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Heterotic moduli stabilization with fractional Chern-Simons invariants
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We show that fractional flux from Wilson lines can stabilize the moduli of heterotic string compactifications
on Calabi-Yau threefolds. We observe that the Wilson lines used in GUT symmetry breaking naturally induce
a fractional flux. When combined with a hidden-sector gaugino condensate, this generates a potential for the
complex structure moduli, Ka¨hler moduli, and dilaton. This potential has a supersymmetric AdS minimum at
moderately weak coupling and large volume. Notably, the necessary ingredients for this construction are often
present in realistic models. We explore the type IIA dual phenomenon, which involves Wilson lines in D6-
branes wrapping a three-cycle in a Calabi-Yau threefold, and comment on the nature of the fractional instan-
tons that change the Chern-Simons invariant.
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I. INTRODUCTION

When string theory is compactified on a Calabi-Yau ma
fold @1#, the resulting low-energy field theory typically con
tains some number of massless scalar fields, or mod
Gravitational experiments and the requirement of con
tency with nucleosynthesis place rather strong constraint
the existence of such fields~see, e.g., Ref.@2#!. If moduli
were an essential feature of all string compactifications t
model building would be very difficult. Fortunately, modu
are only endemic in the simplest, most symmetric constr
tions. General backgrounds involving fluxes, as well as n
perturbative effects, tend to create potentials for some o
moduli. Even so, although compactifications with reduc
moduli spaces are easy to construct, it remains challengin
eliminate all of the moduli in a given model.

Two fields that have proven particularly difficult to stab
lize are the Calabi-Yau volume and, in heterotic compac
cations, the dilaton. The problem is especially acute in th
cases because the dilaton and volume directly influence
gauge and gravitational couplings in our world, making ro
ing values unacceptable. Moreover, as these parameters
ern the string and sigma-model perturbation expansion
controllable compactification requires that the dilaton a
volume be stabilized at weak coupling and large radius.

We will demonstrate that this can be achieved in a cer
class of heterotic compactifications on Calabi-Yau spa
with a large fundamental group. The context for this propo
is the original work@3# of Dine, Rohm, Seiberg, and Witten
who observed that the combination of a gaugino conden
~in the hidden sector of theE83E8 heterotic string! and a
background three-form flux generates a potential for the
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laton but leaves the cosmological constant zero at tree lev1

As was understood there and in more detail in subsequ
work, because of the quantization condition for the thre
form of the heterotic theory, the dilaton cannot be fixed
weak coupling. The essential difficulty is that the gaugi
condensate term is nonperturbatively small when the c
pling is weak, whereas quantization forces the flux term to
of order one. The resulting potential drives the dilaton
strong coupling.

It is important, however, that the Chern-Simons contrib
tion to the heterotic three-form flux does not obey the sa
quantization condition as the contribution from the fie
strength of the antisymmetric tensor. In fact, as we will e
plain below, the Chern-Simons contribution of a flat gau
bundle can take fractional values of order 1/N, whereN is
related to the order of the fundamental group. On Calabi-Y
manifolds with a sufficiently large fundamental group th
provides a natural mechanism to stabilize the dilaton at w
coupling. The same effect stabilizes all Ka¨hler moduli once
the dependence of the gauge coupling on these modu
correctly incorporated. For related earlier work see Re
@5–11#.

The requirements that the Calabi-Yau manifold sho
have non-trivial fundamental group and that the gau
bundle should have nonzero Wilson lines are actually w
motivated by other model-building considerations. In fa
most models of particle physics based on Calabi-Yau co
pactifications of the heterotic string involve manifolds wi
nontrivial fundamental group and associated gauge bun
with Wilson lines.

A standard way to construct such manifolds is to quoti
a simply-connected Calabi-Yau space by a freely acting
crete symmetry groupG. The resulting string GUT mode
solves a number of important problems. For instance,
simple constructions the number of generations is divided
uGu, leading to models with realistically low numbers of ge
erations@1#. Moreover, one can naturally solve the double
triplet splitting problem@12,13# in this setting.

1Closely related simultaneous work appears in Ref.@4#.
©2004 The American Physical Society08-1
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More importantly, the nontrivial fundamental group a
lows us to introduce Wilson lines. In addition to being
attractive method of GUT symmetry breaking, Wilson lin
are actually indispensable, as standard heterotic string m
els do not admit adjoint Higgs fields of the GUT group@12#.

We will add the stabilization of moduli to this list of prob
lems that admit natural solutions on Calabi-Yau manifo
with a nontrivial fundamental group and nontrivial gau
connection. The dilaton, Ka¨hler moduli, and complex struc
ture moduli can all be stabilized by incorporating the effe
of gaugino condensation and the flux induced by the Wils
lines.

We would like to underscore the fortuitous coinciden
that the necessary ingredients for our construction are a
matically present in certain realistic models. Wilson lin
typically lead to Chern-Simons flux, as we will explain
Sec. III C. Thus, heterotic string GUT models with Wilso
line symmetry breaking often have a background flux and
associated constant term in the superpotential. To the be
our knowledge the consequences of this term have not b
well explored in the literature. In a restricted subset of mo
els, namely those with hidden-sector gaugino condensa
and very small Chern-Simons flux, the effect is dramatic:
moduli can be fixed, in a controllable regime, by the mec
nism we are proposing.

The organization of this paper is as follows. In Sec. II w
review basic facts about the relevant supergrav
Lagrangians in ten and four dimensions and about the su
potential generated by gaugino condensation in the hid
E8 . In Sec. III we review the quantization conditions o
three-form flux and describe how fractional flux can arise
the presence of flat connections with fractional Che
Simons invariant. In Sec. IV we describe how the fractio
flux of Sec. III can be combined with gaugino condensat
to stabilize the dilaton at weak coupling, along with the co
plex structure moduli. In Sec. V we include loop correctio
and show that it becomes possible to simultaneously stab
the Kähler moduli as well as the dilaton; this requires mo
restrictive assumptions about the choices of gauge bund
We observe that a strong-coupling transition naturally ari
in this setting, and we provide a toy model that illustrates
smoothness of this transition. In Sec. VI we discuss so
basic aspects of the dual descriptions of our story, includ
the dual type IIA theories with wrapped D6-branes. In S
VII we explore the nature of the domain walls that interp
late between configurations with distinct fractional Che
Simons invariants. We conclude with a discussion of poss
extensions and broader issues in Sec. VIII. Recently, th
papers that have some overlap with our results appe
@14–16#.

II. GAUGINO CONDENSATION IN THE
HETEROTIC STRING

In this section we review the structure of the hetero
string low-energy effective Lagrangian, with particular atte
tion to terms coupling the heterotic three-form flux,H, to the
gauginos. In Sec. III A we fix notation by presenting t
low-energy action for the heterotic string in ten dimensio
08600
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We dimensionally reduce this action on a Calabi-Yau thr
fold space and describe the potential appearance of a gau
condensate in the resultingN51, d54 configuration. In
Sec. II B we show how to derive the four-dimensional acti
of Sec. II A from a simple superpotential induced by the fl
and the gaugino condensate. In Sec. II C we explain that
dilaton potential does not have a minimum at finite coupli
unless the background flux is fractional.

A. Effective Lagrangian for the heterotic theory

The low-energy effective action for the heterotic string
ten-dimensional Einstein frame is@17#

S5
1

2a84 E d10xA2g10 FR102
1
2 ]Af]Af

2 1
12 e2fS HABC2

a8

16
ef/2x̄10GABCx10D 2

2
a8

4
e2f/2tr~FABFAB!2a8trx̄10G

ADAx10G . ~2.1!

IndicesA,B run from 0 to 9, andm, n are four-dimensional
spacetime indices. The internal space has real indicesm,n

and ~anti!holomorphic indicesi , j , ī , j̄ . The Einstein-frame
metricg10 has Ricci scalarR10, while v is the spin connec-
tion andf is the dilaton. The heterotic string has gauge fie
strengthFmn and gaugino fieldx10; all traces are taken in the
fundamental representation. The three-form fluxHABC is de-
fined by

H5dB2
a8

4
@V3~A!2V3~v!#, ~2.2!

whereV3 is the Chern-Simons three-form,

V3~A![tr~A∧dA1 2
3 A∧A∧A! ~2.3!

with a similar formula forV3(v).
To reduce to four-dimensional Einstein frame, we use

ansatz

ds10
2 5e26sds4

21e2sgmn
0 dymdyn, ~2.4!

wheregmn
0 is a fixed fiducial metric normalized to have vo

ume 4a83. Although this differs from the usual convention

ds10
2 5e26~s2s0!ds4

21e2sgmn
0 dymdyn ~2.5!

by a constant rescaling,~2.4! is nevertheless appropriate for
discussion of moduli stabilization, as we do not know wh
the vacuum expectation value~VEV! s0 will be until we
stabilize s. For a similar reason, we go between te
dimensional string and Einstein frame with the unconve
tional scalinggMN

S 5gMN
E ef/2, while one usually seesgMN

S

5gMN
E e(f2f0)/2 @18#. The resulting Minkowski metric differs

from the conventional diag(21,1,1,1) by a constant scalin
depending on the VEV’s of the dilaton and volume modulu
To relate dimensionful quantities here to those directly m
8-2
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sured from experiments, one must perform an inverse res
ing. Finally, note that theG matrices built from the metric
scale withes.

Let us decompose the ten-dimensional Majorana-W
gauginox10 as

x105x6* ^ x41x6^ x4* , ~2.6!

wherex6 andx4 are six and four-dimensional Weyl spino
with positive chirality andx6 is the zero mode of the interna
Dirac operator for the gaugino, with the normalization

x6
†x651. ~2.7!

We will choose to express the action in terms of a resca
four-dimensional gauginol

l[x4e29s/21f/4, ~2.8!

which will give the standard kinetic term after dimension
reduction.

1. Coupling constants

The four-dimensional gauge coupling is

gYM
2 [ew. ~2.9!

where the four-dimensional dilatonw is related to the ten-
dimensional dilaton and volume modulus via

w5f/226s. ~2.10!

Another important scalar field of the four-dimensional theo
is the volume scalar2 r,

r5f/212s. ~2.11!

The fieldsw and r are related to the scalar components
two N51 chiral superfieldsS andT:

S5e2w1 ia,
~2.12!

T5er1 ib,

wherea and b are the axions that arise from the spaceti
and internal components ofBAB , respectively. In particular,

~* da!mnr5e22wHmnr ~2.13!

with an analogous relation forb.
The holomorphic Wilsonian gauge coupling functionsf i

W

~where i 51,2 runs over the twoE8 gauge groups! can be
expressed in terms ofS andT by

f i
W5S1b iT1O~e2S!1O~e2T!, ~2.14!

2For the moment we assume that the Calabi-Yau manifold
only one volume modulus. We will present the more general cas
Sec. V B.
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where the coefficientb i represents the one-loop correction
the gauge coupling function, and the last two terms repres
nonperturbative corrections. Higher-loop corrections van
by standard holomorphy arguments, since the dilaton
radion are partnered in chiral multiplets with axions. T
physical effective coupling differs from the Wilsonian co
pling by wave-function renormalization and integration ov
the low-momentum modes.

2. Four-dimensional action

Combining the relations given above, we reach the
mensionally reduced action3

S4D5Sgravity1Sgauge1SCY , ~2.15!

Sgravity5
2

a8
E d4xA2g4~R42 1

2 ]mw]mw2 3
2 ]mr]mr!,

~2.16!

Sgauge5E d4xA2g4S 2
1

2gYM
2 tr~FmnFmn!

2
2

gYM
2 tr~ l̄GmDml!D , ~2.17!

SCY52
1

24a84 E d4xA2g4ew23r

3E
X
d6yA2g0S Hlmn2

a8

16
e12sTlmnD 2

, ~2.18!

where we have defined

Tlmn5tr@~x6
†l̄D* 1x6

Tl̄D!G lmn
0 ~x6* lD1x6lD* !#,

~2.19!

andlD is the Dirac spinor corresponding tol. The perfect-
square interaction term~2.18! couples the background flux t
the gauginos and therefore gives rise, as we will see in de
to a potential for the dilaton.

3. Gaugino condensation

Recall that in a pureN51 supersymmetric Yang-Mills
theory in four dimensions with gauge groupH, the gaugino
condensate that develops at low energies is given
@19–22#:

^tr@ 1
2 l̄D~12g5!lD#&5^tr~lala!&

516p2M3 expS 2
8p2f W

CH
D . ~2.20!

s
in

3The unusual gravitational couplingk4
25a8/4 is an artifact of our

ansatz~2.4!. The physical gravitational coupling differs from this b
the constant rescaling mentioned previously.
8-3
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Here M is the ultraviolet cutoff for the gauge theory,f W is
given by~2.14!, andCH denotes the dual Coxeter number
H. We are interested in studying a gaugino condensat
some subgroupH of the hidden-sectorE8 gauge group tha
arises in compactification of theE83E8 heterotic string on a
Calabi-Yau manifold. The appropriate ultraviolet cutoffM
for a string compactification is the mass scale of Kalu
Klein excitations,

M35cS e212s

2a83/2D , ~2.21!

where c is a constant of order one. Combining~2.20! and
~2.21!, we find that the gaugino condensate inH,E8 satis-
fies

^tr~ll!&58p2cS e212s

a83/2 D expS 2
8p2f W

CH
D . ~2.22!

B. Superpotential from flux and a gaugino condensate

For a variety of reasons it will prove useful to work wit
a superpotential and Ka¨hler potential from which one can
reproduce the interaction~2.18!. One can derive the kinetic
terms in~2.16! using the Ka¨hler potential

K52 log~S1S̄!23 log~T1T̄!2 logS 2
i

4a83 E V∧V̄ D .

~2.23!

The superpotential for this system takes the form

W5Wflux1Wcondensate, ~2.24!

where the first term is induced by the background flux a
the second term is a nonperturbative contribution aris
from the gaugino condensate.

The flux-induced superpotential can be written as an in
gral over the Calabi-Yau space@23–26#

Wflux5
2&

a84 E H∧V. ~2.25!

This superpotential leads to the following term in the sca
potential:

Vflux5
1

24a84 ew23rE
X
d6yA2g0HlmnH

lmn, ~2.26!

which is precisely the first term in~2.18!. As we will explain
in Sec. III, the number of quanta ofH flux is roughly given
by

h5
1

4p2a84 E H∧V ~2.27!

so that we may define a mass parameterm,

m35
4&cp2

a83/2 ~2.28!
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in terms of which

Wflux5S 2m3

c Dh. ~2.29!

The nonperturbative contribution is conveniently e
pressed in terms of the Wilsonian coupling@27#

Wcondensate52CHm3 expS 2
8p2f W

CH
D , ~2.30!

where the normalization was obtained by comparing
~2.18!. Putting these two pieces together, the total super
tential is

W5S 2m3

c
D h2CHm3 expS 2

8p2f W

CH
D . ~2.31!

C. Conditions for a stabilized dilaton

A potential for the dilaton arises from the perfect-squa
interaction term~2.18!, which couples the background flux t
the gauginos. To analyze this expression we first observe
the gaugino bilinear appearing in~2.18! is proportional to the
covariantly constant holomorphic three-form. This follow
from the fact thatx6 is a gaugino zero mode on the Calab
Yau manifold@3#:

tr@~x6
†x̄* 1x6

Tx̄ !G lmn
0 ~x6* 1x6x* !#52^tr~ll!&V lmn1c.c.

~2.32!

Here V is the holomorphic~3,0! form on the Calabi-Yau

manifold, with the normalization (1/3!)V i jkV̄ i jk51.
Minimizing the perfect square~2.18! forces ^ll&V

1^ll&* V̄ to align itself along the same direction i
H3(M ,R) as the three-form fluxH. This uniquely fixes the
complex structure moduli and the four-dimensional gaug
condensate. Because the gaugino condensate depends
four-dimensional dilaton, it follows that the interactio
~2.18! generates a potential for the dilaton.

However, the minimum of this potential is generically
infinite coupling. In the absence of Chern-Simons contrib
tions, the three-formH obeys the quantization condition

1

2p2a8
E

Q
dB5n ~2.33!

for any Q in H3(X,Z). The second term inside the perfe
square of~2.18!, on the other hand, integrates over thre
cycles to

E
Q

a8e12s

8
@^tr~ll!&V i jk1c.c.#

5
cp2

a81/2expS 2
8p2

CHgYM
2 D S e2 iuE

Q
V1e1 iuE

Q
V̄ D

.cp2a8 expS 2
8p2

CHgYM
2 D . ~2.34!
8-4
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These two terms cancel only if

c

2
expS 2

8p2

CHgYM
2 D .n. ~2.35!

This has no solution because the left-hand side is alm
always4 less than one. This means that instead of stabiliz
the four-dimensional dilaton at a finite value, turning on
integral fluxdB actually drives the system to infinitely stron
coupling. Our proposal is to usefractional fluxes to over-
come this problem and stabilizegYM at finite coupling. We
therefore turn to an investigation of the conditions und
which fractional flux can arise in the heterotic string.

III. FRACTIONAL FLUX INDUCED BY GAUGE FIELDS

In Sec. III A we review the quantization condition fo
three-form flux and explain its relation to the Chern-Simo
invariant. In Sec. III B we briefly discuss the class of thre
manifolds used in our models and construct a simple
ample. In Sec. III C we provide expressions for the Che
Simons invariants of these manifolds. In Sec. III D w
discuss the conditions under which the fractional Che
Simons flux leads to a worldsheet anomaly, and we exp
how this can be avoided in our setup.

A. Quantization conditions for three-form flux

Consider a compactification of theE83E8 heterotic
string on a Calabi-Yau manifoldX. The two-form Bmn is
required to satisfy

1

2p2a8
E

Q
dB5n ~3.1!

for any three-cycleQ in H3(X,Z) in order for the action of
worldsheet instantons to be single-valued@5#. However, the
gauge-invariant field strength is

H5dB2
a8

4
V3~A!1

a8

4
V3~v!. ~3.2!

This does not need to obey the same quantization law, du
the presence of the Chern-Simons term. To see this le
assume for simplicity that the backgroundB field is trivial,
and that the contribution of the spin connectionv can be
ignored. Then only the remaining factor of the gauge c
nection contributes. So instead of~3.1! we find the quantiza-
tion rule

1

2p2a8
E

Q
H52CS~A,Q̇!, ~3.3!

where we introduced a standard notation

4We are assuming that the constantc in ~2.21! is of order one. Ifc
takes a larger value in a particular model, then integral flux mi
possibly stabilize the dilaton, albeit at relatively strong couplin
We will not investigate this possibility here.
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CS~A,Q!5
1

8p2 E
Q

V3~A!5
1

8p2 E
Q

tr~A∧dA1 2
3 A∧A∧A!

~3.4!

for the Chern-Simons invariant associated with a thr
manifold Q and a connection one-formA.

The invariantCS(A,Q) plays an important role in the
theory of three-manifolds. In particular, ifV8 is a gauge
bundle overQ and if A is a flat gauge connection onV8, then
CS(A,Q) is a topological invariant, in the sense th
CS(A,Q) takes a fixed value on each component of t
moduli space of flat connections onQ. Moreover, it is well
known thatCS(A,Q) is well defined only modulo integer
and can take fractional values. If we further assume that
bundleV8 pulls back to a gauge bundleV over the Calabi-
Yau manifoldX, then we obtain the desired situation whe
the three-form flux takes fractional values. In the followin
sections we will use this as a mechanism to produce sm
quanta of theH flux, which can then be used to stabilize th
various moduli.

B. Three-cycles with fractional flux

Certain classes of three-cycles in Calabi-Yau manifo
admit connections with fractional Chern-Simons invarian
We now turn to a discussion of the properties of such thr
cycles.

Since only holomorphic and antiholomorphic compone
of the three-form flux contribute to the superpotential~2.25!,
the only fractional fluxes we need to consider are those
Hodge type (3,0)1(0,3). These can be viewed as flux
through special Lagrangian cyclesQ. Typically these are
compact three-manifolds with non-negative curvature t
support gauge fields suitable for our purposes. According
McLean@28#, the deformations of a special Lagrangian su
manifoldQ can be identified with the harmonic one-forms o
Q. Specifically, the deformation space has real dimens
b1(Q). Therefore, rigid special Lagrangian three-cycles
precisely rational homology three-spheres, i.e., thr
manifolds with b1(Q)50. We shall henceforth restrict ou
attention to rigid special Lagrangian three-cycles. The lo
Calabi-Yau geometry near such cycles is always of the fo

T* Q.

For example, we can chooseQ to be the base of the specia
Lagrangian torus fibration@29#,

f :X→Q. ~3.5!

Indeed, following Strominger, Yau, and Zaslow@29#, con-
sider a Bogomol’nyi-Prasad-Sommerfield~BPS! state in the
effective four-dimensional theory represented byN D6-
branes wrapped over the entire mirror manifoldX̃. These
D6-branes are rigid and, because the fundamental groupX̃
is finite, there is only a discrete set of Wilson lines. In fa
the latter account for the degeneracy of D-brane bound st
@30#. Namely, the number of bound states ofN D-branes is
given by the number ofN-dimensional irreducible represen

t
.

8-5
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tations ofp1(X̃). Under mirror symmetry~realized asT du-
ality on T3 fibers! these D6-branes become D3-bran
wrapped around the baseQ. In order for the D3-branes to
have no continuous moduli the base manifoldQ must be a
rational homology three-sphere. Also, by looking at the
generacy of D-brane bound states for different values oN,
we conclude thatp1(Q) and p1(X̃) should be related. No
tice that since bothX and its mirrorX̃ are fibered over the
same baseQ, the above arguments imply that their homoto
groups should be related as well. In particular, in a la
class of examples one finds that the Abelian parts ofp1(X)
andp1(X̃) are isomorphic; cf. Ref.@31#.

Let us study a simple example that will be relevant in t
following. Consider a quintic hypersurface inCP4,

z1
51z2

51z3
51z4

51z5
51~deformations!50. ~3.6!

This hypersurface represents a Calabi-Yau varietyX0 with
h1,151, h2,15101. Unfortunately,p1(X0) is trivial, so X0
does not admit a fractional flux induced by nontrivial gau
fields. Moreover, since the number of generations in a h
erotic compactification on a Calabi-Yau threefoldX is re-
lated, in the case of the standard embedding, to the E
number ofX @1#, in the present case with the standard e
bedding we find an unrealistically large number,N
5 1

2 ux(X0)u5100. A model with a more realistic spectru
that does not suffer from these problems can be obtaine
considering a quotient ofX0 ,

X5X0 /G,

by a discrete symmetry groupG5Z53Z5 , generated by two
elements

g1 :~z1 ,z2 ,z3 ,z4 ,z5!→~z5 ,z1 ,z2 ,z3 ,z4!,

g2 :~z1 ,z2 ,z3 ,z4 ,z5!→~zz1 ,z2z2 ,z3z3 ,z4z4 ,z5!,
~3.7!

wherez5exp(2pi/5). SinceG acts freely onX0 , we have
x(X)5x(X0)/2558 andp1(X)5Z53Z5 . Therefore, com-
pactification of the heterotic string on the resulting manifo
X with the standard embedding provides a model with o
four generations, and there is a possibility to turn on n
trivial Wilson lines onX. Also, it is easy to see that the ba
Q of the special Lagrangian torus fibration in this case i
rational homology three-sphere with nontrivial fundamen
group.

For the quintic hypersurface~3.6!, the baseQ0 of the
special Lagrangian torus fibration can be represented by
image of the moment map,zi→uzi u2. The topology ofQ0
can easily be understood in the large complex structure li
where it is close to the boundary of the toric polytop
Hence,Q0>S3. Now let us consider the action of the di
crete groupG. From~3.7! it follows that the generatorg2 acts
trivially on Q0 , whereasg1 acts freely. Therefore, we find
that the base of the special Lagrangian torus fibrationX
→Q is a Lens space,
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Q5S3/Z5 . ~3.8!

In particular, we havep1(Q)5Z5 and, as we will show be-
low, there are many choices for the gauge bundleV8 and for
the gauge connectionA over this three-manifold, such tha
CS(A,Q) has fractional values. IfV8 is such a bundle, we
can define its pullbackV5 f 21V8 under the projection map
~3.5!. The resulting gauge bundleV over X has the desired
properties and, according to the quantization rule~3.3!, the
three-form flux in heterotic string theory on this backgrou
can take fractional values.

This construction can easily be generalized to an arbitr
special Lagrangian three-cycleQ that is rigid insideX. As
was explained above, the condition of rigidity implies thatQ
is a rational homology three-sphere. Examples of ratio
homology three-spheres that can occur as special Lagran
cycles in Calabi-Yau threefolds include Lens spac
Brieskorn homology three-spheres, and, more generally,
ifert fibered three-manifolds. Recall that the Seifert thre
manifold, S(a1 ,...,an), is a circle fibration over a two-
sphere, with n multiple fibers. This includes Brieskorn
spheres and Lens spaces as a special case,n53. For in-
stance, the Lens spaceL(p,1)5S3/Zp is a Seifert three-
manifold with (a1 ,a2 ,a3)5(p,2,2). Many of these three
manifolds support nontrivial gauge connections w
fractional Chern-Simons functional@32,33#.

C. Formulas for the Chern-Simons invariant

In order to determine the set of values ofCS(A,Q) for a
given three-manifoldQ, one has to study the space of repr
sentations of the fundamental group,p1(Q), into the gauge
group. A familiar example of a reducible5 gauge connection
on a manifold withp15Zp corresponds to a discrete Wilso
line of the form

U5diag~e2p ik1 /p,...,e2p ik8 /p! ~3.9!

variations of which are often used to break the GUT gau
group to a smaller subgroup, such as the Standard Mo
gauge group@12#. The Chern-Simons invariant of such
connection is@35# ~see also Ref.@36#!

CS~A,Q!5(
i

ki
2

2p
mod Z, ~3.10!

where the sum is over all eight complex worldsheet ferm
ons. For appropriate choices ofp and of theki the result is a

5A connectionA is called reducible if its isotropy subgroup, tha
is, a maximal subgroup that commutes with all the holonomies oA,
is a continuous group. Otherwise,A is called irreducible. For ex-
ample, an SU~2! gauge connection is reducible if its isotropy su
group is U~1!. Notice that reducible gauge connections may ha
nonzero Chern-Simons invariant; see, e.g., Ref.@34#.
8-6
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fractional Chern-Simons invariant.6 This has the surprising
consequence mentioned in the Introduction: in many ca
the Wilson lines that are used to break the GUT gauge gr
to the standard model introduce a fractional Chern-Sim
invariant, and hence a fractional flux.

We now turn to the more general question of the fra
tional Chern-Simons invariants of Seifert three-manifol
this choice covers a fairly large class of models relevan
the physical problem at hand. Without loss of generality,
can take the gauge group to be SU~2! ~which can be realized
as a subgroup in one of the twoE8’s!. Let Q
5S(a1 ,...,an) be a Seifert three-manifold. In this case, t
irreducible representations

r: p1~Q!→SU~2!

are characterized by what are called ‘‘rotation number
(6m1 ,...,6mn), where eachmi is defined moduloai ,

mi;mi1ai .

Furthermore, there exists at most one component of
representation variety realizing a given set of rotation nu
bers (m1 ,...,mn). If A is the corresponding connection on
form, the value of the Chern-Simons functional,CS(A,Q),
is given by the simple formula

CS~A,Q!52(
i 51

3
1

ai
~mi1l!2, ~3.11!

where

l50,1
2 . ~3.12!

In particular, if Q5S3/Zp is a Lens space, from the gener
formula ~3.11! we find

CS~A,Q!52
1

p
~m11l!22

l2

2
mod Z, ~3.13!

where for simplicity we setm25m350. This expression
gives two sets of values of the Chern-Simons functio
~listed in Ref. @32#! corresponding tol50 and l5 1

2 , re-
spectively. It is convenient to introduce a new integer para
eter

m52m112l mod 2p

and rewrite~3.13! in the form

CS~A,Q!52
m2

4p
2

l2

2
mod Z. ~3.14!

In general, it follows from~3.11! thatCS(A,Q) is a rational
number whose denominator can be as large as the ord
the fundamental group,p1(Q).

6In Sec. III D we review the existence and cancellation of a
tential worldsheet global anomaly in such backgrounds.
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D. A global worldsheet anomaly from fractional
Chern-Simons invariants

For completeness, we now discuss a technical issue
lated to modular invariance in a fractional flux backgroun
Specifically, we present a sufficient condition for cancel
tion of the worldsheet anomaly induced by fractional Che
Simons flux.7

When the heterotic string propagates on a nontrivial
ometry M with nontrivial Wilson lines, there is a globa
worldsheet anomaly in addition to the one-loop anom
seen in the ten-dimensional supergravity@35#. This signals
that the worldsheet instanton path integral is not necessa
single-valued in such a background.

To compute the anomaly, consider a one-parameter~t!
family of maps from a one-parameter family of worldshee
into the target space, with the worldsheets att50 andt51
identified by a large diffeomorphismh preserving the spin
structurew: (S3@0,1# t)h→M . The change of the fermion
determinant can be calculated using an index theorem@35#,

ln Z~f i ,t51!2 ln Z~f i ,t50!522p i E
w~S3@0,1# !h

V3~A!,

~3.15!

where

Z~f i ,t;gi j ,Bi j ,Ai B
A !5~detT

1!~detV1

2 !~detV2

2 !~det1 R!.

~3.16!

Here the first three terms inside the logarithm are Dirac
terminants for the right- and left-moving fermions coupled
the pullback of the spin connection and gauge connect
and the fourth term comes from the right-moving Rari
Schwinger ghost. If we were unable to find other sources
cancel the factor on the right-hand side, we would have to
the Chern-Simons invariant to an integer to maintain
single-valuedness of the determinants.

Fortunately the Wess-Zumino term on the worldsheet
help us. For the heterotic string on a Calabi-Yau manifo
with flat B field and with no Wilson lines, the worldshee
action looks like

S5E d2x$@gi j ~f!1Bi j ~f!#]1f i]2f j1 igi j c
i~]2c j

1G jk
i ]2fkc l !1 iGAB~f!lA@]1lB1Ai

C
B~]1f i !lC#

1 1
2 F̃ i jABc ic jlAlB%, ~3.17!

wherec i andlA are the right- and left-moving fermions,G jk
i

is the Levi-Civita connection of the target space, andGAB is
the metric on the gauge bundle. This action has mani
~0,2! supersymmetry. The question is, if we now turn on fl
Wilson lines supporting the fractional Chern-Simons inva
ant, resulting in multivalued fermion determinants, can

- 7We are indebted to E. Witten for explaining to us much of t
content in this subsection.
8-7
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find canceling effects from the bosonic worldsheet actio
The answer isyes, provided there is no torsion inH4(M ,Z).

To see this, consider the following exact sequence:

¯→H3~M ,R!→
e

H3
„M ,U~1!…

→
d

H4~M ,Z!→H4~M ,R!→¯ . ~3.18!

The Chern-Simons invariant exp@i*V3(A)# for a flat bundle
takes values inH3

„M ,U(1)… and is mapped into the torsio
part of H4(M ,Z). If H4(M ,Z) is torsion-free, the Chern
Simons invariant lives in the kernel ofd and therefore
V3(A) lives in H3(M ,R). So there exists, locally, a two
form B̃:

dB̃5V3~A!.

It is crucial thatB̃ is not globally defined when*V3(A) is
fractional. The change in phase from the coupling ofB̃ to the
worldsheets cancels the change in the fermion determin
in Eq. ~3.15! @37#. On the other hand, ifH4(M ,Z) has a
torsion piece,B̃ does not exist for bundles supporting fra
tional Chern-Simons invariant and we cannot cancel the
bal worldsheet anomaly. The only consistent Wilson lines
then those that give integer Chern-Simons fluxes.

The reader will have noticed that if we modify the Wes
Zumino term into

E
S
B1B̃,

we no longer have~0,2! worldsheet supersymmetry. We ca
preserve~0,1! supersymmetry by modifying the connectio
to

G̃ jk
i 5G jk

i 1gil ~dB̃! jkl5G jk
i 1gil V~A! jkl . ~3.19!

However, the complex structureJi
j is no longer covariantly

constant. Thus, just as we expected, turning on a flat bu
with Chern-Simons gauge flux generates a spacetime su
potentialW5*V3(A)∧V and breaksN51 spacetime super
symmetry and~0,2! worldsheet supersymmetry. It is obviou
from the supergravity effective action that with the additi
of a gaugino condensate, spacetime supersymmetry ca
restored. However, we do not expect a useful worldsh
description after including such spacetime effects.8

8Alternatively, to preserve~0,2! worldsheet supersymmetry, on

could modify Ji
j so that ¹̃iJ

j
k5Jj

k,i1G̃ i l
j Jl

k2G̃ ik
l Jj

l50 with re-
spect to the modified connection. This typically cannot be achie
by a local modification~i.e., a continuous deformation! and requires
starting with a non-Ka¨hler manifold. This is closely related to Re
@38# and to more recent literature on non-Ka¨hler compactifications.
The difference is that here we would consider non-Ka¨hler behavior
due toV3(A) instead of the more conventional nonflatdB.
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We have seen, then, that a sufficient condition for canc
lation of the worldsheet anomaly in the presence of fractio
flux is absence of torsion inH4(M ,Z). More specifically, it
is enough that no three-cycleQ on which the Chern-Simons
form integrates to a fraction is a torsion cycle inH3(M ,Z).
We will henceforth assume that this condition is satisfied

IV. DILATON STABILIZATION

We will now demonstrate that the combination of
gaugino condensate and a fractional flux induced by
Chern-Simons term of theE83E8 gauge connection can lea
to stabilization of the dilaton at finite~and, with sufficient
tuning, weak! coupling.

We denote the two gauge groupsE8
( i ) , i 51,2. Let us

henceforth adopt the convention thatE8
(1) is the observable

E8 andE8
(2) is the hidden sector. We imagine that there is

suitable visible-sector bundle that breaksE8
(1) to an attractive

GUT group. If a realistic model is desired, we may al
require that the observableE8

(1) has a gauge bundle with
u*c3u56 to give three generations of quarks and leptons.9 In
the remaining visible-sector group we then turn on Wils
lines which have fractional Chern-Simons invariant on so
three-cycle. The resulting fractional flux generates a sup
potential via~2.25!.10

For the purposes of this section we could take the hidd
sector bundle to be trivial, so thatE8

(2) is unbroken. However,
it will prove useful in Sec. V to include a nontrivial gaug
bundle in each of theE8’s. We therefore embed an SU~2!
bundle intoE8

(2) , breakingE8→E7 . There is no index theo-
rem protecting charged matter inE7 ~as it has only real rep-
resentations!, so we can safely assume that the low-ene
E7 gauge theory in the hidden sector has no light fields tra
forming in the 56. The gauge group then confines at lo
energies, providing a gaugino condensate to balance the
tional flux, as in Sec. II B.

The overall result is the superpotential~2.31!:

W

m3 5
2h

c
218 expS 2

8p2S

18 D , ~4.1!

whereh5(2p2a85/2)21*H∧V is the flux contribution and
the second term is the result of gaugino condensation~the
dual Coxeter number ofE7 is 18!.11

To look for a supersymmetric vacuum, we solve the eq
tion DSW50, with the result

h5@9c18cp2 Re~S!#expS 2
8p2S

18 D . ~4.2!

d

9Examples of Calabi-Yau models with three generations and n
trivial p1 have appeared in Ref.@39#, and undoubtedly many more
could be constructed in a systematic search.

10The fractional flux could instead come from hidden-sector W
son lines. We focus on visible-sector Wilson lines for simplicity.

11This superpotential is of the same form as the one appearin
for instance, Eq.~12! of Ref. @40#. There, the small constant term
comes from the~0, 3! part of the type IIBG3 flux, while the expo-
nential arises from nonperturbative gauge dynamics as in
system.
8-8
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Modest values of the Chern-Simons invariant lead to a s
tion at weak coupling. For example, ifh is approximately110 ,
which is easily attainable using the constructions of Sec.
then~4.2! can be solved with Re(S);1.6, which corresponds
to aGUT;

1
20 . To achieve instead the often-quoted val

aGUT;
1

25 , one needsh of order 1
40. Of course the require

ments are weaker if we take the pure hidden-sector ga
group to beE8 instead ofE7 .

There are many variations of this mechanism that invo
slightly different choices of bundles. It seems to us that
most elegant models are those in which one set of Wil
lines breaks the observable-sector GUT group to the S
dard Model and also provides the needed fractional Ch
Simons invariant.

We have already solved the dilaton equationDSW50. We
can likewise solve the equations for the complex struct
moduli by makingH of type (3,0)1(0,3). In this way theH
flux from the Chern-Simons invariant generically stabiliz
all complex structure moduli. The Ka¨hler moduli of the
Calabi-Yau manifold, however, are not yet fixed. In partic
lar, there is a flat direction for the volume modulusT.12

In fact, this flat direction is a general property of ‘‘no
scale’’ models. From the form~2.23! of the Kähler potential,
combined with the fact thatW is independent of the volum
modulusT at this order, we see that the supergravity pot
tial undergoes a simplification

V5eK~gi j̄ DiWD jW23uWu2!→eK~gab̄DaWDbW!,
~4.3!

wherei,j run over all fields, buta,b run over all fields excep
T. As a result, we are left with a flat direction,T. Generically
DTWÞ0, so supersymmetry is broken. Nevertheless,
vacuum energy vanishes at this order of approximation, s
we have solvedDaW50 for all a. Loop corrections will
plausibly destabilizeT, resulting in a runaway problem fo
the overall volume.

We will suggest a solution to this problem, in the conte
of Calabi-Yau compactification, in the next section. Ho
ever, we should point out that investigation of supersymm
ric non-Kähler compactifications of string theory has r
cently been renewed~see, e.g., Refs.@41,42,15,43#!. In such
compactifications the overall volume modulus can be sta
lized at tree level by balancing fluxes against the non-Ka¨hler
nature of the geometry. The combination of this tree-leveT
stabilization with our results on dilaton stabilization cou
plausibly yield weakly coupled models with all moduli st
bilized. This would require a compactification manifold th
admits moderately small Chern-Simons invariants.

V. DILATON AND VOLUME STABILIZATION
IN CALABI-YAU MODELS

In Sec. V A we show that it is possible, with appropria
choices of bundles, to stabilize both the dilaton and the o

12If there are vector bundle moduli then these are also unfix
However, in Sec. VIII we explain why bundle moduli could b
absent in generic situations.
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all volume by incorporating the one-loop correction to t
gauge coupling. In Sec. V B we extend this mechanism
stabilize all the Ka¨hler moduli of a threefold. In Sec. V C we
investigate the strong-coupling transition that occurs in th
models. We present a toy model to illustrate the physi
smoothness of this transition. In Sec. V D we discuss
conditions under which the resulting theory is weak
coupled. In Sec. V E we summarize our assumptions c
cerning the Calabi-Yau and theE8 gauge bundles.

A. One-loop correction

We first consider, for simplicity, the case of a Calabi-Y
threefold that hash1,151 and hence a single Ka¨hler modu-
lus. When one-loop corrections are incorporated, the Wil
nian gauge kinetic functions have the form~2.14!:

f ~ i !
W 5S1b iT, ~5.1!

wherei 51,2 labels the gauge groupsE8
(1) ,E8

(2) . In the case
without space-filling heterotic five-branes, it is a simple m
ter to derive the linear terms inT by dimensional reduction
of the B∧X8(F1 ,F2 ,R) term in the ten-dimensionalE8
3E8 theory. The result is

b15
1

8p2 E
X
J∧@c2~V1!2c2~V2!#, ~5.2!

b25
1

8p2 E
X
J∧@c2~V2!2c2~V1!#. ~5.3!

HereJ is the generator ofH1,1(X,Z). Notice that

b11b250 ~5.4!

while in the case of the standard embedding

b12b25
1

4p2 E
X
J∧c2~TX!. ~5.5!

This fact that the difference of the gauge coupling functio
is given by a topological invariant~in the case of the stan
dard embedding! was observed in, e.g., Ref.@44#. One can
easily calculateb for a few simple examples. We present th
calculation below forJ∧c2(TX); one can imagine partition
ing this intoc2(V1,2) in various ways:

E
@4i5#

J∧c2510E
@4i5#

J∧J∧J550,

E
@5i3 3#

J∧c256E
@5i3 3#

J∧J∧J554,

E
@6i3 2 2#

J∧c255E
@6i3 2 2#

J∧J∧J560.

From these examples it is plausible thatb can be reasonably
large, at least of order one.

We will choose the gauge bundleV2 so thatE8
(2) is broken

to a subgroupH ~sayE7) without any light charged matter

d.
8-9
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The resulting four-dimensional theory therefore has a se
that is pureN51 supersymmetric gauge theory with gau
groupH, which undergoes gaugino condensation at low
ergies. Let us furthermore choose the bundleV1 so thatE8

(1)

is broken to a low-energy group and matter content that
contain the Standard Model. Finally, we takeb252b15b
.0, so thatE8

(1) is more strongly coupled thanE8
(2) .13

The complete superpotential is then

W

m3 5
2h

c
2CH expS 2

8p2

CH

~S1bT!D . ~5.6!

This superpotential depends nontrivially on both of the ch
multiplets S and T. The condition for a supersymmetri
vacuum is

W;S5W;T50, ~5.7!

where the Ka¨hler covariant derivatives are determined usi
~2.23!.

A solution of ~5.7! necessarily satisfies

3S5bT, ~5.8!

h5S CHc

2
18cp2 Re~S! DexpS 2

32p2S

CH
D .

~5.9!

The resulting solution is a supersymmetric AdS vacuum
which both the four-dimensional dilatonw and the four-
dimensional volume modulusr have been stabilized. We wil
defer our discussion of the physics inE8

(1) to Sec. V C.

B. Stabilization of multiple Kähler moduli

On a threefoldX with h1,1.1 Kähler moduli, the formulas
of the preceding section can be generalized:

f ~ i !
W 5S1b i

aTa , ~5.10!

where i 51,2 labels the gauge groupsE8
(1) ,E8

(2) and a
51,...,h1,1 indexes the independent Ka¨hler moduli.

We will need to define a few quantities related to t
generatorsJa of H1,1(X,Z):

b1
a[

1

8p2 E
X
Ja∧@c2~V1!2c2~V2!#, ~5.11!

b2
a[

1

8p2 E
X
Ja∧@c2~V2!2c2~V1!#,

~5.12!

cabg[E
X
Ja∧Jb∧Jg. ~5.13!

13Notice that we are putting more instantons in the hidden se
than in the observable sector, which is a somewhat unusual situ
compared to the bulk of the literature.
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The cabg are the intersection numbers ofX.
The Kähler potential~2.23! now takes the form

K52 log~S1S̄!2 log~cabgT aT bTg!

2 logS 2
i

4a83 E V∧V̄ D , ~5.14!

with 2Ta[Ta1T̄a, while the complete superpotential, in
cluding hidden-sector gaugino condensation, is

W

m3 5
2h

c
2CH expS 2

8p2

CH

~S1baTa!D . ~5.15!

This superpotential depends nontrivially on the dilaton a
on all the Kähler moduli.

In order to find a supersymmetric solution we will assum
that all theba are nonzero. Combining~5.15! and~5.14! and
imposingW;S5W;Ta

50, we find

S
]

]Td
~cabgT aT bTg!

5b2
d~cabgT aT bTg!, ~5.16!

h5S CHc

2
18cp2 Re~S! DexpS 2

32p2S

CH
D ,

~5.17!

where the second relation is identical to~5.9!.
The result is a supersymmetric AdS vacuum witho

moduli. To recapitulate, we have now seen that the comb
tion of fractional flux with a gaugino condensate can sta
lize the complex structure moduli, the Ka¨hler moduli, and
the dilaton.

C. A strong-coupling problem

We have just seen that the potential for the dilaton a
Kähler moduli has a supersymmetric AdS minimum who
location is given, in the case of one Ka¨hler modulus, by~5.8!
and ~5.9!. However, there is an evident problem with th
minimum. Suppose that some subgroup ofE8

(1) remains un-
broken at low energies. The naiveE8

(1) gauge coupling func-
tion, f 15S2bT, appears to benegative, f 1522S. More-
over, one might think that before becoming negative,f 1 must
pass through zero, at which point one encounters a singu
ity where the gauge coupling diverges.

It is cleara priori that such a problem cannot exist in th
full theory. Moduli ~and parameter! spaces of four-
dimensional supersymmetric theories are complex and he
can only have singularities at complex codimension one
follows that one can always continue around any point
naively singular gauge coupling, obtaining a unitary theo
with positiveg2 on the ‘‘other side.’’ Numerous examples o

or
on
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such phenomena have been explored in various fo
dimensional supersymmetric gauge theories over the
several years, most recently in interpreting theG2 flop in
Ref. @45#.

In fact, what we are encountering here is~at least in those
cases that are most easily understood! a close relative of the
well-studied strong coupling transitions in six-dimension
string vacua with~0,1! supersymmetry@46#. The observable
sector gauge coupling diverges precisely when the ratioS/T
reaches a fixed value; this is in fact a point in moduli spa
where an effectivesix-dimensional coupling is becomin
strong. As explained in Ref.@46#, in dual type II or F-theory
descriptions, this phenomenon can be modeled locally
terms of a geometric transition that affects the D-branes
local geometry responsible forE8

(1) . On the other side of the
geometric transition, theE8

(1) physics remains sensible, an
there is a new effective description of the low-energy gau
theory.

In the remainder of this subsection we investigate t
strong-coupling singularity. The resolution is necessa
model dependent, so we simply review some dual desc
tions that shed light on the phenomenon, and give an exp
example where the physics on the ‘‘other side’’ of the tra
sition is fully understood. Of course in as much as o
wishes to embed the standard model inE8

(1) , it would be
crucial to have a good dual description of this new pha
For readers who find this too daunting a challenge, we
only suggest that the special caseb1,250 neatly sidesteps th
issue, leaving a no-scale model with an unfixed volu
modulus. However, we emphasize that more generally,
only assumption we really need to make is that the physic
the transition does not introduce new terms in the supe
tential. For models whereE8

(1) is broken to a low-energy
field theory that does not dynamically generate a superpo
tial, this is quite plausible.

1. Dual descriptions of the strong-coupling singularity

The appearance of strong gauge coupling in heter
models with nonzerob is well known. The problem is easily
seen in compactifications of heterotic M-theory to four
mensions, where it manifests as a linear shrinking@47# of the
Calabi-Yau volume as a function of location on the M-theo
interval. For some critical size of the interval, the Calabi-Y
manifold has zero volume at one boundary, rendering
supergravity approximation invalid.

A closely related problem arises in compactifications
theE83E8 heterotic string on K33T2. The gauge bundle in
such a model is specified in part by a choice of instan
numbers (122n,121n) in the twoE8’s. If n is positive then
the firstE8 is more strongly coupled than the second; this
analogous to positiveb in our models. At a finite value of the
heterotic dilaton the firstE8 has infinite gauge coupling.

This configuration is dual to compactification of type II
string theory on a Calabi-Yau threefold that is an ellip
fibration over the Hirzebruch surfaceFn . Recall thatFn has
a single curve of self-intersection2n. The volume of this
curve is dual to the heterotic dilaton in such a way th
shrinking the2n curve to zero volume coincides with infi
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nite gauge coupling in the firstE8 . This suggests that on
could use the type II geometry to understand the nature
the strong-coupling singularity. While this approach is rath
complicated for generaln ~see, e.g., Ref.@46# for work in this
direction!, we will see that the casen51 is relatively
straightforward.

It is important to remember that type II strings on such
Calabi-Yau threefold yieldN52 supersymmetry in four di-
mensions, twice as much as the models we have consid
in this paper. This greatly facilitates analysis of the singul
ity, in particular because the geometry can be described v
prepotential. A direct study of theN51 system would be
more challenging, but we expect the generic features, inc
ing the positive gauge coupling function, to be similar in t
two cases. One would simply have to study the geometry
a dual F-theory compactification on a Calabi-Yau fourfo
instead of type II strings on a Calabi-Yau threefold.

2. A simple flop model of the strong-coupling singularity

We will now construct a simple model in which, in
sense that we will make precise, the gauge kinetic termf 1
undergoes a flop. Recall that in the flop of a curve, the v
ume of the curve vanishes on a wall of the Ka¨hler cone.14

However, instead of continuing to negative values on the
side, the volume is actually positive in the new Ka¨hler cone.
In certainN52 heterotic–type IIA dual pairs@50#, the sin-
gularity in the Calabi-Yau prepotential when a curve in t
type IIA geometry undergoes a flop~and an effective gauge
coupling becomes singular! is dual to a heterotic strong
coupling singularity. We describe one such example below
is important to stress that as expected on completely gen
grounds, the effectiveg2 remains positive everywhere in th
properly interpreted type II moduli space.

The examples we have in mind, and their heterotic du
are well known. Our presentation of a specific example w
closely follow @51#, which mapped out in detail severa
heterotic–type II dual pairs.

Let X be the Calabi-Yau threefold space, which is an
liptic fibration over F1 . The prepotential for the Ka¨hler
moduli space ofX is @51#

FII5
4
3 t1

31 3
2 t1

2t21 1
2 t1t2

21t1
2t31t1t2t3 , ~5.18!

wheret i are the Ka¨hler moduli. The volume of the21 curve
is controlled by t3 . One can find a set of dual heterot
variablesS,T,U, which are related to the type II variables b

t15U, t25T2U, t35S2
T

2
2

U

2
. ~5.19!

In heterotic variables, the prepotential reads

Fh5STU1 1
3 U3. ~5.20!

14In the full physical theory the volume is complexified, and o
can go ‘‘around’’ the wall of the Ka¨hler cone by turning on a non
zerou angle@48,49#.
8-11
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We know that the type II operation of shrinking the21 curve
corresponds to strong gauge coupling in the heterotic pict
This instructs us to identifyS2T/22U/2 with the visible-
sector gauge coupling.15

Now, to study the effect of the strong gauge coupling,
flop the curve corresponding tot3 . The fields transform as

~ t1 ,t2 ,t3!→~ t11t3 ,t21t3 ,2t3!, ~5.21!

leading to the prepotential forX̃, the image ofX under the
flop. It turns out thatX̃ is not a K3 fibration, and furthermor
it is not dual to a perturbative heterotic model.

Given this linear implementation of the flop in type
variables, we can apply this transformation to the heter
variables~3.9!. This yields

S U,T2U,S2
T

2
2

U

2 D
→S S1

U

2
2

T

2
,S1

T

2
2

3U

2
,

T

2
1

U

2
2SD .

~5.22!

The key result is that the visible-sector gauge coupling
changed sign,

S2
T

2
2

U

2
→2S1

T

2
1

U

2
. ~5.23!

In this new Kähler cone, the visible-sector coupling is se
sible providedT1U.2S, which is complementary to the
initial restrictionT1U,2S.

We have therefore seen that in this very simple exam
the gauge coupling function for the visible sector is sens
and positive on both sides of the strong-coupling transiti
We expect this result to hold in all of the cases of intere
simply from macroscopic arguments about supersymme
theories. It would be interesting to generalize the simple
lustration above toN51 heterotic vacua by studying th
dual geometric transitions in F-theory compactifications
Calabi-Yau fourfolds.

D. Fractional invariants and weak coupling

Let us now determine the conditions under which t
stable vacuum exists at modestly large values ofS and T.
Note that this does not mean that all of the physics is wea
coupled, since as we just discussed, we have undergo
strong-coupling transition inE8

(1) . However, some other sec
tors of the theory may remain perturbative at largeS andT,
so it is still of interest to know that stabilization at largeS
andT is possible.

The goal is to arrange that the volume of the Calabi-Y
manifold is large in string units, while the string coupling

15To make contact with our earlier notation,T andU are the two
Ta, andb25

1
2 for a51,2.
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small:16

~ST!1/85es.1, ~5.24!

S T3

S D 1/2

5ef,1. ~5.25!

Recall thatf is the ten-dimensional dilaton; we denote t
four-dimensional dilaton byw. Using the relation~5.8!, we
have

S 3

b DS25e8s, ~5.26!

S 3

b D 3

S25ef. ~5.27!

Clearlyb.3 is a necessary condition for perturbative vali
ity. It follows from ~5.3! that this condition can only be me
if the bundleV2 is nontrivial; hence gaugino condensation
an unbrokenhidden-sectorE8 is not compatible with this
method of volume stabilization. To see explicitly that largeb
is possible within known constructions we refer to the plo
of Ref. @52#.

From the form of the solution~5.9! it is clear that the
values ofS and T at the stable minimum increase as t
Chern-Simons invariant becomes smaller. We are there
interested in finding three-cycles admitting extremely sm
Chern-Simons invariant.

Small values of the Chern-Simons invariant are distaste
but not unattainable. We saw in Sec. III that it is possible
get a small Chern-Simons invarianth by working on a
Calabi-Yau manifold that has a three-cycleQ satisfying

p1~Q!5Zp

for p@1. The simplest example of this is a Lens space. O
way to generate even smallerh is to takeQ to be a general
Seifert manifoldS(a1 ,...,an), since the minimal value ofh
would scale like

h21;)
i 51

n

ai . ~5.28!

With severalai one could then generate very small fraction
fluxes.

E. Summary of requirements

Let us briefly review the conditions on the Calabi-Ya
manifold X and the gauge bundlesVi that ensure the exis
tence of the supersymmetric vacuum~5.9! with both dilaton
and Kähler moduli stabilized. Conditions essential to th
mechanism are listed first, while those related to deta
model building come last.

16For simplicity we now present the formulas for the case of o
Kähler modulus, the overall volume; the generalization is straig
forward.
8-12
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~1! In order to achieve a small value of the three-fo
flux, the Calabi-Yau manifoldX must have a nontrivial fun-
damental group and must admit gauge connections that
a fractional Chern-Simons invariant on a three-cycleQ that
is not torsion. One of the bundlesV1 ,V2 must then be chose
to have such a gauge connection, i.e., suitable Wilson lin
These conditions areautomaticallymet in a large class o
realistic string models.

~2! For gaugino condensation to be possible inH,E8
(2) ,

the bundleV2 must breakE8→H without introducing any
light charged matter, leaving a pure gauge group. For
ample, if H5E7 then there is no index theorem protectin
charged matter transforming in the56, so we expect that this
condition is generically satisfied. If insteadH5E6 the num-

ber of chiral generations isu 1
2 *Xc3(V(2))u. The bundleV2

should be chosen so that this vanishes.17

~3! In order to stabilize the overall volume we mu
choose bundles for which the quantityb2 defined in~5.3! is
nonzero. To stabilize multiple Ka¨hler moduli we must take
all of the b2

a to be nonzero. To ensure stabilization of t
volume above the string scale, we should also haveb2.3,
with an analogous condition for the case of many modul

~4! If the Kähler moduli are to be stabilized, the initia
configuration and the final stable minimum are on oppo
sides of a transition in which the visible sector becom
strongly coupled. It follows that the visible-sector gau
theory can only be properly understood in models where
strong-coupling transition can be followed in detail. Bet
understanding of this transition is a necessary prelude to
building of realistic models. Readers uncomfortable with
transition are advised to setb15b250, in which case one is
left with a no-scale model with fixed dilaton and an unfix
volume modulus.

~5! Further constraints will be necessary to obtain realis
low-energy physics. For example,V1 should contain appro
priate Wilson lines that break the visible-sector GUT to t
Standard Model gauge group.~It is sometimes possible to
arrange that these same Wilson lines also provide the f
tional Chern-Simons invariant.! The vacua we have con
structed have negative cosmological constant, with an en
density not far below the string scale. This must certainly
modified to lead to a sensible cosmological model. Finally
we wish to stabilize at very weak coupling then the fund
mental group of the Calabi-Yau manifold must be unusua
large.

Clearly, the greatest obstacle to calculability in this s
nario is the strong-coupling transition in the observable s
tor. It is conceivable that one could avoid this difficulty b
combining fractional Chern-Simons invariants and gaug
condensation with a non-Ka¨hler compactification geometry
for in this case the volume modulus can be stabilized at
level. However, for the bulk of our analysis, the only re

17One could imagine other possibilities in which charged matte
the hidden sector generates a nonperturbative superpotentia
can be used for stabilization. See, e.g., Ref.@53# for a discussion of
this possibility in the context of racetrack models.
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assumption we have made is that the unknown physics of
visible sector does not modify the superpotential. This see
believable provided that the low-energyN51 gauge theory
that emerges fromE8

(1) is not one that dynamically generate
a superpotential.

VI. DUALITY TO TYPE IIA AND M THEORY

The models studied in this paper are related by vari
dualities to a particular class ofN51 compactifications of M
theory and type IIA string theory. These models have
cently received some attention due in part to phenomenol
cal applications~see, e.g., Refs.@13,54–60#!. After appropri-
ate duality transformations our mechanism for mod
stabilization can be applied to these models as well. In
section we briefly discuss various aspects of these duali
as well as their implications.

A. Heterotic–type IIA duality

Our considerations have thus far been limited to theE8
3E8 heterotic string, but the discussion can be repeated
most verbatim for the Spin(32)/Z2 heterotic string compac
tified on a Calabi-Yau manifold. The latter theory is relat
to anN51 compactification of type IIA string theory by th
following chain of dualities:

Spin~32!/Z2 Het.↔
S

type I↔
.

type IIB/V

↔
T

type IIA/~V•I!. ~6.1!

Let us now explain each step in this duality in more det
and, in particular, find the relation between the parame
and the coupling constants. The first relation is the stand
strong-coupling–weak-coupling duality between t
Spin(32)/Z2 heterotic string theory and type I string theor
The effective supergravity action in the latter theory is sim
lar to the heterotic supergravity action, with the type I a
heterotic variables related by

f I52fH , ~6.2!

gMN
I 5gMN

H e2fH. ~6.3!

At the next step in the chain of dualities~6.1! we identify
type I string theory with an orientifold of type IIB close
string theory, whereV denotes the worldsheet parity symm
try. The parameters and the coupling constants in the su
gravity action do not change under this identification,
though some terms acquire a different interpretation.
particular, in the type IIB theory the gauge degrees of fr
dom arise as open string states on the world-volume of
space-filling D9-branes. Thus, the Wilson lines of the ori
nal heterotic string theory become Wilson lines on D
branes, and the ten-dimensional gauge coupling is simpl

g10
2

a83 5ef I5ef IIB. ~6.4!

n
hat
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From ~6.2! and ~6.4! we find

f IIB5f I52fH . ~6.5!

The last step in~6.1! is theT duality—mirror symmetry, to
be more precise—between type IIB string theory on
Calabi-Yau manifoldX and type IIA theory on the mirror
manifold X̃. Strictly speaking, the dual background is
orientifold of X̃, where the involution changes the orient
tion of the T3 fibers. UnderT duality, the space-filling D9-
branes transform into D6-branes wrapped over the baseQ,
of the special Lagrangian torus fibration@29#. The param-
eters of the resulting type IIA background can be obtain
from the usualT-duality rules:

f IIA 5f IIB2 logS VX
IIB

VQ
IIBa83/2D 5 1

2 fH2 logS VX
H

VQ
Ha83/2D .

~6.6!

Here VX and VQ denote, respectively, the volume of th
Calabi-Yau spaceX and the volume of the base thre
manifold Q in the string theory given by the superscript.

To summarize, after a chain of dualities~6.1! we found
that our heterotic string models are dual to IIA string theo
on a mirror Calabi-Yau manifoldX̃, with D6-branes wrapped
over the special Lagrangian three-cycleQ. This is precisely
the configuration studied in Refs.@55,13,56,57#. In these pa-
pers,Q is usually taken to be a Lens space,Q5S3/Zp , and

the Calabi-Yau manifoldX̃ is usually assumed to be noncom
pact. If X̃ is compact, as described above, then the prese
of orientifold six-planes is crucial to cancel the D6-bra
charge.

Observe that on the D6-brane world-volume there is
topological coupling between the gauge field,F5dA
1A∧A, and the Ramond-Ramond tensor fields,C5C1
1C31¯ ,

trE
R43Q

C∧eF. ~6.7!

Among other terms, this expression contains a coupling

CS~A,Q!E
R4

G, ~6.8!

which we obtained by expanding~6.7! and integrating by
parts. It follows that D6-branes wrapped overQ with a non-
zero value of the Chern-Simons invariant act as an effec
source for the Ramond-Ramond four-form field strength
the four uncompactified directions.

Comments on proton decay

Using the chain of dualities~6.1! we have now related ou
setup to compactifications of type IIA string theory, whe
the GUT gauge theory is realized on the world-volume
D6-branes wrapped over a compact three-manifoldQ. Simi-
lar configurations have been discussed in a recent wor
08600
a
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ce
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Klebanov and Witten@57# ~see also Ref.@61#!, where it was
shown that the proton decay rate from dimension six ope
tors is given by18

AIIA;
gYM

4/3 L~Q!2/3ef IIA /3

MGUT
2 , ~6.9!

where gYM is the GUT gauge coupling, andMGUT is the
unification scale. This scale is determined by the size of
three-manifoldQ,

MGUT5S L~Q!

VQ
D 1/3

, ~6.10!

where the extra factorL(Q) accounts for the one-loop
threshold corrections from Kaluza-Klein harmonics onQ
@56,57#. Specifically,L(Q) is a topological invariant ofQ,
known as the Ray-Singer torsion.

Let us now compute the proton decay rate in our heter
models. In contrast to the result of Ref.@57#, we expect in
our case the conventional amplitude

Ah;
gYM

2

MGUT
2 ;a8ef/212s, ~6.11!

where the unification scale and the gauge coupling are g
by ~2.9! and ~2.21!, respectively. By tracing the chain o
dualities ~6.1! in reverse, being careful to include the co
stant rescaling of the Einstein-frame metric mentioned
Sec. II, one can verify that~6.9! and ~6.11! differ by the
factor aGUT

1/3 e2f IIA /3, which exhibits the anomalous scalin
with aGUT explained in Ref.@57#.

B. Lift to M-theory

Now let us consider the M-theory lift of the type IIA
configuration considered above. Since D6-branes wrap
over a special Lagrangian submanifoldQ,X̃ preserveN
51 supersymmetry in four dimensions, their lift to M theo
must be described by a seven-dimensional manifoldXG2

with G2 holonomy. Topologically,XG2
can be viewed as a

K3 fibration overQ @62#,

K3→XG2
`
Q

, ~6.12!

such that each K3 fiber has an ADE singularity, which c
responds to the type of the gauge group on the D6-bra
For example, SU~5! gauge theory would lift to aG2 mani-
fold with A4 singularities in the fiber. The dual M-theor
geometry~6.12! can be obtained directly from the heterot
string theory on a Calabi-Yau manifoldX by using the famil-
iar duality between M theory on K3 and heterotic strin
theory onT3. Applying this duality to each fiber in the spe
cial Lagrangian torus fibration,X→Q, we end up with M
theory on a seven-manifoldXG2

with G2 holonomy and to-

18For simplicity, we omit numerical factors of order one.
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pology ~6.12!. Various aspects of M theory onG2 manifolds
of this kind have been studied in Refs.@54,55,63,64,13,56#.

Now let us consider a D6-brane configuration with no
trivial gauge fields characterized byCS(A,Q)Þ0. According
to ~6.8!, such gauge fields act as a source~localized on the
three-cycleQ! for the space-time component of the fou
form flux, G0123. In the effective four-dimensional field
theory, this means there is a nonzero superpotential indu
by CS(A,Q). In M theory, the relevant interaction term~6.8!
appears due to anomaly inflow at the location of ADE s
gularities@65#, while the effective superpotential is generat
by topologically nontrivial gauge fields supported at the s
gularities@58#.

The models studied in this paper have real values of
Chern-Simons invariantCS(A,Q). However, Acharya has
argued@58# that, in a more general setting, the superpoten
induced by gauge fields should be given by acomplex
Chern-Simons invariant. A deeper understanding of the c
nection between these ideas would be quite interesting.

VII. DOMAIN WALLS

In order to obtain an expression for the effective super
tential of anN51 supersymmetric gauge theory, it is ofte
useful to study the spectrum of BPS domain walls. Mo
over, in a theory with gaugino condensation, the dom
walls provide information about the breaking of chiral sym
metry and about other phenomena of interest.

With this motivation in mind, let us consider doma
walls in our models,19 where different vacua are characte
ized by the values of the Chern-Simons function
CS(A,Q). Hence, the BPS domain walls are represented
self-dual field configurations~instantons! supported onQ
3R, whereR represents a spatial direction orthogonal to
domain wall. SinceCS(A,Q) takes fractional values, suc
instantons carry fractional charge,

c252
1

8p2 E tr~F∧F !5CS~A,Q!u2`2CS~A,Q!u1` .

~7.1!

The instanton action is given by*Q3Rtr(F∧* F), which, us-
ing the self-duality of the gauge fieldF, can be written as

E
Q3R

tr~F∧F !.

Furthermore, using~7.1! one can rewrite the instanton actio
as the difference of the values of the Chern-Simons fu
tional, DCS(A,Q). Comparing this formula with the stan
dard expression for the tension of a domain wall inN51
supersymmetric theory,T5uDWu, we come to our previous
result~2.25! for the effective superpotential induced by no
trivial gauge fields@23,24#:

19For a related discussion see also Refs.@66,67#.
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V3~A!. ~7.2!

Now let us consider the degeneracy of domain walls
terpolating between two vacua with fractional Chern-Simo
functional, CS(A,Q), for some three-cycleQ,X. At least
in the classical theory, the BPS domain walls come in c
tinuous families. Specifically, the moduli space of doma
walls with fractional chargec2 is isomorphic to the moduli
space of charge-c2 instantons onQ3R,

M~Q3R;c2!. ~7.3!

Without loss of generality, we can study SU~2! instantons
and, for concreteness, takeQ to be a Lens space,

Q5S2/Zp .

Then, according to~3.14!, the Chern-Simons functional onQ
can take the fractional values

CS~A,Q!52
m2

4p
2

l2

2
. ~7.4!

Here we follow the notations of Ref.@68#, introduced at the
end of Sec. III, wherem is an integer defined modulo 2p.

Consider an instanton onQ3R that interpolates betwee
different values of the Chern-Simons invariantCS(A,Q).
According to~7.1! and~7.4!, such an instanton connects tw
states characterized by different rotation numbersm andm8
5m mod 2, and carries a fractional instanton chargec2
5k/p. Put differently, it is described by a triplet of integer
(k,m,m8). Following Ref.@68#, let us express (m,m8);(a
2b,a1b) in terms ofa andb, such that

a5~m81m!/2 mod p,
~7.5!

b5~m82m!/2 mod p.

Using the above expression~7.4! for the value of the
Chern-Simons functional, we find the corresponding inst
ton number:

c25CS~A,Q!u2`2CS~A,Q!u1`

52
~a2b!2

4p
1

~a1b!2

4p
5

ab

p
.

Therefore, we have

k5ab mod p. ~7.6!

Now we are in a position to describe the moduli spa
M, of instantons onQ3R that interpolate between gaug
connections with rotation numbersm5a2b and m85a
1b. Since instanton configurations always have a modu
that represents their position inR, it makes sense to divide
by translations and consider the reduced moduli space,

M85M/R.
8-15
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Using index theorems one can compute the virtual dimens
of the reduced moduli space@68#,

Dim~M8!5
8k

p
241n

1
2

p (
j 51

p21

cot2
p j

p S sin2
p jm

p
2sin2

p jm8

p D ,

~7.7!

wherenP$0,1,2% is the number ofm,m8Þ0,p. It turns out
that this virtual dimension is always even. In order to illu
trate this general formula, in Table I we list the dimensio
of the moduli spaces of fractional charge instantons
S3/Z53R. In terms ofa and b, m5a2b, m85a1b, and
the instanton numberk5ab mod 5.

The dimension of the moduli space tends to grow with
instanton number,k5ab. For low values of the dimension
one can describeM8 rather explicitly using general topo
logical properties @68# ~see also Refs.@69,70#!. When
Dim(M8)50, the reduced moduli space must be just
point. In this case, we have only one domain wall interpo
ing between two vacua. Furthermore, the Euler numbe
M8 is given by the number of solutions~a, b! to Eqs.~7.5!
such thatab5k. In particular, this implies that

x~M8!>0. ~7.8!

Hence, when Dim(M8)52, the reduced moduli space mu
be of the form

M85S2\F,

whereF is a set of 0, 1, or 2 points.
For example, let us takep55, a52, andb51. This im-

pliesk52, m51, andm853. Then, from Table I we find tha
M8 must be of real dimension 2, and by looking at the Eu
numberx(M8)52 one concludes that in this example t
moduli space is simply a two-sphere,

M85S2.

Since this space is compact, we expect that the degenera
domain walls of chargec25 2

5 interpolating between vacu
with m51 andm853 is given by the cohomology ofM8.
Therefore, in this example we find

~Number of domain walls!52.

TABLE I. Dim( M8) for the Lens space,Q5S3/Z5 .
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The above results suggest the following conjecture for
degeneracy of domain walls with small fractional charg
c25k/p,

~Number of domain walls!5H 1 if k51

2 if k52
. ~7.9!

In other words, we expect that there is always only one
main wall of the minimal fractional charge, whereas the d
generacy of domain walls with twice the minimal charge
equal to 2. It would be interesting to pursue this analy
further.

VIII. DISCUSSION

We have argued that it is possible to stabilize the comp
structure moduli, Ka¨hler moduli, and dilaton of heterotic
Calabi-Yau compactifications. Our ingredients are hidd
sector gaugino condensation combined with a flux-genera
superpotential arising from a flat connection with fraction
Chern-Simons invariant. For the non-Ka¨hler compactifica-
tions of Refs.@41,42# our result looks even more promising
since there the volume is stabilized at tree level, and the o
concern is the dilaton.

One omission from our list of stabilized moduli is th
vector bundle moduli. Following the analysis in Ref.@71#, it
seems likely that the very existence of bundle moduli is
generic. Massless modes arising from the moduli of a vec
bundle V are associated with elements of the gro
H1

„X,End(V)…. Typically there is no index theorem that a
lows one to argue that this group should be nontrivial. Ev
if the group were nontrivial, a generic infinitesimal deform
tion of the vector bundle is obstructed at some finite or
and so does not constitute a modulus.20

In addition to the omission of a detailed discussion
bundle moduli, we have used standard approximations in
scribing the hidden-sector gaugino condensation. For
stance, in real string models, the hidden sector would h
massive fields charged under the hiddenE8 . This would lead
to corrections to the form of the superpotential used he
which presumably arise as more highly damped exponen
in S. While for reasonable values of Re(S) this should not be
a large correction, it would be nice to have exact resu
These are not yet available forN51 supersymmetric com
pactifications of heterotic strings.

The solutions we have constructed are supersymme
AdS vacua. It is natural to ask whether one can add a so
of supersymmetry-breaking energy which lifts these mod
to de Sitter vacua, along the lines of Ref.@40#. In fact, there
are significant similarities between the type IIB constructio

20Nevertheless, simple bundles constructed by mere humans o
have moduli. In many such simple cases, even nonperturba
sigma model effects do not suffice to lift them@72#. Examples of
superpotentials arising for the bundle moduli associated with sm
instantons in heterotic M-theory are described in, e.g., Ref.@73#.
8-16
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HETEROTIC MODULI STABILIZATION WITH . . . PHYSICAL REVIEW D 69, 086008 ~2004!
of Ref. @40# and the heterotic models discussed here.
noted in Sec. IV, the superpotential in each case consists
small, constant term from flux and an exponential term fr
nonperturbative gauge dynamics. To continue this anal
and include supersymmetry breaking, one would have to
troduce the heterotic dual of the anti-D3-brane introduced
Ref. @40#. In heterotic M-theory this would correspond to
nonsupersymmetric wrapped M5-brane. To achieve con
over the construction, one would need to introduce such
object in a heterotic background with significant warping

Burgess, Kallosh, and Quevedo@74# have recently pro-
posed that a Fayet-IliopoulosD-term potential could serve a
another useful source of energy for uplifting heterotic mo
els. The stable AdS vacua we have discussed would ap
to be a suitable setting for such a mechanism, but we le
the construction of explicit models as a subject for futu
exploration. Again, one would have to arrange for a suita
small D-term to justify the analysis.

The present proposal for manufacturing vacua with
moduli, combined with the constructions in Refs.@40,58,
74–76#, is a small step towards filling out our picture of th
‘‘discretuum’’ @77# of string or M-theory vacua. This is th
full space of vacua of string theory, including all of the po
sibilities for the background fluxes, wrapped branes, a
other discrete data. Interesting general aspects of this l
scape of string theory vacua have recently been discusse
e.g., Refs.@78–80#, while statistical arguments relying o
the existence of the discretuum have been used, e.g., in R
@77,81,40# in tuning the cosmological constant.

Although this is a bit far from the concrete goal of o
paper, it is worth discussing how this discretuum may
cl
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expected to arise in the heterotic theory. In type II theori
as in M-theory, the discretuum is populated by vacua w
various quantized values of the RR and NS fluxes, and w
different wrapped branes, consistent with the tadpole con
tions arising from the Gauss’s law constraints on the vari
p-form field strengths. In the heterotic theory, there are a f
quantum numbers which contribute to the large number
vacua. In addition to the large number of choices of vec
bundles on a fixed manifold@characterized by the topologica
numbersc2(Vi), c3(Vi), for instance#, there are also back
ground NS fluxes. Finally, there is the possibility of no
Kählerity, which is roughly dual to the possibilities of differ
ent fluxes in type II theories@41#.

As described at length in Ref.@78#, to get a good handle
on this large set of possibilities, it will probably be necessa
to find auxiliary ensembles which accurately model the sp
of vacua. We have little to say about this at present but le
it as an ambitious goal for future research.
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