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Spinning strings in AdS;X S°: New integrable system relations
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A general class of rotating closed string solutions in AdS° is shown to be described by a Neumann-
Rosochatius one-dimensional integrable system. The latter represents an oscillator on a sphere or a hyperboloid
with an additional “centrifugal” potential. We expect that the reduction of the £4S° sigma model to the
Neumann-Rosochatius system should have further generalizations and should be useful for uncovering new
relations between integrable structures on two sides of the AdS/conformal field i@ty duality. We find,
in particular, new circular rotating string solutions with two Ad&nd three % spins. As in other recently
discussed examples, the leading large-spin correction to the classical energy turns out to be proportional to the
square of the string tension or the 't Hooft coupling suggesting that it can be matched onto the one-loop
anomalous dimensions of the corresponding “long” operators on the super-Yang-Mills side of the AdS/CFT

duality.
DOI: 10.1103/PhysRevD.69.086009 PACS nuni®erl1.25.Tq, 02.30.1k, 11.2#d
I. INTRODUCTION AND SUMMARY with some natural assumptions about the density distribution

of Bethe roots the explicit solutions can be found. Remark-
Integrability of the spin chain Hamiltonian representing ably, the Bethe solutions obtained in the thermodynamic
the planar one-loop dilatation operator/8t=4 super Yang- limit turn out to be related to semiclassical string configura-
Mills theory [1-3] has recently made possible, following a tions in a precise way.
proposal in[4,5], a number of remarkable and striking tests  In general, one can classify strings moving oh \@th
of AdS conformal field theory(CFT) duality [6—-11]. This  three “R charges’[SQ(6) sping defining the highest weight
generalizes the near Bogomol'nyi-Prasad-Sommerfieldtate (,,J,,J5) of an SA6) representation. For a simpler
(BPS correspondence ¢fL.2] to non-BPS cases. case of two nonvanishing spind;(J,) the string evolution
The AdS/CFT correspondence predicts that the energy qiquations are solved in terms of elliptic functions; the corre-
a given physical string statén global AdS; coordinates  sponding string configurations can have foldi@for circular
should match the scaling dimension of the correspondln?4,8] profiles, giving rise to two different expressions for the
operator in gauge theory. While the full energy spectrum Ospace-time energy. On the gauge theory side, the relevant

. . 5 . .
tr;e'tquanttum strllr;g in ABG%E IS hafg tq dettﬁrmme,.slomef aSethe solutions and the associated scaling dimensions have
et oo s v Been found {69 and shown (o agee wih ther sting

9 9 o 9 counterparts for both foldeld,7,9] and circular{6,8,9 type

quantum number¢such as angular momenfg in S°), one configurations. Other surprising examples of a perfect agree-
finds that the energy of the string solution is given by its 9 ' . prising pies b -ag
ent between string energies and scaling dimensions of

classical expression, i.e., quantum sigma model correction® . . . )
appear to be suppressEi] gauge theory operators inclu@igl] a simple circular string

On the gauge theory side, tiiene-loop scaling dimen- solution with three spin§4] and a pulsating string solution
sions of gauge-invariant composite operators can be founktS) ) )
by solving the eigenvalue problem for the Hamiltonian of an  Even more remarkably, in the recent wgdQ] the entire
associated spin chain. This is achieved by means of algebrai€ethe resolventcorresponding either to the circular or to the
Bethe ansatz techniques. In general, the Bethe ansatz leadsf@ded string type thermodynamic density distributipnss
a complicated system of algebraic equations. However, in theeproduced from the classical string sigma model. This
thermodynamic limit(of large quantum numbers or “long” agreement goes beyond comparing just the string energies
operatorg the algebraic equations turn into integral ones andvith the scaling dimensions: it involves matching thénite
towers of commuting conserved charges on the gauge and
string sides of the AAS/CFT correspondence. In fact, the Be-
*On leave of absence from Steklov Mathematical Institute,the resolvent is nothing else but a generating function of

Gubkin Street 8, 117966, Moscow, Russia. local conserved commuting charges in string theory properly
TAlso at Imperial College London and Lebedev Institute, Moscow,restricted to the leadingO(\) or “one-loop”] level.
Russia. The matching of higher local commuting string charges
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[10]" and recent advances in study of integrability of thethree $ spins. In Sec. IIC we shall mention that a “2D-
dilatation operator at higher loops =4 super Yang-Mills  dual” version of the rotating string ansatwith roles of r
theory[3,30] (and in its $ reduced matrix model version and o interchangefldescribes a general pulsating string so-
[31]) provide strong support that the same integrable structution with radii oscillating in time which is thus also de-
ture should be underlying the two sides of the duality. scribed by an NR integrable modédome special cases of
Still, our understanding of the gauge/string duality, evenpulsating solutions were previously discussed in
in the “semiclassical”(large quantum numbgrsector of  [11,13,15,21,3). In Sec. Il D we shall clarify how the inte-
states, is far from complete. More detailed analysis of differgrability of the NR system follows from its relation to the
ent physical configurations in both gauge and string theoriefrtegrable @6) sigma model by deriving its Lax representa-
is required to elucidate how the duality works. While recenttion. We shall also explain how higher commuting charges

paperd9—-11,27 shed some light on how the integrability of -5 pe computed from the sigma-model monodromy func-
the AdS;xX S° string theory is related to that of the planar tion.

SYM theory, many details are missing.
In view of the general problem of establishing correspon-

dence between various integrable subsectors of string a

gauge theories it is of interest to obtain a systematic pictura

of reductions of the two-dimensional integrable(4¢2)

X O(6) sigma model describing propagation of the classica

string in the Ad$xS® space-time to various one- . | .
dimensional integrable models. [8] we have shown that spectrum of quadratic fluctuations near these circular solu-

for a natural rotating string ansatz the AGSS® string tions (extending and simplifying the discussion[) for the

sigma model reduces to an integrable Neumann mEg2| special solutions of4]). We shall determine the stability
describing an oscillator on a 2-sphere. conditions and mention some straightforward applications.

The aim of the present paper is to make further progress " Sec. IV we shall study more general solutions of the
in this direction. We will consider a more general integrableNR System with a nontrivial dependence on the world-sheet
subsector in string theory which arises from a rotating stringco0rdinates. We shall consider, in particular, a two-spin
ansatz extending the one fB]. In this case the 2D sigma solution Whlch is expressed in terms of t_he elliptic functions.
model reduces to the Neumann-Rosochathig) [33] inte- Th_e resulting system of equations relatmg_ energy an_d two-
grable system describing a particle on a sphere in th&Pins turns qut. to. be more myo_lved that in the previously
Ei(WizfiZJrvizfi_z) potential(in the previous casf8] we had discussed eII|pt|¢S|ne—Gord9mI|m|t of the Neu'mann mpdel
v;=0). While, as in8], the general solutions of this system [7-9], but we expect t“hat It m'%ht. b.e posslble fo directly
are given by theta-functions on a genus 2 hyperelliptic curvdnatch an appropriate one-loop” limit Qf this system onto
its new feature is the existence of a very simple new class o?e correspom_jmg Bethe ansatz equations on the SYM side
solutions corresponding to circular strings with constant radii as was dqne in the Neumann model pasEGLS])._ .
ri(c)=const. These solutions generalize the ones4if Finally, in Sec. V we shall generahz_e the dlscuss!on of
(which had two equal spifsto the case when all 23 Secs. Il and Il to the case when the_ strl_ng can rotate in both
AdS;x S° spins may be different. The corresponding energyo‘dSS and $. Here we get a combination of the two NR
has a very simple dependence on the spins and winding nurﬁyst.ems(an AdS .and $ Qne couplgd by the \ﬁr_asoro' con-
bers. Understanding its SYM scaling dimension counterparftramts' We again cpn5|der the S'mpleSt solution with con-
should help, in particular, to clarify the issue of how the Stant radii parametrized by+23 spins §,,J;) and 2+3

winding numbers of circular strings are reflected in the BethdVinding numbers. If the string rotates only in Agde cor-
root distributions(cf. [6,8,11). responding energy does not have a regular large-spin expan-

on(Sec. VA, but it does if there is at least one large spin
S° (Sec. VB. For example, the simples8(J) string so-
lution which is a circle in both AdSand S is stable, and it
should be possible to match the leading lalgmrrection to
its energy with a particular anomalous dimension on the
SYM side by identifying the corresponding distribution of
Bethe roots in the associated XXX, spin chain2] (as was
done for other folded and circulaS(J) string solutions in

In Sec. Ill we shall study a very simple special class of
R solutions on % which has a similarity with rotating
ring solutions in flat space and generalizes the circular
-spin and 3-spin rotating string solutions[#)]. As will be
Fhown in Sec. Il B, the corresponding energy has a regular
arge-spin expansion in/J?. In Sec. Il C we shall find the

Let us now summarize the contents of the paper. In sec
[l Awe shall present the generalized rotating string ansatz fo
a closed string fixed at the origin of A¢d@nd rotating in 3
orthogonal planes inSand explain the reduction of the(6)
invariant sigma model to the NR system for the 3 radia
directions of the string. In Sec. 11B we will list the corre-
sponding integrals of motion and the Virasoro constraint
allowing one to express the Ad&nergy as a function of the

[9D).
The integrability of the @) invariant sigma models was dis-
cussed, e.g., ifl16—18. Classical solutions for strings in constant Il. REDUCTION OF O (6) SIGMA-MODEL
curvature spaces were studied[l9—27 and refs. therdsee also TO THE NEUMANN-ROSOCHATIUS SYSTEM

[23,24 for other similar solutions in AdS<S® and its generaliza-
tions). More recent AdS/CFT motivated discussions concerning in-
tegrability, higher local and nonlocal charges and Yangian structures Here we shall generalize the rotation ansatz8hwhich

of related sigma models are [85-29. allowed us to reduce the classical string sigma-

A. Generalized rotating string ansatz
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model equations to those of a 1D integrable model. That wilmuting integrals of motior(sping J;. Since we are inter-
lead to new interesting simple classes of rotating string soested in a periodic motion with; # 0 it is natural to choose

lutions. the following ansatz foiXy, :
Let us consider the bosonic part of the classical closed ) .
string propagating in the AdX S° space-time. The world- X1=X1+iXp=2y(0)e™17,

sheet action in the conformal gauge is ) .
XZEX3+|X4:ZZ(U)eIWZT,

0y (AdSs) ; i
l=— yp drda[ G, ™ (X) dx"?x" X3=Xg+iXg=23(0)e"3". 2.7
() b -auq In contrast to our earlier work8] here we shall not assume
+Gpq (¥)day" 7y, thatz are real, i.e. in general
R? ze=ri(0)e ), k=123 2.8
\/XE_,. (2.1) k k(o-) 1 149 ( )
o

In order to find the relevant closed string solutions we need

It is convenient to represent E(R.1) as an action for the &S0 t0 impose the periodicity conditions & or z:

0O(6)xS0O(4,2) sigma-modelve follow the notation of4]) r(o+2m)=r(0)
I I 1
A —
|= gf drdo(LstLags), (2.2 ai(o+2m)=a;+2mm;,
mi=0,i1,i2, s
where (2.9

1 a 1 Thusr are real periodic functions ef, while real phaseg,
Ls=—50aXmd"Xu+ 5 A(XuXu—1), (2.3 are periodic only up to 2m, shift.
Comparing Eq(2.7) to Eq.(2.5 we conclude that for this
general “complex” ansatz the angles depend on bothr

1
Lads= — 5 NIaYMI2Yy ando,

B i =W;7+ «a;(0o). (2.10

+ (77MNYMYN+ 1) (24)

N| -

The integeram; that will label different solutions thus play

the role of “winding numbers” in the linear isometry direc-
HereXy, M=1,....6 andYy, M=0,....,5 are the em- {jons ¢, .

bedding coordinates dR® with the Euclidean metric ifg As a consequence N%/I: 1, r, must lie on a two-sphere:
and with pyn=(—1,+1,+1,+1,+1,—1) in Lagg respec-

tively. A and A are the Lagrange multipliers. The action 3 )

(2.2) is to be supplemented with the usual conformal gauge ;1 ri=1. (2.11

constraints. The embedding coordinates of AdS® can be
parametrized in terms of angles of Ag8nd S as in[4,8]  The space-time enerdy of the string[related to the genera-
tor of a compact S@) “05” subgroup of SQ4,2)] here is

X1+iX,=siny cosye'¢1, simply
X3+iX,=siny sinye ¥2, E= k= \\E (2.12
Xs+iXg=cosye's, (2.5 The spinsl;=J;,, J,=J34, J3=Jss forming a Cartan sub-

. algebra of S@®) are
Y,+iY,=sinhp singe'?1,

2ndo
: J=VAw; [ o=ri(e)=\\T, 2.1
Y;+iY,=sinhp cosbe' ¥z, = 'fo 27 f(o)= VN (213
Ys+iYo=coshpe'. (2.6)  and thus satisfy
In this section we will be discussing the case when the string % Ji 1 51
is located at the center of AgSand rotating in & i.e. is “w (2.14

trivially embedded in AdSasYs+iY,=e', with the global

time of AdS; beingt= «7 and withY,, ...,Y,=0. As discussed if4], to have a consistent semiclassical string
The S metric has three commuting translational isome-state interpretation of these configurations one should look

tries in ¢; in Egs.(2.5 which give rise to three global com- for solutions for which all other components of the D
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angular momentum tensdg, vanish. This is automatically Equations for the angles; can be integrated once

the case if allw; are different{8], but are to be checked in

other cases. The nonvanishing Cartan components v

(31,J,,J3) would specify in quantum theory the highest ai'Irj, vj=const, (2.22

weight state of the S@) irrep. with the Dynkin label$ J, :

—J3,J,—J,,J,+J3] [these are the Dynkin labels describing ) ) o )

the SQ6) representation content of the corresponding comWherev; are three integrals of motion. Eliminating with

posite Operator in the dual gauge the:bry the help Of Eq(222) we note that the equatlonS Of motion
The Virasoro constraints that need to be imposed on #0r the remaining three real radial coordinatesan be de-

sigma model solution of Eq(2.3) are (dot and prime are rived from the following effective Lagrangian:

derivatives overr and o)

13 v? 1 3
3 12_ 2202 ! 2
o L=—=> [ r/2=wir?——|—=A Er-—l).
k2= XX+ XXy =2, (r/2+r2a/2+wird), 2i51 ( o r?) 2 (i—l '
=1 (2.23
(2.19
3 When the new integration constanis vanish, i.e.a; are
0=XMX,(,,=2_E Wiriza’i/ . (2.16 constani, we go back to the previously studjé&d example
i=1 of then=3 Neumann model. For nonzeog the Lagrangian
(2.23 describes the so called Neumann-RosochatiNiR)
B. Integrals of motion and constraints integrable systentsee, e.g.[33])._ Its integra_lbility follows
] ) already from the fact that it is a special case of the
In general, starting with 6-dimensional Neumann system.
o Finding the integrals of the “radial” systenf2.23 is
. =r. igi(7,0)
Xi(mo)=ri(r,0)e (2.17 straightforward using the relation to the Neumann model: the
we get from Eq.(2.3) the Lagrangian n=6 Neumann system with coordinateg has, in general,
- the following six integrals of motion:
3
I r2_ 12 2,°2 12 6 , ,
Ls=5 Zl[ri ro+riler—ei 9l oyt S (XMX{— XnX1g) 2
. M MEN W —wg
+ 1A > ri-1 (2.18
2 =1 ! ' ’ 6
. > Fu=1. (2.24
One can easily check that the ansatz M=1
ri=ri(o), ¢i=wirtai(o) (2.19 However, in our case there are equalities between frequen-

cies (W,=w,,w,=ws,W3=Wg) SO one should be careful to
avoid singularities. The integrals of the Neumann-
Rosochatius model are obtained as the following combina-
tionsl;=F;+F;,3 (i=1,2,3) in which singular terms can-
cel. Explicitly, we find[using Eq.(2.22)]

is indeed consistent with the equations of motion.

Substituting the ansat2.19 or Eq. (2.7) into the SA6)
Lagrangian(2.3) we get the following effective 1D “me-
chanical” system for a particle on a 5D sphdme change
the sign ofL since nowo plays the role of 1D time

3 3 8 1 2 2
L—EZ (Z'Z’*—wzz-z*)—EA 2 zzF—1 |:f-2+2 — 3 (r-r-'—r'f-')zﬂLv—lf-erv—Jf-2
_2i=1 i & i 44 2 i=l|i . I | J.#iwiz_wjz 1 Jhi rizl erI’
(2.20
3
If we setz,=x,+iXy, 3, this is recognized as a special case S =1 (2.25
of the standard integrable=6 Neumann mode{harmonic = '

oscillator on a 5-spheyevhere three of the six frequencies
are equal to the other three. This relation implies integrabilityrps gives us two independent integrals of motiaich we

of the (2.20 model, i.e. determines integrals of motion. shall denoteb,) in addition to the three other integrals; )
Equivalently, in the “planar” coordinate$2.8) we get \ye found already.
from Eq.(2.18 The constraint$2.15), (2.16) can be written as
13 1 3 3
L== rl2+rial?—wird)— - A -2—1). vf
U R PR =3 [z 0 226
(2.2 i=1 ri
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3 This ansatz describes an “oscillating” or “pulsating®®S

Z =0 (2.2 string configuration, special cases of whighith motion in

- both AdS and S) were discussed previously in
[11,13,15,21,3#

As a consequence of E(.27) only two of the three inte- Since the sigma model Lagrangig®.3) is formally in-
grals of motionv; are independent of; . variant underc— 7, the resulting 1D effective Lagrangian
As discussed i8], the periodicity condition in Eq2.9)  will have essentially the same form as Eqg.20,(2.22)
onr; implies that the integrals of motidm, can be traded for (here we do not invert the sign of the Lagrangian

two integersn, labeling different types of solutions. Impos-

ing the periodicity condition in Eq2.9) on «; gives, in view 13 1 3
of Eq. (2.22, the following constraint: =5 2 *—mPz,z" )+ EA 21 7z _1) )
27 do (231)

vif ———=2mm;. (2.28 . .
0 ri(o) Solving for a; as in Eq.(2.22 we getria;=J,=const,
where the counterparts of the integration constantre, in
It implies thatv; should be expressible in terms of the inte- fact, the angular momenta in E¢2.13. Then we end up
gersm; , frequenciesv; and the “radial” integrals, orn,.?>  with the following analogue of Eq2.23:
The moduli space of solutions will thus be parametrized by
(wq,W5,W3;Nn4,Ny; My, My, mMg). The constraini(2.27) will
give one relation between these-3+3 parameters. As a > r-miri- — E r2— )
consequence, trading; for the angular momenta, the energy i=1
of the solutions as determined by E¢®.12,(2.26) will be a (2.32
function of the S@) spins and the “topological” numbers
n, andm Thus pulsating solution&arrying also 3 spingf;) are again
described by a special Neumann-Rosochatius integrable sys-
tem.
E=E(Jiing,m), E= \/—5( na,m,> (2.29 Since(the S part of) the corresponding conformal gauge
VA constraints are alse— o symmetric, they take a form simi-
lar to Egs.(2.15,(2.16 or Egs.(2.26),(2.27)
The constraint2.27) will provide one additional relation be-
tweenJ; andn,,m;. 3 2
In the following sections of this paper we shall consider k2=, ('r.2+ mar2+ —
several special solutions of the above syst@r2l). We shall i=1
start in Sec. lll with a discussion of the simplest possible
solution with constant; (for which n,=0) and which rep- 3
resent an interesting new class of circular 3-spin solutions E m, 7, =0. (2.39
generalizing the circular solution ¢4]. i=1

+A

I\)IH

3( jIZ

: (2.33

One may look for periodic solutions of the above NR system
(2.32 subject to the constrain®.33), i.e. having finite 1D
It is of interest to consider a “2D-dual” version of the energy(equal tol«?). In the simplest“elliptic” ) case re-
rotation ansat12.7),(2.8) where = and o are interchanged ducing to a sine-Gordon type system we may follow
(but still keeping the AdStime ast=«7), i.e. [15,21,33 and introduce, as for any periodic solitonic solu-
X.=2(7)EMo= . (7)ela()+imo tion, an (_)sci_llation “Ievgl number” N. This may be achieved
e ' ' by considering a semiclassic@lVKB) quantization of the

C. “2D-dual” NR system for pulsating solutions

3 action(2.32.
E riZ(T)zl_ (2.30 Here we shall not go into detailed study of the resulting
=1 pulsating string solutions. Let us only mention that a special

r;=const solution of the above systewhen, in fact, there
In this case the radial directions depend oinstead ofo is no oscillation of the radjiis essentially the same as the
and the “frequenciesin, must take integer values in order to special circular solution with; = const of the systeni2.23
satisfy the closed string periodicity condition. In general, indiscussed below in Sec. lII.
order to have the zero non-Cartan components of tt® O In the case of the Spulsating solution in[11,15 the
angular momentum tensor one is to assume iatm,; . expansion of the energy at large leve>N appears to be
regular in\/N? (this is not the case for pulsating string in
AdS; [15]) and, indeed, the leading/N? term inE can then
Note that since the integral in E€2.28 is of a positive function, be matched onto the SYM anomalous dimensions as was
m;=0 impliesv;=0. shown in[6,11].
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Here{ is a spectral parameter, and by constructibandV
have simple poles at==*1. They obey the zero-curvature

Having in mind further generalizations, it is useful to un- condition

derstand how the integrability of the NR systdmg., the
Lax representationfollows from the fact that this system is

embedded into a much more general integrdidlé] O(6)

sigma model. Here we will clarify this issue and point out

some related open problems.

We start with describing the zero-curvature representatio

for the Q6) sigma-model in terms of X4 matrices. Let X
be the 3 complex embedding fiel¢.7) of the Q6) model.
Let us introduce the following skew-symmetric matfx

0 Xi —Xo X

“X: 0 X X,
S= sk (2.35
X, X3 0 X

~Xz =X, =X, 0

The matrixSis also unitarySS'=1, provided ){)Ti= 1. Let
us also introduce the &f)-valued currentA with compo-
nents

A,=S9,S", A,=S3,S,

A. =%(ATiAU). (2.36

d.U-3d,V+[U,V]=0, (2.38
which is a crucial device for demonstrating the integrability
of the sigma models. Quite generally, one can associate to
Eq. (2.38 the transition matrix T¢,€) (see, e.g.[36]) de-

Bned through the path-ordered exponent,

T(a,(f):PexprU(o’,f)da’, (2.39
0

and show that the trace of the monodromy mafthe par-
allel transport along the period of the zero-curvature connec-
tion)

Q) =TrT(2m,{) (2.40
generates(when expanded a®=3/_
tower of commuting integrals of moti
Consider now the generalized rotati¢or “Neumann”)
ansatz for the sigma model variablesiK Eq. (2.7), i.e.

3

> |zi?=1.

i=1

ogn 2€") an infinite

Xi:Zi(O')eiWiT,

(2.41

This current can be used to construct the following matrices

U andV [16]:
1 1
UsTeh- "1
1 1
V:—mA_ 1_€A+ (2.37)

Remarkably, the curreri2.36) evaluated on Xof the form
(2.41) admits the following factorization:

A=Q(nNAQ(7), A=Q(1A,Q'(r). (242

Here Q(7) is the diagonal matrix

Q(T):diagefiw:iry e*iWZT’ e*iwlr’ e*i(W1+W2+W3)T),

while the matrices4, and A, are independent of and given by

2W32373 —W;zZf (W +W3)2Z,23 (W1+W3)2,73 (W1—W3)Z;2,
) (Wo+W3)Z523 2W,yZ,25 —W;ZZ (Wi+Wy)z175  —(Wy—W3)Z;Z3
A= (W1 +W3)Z] 75 (W1 +Wp)Z72Z, 2w 2,77 —WizZ (Wo—W3)Z,75 |
(Wi—Wp)Z1Z5  —(Wy—W3)Z] 23 (Wp—w3)Z5 23 wizz
and
2,21* +2,25* + 23 74 5z2,—-23* 7, 3z,—-25% 2, 2,2, — 274
Z525—25% 23 2,27* +2325* + 25 7, Z5z1— 2% 24 2,25—2173
A= Z125—21% 23 z72y-21% 2, 2,2 +2325* + 2727 232,232,
iz —21* 75 B*—z234 7 z2* —2,% 75 z'zf

3Derivation of the Poisson algebra satisfied by matrix elements of the transition matrix and the proof of commutativity of the integrals

generated by the monodromy matrix can be foung3ir.
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As the consequence, one finds interesting open problem is to construct the classiaahtrix
s " corresponding to the Lax syste(R.45), (2.46).
U=Q(n)U(c)Q'(7), V=Q(1)Wc)Q'(7), (2.43 As was discussed in the previous subsection, the NR sys-

tem has the §-independentintegrals precisely in number
wherel/ andV depend only onr. The zero-curvature con- Which is required for its Liouville integrability. Regarding

dition (2.38 reduces to now ¢ as a(periodig time variable, the integrals of motion
: of the NR system can be constructed, e.g.,FasTrL".
9,V=[Q'9,.Q—-V,u]. (2.449  However, being embedded into the more general two-

Next, we note that the diagonal matriQ'a.Q is dimensional |ptegrqble system |F inherits iafinite .number
i . of conserved(i.e. r-independentintegrals of motion. One
o-independent and, therefore, one can introduce the follow-_ " O . i
ing L andM-operators: possible way to exhibit this infinite commuting family is to
compute the monodrom§2.40 for the Neumann connection
L=)V— QT,;TQ, M=—U, (2.45 U(o,€). In general, this is a difficult problem, but it can be

simplified by considering the speci@implesj solutions of

which furnish the Lax representation for the NR system,  the NR system.

A significant simplification of the Lax pair occurs if we

restrict ourselves to the two-spin solutions, which are ob-

This is anew Lax representation for the NR system; the tained by setting X=0. In this case we have effectively the
previously known examples include the formulation of theSQO(4) sigma model that is isomorphic to two copies of
Lax equations in terms of:83 [38] or 2x 2 [39] matrices. SU(2) models. Indeed, one can show that by a similarity
Thus, the @6) sigma model indices the Lax pair for the NR transformation the matriced, and.A,, can be brought to the
system in terms of traceless anti-hermitiax 4 matrices. An ~ form

a,L=[L,M]. (2.46

WyZ,Z5 —Wq2:ZF (W +Wy)Z425 0 0
(Wi +Wy)ZTZy  WiZyZ) —WyZpZ5 0 0
! 0 0 —W1ZiZ] —Wo2pZ5  (Wi—W5)Z32Z,
0 0 (Wy—Ww,)Zi Z5 W1Z1Z} +WyZ,Z5
and
2%+ 252 Z5721—25% 27 0 0
77z,-21%2, 2,25 +27Y 73 0 0
7 0 0 Z121* +2,25%  2,21—257, |
0 0 izt -1z, 717% + 2575
|
which exhibits factorization into two S\) sectors. It is easy zi(o)=snao,t), zy(o)=cnaoc,t),

to see that the NR evolution equations arise already from a
single SUW2) sector, e.g., from the upper left conner of the

Lax matrices. Schematically, the correspondingperator >
w 2
reads as _ 12
=N+~ —K(b), (2.48
a

L S 2.4
Lot e (247

where wi,=w?—w3 is related to the elliptic modulus t

werelL =diag(—iw,,—iw,). through the closed string periodicity conditidThe modu-

Let us recall that the Neumann model admits two differentius t is related to the sping; and 7, by a transcendental
kinds of two-spin solutions corresponding to string configu-equation(see[8] for detailg. On this particular solution the
rations of the folded or circular type respectivé®]. For  matricesU andV projected on the first S(2) sector are
instance, the two-spin circular type solution can be written in
terms of the standard Jacobi elliptic functions as follows
(z3=0): “K is the standard complete elliptic integral of the first kind.
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1 i€ (wysrfao —w,crfac) —adnaoc—i{(w;+w,)smocnac
U= 1—¢2\ adnao—i€(w;+w,)smaocnac —i€(w;srfac—w,crfac)
and
¥ 1 i(WiSrfac—w,crfao) —atdnaoc—i(w;+w,)smocnac
~ 1—¢2\ atdnac—i(w;+w,)smocnac —i(w;srfac—w,crfac)

Using these matrices and applying tfrecurrent Abelian- 3
ization procedure of Zakharov and Shap#d] one can com- > (Jail?+|bi|?)=1,
pute the monodromy functio@(¢) in Eq. (2.40 and, as a =1

consequence, the corresponding higher commuting charges. 3

In a recent work[10] the higher commuting(local) E (mi2+wi2)(ai*bieZimio-_i_aibiukefZimio):O'
charges were obtained for both the folded and the circular =1
two-spin solutions of the Neumann model and linked with (3.4

those of the one-loop plana¥=4 SYM theory. The ap-
proach of[10] was based on finding the form of 8dund
transformations, which also provides a way of generating the 3

commuting conserved chargeee, e.g[18]). It would be of E (la|?+|bi|?) =1,
interest to understand better a relation between thekiBad =1

transformations and the monodromy approach in our stringy

3
context. > (a*h;e?M7+a,b*e M) =0, (3.9
B3

In addition, we need to impose>_,|z|?=1, i.e.

, It is easy to show that modulo the global @J[subgroup of
Ill. SPECIAL CIRCULAR (??S'ETIONS' CONSTANT A SQ6)] inva_lri.ance of .the systel2.20) or Eqs_.(3.1),(3.2) the
only nontrivial solution of Eqs(3.4),(3.5 is b;=0 or g;
A very simple special class of solutions of the system=0. In the former casm; may be positive or negative and
(2.20 or (2.21) which has a similarity with rotating string @; can be made real by (1) rotationg
solutions in flat space and generalizes the circular rotating 3
string _solqtions ir{4,5]_ has the property that the Lagrange z=a,emo, E ai2=1. (3.6)
multiplier is constant, i.eA =const. i=1

It may seem that one may get a new solution if two of the
A. Constant radii solution windingsm; are equal while the third is zero, i.ghis is, in

Let us start with the Lagrangia(2.20 in terms of the fact, the circular solution of4]) if

complex coordinateg; . Then the equations of motion are z,=acosme, zy,=asinmo, zs= /1—a2, (3.7)

3 . .
zi”+mizzi=0, mizzwi2+A, Izl Z2=1, 3.1 glg(lzt)c%rtlatt)ﬁ);r.ansformed back into the fof@6) by a global
It is useful also to rederive the solutid8.6) in a slightly
different way using real coordinates, «; , i.e. starting with
Egs.(2.23,(2.22. The potential;r?+ (v?/r?) in Eq. (2.23
A= (7] 2= w?|z]?). (3.2  has a minimum, and that suggests that const may be a
=1 solution. That needs to be checked sincare constrained to
be on $. The equations of motion that follow from Eq.

Equation(3.1) can be easily integrated if one assumes thaf2-23 are
A =const, v?
r-”=—w-2ri+r—g—Ari, (3.9

Zi=aieimi"+ bie_imiu, (33)
wherea; ,b; are complex coefficients. The periodicity condi-

tion z(c+27)=2z/(o) implies thatm; must be integer. To
satisfy the constancy of in Eq. (3.2) we need to impose  They indeed have a solution if
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2
U:

|
=12=const,
ai

ri(o)=a;=const, W — (3.10
where v is an arbitrary constar(tvhich may be positive or
negative. Then it follows that the Lagrange multiplier in Eq.
(2.23 is thus constant on this solution
A=—1? (3.11)
As a result, we obtain an interesting 3-sgi@neralizationof
the circular string solution found if4] (where two out of
three spins were equal
Equation(3.10 implies

2_ |vil
I wZ— 2
Ui Ui
aj =—|2 = —I\/Wiz— V= m;, (3.12
q; |vi
ie.
aj=ag+ Mo, (313)

wherem; must be integers to satisfy the periodicity condition

(2.9 and a; can be set to zero by §@) rotations. Then

wi=mi+1%,  vi=aim;. (3.19
The constraint$2.15),(2.16) or (2.26),(2.27) give
3
k2= > a(w?+m?) 22 a?w
=1
3
E a|2:1! E a|2W|m|_0: (3.15)

or, equivalently, in terms of the energy and spjog Egs.

(2.12,(2.13,(2.14]

3
ie. £2=22, ym?+ 12T 17
i=1

52:22 Wi‘ji_Vz,
i=

(3.16
3 3
Ji
;Wi 1, 21 = +V2—1, (3.17)
3
> mJ=0. (3.18

We shall assume for definiteness thatwjland thus all7;
are non-negative. Then E¢3.18 implies that one of the
threem;’s must have opposite sign to the other two.

One can check directly that the only nonvanishing com-,
ponents of the S@®) angular momentum tensod,,y
= NJ27(do/27) (XuXn—XnXw) On this solution are in-
deed the Cartan on€g=J1,, Jo=J34, J3=Js6.

PHYSICAL REVIEW D69, 086009 (2004

Since our aim is to expressin terms of 7; andm; as in
Eqg. (2.29 the strategy is then to first solve the condition
(3.17) in terms ofv?, determining it as a function of; and
m; and then substitute the result into £§.16). The condi-
tion (3.18 may then be imposed at the very end.

Let us first consider the special casei3=0 (or A=0)
which corresponds to a flat-space solution which can be em-
bedded into 3 by choosing the free radial parameters of a
circular string to satisfy the conditioR? ;a?=1. As fol-
lows from Eq.(3.14 for »>=0 we find that all frequencies
must be integew;=|m;|, e.g.,

W,= _m1>0, W2:m2>0, W3= m3>0,

(3.19

so that the solution is a combination of the left and right
moving waved here we use complex combinations of coor-
dinates in Eq(2.7)]°

X1

— aleiml("f 1'), X2: azeimz(a’+ 1'),

3

S, ai-

X3: ageim3(0'+ 7')7

(3.20

In the case of Eq(3.19 we get from Eqs(3.16—(3.18

3
1, 21 m; J. =
(3.2

3 3 ._7
£2=22 |m|J; 2 T
i=1 = m

This corresponds to a very special point in the moduli space
of solutions. For fixedn; , we get two constraints off; , and

the energy is given by the standard flat-space linear Regge
relation. For the choicg3.19 we end up with|m,|7;
=m,J,+myJ; [where J, and J; are related via
=3 (J/Imi))=1] and thus&?=4|m,|7;. Clearly, the en-
ergy of this “flat” solution does not have a regular expansion
in 1/72 (cf. [4]) and thus it cannot be directly compared to
some anomalous dimension on the SYM side.

B. Energy as function of the spins

Now let us turn to the genuinely “curved”#0) solu-
tions which will have indeed a regular expansion of the en-
ergy for large spins, as was the case of the circular solution
of [4].

In the 3-spin case one is first to solve K§.17) to deter-
mine v. The solution of this algebraic equation cannot be

SThis may look like an example of a “flat” or “chiral” solution of
the O(N) sigma model that trivially satisfies the equations of mo-
tion following from Eq.(2.3) d,9_XM+ 9, Xyd_XyXM=0 since
3, XM=0 or9_XM=0. But one still needs to impose the Virasoro
constraints, and that implies that we need a particular combination
of left and right moving modes.
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written down explicitly for generi¢Z; but one can find it as a Wwhich is related to the solution if#] by an SQ@4) rotation,
power series in the Iargg=2i3=1ji expansion as if4,8]

(7>1) x’=i(x +X5) x’=i(—x +X5). (3.29
3 j 1 \/5 1 2) 2 \/5 1 2)- .
V2=j2—2 m,2—'+ ,
=1 J In the general case of two unequal spins we can again solve
5 Eqg. (3.29 in the limit of large J;,7, (for fixed m;,m,),
Ji getting the special case of E3.24 with m;7;+m, 7,
2_ 72 2vi ;
E=T +i:21 m; j+..., (322) :0,j3:O, ie.
where 7= 7, + Jo+ J3>1, and thus mMy(mMy+|m
TJ=Nh+T+Ts e= T+ 2(My+ | 1|)«72+
3 277
E=J+ > m-2£+ (3.23
29=0N g T ' _ . Mmmy
=J 2j+.... (3.30

As in the previous examples [4,7,8], here the energy thus

admits a regular expansion in#=\/J? In another special case when two out of three nonvanishing
spins are equal, e.gJf>=J3, and withm;=0, my=—m;4

3 3
A J; -
E=J+— m2 4., D md=0. (3.24 m we get from Eq(3.24
2= ' 3J =1
. . mzjz m2
Hence it should be possible to match, a$6t8,9], the coef- E=TJ+ 7 +...=J+ —zj+ e (3.3)

ficient of theO(\) term in Eq.(3.24) with the 1-loop anoma-
lous dimensions of the corresponding SYM operators deter- ] ] .
mined by a special 3-spin case of the integrable SU4¢3,2 This is the same as the_ expression for the circular 3-spin
spin chain of[2]. The simplicity of the expressiof8.24  solution (7;#0, 7,=Js) in [4]. Indeed, for any values of
suggests that one may be able to establish the correspod:.J2=1J3 the two solutions are related by a global rotation
dence with particular solutions of the Bethe ansatz equation® X2,X3 directions as in Eq(3.29, convertinge'™2” into

in a relatively direct way, as was the case[@] for theJ;  COSMyo and sinmyo.
=J,, J3=0 and in[11] for theJ;=J,, J3#0 circular solu- To summarize, we have shown that the constant-radius

tions of[4]. solutions of the NR system represent a simple generalization
Let us now look at some special cases. =, O©f the circular 2-spin and 3-spin solutions|@f|. This opens
=0, a,=a3=0, i.e. in the one-spin case, we have a solutionUP @ possibility of a direct comparison to SYM one-loop
if Wi: 2, i.e.my=0 andJ,;=w;, and thenf=7;. This is an_omalous dlmen§|ons in the 2-s_p|n sector with unequal
simply the point-like geodesic case: far,=0 there is no  SPins(cf. [6]) and(ii) general 3-spin sectdcf. [11]).
o-dependence iiX; .
In the two-spin casg/;=0, a;=0 Eq. (3.17 for v be- C. Quadratic fluctuations and stability

comes a quartic equation Let us now study small fluctuations near the solutions of

Sec. Il A. This will generalizgand simplify) the discussion
Ja n J2 -1 (3.25 in [5] in the case of the specid}=J, 3-spin solution and
\/mi_,_ V2 \/m§+ 2 ' will clarify the conditions of stability of our new solutions.
One application of this analysis would be to compute the
Its simple explicit solution is found in the case whegfy ~ 1-loop sigma-model correction to the classical end&24
=T, i.e.a;=a,=1//2, my=—m;=m>0, and to show that it is indeed suppressed by an extra power of
1/ as in the special case considered@h Another would be
v=72-m?, J=J+ =271, (3.26  tofind the spectrum of excited string states carrying the same
charges as the “ground-state” classical solution as these may
so that be possible to compare to the corresponding spectrum of
o o anomalous dimensions on the SYM si@s was done for the
E2=T%+m?. (32D speciald;=J,, Js=0 case in6]).

o . o It is straightforward to find the quadratic fluctuation La-
Th_ls is the same&(J) relation as for the 2-s_p|n circular so- grangian by expanding near the solutid8.6) or Egs.
lution of _[4]. In fact,_as was already mentioned above, the(3_1@_(3_14)_ We shall follow the discussion in Sec. 2[&]
two solutions areequivalent here we have where the special case of circular solution with two equal

spins was considered. Using three complex combinations of
Xl:ieiwmma, Xzzieiw-ﬂrima, (3.29 coordinates in EQ.2.7) and expanding ?(—>Xi+)~(i the
\/5 2 sigma model actiori2.3) near the classical solution
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Xi:aieiwir+imirr' Wi2:mi2+V21

3 3
> a?=1, > a’wm=0, (3.32
i=1 i=1

PHYSICAL REVIEW D69, 086009 (2004
2

[my| Vmi+ 22
a2_

|m,| \/m§+ 2+ mzx/m§+ 2

(3.39

In this case the fluctuations in the=3 direction decouple,
and we find the following Lagrangian for the remaining 3

we find the following Lagrangian for the quadratic fluctua- fiyctuationsg, ,f, ,f, [e.g. solving Eq(3.36 for g; and res-

tions (see[5]):

L=- (3.33

1 asyy* 1. I *
592X X! + S AKX
whereA = — 12 and % are subject to the constraint

3
;l (X X* +X*X,)=0.

(3.39
To solve this constraint we set
X =eWirtimoz (r o), Z,=g;+if;,  (3.39
so that Eq.(3.34) becomes
3
2 a;0;=0. (3.36

i=1
After integrating by parts, Eq3.33 takes the fornicf. [5])

>

1., .
i=1 E(finfgiz_filz_gi'Z)

—2wifigi+2mifigi’}. (3.37)

To solve Eq.(3.36 we may apply a global rotation tg;
gi=M;j(a)g;, that transform§i3:1aigi into g, and set the
latter to zero in the resulting Lagrangié®37). Equivalently,

we may solve Eq(3.36 for g, and substitute the result into
Eqg. (3.37).

For simplicity, let us first consider the 2-spin case when

[cf. Eq.(3.25]
as+a3=1, az=0, a2|my|w;—a5m,w,=0,

w2—mZ=w;—m3= 12, (3.38

We shall assume thah; <0, m,>0. These relations allow
us to express, anda, in terms ofm;,m, and»

my\/m3+ 12

|ma| M2+ p24 myym2+ 2

2

al_

Note that imposition of Virasoro constraints on the fluctuations is ‘For example, settingn;=—

caling g,]:

~ 1. . .
L= §(f§+f§+ 95— 12— 57— g5%) + 2(apw;fy

—a,W,f5)go—2(a,mifi—a;myfy)ay.  (3.40
Solving the resulting equations of motion foF,
=(f,,f,0,) using the ansatz (see [5]) F,
=ZnAqsn€ s " we find the following characteristic
equation of the frequencies:

2)2

(0?—n?)2—4a5(w;w—myn)?

—4a%(Wy0—m,n)2=0. (3.41)
This is a quartic equation fas, and the stability condition is
that all four roots should be real. The solutions are obviously
real for n=0 so instability may appear only for
n==1,.... In thespecial case of the 2-spin circular solu-
tion of [4], i.e. w;=w,=w, —m;=m,=m, ai=a3=3 we
get

(w?>—Nn?)°— 4w’ w?—4m?n?=0, (3.42
which implies instability whenn?—4m?<0, i.e. for the
modes withn==*1,...,=(2m-1) [5].

For generica;,a,,m;,m, and small enougim one finds
that two of the four roots are complgwith nonzero real
par.” In spite of the instability it is useful to work out the
spectrum of frequencies and the stability condition in the
limit of large spins(i.e. largev) since the resulting energies
may be compared to SYM theory. First, let us consider the
case of equal spins-{m;=m,=m). Equation(3.42 im-
plies that[5]

wi=n2+ 2v%+2m?

+ 2(v24 m?)2+ n2( 2+ 2m?),

(3.43

so that the largev expansion givegfor the lower-energy
modes$

1 )

E .

Then the “one-loop” contribution to the energy of rotating
string from (a pair of such modes ighere k%= v?+2m?,

J=J;+J,=\Vr?+m2 m=k in the notation of5))

1
nVn2—4m?+0

w(})Zi—
2v

(3.449

1, my,=2,n=1 one gets complex

not necessary in order to determine the non-trivial part of the flucsolutions forv from 0 to 1000. This implies instability of “asym-

tuation spectrunfs].

metric” solutions with|my| # m.,.
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1 1 . . 1 n?=4a3(1—a3)(m,—m,)?. If we recall that we have the
AEn:;2|w—|: _znn —4m°+0 A constraintm;J; + m,J,=0 whereJ;=a?\/m?+ »? one may
wish to solve it in the largev limit getting a§m1+(1
A A2 -a?)m,=0, ie. aj=m,/(m,—m,), 1-a’=-m;/(m,
= 3nVn°—4m*+0 ?)- (345  _m,), giving the conditionn?=4|m;m,|, which implies
the existence of unstable modes with<4|m;mj)|.
This expression was indeed reproducediéh(for m=1) as One should be able to reproduce the analog of(BetH

the 1-loop anomalous dimension of excited states on th# the case of Eq(3.46), i.e. (here we assumgm,|>m,)
SYM side(corresponding to a particular Bethe root distribu-
tion for the Heisenberg spin chain

In the general ih;,m,) case, expanding Eq3.41) at
large v assuming w=0(1/v) we find the following gener-

alization of Eq.(3.44: ml +0
- - 1 2

1
0= n[2a2m, + 2a2m, = Vn2—4aZa2(m; —m,)?]
14

A
AEnZﬁﬂlZ(lmﬂ—mz)

)\2
3_4) (3.47)

on the gauge theory side.

It is straightforward to extend the above discussion to the
i) (3.46 3-spin case, i.e. wheas is nonzero. This will give a gener-
3’ ' alization of the spectrum found in thé,(,J,=J3) case in

[5]; as in that special case, there should then be a range of
whereaf+a5=1. This reduces to Eq3.44 in the equal- parameters for which the solution is stable. The generaliza-
spin case whea?=a2=%, m;=—m,. Stability conditionis tion of Eq.(3.4)) to the 3-spin case s

+0

(0?—n?)*—(w?—n?)?[(a5+a3) 02+ (a3+a3) Q5+ (a3 +a3) Q3] +a50205+a50203+a30503=0, (3.49

where A=[4(w—nmg)2—n*][4] w—n(m,+mj)]?
Qi=2(wjo—mn), w=ymi+%  (3.49 —n*(n*+4m;my)],

SettingQ);=0, az;=0 we indeed go back to E¢3.41). This B=4(m;— m,)(m; —ms)n%[ 1202~ 8n(m; +my+ M) &
equation gives 8 characteristic frequencies. Solving the equa-

tions fora,,a; in terms ofa; andw;= \/mzi + % we get the
following generalization of Eq(3.39:

+4n?(m;m,+ m;ms+m,mg) +n*].

Stable solutions arise in the range of the parameters
, Maws(1—a%)+m,w,;a2 my,m,,m3 such that Eq(_3_.52) has_ _real rootsy for all intez-
a,=— e PvR——— , gersn. The general stability condition am,,m,,m; andaj
272 8T appears to be complicated, but one can find particular values
of my,m,,m3 for which the solution is stable.

) (3.50 For example, settingn;=0, my,=—mg=m, so thata;
MpWp— M3Wa =a, aj=a3=3(1—a?), which is the case of the 3-spin so-

; ; lution of [4], J;=a%v, Jo=T=3%(1—a%)ym?+v? we
Concentrating then on those frequencies that scale as ution » J1maA L, JaTJ3T 2 v,
find, in agreement witl5]

a2 maw(1—af) + mywsaf
2

1

1/2

®
w=—+0
v

n2
— —2+6a’

), v>1 (351 _zzfnzmz

4 m
we get the following equation for the leading part of Eg.
(3.48: +2 \/(3a2—1)2+4a2

n2
= 1) | . (353
A+Ba?=0, (3.52

91t can be found, e.g., by adding the constrai®36) to the La-
8There are also two other frequencies for which—41? at large grangian(3.37) and solving the corresponding equations of motion.
V. 10n the notation of 5] a=cosy,, m=Kk.
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The condition of stability, i.ew?=0 is obtained by demand- With nonzerov; the positions of the roots get shifted. The
ing that @2—4)(q?—4a®)=0 and (&?—1)2+4a%(q? 9eneral solution of Eqg4.2) can be given in terms of theta-
—1)=0, whereq=n/m. The stability condition is satisfied functions associated to the Jacobian of the hyperelliptic
if g°=1 anda?=%, which applies to all modes ih=1 asin  CuUrve. _ _ _

[5]. Form=2 the potentially unstable mode fis=+1 hav- We will not consider the problem of solving Eq4.2) in

ing g2=1%. Then to have stability we need to demaal full generality, rather we will treat the simplest case of the

=L as well asi<a’<%(3—5) or (3+5)a?<1. vaniszhi-ng integrab;. As one can see, far;=0 the value
Similar conditions ora are found for higher values ah. {=ws3 is a root of P({) and then the NR system can be
If instead we setn;=m, (or m;=m;) in Eq. (3.52 we solved in terms of elliptic functions.
find
1 B. Two-spin solution of the NR system
Zzn(m3t§n), If v3=0 we may seta3=0 and further assume thag
=0 [see Eq(2.22] which brings us to the two-spin case. In
1 terms of the ellipsoidal coordinates the two-spin solution
w=n| (My+my) = —/n?— 4|m,my| (3.54  arises in the limith,—w3.** It is convenient to perform the
2 following change of variableg,— &, (see[8] for details:
implyi_ng that modes Witm2<4|m2m3| are L_mstable irre- L—-Wi—(Wa—by)éEy,  L—Wi— (W5—Dbp)és.
spective of the value &, just like in the 2-spin cases.46). (4.9
IV. MORE GENERAL “NONCONSTANT” SOLUTIONS Then we find that the first equation in Ed4.2) reduces to
OF THE NEUMANN-ROSOCHATIUS SYSTEM L2 5
R _ (£)2=AW5E(1-£)(1-t8)
A. NR equations in ellipsoidal coordinates )
Analogously to the case of the Neumann systeif8irwe _4v§§2_4v§<3 — 5) ,
can rewrite the equations of motion following from Eq. t

(2.23 in the ellipsoidal coordinates/(,{,) which are intro-

duced as £=§&. (4.9
ri= wWe o (wi— ) [T w2 G=wi-w! Here t=(w5—b;)/w3, is the modulus of the elliptic curve.
oA e L Wij The variablev, can be eliminated usings=uv2w?/w3. Thus

Expressing the integrals of motidg@.25 in terms of{, one
finds the following separable system of equations:

|

we get a one-parameter family of solutiofparametrized by
(4. the additional parameter;).
It is possible to reduce the elliptic curve corresponding to
Eq. (4.5 to the standard Jacobian form, but the new modulus
k appears to be a rather complicated function wf tw,,v .

whereP({) is

%)2:_ ﬂ (%)2:_4M Indeed, we get
ol et el et ()7 =awBit(é—ep)(E—e)(E—e), (46
where
P(£)=(£—b)({=bp)({—WH)({—wW3)({—W)) vi=wit’eperes,
+ui({—wh)P(L—w5)? vi-vi+K2—W;5
+02(L-WD)A(L—wd)? = —W3,t?(ege; +egey+e1e,). (4.7
+u5(L—wHA({—w5)2. After the change of variablé=e;y7’+ ey, Wheree,=e,

—emn, Eq.(4.6) becomes

Hereb, , are the constants of motion which can be expressed

in terms of the original integrall in Eq. (2.25. The Hamil- o2 5 2
tonian of the NR system reduces then to (') =wite,o(1—7°)(1-kn%), k= e’

f0 g

3

H=% ;1 (wi2+vi2)—b1—b2 _ 43 Thus, a solution obeying the conditiof(0)=0 reads

As in the Neumann cas®,(¢) is the fifth order polynomial 7o be specific we will treat the case of the folded striofy[8]),
which defines a hyperelliptic cun&+ P(£)=0. However, analysis of the circular string solution is very similar.
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n(o)=sno\Wte o).

The radii of the embedding coordinates in E8.8) then are

4.9

r3(o)=t(eo+en?).

(4.10

r2(o)=1—t(eo+ ey,
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V. ROTATING STRINGS IN AdS ;X S°

Let us now generalize the discussion of Secs. Il and 11l to
the case when the string can rotate in both Ad8d S. For
that we need to supplement the Btating string ansate.7)
by the similar Adg one

Yo=Ys+iYo=2zo(co)e o7,

Note that this is the most general two-spin solution of the NR

system. In the present case, we require in addition that
should be periodicy(o+27) = n(o), which gives

SAWE e K(K), (4.1

where KK) (and E and1 appearing beloyare the standard
elliptic functions defined, e.g., if8].

Since for the periodic solutiong (o +2m)= ¢, 0)
+2mm, , we have also the conditiai2.28), we can trade the
parameterw 1,v, for the two integersm;,m,. Using the
explicit solution(4.9) one can compute the integrals in Eq.
(2.28 with the result

_ U1 te1g
1= (1—teo>+<(k>“(1—teo’k)'
v few
m,= tegK (K) ( % k. (4.12

For given nonzero integers; these are highly transcenden-
tal equations omw,v,. Computing the spins we get

E(k)
J1=W1—W;€ 1+k_m , (4.13
E(k)
Jo=Wyep| 1+k— KK)" (4.19
Finally, the energy is given by

wi
E2=Kk?=wi+ws—vi| 1+ —|. (4.15

W3

Note that due to the extra conditio(2.27), i.e. vqwy
= —v,W,, the solution exists only i#; andJ, are related in
a certain way.

The above system of Eq#4.11)—(4.15), determines the
energy E parametrically as a function of the R-chargbs
=W\J1, J,= N J, and winding numbers, ,m,. This sys-
tem is rather complicated to allow for an explicit formula for
E=NEJL /YN, J,1\N;m;,m,). Nevertheless, we hope that
it might be possible to directly match this systgits leading
O(\) or the “one-loop” approximatioh onto the corre-
sponding equations governing the algebraic Bethe afffatz
a particular choice of the Bethe root distributiofor the

Y15Y1+iY2:Z]_(O')eiwlT,

Y,=Y3+iY,=2,(0)e' 27, (5.2
where now(generalizing the ansatz considered[#8]) z
=(z9,21,2,) are complex, and because of the condition
nunYMYN=—1, their real radial parts lie on a hyperboloid

[Wrs:(_ 111!1)]

z=reh, yerre=-r3tritri=—1. (5.2
In the previous sections we hagerl, r=r,=0, 8,=0. To
satisfy the closed string periodicity conditions we need, as in

Eq. (2.9),

r(c+2m)=r(o), B/(oc+2m)=p(0)+27k,,
(5.3

wherek, are integers. Comparing E¢.1) to Eq. (2.5 we
conclude that the AdStime t and the angular coordinates
$1,¢, are related tg3, by

t=wor+ Bo(0), ¢1

=017+ B1(0),  ¢r=wT+ Bo(0). (5.9

We shall require the time coordinateto be single-valued
(we are considering a universal cover of AjiSi.e. we ig-

nore windings in time direction and we will also renamg

into «, i.e.

(5.9

The three @2,4) Cartan generatorgsping here are[ S,
:E! C’)r:((‘)Oi(‘)l=(‘)2):|

kOZO, Wo=K.

2ndo
Sr: \/prf _rrz( O')E \/XSr . (56)
0 2
In view of Eq. (5.2, they satisfy the relation
S . E & S
S'—=-1, ie. ———— =1. 5.
g:d K Wg K wq wo ( 7)

Substituting the above rotational ansatz into the AdS-
grangian(and changing overall signwve find the analog of
the 1D Lagrangiari2.20 in the S case

~ 1 1.
L=>7"zz' w?z,7%) - SM#°zZi+1). (5.9

anomalous dimensions of the corresponding operators on theke its S counterpart2.20), this 1D Lagrangian is a special

gauge theory side, as was done in the0 case in6,9].

case of ann=6 Neumann system now with signature
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(—++++—), and thus represents again an integrable sysp; o finding solutions with = const turns out to be equiva-

tem (being related, as ifB], to a special Euclidean-signature |ent 1o |ooking for constant radii (= const) configurations.
Neumann model by an analytic continuatiomhe reduction Then[cf. Egs.(3.10,(3.14]

of the total Ad§x S® Lagrangian on the rotation ansatz is

then given by the sum of Eq&2.20 and(5.8). Writing Eq. rr=const, Ba,=Kk,o, Kko=0uUp=0, u;=rgk,,
(5.9 in terms of yr and B, we find as in Eq(2.22 (5.149
2 2_ K 2 2 2
u wi=k"=A, owi=kit+tk°, a=1,2. (5.15
B/=—, u/=const, (5.9 0 a0

r The energy as a function of spins is then obtained by solving
hat finall ith the system of the two equations that follow from the defini-
so that finally we end up wit tion of the chargeg5.6) and the constraint$5.11),(5.12)

wu with x as a parametdicf. Eqs.(3.17), (3.18)]
r+s

L=< r/ri— w?rre— -

N| -

1.
— =A(75"rrg+1),
2 (7'°rers € S, S,

(5.10 - - =1, (5.16
K \/kf—k K2 \/k%—i- K2

rrs

where, as above, we assume summation oy@erComparing

this to the NR Lagrangian2.23, we conclude that Eq. 1
(5.10 describes a system which is similar to the Neumann- kE— —Kk?= \/ki+ K28+ \/k§+ k%S,
Rosochatius integrable system, but with an indefinite signa- 2
ture, i.e.d;; replaced byz;s.

While the equations for; and ¢ following, respectively, K151 1Kz5,=0. (5.19
from Egs.(2.23 and(5.10 are decoupled, the variables of This implies
the two NR systems are mixed in the conformal gauge con-
straints(2.15),(2.16 which now take the fornigeneralizing kisl k%Sz 1

Egs.(2.26,(2.27) where we hadg=1, u,=0, r,=0]

+ = — k2. (5.18
, \/ki-i-KZ \/k%‘FKz 2

uz 2 u
2 2,2 0_ 2 2.2 a
>+ k%o + — =2 | P+ wlra+ —
rO a=1

2 Considering the limit of large spin§,>1, with k, being

a fixed, we conclude thaic=(2kiS;+2k2S;)¥3+ ... and
3 Uiz then
+i21 ri’2+wi2ri2+Fz . (5.1)) 5
- I
5=sl+sz+Z(2k§51+2k§sz)1’3+ ..., (519
2 3
KUOZaZl wala™ 241 Wivi, (512 o in view of kS, = — kS, (treatingS;,S, andk; as inde-

pendent data
where §—=2_,r2=1, and=? ;r?=1. We should also re-

1/3
quire the periodicity condition analogous to Eg.28) E=S+ 2(2@9% +..., 8=85+S8,. (5.20
2
27 do . . .
rfo . =27k, . (5.13 Using Eq.(5.6) this can be rewritten also as
(o) ; o 18

o E=S+>(\S)Y3 2k2—1) +o (5.21)

Thenk, implies that we should set,=0 as a consequence 4 s,

of single-valuedness of the Ad$ime .

One can then repeat the discussion of Secs. Il and IIl ilThe case ok;=—k,=k when the two spins are equéa}
the present case, classifying general solutions of the resulting S,= 3S is that of the circular solution found if4] for
NR system. The resulting solutions generalize those of Seavhich we get
IV B in [4] where the integrals; andu, were zero.

3
E=8+ —(2kS)Y3+ . . .. (5.22
A. Simple circular strings in AdSs 4

Let us first assume that the Stl’ing is not rOtating ?r(l& As was shown ||ﬁ4], this kl: — k2 solution is stable on|y for
w;,v;=0, r;=const) and consider the AdSnalog of the small enoughs.

simplest circular solution of Sec. Ill by demanding that The “nonperturbative” scaling of the subleading term in
=const. The discussion is then exactly the sam@apecial Eq. (5.21) with \ precludes one from entertaining a possibil-
case of thatin Sec. Il with few signs reversed. As in Sec. ity of a direct comparison to anomalous dimensions of the
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corresponding operatoig], i.e. q_>Df£ri2D§%ri4d>, in SYM

theory, in contrast to what was found in the Gse.

Let us now see how this conclusion changes when w

PHYSICAL REVIEW D69, 086009 (2004

This expression is a direct generalization of E2j23) in the
S,=0 case. The energy is minimaliifi? andk2 have mini-
&nal possible value® or 1). We may also look at a different

; . . . . i ; 2 2 ;
consider “hybrid” solutions where the circular string rotates limit when 7>&>1 (corresponding tdq>my). In this case

both in AdS; and Ss.

B. Constant radii circular strings in AdSsXS°

we get a “BMN-type” (single J rotation type asymptotics
with the leading term still given by Eq(5.27), i.e. AE
~(1127%)8.

The conclusion is that to have a regu(ae. with analytic

Itis Straightforward to combine the SOlUtian of Secs. VA)\_dependenodarge_spin expansion of the energy one needs
and Il A to write down the most genel‘a| circular COﬂStant—to have at least one |arge Component of the spin in t'he S

radii solution in AdgxS°. It will be parametrized by the
3+3 frequenciesd=1,2;i=1,2,3)

W= K, w‘i:kg-i— K2,
Wi2= mi2+ 2,
K2=A, 1P=—A, (5.23

related to the energ§ and 2+3 spinsS, and.J;, and by the
topological numbers, and m;. These will be related by

Egs. (3.17 and (5.7) as well as by the conformal gauge

constraintg5.11) and(5.12). Explicitly, we get the following
generalization of both Egs.(3.16—(3.18 and Egs.
(5.16,(5.17

2

3
Ti & Sa
—_—=1 - ———=1, (52
21 mi2+V2 K agl\/kg—FKZ (524
2
2kE—2, K2+ k2S,— K?
a=1
3
=2, \m?+ 2T 12, (5.25
i=1
2 3
21 ka8a+21 m; 7 =0. (5.26)
a= =

For given(integer or half-integer, in quantum thegrspins
S, andJ; the solution exists only for such integdesandm;

that satisfy Eq.(5.26). Assuming that all spins are of the

same order and largg,~ 7;>1 we find

3 2
1
K=j+2—j2(21 mi2ji+2a§=:l k2S,|+0 ?)
3
i=
- 1 i PN 1) ,
e Mol ) °23
and thus
A 3 2 )\2
E=J+ 50| >, miJ+ >, k2S,|+0 —3). (5.29
2)°\ =1 a=1 J

direction. This turns out to be the same also in the case of
other spinning string solutions with more complicated
o-dependence.

As an explicit example, let us consider the simplest hybrid
solution when only one of each two types of spin is nonzero,
ie. 1=J, $1=S8, S,=J=TJ5=0. The string then hagr
—r?=1, =0 andr;=1,r,=r3=0, i.e.[cf. Eq.(2.5)]

Y o= coshpye'“7,
le Sinhpoeiwrﬂka,
Xl:eiwrﬂma, (53@

where p=coshpy determines the fixed radial coordinate in
AdS; at which the circular string is located while it is spread
and rotating in¢, (it is positioned at?= 7/2 and¢,=0 in

S® of AdSs). Also, the string is a rotating circle along in

S° located atg,=@3=0, y=m/2, y=0. Its energy forJ
~8>1 is thert?

E=TJ+S+ i(m2j+ k2S) +
2j2 PR

S
1+ =

= J+S+ LS
- J,

2757 + ..

. (5.31

where we used thakS+mJ7=0 and treatS, 7 and k as
independent data. Restoringdependence we thus have

k2

\
E=J+S+—=— -

23 J (632

J

;
1+—-]+ ...

It should be possible to reproduce the same expression as a
1-loop anomalous dimension on the SYM side as was done
for the folded G,J) solution in[9].

One can easily analyze the small fluctuations near this
solution as was done in Sec. Il D. One finds 1 massless and
4 massivelmassv) fluctuations in 8 directions. In addition
to 2 massiveémassk) decoupled Ad$fluctuations there are

PHere J=Vm24+12, 2kE— k2=2K3+ K28+ T2+ m?, kS

+mJ=0, £=k+[kSIV(K*+ k?)].
13The “BMN-type” limit (cf. [14,41) here corresponds t&/.7
<1.
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also 3 coupled ones with a Lagrangian similar to 8340:  dimension is summarized in E¢p.29 [with Eq. (3.24) as a

to obtain it one is to do the following replacements in Eq.particular casg Deriving it from the spin chaif2] Hamil-
(3.40: fo—fq, go—gm, f1—ify, wi—«k, w,—w;  tonian would clarify, in particular, how the winding numbers
=\k2+n2, m=0, my=Kk, a,—iry, a,—r, so that Eq. Of circular string states are encoded in the Bethe root distri-

(3.41) for the characteristic frequencies becomes butions. _ _ _ _ _
One interesting special case is that of the solution with a
(0?2—n?)2+ 4P (kw)? single spin componer in AdS; and a single R-chargé

We have shown that this solution is stable for all values of
—4r(Vk?+ k20 —kn)?=0. (5.33  spins and winding numbers. The corresponding energy for-
. . ) mula in Eq.(5.32 is very simple; it should be possible to
The solutions of this equation are real. Indeed, the analog q&produce it on the SYM side as was done for otr@&d)

Eq. (3.46 is found to be solutions in[9].
1 For general solutions of the Neumann-Rosochatius sys-
Q_=—n[2(1+ri)k tem, the energy is a complicated implicit function of spins
2k and topological numbers. For example, in the two-spin case

of Sec. IV B the general solution of the NR system can be
written in terms of elliptic functions but the energy is a so-
lution of a parametric transcendental system of equations. It
would be very interesting to find a more direct map between
We conclude thaftin contrast to similar§,,S,) and (J4,J,) the NR system and Bethe equations for some properly cho-
circular solution$ this hybrid (S,J) solution is always sen Bethe root distributions on the SYM side. It would also

+n2+42(2+1)k?]+0

1
F) . (5.39

stable be important to find new pulsating solutions of the NR sys-
It should be possible to match E.32 with anomalous tem mentioned in Sec. Il C that may have simple SYM coun-
dimensions of particular tBfS®”)+ ... operators on the terparts.

SYM side by identifying the corresponding distribution of
Bethe roots in the Bethe ansatz equations of the associated
XXX _4, Heisenberg spin chaif2], as was done for other ACKNOWLEDGMENTS

folded and circular $,J) string solutions i 9]. ] ] )
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