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Heterotic moduli stabilization with fractional Chern-Simons invariants
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We show that fractional flux from Wilson lines can stabilize the moduli of heterotic string compactifications
on Calabi-Yau threefolds. We observe that the Wilson lines used in GUT symmetry breaking naturally induce
a fractional flux. When combined with a hidden-sector gaugino condensate, this generates a potential for the
complex structure moduli, Kder moduli, and dilaton. This potential has a supersymmetric AdS minimum at
moderately weak coupling and large volume. Notably, the necessary ingredients for this construction are often
present in realistic models. We explore the type IIA dual phenomenon, which involves Wilson lines in D6-
branes wrapping a three-cycle in a Calabi-Yau threefold, and comment on the nature of the fractional instan-
tons that change the Chern-Simons invariant.
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[. INTRODUCTION laton but leaves the cosmological constant zero at tree fevel.
As was understood there and in more detail in subsequent

When string theory is compactified on a Calabi-Yau mani-Work, because of the quantization condition for the three-
fold [1], the resulting low-energy field theory typically con- form of the heterotic theory, the dilaton cannot be fixed at

tains some number of massless scalar fields, or modul}/.veak coupling. The essential difficulty is that the gaugino

itational : d th . ¢ ._condensate term is nonperturbatively small when the cou-
Gravitational experiments and the requirement of CONSiSy|ing js weak, whereas quantization forces the flux term to be

tency with nucleosynthesis place rather strong constraints opf order one. The resulting potential drives the dilaton to
the existence of such fieldsee, e.g., Refl2]). If moduli strong coupling.
were an essential feature of all string compactifications then It is important, however, that the Chern-Simons contribu-
model building would be very difficult. Fortunately, moduli tion to the heterotic three-form flux does not obey the same
are only endemic in the simplest, most symmetric construycduantization condition as the contribution from the field
tions. General backgrounds involving fluxes, as well as non_stre_ngth of the antisymmetric tensor. In f_act, as we will ex-
. : lain below, the Chern-Simons contribution of a flat gauge
perturbative effects, tend to create potentials for some or ?E

duli ithouah ificati ih red undle can take fractional values of ordeN1MwhereN is
moduli. Even so, although compactifications with reduceqg|ated to the order of the fundamental group. On Calabi-Yau

moduli spaces are easy to construct, it remains challenging t@anifolds with a sufficiently large fundamental group this
eliminate all of the moduli in a given model. provides a natural mechanism to stabilize the dilaton at weak
Two fields that have proven particularly difficult to stabi- coupling. The same effect stabilizes all{er moduli once
lize are the Calabi-Yau volume and, in heterotic compactifi-the dependence of the gauge coupling on these moduli is
cations, the dilaton. The problem is especially acute in theseorrectly incorporated. For related earlier work see Refs.
cases because the dilaton and volume directly influence tH&—11. . . .
gauge and gravitational couplings in our world, making roll- ~ The requirements that the Calabi-Yau manifold should
ing values unacceptable. Moreover, as these parameters gdidveé non-trivial fundamental group and that the gauge
emn the string and sigma-model perturbation expansions, gundle should have nonzero Wilson lines are actually well
controllable compactification requires that the dilaton and"°fivated tl’y ofther (nlodelk;bu_ndmg con&derat;on;. In fact,
volume be stabilized at weak coupling and large radius. most _modes of particle p ysms_bas_ed on Ca al:_)l—Yau com-
We will demonstrate that this can be achieved in a certairﬁacmc-atlons of the heterotic string mvo_lve manifolds with
. e ) ontrivial fundamental group and associated gauge bundles
class of heterotic compactifications on Calabi-Yau space

) . ith Wilson lines.
with a large fundamental group. The context for this proposal ' A siandard way to construct such manifolds is to quotient

is the original work3] of Dine, Rohm, Seiberg, and Witten, 4 simply-connected Calabi-Yau space by a freely acting dis-
who observed that the combination of a gaugino condensaigete symmetry groufs. The resulting string GUT model
(in the hidden sector of thEgX Eg heterotic stringand a  solves a number of important problems. For instance, in
background three-form flux generates a potential for the disimple constructions the number of generations is divided by
|G|, leading to models with realistically low numbers of gen-
erations[1]. Moreover, one can naturally solve the doublet-
*Electronic mail: gukov@tomonaga.harvard.edu triplet splitting problem12,13 in this setting.
"Electronic mail: skachru@stanford.edu
*Electronic mail: liuxiao@itp.stanford.edu

SElectronic mail: Ipm@itp.stanford.edu IClosely related simultaneous work appears in IR&F.

0556-2821/2004/68)/08600818)/$22.50 69 086008-1 ©2004 The American Physical Society



GUKOV et al. PHYSICAL REVIEW D 69, 086008 (2004

More importantly, the nontrivial fundamental group al- We dimensionally reduce this action on a Calabi-Yau three-
lows us to introduce Wilson lines. In addition to being anfold space and describe the potential appearance of a gaugino
attractive method of GUT symmetry breaking, Wilson linescondensate in the resultingg=1, d=4 configuration. In
are actually indispensable, as standard heterotic string mo&ec. I B we show how to derive the four-dimensional action
els do not admit adjoint Higgs fields of the GUT grolu2]. of Sec. Il A from a simple superpotential induced by the flux

We will add the stabilization of moduli to this list of prob- and the gaugino condensate. In Sec. Il C we explain that the
lems that admit natural solutions on Calabi-Yau manifoldsdilaton potential does not have a minimum at finite coupling
with a nontrivial fundamental group and nontrivial gauge unless the background flux is fractional.
connection. The dilaton, Kder moduli, and complex struc-

ture moduli can all be stabilized by incorporating the effects A. Effective Lagrangian for the heterotic theory
of gaugino condensation and the flux induced by the Wilson : . . o
lines. The low-energy effective action for the heterotic string in

ten-dimensional Einstein frame [i$7]

f d'%\— g0 {Rlo_ 390"

We would like to underscore the fortuitous coincidence
that the necessary ingredients for our construction are auto-
matically present in certain realistic models. Wilson lines S=
typically lead to Chern-Simons flux, as we will explain in
Sec. llIC. Thus, heterotic string GUT models with Wilson-
line symmetry breaking often have a background flux and an _le ¢
associated constant term in the superpotential. To the best of 12
our knowledge the consequences of this term have not been
well explored in the literature. In a restricted subset of mod-
els, namely those with hidden-sector gaugino condensation
and very small Chern-Simons flux, the effect is dramatic: the
moduli can be fixed, in a controllable regime, by the mechaindicesA,B run from 0 to 9, andu, v are four-dimensional
nism we are proposing. spacetime indices. The internal space has real indicgs

'!'he orgar!ization of this paper is as follows. In Sec. Il Weand (antjholomorphic indicesi,j ﬁ The Einstein-frame
review basic facts about the relevant supergravitymetricg,, has Ricci scalaR,, While w is the spin connec-
Lagrangians in ten and four dimensions and about the supefion and¢ is the dilaton. The heterotic string has gauge field
potential generated by gaugino condensation in the hiddegrengttF ,, and gaugino fielgy,o; all traces are taken in the

Eg. In Sec. Il we review the quantization conditions on fyndamental representation. The three-form g is de-
three-form flux and describe how fractional flux can arise infineq py

the presence of flat connections with fractional Chern-
Simons invariant. In Sec. IV we describe how the fractional a
flux of Sec. Il can be combined with gaugino condensation H=dB— Z[Qs(A)_Q3("’)]' (2.2

to stabilize the dilaton at weak coupling, along with the com-

plex structure moduli. In Sec. V we include loop correctionswhere() is the Chern-Simons three-form,

and show that it becomes possible to simultaneously stabilize

the Kzhler moduli as well as the dilaton; this requires more Q3(A)=tr(AOdA+ FADALA) (2.3
restrictive assumptions about the choices of gauge bundles.. .

We observe that a strong-coupling transition naturally arise¥/Ith @ similar formula fords(w).

in this setting, and we provide a toy model that illustrates the To reduce to four-dimensional Einstein frame, we use the
smoothness of this transition. In Sec. VI we discuss som&nSatZ

basic aspects of the dual descriptions of our story, including 6 260 4 M.

the dual type IlA theories with wrapped D6-branes. In Sec. dﬁo—e dsfﬁ-e Gmndy™dy”, 2.4

VIl we explore the nature of the domain walls that interpo-\pereq0 s 4 fixed fiducial metric normalized to have vol-

Ia_te bet\_/veen_ configurations with _d|st|n<_:t fracfuonal Chem'ume 4a'3. Although this differs from the usual convention
Simons invariants. We conclude with a discussion of possible

1
2a/4

' 2

o
Hagc— 1_6e¢/2YlOrABCX10

!

o
- 197 Y2r(F AgFAP) — a'trx10l "D ax 10| (2.0)

!

extensions and broader issues in Sec. VIIl. Recently, three ds?,=e 8o-o0ds2+e27g% dymdy" (2.5
papers that have some overlap with our results appeared
[14-14. by a constant rescaling.4) is nevertheless appropriate for a

discussion of moduli stabilization, as we do not know what
the vacuum expectation valu&’EV) o will be until we
stabilize 0. For a similar reason, we go between ten-
dimensional string and Einstein frame with the unconven-
In this section we review the structure of the heterotictional scalinggyy=0yne?*? while one usually seegyy
string low-energy effective Lagrangian, with particular atten—=ghE,,,\,eW’*‘/’O)’2 [18]. The resulting Minkowski metric differs
tion to terms coupling the heterotic three-form flitk,to the  from the conventional diag{1,1,1,1) by a constant scaling
gauginos. In Sec. llIA we fix notation by presenting the depending on the VEV'’s of the dilaton and volume modulus.
low-energy action for the heterotic string in ten dimensions.To relate dimensionful quantities here to those directly mea-

II. GAUGINO CONDENSATION IN THE
HETEROTIC STRING
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sured from experiments, one must perform an inverse rescalvhere the coefficienB; represents the one-loop correction to
ing. Finally, note that thd™ matrices built from the metric the gauge coupling function, and the last two terms represent

scale withe?. nonperturbative corrections. Higher-loop corrections vanish
Let us decompose the ten-dimensional Majorana-Weyby standard holomorphy arguments, since the dilaton and
gauginoyo as radion are partnered in chiral multiplets with axions. The
physical effective coupling differs from the Wilsonian cou-
X10= X6 @ Xa+ X6® X2 » (2.6 pling by wave-function renormalization and integration over

the low-momentum modes.
where yg and y, are six and four-dimensional Weyl spinors
with positive chirality andyg is the zero mode of the internal 2. Four-dimensional action

Dirac operator for the gaugino, with the normalization Combining the relations given above, we reach the di-

e ve=1. (2.77 mensionally reduced action
We will choose to express the action in terms of a rescaled S4p= Sgravity T Sgauget Scv » (2.15
four-dimensional gaugina
2 4 1 I 3 13
A=y, e 9072+ 04 2.9 Soravity= 77 d*XV=04(Rs— 39,0 ¢—33,p"p),
. - - . . (2.16
which will give the standard kinetic term after dimensional
reduction. 1
. Sgauge: f d*x \! _94( - _ztr(F,uuF'uV)
1. Coupling constants 209m
The four-dimensional gauge coupling is 2
) —Z—II’()\F”DM)\)), (2.17
gym=e’. (2.9 vm
where the four-dimensional dilatog is related to the ten- 1
dimensional dilaton and volume modulus via Scy=— YL f d*xy—g,e? %
o= ¢l2—60. (2.10 /

2
6 0 @ 120
Another important scalar field of the four-dimensional theory X fxd ynNTa ( Himn 16° T""”) - (218
is the volume scaldrp,
where we have defined
p=pl2+20. (2.1
_ N * T 0 * *

The fields and p are related to the scalar components of Timn =t (X6 Ao+ Xe )\D)F'm“(X6)\D+X6)\D)]'(2 19
two A'=1 chiral superfieldS andT: '

and\p is the Dirac spinor corresponding 10 The perfect-
square interaction terif2.18 couples the background flux to

(212 the gauginos and therefore gives rise, as we will see in detail,
to a potential for the dilaton.

S=e %+ia,
T=e’+ib,

wherea andb are the axions that arise from the spacetime

. . . 3. Gaugino condensation
and internal components &,g, respectively. In particular,

Recall that in a pure\V'=1 supersymmetric Yang-Mills

(xda),,,=e 2¢H (2.13  theory in four dimensions with gauge grotfy the gaugino

mvp nvp . . )
condensate that develops at low energies is given by

with an analogous relation fd. [19-22:

The holomorphic Wilsonian gauge coupling functidif$ B
(wherei=1,2 runs over the twdEg gauge groupscan be  (tr{3\p(1— y5)Ap])=(tr(A A %))
expressed in terms @and T by

8mfW
=16m°M3exp — . (2.20

f'=s+BT+0(e %) +0(e ™), (2.14 c

2For the moment we assume that the Calabi-Yau manifold has *The unusual gravitational coupliné=a’/4 is an artifact of our
only one volume modulus. We will present the more general case iansatZ2.4). The physical gravitational coupling differs from this by
Sec. VB. the constant rescaling mentioned previously.
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Here M is the ultraviolet cutoff for the gauge theor)¥ is  in terms of which
given by(2.14), andCy denotes the dual Coxeter number of

H. We are interested in studying a gaugino condensate in

some subgroupd of the hidden-sectoEg gauge group that
arises in compactification of tHeg X Eg heterotic string on a
Calabi-Yau manifold. The appropriate ultraviolet cutdff
for a string compactification is the mass scale of Kaluz
Klein excitations,

(2.29

3
Wik = (T) h.

The nonperturbative contribution is conveniently ex-
abressed in terms of the Wilsonian couplify]

82 fW

Weondensa® — CHMS exp( - ) , (2.30

H

(2.29

e 120
M3=c ,

1312
2a where the normalization was obtained by comparing to

(2.18. Putting these two pieces together, the total superpo-

tential is
2u 8m?fW
—|h—Cyulexp — . (2.3)
C C

H

where c is a constant of order one. Combinirig.20 and
(2.27), we find that the gaugino condensateHiT Eg satis-

fies
e—lZo‘ 8772fW
<tr(7\)\)>=8W2C(W) exp( - Ci ) . (2.22

W=

C. Conditions for a stabilized dilaton

A potential for the dilaton arises from the perfect-square
interaction term2.18, which couples the background flux to
the gauginos. To analyze this expression we first observe that
the gaugino bilinear appearing (8.18) is proportional to the

B. Superpotential from flux and a gaugino condensate

For a variety of reasons it will prove useful to work with
a superpotential and Kéer potential from which one can
reproduce the interactiof2.18. One can derive the kinetic

terms in(2.16) using the Kaler potential
i

4q'3

/cz—log(s+§)—3|og(T+?)—|og( — fﬂmﬁ
(2.23

The superpotential for this system takes the form

W= W+ Weondensate (2.24

covariantly constant holomorphic three-form. This follows
from the fact thatyg is a gaugino zero mode on the Calabi-
Yau manifold[3]:

trl (X6 X* + X6 XL Tnn(XE + Xex*) 1= 2<tr(>\>\)>9|mn(+ C-g)-
23

Here () is the holomorphic(3,0) form on the Calabi-Yau

manifold, with the normalization (1/30);; Q"% =1.
Minimizing the perfect squarg2.18 forces (AN)Q)

where the first term is induced by the background flux andt+ (A\)*Q to align itself along the same direction in
the second term is a nonperturbative contribution arisingd*(M,R) as the three-form flud. This uniquely fixes the

from the gaugino condensate.

complex structure moduli and the four-dimensional gaugino

The flux-induced superpotential can be written as an intecondensate. Because the gaugino condensate depends on the

gral over the Calabi-Yau spa¢23—-26

2V2
WﬂUX:FJ HDQ (225)

four-dimensional dilaton, it follows that the interaction
(2.18 generates a potential for the dilaton.

However, the minimum of this potential is generically at
infinite coupling. In the absence of Chern-Simons contribu-
tions, the three-forniH obeys the quantization condition

This superpotential leads to the following term in the scalar

potential:

1

Vflux:meqjispfxdey V_goHlmnHlmnl (2.26

which is precisely the first term i(2.18. As we will explain
in Sec. lll, the number of quanta &f flux is roughly given

by

1
h=—f HOQ 2.2
42"t 229
so that we may define a mass parameiger
. 4v2cm?
V7 (2.28

1
——— | dB=n 2.3
27’ fQ (2.33
for any Q in H3(X,Z). The second term inside the perfect
square of(2.18, on the other hand, integrates over three-
cycles to

).

a/elzr

[(tr(AN)) Q5 +c.c]
cm’ p( g’ )( iaf +i0f _)
= exp — e O+e Q
a't? CHg\Z(M Q Q

872
=~cmla’ exp — — |-
Cuoim

(2.39
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These two terms cancel only if 1 1
CS(A,Q)=—ZJ Qg(A)z—ZJ tr(ADdA+ 3A0ALA)
8 Q 87 Jo

c ;{ 872 ) 2.39 T
—exp — =n. 2.3 (3.9
2 CHg\Z(M

. . L for the Chern-Simons invariant associated with a three-
This has no solution because the left-hand side is almo%anifoldQ and a connection one-ford.

alway$ less than one. This means that instead of stabilizing The invariantCS(A,Q) plays an important role in the
the four-dimensional dilaton at a finite value, turning on antheory of three-manifiolds. In particular, ¥ is a gauge
integral fluxdB actually drives the system to infinitely strong bundie overQ and if A'is a flat gauge conr;ection af . then
coupling. Our proposal is to usfeactional fluxes to over- CSA,Q) is a topological invariant, in the ser'15e that

come this problem an_d Stal.)i”@”‘" at finite coupl_ing. We CS(A,Q) takes a fixed value on each component of the
therefore turn to an investigation of the conditions undermodu’Ii space of flat connections @ Moreover, it is well
which fractional flux can arise in the heterotic string. '

known thatCS(A,Q) is well defined only modulo integers
and can take fractional values. If we further assume that the
IIl. FRACTIONAL FLUX INDUCED BY GAUGE FIELDS bundleV’ pulls back to a gauge bundié over the Calabi-

In Sec. A we review the quantization condition for Yau manifold X, then we obtain the desired situation where
three-form flux and explain its relation to the Chern-Simonsthe three-form flux takes fractional values. In the following
invariant. In Sec. 1l B we briefly discuss the class of three-S€ctions we will use this as a mechanism to produce small
manifolds used in our models and construct a simple exgua_nta of theH. flux, which can then be used to stabilize the
ample. In Sec. Il C we provide expressions for the Chernvarious moduli.

Simons invariants of these manifolds. In Sec. IlID we
discuss the conditions under which the fractional Chern- B. Three-cycles with fractional flux
Simons flux leads to a worldsheet anomaly, and we explain - certain classes of three-cycles in Calabi-Yau manifolds

how this can be avoided in our setup. admit connections with fractional Chern-Simons invariants.
We now turn to a discussion of the properties of such three-

A. Quantization conditions for three-form flux cycles.

Consider a compactification of th&gxEg heterotic Since only holomorphic and antiholomorphic components
string on a Calabi-Yau manifolX. The two-formB,,, is ~ Of the three-form flux contribute to the superpotentiabs),
required to satisfy the only fractional fluxes we need to consider are those of

Hodge type (3,05 (0,3). These can be viewed as fluxes
1 through special Lagrangian cyclgd. Typically these are
o2 de B=n (3.)  compact three-manifolds with non-negative curvature that

support gauge fields suitable for our purposes. According to

for any three-cycle in H(X,7) in order for the action of McLean[28], the deformations of a special Lagrangian sub-
worldsheet instantons to be single-valy&l However, the manlfold.Q can be identified w!th the harmonic one—fc_)rms on
gauge-invariant field strength is Q. Specifically, the deformation space has real dimension
b,(Q). Therefore, rigid special Lagrangian three-cycles are
a' a’ precisely rational homology three-spheres, i.e., three-
H=dB— - Q3(A) + - Qs(w). (32 manifolds withb,(Q)=0. We shall henceforth restrict our
attention to rigid special Lagrangian three-cycles. The local
This does not need to obey the same quantization law, due @alabi-Yau geometry near such cycles is always of the form
the presence of the Chern-Simons term. To see this let us .
assume for simplicity that the backgrouBdfield is trivial, Q.
and that the contribution of the spin connectiencan be
ignored. Then only the remaining factor of the gauge con
nection contributes. So instead & 1) we find the quantiza-

For example, we can choo§gto be the base of the special
Lagrangian torus fibratiof29],

tion rule F:X—0. 3.5
1 .
Py J H=-CSA,Q), (3.3 Indeed, following Strominger, Yau, and Zasl¢®28], con-
T™“a JQ

sider a Bogomol'nyi-Prasad-SommerfidBPS state in the
effective four-dimensional theory represented Wy D6-
branes wrapped over the entire mirror maniféld These
D6-branes are rigid and, because the fundamental grodp of
“We are assuming that the constarin (2.21) is of order one. It IS finite, there is only a discrete set of Wilson lines. In fact,
takes a larger value in a particular model, then integral flux mightthe latter account for the degeneracy of D-brane bound states

possibly stabilize the dilaton, albeit at relatively strong coupling.[30]. Namely, the number of bound statesMfD-branes is
We will not investigate this possibility here. given by the number o-dimensional irreducible represen-

where we introduced a standard notation
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tations of,(X). Under mirror symmetryrealized asT du- Q=S7s. (3.8
ality on T2 fiberg these D6-branes become D3-branes
wrapped around the bag@ In order for the D3-branes to
have no continuous moduli the base manif@dnust be a
rational homology three-sphere. Also, bY looking at the de'the gauge connectioA over this three-manifold, such that
generacy of D-brane bound sta~tes for different valuebl,of CS(A,Q) has fractional values. ¥’ is such a bundle, we
we conclude thatr;(Q) and m;(X) should be related. No- ¢can define its pullback/=f 1V’ under the projection map
tice that since bottX and its mirrorX are fibered over the (3.5). The resulting gauge bundM over X has the desired
same bas®), the above arguments imply that their homotopy properties and, according to the quantization (@), the
groups should be related as well. In particular, in a largehree-form flux in heterotic string theory on this background
class of examples one finds that the Abelian partsdfX) can take fractional values.

In particular, we haver,(Q) =75 and, as we will show be-
low, there are many choices for the gauge bundleand for

and 7,(X) are isomorphic; cf. Ref.31]. This construction can easily be generalized to an arbitrary
Let us study a simple example that will be relevant in theSpecial Lagrangian three-cycl that is rigid insideX. As
following. Consider a quintic hypersurface @P*, was explained above, the condition of rigidity implies tkat
is a rational homology three-sphere. Examples of rational
Z3+ 25+ 23+ 23+ z2 + (deformationg=0. (3.6)  homology three-spheres that can occur as special Lagrangian

cycles in Calabi-Yau threefolds include Lens spaces,

This hypersurface represents a Calabi-Yau varkgywith ~ Brieskorn homology three-spheres, and, more generally, Se-
hll=1, h21=101. Unfortunately,m (X,) is trivial, so X, ifert 'f|bered three—mamf'olds. Recall'that' the Seifert three-
does not admit a fractional flux induced by nontrivial gaugeManifold, %(ay,....a,), is a circle fibration over a two-
fields. Moreover, since the number of generations in a hetSPhere, withn multiple fibers. This includes Brieskorn
erotic compactification on a Calabi-Yau threefoldis re- ~ SPheres and Lens spaces as a special eas@, For in-
lated, in the case of the standard embedding, to the Eulétance, the Lens spade(p,1)=S%%, is a Seifert three-
number ofX [1], in the present case with the standard em-manifold with (@;,a,,a3)=(p,2,2). Many of these three-
bedding we find an unrealistically large numbe man!folds support nontr|V|a_I gauge connections with
= 3| x(Xo)|=100. A model with a more realistic spectrum fractional Chern-Simons functiong$2,33.

that does not suffer from these problems can be obtained by

considering a quotient oo, C. Formulas for the Chern-Simons invariant

X=X,/T, In order to determine the set of values@8A,Q) for a
given three-manifold), one has to study the space of repre-
by a discrete symmetry grodp=ZsX Zs, generated by two sentations of the fundamental group,(Q), into the gauge

elements group. A familiar example of a reduciblgauge connection
on a manifold withmr, =7, corresponds to a discrete Wilson
01:(21,25,23,24,25) — (25,21 ,25,23,24), line of the form
U=diage?™*1/p, .. e2mks/p) (3.9

92:(21.22,23.,24,25) —(£21,0°25,0%23,0" 24, 25),
(3.7
h _ y . freel h variations of which are often used to break the GUT gauge
where {=exp(2i/5). Sincel’ acts freely onXo, we have .55 15 a smaller subgroup, such as the Standard Model

X(X)=x(X0)/25=8 and m(X) =75X 7. Therefore, com- o456 group(12]. The Chern-Simons invariant of such a
pactification of the heterotic string on the resulting manifold 5\ 1action ig35] (see also Ref36])

X with the standard embedding provides a model with only
four generations, and there is a possibility to turn on non-
trivial Wilson lines onX. Also, it is easy to see that the base ki2
Q of the special Lagrangian torus fibration in this case is a CSAQ =2 5, mod Z, (3.10
rational homology three-sphere with nontrivial fundamental T ep
group.
For the quintic hypersurface3.6), the baseQ, of the  \yhere the sum is over all eight complex worldsheet fermi-

special Lagrangian torus fibration can be represented by thgys. For appropriate choices pfand of thek; the result is a
image of the moment mag;—|z|?. The topology ofQ,

can easily be understood in the large complex structure limit———

where it is Ce!ose to the bound-ary of the .tOI’IC polytope. 5A connectionA is called reducible if its isotropy subgroup, that
Hence,Qo=S". Now let us consider the action of the dis- j5 3 maximal subgroup that commutes with all the holonomie of
crete groud’. From(3.7) it follows that the generata, acts s a continuous group. Otherwisa, is called irreducible. For ex-
trivially on Qq, whereasg; acts freely. Therefore, we find ample, an S(®) gauge connection is reducible if its isotropy sub-
that the base of the special Lagrangian torus fibraon group is U1). Notice that reducible gauge connections may have
—Q is a Lens space, nonzero Chern-Simons invariant; see, e.g., R#4].
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fractional Chern-Simons invariahtThis has the surprising D. A global worldsheet anomaly from fractional
consequence mentioned in the Introduction: in many cases Chern-Simons invariants

the Wilson lines that are used to break the GUT gauge group o completeness, we now discuss a technical issue re-
to the standard model introduce a fractional Chern-Simongyeq to modular invariance in a fractional flux background.

invariant, and hence a fractional flux. Specifically, we present a sufficient condition for cancella-

~ We now turn to the more general question of the fraC+jqn of the worldsheet anomaly induced by fractional Chern-
tional Chern-Simons invariants of Seifert three-mann‘olds;Simons flux’

this choice covers a fairly large class of models relevant 0 \yhen the heterotic string propagates on a nontrivial ge-
the physical problem at hand. Without loss of generality, Weymetry M with nontrivial Wilson lines, there is a global
can take the gauge group to be @W(which can be realized \yqri4sheet anomaly in addition to the one-loop anomaly
as a subgroup in one of the twdegs). Let Q  geen in the ten-dimensional supergravidg]. This signals
=2(ay,...,8,) be a Seifert three-manifold. In this case, the ¢ the worldsheet instanton path integral is not necessarily
irreducible representations single-valued in such a background.

) To compute the anomaly, consider a one-paraméjer

p: m(Q)—SU2) family of maps from a one-parameter family of worldsheets

are characterized by what are called “rotation numbers” into the target space, with the worldsheets-a0 andt=1

(£my,...,=m,), where eachm; is defined modula,; , identified by a large diffeomorphisrh preserving the spin
structure¢: (2 X[0,1];),— M. The change of the fermion
m~m;+a;. determinant can be calculated using an index thed&5h
Furthermore, there exists at most one component of the | Z(t=1)—InZ(H' t=0)= —27-rif Q4(A),
representation variety realizing a given set of rotation num- o(EX[0,1]),
bers (m,,...,m,). If Ais the corresponding connection one- (3.15
form, the value of the Chern-Simons function@l(A,Q),
is given by the simple formula where
3 it A + — — +
1 Z(¢'\1;0; ,B;i AT g) = (detr ) (det, )(def, )(det” R).
CSAQ)=-2, —(m+\)?, (3.1 #10i Bi Are) = (def ) (det, et )
=18 (3.16
where Here the first three terms inside the logarithm are Dirac de-
terminants for the right- and left-moving fermions coupled to
A=0}. (3.12  the pullback of the spin connection and gauge connection,

and the fourth term comes from the right-moving Rarita-
In particu|ar, |fQ:§/Zp is a Lens space, from the genera| Schwinger ghOSt. If we were unable to find other sources to
formula (3.11) we find cancel the factor on the right-hand side, we would have to set
the Chern-Simons invariant to an integer to maintain the
1 ) single-valuedness of the determinants.

CSAQ)=- E(mﬁ)\) -5 mod7Z (313 Fortunately the Wess-Zumino term on the worldsheet can
help us. For the heterotic string on a Calabi-Yau manifold
where for simplicity we setm,=m;=0. This expression With flat B field and with no Wilson lines, the worldsheet
gives two sets of values of the Chern-Simons functionafction looks like
(listed in Ref.[32]) corresponding to\=0 and\=%, re-

2

spectively. It is convenient to introduce a new integer param- i - i ~
ot Y gerp S=f d2x{[ () + By ()]0, &' d_ Pl +igy ¢ (9_
m=2m;+2\x mod 2p + 10— y") +iG ag( SN[ 9 NB+ A Cg(04 )N
and rewrite(3.13 in the form +5Fijas ' ¢ NNB}, (3.17
m? A2 wherey' and\” are the right- and left-moving fermionE!
- 7 ik
CSA.Q)= 4p 2 mod Z. (3.14 is the Levi-Civita connection of the target space, &y} is

the metric on the gauge bundle. This action has manifest
In general, it follows from(3.11) that CS(A,Q) is a rational (0,2 supersymmetry. The question is, if we now turn on flat
number whose denominator can be as large as the order Wfilson lines supporting the fractional Chern-Simons invari-
the fundamental groupr,(Q). ant, resulting in multivalued fermion determinants, can we

8In Sec. Il D we review the existence and cancellation of a po- "We are indebted to E. Witten for explaining to us much of the
tential worldsheet global anomaly in such backgrounds. content in this subsection.
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find canceling effects from the bosonic worldsheet action? We have seen, then, that a sufficient condition for cancel-
The answer iges provided there is no torsion iH*(M,Z). lation of the worldsheet anomaly in the presence of fractional
To see this, consider the following exact sequence: flux is absence of torsion ikl*(M,Z). More specifically, it

is enough that no three-cyc@ on which the Chern-Simons

e form integrates to a fraction is a torsion cyclehiy(M,7).

3 3 . - SO A
—H(M,R)—H*(M,U(1)) We will henceforth assume that this condition is satisfied.

d IV. DILATON STABILIZATION

4 7 4
—H(M,Z)=HYM,R)—---. (318 We will now demonstrate that the combination of a

gaugino condensate and a fractional flux induced by the
Chern-Simons term of theg X Eg gauge connection can lead
to stabilization of the dilaton at finitéand, with sufficient
tuning, weak coupling. .

We denote the two gauge groufs’, i=1,2. Let us
henceforth adopt the convention tHa§" is the observable
Eg andE is the hidden sector. We imagine that there is a
- suitable visible-sector bundle that bredks’ to an attractive

dB=Q3(A). GUT group. If a realistic model is desired, we may also
_ require that the observablEél) has a gauge bundle with
It is crucial thatB is not globally defined whefiQQ3(A) is  |fcs|=6 to give three generations of quarks and leptohs.
fractional. The change in phase from the couplin@db the ~ the remaining visible-sector group we then turn on Wilson
worldsheets cancels the change in the fermion determinant#es which have fractional Chern-Simons invariant on some
in Eq. (3.15 [37]. On the other hand, iH*(M,7) has a three-cycle. The resulting fractional flux generates a super-

o pieceB d i<t for bundl ing f potential via(2.25.1°
torsion pieceB does not exist for bundles supporting frac- = 4 the purposes of this section we could take the hidden-
tional Chern-Simons invariant and we cannot cancel the gloz

bal worldsheot v The onl e tent Wilson I Sector bundle to be trivial, so th&t?) is unbroken. However,
al worldsneet anomaly. 1he only Consistent VWISOn fines arg prove useful in Sec. V to include a nontrivial gauge
then those that give integer Chern-Simons fluxes.

The reader will have noticed that if we modify the Wess—bundle n e‘”"(‘;? of thegg s. We therefore .embe.d an &)
Zumi . bundle intoEg™, breakingEg— E;. There is no index theo-
umino term into . .
rem protecting charged matter iy (as it has only real rep-
5 resentations so we can safely assume that the low-energy
f B+B, E- gauge theory in the hidden sector has no light fields trans-
2 forming in the 56. The gauge group then confines at low

energies, providing a gaugino condensate to balance the frac-
we no longer have¢0,2) worldsheet supersymmetry. We can tignal flux. as in Sec. 11 B.

preserve(0,1) supersymmetry by modifying the connection  Tphe gverall result is the superpotential31):
to

The Chern-Simons invariant e{jf;(A)] for a flat bundle
takes values itH3(M,U(1)) and is mapped into the torsion
part of HY(M,Z). If H%M,Z) is torsion-free, the Chern-
Simons invariant lives in the kernel a and therefore
Q4(A) lives in H3(M,R). So there exists, locally, a two-

form B:

W 2h 18 F( 87728) @D
= i 1 ; : =——18exp — , .
k=Tt 0" (dB)ju=T}+g"Q(A)jq . (3.19 woc 18

whereh=(27%a'%?)~1fHOQ is the flux contribution and

e e comple sttt < o onger vty Lo i el of g consension
' ) P ; 9 dual Coxeter number o, is 1811

with Chern-Simons gauge flux generates a spacetime super- .

potentialW= [Q3(A)Q and breaksV=1 spacetime super- tio';r%lovc\)/k:fgr \?vifrl: ;;Eés?/en;m?tnc vacuum, we solve the equa-
symmetry and0,2) worldsheet supersymmetry. It is obvious S '
from the supergravity effective action that with the addition 2

of a gaugino condensate, spacetime supersymmetry can be h=[9c+8c? RG(S)]GXP( ~ 18 ) 4.2
restored. However, we do not expect a useful worldsheet

description after including such spacetime effécts.

%Examples of Calabi-Yau models with three generations and non-
8 ) trivial 7, have appeared in Rdf39], and undoubtedly many more
Alternatively, to preserveé0,2) worldsheet supersymmetry, one -oui1d be constructed in a systematic search.
could modify J'; so thatVJl,=J,;+ T} 3" —T} =0 with re- 1%The fractional flux could instead come from hidden-sector Wil-
spect to the modified connection. This typically cannot be achievedon lines. We focus on visible-sector Wilson lines for simplicity.
by a local modificatiorti.e., a continuous deformatipand requires This superpotential is of the same form as the one appearing in,
starting with a non-Kaler manifold. This is closely related to Ref. for instance, Eq(12) of Ref. [40]. There, the small constant term
[38] and to more recent literature on nontler compactifications.  comes from th&0, 3) part of the type 1IBG; flux, while the expo-
The difference is that here we would consider noift€abehavior  nential arises from nonperturbative gauge dynamics as in our
due toQ;(A) instead of the more conventional nonft. system.
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Modest values of the Chern-Simons invariant lead to a soluall volume by incorporating the one-loop correction to the
tion at weak coupling. For example, lifis approximately; , gauge coupling. In Sec. VB we extend this mechanism to
which is easily attainable using the constructions of Sec. lllstabilize all the Kaler moduli of a threefold. In Sec. V C we
then(4.2) can be solved with R§~1.6, which corresponds investigate the strong-coupling transition that occurs in these
to agur~35. To achieve instead the often-quoted valuemodels. We present a toy model to illustrate the physical
agut~ 35, one needs of order 5. Of course the require- smoothness of this transition. In Sec. VD we discuss the
ments are weaker if we take the pure hidden-sector gaugeonditions under which the resulting theory is weakly
group to bekEg instead ofE;. coupled. In Sec. VE we summarize our assumptions con-

There are many variations of this mechanism that involvecerning the Calabi-Yau and th&; gauge bundles.
slightly different choices of bundles. It seems to us that the
most elegant models are those in which one set of Wilson A. One-loop correction
lines breaks the observable-sector GUT group to the Stan-
dard Model and also provides the needed fractional Cherr}—hr
Simons invariant.

We have already solved the dilaton equatidaV=0. We
can likewise solve the equations for the complex structur
moduli by makingH of type (3,0)+(0,3). In this way theH fW—s+8T (5.1)
flux from the Chern-Simons invariant generically stabilizes M b
a.” Complex structure moduli. The HQ&EI’ mOdu|i Of the Wherei 21,2 |abe|s the gauge grouﬁl) 'E(82) . In the case
Calabi-Yau manifold, however, are not yet fixed. In particu-yithout space-filling heterotic five-branes, it is a simple mat-
lar, there is a flat direction for the volume modullis ter to derive the linear terms i by dimensional reduction

In fact, this flat direction is a general property of “no- of the BOX4(F;,F,,R) term in the ten-dimensionakg
scale” models. From the forr(2.23 of the Kehler potential,  x g theory. The result is

combined with the fact thatV is independent of the volume

We first consider, for simplicity, the case of a Calabi-Yau
eefold that ha®i>'=1 and hence a single K&r modu-
lus. When one-loop corrections are incorporated, the Wilso-
é]ian gauge kinetic functions have the fofgh14):

modulusT at this order, we see that the supergravity poten- 1
tial undergoes a simplification B1= a2 fXJ lea(Vy)—ca(Va) ], (5.2

V=eX(g!l D,WD; W~ 3|W|2)—eX(g2°D ;WD ,W), L
“3 Bo=5 fXJD[c2<vz>—cz<v1>]. (5.3

wherei,j run over all fields, bug,brun over all fields except

T. As a result, we are left with a flat directiof, Generically  HereJ is the generator ofi*(X,7). Notice that

D{W=#0, so supersymmetry is broken. Nevertheless, the

vacuum energy vanishes at this order of approximation, since B1t B2=0 (5.9

we have solved ,W=0 for all a. Loop corrections will

plausibly destabilizeT, resulting in a runaway problem for

the overall volume. 1
We will suggest a solution to this problem, in the context ﬁl_ﬁzz_zf JOC,(TX). (5.5

of Calabi-Yau compactification, in the next section. How- 47 Jx

ever, we should point out that investigation of supersymmet-_ ) ) )

fic non-Kzhler compactifications of string theory has re- This fact that the difference of the gauge coupling functions

cently been renewetee, e.g., Ref§41,42,15,43. In such is given by a.topologlcal mvarla_tr(in the case of the stan-

compactifications the overall volume modulus can be stabidard embeddingwas observed in, e.g., R¢#4]. One can

lized at tree level by balancing fluxes against the nohi ~ €asily calculatgs for a few simple examples. We present the

nature of the geometry. The combination of this tree-level calculation below fodc,(TX); one can imagine partition-

stabilization with our results on dilaton stabilization could ing this intocy(V, 9) in various ways:

plausibly yield weakly coupled models with all moduli sta-

bilized. This would require a compactification manifold that f JOc,=10 JOJOJ=50,

admits moderately small Chern-Simons invariants. [4]5] [4lIs]

while in the case of the standard embedding

V. DILATON AND VOLUME STABILIZATION f JDCZZGJ JOJOJ=54,
IN CALABI-YAU MODELS [5lI3 3] [5lI3 3]
In Sec. V A we show that it is possible, with appropriate . .
choices of bundles, to stabilize both the dilaton and the over- [6]3 2 2]‘]DC2_5 63 2 Z]JD‘]D‘]_60'

From these examples it is plausible ti#atan be reasonably

12f there are vector bundle moduli then these are also unfixedlarge, at least of order one. .
However, in Sec. VIl we explain why bundle moduli could be  We will choose the gauge bundi so thate?) is broken
absent in generic situations. to a subgrouH (say E;) without any light charged matter.
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The resulting four-dimensional theory therefore has a sectofhec,, are the intersection numbers Xxf
that is pureN'=1 supersymmetric gauge theory with gauge The Kahler potential(2.23 now takes the form
groupH, which undergoes gaugino condensation at low en-

ergies. Let us furthermore choose the bundjeso thatE{" = .
erg _ ] 8 K= —10g(S+8S) —10g(Cy g, T*TET)
is broken to a low-energy group and matter content that can
contain the Standard Model. Finally, we tagg=—8,=2 i _
>0, so thate{" is more strongly coupled thaB{? .13 log Qo |, (5.14
The complete superpotential is then
W 2h 87’ with 27*=T*+T*, while the complete superpotential, in-
—= " Cnexp - C_(S+ BT)|. (5.6 cluding hidden-sector gaugino condensation, is
M c H
This superpotential depends nontrivially on both of the chiral W  2h 8772
multiplets S and T. The condition for a supersymmetric —=——Cy exp( - —(S+ B“H))- (5.1
vacuum is e C Ch
W.s=W;r=0, (5.7 This superpotential depends nontrivially on the dilaton and

. . - . .on all the Kaler moduli.
where the Khler covariant derivatives are determined using In order to find a supersymmetric solution we will assume

(2.23. o -
. . - that all the“ are nonzero. Combining.15 and(5.14) and
A solution of (5.7) necessarily satisfies imposingW.s=W.r =0, we find

3S=7T, (5.9

327%S si(c TTPTY)
>. &Tﬁ aBy

h=| M 4 gen?Re(s
= cm RES) |ex cy

(5.9 = B3(Cop, T*TPT), (5.16

The resulting solution is a supersymmetric AdS vacuum in

which both the four-dimensional dilatop and the four- he Cye ’ _ 32a%s

dimensional volume modulyshave been stabilized. We will =|— t8cm Re(S) Jex Cy |’

defer our discussion of the physicsj}" to Sec. V C. (5.17

B. Stabilization of multiple Kahler moduli where the second relation is identical (&9).
On a threefoldX with h*1>1 Kahler moduli, the formulas The result is a supersymmetric AdS vacuum without
of the preceding section can be generalized: moduli. To recapitulate, we have now seen that the combina-
tion of fractional flux with a gaugino condensate can stabi-

f}’i"):SJr BTy, (5.10 lize the complex structure moduli, the Klar moduli, and

the dilaton.
where i=1,2 labels the gauge groups{) ,EY?) and «
=1,...h*" indexes the independent Klar moduli.

We will need to define a few quantities related to the
generatorsl® of HY(X,7): We have just seen that the potential for the dilaton and

Kahler moduli has a supersymmetric AdS minimum whose
1 location is given, in the case of one Ilar modulus, by5.8)
,31— JeOlca(Vy) —ca(Va) ], (5.1)  and(5.9. However, there is an evident problem with this
minimum. Suppose that some subgrougsgf remains un-
1 broken at low energies. The naiEésl) gauge coupling func-
Ja[][cz V,)—co(Vy)], tion, f;=S— BT, appears to beegative f;=—2S. More-
over, one might think that before becoming negativenust
(5.12 pass through zero, at which point one encounters a singular-
ity where the gauge coupling diverges.
- 181y It is cleara priori that such a problem cannot exist in the
“’By_f TR ®.13 full theory. Moduli (and parametgr spaces of four-
dimensional supersymmetric theories are complex and hence
can only have singularities at complex codimension one. It
13\otice that we are putting more instantons in the hidden sectofollows that one can always continue around any point of
than in the observable sector, which is a somewhat unusual situatighaively singular gauge coupling, obtaining a unitary theory
compared to the bulk of the literature. with positiveg? on the “other side.” Numerous examples of

C. A strong-coupling problem

2_8 2
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such phenomena have been explored in various foumite gauge coupling in the firdEg. This suggests that one
dimensional supersymmetric gauge theories over the paspbuld use the type Il geometry to understand the nature of
several years, most recently in interpreting @e flop in  the strong-coupling singularity. While this approach is rather
Ref. [45]. complicated for general (see, e.g., Ref46] for work in this

In fact, what we are encountering herdas least in those direction, we will see that the case=1 is relatively
cases that are most easily undersjomdlose relative of the straightforward.
well-studied strong coupling transitions in six-dimensional It is important to remember that type Il strings on such a
string vacua with(0,1) supersymmetry46]. The observable ~Calabi-Yau threefold yieldv=2 supersymmetry in four di-
sector gauge coupling diverges precisely when the @fio ~ Mensions, twice as much as't_he models we have cqn5|dered
reaches a fixed value; this is in fact a point in moduli spacd” this paper. This greatly facilitates analysis of the singular-
where an effectivesix-dimensional coupling is becoming ity, In part!cular bgcause the geometry can be described via a
strong. As explained in Ref46], in dual type Il or F-theory prepotential. A direct study of tha/=1 system would be

descriptions, this phenomenon can be modeled locally ifnore challenging, but we expect the generic features, includ-

terms of a geometric transition that affects the D-branes o9 the positive gauge C(_)upling function, to be similar in the
local geometry responsible f&S" . On the other side of the two cases. One would simply have to study the geometry of

. . 1) . ) ) a dual F-theory compactification on a Calabi-Yau fourfold,
geometric transition, th&g~ physics remains sensible, and

. . e instead of type Il strings on a Calabi-Yau threefold.
there is a new effective description of the low-energy gauge

theory.

In the remainder of this subsection we investigate this
strong-coupling singularity. The resolution is necessarily We will now construct a simple model in which, in a
model dependent, so we simply review some dual descripsense that we will make precise, the gauge kinetic téym
tions that shed light on the phenomenon, and give an explickindergoes a flop. Recall that in the flop of a curve, the vol-
example where the physics on the “other side” of the tran-ume of the curve vanishes on a wall of thétHer cone:*
sition is fully understood. Of course in as much as oneHowever, instead of continuing to negative values on the far
wishes to embed the standard model§’, it would be  Side, the volume is actually positive in the newtter cone.
crucial to have a good dual description of this new phasel certain /=2 heterotic—type IIA dual pairg50], the sin-

For readers who find this too daunting a challenge, we cafularity in the Calabi-Yau prepotential when a curve in the
only suggest that the special cagg,— 0 neatly sidesteps the tyPe lIA geometry undergoes a fldand an effective gauge
issue, leaving a no-scale model with an unfixed volumecoupling becomes singulais dual to a heterotic strong-
modulus. However, we emphasize that more generally, thgquplmg singularity. We describe one such example below. It
only assumption we really need to make is that the physics df Important to stress tzhat as expected on completely general
the transition does not introduce new terms in the superpgdrounds, the effectivg” remains positive everywhere in the
tential. For models wher&(" is broken to a low-energy Properly interpreted type Il moduli space.

field theory that does not dynamically generate a superpoten- The examples we have in rr_nnd, and the|_r_heterot|c dua_ls,
tial, this is quite plausible. are well known. Our presentation of a specific example will

closely follow [51], which mapped out in detail several
1. Dual descriptions of the strong-coupling singularity heterotic—type Il dual pairs. o
Let X be the Calabi-Yau threefold space, which is an el-

The appearance of strong gauge coupling in heterotigyiic fibration over F,. The prepotential for the Keer
models with nonzerg is well known. The problem is easily ,oquii space o is [51]

seen in compactifications of heterotic M-theory to four di-
mensions, where it manifests as a linear shrink#ig of the
Calabi-Yau volume as a function of location on the M-theory

interval. For some critical size of the interval, the Calabi-Yau

manifold has zero volume at one boundary, rendering thgvheretti a”redthg Ifdmle(r)modull. -ll:.hz volumte (;f(’;hellhcutrvet_
supergravity approximation invalid. IS controfed byts. Lne can find a Set of dual neerotic

A closely related problem arises in compactifications OfvariablesS,T,u which are related to the type Il variables by

the EgX Eg heterotic string on KX T2. The gauge bundle in
such a model is specified in part by a choice of instanton t.=U. t,=T—-U. t.=S— I_ B (5.19
. , . o 1 y 2 f 3 . .

numbers (12 n,12+n) in the twoEg’s. If nis positive then 2 2
the firstEg is more strongly coupled than the second; this is
analogous to positiv@ in our models. At a finite value of the In heterotic variables, the prepotential reads
heterotic dilaton the firsEg has infinite gauge coupling.

This configuration is dual to compactification of type 1A Fn=STU+ U3 (5.20
string theory on a Calabi-Yau threefold that is an elliptic
fibration over the Hirzebruch surfaég,. Recall that~,, has
a single curve of self-intersectionn. The volume of this  4n the full physical theory the volume is complexified, and one
curve is dual to the heterotic dilaton in such a way thatcan go “around” the wall of the Khler cone by turning on a non-
shrinking the—n curve to zero volume coincides with infi- zero ¢ angle[48,49.

2. A simple flop model of the strong-coupling singularity

Fu=334 33, + 3t,t5+ 3t + tytotg, (5.18
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We know that the type Il operation of shrinking thel curve  small®
corresponds to strong gauge coupling in the heterotic picture.

This instructs us to identiffs—T/2—U/2 with the visible- (SD*=e">1, (5.24
sector gauge couplint. 312
Now, to study the effect of the strong gauge coupling, we R IS
) . e?<1. (5.29
flop the curve corresponding tg. The fields transform as
(tg,t,ta)— (t+tg,to+ts, —t3), (5.21)  Recall that¢ is the ten-dimensional dilaton; we denote the

four-dimensional dilaton byp. Using the relation5.8), we
have

leading to the prepotential foX, the image ofX under the

flop. It turns out thak is not a K3 fibration, and furthermore 3\ 5

it is not dual to a perturbative heterotic model. B S =e%, (5.26
Given this linear implementation of the flop in type Il

variables, we can apply this transformation to the heterotic 33
variables(3.9). This yields (E) F=e?. (5.27
( UT-U.S— I_ B) Clearly 8>3 is a necessary condition for perturbative valid-
’ 2 2 ity. It follows from (5.3) that this condition can only be met

if the bundleV, is nontrivial; hence gaugino condensation in

—sl. an unbrokenhidden-sectorEg is not compatible with this

method of volume stabilization. To see explicitly that lage
(5.22 is possible within known constructions we refer to the plots

of Ref.[52].

The key result is that the visible-sector gauge coupling has From the form of the solutiorf5.9) it is clear that the

changed sign, values of S and T at the stable minimum increase as the
Chern-Simons invariant becomes smaller. We are therefore
T U T U interested in finding three-cycles admitting extremely small
S—5m5 Sty 5. (5.23  Chern-Simons invariant.

Small values of the Chern-Simons invariant are distasteful
but not unattainable. We saw in Sec. Il that it is possible to
get a small Chern-Simons invariatt by working on a
Calabi-Yau manifold that has a three-cy€esatisfying

u T T 33U T

2 25 2 37

—

S+ Y
2

In this new Kaler cone, the visible-sector coupling is sen-
sible providedT+U>2S, which is complementary to the
initial restriction T+ U<2S.

We have therefore seen that in this very simple example, m(Q) =7,
the gauge coupling function for the visible sector is sensible
and positive on both sides of the strong-coupling transitionfor p>1. The simplest example of this is a Lens space. One
We expect this result to hold in all of the cases of interestway to generate even smalleris to takeQ to be a general
simply from macroscopic arguments about supersymmetrigeifert manifold (a,...,a,), since the minimal value df
theories. It would be interesting to generalize the simple ilayould scale like
lustration above to\V=1 heterotic vacua by studying the

dual geometric transitions in F-theory compactifications on . N
Calabi-Yau fourfolds. h ”iHl a;. (5.28
D. Fractional invariants and weak coupling With severala; one could then generate very small fractional
fluxes.

Let us now determine the conditions under which the
stable vacuum exists at modestly large valuesSand T. _
Note that this does not mean that all of the physics is weakly E. Summary of requirements
coupled, since as we just discussed, we have undergone a et us briefly review the conditions on the Calabi-Yau
strong-coupling transition iEgl). However, some other sec- manifold X and the gauge bundlég that ensure the exis-
tors of the theory may remain perturbative at laBandT,  tence of the supersymmetric vacuu9) with both dilaton
so it is still of interest to know that stabilization at lar§e and Kaler moduli stabilized. Conditions essential to the
andT is possible. mechanism are listed first, while those related to detailed

The goal is to arrange that the volume of the Calabi-Yaumodel building come last.
manifold is large in string units, while the string coupling is

18For simplicity we now present the formulas for the case of one
5To make contact with our earlier notatioh,andU are the two  Kahler modulus, the overall volume; the generalization is straight-

T andpB,=3 for a=1,2. forward.
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(1) In order to achieve a small value of the three-formassumption we have made is that the unknown physics of the
flux, the Calabi-Yau manifolk must have a nontrivial fun- visible sector does not modify the superpotential. This seems
damental group and must admit gauge connections that halxelievable provided that the low-energy=1 gauge theory
a fractional Chern-Simons invariant on a three-cy@Il¢hat  that emerges frorEgl) is not one that dynamically generates
is not torsion. One of the bundl&g ,V, must then be chosen a superpotential.
to have such a gauge connection, i.e., suitable Wilson lines.

These conditions arautomaticallymet in a large class of VI. DUALITY TO TYPE IIAAND M THEORY

realistic string models. The models studied in this paper are related by various

(2) For gaugino condensation tq be pgs&blé—h; Eg) ’ dualities to a particular class o8f=1 compactifications of M
the bundleV, must breakEg—H without introducing any  haory and type 1A string theory. These models have re-
light charged matter, leaving a pure gauge group. For eXgently received some attention due in part to phenomenologi-
ample, if H=E; then there is no index theorem protecting ¢g| applicationgsee, e.g., Ref$13,54—6(). After appropri-
charged matter transforming in thé, so we expect that this ate duality transformations our mechanism for moduli
condition is generically satisfied. If insteati=Eg the num-  stabilization can be applied to these models as well. In this
ber of chiral generations i [xcs(V®)|. The bundlev,  section we briefly discuss various aspects of these dualities,

should be chosen so that this vanishes. as well as their implications.
(3) In order to stabilize the overall volume we must
choose bundles for which the quantjgy defined in(5.3) is A. Heterotic—type lIA duality

nonzero. To stabilize multiple Kder moduli we must take Our considerations have thus far been limited to Eae

all of the B3 to be nonzero. To ensure stabilization of the « £ heterotic string, but the discussion can be repeated al-
volume above the string scale, we should also haye 3, ot verbatim for the Spin(32)4 heterotic string compac-
with an analogous condition for the case of many moduli. tified on a Calabi-Yau manifold. The latter theory is related

(4) If the Kahler moduli are to be stabilized, the initial 5 gy A/=1 compactification of type IIA string theory by the
configuration and the final stable minimum are on Oppos'tefollowing chain of dualities:

sides of a transition in which the visible sector becomes
strongly coupled. It follows that the visible-sector gauge
theory can only be properly understood in models where this
strong-coupling transition can be followed in detail. Better
understanding of this transition is a necessary prelude to the
building of realistic models. Readers uncomfortable with the ] ) ) o )
transition are advised to sgt = 8,=0, in which case one is Let us now .explam. each step in this duality in more detalil
left with a no-scale model with fixed dilaton and an unfixed@nd, in particular, find the relation between the parameters
volume modulus. and the coupling constants. The first relation is the standard
(5) Further constraints will be necessary to obtain realisticStrong-coupling—weak-coupling  duality ~ between  the
low-energy physics. For exampl¥, should contain appro- SPIN(32)/Z, heterotic string theory and type | string theory.
priate Wilson lines that break the visible-sector GUT to the ! ne effective supergravity action in the latter theory is simi-
Standard Model gauge groufit is sometimes possible to lar to the he_terot|c supergravity action, with the type | and
arrange that these same Wilson lines also provide the fradieterotic variables related by
tional Chern-Simons invariant.The vacua we have con-

S =
Spin(32)/7, Het«—type k-type [IB/Q)

;type HHA/(Q-T). (6.0

structed have negative cosmological constant, with an energy == bu, (6.2
density not far below the string scale. This must certainly be
modified to lead to a sensible cosmological model. Finally, if Iun=0hne %M. (6.3

we wish to stabilize at very weak coupling then the funda-

mental group of the Calabi-Yau manifold must be unusuallyat the next step in the chain of dualiti€6.1) we identify
large. type | string theory with an orientifold of type IIB closed
Clearly, the greatest obstacle to CaICUIab”ity in this SCE'String theory, wherdé) denotes the worldsheet panty symme-
nario is the Strong-COUpling transition in the observable SeCtry_ The parameters and the Coup”ng constants in the super-
tor. It is conceivable that one could avoid this dlfflCUlty by gravity action do not Change under this identification, al-
combining fractional Chern-Simons invariants and gauginghough some terms acquire a different interpretation. In
condensation with a non-Kéer compactification geometry, particular, in the type 1B theory the gauge degrees of free-
for in this case the volume modulus can be stabilized at tregom arise as open string states on the world-volume of 32
level. However, for the bulk of our analysis, the only real space-filling D9-branes. Thus, the Wilson lines of the origi-
nal heterotic string theory become Wilson lines on D9-

branes, and the ten-dimensional gauge coupling is simply
"One could imagine other possibilities in which charged matter in

the hidden sector generates a nonperturbative superpotential that gz
can be used for stabilization. See, e.g., R&8] for a discussion of 210 =e%=g%iB, (6.4)
this possibility in the context of racetrack models. a'd
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From (6.2) and(6.4) we find Klebanov and Witteri57] (see also Ref.61]), where it was
shown that the proton decay rate from dimension six opera-
bis=d1=— dy. (6.5 tors is given by’
The last step in(6.1) is the T duality—mirror symmetry, to gymL(Q) %t
be more precise—between type IIB string theory on a Aiia~ MéUT ' (6.9

Calabi-Yau manifoldX and type IIA theory on the mirror

manifold X. Strictly speaking, the dual background is anwhere gyy is the GUT gauge coupling, anéll gyt is the
Orientifo|d of X, Where the inv0|uti0n Changes the Orienta- Uniﬁcation Scale. Th|S Scale iS determined by the Size Of the

tion of the T fibers. UnderT duality, the space-filing D9- three-manifoldQ,

branes transform into D6-branes wrapped over the l@se, L(Q)| 12
of the special Lagrangian torus fibratip@9]. The param- MGUT:(_) , (6.10
eters of the resulting type IIA background can be obtained Va

from the usuall-duality rules: where the extra factot (Q) accounts for the one-loop

WH threshold corrections from Kaluza-Klein harmonics @n
X [56,57. Specifically,L(Q) is a topological invariant of,
Vga/s/z ’ known as the Ray-Singer torsion.
(6.6) Let us now compute the proton decay rate in our heterotic
models. In contrast to the result of REE7], we expect in
Here Vyx and Vg denote, respectively, the volume of the our case the conventional amplitude
Calabi-Yau spaceX and the volume of the base three- )
manifold Q in the string theory given by the superscript. A 9vm b2+ 20
To summarize, after a chain of dualiti€8.1) we found h @€ '
that our heterotic string models are dual to llA string theory
on a mirror Calabi-Yau manifol&, with D6-branes wrapped Where the unification scale and the gauge coupling are given
over the special Lagrangian three-cy@e This is precisely by (2.9 and (2.21), respectively. By tracing the chain of
the configuration studied in Refg5,13,56,57. In these pa- dualities(6.1) in reverse, being careful to include the con-
pers,Q is usually taken to be a Lens spa@= 53/zp, and stant rescaling of the Einstein-frame metric mentioned in
the Calabi-Yau manifol& is usually assumed to be noncom- S€C: I, one can verify that6.9) and (6.1 differ by the

b 13 A=) al3 H ihi H
pact. If X is compact, as described above, then the presen%ﬁor aGUTe?( Iaine’dv}/r?'g;f?;?]lblts the anomalous scaling
of orientifold six-planes is crucial to cancel the D6-brane acut EXP '

1B
VX
VgBa/,S/Z

dua= g —log =3¢u—log

(6.17

MGUT

charge. :

Observe that on the D6-brane world-volume there is a B. Lift to M-theory
topological coupling between the gauge fiel&,=dA Now let us consider the M-theory lift of the type IIA
+ADA, and the Ramond-Ramond tensor field3=C,  configuration considered above. Since D6-branes wrapped
+Cst-r, over a special Lagrangian submanifoQC X preserve\’

=1 supersymmetry in four dimensions, their lift to M theory
must be described by a seven-dimensional manifﬁ()lgj2

with G, holonomy. TopologicallyXg, can be viewed as a
K3 fibration overQ [62],

K3— X, (6.12

!
CS(A,Q)pr, (6.9 o

, ) ) , ) such that each K3 fiber has an ADE singularity, which cor-
which we obtained by expandin@.7) and integrating by esponds to the type of the gauge group on the D6-branes.
parts. It follows that D6-branes wrapped ov@with a non- g, example, S(5) gauge theory would lift to &, mani-
zero value of the Chern-Simons invariant act as an effective 4 \with A, singularities in the fiber. The dual M-theory

source for the Ramqnd-Ramqnd four-form field strength ingeometry(6.12) can be obtained directly from the heterotic
the four uncompactified directions.

string theory on a Calabi-Yau manifoKiby using the famil-

iar duality between M theory on K3 and heterotic string

theory onT2. Applying this duality to each fiber in the spe-
Using the chain of dualitie6.1) we have now related our cial Lagrangian torus fibration{—Q, we end up with M

setup to compactifications of type IIA string theory, wheretheory on a seven-manifol)a!G2 with G, holonomy and to-

the GUT gauge theory is realized on the world-volume of

D6-branes wrapped over a compact three-mani@l&bimi-

lar configurations have been discussed in a recent work ofFor simplicity, we omit numerical factors of order one.

trf CleF. (6.7)
R*xQ

Among other terms, this expression contains a coupling

Comments on proton decay
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pology (6.12). Various aspects of M theory d@, manifolds

of this kind have been studied in Ref§4,55,63,64,13,56 WﬂUX:J Q3(A). (7.2
Now let us consider a D6-brane configuration with non- Q

trivial gauge fields characterized BS(A, Q) # 0. According Now let us consider the degeneracy of domain walls in-

to (6.8), such gauge fields act as a souftmealized on the  grpolating between two vacua with fractional Chern-Simons
three-cycleQ) for the space-time component of the four- functional, C(A,Q), for some three-cycl@C X. At least

form flux, Goips. In the effective four-dimensional field i, the classical theory, the BPS domain walls come in con-
theory, this means there is a nonzero superpotential inducgg,ous families. Specifically, the moduli space of domain

by CXA,Q). In M theory, the relevant interaction tert®.8) 55 with fractional charge, is isomorphic to the moduli
appears due to anomaly inflow at the location of ADE SiN-space of charge, instantons orQ X R

gularities[65], while the effective superpotential is generated
by topologically nontrivial gauge fields supported at the sin- M(QXR;Cy). (7.3
gularities[58].
The models studied in this paper have real values of th@vithout loss of generality, we can study &) instantons
Chern-Simons invarian€S(A,Q). However, Acharya has and, for concreteness, takgto be a Lens space,
argued 58] that, in a more general setting, the superpotential
induced by gauge fields should be given bycamplex Q=S%17,.
Chern-Simons invariant. A deeper understanding of the con-

nection between these ideas would be quite interesting. ~ Then, according t¢3.14), the Chern-Simons functional @
can take the fractional values

VII. DOMAIN WALLS m2 A2

CSAQ)=————. 7.4
In order to obtain an expression for the effective superpo- SA.Q) 4p 2 74

tential of anN'=1 supersymmetric gauge theory, it is often ) .
useful to study the spectrum of BPS domain walls. More-Here we follow the notations of Reff68], introduced at the

over, in a theory with gaugino condensation, the domairfnd of Sec. lll, wherenis an integer defined modulop2

walls provide information about the breaking of chiral sym- _Consider an instanton 0@ xR that interpolates between

metry and about other phenomena of interest. dlﬁerent values of the Chern-Slmqns invaria@S(A, Q).
With this motivation in mind, let us consider domain According to(7.1) and(7.4), such an instanton connects two

walls in our model$? where different vacua are character- States characterized by different rotation numberandm’

ized by the values of the Chern-Simons functional,=mmod2, and carries a fractional instanton chage

CS(A,Q). Hence, the BPS domain walls are represented by kip. Put dn‘fereptly, it is described by a triplet of integers,

self-dual field configurationginstanton supported onQ  (k.m.m’). Following Ref.[68], let us expressn,m’)~(a

X R, whereR represents a spatial direction orthogonal to the— b,a+b) in terms ofa andb, such that

domain wall. SinceCS(A,Q) takes fractional values, such

instantons carry fractional charge, a=(m’+mj)/2 mod p,

(7.5
b=(m"—m)/2 mod p.

1
CZ:_WJ tr(FOF)=CS(A,Q)| -~ CSA.Q)|+ Using the above expressiof7.4) for the value of the
(7.7 Chern-Simons functional, we find the corresponding instan-

ton number:
The instanton action is given by« gtr(FO* F), which, us- _
ing the self-duality of the gauge field, can be written as c2=CSAQ)|-»~CSA Q)=
(a—b)? (a+b)? ab
=== + 7 =—.
J tr(FOF). P P P
QXR
Therefore, we have
Furthermore, using7.1) one can rewrite the instanton action k=ab mod p. (7.6
as the difference of the values of the Chern-Simons func-
tional, ACS(A,Q). Comparing this formula with the stan-  Now we are in a position to describe the moduli space,

dard expression for the tension of a domain wallNi=1 A4, of instantons orQXR that interpolate between gauge

supersymmetric theory, =[AW|, we come to our previous connections with rotation numbems=a—b and m’=a

result(2.29 for the effective superpotential induced by non- +p. Since instanton configurations always have a modulus

trivial gauge fieldq 23,24 that represents their position R, it makes sense to divide
by translations and consider the reduced moduli space,

For a related discussion see also RE86,67. M'=MIR.

086008-15



GUKOQV et al.

K

TABLE I. Dim(M") for the Lens spaceQ=S%7Zs.

0 1 2 3 4
0 _ _ _ _ _
1 - 0 2 2 2
2 - 2 4 6 10
3 - 2 6 12 18
4 - 2 10 18 24

Using index theorems one can compute the virtual dimensio

of the reduced moduli spa¢é8],
) 8k
Dim(M')= ?—4+n

2p—l . im im’
= ot sire 2™ _ i ,
pi=1 p p p

(7.7

wherene{0,1,2 is the number of,m’#0,p. It turns out
that this virtual dimension is always even. In order to illus-

trate this general formula, in Table | we list the dimensions
of the moduli spaces of fractional charge instantons on

S*/ZsXR. In terms ofa andb, m=a—b, m’=a+b, and
the instanton numbeéc=ab mod 5.

The dimension of the moduli space tends to grow with the

instanton numbeikk=ab. For low values of the dimension,
one can describéVt’ rather explicitly using general topo-
logical properties[68] (see also Refs[69,70)). When

Dim(M')=0, the reduced moduli space must be just

point. In this case, we have only one domain wall interpolat-,
ing between two vacua. Furthermore, the Euler number of.

M’ is given by the number of solutior(g, b) to Egs.(7.5
such thatab=Kk. In particular, this implies that
x(M")=0. (7.9

Hence, when Dim\1") =2, the reduced moduli space must
be of the form

M’ =SF,

whereF is a set of 0, 1, or 2 points.
For example, let us takp=5, a=2, andb=1. This im-
pliesk=2,m=1, andm’= 3. Then, from Table | we find that

M’ must be of real dimension 2, and by looking at the Euler

number y(M')=2 one concludes that in this example the
moduli space is simply a two-sphere,

M =

PHYSICAL REVIEW D 69, 086008 (2004

The above results suggest the following conjecture for the
degeneracy of domain walls with small fractional charge,
c,=k/p,

1
2

if k=1

(Number of domain walls= i ko'

(7.9

In other words, we expect that there is always only one do-
main wall of the minimal fractional charge, whereas the de-
generacy of domain walls with twice the minimal charge is
equal to 2. It would be interesting to pursue this analysis
further.

VIIl. DISCUSSION

We have argued that it is possible to stabilize the complex
structure moduli, Kaler moduli, and dilaton of heterotic
Calabi-Yau compactifications. Our ingredients are hidden-
sector gaugino condensation combined with a flux-generated
superpotential arising from a flat connection with fractional
Chern-Simons invariant. For the non4ar compactifica-
tions of Refs[41,42 our result looks even more promising,
since there the volume is stabilized at tree level, and the only
concern is the dilaton.

One omission from our list of stabilized moduli is the
vector bundle moduli. Following the analysis in REf1], it
seems likely that the very existence of bundle moduli is not
generic. Massless modes arising from the moduli of a vector
bundle V are associated with elements of the group
H(X,End(V)). Typically there is no index theorem that al-
ows one to argue that this group should be nontrivial. Even
the group were nontrivial, a generic infinitesimal deforma-
ion of the vector bundle is obstructed at some finite order
and so does not constitute a modutis.

In addition to the omission of a detailed discussion of
bundle moduli, we have used standard approximations in de-
scribing the hidden-sector gaugino condensation. For in-
stance, in real string models, the hidden sector would have
massive fields charged under the hidégn This would lead
to corrections to the form of the superpotential used here,

which presumably arise as more highly damped exponentials

in S. While for reasonable values of R&(this should not be

a large correction, it would be nice to have exact results.
These are not yet available fav=1 supersymmetric com-
pactifications of heterotic strings.

The solutions we have constructed are supersymmetric
AdS vacua. It is natural to ask whether one can add a source
of supersymmetry-breaking energy which lifts these models
to de Sitter vacua, along the lines of Ref0]. In fact, there
are significant similarities between the type IIB constructions

Since this space is compact, we expect that the degeneracyof ——

domain walls of charge,= ¢ interpolating between vacua
with m=1 andm’=3 is given by the cohomology of1’.
Therefore, in this example we find

(Number of domain walls=2.

2ONevertheless, simple bundles constructed by mere humans often
have moduli. In many such simple cases, even nonperturbative
sigma model effects do not suffice to lift thefm2]. Examples of
superpotentials arising for the bundle moduli associated with small
instantons in heterotic M-theory are described in, e.g., R&.
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of Ref. [40] and the heterotic models discussed here. Axpected to arise in the heterotic theory. In type Il theories,
noted in Sec. 1V, the superpotential in each case consists ofas in M-theory, the discretuum is populated by vacua with
small, constant term from flux and an exponential term fromvarious quantized values of the RR and NS fluxes, and with
nonperturbative gauge dynamics. To continue this analogglifferent wrapped branes, consistent with the tadpole condi-
and include Supersymmetry breaking, one would have to intionS ari_sing from the Gauss’s law Cpnstraints on the various
troduce the heterotic dual of the anti-D3-brane introduced irfp-form field strengths. In the heterotic theory, there are a few
Ref. [40]. In heterotic M-theory this would correspond to a duantum numbers which contribute to the large number of
nonsupersymmetric wrapped M5-brane. To achieve controfacua. In addition to the large number of choices of vector
over the construction, one would need to introduce such aRundles on a fixed manifoltharacterized by the topological
object in a heterotic background with significant warping. "UmPerscy(Vi), cs(V;), for instance, there are also back-
Burgess, Kallosh, and Queved@4] have recently pro- gr_punq NS f_'“X‘?S- Finally, there is the p(_)s_s_lt_)lhty of_non-
posed that a Fayet-lliopould-term potential could serve as Kahlerity, vyh|ch is roughly dual to the possibilities of differ-
another useful source of energy for uplifting heterotic mod-E"t fluxes in type . theong@fll].
els. The stable AdS vacua we have discussed would appear As described at length in Refi78], to get a good handle

to be a suitable setting for such a mechanism, but we leav@" _this 'afg‘? set of possibilities_, it will probably be necessary
i to find auxiliary ensembles which accurately model the space

the construction of explicit models as a subject for future ; .
exploration. Again, one would have to arrange for a suitabl)[)f vacua. We. have little to say ahout this at present but leave
small D-term to justify the analysis. it as an ambitious goal for future research.

The present proposal for manufacturing vacua without
moduli, combined with the constructions in Ref4.0,58,
74-74, is a small step towards filling out our picture of the ~ We would like to thank B. Acharya, N. Arkani-Hamed, P.
“discretuum” [77] of string or M-theory vacua. This is the Aspinwall, M. Becker, K. Dasgupta, M. Dine, M. Douglas,
full space of vacua of string theory, including all of the pos-R. Kallosh, A. Krause, E. Silverstein, S. Thomas, S. Trivedi,
sibilities for the background fluxes, wrapped branes, andnd E. Witten for interesting discussions on related subjects.
other discrete data. Interesting general aspects of this lan&.G. is supported in part by the RFBR Grant No. 01-01-
scape of string theory vacua have recently been discussed 00549 and the RFBR grant for Young Scientists 02-01-
e.g., Refs[78—-8(, while statistical arguments relying on 06322. The work of S.K. is supported in part by the David
the existence of the discretuum have been used, e.g., in Refsnd Lucile Packard Foundation, National Science Founda-
[77,81,4Q in tuning the cosmological constant. tion Grant No. PHY-0097915, and the DOE under Contract

Although this is a bit far from the concrete goal of our No. DE-AC03-76SF00515. The work of L.M. is supported
paper, it is worth discussing how this discretuum may beby the National Science Foundation.
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