton solutions of a modified nonlinear Sclinger (MNLS) equation. Using an ansatz for the
time and azimuthal angle dependence previously considered in the studies of the sQibifgy we construct
multinode solutions of the MNLS equation as well as spinning generalizations.
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Solitons and instantonjsl] are classical, nonsingular, fi- spinning and spinning solitons. Physical quantities character-
nite energy solutions of nonlinear field equations. There exisizing the excited solutions are compared to those character-
topological solitons and nontopological solitons. The formerizing the fundamental solutions.
are characterized by a conserved topological charge that re- The modified nonlinear Schdinger (MNLS) equation in
sults(in most casesfrom a spontaneous symmetry breaking two dimensions was presented in Réf-8] and reads
of the theory. Examples include monopoles, vortices, and »
domain walls. Nontopological solitod€] have a conserved . 2 2y _

Noether charge that result—in contrast to the case of topo- ot Ay agh(|ul®+baly=0. @
logical solitons—from the symmetry of the Lagrangian. Ex- )

amples of these are the so-call@dalls [3], which are so- The constants andb depend on the underlying geometry of
lutions of a complex scalar field theory involving @® the lattice, wherea=2, b=1/12 for the quadratic lattice
potential. [5-7], anda=4, b=1/8 for the hexagonal lattide]. In the

The topic of classical field equation solutions that are rofollowing, we will choosea, b according to the hexagonal
tating has gained great interest in recent years. It is wel@ttice. _
known that the inclusion of gravity can lead to a number of 9 is the coupling constant of the system andenotes the
rotating solutions such as the famous Kerr-Newman family-aplacian in two dimensions. Equatida) can be derived
of rotating black holes as well as globally regular gravitatingffom the functional defined by the following Lagrangian
solutions, namely, the so-called boson stats These are density:
spinning solutions of the coupled Einstein and Klein-Gordon .
equations. We refer to them as spinning rather than rotating ,_; o _ ‘9_'/’ * | 4|V yl2—2 4 1 V]yl2)2.

. = ; L U g* |+ V= 29|y 9(V|¢l*)
since they are not rotating in the sense of classical mechan- at at 4
ics, but have a time and azimuthal angle dependence of the 2
form exp{wt+iN6).

However, classical solutions in flat space that are spinnin

In fact — £ is the Lagrangian density but we use the con-
have only been constructed very recer®j. These areQ ention above throughout the papefhe system has many

balls that are rotated in the sense that they have the time ar(f‘(?nserved quantitieEL1], namely the space integral of the

azimuthal angle dependence chosen for boson stars. Sol atic part of the Lagrangia), which can be interpreted as

tions with k=0,1,2 nodes of the scalar field ainnt=1,2,3 e “static energy™
have been constructed numerically. These solutions are of

particular interest because, as shown in R&@], the topo- Ezf
logical solitons in SW2) gauge theory cannot rotate.

In this paper, we study spinning solitons of a modified
nonlinear Schrdinger(MNLS) equation, which arises, in the
continuum limit, in the studies of solitons on discrete qua-
dratic [5,7,6] and hexagonal latticef8]. These equations HZZJ Py*dx dy. (4)
were studied recently fal=2 space dimensions in a recent
paper[11]. In the present paper, we reconsider in detail theye notice that by rescaling— y/+/g, we can scale oug
cased=2 adopting the viewpoint of Ref9]. Namely, we  from Eq.(1). (Of course E andn are also rescaled then.
have managed to construct excited solutions for both non- ansatz. s is a complex scalar field. We choose first to

consider it to be given by th@adially symmetri¢ ansatz

- 1 .
Vo2 =2glyl*+ 79(V[9f*)?|dxdy  (3)

as well as the norm of the solution:
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FIG. 1. The potentiaV(¢) is shown forg=10 andw=1.

1 ay IP*
= — * — —
o-1[ v % m)dxdy ©)
is conserved for the ansatg), since
Q=2wn?. (7)
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EtOt: f Ensr dr d 6. (10)

Our numerical results show th&t,; is always positivgsee
Sec. I B) andE;y(k=0)<E;q(k>0).

Before we discuss the numerical results we present the
analytical behavior of the solutions around the origin and at
infinity. Close to the origir =0, the functioné(r) behaves
as

$(r<1)=Cy+0(r?), C=const. (11
The asymptotic behavior of the functigh(r) can easily be
determined from Eq(8). The linearized equation is indeed a
Bessel equation and leads to the following asymptotic behav-
ior:

cogx— ml4)

d(r=>1)=Jy(x)~ % if w<0, (12
X
exp—x)
¢(r>1):Ko(x)~—& if >0, (13

where x=\|w|r. The function ¢(r) therefore oscillates
around¢=0 for <0 and decays exponentially fas>0.

So, the action of the solutions constructed within the abovuEOth type of behaviors are confirmed by our numerical

ansatz appears as a sum of two conserved quantities.
Inserting ansatz5) into Eq. (1), we obtain the following
ordinary differential equation:

' 12 3_
¢, 9607 A9 -wd

ry
v 1+g¢?  1+9¢°

8

where the prime denotes the derivative with respect This

analysis.

Note that if the factor (¥ g¢?) is replaced by 1, the
Lagrangian(9) reduces to that of a scalar field ingf po-
tential. This is known to have no stable solutions; thug®a
potential was introducefi3] in this case. In our model no
such¢® term is possible, but we have a nonconstant prefac-
tor of the kinetic term, which leads to the existence of stable
solutions. In the nonlinear model also a term in front of the
kinetic term appears, which results from the fact that the

equation can also be derived from the following effectivescalar field is constrained.

one-dimensional Lagrangian density:

Los=(1+9¢%) ¢'?—29¢"+ 0 ¢?. ©)

The form of the potentiaV(¢)=2g¢*— w$? is given for
g=10 andw=1,0,—1 in Fig. 1. If we choose eitheg<O0 or

=0, this potential has no local maxima. In a classical me
chanics analog, we can think of this as a particle with

position-dependent mass inx4 potential. In order to have
localized, finite-energy solutions the functigf(r) has to
approach a zero of the potential for-o. This means here

that ¢(r—«)—0. If we come back to the analog with the

particle, this means thdtvith r being now the “time”) the
particle starts with zero velocity’(0)=0 (this, in fact, is
one of the boundary conditions uselt should end up at the
local maximum of the potentidsee Fig. L Employing the
same argument as in R¢B], the form of the potential sug-
gests further that solutions witk=1,2, ... nodes in the
function ¢(r) should also exist fow>0.

To construct soliton solutions of our model, we introduce
the following boundary conditions for nonspinning solutions

[8]:

9 p(r=0)=0, ¢(*)=0. (14)

With these boundary conditions, the functigifr) can cross

ther axisk times, i.e., multinode solutions are possible.
Numerical results.Without losing generality, we can set
g=1 in the following. In Fig. 2, we present the two con-
served quantitieg, n and the value o# at the origin,¢(0),
as a function ofw for the nonspinning, zero-node soliton
solution. We find that the norm fow<<1 tends to a finite
value asw—0. It is interesting to connect this result with
that of Ref.[8]. With respect to this paper, we have rescaled

— l\/g, so that the norms are related by \/gn, wheren
denotes the norm of the unscaled solution. In R&f, the

conventionn=1 was adopted. Thus= /g and in the limit
w—0, the critical value of the norm is equal to

It is convenient to also define the total energy of the so-/g,(N=0k=0)~+2.93~1.71, which is exactly what we

lution according to

find.
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FIG. 2. The conserved quantiti€&sn and the value)(0) are FIG. 3. The conserved quantiti& n and the valuap’(0) are
shown as functions ok for the nonspinning solutions witk=0 shown as functions o for the spinning solutionsN=1) with k
andk=1. =0 andk=1.

In Ref.[9], solutions were shown to exist only for a spe- As before, this equation can be equally derived from the
cific range ofw. Here, we find no upper or lower bound on following static Lagrangian:
w as long asw=0. For <0, the equation becomes a
Bessel type and the solutions become oscillatory. The differ- 1+g¢? w
ence between Ref9] and our results is that in R] a ¢° L= d'°—gdt+ = p*+
potential was introduced, while we have a nonconstant pre- 2 2
factor in front of the kinetic term. The® potential leads to
the restriction inw, while in our model thep* potential is  Where now the potential becomes explicitigependent due
not subject to such restrictions. to the additional term-N?¢?/(2r?). Note that the equality
The first excited solution has a maximumrat0. It then  (7) still holds for this ansatz. The total energg, of the
crosses zero at=r, and attains a minimum at, say, solution again is the space integral of the static Lagrangian
=r,. The numerical results show tha(r,)~—#(0)/2  Ls.
andr ,~2r,. For w>1 bothr, andr, decrease, so that the =~ Forr<1, the functions(r) behaves as
soliton becomes increasingly concentrated around its center.
If <1 these values get larger and the soliton is more delo- d(r<1)=rN(Cy+0(r?)), Cy=const. (18
calized. Since the norm of the first excited solution also tends
to a finite value in the limiw—0, we can concludéollow-  noreover, the asymptotic behavior @f(r) is now deter-
ing the above arguments for the fundamental solution anghined by the functionsly(x) and Ky(X), respectively, for
adopting the conventions of Rdf8]) that the first excited ,, -0 andw>0.
solution exists only for a sufficiently high value gf namely As a consequence E(l) has to be solved subject to the
for \/§> V0 (N=0k=1)~4.38. This has to be compared following boundary conditions:

to Vg (N=0k=0)~1.71 of the fundamental solution.

Finally, we present the total ener@y,, of the solutions in $(r=0)=0, ¢(=)=0. (19
Fig. 5. Clearly, the energy stays positive for at=0 and the
zero-node k=0) solution has for all values o smaller  Again, the choice of these conditions allows for multinode

N2¢2
2r2’

(17)

energy than that of the first excited€1) solution. solutions.
To construct spinning generalizations, we take the follow- As for the nonspinning solutions, we chooge 1. The
ing ansatZ9]: conserved quantitieg, n and the value of the derivative of
¢(r) at the origin,¢’(0), for the N=1 solutions with no
= p(r)e' ™ IN? N integer. (15) nodes k=0) and one nodek(=1), respectively, are shown
in Fig. 3. Again, the norm of the solutions tends to a finite
The equation then takes the form value foro— 0. Thus, again employing the language of Ref.

[8], we conclude that the normalized spinning solutions exist
only for coupling constantg larger than a critical value

’ 12 3_ 2
"+ ‘i+ 9oé + 494"~ wé _ N°¢ —0. Jer(N,K). As in the nonspinning case, we find that the criti-
r 1+g¢®> 1+g¢®  r?(1+ged?) cal value of thek=0 solution is smaller than that of tHe
(16) =1 solution. In summary, we find for the critical values
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FIG. 4. The profilesp(r) of the soliton solutions are shown for  FIG. 5. The total energ§,,, of the nonspinningl=0) and the
different choices of the node numbkrand the parameteN. N spinning (N=1) solutions withk=0,1 nodes is shown as function
=0 are nonspinning solitong.=1. of w.

ing the interaction of a complex Scluinger-like field with a
guadratid 5—7] or hexagonal latticg8]. Although the system
is originally not relativistically invariant, the radially sym-

shown in Eia. 4 together with the two nonspinning solutions metric equations resemble classical static equations of a non-
The functi 9- gh . at— P dg find linear o model type supplemented by a “symmetry break-
e functions¢(r) have a maximum at=r and we fin ing” quartic potential.

t_hat the value Qf this maxir_num incr_easgs sIow_Iy as a func- The pattern of solutions of this nonlinear equation seems
tion of w. Again the solution and its first excitation gets extremely rich, containing several families of solutic(fisr
narrower(more spread olifor w>1 (w<1). _ this see also Ref.11]). The solutions are mainly character-
In Fig. 5, we present the total energy,, of the solutions  j;eq py the parameten defining the harmonic time depen-
as a function otw. Again, as in theN=0 case, the energy iS gence. Remarkably, the function determining the soliton
alyvays posmve' and the energy of the funglamentgl solutioRends to zero in the limity—0 although the “norm” of the
with no nodes is smaller than that of the first excited solu-gqytjon stays finite in the same limit. This phenomenon pro-
tion. Comparing the energy of the solution for fixend  \;jes a natural explanation of the fact that the solitons stud-
differentN, we find that the nonspinning solution has lower joq in Ref. [8] exist only for large enough values of the
energy than the spinning solution, which is an expected rezqpling constant. Among possible generalizations of our re-
sult since the spinning adds energy to the solution. sult we mention the construction of nonspinning and spin-
The study of rotating solitons in flat space still has re-ning sojutions (and their excited solutiopsof a three-
ceived little attention in classical field theory. Recently, Non-§imensional version of the equation and/or the coupling to

topological spinning balls have been constructf@ using 5 glectromagnetic field, thus leading to charged solutions.
an ansatz used to construct spinning boson $tdrs

In this paper, we have considered an equation that is re- Y.B. gratefully acknowledges the Belgian FNRS for fi-
lated to the continuum limit of a system of equations describnancial support. B.H. was supported by an EPSRC grant.

9cr(0,00<9cr(1,00<9cr(0,1) <ger(1,2). (20)

The profiles of the solutions withN=1 andk=0,1 are
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