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Vacuum stability in heterotic M theory
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The problem of the stabilization of moduli is discussed within the context of compactified strongly coupled
heterotic string theory. It is shown that all geometric, vector bundle, and five-brane moduli are completely
fixed, within a phenomenologically acceptable range, by nonperturbative physics. This result requires, in
addition to the full space of moduli, nonvanishing Neveu-Schwarz flux, gaugino condensation with threshold
corrections, and the explicit form of the Pfaffians in string instanton superpotentials. The stable vacuum
presented here has a negative cosmological constant. The possibility of ‘‘lifting’’ this to a metastable vacuum
with positive cosmological constant is briefly discussed.
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I. INTRODUCTION

One of the most important problems in finding realis
four-dimensional vacua in superstrings and M theory is
problem of moduli stabilization. The four-dimensional fu
damental constants, such as the Newton and unifica
gauge parameters, depend on the compactification mo
Therefore, in any realistic compactification scenario, all
moduli have to be fixed, or very slowly rolling, in a phenom
enologically acceptable range. However, string the
moduli do not have a perturbative potential energy. Hence
their values are to be fixed, it must be by nonperturbat
physics. The first attempts to do this@1,2# indicated that non-
perturbative superpotentials can lead to runaway beha
That is, the radius of the compactification manifold w
found to run to large values, leading to decompactificati
However, this work was very preliminary, involving only
subset of possible moduli and nonperturbative superpo
tials.

Over the years, there have been many attempts to p
the stability of moduli in different types of string theor
Recently, progress in this direction was achieved in type
string theory in Ref.@3#, emphasizing, among other thing
the necessity of considering flux compactifications@4–19#.
The moduli stabilization in Ref.@3# was demonstrated in two
steps. First, all moduli were stabilized at a fixed minimu
with a negative cosmological constant. This was achieved
combining fluxes with nonperturbative effects. Second,
minimum was lifted to a metastable vacuum with a posit
cosmological constant. This was accomplished by add
anti-D-branes and using previous results, obtained in R
@6#, that the flux–anti-D-brane system can form a metasta
bound state with positive energy. In Ref.@3#, it was also
shown that one can fine tune various parameters to make
value of the cosmological constant consistent with the
served amount of dark energy.

In this paper, we consider the problem of moduli stab
zation in strongly coupled heterotic string theory@20,21#
compactified on Calabi-Yau threefolds. Such compactifi
tions are called heterotic M theory and have a number
0556-2821/2004/69~8!/086010~17!/$22.50 69 0860
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phenomenologically attractive features~see Ref.@22# for a
recent review of the phenomenological aspects of M theo!.
In Refs. @23–26#, a specific set of vacua were construct
consisting of appropriateSU(5) vector bundles over Calabi
Yau threefolds withZ2 fundamental group. These lead
four-dimensional theories with the standard modelSU(3)
3SU(2)3U(1) gauge group and three families of charg
chiral matter. Recently, in Refs.@27–29#, these theories were
generalized to vacua involvingSU(4) bundles over Calabi-
Yau threefolds withZ23Z2 fundamental group. Such vacu
correspond to standard model-like physics in four dime
sions with potentially suppressed nucleon decay. In this
per, for simplicity, we consider only vector bundles over si
ply connected Calabi-Yau threefolds, compactificatio
which are easier to analyze. However, we see no reason
our results should not apply to more realistic heterotic va
on nonsimply connected manifolds. Within this context, w
will consider all geometric and vector bundle moduli. In a
dition, we include the translational moduli of M five-brane
One of the features of strongly coupled heterotic string co
pactifications is the presence of five-branes. In Refs.@30,31#,
it was argued that vacua with five-branes are more nat
since, for example, it is much easier to satisfy the anom
cancellation condition in their presence. Since, in order
obtain phenomenologically acceptable values for the fun
mental constants one has to take the size of the elev
dimension to be larger than the Calabi-Yau scale@32,33#, the
translational modes of the five-branes will appear as mo
in the four-dimensional low-energy effective action.

In this paper, we show that all heterotic M-theory modu
that is, the complex structure, Kahler, vector bundle and fi
brane moduli, can be stabilized by nonperturbative super
tentials. Recent discussions of this issue@34#, in models with
a restricted number of moduli, indicated instabilities caus
by membrane instantons@35,36#. However, these models di
not include all compactification and vector bundle moduli,
well as all possible sources for superpotentials. The anal
of Ref. @34# was refined in Ref.@37#, where it was shown tha
stabilization of certain moduli can be achieved. Neverthele
again, not all moduli were taken into account. In additio
©2004 The American Physical Society10-1
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the authors in Ref.@37# chose various parameters outsi
their natural range. In the present paper, we show that inc
ing all moduli and all superpotentials does lead to comp
moduli stabilization in a phenomenologically accepted ran
with a negative cosmological constant. Furthermore, thi
achieved within the natural values of the parameters.
stabilization procedure uses various tools such as form fl
nonperturbative superpotentials including their bun
moduli dependent Pfaffians, and gaugino condensation
the hidden brane with threshold corrections. Even thou
supersymmetry is not broken in the moduli sector, it is so
broken in the gravity and matter sector at the TeV scale
the gaugino condensate@30,38–45#.

The paper is organized as follows. In Sec. II, we revi
the Kahler potentials for all heterotic string moduli with
detailed discussion of their relative scales, including the v
tor bundle moduli Kahler potential. Even though the lat
cannot be evaluated explicitly for vector bundles on
threefold,1 it is possible to derive the relevant properties w
will need in later sections. In Sec. III, we give a caref
analysis of the superpotentials with a detailed discussion
their scales. In Sec. III A, we discuss the flux-induced sup
potential derived in Refs.@47,48#. This superpotential de
pends on the complex structure moduli. In Sec. III B, w
introduce the superpotential induced by a gaugino cond
sate on the hidden brane@30,38–42,44,45#. This superpoten-
tial depends on the Calabi-Yau volume as well as on the
of the eleventh dimension and the five-brane moduli throu
the threshold corrections. In Sec. III C, we discuss vario
nonperturbative superpotentials induced by membrane
stantons@35,36#. They depend on the (1,1) moduli, the fiv
brane moduli, and the vector bundle moduli. Various pie
of these superpotentials were calculated in Refs.@34,50–53#.
In order to obtain the total superpotential, one has to s
over contributions coming from all genus zero holomorp
curves in a given Calabi-Yau threefold. We give argume
that, in the models under consideration, the superpote
does not vanish after summation. In Sec. IV, we show,
detail, that all heterotic M theory moduli can be fixed at
stable anti–de Sitter~AdS! minimum. In Sec. IV A, we set
up the model. Since the Kahler potentials and the supe
tentials are very complicated when the number of (1,1) a
vector bundle moduli is large, we have to introduce so
simplification in order to obtain an analytic solution. We a
gue that if we restrict ourselves to consider only one (1
modulus, which coincides with the size of the eleventh
mension, and make some further restrictions on the num
of the vector bundle moduli, we do not actually lose gen

1In fact, in Ref. @46#, the vector bundle moduli Kahler potentia
was approximately computed for special types of Calabi-Yau th
folds and very special types of bundles. The bundles considere
Ref. @46# were taken to be the pullback of vector bundles on
surface. Such bundles admit a gauge connection that is app
mately ADHM, provided the instanton is sufficiently small. To
generic bundle on a threefold that does not come from a bundl
lower-dimensional space, the method of Ref.@46# cannot be ap-
plied.
08601
d-
e
e
is
ur
x,
e
on
h

y
y

c-
r

l
of
r-

n-

e
h
s
n-

s

m

s
ial
n

o-
d
e

)
-
er
-

ality. Finally, in Sec. IV B, we prove the stabilization of th
moduli. The complex structure moduli and the Calabi-Y
volume are stabilized by a mechanism similar to that cons
ered in Refs.@3# and @11#. In addition, we show that the
vector bundle and five-brane moduli are also fixed. We th
analyze how our equations would be modified if we h
many (1,1) and vector bundle moduli. We conclude that
would still find a stable solution, and hence that the rest
tion to a single (1,1) modulus and one vector bundle mo
lus was without loss of generality. There is only one m
constraint that we have to impose on a single coefficien
make sure that the five-brane modulus is stabilized in
acceptable range. In the Conclusion, we summarize our
sults. We also discuss the possibility of lifting our minimu
to a metastable vacuum with a positive cosmological c
stant, as was done in Ref.@3#. These results will appear else
where.

II. THE KAHLER POTENTIALS

We considerE83E8 strongly coupled heterotic supe
string theory@20,21# on the space

M5R43X3S1/Z2 , ~2.1!

whereX is a Calabi-Yau threefold. Let us list the comple
moduli fields arising from such a compactification. They a
theh1,1 moduli TI , the volume modulusS, theh1,2 moduli Za
and the vector bundle moduli, which we denote byFu . In
addition, we will assume that anomaly cancellation requi
the existence of a nontrivial five-brane class. Furthermo
for simplicity, we will work in the region of its moduli space
corresponding to a single five-brane@30,54#. The five-brane
translational complex modulus will be denoted byY. In this
section, we review the Kahler potentials for theTI , S, Za ,
andY moduli and derive some general properties of the v
tor bundle moduli Kahler potential.

The moduliTI are defined as

TI5RaIV21/31
i

6
pI , ~2.2!

whereR is the orbifold plane separation modulus,V is the
Calabi-Yau breathing modulus,aI are the (1,1) moduli of the
Calabi-Yau space, and the imaginary partspI arise from the
eleventh component of the graviphotons. The Calabi-Y
breathing modulusV also appears as the real part of t
four-dimensional dilaton multiplet

S5V1 iA2s, ~2.3!

where the imaginary parts originates from dualizing the
four-dimensionalB field. The moduliaI andV are not inde-
pendent. It can be shown that

V5
1

6 (
I ,J,K51

h1,1

dIJKaIaJaK, ~2.4!
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wheredIJK are the intersection numbers of the Calabi-Y
threefold. Note that the moduliV and R are dimensionless
and defined as

V5
1

vCY
E

CY
AgCY ~2.5!

and

R5
1

prE dx11, ~2.6!

respectively. HerevCY is the reference volume of the Calab
Yau threefold,pr is the reference length of the eleven
dimension, andx11 is the coordinate along the interva
S1/Z2. The actual volume of the threefold and the actual s
of the eleventh dimension arevCYV andprR, respectively.
See Refs.@55–57# for more details on the compactificatio
of strongly coupled heterotic string theory to five and fo
dimensions and the structure of the chiral multiplets.
achieve the correct phenomenological values for the fo
dimensional Newton and gauge coupling parameters,

M Pl;1019 GeV, aGUT;
1

25
, ~2.7!

we assume@32,33# that the inverse reference radius of t
Calabi-Yau threefold and the inverse reference length of
eleventh dimension are

vCY
21/6;1016 GeV, ~pr!21;1014 GeV, ~2.8!

respectively. This implies that, at the present time, the
mensionless moduliV and R have to be stabilized at, or b
very slowly rolling near, the values

V;1, T;1. ~2.9!

The Kahler potential forS andTI moduli was computed
in Ref. @57#. It is given by

KS,T52M Pl
2 ln~S1S̄!

2M Pl
2 lnS 1

6 (
I ,J,K51

h1,1

dIJK~T1T̄! I~T1T̄!J~T1T̄!KD .

~2.10!

The Kahler potential for the complex structure moduliZa
was found in Ref.@58# to be

KZ52M Pl
2 lnS 2 i E

X
V`V̄ D , ~2.11!

whereV is the holomorphic~3,0! form.
The next supermultiplet to discuss is the one associa

with the five-brane modulusY. It was shown in Ref.@30#
that, when a five-brane is compactified to four dimensions
a holomorphic curvez of genusg, there are two types o
zero-mode supermultiplets that arise. First, there areg Abe-
lian vector superfields, which are not of our interest in t
08601
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paper. The second multiplet that arises is associated with
translational scalar modeY. GeometricallyY corresponds to
the position of the five-brane in the fifth dimension.2 It was
shown in Ref.@59# that the translational multiplet of the five
brane is a chiral supermultiplet whose bosonic componenY
is given by

Y5
Y

pr
ReT 1 i S a1

Y

pr
Im T D . ~2.12!

Here a is the axion arising from dualizing the three-for
field strength propagating on the five-brane world-volum
and T is related to the (1,1)-moduliTI as follows. Let
v I , I 51, . . . ,h1,1 be a basis of harmonic (1,1) forms on o
Calabi-Yau threefold. These are naturally dual to a ba
zI , I 51, . . . ,h1,1 of curves inH (1,1)(X) where

1

v5
E

zI
vJ5d IJ . ~2.13!

Parameterv5 is the volume of the curvez on which the
five-brane is wrapped. Any holomorphic curve can be e
pressed as a linear combination of thezI curves. The curve
on which the five-brane is wrapped can be written as

z5 (
I 51

h(1,1)

cIz
I ~2.14!

for some coefficientscI . The modulusT which appears in
~2.12! is defined as

T5 (
I 51

h(1,1)

cIT
I . ~2.15!

The Kahler potential for theY modulus was calculated in
Ref. @59# and found to be

K552M Pl
2 t5

~Y1Ȳ!2

~S1S̄!~T 1T̄ !
, ~2.16!

with the coefficientt5 given by

t55
T5v5~pr!2

M Pl
2

~2.17!

andT5 is

T55~2p!1/3S 1

2k11
2 D 2/3

, ~2.18!

where k11 is the eleven-dimensional gravitational couplin
constant. It is related to the four-dimensional Planck mas

2Note that sincevCY
1/6!pr, the eleventh-dimensional coordina

x11 parametrizes the fifth dimension of the effective fiv
dimensional theory.
0-3
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k11
2 5

prvCY

M Pl
2

. ~2.19!

If we substitute Eq.~2.19! into ~2.18! using ~2.7! and ~2.8!,
we obtain

t5'p
v5

vCY
1/3

. ~2.20!

Now let us move on to the vector bundle moduli Kah
potential. Its general expression can be obtained from
dimensional reduction of the term in the ten-dimensional
tion

21

4g10
2

trE d10xA2gFMN
2 , ~2.21!

where M ,N50,1, . . . ,9 andgMN and FMN are the ten-
dimensional metric and Yang-Mills field strength, respe
tively. Upon dimensional reduction, the ten-dimensional m
ric and gauge field split as follows:

ds10
2 5vCY

22/3gmndxmdxn1vCY
1/3gCYmm̄dXmdX̄m̄,

AM5~Am ,Am ,Ām̄!, ~2.22!

wherem,n50,1,2,3 andm,m̄51,2,3. The fieldsgmn andAm
are the four-dimensional metric and the gauge field, resp
tively, whereasgmm̄ and Am represent the metric and th
gauge connection on the Calabi-Yau threefold. Substitu
~2.22! into the action~2.21!, we obtain the following expres
sion for the vector bundle moduli Kahler potential:

K̃bundle5
1

2g10
2

trE d6XAgCYgmm̄AmĀm̄ . ~2.23!

Let us find the scale that controls the strength of the Kah
potential. To do this, introduce the dimensionless quantit

X̃m5
Xm

vCY
1/6

, Ãm5AmvCY
1/6 , ~2.24!

wherevCY is the Calabi-Yau reference volume. We also n
malize all vector bundle moduli associated withAm with
respect to the Calabi-Yau reference volume so that they
are dimensionless. The Kahler potential then becomes

K̃bundle5
vCY

2/3

2g10
2

trE d6X̃AgCYgmm̄ÃmĀ̃m̄. ~2.25!

The ten-dimensional gauge coupling parameter is relate
the eleven-dimensional Planck scale as@20,21#

1

g10
2

5
1

2pk11
2 S k11

2

4p D 2/3

. ~2.26!
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From Eqs.~2.19! and ~2.26! we obtain

vCY
2/3

2g10
2

5
1

~4p!5/3

M Pl
2

@~pr!2M Pl
2 #1/3

. ~2.27!

We can then write the Kahler potentialK̃bundle as

K̃bundle5kMPl
2 Kbundle, ~2.28!

where

k5
1

~4p!5/3@~pr!2M Pl
2 #1/3

~2.29!

and

Kbundle5trE d6X̃AgCYgmm̄ÃmĀ̃m̄. ~2.30!

Note thatKbundle is dimensionless since it depends on d
mensionless vector bundle moduli. The parameterk is also
dimensionless. Substituting~2.7! and ~2.8! into ~2.29!, we
obtain

k;1025. ~2.31!

The reason that the strength of the vector bundle mo
Kahler potential is smaller by several orders of magnitu
than the strength of theT, S, andZ Kahler potentials is that
the F2 term appears to the next order ina8 in the ten-
dimensional action as compared to the supergravity mul
let. Unfortunately, to the same order ina8 in the ten-
dimensional action and, as a consequence, to the same
in k in the four-dimensional action, there is a cross te
between theT moduli and the vector bundle moduli. Thi
cross term comes from the

E d10xA2gH`H* ~2.32!

term in the ten-dimensional action, whereH is given by Ref.
@21# ~see also Ref.@57#!

H5dB2
1

4A2p2r
S k11

4p D 2/3

~vY M2vL! ~2.33!

andvY M andvL are the Yang-Mills and gravitational Chern
Simons forms, respectively. The term~2.32! leads to the fol-
lowing contribution to the four-dimensional effective actio

;kMPl
2 E d4xA2g4gmn(

I 51

h1,1

~ Im TI !

3E d6X̃AgCYv I
mm̄]mÃm]n Ā̃m̄. ~2.34!

In this expression,X̃ and Ã are the rescaled Calabi-Yau co
ordinates and gauge connection~2.24!, v Imm̄ are the basis of
the harmonic (1,1) forms on the Calabi-Yau threefold, a
0-4
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VACUUM STABILITY IN HETEROTIC M THEORY PHYSICAL REVIEW D 69, 086010 ~2004!
the coefficientk is given precisely by~2.29!. This cross term
does not significantly effect the Kahler potential for theT
moduli, since it appears at a lower scale. However, it d
effect the vector bundle moduli Kahler potential~2.28!–
~2.30!. Schematically, the pure vector bundle moduli Kah
metric can be written as

E
X
]Ã]̄ Ā̃, ~2.35!

whereas the cross term can be written as

(
I

~ Im TI !E
X
v I]Ã]̄ Ā̃. ~2.36!

It is clear that the cross term can be ignored as long as
values of the imaginary parts of theT moduli are sufficiently
smaller than one. For now, we will simply assume that this
the case and discard the cross term. Later, when stud
stabilization issues, we will see that one can indeed stab
the imaginary parts of theT moduli at values sufficiently les
than one, thus justifying our assumption.

It is difficult to calculate the vector bundle moduli part
the Kahler potential explicitly without knowing a solution t
the Hermitian Yang-Mills equations. Nevertheless, so
properties ofKbundle can be determined. These properti
will be sufficient to allow one to study the issues of mod
stabilization in later sections. At this point, we have to
more specific about the type of Calabi-Yau threefold
choose and the type of vector bundle we put over it. In t
paper, the Calabi-Yau threefold will be taken to be ellip
cally fibered. For such Calabi-Yau spaces, there exist
rather explicit spectral cover construction of stable holom
phic vector bundles@60,61#. The moduli of such vector
bundles were discussed in Ref.@62#. In the present paper, w
will restrict our discussion to such vector bundles. Geome
cally, their moduli space is just a complex projective spa
CPN, where N is the total number of the vector bund
moduli @62#. The moduli of vector bundles on ellipticall
fibered Calabi-Yau manifolds will be reviewed in more det
in the next section. For now, we will only need the fact th
the moduli parametrize a complex projective space. Stri
speaking, the moduli space of bundlesM is an open subse
in CPN. The projective space is actually the compactificat
of M with respect to certain singular objects known
torsion-free sheaves. The gauge connection becomes sin
on these sheaves. However, for simplicity, we will viewCPN

as the moduli space of vector bundles, keeping in mind
it also contains singular points. At these points, the Kah
potential should blow up since the associated gauge con
tions do. As some of the vector bundle moduli approa
certain critical values, the corresponding gauge connec
represents a delta-function peak over some holomorp
curve in the Calabi-Yau threefold. These moduli are cal
the transition moduli associated with this curve@62#. We will
cover ourCPN manifold with standard open sets isomorph
to CN by introducingN11 homogeneous coordinates a
setting one of them to unity on one of the open sets. Le
consider any open patchUa,CPN containing the transition
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moduli associated with some holomorphic curve. Denote
curve byz and let the number of the transition moduli beM.
Let the N local coordinates on this open set beFu
5(f i ,ca), wheref i represent the transition moduli of th
curve z and ca the remaining moduli. The total number o
parameters is, of course,N. One can always choose the c
ordinate system in such a way that the critical values of
transition moduli are

f i50, i 51, . . . ,M . ~2.37!

The codimensionN2M subset ofCPN defined by these
equations represents a singularity of the type descri
above. When all of thef i go to zero, the bundle becomes
singular torsion-free sheaf. This corresponds to the ga
connection being a distribution that is infinitely peaked ab
the z curve and smooth everywhere else. As one turns
moduli f i on, the torsion-free sheaf smears out to produc
smooth vector bundle with an everywhere smooth Hermit
connection. It is clear that at the torsion-free sheaf, where
gauge connection has an infinite peak centered atz, the
Kahler potential~2.30! diverges. Note that this is genericall
true at any singular point in moduli space. The above ana
sis allows us to say that for values off i sufficiently small,
we can approximately split the Kahler potentialKbundle as

Kbundle5Kbundle~f!1Kbundle~c!. ~2.38!

The reason is that forf i ’s small enough, the gauge conne
tion can approximately be written as

A5A~f!1A~c!, ~2.39!

where A(f) is strongly centered around the curvez and
A(c) is smooth everywhere. In the limit of smallf i , the
overlap integral of the product of these two pieces of
gauge connection is small. Then~2.38! follows from ~2.39!
and ~2.30!. We will also need to know what happens
Kbundle as the moduli~eitherf i or ca) become large in the
sense of coordinates onCN. Since

h1,1~CPN!51, ~2.40!

there exists a unique cohomology class of Kahler forms. T
Kahler form associated with the well-known Fubini-Stud
Kahler metric onCPN is contained in this nontrivial coho
mology class. This means that every Kahler potential onCPN

can be written as

KCPN5KFS1 f , ~2.41!

whereKFS is the Fubini-Study Kahler potential andf is any
global function. The only restriction onf is that the corre-
sponding Kahler metric has to be positive definite. On
coordinate patchUa with local coordinatesFu , we have

KCPNuUa
5KFSuUa

1 f ra , ~2.42!

where
0-5
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KFSuUa
5 lnS 11 (

u51

N

uFuu2D ~2.43!

and$ra% is the partition of unity. As we approach the boun
ary of the open set,

ra→0. ~2.44!

Furthermore, from~2.43! we find that

KCPNuUa
→` ~2.45!

in this limit. From this analysis, we conclude thatKbundle
grows as one increases either one of thef i ’s or one of the
ca’s keeping the other variables fixed. These properties
Kbundle will be important in the next sections.

III. SUPERPOTENTIALS

In this section, we discuss the superpotentials that will
used to achieve the stabilization of all moduli conside
above.

A. The flux-induced superpotential

We want to turn on a nonzero flux of the Neveu-Schw
three-formH on the Calabi-Yau threefold. The presence
this nonzero flux generates a superpotential for theh1,2

moduli of the form@47,48#

Wf ;E
X
H`V. ~3.1!

This is the heterotic analog of the type IIB superpoten
@10,12,13#

WIIB;E
X
G3`V, ~3.2!

whereG35F32tH3. Expression~3.1! can be obtained by
considering the variation of the ten-dimensional gravitin
dimensionally reducing this to four dimensions and match
it against the well-known gravitino transformation law
four-dimensional supergravity. See Ref.@48# for a detailed
derivation.

For later use, we need to find the scale that controlsWf .
Since the components ofH have dimension one, we find tha

Wf5
M Pl

2

vCY
E

X
H`V. ~3.3!

As before, introduce dimensionless coordinatesX̃m

X̃m5
Xm

vCY
1/6

~3.4!

and dimensionless components for the three-form. SinceH is
quantized in units of@49#
08601
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S k11

4p D 2/3 1

pr
, ~3.5!

the components ofH and the dimensionless three-formH̃ are
related by

Hmnp5S k11

4p D 2/3 1

prvCY
1/2

H̃mnp. ~3.6!

As a consequence,Wf can be written as

Wf5
M Pl

2

vCY
1/2 S k11

4p D 2/3 1

prEX
H̃`Ṽ5M Pl

3 h1E
X
H̃`Ṽ,

~3.7!

where, using Eqs.~2.7! and ~2.8!, we find

h15
1

M Pl
3 vCY

1/2
;231028 ~3.8!

and H̃ andṼ are both dimensionless.
Note that turning on a nonvanishing flux warps the co

pactification space away from a pure Calabi-Yau threefo
The strength of this warping is determined by the dimensi
less parameter

S k11

4p D 2/3 1

prvCY
1/2EC

H̃, ~3.9!

where C is an appropriate three cycle. Sinc
(k11/4p)2/3(1/prvCY

1/2);231025, it follows that for

E
C
H̃!

1

2
105 ~3.10!

the warping away from a Calabi-Yau threefold is negligib
small. Henceforth, we will always choose the flux to satis
condition ~3.10!.

B. Gaugino condensation induced superpotential

We also turn on a gaugino condensate on the hidden b
@30,38–42,44,45#. A nonvanishing gaugino condensate h
important phenomenological consequences. Among o
things, it is responsible for supersymmetry breaking in
hidden sector. When that symmetry breaking is transpo
to the observable brane, it leads to soft supersymm
breaking terms for the gravitino, gaugino, and matter fie
on the order of the electroweak scale. A gaugino conden
is also relevant to the discussion in this paper, since it p
duces a superpotential forS, T, andY moduli of the form

Wg5M pl
3 h2expS 2eS1ea I

(2)TI2eb
Y2

T 2D . ~3.11!

Here @44#
0-6
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h2;
1

M PlAvCY~pr!
S k11

4p D 2/3

;1026, ~3.12!

and the coefficiente is related to the coefficientb of the
one-loop beta function and is given by

e5
6p

b0aGUT
. ~3.13!

For example, for theE8 gauge groupb0590. TakingaGUT
to have its phenomenological value given in~2.7!, we obtain

e;5. ~3.14!

The coefficientsa I
(2) represent the tension of the hidde

brane measured with respect to the Kahler formv I @57#

a I
(2);

pr

16pvCY
S k11

4p D 2/3E
X
v I

`S Tr F (2)`F (2)2
1

2
Tr R`RD , ~3.15!

whereF (2) is the curvature of the gauge bundle on the h
den brane. One can estimate the order of magnitude ofa I

(2)

by evaluating the right-hand side of Eq.~3.15!. We find that

a I
(2)'

v I

vCY
1/3

, ~3.16!

wherev I is the volume~measured with respect to the Kahl
form v I) of the two-cycle, which is Poincare´ dual to the
four-form TrR`R2 1

2 Tr F (2)`F (2). Similarly, the coeffi-
cient b is the tension of the five-brane and given by@63#

b5
2p2r

vCY
2/3 S k11

4p D 2/3E
X
(
I 51

h1,1

cIv I`W, ~3.17!

whereW is the four-form Poincare´ dual to the holomorphic
curvez on which the five-brane is wrapped. Evaluation of t
right-hand-side of Eq.~3.17! gives

b'p
v5

vCY
1/3

, ~3.18!

wherev5 is the volume of the holomorphic curve the fiv
brane is wrapped on. Note thatb is always positive and
from ~2.20!, is of the same order of magnitude ast5. The
real part of the combination

S2a I
(2)TI1b

Y2

T 2
~3.19!

represents the inverse square of the gauge coupling con
on the hidden brane, with the last two terms being the thre
old corrections@30,44#.

Note that it is essential that expression~3.19! be strictly
positive at the vacuum of the theory. This prevents the eff
08601
-

ant
h-

c-

tive gauge coupling from diverging, or being undefined,
the hidden orbifold plane. For this to be the case, we m
have

Re~a I
(2)TI !,ReS S1b

Y2

T 2D . ~3.20!

In this paper, we want to work in the strong coupling regim
of the heterotic string. It follows that one of theTI moduli,
corresponding to the size of the fifth dimension, must be
least of order unity. Hence, for~3.20! to be satisfied, typi-
cally, we must choose the associateda (2),1. We find that
this can always be arranged by the appropriate choice of
vector bundle on the hidden orbifold plane. In fact, in R
@19# it was argued that this assumption may be unneces
if one includes higher-order field-theory corrections that
protected by supersymmetry. This might provide generali
tions of the results obtained in this paper as well.

C. Nonperturbative superpotentials

In this section, we will review the structure of nonpertu
bative superpotentials generated by strings wrapped on h
morphic curves. To be more precise, the nonperturba
contributions to the superpotential come from membrane
stantons. As was shown in Ref.@50#, to preserve supersym
metry a membrane has to be transverse to the end-of-
world branes and wrap a holomorphic curve in the Cala
Yau threefold. In addition, only curves of genus ze
contribute @2,36#. At energy scales smaller that the bra
separation scale, the membrane configuration reduces to
of a string wrapped on a holomorphic curve. We will refer
such a configuration as a heterotic string instanton.
should point out that there can be three different membr
configurations leading to different nonperturbative contrib
tions to the superpotential.

~1! A membrane can stretch between the two orbifold fix
planes.

~2! A membrane can begin on the visible brane and end
the five-brane in the bulk. Recall that, in this paper, w
are assuming that there is only one five-brane in
bulk.

~3! A membrane can begin on the five-brane and end on
hidden brane.

We will discuss the first configuration in detail and then co
ment on the configurations~2! and~3!. It was shown in Ref.
@64# that the nonperturbative contribution to the superpot
tial of a string wrapped on an isolated curvez has the struc-
ture

Wnp@z#}Pfaff~D2!expS 2t(
I 51

h1,1

ṽ IT
I D . ~3.21!

Let us first discuss the exponential factor

expS 2t(
I 51

h1,1

ṽ IT
I D ~3.22!
0-7
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which was calculated in Ref.@50#. The coefficientt in ~3.22!
is defined as

t5
1

2
TM~pr!vz , ~3.23!

whereTM is the membrane tension given by

TM5~2p!1/3S 1

2k11
2 D 1/3

~3.24!

and vz is the volume of the holomorphic curvez. By using
Eqs.~2.19!, ~2.7!, and~2.8!, we get

t;500
vz

vCY
1/3

. ~3.25!

Everywhere in the paper,t will be taken to be much greate
than one which is naturally the case. Furthermore, theṽ I
appearing in~3.22! are the integrals of the pullbacks to th
holomorphic curvez of the I th harmonic (1,1) form on
Calabi-Yau threefold. See Ref.@50# for details. Note, that the
exponential factor~3.22! gives the nonperturbative contribu
tion to the superpotential for theT moduli, but not for the
Calabi-Yau volume modulusS. For example, whenh1,151,
the factor~3.22! becomes

exp~2tT!, ~3.26!

where

T5R1
i

6
p. ~3.27!

This shows that the superpotential associated with~3.26! de-
pends on the size of the eleventh dimension only.

Now let us move on to the first factor in~3.21!. This
factor,

Pfaff~D2!, ~3.28!

represents the Pfaffian of the chiral Dirac operator c
structed using the Hermitian Yang-Mills connection pull
back to the curvez @52,53,64#. It is clear that it depends on
the vector bundle moduli. So far, our discussion has b
basically generic. The only restriction on the Calabi-Yau g
ometry that we have made so far was to assume, in the
ond half of Sec. II, that it is elliptically fibered. At this poin
for specificity, we will choose the Calabi-Yau threefoldX to
be elliptically fibered over a Hirzebruch surface

B5Fr . ~3.29!

Let us mention some basic properties of Hirzebruch surfa
that we will need. The second homology groupH2(Fr ,Z) is
spanned by two effective classes of curves, denoted byS and
E, with intersection numbers

S•S52r , S•E51, E•E50. ~3.30!
08601
-

n
-
c-

es

The first Chern class ofFr is given by

c1~Fr !52S1~r 12!E. ~3.31!

Finally, we will assume thatX admits a global sections and
that it is unique, which is generically the case.

A Yang-Mills vacuum consists of a stable, holomorph
vector bundleV on the observable end-of-the-world bran
with the structure group

G#E8 . ~3.32!

In general, there can be a vector bundle on the hidden br
However, in this paper, we will assume that this bundle
trivial. It follows from Refs. @65,66# that each such bundle
admits a unique connection satisfying the hermitian Ya
Mills equations. OverX we will construct a stable, holomor
phic vector bundleV with structure group

G5SU~n!. ~3.33!

This is accomplished@60,61# by specifying a spectral cove

C5ns1p* h, ~3.34!

where

h5~a11!S1bE ~3.35!

with a11 andb being non-negative integers, as well as
holomorphic line bundle

N5OX@n~l1 1
2 !s2~l2 1

2 !p* h1~nl1 1
2 !p* c1~Fr !#,

~3.36!

wherelPZ1 1
2 . In Eqs.~3.34! and ~3.36!, p is the projec-

tion mapp:X→Fr . Note that we usea11, rather thana, as
the coefficient ofS in ~3.35! to conform with our conven-
tions in Ref.@62#. We will also assume that the variablesa
11 andb satisfy the positivity conditions@62#

a11.2n, b.ar2n~r 22!. ~3.37!

These conditions ensure that the spectral coverC is an ample,
or positive, divisor. The vector bundleV is then determined
via a Fourier-Mukai transformation

~C,N !↔V. ~3.38!

The moduli of the bundleV come from parameters of th
spectral coverC. Since the parameters of a divisor form
complex projective space, the moduli space of vec
bundles isCPN, whereN is the number of the vector bundl
moduli. This fact was already used in Section 1 in our d
cussion of the properties of the vector bundle moduli Kah
potential. In Refs.@52,53#, the Pfaffian Pfaff(D2) was com-
puted in a number of examples for the case of a superst
wrapped on the isolated spheres•p* S. The Pfaffian was
found to be a high-degree polynomial of the vector bun
moduli. In fact, it turned out that it depends only on a sub
0-8
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of the vector bundle moduli, the transition moduli, which a
responsible for smoothing out the torsion-free sheaf locali
at the curves•p* S @62#.

In order to find the total nonperturbative superpotent
one has to sum up the contributions from all holomorp
genus zero curves, both isolated and nonisolated. As arg
in Refs. @67–69#, in certain cases one can actually get ze
after the summation. This makes it necessary to discuss
genus zero holomorphic curves in Calabi-Yau threefolds
the type introduced above. After this discussion, we will
able to argue that, in these models, the superpotential
not vanish after the summation. The first class of genus z
holomorphic curves are of the form

z5s•p* z8, ~3.39!

wherez8 is a genus zero holomorphic curve in the baseFr .
Below, we will often identifyz with z8 for notation simplic-
ity. For specificity, let us take the base of the Calabi-Y
threefold to beF2. Our results will, however, remain true fo
other Hirzebruch surfaces as well. The Hirzebruch surf
F2, being a rationally ruled surface, contains one isola
genus zero curveS and infinitely many nonisolated curve
These can be shown to be

E and S1kE, ~3.40!

wherek is an integer number greater than one. Let us c
sider a concrete example. In Ref.@53#, it was shown that for
the following choice of parameters,

n53, b22a53, l5
3

2
, ~3.41!

there are nine transition moduli, denoted bya i ,b i ,g i , for
i 51,2,3, associated with the curves•p* S. The Pfaffian
generated by a string wrapped on the curves•p* S is non-
zero and given by the expression

Pfaff~D2!S5R 4, ~3.42!

whereR is the polynomial

R5a1b2g32a1b3g21a2b3g1

2a2b1g31a3b1g22a3b2g1 . ~3.43!

We will now show, in the context of this example, that o
can further restrict the coefficienta in such a way that the
vector bundle moduli contribution to the superpotential, t
is, the Pfaffian, vanishes on all nonisolated curves of the t
~3.40!.

As discussed in detail in Refs.@52,64,70#, given a holo-
morphic genus zero curvez, the Pfaffian will vanish if and
only if the restriction of the bundleV to the curvez is non-
trivial or, equivalently, that

h0
„z,Vuz^ Oz~21!….0. ~3.44!

It was shown in Refs.@52,53# that

h0
„z,Vuz^ Oz~21!…5h0

„C,N~2F !uC…, ~3.45!
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where

C5Cup* z , N5Nup* z , N~2F !5N^ Op* z~2F !
~3.46!

and F is the fiber class. We will show that for nonisolate
curves of the form~3.40!, h0

„C,N(2F)uC… does not vanish
for any value of the vector bundle moduli. Therefore, t
Pfaffian and hence the superpotential generated on s
curves will vanish identically. The proof goes as follows. T
vector spaceH0

„C,N(2F)uC… lies in the exact sequence

0→H0
„p* z,N~2F2C!…→H0

„p* z,N~2F !…

→H0
„C,N~2F !uC…→ . . . . ~3.47!

It is easy to see that

h0
„p* z,N~2F !…>h0

„p* z,N~2F2C!…, ~3.48!

with the equality holding if and only if

h0
„p* z,N~2F !…50. ~3.49!

On the other hand, it follows from the exact sequence~3.47!
that if

h0
„p* z,N~2F !….h0

„p* z,N~2F2C!…, ~3.50!

the dimension of the spaceH0
„C,N(2F)uC… cannot be zero

and, therefore, the Pfaffian will vanish. So, it is enough
show that for the curves of the form~3.40! the following
inequality is fulfilled:

h0
„p* z,N~2F !….0. ~3.51!

Slightly abusing notation, we will denote the curve
s•p* E and s•p* (S1kE) in the threefold byE and S
1kE, respectively. Using Eqs.~3.30!–~3.35! and~3.41!, one
can show that

N~2F !up* E5Op* E„6sup* E2~a28!F)…. ~3.52!

If we demand thata satisfy the positivity conditions~3.37!, it
follows from ~3.52! that condition~3.51! is fulfilled for

a56,7,8. ~3.53!

This means that, for these choices ofa, the superpotential of
a string wrapped on a nonisolated curve in the homolo
class ofE will vanish for every representative in this clas
Similarly, one finds that

N~2F !up* (S1kE)

5Op* (S1kE)„6sup* (S1kE)2@~a29!k13#F….

~3.54!

We see that condition~3.51! is fulfilled if and only if

~a29!k13<0, k.1. ~3.55!

Equation~3.55! is satisfied for
0-9
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a56,7. ~3.56!

We conclude that, in the examples specified by

n53, r 52, l5
3

2
, b22a53, a56,7

~3.57!

of the curves of type~3.39!, only the isolated curveS gives a
contribution to the superpotential. The contributions of
nonisolated curves vanish identically due to the vanishing
the Pfaffian. Even though these results have been pro
within the context of a specific example, they are, in fa
generic, occuring for different values ofn, r , l, a, andb.

Unfortunately, the lifts ofS, E, and S1kE are not the
only genus zero, holomorphic curves inX. There may exist
~perhaps infinitely many! such curves contained in multise
tions of X.3 These curves are regular inX, but project onto
singular curves in the base. They can also be divided
two types, curves that are isolated inX and those that are no
isolated. We will denote by$I x% the set of such isolated
curves, wherex indexes these curves. Similarly, let$Ny% be
the set of nonisolated curves indexed byy. To continue our
analysis, we must consider the Pfaffian on each of th
curves as well. Let us begin with the nonisolated curv
$Ny%. In general, we have no reason to believe that the Pf
ian must vanish on each of these curves, as it did on
nonisolated curvesE andS1kE in the zero section. There
fore, these nonisolated curves may contribute to the supe
tential. However, since each such curve is nonisolated,
must ‘‘integrate’’ over the moduli of the curve. To perform
such an ‘‘integration,’’ even to define it properly, is a difficu
open problem. However, it has been conjectured by Wit
@71# that every nonisolated curve gives zero contribution
the superpotential. In this paper, we will henceforth assu
that this conjecture is indeed correct and there is no fur
contribution to the superpotential arising from nonisola
curves$Ny%.

What about the isolated curves$I x%? Generically, we ex-
pect strings wrapped around each curveI x to produce a non-
vanishing superpotentialWnp@ I x#. The whole nonperturba
tive superpotential generated by membranes stretc
between the two orbifold planes can then be written as

Wnp5Wnp@S#1(
x

Wnp@ I x#. ~3.58!

We now want to make a very important point. For a gene
Calabi-Yau threefold of the type considered here, one
show that none of the curvesI x intersectsS. That is,

S•I x50 ~3.59!

for all values ofx. This leads to the following conclusion
That is, the superpotentialsWnp@S# and (xWnp@ I x# depend
on different vector bundle moduli. Letf i be the transition

3The authors are very grateful to R. Donagi and T. Pantev
discussions on this issue.
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moduli associated with the curveS. SinceS and allI x do not
intersect, they do not share transition moduli. Therefore,
sum (xWnp@ I x# does not depend onf i . Similarly, Wnp@S#
does not depend on the vector bundle moduli associated
any of the curvesI x . Let us now split the vector bundle
moduli Fu as

Fu5$f i ,x ĩ ,ca%, ~3.60!

wheref i are the transition moduli associated with the cur
S, x ĩ are the transition moduli associated with all the curv
I x , andca are the remaining moduli. Since we do not expe
that the whole second Chern class of the bundleV is local-
ized on the isolated curves, the modulif i andx ĩ do not span
the entire moduli space. We can now rewrite the superpo
tial ~3.58! as

Wnp5Wnp~f!1Wnp~x!, ~3.61!

where the vector bundle modulif i and x ĩ do not overlap.
Note thatWnp is independent of the modulica . This, in
particular, shows that the nonperturbative superpotentia
not zero if at least one of the terms is not zero. The te
Wnp(f) was calculated and found to be nonvanishing in
number of examples in Refs.@52,53#. For example, the Pfaff-
ian onS was computed to be~3.42! in our B5F2 example
above. This means that, in such examples, the nonpertu
tive superpotential is not zero provided the conjecture ab
the vanishing of the superpotential on nonisolated curve
indeed correct.

Let us now give the generalization of the above disc
sion to the case when a membrane stretches between o
the orbifold planes and a five-brane. As we have said, in
paper we will assume that there is a single five-brane in
bulk. The nonperturbative superpotential for such a me
brane configuration was calculated in Refs.@51,34#. The con-
tribution has a form very similar to~3.21!. When a mem-
brane begins on the observable brane and ends on the
brane wrapped on an isolated genus zero holomorphic c
z, the superpotential is

W5
(1)}Pfaff~D2!e2tY, ~3.62!

where D2 is the chiral Dirac operator associated with t
bundle V on the observable brane restricted toz and the
coefficient t is given in ~3.23!. When the membrane
stretches between the five-brane and the hidden brane
superpotential will be

W5
(2)}Pfaff~D 2

hidden!e2t(T2Y). ~3.63!

By Pfaff(D 2
hidden), we denote the Pfaffian of the Dirac op

erator constructed using the pullback toz of the hermitian
Yang-Mills connection on the hidden brane. If the vect
bundle on the hidden brane is trivial, as we are assumin
this paper, the Pfaffian is simply a constant, independen
moduli, and the corresponding contribution to the super
tential becomes

W5
(2)}e2t(T2Y). ~3.64!

r

0-10
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Before closing this section, we want to be a little mo
explicit about what we mean by the assumption that ther
a single five-brane in the bulk. For a trivial vector bundle
the hidden brane, the anomaly cancellation condition de
mines the five-brane class to be

W5c2~TX!2c2~V!. ~3.65!

It was shown in Ref.@54# that the moduli space of the ho
mology classW always contains an irreducible represen
tive curve. Physically, this corresponds to a single five-br
in the bulk space. In this paper, we always take the five-br
to be wrapped on an irreducible curve.

IV. MODULI STABILIZATION

A. Setting up a model

In this section, we will provide a stabilization of th
moduli considered above. Unfortunately, the Kahler pot
tials ~2.10! and ~2.16! and the superpotentials~3.21!, ~3.61!,
~3.62!, and~3.64! are very complicated when the number
the (1,1) moduliTI and the vector bundle moduli (f i ,x ĩ ) is
large. For the case of Calabi-Yau threefolds elliptically
bered over the Hirzebruch surfaces, the number of thT
moduli is three and the number of the vector bundle mod
is of order 100 or larger@62#. The number of transition
moduli associated with the curveS is also quite large, of
order ten@62#. Therefore, to give an explicit analytic solu
tion, we have to simplify the model without losing its esse
tial properties. Our first step in this direction will be to a
sume that we have only one (1,1) modulus. We can do
without loss of generality since, as will become clear in o
analysis, any number of theT moduli can be stabilized by th
same mechanism. Let us emphasize that the reason for d
this is purely technical. We just want to simplify the equ
tions. We will comment on this further at the appropria
place. Henceforth, we will take only oneT modulus, which is
associated with the size of the eleventh dimension. We n
have to make some simplifications concerning the vec
bundle moduli. In the preceding section, we split the vec
bundle moduliFu into three categories, the transition modu
f i , associated with the curveS, the transition modulix ĩ ,
associated with the curves$I x%, and the remaining modul
ca . Clearly, the equations of motion for thef i- and x ĩ -
moduli are very similar. Therefore, we may assume that th
are nox Ĩ moduli at all without any loss of generality. If w
manage to stabilize thef i moduli, the modulix ĩ will be
stabilized by precisely the same procedure. Ignoring thx
moduli does not produce conceptual changes in the struc
of the T and Y superpotentials either. Specifically, the ex
tence of thex terms in~3.61!, in addition to the first term,
can at most produce a racetrack potential energy for thT
and Y moduli. This would only strengthen the vacuum s
bility. However, we must continue to keep theca moduli,
since they do not appear in any of the superpotentials
cussed in the preceding section and ignoring them can
ceptually alter the potential energy. As a result, we will a
sume thatf i andca are all of the vector bundle moduli. W
now want to introduce simplifications concerning the num
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of f i moduli. In all of the examples studied in Refs.@52,53#,
it was found that the number of transition moduli associa
with the curveS is large and that the corresponding Pfaffi
is a complicated homogeneous polynomial of high degr
Again, for simplicity, we will pretend that there is only on
f modulus. From the discussion of its stabilization, it will b
obvious that any number off moduli can be stabilized by
the same mechanism. Therefore, we can restrict ourselve
a singlef modulus without any loss of generality. To con
clude, we consider a model containing the following modu
We have oneT modulus geometrically corresponding to th
separation of the orbifold planes, theS modulus correspond
ing to the Calabi-Yau volume,h1,2 moduli Za whose precise
number is irrelevant, one transition vector bundle modu
f, the remaining vector bundle modulica , whose precise
number is also irrelevant, and one five-brane modulusY. We
emphasize, once again, that these simplifications are m
for purely technical reasons to simplify the equations. A
number of theT, f, and x moduli can be stabilized by a
similar method.

Let us write the simplified Kahler potential and the sup
potential relevant for our model. We have

K5KS,T1KZ1K51kKbundle. ~4.1!

In this expression,KS,T is given by@see Eq.~2.10!#

KS,T52M Pl
2 ln~S1S̄!23M Pl

2 ~T1T̄!, ~4.2!

where Eq.~2.4! has been used. In order to ignore the cro
term ~2.36!, we must always work in a region of modu
space where

uIm Tu!1. ~4.3!

The h2,1 moduli Kahler potentialKZ is given in ~2.11! by

KZ52M Pl
2 lnS 2 i E

X
V`V̄ D . ~4.4!

The five-brane Kahler potentialK5 ~2.16! now becomes

K552M Pl
2 t5

~Y1Ȳ!2

~S1S̄!~T1T̄!
. ~4.5!

By definition @see Eq.~2.12!#

0<ReY<ReT, ~4.6!

since the five-brane must be between the orbifold planes.
vector bundle moduli Kahler potential is not known expli
itly. However, from our discussion at the end of Sec. II, w
concluded thatKbundle can be split as follows:

Kbundle5Kbundle~f!1Kbundle~ca!. ~4.7!

We also know that for small values off, Kbundle must di-
verge. For concreteness, whenf is sufficiently less than one
we takeKbundle(f) to be

Kbundle~f!52p ln~f1f̄ !, ~4.8!
0-11
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wherep is some dimensionless, positive constant. Express
~4.8! is the function that diverges most softly at zero. Ho
ever, one can chooseKbundle(f) to be any other function
that diverges at zero, for example, an inverse polynomia
f. We can show thatf can be stabilized for any such func
tions.

Let us now summarize the superpotential. The total su
potential is given by

W5Wf1Wg1Wnp1W5
(1)1W5

(2) . ~4.9!

Here,Wf is the flux-induced superpotential@see Eq.~3.7!#

Wf5M Pl
3 h1E

X
H̃`Ṽ, ~4.10!

where

h1;231028. ~4.11!

Wg is the superpotential induced by the gaugino conden
tion on the hidden wall. In our model, it follows from~3.11!
that

Wg5M pl
3 h2expS 2eS1ea (2)T2eb

Y2

T2D , ~4.12!

where@see Eqs.~3.12!, ~3.16!, and~3.18!#

h2;1026, a (2);
v

vCY
1/3

, b;p
v5

vCY
1/3

. ~4.13!

According to our discussion in the preceding section,
make sure that the combination

ReS S2a (2)T1b
Y2

T2D ~4.14!

is positive, we have to takea (2) to be less than one. Th
nonperturbative superpotentialWnp @Eq. ~3.61!# is now given
by

Wnp5c1M Pl
3 fd11e2tT, ~4.15!

where we have restored its natural scale andc1 is some di-
mensionless coefficient of order unity. The Pfaffian, wh
must be a homogeneous polynomial, is represented by
factor fd11. We will assume thatd11 is sufficiently large.
This is naturally the case in explicit examples@52,53#.

To discuss the five-brane superpotentials, we must
specify the holomorphic curve over which the five-brane
wrapped. As emphasized above, that curve can alway
chosen to be irreducible corresponding to a single five-bra
However, in general the homology classW of the curve can
contain both horizontal and components, involvingS, E and
the fiberF, respectively. We find it easiest to choseW to be
simply at least one copy of the curveS. This can always be
accomplished by adjusting the bundleV on the observable
brane. Henceforth, in this paper, we will assume that thi
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the case. The more general case is more difficult to ana
and will be presented elsewhere. The five-brane nonpe
bative superpotentialsW5

(1) andW5
(2) @Eqs.~3.62!–~3.64!# are

then given by

W5
(1)5c2M Pl

3 fd11e2tY ~4.16!

and

W5
(2)5c3M Pl

3 e2t(T2Y), ~4.17!

with c2 and c3 being dimensionless coefficients of ord
unity. In Eq. ~4.17!, we have assumed that the bundle
trivial on the hidden brane. Note that the Pfaffian inW5

(1) is
identical to the one in~4.15! since both arise from the Dira
operator restricted to the curveS.

B. Moduli stabilization

In this section, we will show that the system of the equ
tions

Dall f ieldsW50, ~4.18!

whereDW is the Kahler covariant derivative

DW5]W1
1

M Pl
2 ~]K !W, ~4.19!

has a solution in the correct phenomenological range for
fields. In other words, we will show that all moduli describe
earlier can be stabilized in an AdS vacuum.

We start with the system of equations

Dca
W50. ~4.20!

Since the superpotentialW does not depend onca , the
above equations are reduced to

]Kbundle~c!

]ca
50, ~4.21!

where Eq.~4.7! has been used. We will now argue that th
equation always has a solution. From Sec. II, we know t
as c goes to positive infinity along either its real or imag
nary directions, the Kahler potentialKbundle grows. On the
other hand, asc goes to zero,Kbundle can either stay regula
or diverge.Kbundle will diverge if the locusc50 corre-
sponds to a torsion-free sheaf supported on a holomor
curve different from that associated with the vanishing off.
If Kbundle diverges at zero, then Eq.~4.21! must have a so-
lution for positive c corresponding to a minimum of th
function Kbundle. If Kbundle is a regular function ofc at
zero, we can ask what happens asc grows in its negative
real or imaginary directions. From Eqs.~2.42! and~2.43! and
the properties of the partition of unity, it follows thatKbundle
must also grow in these negative directions. Therefo
again,Kbundle must have a minimum. Thus the properties
CPN guarantee the existence of a solution to Eq.~4.21!.
0-12
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As the second step, consider the equations involving
Kahler covariant derivative with respect to the compl
structure moduliZa ,

DZa
W50, ~4.22!

which is equivalent to

]Za
Wf1

1

M Pl
2 ~]Za

KZ!W50. ~4.23!

Let us make an assumption that the absolute value ofWf is
sufficiently larger than all other contributions to the superp
tential near the vacuum, that is

uWf u@uWgu,uWnpu,uW5
(1)u,uW5

(2)u. ~4.24!

Later, we will see that our solution is completely consiste
with this assumption. Then Eq.~4.22! becomes

]Za
Wf1

1

M Pl
2 ~]Za

KZ!Wf50. ~4.25!

All terms in this equation depend only on the complex str
ture moduli. It is not known how to find eitherKZ or Wf for
complicated Calabi-Yau geometries. BothKZ andWf are ex-
pected to be complicated functions ofZa . Nevertheless,
there is evidence that this system of equations has a
trivial solution. First, the number of equations is equal to
number of the unknowns, so one can expect a solution
second piece of evidence comes from Ref.@7#, where type
IIB flux compactifications on the space of rather simple g
ometry T6/Z2 were considered. In that paper, it was sho
that an equation analogous to~4.25! indeed has a solution
fixing all the moduliZa . Thus, we simply assume that Eq
~4.25! fix all the complex structure moduliZa and that the
value of Wf at the minimum is nonzero. Exactly the sam
assumption was crucial for the moduli stabilization in t
type IIB theory discussed in Ref.@3#.

Before moving on to the other equations, let us introdu
some notation. Let

T5T11 iT2 , S5S11 iS2 , Y5Y11Y2 , f5reiu.

~4.26!

Also, write the value ofWf in the minimum as

Wf5uWf uei f , ~4.27!

that is, we write the complex numberWf in terms of its
absolute value and its phase. Now consider the equation

DSW50. ~4.28!

By using Eqs.~4.2! and ~4.12!, we obtain

~2eS1!Wg52Wf . ~4.29!
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This complex equation is equivalent to two real equatio
one relating the phases of the left- and right-hand sides,
other relating the absolute values. The phase equation
follows:

2eS21ea (2)T22eb ImS Y2

T2D 5 f 1p~2n111!,

~4.30!

where n1 is any integer. Here we have used the notat
introduced in~4.26! and~4.27!. The absolute value equation
on the other hand, is

~2eS1!uWgu5uWf u. ~4.31!

From this equation we obtain a solution forS1 as a function
of T andY. Taking, for simplicity,

ReS a (2)T2b
Y2

T2D !S1 ~4.32!

we find

~2eS1!e2eS15
uWf u
h2

. ~4.33!

This equation provides a solution forS1. This mechanism is
similar to that considered in Ref.@3#. The scale that controls
Wf was found in Sec. III to beh1;231028, whereash2
was found to beh2;1026. Therefore, we find that

~eS1!e2eS1;
h1

h2
;1022. ~4.34!

From here we obtain

eS1'7.5. ~4.35!

Recalling from~3.14! that for theE8 gauge groupe is of
order 5, it follows that

S1'1.5, ~4.36!

a phenomenologically accepted solution forS1. We also see
from ~4.33! that, by turning on a larger flux, we can redu
the value ofS1 to make it closer to one. It is clear that on
can find a solution forS1 of order unity for generic values o

ReS a (2)T2b
Y2

T2D ~4.37!

less thanS1. We should point out that, in principle, the ab
solute value of the flux superpotential in the minimum can
less, and even much less~in units of M Pl

3 ), than the order of
h1. Then there are two possibilities. First, we can turn on
larger amount of the flux, thus increasinguWf u, to keepeS1
at the same value as in~4.35!, that is, of order ten. The othe
possibility is that we can put a nontrivial bundle on the h
den brane. It will break the low-energy gauge group on
hidden wall fromE8 down to some proper subgroup. All thi
0-13
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will reduce b0 and, therefore, from~3.13! we see that this
will increasee. Hence, we still can solve Eq.~4.33! and find
eS1;10. Note that, sinceeS1 is of order ten, we see from
~4.31! that uWf u@uWgu. This is in agreement with the rel
evant part of assumption~4.24! which we made to justify
~4.25!.

Now let us consider the equation

DfW50. ~4.38!

By using Eqs.~4.7!, ~4.8!, ~4.15!, ~4.16!, and~4.24!, we ob-
tain the following expression:

~d11!fd~c1e2tT1c2e2tY!5
pk

f1f̄
Wf . ~4.39!

Sincet given in ~3.23! is always much larger than one, th
first term on the left-hand side of~4.39! is much smaller than
the second as long asY1,T1. We will assume here that thi
is the case, justifying this assumption later on. Then,
proximately, we have

W5
(1)e2 iu5

pk

2~d11!cosu
Wf , ~4.40!

where we have used~4.16! and ~4.26!. As before, this com-
plex equation is equivalent to two real equations, one re
ing the phases ofW5

1 andWf and one relating their absolut
values. The phase equation reads

du2tY25 f 12pn2 , ~4.41!

wheren2 is any integer. The equation for the absolute va
is

uW5
(1)u5

pk

2~d11!cosu
uWf u. ~4.42!

Equations ~4.41! and ~4.42! stabilize the vector bundle
moduli r andu provided the five-brane moduliY1 andY2 are
stabilized. Note that, sincek;1025 and (d11) is large, we
haveuW5

(1)u!uWf u for generic values ofc2 and cosu. Simi-
larly, since the first term in~4.39! is proportional toWnp , it
follows that uWnpu!uWf u. This is consistent with our as
sumption~4.24!. At this point, we would like to discuss wha
would happen if we took an arbitrary number, sayM, of f
moduli. Equations~4.41! and~4.42! would be two sets ofM
equations, one forM phasesu i and one forM radii r i . For
the phases, we would haveM equations of the type~4.41!
that would determine allu i ’s as functions ofY2. Similarly,
we would haveM inhomogeneous equations forr i of the
type~4.42!. Clearly, for a generic Pfaffian one expects to fi
a solution. Furthermore, a generic Kahler poten
Kbundle(f) would not drastically modify Eq.~4.42!. It would
still be an inhomogeneous equation forr ~or r i ’s in case there
are several! and one still expects a solution. It is also cle
that the omitted modulix ĩ can be stabilized by the sam
mechanism.

Let us move on to the equation
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DTW50. ~4.43!

By using Eqs.~4.2!, ~4.5!, ~4.15!–~4.17!, and~4.24! and the
fact that (Y1 /T1)2 is sufficiently less than one, we obtain

2tT1W5
(2)523Wf . ~4.44!

This equation is very similar to Eq.~4.29!. Relating the
phases of the left- and right-hand sides of~4.44! gives

2tT21tY25 f 1p~2n311!, ~4.45!

wheren3 is any integer. Relating the absolute value yield

2tT1uW5
(2)u53uWf u, ~4.46!

or, more precisely,

2c3tT1e2t(T12Y1)53Wf . ~4.47!

Since we taket to be much greater than one anduWf u is
much less than one, we can always find a solution forT1 in
the correct phenomenological range of order one by adj
ing the parametert, providedY1 is stabilized. It is clear that
a similar consideration would hold in the case of severaT
moduli, though the equations would be more complicat
Note that, sincet@1, it follows that uWf u@uW5

(1)u. There-
fore, all conditions in assumption~4.24! are satisfied.

The last equation to consider is

DYW50. ~4.48!

By using Eqs.~4.5!, ~4.12!, ~4.16!, ~4.17!, ~4.24!, ~4.29!,
~4.31!, ~4.44!, and~4.46!, we get the following equation:

bY

S1T2
2

3

2T1
12t5

Y1

T1S1
50. ~4.49!

Since, to justify dropping the cross term~2.36!, we are look-
ing for a solution withuT2u!1, we have

Y

T2
'

Y11 iY2

T1
2

. ~4.50!

Then the imaginary part of Eq.~4.49! becomes

Y2'0. ~4.51!

This provides the stabilization ofY2. The real part of Eq.
~4.49! reads

bY1

S1T1
2

3

2
12t5

Y1

S1
50. ~4.52!

From here we get

Y15
3S1

2b/T114t5
. ~4.53!

This is the solution forY1, provided it satisfies

Y1,T1 , ~4.54!
0-14
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VACUUM STABILITY IN HETEROTIC M THEORY PHYSICAL REVIEW D 69, 086010 ~2004!
to justify our previous assumption. Since bothb andt5 are
of the same order of magnitude@from Eqs.~2.20! and~3.18!
we see that they are both of orderv5 /vCY

1/3], ~4.54! leads to
the following condition onb:

b .
3S1

214T1
. ~4.55!

This is the condition on the coefficientb in order to make
sure thatY1 is stabilized in the correct range. Taking, f
example,

S1;1, T1;1, ~4.56!

we obtain

b.0.5, ~4.57!

which is a rather mild condition sinceb is generically of
order one. If the condition~4.55! is not satisfied then, at leas
in the low-energy field theory approximation, the five-bra
is pushed all the way to the hidden brane. Let us make s
that we have indeed stabilized the absolute value of
imaginary partT2 at a value much less than one. From E
~4.45! and ~4.51!, we get

T252
f 1p~2n311!

t
. ~4.58!

Sincet is much greater than one, we can use our freedom
adjust the integern3 to makeuT2u!1, which justifies drop-
ping the cross term~2.36! in the Kahler potential. Since th
imaginary part of the five-brane modulusY2 was found in
~4.51! to be approximately zero, we can write the soluti
~4.41! and~4.42! for the phaseu and the absolute valuer as
follows:

u5
f 12pn2

d
~4.59!

and

r 5S pkuWf uetY1

2~d11!c2cosu D 1/d

. ~4.60!

Similarly, the imaginary part of theS modulus can be easily
found from Eq.~4.30! to be

S2;2
f 12pn1

e
, ~4.61!

where we have used Eq.~4.51! and the fact thatuT2u is much
less than one. Thus, when~4.55! is satisfied, we have found
a stable solution for all of the heterotic M theory moduli.

Let us summarize our solution. In this section, we foun
stable AdS minimum for all heterotic M theory modu
namely, the complex structure moduliZa , the dilatonS, the
h1,1 modulusT, the vector bundle modulif andca , and the
five-brane modulusY. The complex structure moduli ar
fixed by the fluxes. The corresponding equations have
standard form~4.25!. The real part of the dilaton,S1, is
08601
re
e
.

to

a

e

obtained by solving Eq.~4.33!. As explained below Eq.
~4.33!, one can stabilizeS1 near its phenomenological valu
of order one. The imaginary part ofS is given by Eq.~4.61!.
The real part of theT modulus is stabilized in a similar wa
by solving Eq.~4.47! together with Eq.~4.53! for the five-
brane modulusY1. Clearly, one can stabilizeT1 at a value
near its phenomenological value of order one. For exam
if we take

c3'1, S'1, b'0.8, ~4.62!

from Eqs.~2.20!, ~3.18!, ~3.25!, ~4.47!, and~4.53! we find

T1'0.7, Y1'0.5. ~4.63!

The imaginary parts of both theT modulus and theY modu-
lus are stabilized at values close to zero. The phase and
absolute value of the vector bundle modulusf are given in
Eqs. ~4.59! and ~4.60!, respectively. The vector bundl
moduli ca are stabilized by the properties ofCPN, as ex-
plained below Eq.~4.21!. Remarkably, the only constrain
that we have to impose on the various coefficients is given
Eq. ~4.55!, which is easily satisfied.

Finally, it is straightforward to write the value of the po
tential energy at the minimum. It is given by the equation

Vmin523eK/M Pl
2 uWu2

M Pl
2

;2
uWf u2

M Pl
2

, ~4.64!

where Eq.~4.24! has been used. The size of the potent
energy is determined by the value of the flux-induced sup
potential. Since the scale that controlsWf is of order 1028

~in units of M Pl
3 ), we expectVmin to be

Vmin;210216M Pl
4 ;21060 GeV4. ~4.65!

Clearly, the masses of the excitations around this minim
are also determined by the fluxes.

V. CONCLUSION

In this paper, we have shown that all moduli of strong
coupled heterotic string theory can be stabilized w
vacuum expectation values in a phenomenologically
cepted range. This vacuum preservesN51 supersymmetry
in the moduli sector, but has a rather deep negative cos
logical constant whose scale is set by the compactifica
mass. Supersymmetry is, however, softly broken in the gr
ity and matter sectors at the TeV scale by the gaugino c
densate. Our result is the heterotic string analog of the su
symmetry preserving part of the stabilization procedu
presented in the type IIB context in Ref.@3#. There are, how-
ever, a number of new, nontrivial elements in the hetero
discussion. These include the vector bundle moduli and t
nonperturbative superpotentials, the gaugino condensate
perpotential with threshold corrections, and the inclusion o
bulk five-brane and its nonperturbative dynamics.
0-15
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It is natural to ask whether, by appropriate modification
our heterotic theory, the value of the potential energy at
local minimum can be lifted from its large, negative value
a small, positive cosmological constant of the order, say
dark energy. This was accomplished in the type IIB cont
in Ref. @3# by adding anti-D-branes. It would be interestin
to try to find a heterotic analog of this mechanism involvi
anti-M-five-branes. Alternatively, one could try to use t
mechanisms recently proposed in Ref.@72# to lift the vacuum
to a positive value. We will discuss this elsewhere.
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