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The problem of the stabilization of moduli is discussed within the context of compactified strongly coupled
heterotic string theory. It is shown that all geometric, vector bundle, and five-brane moduli are completely
fixed, within a phenomenologically acceptable range, by nonperturbative physics. This result requires, in
addition to the full space of moduli, nonvanishing Neveu-Schwarz flux, gaugino condensation with threshold
corrections, and the explicit form of the Pfaffians in string instanton superpotentials. The stable vacuum
presented here has a negative cosmological constant. The possibility of “lifting” this to a metastable vacuum
with positive cosmological constant is briefly discussed.

DOI: 10.1103/PhysRevD.69.086010 PACS nuniferll.25.Mj, 11.25.Yb

I. INTRODUCTION phenomenologically attractive featurésee Ref[22] for a
recent review of the phenomenological aspects of M theory
One of the most important problems in finding realistic In Refs.[23-26, a specific set of vacua were constructed
four-dimensional vacua in superstrings and M theory is theconsisting of appropriat8 U(5) vector bundles over Calabi-
problem of moduli stabilization. The four-dimensional fun- Yau threefolds withZ, fundamental group. These lead to
damental constants, such as the Newton and unificatiofour-dimensional theories with the standard mo&el(3)
gauge parameters, depend on the compactification modulk SU(2)X U (1) gauge group and three families of charged
Therefore, in any realistic compactification scenario, all thechiral matter. Recently, in Reff27—-29, these theories were
moduli have to be fixed, or very slowly rolling, in a phenom- generalized to vacua involvin§U(4) bundles over Calabi-
enologically acceptable range. However, string theoryYau threefolds withZ,X 7, fundamental group. Such vacua
moduli do not have a perturbative potential energy. Hence, itorrespond to standard model-like physics in four dimen-
their values are to be fixed, it must be by nonperturbativesions with potentially suppressed nucleon decay. In this pa-
physics. The first attempts to do thik, 2] indicated that non-  per, for simplicity, we consider only vector bundles over sim-
perturbative superpotentials can lead to runaway behavioply connected Calabi-Yau threefolds, compactifications
That is, the radius of the compactification manifold waswhich are easier to analyze. However, we see no reason why
found to run to large values, leading to decompactificationour results should not apply to more realistic heterotic vacua
However, this work was very preliminary, involving only a on nonsimply connected manifolds. Within this context, we
subset of possible moduli and nonperturbative superpoterwill consider all geometric and vector bundle moduli. In ad-
tials. dition, we include the translational moduli of M five-branes.
Over the years, there have been many attempts to prov@ne of the features of strongly coupled heterotic string com-
the stability of moduli in different types of string theory. pactifications is the presence of five-branes. In R&8,31,
Recently, progress in this direction was achieved in type IIBit was argued that vacua with five-branes are more natural
string theory in Ref[3], emphasizing, among other things, since, for example, it is much easier to satisfy the anomaly
the necessity of considering flux compactificatigAs-19|. cancellation condition in their presence. Since, in order to
The moduli stabilization in Ref3] was demonstrated in two obtain phenomenologically acceptable values for the funda-
steps. First, all moduli were stabilized at a fixed minimummental constants one has to take the size of the eleventh
with a negative cosmological constant. This was achieved bygimension to be larger than the Calabi-Yau s¢&@®33, the
combining fluxes with nonperturbative effects. Second, thdranslational modes of the five-branes will appear as moduli
minimum was lifted to a metastable vacuum with a positivein the four-dimensional low-energy effective action.
cosmological constant. This was accomplished by adding In this paper, we show that all heterotic M-theory moduli,
anti-D-branes and using previous results, obtained in Rethat is, the complex structure, Kahler, vector bundle and five-
[6], that the flux—anti-D-brane system can form a metastablérane moduli, can be stabilized by nonperturbative superpo-
bound state with positive energy. In RéB], it was also tentials. Recent discussions of this is§84], in models with
shown that one can fine tune various parameters to make tl@erestricted number of moduli, indicated instabilities caused
value of the cosmological constant consistent with the obby membrane instantori85,36. However, these models did
served amount of dark energy. not include all compactification and vector bundle moduli, as
In this paper, we consider the problem of moduli stabili-well as all possible sources for superpotentials. The analysis
zation in strongly coupled heterotic string thed30,21]  of Ref.[34] was refined in Ref.37], where it was shown that
compactified on Calabi-Yau threefolds. Such compactificastabilization of certain moduli can be achieved. Nevertheless,
tions are called heterotic M theory and have a number ofgain, not all moduli were taken into account. In addition,
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the authors in Ref[37] chose various parameters outsideality. Finally, in Sec. IV B, we prove the stabilization of the

their natural range. In the present paper, we show that includnoduli. The complex structure moduli and the Calabi-Yau
ing all moduli and all superpotentials does lead to completeyolume are stabilized by a mechanism similar to that consid-
moduli stabilization in a phenomenologically accepted rangered in Refs[3] and[11]. In addition, we show that the

with a negative cosmological constant. Furthermore, this igector bundle and five-brane moduli are also fixed. We then
achieved within the natural values of the parameters. Ou@nalyze how our equations would be modified if we had
stabilization procedure uses various tools such as form fluxnany (1,1) and vector bundle moduli. We conclude that we
nonperturbative superpotentials including  their bundlewould still find a stable solution, and hence that the restric-

moduli dependent Pfaffians, and gaugino condensation ofi®n {© @ single (1,1) modulus and one vector bundle modu-

the hidden brane with threshold corrections. Even thougliUS Was without loss of generality. There is only one mild

: : : o constraint that we have to impose on a single coefficient to
supersymmetry is not broken in the moduli sector, it is SOftIymake sure that the five-branz modulus isgstabilized in an

broken in the gravity and matter sector at the TeV scale b%cce table range. In the Conclusion. we sumMmarize our re-
the gaugino condensaf80,38—44. P ge. ’

. ; . sults. We also discuss the possibility of lifting our minimum
The paper is organized as follows. In Sec. Il, we review P Y 9

. ) . o to a metastable vacuum with a positive cosmological con-
the Kahler potentials for all heterotic string moduli with a b 9

. . . : . : . stant, as was done in R¢B8]. These results will appear else-
detailed discussion of their relative scales, including the vec ¢6] PP

tor bundle moduli Kahler potential. Even though the IatterWhere'

cannot be evaluated explicitly for vector bundles on a

threefold! it is possible to derive the relevant properties we Il. THE KAHLER POTENTIALS
will need in later sections. In Sec. Ill, we give a careful . .
analysis of the superpotentials with a detailed discussion Ogtri\r/wvge tﬁggff;ég%]x(% tﬁérc;r;%‘lzecoupled heterotic super-
their scales. In Sec. Il A, we discuss the flux-induced super- ’
potential derived in Refs[47,48. This superpotential de-
pends on the complex structure moduli. In Sec. IlIB, we
introduce the superpotential induced by a gaugino conden- ) _ _

sate on the hidden brafid0,38—42,44,4F This superpoten- Where_X_ls a Cglgthau threefold. Let us I_|st fche complex
tial depends on the Calabi-Yau volume as well as on the sizg10duli fields arising from such a compactification. They are
of the eleventh dimension and the five-brane moduli througtiheh** moduli T', the volume modulus, theh? moduliZ,,

the threshold corrections. In Sec. IlIC, we discuss variougnd the vector bundle moduli, which we denotedy. In
nonperturbative superpotentials induced by membrane irddition, we will assume that anomaly cancellation requires
stantong35,36]. They depend on the (1,1) moduli, the five- the existence of a nontrivial five-brane class. Furthermore,
brane moduli, and the vector bundle moduli. Various piecedor simplicity, we will work in the region of its moduli space
of these superpotentials were calculated in Rgi4,50-53.  corresponding to a single five-brafi@0,54. The five-brane

In order to obtain the total superpotential, one has to sunffanslational complex modulus will be denoted Yy In this
over contributions coming from all genus zero holomorphicSection, we review the Kahler potentials for the S, Z,,,
curves in a given Calabi-Yau threefold. We give argumentndY moduli and derive some general properties of the vec-
that, in the models under consideration, the superpotentidPr bundle moduli Kahler potential.

does not vanish after summation. In Sec. IV, we show, in The moduliT' are defined as

detail, that all heterotic M theory moduli can be fixed at a

stable anti—de SittefAdS) minimum. In Sec. IV A, we set | AT

up the model. Since the Kahler potentials and the superpo- T'=RaV "+ &p, (2.2
tentials are very complicated when the number of (1,1) and

vector bundle moduli is large, we have to introduce SOME& hereR is the orbifold plane separation modulus;is the
simplification in order to obtain an analytic solution. We ar- Calabi-Yau breathing modulua! are the (1,1) moduli of the
gue that if we restrict ourselves to consider only one (1’1)Calabi—Yau space, and the imaginary partsarise from the

modulus, which coincides with the size of the eleventh d"eleventh component of the graviphotons. The Calabi-Yau

mension, and make some further restrictions on the numbeﬁreathing modulus/ also appears as the real part of the
of the vector bundle moduli, we do not actually lose geners, r-dimensional dilaton multiplet

M=R*xXXxS'/Z,, (2.1

Yn fact, in Ref.[46], the vector bundle moduli Kahler potential S=V+|\/§a-, 2.3

was approximately computed for special types of Calabi-Yau three-

folds and very special types of bundles. The bundles considered iwhere the imaginary parg- originates from dualizing the
Ref. [46] were taken to be the pullback of vector bundles on afour-dimensionaB field. The modulia' andV are not inde-
surface. Such bundles admit a gauge connection that is approxpendent. It can be shown that

mately ADHM, provided the instanton is sufficiently small. To a

generic bundle on a threefold that does not come from a bundle on 1 hil
I;ﬁ/\ézf-dlmensmnal space, the method of Ref6] cannot be ap- V= E | J;:l leKaIaJaK, (2.4
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whered,;x are the intersection numbers of the Calabi-Yaupaper. The second multiplet that arises is associated with the
threefold. Note that the moduW and R are dimensionless translational scalar modé GeometricallyY corresponds to

and defined as the position of the five-brane in the fifth dimensioit. was
. shown in Ref[59] that the translational multiplet of the five-
- — brane is a chiral supermultiplet whose bosonic compoifent
v UcvylJey Gev 29 is given by
and Y Y
Y=—ReT+i a+—ImT). (2.12
TP TP
R= t dx't (2.6)
TP ' ' Here a is the axion arising from dualizing the three-form

) ) ~ field strength propagating on the five-brane world-volume
respectively. Here cy is the reference volume of the Calabi- gnq 7 is related to the (1,1)-modull as follows. Let

Yau threefold, 7p is the reference length of the eleventh ,, '|=1 . hl1pe a basis of harmonic (1,1) forms on our
dimension, andx'* is the coordinate along the interval Calabi-Yau threefold. These are naturally dual to a basis
S'Z,. The actual volume of the threefold and the actual sizg! |=1,... htof curves inH (11(X) where

of the eleventh dimension ate-vV and mpR, respectively. '

See Refs[55-57] for more details on the compactification 1

of strongly coupled heterotic string theory to five and four v—5 ) wy3=0dyy. (213

dimensions and the structure of the chiral multiplets. To
achieve the correct phenomenological values for the fourparametern is the volume of the curve on which the
dimensional Newton and gauge coupling parameters, five-brane is wrapped. Any holomorphic curve can be ex-
pressed as a linear combination of tHecurves. The curve

Mp~10" GeV, agyr~ ! (2.70  on which the five-brane is wrapped can be written as

2_E>l
h(1.1)
we assumd32,33 that the inverse reference radius of the 2= ¢7 (2.14
Calabi-Yau threefold and the inverse reference length of the =1

eleventh dimension are
for some coefficientg,. The modulusZ which appears in
vy ®~10'° GeV, (mp) 1~10" GeV, (2.8 (2.1 is defined as

respectively. This implies that, at the present time, the di- h(tD
mensionless modulV andR have to be stabilized at, or be T= E cT. (2.15
very slowly rolling near, the values =1

V~1, T~1. (2.9  The Kahler potential for the&/ modulus was calculated in

Ref.[59] and found to be
The Kahler potential foS and T' moduli was computed

in Ref.[57]. It is given by (Y+Y)?
B Kg=2M32 76— ———, (2.16
Kg1=—M3In(S+9S) (S+S)(T+T)
htl with the coefficientrs given by
2 1 ! \J T\K
—MZIn| = D duk(T+D(T+T)AT+TK].
61 3K=1 T 2
50s5(p)
T5=— 5 (217)
(2.10 M|23|
The Kahler potential for the complex structure modayjj andT. is
was found in Ref[58] to be 5
1 \28
KZ=—M§,|In(—ij Q/\ﬁ), (2.12) T5=(2w)1’3<—2> : (219
X K11
where() is the holomorphid3,0) form. where k44 is the eleven-dimensional gravitational coupling

The next supermultiplet to discuss is the one associatedonstant. It is related to the four-dimensional Planck mass as
with the five-brane modulu¥. It was shown in Ref[30]
that, when a five-brane is compactified to four dimensions om————
a holomorphic curvez of genusg, there are two types of  2Note that sincevZS<mp, the eleventh-dimensional coordinate
zero-mode supermultiplets that arise. First, theregafde-  x!* parametrizes the fifth dimension of the effective five-
lian vector superfields, which are not of our interest in thisdimensional theory.
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From Egs.(2.19 and(2.26) we obtain

TPUCY
Koy=——. (2.19 s ,
M5, vey 1 M5,
. . . 2 5/3 2012 113" (2.27)
If we substitute Eq(2.19 into (2.18 using(2.7) and (2.8), 297y (4m)>=[(mp)*Mp)]
we obtain . ~
We can then write the Kahler potentidl,,,qic S
Usg ~
T5 T — = (2.20 Kbundie= kKM3Kpundte: (2.28
Ucy
where
Now let us move on to the vector bundle moduli Kahler
potential. Its general expression can be obtained from the 1
dimensional reduction of the term in the ten-dimensional ac- k= 5/ 212 113 (2.29
tion (4m) 3[(7TP) Mg ]
_1 and
4—2trf leX\/—gFﬁ,lN, (2.2]) B o
910 Kbundie= tl’f d®X VgCngmAmAE- (2.30

where M,N=0,1,...,9 andgyny and Fyy are the ten- o . ] ] ]
dimensional metric and Yang-Mills field strength, respec-Note thatKp,nqie is dimensionless since it depends on di-
tively. Upon dimensional reduction, the ten-dimensional metinensionless vector bundle moduli. The paramétés also

ric and gauge field split as follows: dimensionless. Substitutin@.7) and (2.8 into (2.29, we
obtain
ds%OZUE\Z(/ngVdXMdXVJ’-UéligCYm_ﬁdedev Kk~ 10—5. (23])
Ay=(A, A AS) (2.22 The reason that the strength of the vector bundle moduli
Mmoot tmoetim/ .

Kahler potential is smaller by several orders of magnitude
than the strength of th€, S, andZ Kahler potentials is that
é_he F2 term appears to the next order i’ in the ten-

are the four-dimensional metric and the gauge field, respe dimensional action as compared to the supergravity multip-
tively, whereasg,,, and A, represent the metric and the et. Unfortunately, to the same order i’ in the ten-

gauge connection on the Calabi-Yau threefold. Substituting%j. . .
(2.22) into the action(2.21), we obtain the following expres- . |me_nS|onaI action and,_as a consequence, to the same order
i R in k in the four-dimensional action, there is a cross term

sion for the vector bundle moduli Kahler potential: between thel moduli and the vector bundle moduli. This
cross term comes from the

whereu,»=0,1,2,3 andn,m=1,2,3. The fieldg,,, andA,,

~ 1 -
Kbundlezz_ztrf d°X VIcyd" "AnAn - (2.23
910 J 2%~ gH/AH* (2.32
Let us find the scale that controls the strength of the Kahler

potential. To do this, introduce the dimensionless quantitiesterm in the ten-dimensional action, wheteis given by Ref.
[21] (see also Ref57])

m X" A 1/6
XM= An=Anes, (2.24 1 (Ku

16’ —dR— fn
ye H=dB- A
wherev ¢y is the Calabi-Yau reference volume. We also nor-
malize all vector bundle moduli associated withy, with ~ @ndwyy andw, are the Yang-Mills and gravitational Chern-
respect to the Calabi-Yau reference volume so that they to§imons forms, respectively. The ter@ 32 leads to the fol-

213
) (oypm— ) (2.33

are dimensionless. The Kahler potential then becomes lowing contribution to the four-dimensional effective action,
23 hti
~ v ~ — = v
Kbund,e=2%trj dXVocyg™A AL (2.25 “kM%J d*x\/— 049" |21 (ImT")
910 -
The ten—dim(.—:‘nsion.al gauge coupling parameter is related to % f dﬁi(‘/gCerﬁaﬂ"Amavia (2.39
the eleven-dimensional Planck scale[28,21]
1 1 2.\ 23 In this expressionX andA are the rescaled Calabi-Yau co-
— = 5 (—ll (2.26 ordinates and gauge connecti@24), o, are the basis of
010 27Ky 4m the harmonic (1,1) forms on the Calabi-Yau threefold, and
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the coefficienk is given precisely by2.29. This cross term  moduli associated with some holomorphic curve. Denote this
does not significantly effect the Kahler potential for the curve byz and let the number of the transition moduli ke
moduli, since it appears at a lower scale. However, it doetet the N local coordinates on this open set kb,

effect the vector bundle moduli Kahler potentié®.28—  =(¢;,,), where ¢; represent the transition moduli of the
(2.30. Schematically, the pure vector bundle moduli Kahlercurve z and ¢, the remaining moduli. The total number of
metric can be written as parameters is, of coursdl, One can always choose the co-
ordinate system in such a way that the critical values of the
J AT, (2.35  transition moduli are
X
¢=0, i=1,...M. (2.37

whereas the cross term can be written as
The codimensiolN—M subset of CPN defined by these
| ~— equations represents a singularity of the type described
2, (ImT )L‘”'aAaA‘ (238 apove. When all of thep; go to zero, the bundle becomes a
singular torsion-free sheaf. This corresponds to the gauge
It is clear that the cross term can be ignored as long as theonnection being a distribution that is infinitely peaked about
values of the imaginary parts of tAemoduli are sufficiently ~the z curve and smooth everywhere else. As one turns the
smaller than one. For now, we will simply assume that this ignoduli ¢; on, the torsion-free sheaf smears out to produce a
the case and discard the cross term. Later, when studyingnooth vector bundle with an everywhere smooth Hermitian
stabilization issues, we will see that one can indeed stabiliz€onnection. Itis clear that at the torsion-free sheaf, where the
the imaginary parts of th€ moduli at values sufficiently less gauge connection has an infinite peak centered, ahe
than one, thus justifying our assumption. Kahler potential2.30 diverges. Note that this is generically
It is difficult to calculate the vector bundle moduli part of true at any singular point in moduli space. The above analy-
the Kahler potential explicitly without knowing a solution to Sis allows us to say that for values ¢f sufficiently small,
the Hermitian Yang-Mills equations. Nevertheless, someve can approximately split the Kahler potentigl,,qic as
properties ofK,,nqie CAN be determined. These properties
will be sufficient to allow one to study the issues of moduli Kbundie™ Kpundid @) + Kpunaid #)- (2.39
stabilization in later sections. At this point, we have to be
more specific about the type of Calabi-Yau threefold weThe reason is that fop;'s small enough, the gauge connec-
choose and the type of vector bundle we put over it. In thigion can approximately be written as
paper, the Calabi-Yau threefold will be taken to be ellipti-
cally fibered. For such Calabi-Yau spaces, there exists a A=A(d)+A(Y), (2.39
rather explicit spectral cover construction of stable holomor-
phic vector bundleg60,61. The moduli of such vector Where A(¢) is strongly centered around the curzeand
bundles were discussed in RES2]. In the present paper, we A(#) is smooth everywhere. In the limit of smaf;, the
will restrict our discussion to such vector bundles. Geometrioverlap integral of the product of these two pieces of the
cally, their moduli space is just a complex projective spacedauge connection is small. The.38 follows from (2.39
CPN, where N is the total number of the vector bundle and (2.30. We will also need to know what happens to
moduli [62]. The moduli of vector bundles on elliptically Kpundie @S the modulieither ¢; or ¢,) become large in the
fibered Calabi-Yau manifolds will be reviewed in more detail Sense of coordinates d@if'. Since
in the next section. For now, we will only need the fact that
the moduli parametrize a complex projective space. Strictly ht{cPY) =1, (2.40
speaking, the moduli space of bundl&$ is an open subset . )
in CPN. The projective space is actually the compactificationthere exists a unique cohomology class of Kahler forms. The
of M with respect to certain singular objects known asKahler form associated with the well-known Fubini-Study
torsion-free sheaves. The gauge connection becomes singuléghler metric onCP" is contained in this nontrivial coho-
on these sheaves. However, for simplicity, we will vie' ~ mology class. This means that every Kahler potentialoh
as the moduli space of vector bundles, keeping in mind tha§an be written as
it also contains singular points. At these points, the Kahler
potential should blow up since the associated gauge connec- Ken=Kgstf, (2.41
tions do. As some of the vector bundle moduli approach ) o .
certain critical values, the corresponding gauge connectioWhereKes is the Fubini-Study Kahler potential arids any
represents a delta-function peak over some holomorphiglobal function. The only restriction ohis that the corre-
curve in the Calabi-Yau threefold. These moduli are calleSPonding Kahler metric has to be positive definite. On the

the transition moduli associated with this cuf@2]. We will ~ coordinate patctJ , with local coordinatesb,, we have
cover ourCPN manifold with standard open sets isomorphic
to CN by introducingN+1 homogeneous coordinates and Kepnlu, =Kedu, +fpa, (2.42

setting one of them to unity on one of the open sets. Let us
consider any open patdd,,C CPN containing the transition where
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N K11 2/3 1
— 2 = R
Kesly =In 1+u§l |® | ) (2.43 (477) — (3.5
and{p,} is the partition of unity. As we approach the bound- the components dfl and the dimensionless three-fottnare
ary of the open set, related by
pa_>0' (244) Kll 23 1 ~
Hmnp:(ﬂ> —1/2Hmnp' (36)
Furthermore, from(2.43 we find that TPUCcy
Kepn|y — (2.45  As a consequencdV; can be written as
. . .. . . M2 2/3 1
in this limit. From this analysis, we conclude thiét;,qie ~ Mpy[ Ky ~ =3 ~ =
: : i=——|-—] — [ HAQ=M3h;| HAQ,
grows as one increases either one of ¢ or one of the U(l:/$ A7) wplx X
¥,'s keeping the other variables fixed. These properties of (3.7

Kpundle Will be important in the next sections.
where, using Eq92.7) and(2.8), we find

lll. SUPERPOTENTIALS
1
In this section, we discuss the superpotentials that will be hy=——5 ~2X 108 (3.8
used to achieve the stabilization of all moduli considered Mpwcy

above. 5 5
andH and() are both dimensionless.
A. The flux-induced superpotential Note that turning on a nonvanishing flux warps the com-
pactification space away from a pure Calabi-Yau threefold.

We want to turn on a nonzero flux of the Neveu-Schwarzrq syrength of this warping is determined by the dimension-
three-formH on the Calabi-Yau threefold. The presence Ofless parameter
2/3 1
vacl;%j ¢

this nonzero flux generates a superpotential for e
where C is an appropriate three cycle. Since

moduli of the form[47,4§
This is the heterotic analog of the type 1IB superpotential( «4/4m)%3(1/mpvE2)~2x 1075, it follows that for
[10,12,13

K11

yps H, (3.9

Wf~fXH/\Q. (3.0

J H< %10‘5 (3.10
WllBN J'XGS/\Q, (32) c

the warping away from a Calabi-Yau threefold is negligibly
where Gz=F3;— 7H;. Expression(3.1) can be obtained by small. Henceforth, we will always choose the flux to satisfy
considering the variation of the ten-dimensional gravitino,condition(3.10.
dimensionally reducing this to four dimensions and matching

it against the well-known gravitino transformation law in B. Gaugino condensation induced superpotential
four-dimensional supergravity. See Re48] for a detailed . ,
derivation. We also turn on a gaugino condensate on the hidden brane

For later use, we need to find the scale that contVéls [30,38-42,44,4b A nonvanishing gaugino condensate has

Since the components &f have dimension one, we find that IMPortant phenomenological consequences. Among other
things, it is responsible for supersymmetry breaking in the

Mgl hidden sector. When that symmetry breaking is transported
Wi=——] HAQ. (3.3  to the observable brane, it leads to soft supersymmetry

vey X breaking terms for the gravitino, gaugino, and matter fields

- on the order of the electroweak scale. A gaugino condensate
As before, introduce dimensionless coordinaX€s is also relevant to the discussion in this paper, since it pro-
duces a superpotential f& T, andY moduli of the form
~ Xm
XM=—r (3.9 2
vy WgzMglhzexp< — S+ ea@T'—eB% . (3.1D)

and dimensionless components for the three-form. Sthise
quantized in units of49] Here[44]
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h ! (K“> * 10 (3.12
2~ - — _ T -~ 1 -
Mp\ocy(mp) \ 47

and the coefficienk is related to the coefficierntv of the
one-loop beta function and is given by

6

€= .
boagur

(3.13

For example, for théeg gauge groupy=90. Takingagyt
to have its phenomenological value given#7), we obtain

e~b5. (3.14

The coefficientsa{? represent the tension of the hidden

brane measured with respect to the Kahler fesp(57]
213
aa K
o (2,
16mvcy\ 4 X

1
/\(TI’F(Z)/\F(Z)—ETrR/\R)' (3.19

PHYSICAL REVIEW D 69, 086010 (2004

tive gauge coupling from diverging, or being undefined, on
the hidden orbifold plane. For this to be the case, we must
have

2 Y2
Re(aPTh< Re( S+ BF) . (3.20
In this paper, we want to work in the strong coupling regime
of the heterotic string. It follows that one of tié moduli,
corresponding to the size of the fifth dimension, must be at
least of order unity. Hence, fai8.20 to be satisfied, typi-
cally, we must choose the associated’<1. We find that
this can always be arranged by the appropriate choice of the
vector bundle on the hidden orbifold plane. In fact, in Ref.
[19] it was argued that this assumption may be unnecessary
if one includes higher-order field-theory corrections that are
protected by supersymmetry. This might provide generaliza-
tions of the results obtained in this paper as well.

C. Nonperturbative superpotentials

In this section, we will review the structure of nonpertur-
bative superpotentials generated by strings wrapped on holo-

whereF @) is the curvature of the gauge bundle on the hid-morphic curves. To be more precise, the nonperturbative

den brane. One can estimate the order of magnituce‘df
by evaluating the right-hand side of E®.15. We find that

v
a@~ L
I 1/3°?
Ucy

(3.16

wherev, is the volume(measured with respect to the Kahler

form w,) of the two-cycle, which is Poincardual to the
four-form TrRAR—% TrF@AAF®@), Similarly, the coeffi-
cient 8 is the tension of the five-brane and given [63]

pil

2720 [ Kyp| 28
A= v (E fo’l G/ \W,

(3.17

whereW is the four-form Poincaredual to the holomorphic

curvez on which the five-brane is wrapped. Evaluation of the

right-hand-side of Eq(3.17) gives

prm

~ T ——
1/3°
Ucy

(3.18

whereuvs is the volume of the holomorphic curve the five-

brane is wrapped on. Note th@ is always positive and,
from (2.20), is of the same order of magnitude as The
real part of the combination

Y2

_ (27! _
S—a T+,8T2

(3.19

represents the inverse square of the gauge coupling constewé
on the hidden brane, with the last two terms being the thresh-

old correctiond30,44].
Note that it is essential that expressi3119 be strictly

positive at the vacuum of the theory. This prevents the effec-

contributions to the superpotential come from membrane in-
stantons. As was shown in R¢b0], to preserve supersym-
metry a membrane has to be transverse to the end-of-the-
world branes and wrap a holomorphic curve in the Calabi-
Yau threefold. In addition, only curves of genus zero
contribute[2,36]. At energy scales smaller that the brane
separation scale, the membrane configuration reduces to that
of a string wrapped on a holomorphic curve. We will refer to
such a configuration as a heterotic string instanton. We
should point out that there can be three different membrane
configurations leading to different nonperturbative contribu-
tions to the superpotential.

(1) A membrane can stretch between the two orbifold fixed
planes.

(2) A membrane can begin on the visible brane and end on
the five-brane in the bulk. Recall that, in this paper, we
are assuming that there is only one five-brane in the
bulk.

(3) A membrane can begin on the five-brane and end on the
hidden brane.

We will discuss the first configuration in detail and then com-
ment on the configuration®) and(3). It was shown in Ref.
[64] that the nonperturbative contribution to the superpoten-
tial of a string wrapped on an isolated curzéas the struc-
ture

hl'l

Wnp[z]ocPfaﬁ(D_)exp( - Tzl Z)lT') . (3.2)

t us first discuss the exponential factor
hl,l

eXp( —~ Tzl o T (3.22
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which was calculated in Reff50]. The coefficientr in (3.22
is defined as

1
T= ETM(W[))UZ, (3.23
whereT), is the membrane tension given by
1 1/3
Tu=2m" — (3.29
M= 2.2,

anduv, is the volume of the holomorphic cunz By using
Egs.(2.19, (2.7), and(2.8), we get

Uz
T~500m.
Ucy

(3.25

Everywhere in the paper, will be taken to be much greater
than one which is naturally the case. Furthermore, dhe
appearing in(3.22 are the integrals of the pullbacks to the
holomorphic curvez of the Ith harmonic (1,1) form on
Calabi-Yau threefold. See R¢60] for details. Note, that the
exponential factof3.22) gives the nonperturbative contribu-
tion to the superpotential for th& moduli, but not for the
Calabi-Yau volume moduluS. For example, wheh!=1,
the factor(3.22 becomes

exp(—7T), (3.26

where

i

This shows that the superpotential associated (@tB6) de-
pends on the size of the eleventh dimension only.

Now let us move on to the first factor i(8.21). This
factor,

Pfaff(D_), (3.28

PHYSICAL REVIEW D69, 086010 (2004

The first Chern class df, is given by

ci(F,)=28+(r+2)¢&. (3.3)
Finally, we will assume thaX admits a global sectioor and
that it is unique, which is generically the case.

A Yang-Mills vacuum consists of a stable, holomorphic
vector bundleV on the observable end-of-the-world brane
with the structure group

GCE;g. (3.32
In general, there can be a vector bundle on the hidden brane.
However, in this paper, we will assume that this bundle is
trivial. It follows from Refs.[65,66 that each such bundle
admits a unique connection satisfying the hermitian Yang-
Mills equations. OvelX we will construct a stable, holomor-
phic vector bundle/ with structure group

G=SU(n). (3.33
This is accomplishe@0,61] by specifying a spectral cover
C=no+7* 7, (3.39
where
n=(a+1)S+b& (3.35

with a+1 andb being non-negative integers, as well as a
holomorphic line bundle

N=0xn(\+ 3)o—(N= 3)7* p+(nh+ ) 7% ey (F)],
(3.36

where\ e Z+ 3. In Egs.(3.34 and(3.36), = is the projec-
tion mapm: X—F, . Note that we usa+1, rather thara, as
the coefficient ofS in (3.35 to conform with our conven-
tions in Ref.[62]. We will also assume that the variablas
+1 andb satisfy the positivity condition§62]

a+1>2n,

b>ar—n(r—2). (3.37

represents the Pfaffian of the chiral Dirac operator con- - _
structed using the Hermitian Yang-Mills connection pulled These conditions ensure that the spectral cGvsran ample,

back to the curve [52,53,64. It is clear that it depends on

or positive, divisor. The vector bundM is then determined

the vector bundle moduli. So far, our discussion has beeMia @ Fourier-Mukai transformation
basically generic. The only restriction on the Calabi-Yau ge-

ometry that we have made so far was to assume, in the sec-

ond half of Sec. Il, that it is elliptically fibered. At this point,
for specificity, we will choose the Calabi-Yau threefoldo
be elliptically fibered over a Hirzebruch surface

B=F,. (3.29

(C,N)<V. (3.39
The moduli of the bundlé/ come from parameters of the
spectral covel. Since the parameters of a divisor form a
complex projective space, the moduli space of vector
bundles isCPN, whereN is the number of the vector bundle
moduli. This fact was already used in Section 1 in our dis-

Let us mention some basic properties of Hirzebruch surfacegussion of the properties of the vector bundle moduli Kahler

that we will need. The second homology gradp(I', ,Z) is
spanned by two effective classes of curves, denotefl &yd
&, with intersection numbers

S§-S=-r, §&=1, ££&=0. (3.30

potential. In Refs[52,53, the Pfaffian Pfaffp_) was com-
puted in a number of examples for the case of a superstring
wrapped on the isolated sphese 7*S. The Pfaffian was
found to be a high-degree polynomial of the vector bundle
moduli. In fact, it turned out that it depends only on a subset
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of the vector bundle moduli, the transition moduli, which arewhere
responsible for smoothing out the torsion-free sheaf localized
at the curves- 7* S [62]. N(=F)=N®O+,(—F)
In order to find the total nonperturbative superpotential, (3.46

one has to sum up the contributions from all holomorphlcand F is the fiber class. We will show that for nonisolated

genus zero curves, both isolated and nonisolated. As argu%%rveS of the form(3.40, h%(C,N(— F)|c) does not vanish

g]ﬁeRreIfS]é[GSE:nGrr?étlir(])nce'lr'tﬁilsn ;ZT(ZSS ?tnﬁeg';szcrtuﬁ)”)éi%ihéserffor any value of the vector bundle moduli. Therefore, the
' y faffian and hence the superpotential generated on such

genus zero holomorphic curves in Calabi-Yau threefolds 9%urves will vanish identically. The proof goes as follows. The

the type introduced above. After this discussion, we will bevector spaceH9(C,N(—F)|o) lies in the exact sequence

able to argue that, in these models, the superpotential does
not vanish after the summation. The first class of genus zero
holomorphic curves are of the form

C:C|7T*Z' N:'/\/]’IT*Z’

0—H%#*z,N(—=F—C))—H%#*z,N(—F))

—HYC,N(-F)le)— ... . 3.4

R 339 (C.N(=F)lo) (3.47
It is easy to see that

wherez’ is a genus zero holomorphic curve in the bése

Below, we will often identifyz with z’ for notation simplic- ho(7*z,N(—F))=h%(#*z,N(—F—C)), (3.48

ity. For specificity, let us take the base of the Calabi-Yau

threefold to beF,. Our results will, however, remain true for With the equality holding if and only if

other Hirzebruch surfaces as well. The Hirzebruch surface hO(ar* 2.N(— F))=0. (3.49

I'>, being a rationally ruled surface, contains one isolated
genus zero curveé and infinitely many nonisolated curves. On the other hand

These can be shown to be on it follows from the exact seque(®47)

& and S+«é&, (3.40

where k is an integer number greater than one. Let us con-

ho(7*z,N(—=F))>h%#*z,N(—F—C)), (3.50

sider a concrete example. In RE53], it was shown that for t
the following choice of parameters,

n=3, b—2a=3, \= (3.4)

N W

there are nine transition moduli, denoted by, B;,vy;, for
i=1,2,3, associated with the curve- 7*S. The Pfaffian
generated by a string wrapped on the cusver® S is non-
zero and given by the expression

Pfaff(D_)s=R"*, (3.42
whereR is the polynomial
R=a1B2v3— a1B3y2t axB3v1
—ayB1yst azBiy2— asBryi- (3.43

We will now show, in the context of this example, that one
can further restrict the coefficierst in such a way that the

he dimension of the spad¢¢®(C,N(—F)|c) cannot be zero
and, therefore, the Pfaffian will vanish. So, it is enough to
show that for the curves of the fori8.40 the following
inequality is fulfilled:
hO(a*z,N(—F))>0. (3.51

Slightly abusing notation, we will denote the curves
o-m*€ and o- 7* (S+«€) in the threefold by& and S
+ «&, respectively. Using Eq$3.30—(3.35 and(3.41), one
can show that

N(=F)| = Opx (60 e e—(a—8)F)).  (3.52
If we demand thaa satisfy the positivity condition€3.37), it
follows from (3.52) that condition(3.51) is fulfilled for

(3.53

This means that, for these choicesapthe superpotential of
a string wrapped on a nonisolated curve in the homology

a=6,7,8.

vector bundle moduli contribution to the superpotential, thaiclass of€ will vanish for every representative in this class.

is, the Pfaffian, vanishes on all nonisolated curves of the typ
(3.40.

As discussed in detail in Reff52,64,7Q, given a holo-
morphic genus zero curvg the Pfaffian will vanish if and
only if the restriction of the bundl¥ to the curvez is non-
trivial or, equivalently, that

ho(z,V],® O,(—1))>0. (3.49
It was shown in Refg[52,53 that
h%z,V[,2 O,(-1))=h%C,N(=F)|c), (3.4H

&imilarly, one finds that
N(=F)| 7% (51 x8)
= O (5416 (60| 7% (54 x5~ [(@— 9) K+ 3]F).
(3.54
We see that conditiofB.5)) is fulfilled if and only if
(a—9)k+3<0, «>1.

(3.595

Equation(3.55) is satisfied for
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a=6,7. (3.56 moduli associated with the curé SinceS and alll, do not
) N intersect, they do not share transition moduli. Therefore, the

We conclude that, in the examples specified by sum =, W, [1,] does not depend og; . Similarly, W, [S]
3 does not depend on the vector bundle moduli associated with

n=3, r=2, A=-=, b-2a=3, a=6,7 any of the curved,. Let us now split the vector bundle
2 moduli &, as
(3.57
D, =1 X7 ¥al (3.60

of the curves of typ€3.39, only the isolated curvé gives a

contribution to the superpotential. The contributions of allyhere; are the transition moduli associated with the curve
nonisolated curves vanish identically due to the vanishing ofs, = are the transition moduli associated with all the curves
the Pfaffian. Even though these results have been proven "andy., are the remaining moduli. Since we do not expect
within the context of a specific example, they are, in factithat the whole second Chern class of the bundie local-
generic, occuring for different values of r, A, a, andb. ized on the isolated curves, the modd|iandy; do not span

Unfortunately, the lifts ofS, £, and S+ «& are not the  the entire moduli space. We can now rewrite the superpoten-
only genus zero, holomorphic curvesXa There may exist | (3.59 as

(perhaps infinitely manysuch curves contained in multisec-
tions of X.3 These curves are regular ¥ but project onto Wip=Wpp( ) +Wp(X), (3.60
singular curves in the base. They can also be divided into
two types, curves that are isolatedXrand those that are not Where the vector bundle moduf; and x; do not overlap.
isolated. We will denote by{l,} the set of such isolated Note thatW,, is independent of the moduly,. This, in
curves, wherex indexes these curves. Similarly, gt} be particular, shows that the nonperturbative superpotential is
the set of nonisolated curves indexed yoyTo continue our not zero if at least one of the terms is not zero. The term
analysis, we must consider the Pfaffian on each of thes¥np(¢) was calculated and found to be nonvanishing in a
curves as well. Let us begin with the nonisolated curvesiumber of examples in Ref52,53. For example, the Pfaff-
{N,}. In general, we have no reason to believe that the Pfaffian onS was computed to b€3.42 in our B=1I, example
ian must vanish on each of these curves, as it did on thabove. This means that, in such examples, the nonperturba-
nonisolated curve$ and S+ £ in the zero section. There- tive superpotential is not zero provided the conjecture about
fore, these nonisolated curves may contribute to the superpdhe vanishing of the superpotential on nonisolated curves is
tential. However, since each such curve is nonisolated, oné&deed correct.
must “integrate” over the moduli of the curve. To perform  Let us now give the generalization of the above discus-
such an “integration,” even to define it properly, is a difficult Sion to the case when a membrane stretches between one of
open problem. However, it has been conjectured by Witterihe orbifold planes and a five-brane. As we have said, in this
[71] that every nonisolated curve gives zero contribution topaper we will assume that there is a single five-brane in the
the superpotential. In this paper, we will henceforth assum&ulk. The nonperturbative superpotential for such a mem-
that this conjecture is indeed correct and there is no furthelprane configuration was calculated in R¢sl,34). The con-
contribution to the superpotential arising from nonisolatedtribution has a form very similar t¢3.21). When a mem-
curves{N,}. brane begins on the observable brane and ends on the five-
What about the isolated curvék,}? Generically, we ex- brane wrapped on an isolated genus zero holomorphic curve
pect strings wrapped around each curyéo produce a non- Z the superpotential is
vanishing superpotentialV,[1,]. The whole nonperturba- (1) oy
tive superpotential generated by membranes stretched WscPlaff(D_)e" ", (3.62

between the two orbifold planes can then be written as . . . . .
P where D_ is the chiral Dirac operator associated with the

bundle V on the observable brane restricted zand the
Wop=W, [ ST+ 2 Wy [l]. (3.589  coefficient 7 is given in (3.23. When the membrane
X stretches between the five-brane and the hidden brane, the

We now want to make a very important point. For a genericUPerpotential will be

Calabi-Yau threefold of the type considered here, one can (2) hidden, ,—7(7-Y)
show that none of the curves intersectsS. That is, Ws™oxPlaff DT e ' (3.63
S1,=0 (3.59 By Pfaff(Dh_idder), we denote the Pfaffian of the Dirac op-

erator constructed using the pullback zef the hermitian
for all values ofx. This leads to the following conclusion. Yang-Mills connection on the hidden brane. If the vector
That is, the superpotential/,, [ S] and =,W,[l,] depend bundle on the hidden brane is trivial, as we are assuming in

on different vector bundle moduli. Lep; be the transition this paper, the Pfaffian is simply a constant, independent of
moduli, and the corresponding contribution to the superpo-

tential becomes

3The authors are very grateful to R. Donagi and T. Pantev for

2) e T(T-Y
discussions on this issue. Woce™ 1T, (3.64
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Before closing this section, we want to be a little moreof ¢; moduli. In all of the examples studied in Ref52,53,
explicit about what we mean by the assumption that there ig was found that the number of transition moduli associated
a single five-brane in the bulk. For a trivial vector bundle onwith the curveS is large and that the corresponding Pfaffian
the hidden brane, the anomaly cancellation condition deteiis a complicated homogeneous polynomial of high degree.

mines the five-brane class to be Again, for simplicity, we will pretend that there is only one
¢ modulus. From the discussion of its stabilization, it will be
W=Ca(TX)—ca(V). (3.65  obvious that any number ap moduli can be stabilized by

the same mechanism. Therefore, we can restrict ourselves to
It was shown in Ref[54] that the moduli space of the ho- 3 single modulus without any loss of generality. To con-
mology class)V always contains an irreducible representa-clude, we consider a model containing the following moduli.
tive curve. Physically, this corresponds to a single five—branewe have onel modulus geometrica”y Corresponding to the
in the bulk space. In this paper, we always take the five-brangeparation of the orbifold planes, tBenodulus correspond-

to be wrapped on an irreducible curve. ing to the Calabi-Yau voluméh*? moduli Z,, whose precise
number is irrelevant, one transition vector bundle modulus
IV. MODULI STABILIZATION ¢, the remaining vector bundle moduli,, whose precise

number is also irrelevant, and one five-brane modiflusve
emphasize, once again, that these simplifications are made
In this section, we will provide a stabilization of the for purely technical reasons to simplify the equations. Any
moduli considered above. Unfortunately, the Kahler potennumber of theT, ¢, and y moduli can be stabilized by a
tials (2.10 and(2.16 and the superpotentia(8.21), (3.61), similar method.
(3.62, and(3.64) are very complicated when the number of  Let us write the simplified Kahler potential and the super-
the (1,1) moduliT' and the vector bundle moduli® ,x7) is  potential relevant for our model. We have
large. For the case of Calabi-Yau threefolds elliptically fi-
bered over the Hirzebruch surfaces, the number of The K=Kg1+Kz+Ks+kKpungle- 4.9
moduli is three and the number of the vector bundle modul
is of order 100 or largef62]. The number of transition
moduli associated with the curvg is also quite large, of
order ten[62]. Therefore, to give an explicit analytic solu-
tion, we have to simplify the model without losing its essen-\ynere Eq.(2.4) has been used. In order to ignore the cross

tial properties. Our first step in this direction will be to as- orm (2.3, we must always work in a region of moduli
sume that we have only one (1,1) modulus. We can do thigpace where

without loss of generality since, as will become clear in our

analysis, any number of tiiemoduli can be stabilized by the [ImT|<1. 4.3
same mechanism. Let us emphasize that the reason for doin

this is purely technical. We just want to simplify the equa- The h*>* moduli Kahler potentiaK is given in(2.11) by
tions. We will comment on this further at the appropriate

place. Henceforth, we will take only offemodulus, which is K,=— M§|ln( —i f Q/\(_)) _ (4.4)
associated with the size of the eleventh dimension. We now X

have to make some simplifications concerning the vector ) )

bundle moduli. In the preceding section, we split the vector! Ne five-brane Kahler potentials (2.16 now becomes
bundle moduli® , into three categories, the transition moduli —

A. Setting up a model

I this expressionkK s 7 is given by[see Eq.(2.10]

Kst=—M2In(S+S)—3M2(T+T), (4.2)

¢;, associated with the curv§, the transition moduliy;, Ke=2 . (Y_’LY)Z_ (4.5
associated with the curves,}, and the remaining moduli ° Pl 5(s+ S(T+T) '
5. Clearly, the equations of motion for thé;- and y;-

moduli are very similar. Therefore, we may assume that ther8y definition[see Eq.(2.12]

are noyj moduli at all without any loss of generality. If we

manage to stabilize the; moduli, the moduliy; will be O<ReY<ReT, (4.6

stabilized by precisely the same procedure. Ignoringthe
moduli does not produce conceptual changes in the structu
of the T and Y superpotentials either. Specifically, the exis-
tence of they terms in(3.61), in addition to the first term,
can at most produce a racetrack potential energy forTthe
andY moduli. This would only strengthen the vacuum sta- Koundie= Kbundid @) + Koundid ¥a)- 4.7
bility. However, we must continue to keep thlg, moduli,

since they do not appear in any of the superpotentials distVe also know that for small values @, Ky nqie must di-
cussed in the preceding section and ignoring them can corverge. For concreteness, wheris sufficiently less than one,
ceptually alter the potential energy. As a result, we will as-we takeKy nqid @) to be

sume thaip; and iy, are all of the vector bundle moduli. We o

now want to introduce simplifications concerning the number Kounaid @)= —pIn(p+ ¢), (4.9

since the five-brane must be between the orbifold planes. The
Wector bundle moduli Kahler potential is not known explic-
itly. However, from our discussion at the end of Sec. II, we
concluded thaK,,,qic can be split as follows:
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wherep is some dimensionless, positive constant. Expressiothe case. The more general case is more difficult to analyze
(4.8) is the function that diverges most softly at zero. How-and will be presented elsewhere. The five-brane nonpertur-
ever, one can choosé,,nqid ¢) to be any other function bative superpotentialt/t) andW? [Egs.(3.62—(3.64)] are
that diverges at zero, for example, an inverse polynomial inthen given by

¢. We can show tha# can be stabilized for any such func-

tions. W =c,M3 ¢ e 7Y (4.1
Let us now summarize the superpotential. The total super-
potential is given by and

W= Wi+ W+ W, p+ WD+ W, (4.9) WP =cM3 e ("), (4.17)

Here,W; is the flux-induced superpotentigee Eq(3.7)] with ¢, and c; being dimensionless coefficients of order

unity. In Eq. (4.17), we have assumed that the bundle is
Wf:M%Ihlf AAG, (410  trivial on the hidden brane. Note that the Pfaffiariiiy") is

X identical to the one int4.15 since both arise from the Dirac

operator restricted to the cun
where

h,~2x10 8. (4.10) B. Moduli stabilization

] o ] In this section, we will show that the system of the equa-
W, is the superpotential induced by the gaugino condensgjgng
tion on the hidden wall. In our model, it follows fro(3.11)

that Dail fielasW=0, (4.18

3 Y? whereDW is the Kahler covariant derivative
Wy=M2hyexp — eS+ea?T— eﬁ; . (412

1
where[see Egs(3.12, (3.16, and(3.18] DW= W+ M_§,|((9K)W' (4.19
_ v Us has a solution in the correct phenomenological range for all
~ 6 (2) . —_ ~ 2
hy~107%  « vé’f’;’ B Wué’? 4.13 fields. In other words, we will show that all moduli described

earlier can be stabilized in an AdS vacuum.

According to our discussion in the preceding section, to We start with the system of equations

make sure that the combination
D ¢aW: 0. (4.20

Y2
Re( S— a(Z)TJFEF) (4.14  Since the superpotentialV does not depend om,, the
above equations are reduced to

is positive, we have to take® to be less than one. The

nonperturbative superpotental,, [Eq. (3.61)] is now given (mb;”—l;'e“m =0, (4.22)
by a
W, = M3t e, (4.15  where Eq.(4.7) has been used. We will now argue that this

equation always has a solution. From Sec. Il, we know that

where we have restored its natural scale apds some di- as goes to positive infinity along either its real or imagi-
mensionless coefficient of order unity. The Pfaffian, whichnary directions, the Kahler potenti#l, g4 grows. On the
must be a homogeneous polynomial, is represented by thether hand, agr goes to zerokynqie Can either stay regular
factor 971, We will assume thatl+ 1 is sufficiently large. or diverge.Kyynqie Will diverge if the locus#=0 corre-
This is naturally the case in explicit examplé2,53. sponds to a torsion-free sheaf supported on a holomorphic

To discuss the five-brane superpotentials, we must firsturve different from that associated with the vanishingpof
specify the holomorphic curve over which the five-brane islf Ky,nqie diverges at zero, then E¢4.21) must have a so-
wrapped. As emphasized above, that curve can always Hation for positive ¢y corresponding to a minimum of the
chosen to be irreducible corresponding to a single five-brandunction Ky ngie- If Kpundie IS @ regular function ofy at
However, in general the homology clags of the curve can zero, we can ask what happens fagrows in its negative
contain both horizontal and components, involvifig€ and  real or imaginary directions. From Eq2.42 and(2.43 and
the fiberF, respectively. We find it easiest to chogéto be  the properties of the partition of unity, it follows thigt) ;q1e
simply at least one copy of the cunf& This can always be must also grow in these negative directions. Therefore,
accomplished by adjusting the bundieon the observable again,Kynqie Must have a minimum. Thus the properties of
brane. Henceforth, in this paper, we will assume that this is_PN guarantee the existence of a solution to E521).
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As the second step, consider the equations involving th&his complex equation is equivalent to two real equations,
Kahler covariant derivative with respect to the complexone relating the phases of the left- and right-hand sides, the

structure moduliz,,, other relating the absolute values. The phase equation is as
follows:
Dz W=0, (4.22 ,
— €S+ eaPTy—efIm| — | =f+7(2n,+1),
which is equivalent to €Sptea™T,—eh T2 m(2n+1)
(4.30
1 . . .
dz Wi+ —(dz Kz)W=0. (4.23  wheren; is any integer. Here we have used the notation
“ Mp ¢ introduced in(4.26) and(4.27). The absolute value equation,

on the other hand, is
Let us make an assumption that the absolute valué/ofs
sufficiently larger than all other contributions to the superpo- (2€S))[Wg|=|Wy|. (4.3

tential near the vacuum, that is . . . . .
From this equation we obtain a solution 8y as a function

|Wf|>|Wg Wi, Wg1)|,|W(52)|. (4.24) of T andY. Taking, for simplicity,
. . , Y?
Later, we will see that our solution is completely consistent Re( a(2)T_5_2 <S, (4.32
with this assumption. Then E¢4.22 becomes T
1 we find
dz Wi+ —-(dz Kz)W=0. (4.25
z, vt M|23|( Z, Z) f 755_|Wf|
(2€S))e 1= o (4.33
2

All terms in this equation depend only on the complex struc-

ture moduli. It is not known how to find eithét, or W; for ~ This equation provides a solution f&;. This mechanism is
complicated Calabi-Yau geometries. Bith andW; are ex- ~ Similar to that considered in R€f3]. The scale that controls
pected to be complicated functions f,. Nevertheless, W; was found in Sec. Ill to bé,~2x10~%, whereash,
there is evidence that this system of equations has a noivas found to ben,~107°. Therefore, we find that

trivial solution. First, the number of equations is equal to the

number o_f the unkr_10wns, SO one can expect a solution. A (eSl)e*fsl~m~10*2. (4.34
second piece of evidence comes from R&f, where type h,

[IB flux compactifications on the space of rather simple ge- .
ometry T®/Z, were considered. In that paper, it was shownFrom here we obtain
that an equation analogous ¢4.25 indeed has a solution

fixing all the moduliZ,. Thus, we simply assume that Egs.

(4.29 fix all the complex structure modull, and that the  Recalling from(3.14 that for theEg gauge groupe is of
value of W¢ at the minimum is nonzero. Exactly the same gyqer 5, it follows that

assumption was crucial for the moduli stabilization in the

€S,~7.5. (4.35

type IIB theory discussed in Ref3]. S,~1.5, (4.36
Before moving on to the other equations, let us introduce
some notation. Let a phenomenologically accepted solution §r We also see
from (4.33 that, by turning on a larger flux, we can reduce
T=T,+iT,, S=S,+iS,, Y=Y;+Y,, ¢=re'’. the value ofS; to make it closer to one. It is clear that one
(4.26 can find a solution fos; of order unity for generic values of
Also, write the value ofV; in the minimum as ) Y2
Re a1 ,8; (4.37
Wi=|wle', (4.27)

. . . . less thanS;. We should point out that, in principle, the ab-
that is, we write the complex numbé¥; in terms of its  solute value of the flux superpotential in the minimum can be
absolute value and its phase. Now consider the equation |ess, and even much leés units ofM3,), than the order of

h,. Then there are two possibilities. First, we can turn on a

DsW=0. (4.28  larger amount of the flux, thus increasif\ty;|, to keepeS,;
at the same value as {#.35), that is, of order ten. The other
By using Eqs.(4.2) and(4.12), we obtain possibility is that we can put a nontrivial bundle on the hid-
den brane. It will break the low-energy gauge group on the
(2€S;)Wg= —W;. (4.29 hidden wall fromEg down to some proper subgroup. All this
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will reduce by and, therefore, fron{3.13) we see that this D;W=0. (4.43
will increasee. Hence, we still can solve E¢4.33 and find

€S,~10. Note that, sinceS, is of order ten, we see from By using Eqs(4.2), (4.5), (4.15—(4.17), and(4.24) and the
(4.3 that |W;|>|W,|. This is in agreement with the rel- fact that (Y,/T,)? is sufficiently less than one, we obtain
evant part of assumptiof4.24) which we made to justify 2)

(4.25. 27T, Wg~/=—3W;. (4.49

Now let us consider the equation This equation is very similar to Eq4.29. Relating the

D,W=0. (4.39 phases of the left- and right-hand sides(4#44) gives
By using Egs(4.7), (4.8), (4.15, (4.16), and(4.24), we ob- 1Tyt Y =f+m(2ns+1), (4.49
tain the following expression: whereng is any integer. Relating the absolute value yields
k 27T WP =3|w|, 4.4
(d+1)¢%(cie”T+ce” )= p—_Wf. (4.39 7T | Wg™| = 3| W (4.49
¢t ¢ or, more precisely,
Since 7 given in (3.23 is always much larger than one, the 26,7 T,e T = 3w, | @47

first term on the left-hand side ¢4.39 is much smaller than
the second as long a& <T;. We will assume here that this Since we taker to be much greater than one af| is
is the case, justifying this assumption later on. Then, apmuch less than one, we can always find a solutionTipin

proximately, we have the correct phenomenological range of order one by adjust-
ing the parameter, providedY is stabilized. It is clear that
WDei6— pk W 440 2 similar consideration would hold in the case of sevéral

5 2(d+1)cosg ' moduli, though the equations would be more complicated.

. Note that, sincer>1, it follows that|W;|>|W."|. There-
where we have use@.16) and(4.26). As before, this com-  fore, all conditions in assumptiof#.24) are satisfied.
plex equation is equivalent to two real equations, one relat- The |ast equation to consider is

ing the phases cWé andW; and one relating their absolute
values. The phase equation reads DyW=0. (4.48

do—rY,=f+2mn,, (4.41 By using Egs.(4.5), (4.12, (4.16, (4.17), (4.24), (4.29,
(4.3, (4.44), and(4.46), we get the following equation:

wheren, is any integer. The equation for the absolute value
is BY 3 Y,

— o +2T5 = =
S, T2 2T °TiS,

0. (4.49

pk

(I A
W 2(d+1)cosé

| W (4.42 Since, to justify dropping the cross tel@.36), we are look-

ing for a solution with|T,|<1, we have
Equations (4.41) and (4.42 stabilize the vector bundle
modulir and @ provided the five-brane modu¥i, andY, are Y Yi+iY,
stabilized. Note that, sinde~10"° and d+ 1) is large, we 720 12 (4.50
have|W.H|<|W| for generic values o€, and cos. Simi- '
larly, since the first term i1t4.39 is proportional toW,,, it Then the imaginary part of E¢4.49 becomes
follows that |W,,,|<|W|. This is consistent with our as-
sumption(4.24). At this point, we would like to discuss what Y2~0. (4.5
Vrz%lélglihaEZﬂzgc;;;v: ;%ognzr(n f;f%t;?g"guggbt(xéfgs 23 This provides the stabilization of ,. The real part of Eq.
equations, one foM phasest; and one forM radii r;. For (4.49 reads
the phases, we would haw equations of the type4.41) BY, 3 Y,

that would determine alb;’s as functions ofY,. Similarly, ST, §+2T5S_:0' (4.52
we would haveM inhomogeneous equations for of the 11 1

type(4.42. Clearly, for a generic Pfaffian one expects to find g, here we get

a solution. Furthermore, a generic Kahler potential

Kpunaid ) would not drastically modify Eq4.42). It would 3S,

still be an inhomogeneous equation fagor r;'s in case there lem- (4.53

are severaland one still expects a solution. It is also clear
that the omitted moduly; can be stabilized by the same This is the solution foiY,, provided it satisfies
mechanism.

Let us move on to the equation Y <Ty, (4.54
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to justify our previous assumption. Since bghand 75 are  obtained by solving Eq(4.33. As explained below Eg.
of the same order of magnitufrfom Eqgs.(2.20 and(3.18 (4.33), one can stabiliz&, near its phenomenological value
we see that they are both of ordﬁg/vgﬁ], (4.54) leads to  of order one. The imaginary part &fis given by Eq.4.61).

the following condition ong: The real part of th&d modulus is stabilized in a similar way
by solving Eq.(4.47) together with Eq.(4.53 for the five-
- 335, (4.55 brane modulugr ;. Clearly, one can stabiliz&, at a value
B 2+4T," ' near its phenomenological value of order one. For example,
if we take
This is the condition on the coefficiert in order to make
sure thatY, is stabilized in the correct range. Taking, for cs~1, S~1, pB=~0.8, (4.62)
example,
S~1, Ti~1, (4.56 from Egs.(2.20, (3.18), (3.25, (4.47), and(4.53 we find
we obtain T,~0.7, Y;=~0.5. (4.63
B>0.5, (4.57

The imaginary parts of both thHEmodulus and th& modu-
which is a rather mild condition sincg is generically of lus are stabilized at values close to zero. The phase and the

order one. If the conditiof4.55 is not satisfied then, at least absolute value of the vector bundle modulpisare given in

in the low-energy field theory approximation, the five-braneEdSs: (4.59 and (4.60, respectively. The vector bundle
is pushed all the way to the hidden brane. Let us make suf@duli ¢, are stabilized by the properties 6™, as ex-
that we have indeed stabilized the absolute value of th@lained below Eq(4.21). Remarkably, the only constraint
imaginary partT, at a value much less than one. From Eqs'that we have to impose on the various coefficients is given in

(4.45 and (4.51), we get Eq. (4.59, which is easily satisfied.
’ Finally, it is straightforward to write the value of the po-
- f+m(2n3+1) 458 tential energy at the minimum. It is given by the equation
= . .

u
2 (W2 wyf?
Sincer is much greater than one, we can use our freedom to Viin= —3eK’MP'—2~ -

adjust the integen; to make|T,|<1, which justifies drop- M5, M5,
ping the cross terni2.36 in the Kahler potential. Since the

imaginary part of the five-brane modullYs, was found in ~ Where Eq.(4.24) has been used. The size of the potential
(4.51) to be approximately zero, we can write the solution€nergy is determined by the value of the flux-induced super-
(4.41) and(4.42 for the phase and the absolute valueas  potential. Since the scale that contrdlg is of order 108

, (4.69

follows: (in units of M3,), we expectV,;, to be
f+2mn, Viin~ —10718M% ~ — 10 GeV* 4.6
0= T (4.59 min Pl ev-. (4.65
Clearly, the masses of the excitations around this minimum
and :
are also determined by the fluxes.
pk|Wf|eTY1 1d
Sl (4.60
2(d+1)c,cos6 V. CONCLUSION
Similarly, the imaginary part of th€ modulus can be easily ~ In this paper, we have shown that all moduli of strongly
found from Eq.(4.30 to be coupled heterotic string theory can be stabilized with
vacuum expectation values in a phenomenologically ac-
f+2mn, 46 cepted range. This vacuum presenés 1 supersymmetry
S~ e ' (4.6 in the moduli sector, but has a rather deep negative cosmo-

logical constant whose scale is set by the compactification

where we have used E@t.51) and the fact thalfT,| is much  mass. Supersymmetry is, however, softly broken in the grav-
less than one. Thus, whed.55 is satisfied, we have found ity and matter sectors at the TeV scale by the gaugino con-
a stable solution for all of the heterotic M theory moduli.  densate. Our result is the heterotic string analog of the super-

Let us summarize our solution. In this section, we found asymmetry preserving part of the stabilization procedure
stable AdS minimum for all heterotic M theory moduli, presented in the type IIB context in R¢8]. There are, how-
namely, the complex structure moddj,, the dilatonS the  ever, a number of new, nontrivial elements in the heterotic
h1 modulusT, the vector bundle modutp and¢,, and the  discussion. These include the vector bundle moduli and their
five-brane modulusY. The complex structure moduli are nonperturbative superpotentials, the gaugino condensate su-
fixed by the fluxes. The corresponding equations have thperpotential with threshold corrections, and the inclusion of a
standard form(4.25. The real part of the dilaton$;, is  bulk five-brane and its nonperturbative dynamics.
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