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Improved off-shell scattering amplitudes in string field theory and new computational methods
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We report on new results in Witten’s cubic string field theory for the off-shell factor in the 4-tachyon
amplitude that was not fully obtained explicitly before. This is achieved by completing the derivation of the
Veneziano formula in the Moyal star formulation of Witten’s string field theory~MSFT!. We also demonstrate
a detailed agreement of MSFT with a number of on-shell and off-shell computations in other approaches to
Witten’s string field theory. We extend the techniques of computation in MSFT, and show that thej 50
representation of SL(2,R) generated by the Virasoro operatorsL0 ,L61 is a key structure in practical compu-
tations for generating numbers. We provide more insight into the Moyal structure that simplifies string field
theory, and develop techniques that could be applied more generally, including nonperturbative processes.
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I. INTRODUCTION

In this paper we will report on new results in Witten
string field theory@1# for the off-shell 4-tachyon amplitude
that was not fully computed explicitly before. In previou
computations the off-shell factorf (x) was obtained in an
implicit form @2,3#, while an explicit computation reporte
only the first two terms in an expansion in the vicinity of th
integration limit of the parameterx @3#. These results were
obtained by using mainly conformal mapping techniques@4#
and followed the methods of Giddings’ original computati
@5# of the on-shell Veneziano amplitude, which could be e
tended to off-shell under the guidance of the oscillator f
mulation of string field theory@6–8#. In this paper we will
obtain a fairly comprehensive profile of the off-shell fact
f (x) in its entire range 0<x<1 by giving the explicit form
to tenth order in the parameterx ~first two terms in agree-
ment with @3#!, obtaining a plot in the full range, and com
puting the critical slope at a turning point in midrange th
determines differentiability. Contrary to our result, prev
ously it was thought that the functionf (x) was not differen-
tiable atx51/2, where it was not well understood. These a
achieved in the Moyal star formulation of Witten’s strin
field theory~MSFT! @9–15#.

The usual approach of computation starts with a prec
formulation of Witten’s string field theory, such as the osc
lator formulation, to derive a formal expression for a stri
Feynman diagram in terms of the cubic vertex defined
terms of the Neumann coefficients. After this step a jump
made to conformal maps from an analog model@4# and the
real computation is performed by using conformal fie
theory, if the conformal map can be constructed. The des
conformal maps can be found explicitly only in certain luc
cases, and the four point function is one of them. The c
formal map procedure has been used virtually in every s
cessful analytic computation, while the oscillator basis is
rectly pursued mainly with numerical studies using lev
truncation @18,19# because of the complexity of the Neu
0556-2821/2004/69~8!/086007~25!/$22.50 69 0860
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mann coefficients. These have been some of the challen
features of Witten’s string field theory in various formul
tions @7,20# that, despite the beauty of Witten’s basic actio
have led to limited results in string field theory.

Some of the complexities of other approaches are
present, or take an easier form in MSFT. In this formulati
the string joining star product is the simple Moyal produ
and this reproduces directly results in string field theory,
agreement with conformal field theory, but without mappi
back to conformal field theory or other intermediate ste
Therefore some of the lingering problems in string fie
theory seem to be good testing grounds for MSFT.

In this paper we apply the MSFT techniques to the o
shell 3-point and 4-point amplitudes. We will derive the Ve
eziano amplitude directly from MSFT and determine the o
shell factor far more accurately compared to previo
computations. In this process we demonstrate that MS
agrees in detail with other approaches while bringing e
ciency into the computations, and also obtain new result
MSFT that other approaches could test. We view these c
putations as a preparation for our ultimate aim which is
investigation of nonperturbative string theory phenomena
using the simpler MSFT. We believe the techniques and
sights developed in this paper will be useful for this purpo
In fact we find that some of the new results and insig
gained by this work impact the way to compute nonpertu
tive quantities in string field theory as discussed in Sec.

In the rest of this section we will describe briefly MSF
and introduce some notation. In Sec. II we discuss off-sh
3-point functions. This is necessary to understand the beh
ior of the theory with respect to a cutoff in mode space, a
to define the physical string coupling as opposed to the b
divergent coupling that appears in the action. The results
obtain for the off-shell 3-point amplitudes demonstrate d
tailed agreement between MSFT and conformal field the
or the oscillator formulation of string field theory.

In Sec. III we analyze the off-shell 4-tachyon amplitud
We show directly from MSFT, without connecting throug
©2004 The American Physical Society07-1
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I. BARS AND I. Y. PARK PHYSICAL REVIEW D 69, 086007 ~2004!
conformal field theory, that on-shell we obtain the Venezia
amplitude. Furthermore we obtain the off-shell factorf (x)
and compute the first ten terms in an expansion in power
x, provide a plot in its full range 0<x<1, and determine its
differentiability at a turning point. Previously it was thoug
that the derivative was discontinuous at midrange and o
the lowest two terms were explicitly computed@3# ~in agree-
ment with our result!. Our computation provides the mo
comprehensive information on the off-shell 4-tachyon am
tude produced so far in string field theory.

In Sec. IV we develop the details of the tools that allow
us to perform the computations in Secs. II and III and wh
would be applicable more generally to other computation

In Sec. V we discuss the SL(2,R) generated by the Vira
soro generatorsL0 ,L61, whose j ( j 11)50 representation
deeply underlies the structures that appear in our comp
tions. By using some group theoretic properties of this v
special representation of SL(2,R) we develop tools for com-
putation in string field theory that are needed in our pape
generate numbers. We also compare the discrete and con
ous Moyal bases which are simply two different bases of
j 50 representation.

In Sec. VI we discuss some of the impact that our pres
computations have on the nonperturbative landscape,
then conclude in Sec. VII. In the Appendix we give furth
results produced through the techniques in Sec. IV, and r
tions to Neumann coefficients.

The action of Witten’s cubic string field theory@1# in the
MSFT formalism in the Siegel gauge is

S~A!52E ddx̄ TrS 1

2a8
A!~L021!A1

g0

3
A!A!AD , ~1.1!

whereL0 is given in Eqs.~6.5!, ~6.6!. The zero mode ghost
have already been dealt with@15# so they no longer appea
Hence the fieldA here is equivalent to the physical field
Witten’s theory. The string fieldA( x̄,xe ,pe) is written in a
mixed position-momentum basis, which is equivalent to
Fourier transform of the purely position basis. In this ba
string joining is represented by the usual Moyal star prod
@9# in a noncommutative phase space (xe ,pe) labeled by the
even modese52,4,6, . . . ,.1 The star product! is local in

1The position basis is given in terms of the even and odd mo
(xe ,xo). The Fourier transform in the odd modes maps to the sp
(xe ,po). Witten’s string joining star product becomes a nondiag
nal Moyal product in the space (xe ,po) @9#. This is diagonalized by
defining pe as an infinite combination of thepo5peTeo by intro-
ducing the special matrixTeo given in Eq. ~4.4!. In this way we
arrive to the noncommutative space (xe ,pe) with a diagonal Moyal
product whose meaning is string joining. We emphasize that thipe

is a definition in terms ofpo , it should not be confused with th
first quantized momentum that is canonical toxe , whose represen
tation in this space is the derivativei ]xe

. However, interestingly this
can be reproduced in the noncommutative geometry~string joining!

relation 2 i ]xe
A( x̄,xe ,pe)5@pe ,A( x̄,xe ,pe)#!. A closely related

continuous Moyal basis@16# is obtained by orthogonality transfor
mations, as will be discussed later in the paper.
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the midpoint variablex̄, and is independent for eache. This
separation of variables and the simplicity of the Moyal s
are the main conceptual and practical simplifications t
lead to new progress by overcoming midpoint problems
other approaches and opening up easier computational t
niques in MSFT.

It has been shown in@9–15# through some explicit com-
putations that MSFT is in full agreement with other comp
tational approaches to Witten’s string field theory, includi
the oscillator formulation and conformal field theory@7–20#.
In particular, the Moyal star reproduces the Neumann co
ficients that define the vertices in the oscillator formulati
of string field theory@11,15#. Furthermore, the MSFT propa
gator has the usual free string spectrum. Therefore, e
though it is a very different computational formalism, due
the one to one correspondence described in@13# we expect
identical final results between MSFT and oscillator approa
computations of any string Feynman graph. This expecta
will be confirmed in detail in this paper. This demonstrat
once again, and in greater detail, that MSFT is a prec
representation of Witten’s string field theory.

The string in 26 dimensions is supplemented with tw
additional fermionic dimensions that describe the conform
ghostsb,c, with the appropriate generalization of the Moy
star product for fermions. The traditional perturbative stri
states~tachyon, vector, etc.! are identified through the usua
expansion

A~xcm ,xe ,pe!5T~xcm!A0~xe ,pe!

1Vm~xcm!~a21
m A0~xe ,pe!!1•••

~1.2!

whereA0(xe ,pe) is the perturbative vacuum string field con
figuration anda2n

m is a differential operator representation
string oscillators in the space (xe ,pe) @11,15#. A0 is a spe-
cific normalized Gaussian Tr(A0!A0)51, that represents the
vacuumL0A050, including ghosts@15# ~see also@17#!. It is
given by

A0~j!5udet 4m0ud/4udet 4m0
21u22/4exp~2hmnjmm0s21jn

1 i«mnj
mm0

21s21jn!, d526, ~1.3!

wherejm,jm are the noncommutative coordinates written
a doublet for eache, with the bosonic partj i

m5(xe
m ,pe

m) for
matter and fermionic partj15(xe

b/A2a8, 2A2a8pe
c), j2

5(xe
c/A2a8, A2a8pe

b) for the b,c ghosts.2 Each pair (x,p)
satisfies standard commutation-anticommutation rules un
the star product. These can be written compactly
@j i

m ,j j
n#!5hmns i j for matter and$j i

m ,j j
n%!52 i«mns i j for

ghosts, where the symbols52us2 is the Pauli matrixs2 in

s
e

-

2Relative to@14,15# we are improving notation by introducingjm,
with m51,2, and the Sp(2) metric«mn , for the sake of connecting
with an upcoming paper in which we will discuss some useful h
den symmetries that connect matter and ghosts in the MSFT
malism, and further simplify the structure and computations.
7-2
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IMPROVED OFF-SHELL SCATTERING AMPLITUDES IN . . . PHYSICAL REVIEW D69, 086007 ~2004!
the doublet space multiplied with a noncommutativity p
rameteru. We takeu51 by a choice of units. Them0 that
appears in the vacuum stateA0(j) is a matrix in mode space
determined byL0A050 as shown in@11#. Althoughm0 is a
simple matrix, we will not need it explicitly in this paper.

The perturbative particle fieldsT(xcm),Vm(xcm), etc. are
expressed as functions of the center of massxcm . The star
product! is local in the midpoint of the stringx̄, not in the
center of massxcm . Therefore, before evaluating the inte
action for any perturbative fieldT(xcm),Vm(xcm), etc. one
must first write the center of mass in terms of the midpo
xcm5 x̄1wexe , wherewe52A2(21)e/2. This is a crucial
step in computations of the star products. The midpoint
been a source of numerous problems in the split string
malism, and the resolution first was given in the context
MSFT in @11# with the simple prescription just described.

In the quadratic term the star product plays no role, a
could be removed, as is usual for the Moyal product. T
coefficient of the quadratic term in the action is chosen s
that the particle fields are correctly normalized~after taking
into account the definitions of the trace Tr including gho
and the Virasoro operatorL0 as given in@15#!

Squadratic52E ddx̄S 1

2
]mT]mT1

1

4
FmnFmn1••• D

~1.4!

5E ddx̄
1

2
~]0T]0T2¹W T•¹W T!1

1

2
]0Vm]0Vm

1•••. ~1.5!

Then from the cubic term one finds the Feynman rules
computes the amplitudes as described in@13,15#. For each
external line we insert a string field representative of a p
ticle. In particular an incoming tachyon with momentumkm

is represented by the string fieldA0(xe ,pe)e
ik•xcm, whereA0

is the normalized vacuum field given above, andeik•xcm is
the center of mass plane wave which is part ofT(xcm). To
compute its interactions one must write it in the for
A0(xe ,pe)e

ik•( x̄1wexe) which is a shifted Gaussian in (xe ,pe)
space. These details are fully explained in@9–15#, where it is
also shown how to compute the star product and the tr
with efficient methods based on a monoid algebra of shif
Gaussians@11#.

In the expressions below the constant matrixteo and vec-
tors we ,vo in even or odd mode space~and related matrices
Teo , Roe) are fundamental matrices in MSFT that encode
joining of strings @9–16#, and are given explicitly in Eqs
~4.3!, ~4.4!. The matricesko ,ke are diagonal matrices tha
represent the odd or even oscillator frequenciesko
5diag(o), o51,3,5, . . . andke5diag(e), e52,4,6, . . . as
in Eq. ~3.6! below. A bar on top of a square or column matr
symbol, such ast̄ ,v̄, etc. means the transpose of the matr
In certain computations, to avoid associativity anomal
these infinite matrices must be replaced with their regula
N3N version as given in@10,13–15# and thenN must be
sent to infinity at the end. The regulated matrices obey so
nice algebraic properties which are also shared by the infi
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matrices, thereby permitting analytic computation in t
finite N version. A particular form of the regulator which w
have found useful in some computations is given
footnote 6.

It is necessary to use the regulator in those computat
where we suspect anomalous behavior, but otherwise the
regulated matrices can be used, as we will do for most of
computations in this paper. It is interesting to note that
regulated matrices with only a few modes~small N) repro-
duce approximately most of the numerical results we obt
with more sophisticated methods atN5`. An example is the
Neumann matrices as given in the appendix of@15#, and
many of the numbers computed in the current paper,
though we do not make the effort to demonstrate this poin
this paper.

II. OFF-SHELL 3-POINT FUNCTIONS

In this section first we briefly outline the off-shell 3-poin
functions to establish the relation between the bare coup
g0 that appears in the action of MSFT and the on-sh
tachyon couplingg, which is identified with the string cou
pling. The relation between the two involves a factor whi
diverges with the number of modes 2N asg0;(2N)3/2g as
will be explained later. All other scattering amplitudes a
proportional to some power of the bare couplingg0, and this
must be first written in terms of the finite on-shell tachy
couplingg. After this step, it is seen that all amplitudes a
finite. In this process one finds a renormalization factor
front of the amplitudes multiplying a power of the on-she
couplingg. An example of this is the factorg2(27/16)3/4 for
the 4-tachyon amplitude in Eq.~3.5! below.

The off-shell 3-tachyon amplitude is obtained by usi
the Feynman rules~note 1

3 g033!52g0) and inserting the
tachyon field for the external leg in the Feynman graph, le
ing to the expression

g123~ki !52g0E ddx̄ Tr~A0eik1•( x̄1wxe)

!A0eik2•( x̄1wxe)!A0eik3•( x̄1wxe)!. ~2.1!

The x̄ integral gives a momentum conservation delta fun
tion (2p)26d (26)(k11k21k3), while the trace and star prod
ucts are easily evaluated by using the Bose-Fermi mon
rules developed in@11,15#. The result is

g123~ki !5gS 27

16D
3/22(1/2)a8(k1

2
1k2

2
1k3

2)

, ~2.2!

multiplied with the delta function. This is in full agreemen
with previous studies of the off-shell 3-tachyon amplitu
@6,7,2#. It gives precisely g on shell by definition
g123(ki)ua8k

i
2515g. The remaining off-shell factor in ou

calculation initially has the form exp(v@ 3
221

2a8(k1
21k2

2

1k3
2)#), with v5(1/2a8)(w,0)sm0(31m0

2)21(w,0)T. This
is obtained easily by evaluating the star products and trac
Eq. ~2.1! by using the simple monoid methods in@11,15#.
7-3
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I. BARS AND I. Y. PARK PHYSICAL REVIEW D 69, 086007 ~2004!
Using the definition ofm0 this simplifies tov52v̄ko
21/2(3

1 t̄ t)21ko
21/2v, which is then evaluated asv5 ln(27/16)

later in this paper in Eqs.~4.13!, ~4.20!, to produce the resul
in Eq. ~2.2!. Similarly, in the same computation, the relatio
between the on-shellg and the bare couplingg0 in-

itially takes the following form g05 1
2 g( 27

16 )3/2det((3
1m0

2)/4)d/2det((31m0
22)/4)22/2udetm0u2d/4udetm0

21u22/4.
After insertingm0 it becomes

g05
1

2
gS 27

16D
3/2

~det~ t t̄ !!2(d26)/4detS 31~ t t̄ !

4
D d

3detS 113~ t t̄ !

4
D 22

, d526. ~2.3!

The right hand side of Eq.~2.3! is divergent as
(2N)(d26)/82d/1814/9 which becomes (2N)3/2 for d526 as
will be later shown in Eq.~4.32!. However this divergence is
everywhere reabsorbed into the definition of the on sheg
just as in the 3-tachyon case. After this step, there still
mains similar determinants that individually produce a div
gence or zeros at largeN, but they combine together to giv
finite answers magically as long asd526. We will see an
example of this impressive fact below in the 4-tachyon a
plitude @see the determinants in Eq.~3.5! and the computa-
tion in Eqs.~4.24!#.

A similar computation can be performed for the vec
particle for an incoming wave with momentumkm, which is
represented by the string field

AV~xcm ,xe ,pe ,k!5eik•xcmA0~xe ,pe!«m~k!~pmT!1A2a8,
~2.4!

where «m(k) is the polarization and the last facto
pe

mTe1A2a8 resulted from applying the oscillator@11,15#
a21

m A0(xe ,pe). For example, the coupling between the ve
tor and two tachyons is~omitting the Chan-Paton factors a
the string ends!

g12V3
~ki !52g0E ddx̄ Tr~A0eik1•( x̄1wxe)!A0eik2•( x̄1wxe)

!A0eik3•( x̄1wxe)«m~k3!~pmT!1A2a8!. ~2.5!

Following the monoid methods in@11,15# that led to Eq.
~2.2! this is evaluated in almost the same way, giving

g12V3
~ki !5

1

2
g~k12k2!•«~k3!S 27

16D
12(1/2)a8(k1

2
1k2

2
1k3

2)

,

~2.6!

with an implied momentum conservation delta function as
Eq. ~2.2!. This result is in full agreement with the on-she
result in @7# ~for a8k1

25a8k2
251 anda8k3

250), as well as
the off-shell results summarized in@2#. To arrive at this result
we needed to perform the computation of the following n
merical coefficient:
08600
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b15 (
e,e8.0

Te1AeS 2

31t t̄
D

ee8

1

Ae8
we8

5S S 2

31 t̄ t
D ko

21v D
1

5
2A2

3A3
. ~2.7!

This computation, and those for similar quantities will b
given later in this paper in Eq.~4.21!.

We see that MSFT is in full agreement with previo
computations in string field theory for off-shell 3-point fun
tions. Previous methods used conformal maps@2# and con-
formal field theory, while MSFT uses the Moyal product, a
produces the same results with considerably simpler m
ods. One can go on computing very simply off-shell 3-po
couplings for any other perturbative or nonperturbative fie
by similar MSFT techniques.

III. OFF-SHELL 4-TACHYON SCATTERING

One of the new results in our paper is a proof that
MSFT 4-tachyon amplitude produced by the Moyal produ
does give directly the Veneziano amplitude, without usi
conformal mapping techniques. A second new result i
comprehensive understanding of the off-shell factor by go
considerably further in the parametric expansion, obtainin
plot of the function in the full range, and determining i
differentiability at a turning point.

In MSFT we have been developing analytic methods
computation in string field theory by using directly th
Moyal star product. Both the oscillator formalism and MSF
provide an expression for any off-shell amplitude, includi
loops. Although the starting point and intermediate steps
quite different, it has been argued that generally we exp
agreement in the result@13,15#.

The computation of the 4-tachyon off-shell amplitude
MSFT was performed in@13,15#. There are 8 diagrams tha
correspond to various permutations of the four external le
The s-channel diagram1

2.2,4
3 is denoted as12A34. The

mathematical expression for this amplitude was obtained
@13,15#. Thet-channel diagram is given by the cyclic perm
tation of the external legs41A23, and its mathematical ex
pression amounts to exchangings,t in the previous result.
The remaining permutations that do not change thes,t chan-
nel properties are denoted as21A43, 43A21, 34A12 and 14A32,
23A41, 32A14 respectively. After a brief computation~as in
@13#! it can be shown that these give the same amplitude
the initial s,t diagrams. Therefore the sum of the diagram
for the s,t channels produces a factor of 4

A~s,t !54S 1
2.2,4

31

2∨ 3

u

1` 4

D
54E

0

`

dtet~12A34~t!1 41A23~t!!
7-4
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5E
0

`

dte2t22a(t)14g(t)a4~t!

3expS (g(t)12b(t))(
i 51

4

(a8ki
221)D

3@e(a8s12)(t1a(t)12b(t))

3e(a8t12)2b(t)1~s↔t !#, ~3.1!

wheres,t are the Mandelstam variables3 s52(k11k2)2 and
t52(k11k4)2. The functionsa(t),b(t),g(t),a4(t) ini-
tially given in @13# were further simplified in@15#. Here, as a
first step, we simplify these functions further with a fe
algebraic steps and put them into the following form whi
will be convenient in our analysis

a~t!5v2b̄e2tk~12Me2tk!21b, ~3.2!

b~t!5b̄P(o)e2tk~12Me2tkMe2tk!21P(o)b,
~3.3!

g~t!52
1

2
v2b̄P(o)e2tk~12Me2tk!21P(o)b,

~3.4!

a4~t!54
1

4
g2S 27

16D
3 det~12M̃e2tkM̃e2tk!

@det~12Me2tkMe2tk!#d/2
, d526.

~3.5!

The overall factor of 4 ina4 is the factor in Eq.~3.1!. In
string mode space labeled by even and odd positive inte
e52,4,6, . . . ando51,3,5, . . . , wehave defined the matri
ces k,M ,M̃ ,P(o), vector b and scalarv as follows ~a bar
above a symbol means matrix transpose!

k5S e 0

0 oD , M5S S 12t t̄

31t t̄
D

ee8

0

0 S 12 t̄ t

31 t̄ t
D

oo8

D ,

M̃5S S 12t t̄

113t t̄
D

ee8

0

0 S 12 t̄ t

113 t̄ t
D

oo8

D ~3.6!

b5S be

bo
D , P(o)5S 0 0

0 1D , v[b̄~12M !21b. ~3.7!

Here the diagonal matrixk with integer eigenvalueskn
5n, represents the spectrum of string oscillation frequenc

3The Mandelstamt should not be confused with the matrixteo .
08600
rs

s

~eigenvalues ofL0), P(o) is a projector onto the odd mode
only. The other quantities are all constructed from the ma
teo and vectorvo which themselves are built from the fre
quencieskn as given in@9–13# for anyN. In the largeN limit
they take the form in Eq.~4.3!. The combination ofteo in the
form of the matrixM arises frequently in the interactions i
the matter sector, while the matrixM̃ occurs in the ghost
sector.4 The even and odd vectorsbe ,bo are given by

bo5S 2

31 t̄ t
ko

21/2v D
o

, be5S t
2

31t t̄
ko

21/2v D
e

,

~3.8!

whereko is the odd part of the matrixk. Finally v, which is
the t→` limit of a(t) is simplified to the form

v[b̄~12M !21b5 v̄ko
21 2

31 t̄ t
ko

21v ~3.9!

by using the definitions ofb,M given above.
From these quantities we compute the functio

a(t),b(t),g(t),a4(t) which in turn determine the
4-tachyon scattering amplitude off-shell as well as on sh
We will show that the on-shell amplitude fora8ki

251 re-
duces to the Veneziano amplitude given by the beta func

Ashell~s,t !5g2
G~2a8s21!G~2a8t21!

G~2a8s2a8t22!
. ~3.10!

On the other hand the off-shell expression above goes
yond conformal field theory which only gives informatio
for on-shell strings.

The aim in the rest of this section is to show that t
off-shell 4-tachyon amplitude in Eq.~3.1! can be rewritten in
the following form and then compute the functionf (x)

A~s,t !52g2E
0

`

dt
dx~t!

dt
~ f @x~t!#!

( i 51
4 (a8ki

2
21)

3@~x~t!!2a8s22~12x~t!!2a8t221~s↔t !#

~3.11!

5g2E
0

1

dxx2a8s22~12x!2a8t22~ f ~x!!
( i 51

4 (a8ki
2
21).

~3.12!

After the change of integration variables fromt to x in the
form of Eq. ~3.12! we see that the off-shell amplitude

4The matricesM ,M̃ are simplified forms of2M (0),2CX(0)

whereM (0),X(0) were identified in@11,15# as some of the Neu-
mann matrices for the 3-point vertex in the matter and ghost sec
respectively. Furthermore, it was shown that all Neumann matri
for all n-point vertices, are explicit functions of the matrixteo as
obtained in@11,15#. Hencet is the fundamental matrix that dete
mines all interactions in string theory.
7-5
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consistent with the on-shell Veneziano amplitude@beta func-
tion in Eq. ~3.10!# whena8ki

251.
We will show that the change of variables fromt to x is

such thatx(0)51/2 and x(`)50. Then we see that th
s-channel amplitude12A34(t)5 1

2.22, 4
3 contributes to

the range 0<x<1/2 while thet-channel amplitude41A23(t)
contributes to the range 1/2<x<1 after a change of vari
ablesx→(12x). For the first form in Eq.~3.1! to agree with
the second form in Eq.~3.11! it is required that
a(t),b(t),g(t),a4(t) conspire to have remarkable rel
tions among themselves so that they can be written as f
tions of the samex(t). Thus we need to prove that the fo
lowing relations are satisfied@which also definex(t) in
terms ofa(t),b(t),g(t),a4(t)]

e2te2a(t)22b(t)512e22b(t)[x~t!, ~3.13!

dx~t!

dt
52

a4~t!

g2
e2t22a(t)14g(t). ~3.14!

Note thata4(t) depends ond526 while the other quantities
are independent of the number of dimensions. Hence if
relation holds ford526 it cannot hold for other dimensions
We will prove below that the relations in Eqs.~3.13!, ~3.14!
are indeed true. This makesd526 unique.

Once the relations are proven, then we learn that the
shell factorf (x) is given by

f ~x~t!!5eg(t)12b(t). ~3.15!

To write f (x) in terms of only the parameterx in the integral
representation of the off-shell amplitude in Eq.~3.12!, the
relation betweenx,t given in Eq.~3.13! needs to be inverted
t5t(x). We will perform the inversion and will construc
the function f (x) as a series expansion in powers ofx. It
turns out that a few terms in the expansion already give
necessary information to obtain a sufficiently accurate rep
sentation of the functionf (x), and hence of the full off-shel
4-tachyon amplitude.

Let us first prove that the relations in Eqs.~3.13! hold at
the integration limitst50,̀ . In the next section we show
how to compute the functionsa(t),b(t),g(t),a4(t) at t
50,̀ . We find in particular

a~0!50, b~0!5
1

2
ln 2, g~0!52 ln 2, ~3.16!

a~`!5 ln
27

16
, b~`!50, g~`!5

1

2
ln

16

27
,

a4~`!5g2S 27

16D
3

. ~3.17!

From this we see that indeed Eqs.~3.13! is satisfied at both
limits t50,̀ , and we also determine

x~0!5
1

2
, x~`!50. ~3.18!
08600
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This shows that thes-channel amplitude12A34(t) is associ-
ated with the range 0<x<1/2 and thet-channel amplitude
41A23(t) contributes to the range 1/2<x<1 after the change
of variablex→(12x).

Next we examine the relations for more general values
t. The form of the equations in Eqs.~3.2!–~3.5! was devel-
oped to examine an expansion in powers ofe2t. In the next
section we show how to compute the coefficients for
large t expansion of the functionsa(t),b(t),g(t),a4(t).
We find the following analytic result:

a~t!52 ln
16

27
2

8

27
e2t2

2219

~27!2
e22t2

2572

3~27!3
e23t

2
2313243

~27!4
e24t2

241673229

5~27!5
e25t1O~e26t!,

~3.19!

b~t!5
8

27
e2t1

2572

3~27!3
e23t1

241673229

5~27!5
e25t

1O~e27t!, ~3.20!

g~t!5
1

2
ln

16

27
2

8

27
e2t2

40

~27!2
e22t2

2572

3~27!3
e23t

2
23829

~27!4
e24t2

241673229

5~27!5
e25t1O~e26t!,

~3.21!

a4~t!5g2S 27

16D
3S11

2217

35
e22t1

231399

~27!3
e24t1O~e26t !D.

~3.22!

To obtain the expansion to this order it is sufficient to co
pute the coefficientsb1 ,b2 ,b3 ,b4 ,b5 ,M11,M13,M22,M̃11,
M̃13,M̃22 defined above. These results were obtained ana
cally without much effort. Our analytic results above to ord
O(e26t) are already quite adequate to constructf (x). It is
possible to easily extend the expansion by inserting the
sults for the higher coefficients provided in the Append
into Eqs.~3.2!–~3.5!. In fact we have constructed an alg
braic computer program that does this, and using it we h
double checked our analytic results above and extended
computation to higher orders. We will report on some of t
higher order results below.

The relations~3.13!, ~3.14! can now be verified directly
by inserting the large t expansions for
a(t),b(t),g(t),a4(t) given above, and reexpanding i
powers ofe2t up to orderO(e27t). From either the first or
second term in Eq.~3.13! we obtain the same expression f
x(t), namely
7-6



x~t!5

16

27
e2t2

128

729
e22t1

64

729
e23t2

19456

531441
e24t

, ~3.23!
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S
1

387296

14348907
e25t2

1733120

129140163
e26t1O~e27t!

D
5S 59.259e2t217.558e22t18.7791e23t23.6610e24t

12.6991e25t21.342e26t1O~e27t!
D 31022. ~3.24!

Furthermore, the right hand side of Eq.~3.14! gives precisely the derivative]tx(t) of the expansion in Eq.~3.23!

2
a4~t!

gT
2

e2t22a(t)14g(t)5S 2
16

27
e2t1

256

729
e22t2

64

243
e23t1

77824

531441
e24t

2
1936480

14348907
e25t1

3466240

43046721
e26t1O~e27t!

D . ~3.25!
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This proves thata(t),b(t) satisfy the relation in Eq.~3.13!,
and a(t),g(t),a4(t) satisfy the relation in Eq.~3.14!, at
least up to orderO(e27t). Actually, as already mentioned
with a computer program we have shown that the relati
hold to much higher orders. These results are convincing
a(t),b(t),g(t),a4(t) are all expressed in terms of th
same functionx(t). We emphasize that the number of d
mensionsd which appears ina4(t) in Eq. ~3.5! must bed
526 to satisfy the relations.

Note that att50 we expectx(0)51/2 exactly as in Eq.
~3.18!, and indeed by replacinge2t→1 the expansion~3.23!
we obtainx(0)50.481 76 which implies that the expansio
captures an accurate representation of the full function. N
from the trend in Eq.~3.24! that the nextO(e27t) correction
will bring the value much closer to the exact answerx(0)
51/2. With the computer program we have shown that t
value becomesx(0)50.492 95 by computingx(t) to order
O(e210t).

Finally we compute the off-shell factor, which is given b

f ~x~t!!5eg(t)12b(t)[
C~12x~t!!

2A12x~t!
. ~3.26!

The expression on the right hand side defines the functioC
which is given here for comparison to the old literatu
Thus, by substituting 12x(t)5exp(22b(t)) we can write
C(12x(t))52eg(t)1b(t). First we obtain the expansion o
C(12x(t)) by inserting our computation ofg(t) andb(t).
The result is

C~12x~t!!52eg(t)1b(t)5S 4

3D 3/2S 12
5

32S 16

27D
2

e22t

2
1

32S 16

27D
2

e24t1O~e26t! D . ~3.27!

Next, by using Eq.~3.23! we rewrite this result in terms o
x(t) so that the functionC(12x(t)) is given in terms ofx.
The result is
08600
s
at

te

s

.

C~12x~t!!

5S 4

3D 3/2S 12
5

32
@x~t!#22

5

32
@x~t!#3

2
1249

8192
@x~t!#42

609

4096
@x~t!#51O~@x~t!#6!

D
~3.28!

5S 1.539620.24056x220.24056x3

20.23474x420.22891x51O~x6!
D .

These coefficients are determined by demanding that the
pansion in powers ofe2t matches the one of 2eg(t)1b(t). In
this form our result forC is in agreement with what is found
in the old literature@3# where C was computed up to the
second term25/32x2 by using Mandelstam’s conforma
mapping techniques. We, of course, used the very differ
Moyal star technique and obtained the same result, but
also easily went further by obtaining the higher order term
which is a new result given in this paper. As mentioned, w
our technique it is very easy to compute to even higher
ders@see Eq.~3.33!#.

Since the range forx is 0<x<1/2 the expansion given
above forC has good convergence, so we expect that
have obtained an accurate representation of the full func
C in the relevant range. As a test let us compare the ex
value of C at t50 ~or at x51/2) which we can compute
exactlyC(12x(0))52eg(0)1b(0)5A251.414 2 after using
Eq. ~3.16!. By evaluating the expansion above atx51/2, we
obtainC51.427 6, which confirms that the expansion do
capture the function almost fully in the entire range.

Let us now turn to the full off-shell factorf (x). The exact
expansion of this function in powers ofx up to O(x6)
becomes
7-7
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f ~x!5
C~12x!

2~12x!1/2

5
4

3A3S 11
1

2
x1

7

32
x21

5

64
x32

129

8192
x4

2
1413

16384
x51O~x6!

D
~3.29!

5
4

3A3
S 110.5x10.21875x210.07813x3

20.01575x420.08624x51O~x6!
D .

~3.30!

At the end of the rangex51/2 ~i.e. t50) the exact value of
this function should be 1, since

f ~1/2!5 f ~x~0!!5eg(0)12b(0)51, ~3.31!

where we used Eq.~3.16!. The series approximation in pow
ers of x given above to orderO(x5) produces f (1/2)
51.0090, which is better than 1% accuracy.

To get a better feel of the functionf (x) we plot the ex-
pansion in Eq.~3.29! for the appropriate range forx which is
0<x<1/2. This is shown by the solid line in Fig. 1. Th
figure suggests that, for the relevant range, as a guide fo
eye we can comparef (x) roughly to a linear functionf̃ (x)

FIG. 1. Polynomial approximation tof (x).
ow
he
d

io

08600
he

f̃ ~x!5
4

3A3
12S 12

4

3A3
D x, ~3.32!

where the slope is chosen to guarantee the exact value
both ends of the range, namely 4/3A3 at x50 and 1 atx
51/2. This case corresponds to the dotted line in the figu
The plots suggest that the exact curvef (x) lies somewhere
close to the solid line and the dotted line, and that in any c
we have obtained a fairly good approximation in the ent
range with the series expansion in Eq.~3.29!.

By combining thes andt channel contributions we exten
the range of integration to 0<x<1 as explained above
Thus, in the range 1/2<x<1 the functionf (x) is given by
substitutingx by (12x) in the expression off (x) given
above. Namely, the plot off (x) in the full range 0<x<1 is
given in Fig. 2.

The exact function is expected to lie somewhere close
the solid and the dotted lines. The shape of the curve b
the question of whether the exactf (x) ever crosses the dot
ted line. To provide an answer we used our algebraic co
puter program in which we plugged in the contents of t
Appendix into Eqs.~3.2!–~3.5! and obtained the following
higher order expansion@we do not give the details of the
expansion fora(t),b(t),g(t),a4(t)]

FIG. 2. Polynomial approximation tof (x).
f ~x!5
4

3A3S 11
1

2
x1

7

32
x21

5

64
x32

129

8192
x42

1413

16384
x52

40973

262144
x6

2
124459

524288
x72

186841777

536870912
x82

547864633

1073741824
x91O~x10!

D . ~3.33!
act
to

her
The plot of this more accurate expansion lies slightly bel
the solid line in the figure, and is extremely close to it in t
regions that are not near tox51/2. It does cross the dotte
line, but it does it at mirror points closer tox51/2 compared
to Fig. 2, and finally reaches the valuef (1/2)51.003 9 at
x51/2. So the new corrected peak is between the prev
 us

value of 1.0090 and the exact value 1.0090.1.003 9.1.
This analysis is consistent with the possibility that the ex
function f (x) may cross the dotted line somewhere close
x51/2 before settling into the valuef (1/2)51. This issue of
crossing or not crossing is relevant for determining whet
the exact function is differentiable atx51/2. If it never
7-8
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crosses the dotted line then it must make a cusp and
nondifferentiable. Such a nondifferentiable function may
a peculiarity of Witten’s theory in which a particular confo
mal gauge has been effectively fixed by distinguishing
midpoint. We remind the reader that off-shell amplitud
generally are not gauge invariant.

It seems therefore interesting to investigate the slope
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r
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f (x) nearx51/2. A glimpse of the slope on the left side o
the possible cusp is obtained by computing the derivative
the expansion above and evaluating it atx51/2. We obtain
]xf (x)ux51/2.0.49849 consistent with a cusp. However it
not clear how much we can trust this number, because if
examine the size of the coefficients in the expansion of
derivative
]xf ~x!5S 38.49116.839~2x!14.5105~2x!220.60611~2x!322.0747~2x!4

22.2560~2x!521.9987~2x!621.6744~2x!721.3809~2x!81O~x9!
D 31022 ~3.34!
ted

e

sult
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ies

ex-
FT
we see that convergence is not very fast, and the exact v
may turn out to be quite different at 2x51 since there are an
infinite number of terms to be summed. Note that the t
dency of the neglected terms is to be negative thereby re
ing the value of the slope given above. To settle the ques
we must examine an expansion neart50 rather than nea
t5`, but the reason we did not do this so far in this pape
because the expansion does not seem to exist due to d
gent derivatives neart50. However, precisely these dive
gences turn out to settle the issue as follows.

We can compute the derivative (]xf (x))x51/2 from
]t f (x(t))ut50 as follows

ẋ~0!~]xf ~x!!x51/25]t f ~x~t!!ut50

5~ ġ~0!12ḃ~0!!eg(0)12b(0),

~3.35!

where we have used the chain rule on the left hand side
Eq. ~3.26! on the right hand side. From Eq.~3.13! we have
ẋ(0)52ḃ(0)e22b(0). Inserting the exact values fo
g(0),b(0) given in Eq.~3.16! these equations become

ẋ~0!5ḃ~0!, ẋ~0!~]xf ~x!!x51/25ġ~0!12ḃ~0!.
~3.36!

By differentiating Eqs.~3.3!, ~3.4! we obtain expressions fo
ġ(0),ḃ(0)

ḃ~0!52b̄o~12Mo
2!21~ko1MokoMo!~12Mo

2!21bo ,
~3.37!

ġ~0!5b̄o~12Mo!21ko~12Mo!21bo , ~3.38!

whereMo5(12 t̄ t)/(31 t̄ t) is the odd part of the matrixM.
After straightforward algebra, we find

ġ~0!5 v̄ko
21/2 1

~11 t̄ t !
ko

1

~11 t̄ t !
ko

21/2v, ~3.39!

and ẋ(0),ḃ(0) related to the same expression by
lue

-
c-
n

s
er-

nd

ẋ~0!5ḃ~0!52
1

2
ġ~0!2

1

2
. ~3.40!

We used v̄v51 which multiplied the last constant term
21/2. In passing we mention that we have also compu
ȧ(0) and foundȧ(0)52ġ(0) after a little algebra. Through
Eqs.~4.16!, ~4.17! and Eqs.~5.36!–~5.40! in the next section
we show that the expression above forġ(0) is divergent at
largeN. So ġ(0)12ḃ(0)521 is finite, butẋ(0) diverges.
Therefore from Eq.~3.36! we find that the slope off (x) at
x51/2 is exactly zero

~]xf ~x!!x51/250. ~3.41!

So, after all the off-shell functionf (x) is continuous and
differentiable atx51/2. With this result on the slope, th
expansion in Eq.~3.33!, and the plot in Fig. 2, we have
basically understood the functionf (x).

This discussion provides the most comprehensive re
for the off-shell scattering amplitude of four tachyons pr
duced so far in string field theory.

IV. COMPUTATIONAL TECHNIQUES

In this paper we need to evaluate the quantit
v,bo ,be ,ce ,co ,Mee8 ,Moo8 ,M̃ee8 ,M̃oo8 , and various deter-
minants, as defined in the previous sections. These are
amples of more general computations that come up in MS
which are generically of the type

~F~ t̄ t !!oo8 ,~F~ t t̄ !!ee8 ,~ tF~ t̄ t !!eo ,

~F~ t̄ t !k21/2v !o ,~ tF~ t̄ t !k21/2v !e , ~4.1!

det~F~ t̄ t !!, v̄ko
21/2F~ t̄ t !ko

21/2v,

v̄ko
21/2F~ t̄ t !koF~ t̄ t !ko

21/2v, etc., ~4.2!

whereF(z) can be any function of the matrixt̄ t or t t̄ . In the
present paper the functionsF of interest are M

5(12 t̄ t)/(31 t̄ t) and M̃5(12 t̄ t)/(113 t̄ t) and other
7-9
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I. BARS AND I. Y. PARK PHYSICAL REVIEW D 69, 086007 ~2004!
simple ones constructed from them, such as 4/(31 t̄ t)51
2M , (12M2), etc. As seen in the fullt-dependent
a(t),b(t) etc. there are more involved combinations

F( t̄ t) and the matrixe2tk which can appear in explicit cal
culations. The techniques discussed below do not dire
apply to compute such quantities fully, but do apply to co
pute the expansion coefficients analytically and exactly w
these quantities are expanded in powers ofe2t. This is how
we made progress in this paper.

In our MSFT approach such quantities are initially d
fined in terms of the regulated vectorvo and the regulated
matrix teo . By inserting the values ofvo ,teo for any number
of modes 2N, all of these quantities take on explicit nume
cal values. Generally it is seen that a few modes already
an answer pretty close to theN→` limit, therefore for a
quick estimate of nondivergent quantities it is generally s
ficient to use finite matrices for just a few modesN. With this
approach we can evaluate any quantity approximately fa
easily.

The largeN limit is sometimes subtle because of anom
lies. Generally anomalies arise in the form of a zero mu
plied by an infinity that comes from an infinite sum ov
matrix indices~the modes! producing 03`, so that there is
a subtle finite contribution. If one is not careful the zero
first evaluated and the infinite sum that is later perform
still gives zero, thus missing the finite contribution. To avo
anomaly subtleties in theN→` limit we use the regulated
version ofvo ,teo in all computations~see@10,15#!, and take
the N→` only at the end of the computation. The regulat
matrices vo ,teo satisfy certain algebraic relations, als
shared by the unregulated matrices, that make it possib
perform certain computations analytically. It has been de
onstrated that this is a correct regulator consistent with o
computational techniques in string theory.

In certain computations, or parts of it, there are no anom
lies, and it becomes possible to work with the infinite u
regulated matricesve ,teo directly at N5`. Then it is pos-
sible to make a transformation to the basis that diagonal
the infinite unregulated matrixteo and do the computations i
theN5` diagonal basis. AtN5` the eigenvalues ofteo are
continuous and are parameterized by a continuous vari
k, and furthermore the transformation is known explici
@16#. As we will discuss in detail in the next section, atN
5` the discrete and continuous bases are just different b
of SL(2,R) in the j ( j 11)50 unitary representation, in
which teo can be understood as the matrix elements of
operatort5tanh((p/4)(L11L21)) in the discrete basis tha
diagonalizesL0. The continuous basis is the basis in whi
this operator is diagonal.

A priori it is hard to know when to expect an anomaly
one works directly atN5`. Therefore the regulator pro
vided in MSFT is indispensable to insure that such subtle
will not spoil a computation. So one must be wary wh
using the continuous basis directly atN5`. We emphasize
that the discrete Moyal basis with a regulator is the safe w
to proceed in general, but one can make a transformatio
the continuous basis for specific computations to evalu
infinite sums in parts of computations. This is the sense
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which we use the continuous basis in the next subsect
and indeed we will find good use for it in some of the fo
lowing computations.

A. Computations via transformation to continuous basis

In the following computations we are directly atN5`
and work with the unregulated fundamental matric
T,R,v,w in MSFT that encode string joining~for a particular
regularization see footnote 6!

we5A2~ i !2e12, vo5
2A2

p

~ i !o21

o
, teo5AeTeo

1

Ao
,

~4.3!

Teo5
4o~ i !o2e11

p~e22o2!
, Roe5

4e2~ i !o2e11

po~e22o2!
. ~4.4!

As explained in@11,12#, the matrix t is diagonalizedteo

5(VetV̄o)eo by the orthogonal matricesVo ,Ve that act on
the odd or even sides~a bar means transpose!. The eigen-
space is labeled byk with eigenvalues5 tk . The labelk is
continuous~can happen only for infinite matrices!; it is in the
range 0<k<`, and the eigenvalues are given by@21,16#
tk5tanh(pk/4). The orthogonal matrices have matrix el
ments which are functions ofk and the indexo,e, namely
(Vo)ok[Vo(k), and (Ve)ek5Ve(k). Thus the matrix equa-
tion teo5(Ve)ektk(V̄o)ko is written as

teo5E
0

`

dkVe~k!tanh~pk/4!Vo~k!. ~4.5!

The functionsVe(k),Vo(k) satisfy orthogonality relations
that correspond to the orthogonality conditions on the ma
cesVe ,Vo . These functions are given explicitly by the ge
erating functions in Eq.~5.3!. In the next section we will
clarify the role of these functions as the overlaps^euk&
5Ve(k)/A2 and ^ouk&5Vo(k)/A2 between the states o
two different bases of thej 50 representation of SL(2,R)
generated by the Virasoro generatorsL0 ,L61. The first basis
is the familiar oneun& labeled by the even or odd eigenvalu
n5(e,o) of L0. The second basisuk& diagonalizes (L11
1L21)uk&5kuk&.

By evaluating the generating functions in Eq.~5.3! at k
50 and expanding in powers ofz, one can see thatVe(0)
50, while Vo(0) is finite and related tovo as Vo(0)
5 1

2 Apovo . Thusvo is directly related to the stateuk50&.
We have evaluated the nontrivial infinite su

5This continuous parameterk should not be confused with th
diagonal matrixk of Eq. ~3.6!. As much as possible we are trying t
keep the notations that were introduced in different papers by in
pendent authors. We hope the reader will discern them in the pr
contexts.
7-10
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(o@Vo(k)/Ao#vo in the next section. We give it below alon
with a few of theVe(k),Vo(k) that are needed in our com
putations

V1~k!5A k

sinh
pk

2

, V2~k!5
k2

A2k sinh
pk

2

,

V3~k!5

2k1
1

2
k3

A3k sinh
pk

2

, ~4.6!

V4~k!5

1

6
k2~k228!

A4k sinh
1

2
pk

, V5~k!5

kS 12
5

6
k21

1

24
k4D

A5k sinh
1

2
pk

,

(
o

Vo~k!

Ao
vo5A tanh

pk

4

k cosh2
pk

4

. ~4.7!

With this preparation we are ready to compute the des
generic quantities. Applying the diagonalization ofteo we
have just described we can writet5VetV̄o , t̄ t5Vot2V̄o and
t t̄ 5Vet

2V̄e and express the desired quantities as integra

~F~ t̄ t !!oo85E
0

`

dkVo~k!FS tanh2S pk

4 D DVo8~k! ~4.8!

~F~ t t̄ !!ee85E
0

`

dkVe~k!FS tanh2S pk

4 D DVe8~k! ~4.9!

~ tF~ t̄ t !!eo5E
0

`

dkVe~k!tanhS pk

4 DFS tanh2S pk

4 D D
3Vo~k! ~4.10!

~F~ t̄ t !k21/2v !o5E
0

`

dkVo~k!FS tanh2S pk

4
D D

3! tanh
pk

4

k cosh2
pk

4

~4.11!
08600
d

~ tF~ t̄ t !k21/2v !e5E
0

`

dkVe~k!tanhS pk

4 D

3FS tanh2S pk

4 D DA tanh
pk

4

k cosh2
pk

4

~4.12!

v̄ko
21/2F~ t̄ t !ko

21/2v5E
0

`

dkA tanh
pk

4

k cosh2
pk

4

3FS tanh2S pk

4 D DA tanh
pk

4

k cosh2
pk

4

,

~4.13!

detF~ t̄ t !5expE
0

`

dkr~k!lnFFS tanh2S pk

4 D D G .
~4.14!

In the infiniteN limit we have det(F(t t̄ ))5det(F( t̄ t)). The
quantity

r~k!5S 1

2p
ln~2NeD!2

1

4p FcS ik

2 D1cS 2
ik

2 D G D
~4.15!

which appears in the evaluation of determinants will be
rived in the next section in Eq.~5.58!. Here c(z)
5]zln G(z) is the logarithmic derivative of the gamma fun
tion, andD depends on the regulator. It could be chosen
zero if we compare to a particular regulator in the discr
basis of MSFT. The same result has been obtained in a
different type of calculation in@25,26#. The term that con-
tains the number of modes 2N is the leading term indepen
dent ofk. In physical computations, asN goes to infinity this
factor cancels magically among matter and ghost deter
nants as long asd526, and the bare couplingg0 is rewritten
in terms of the on-shell tachyon couplingg. Hence the non-
leading part in terms of the functionc(z) is the crucial part
that contributes in physical processes.

A more complicate type of quantity that we needed in E
~3.39! takes the form of a double integral
7-11



v̄ko
21/2F~ t̄ t !koF~ t̄ t !ko

21/2v5E
0

`

dkE
0

`

dk8SA tanh
pk

4

k cosh2
pk

4

FS tanh2S pk

4 D D ~ko!kk8

FS tanh2S pk8D D tanh
pk8

4 D ~4.16!
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4 A
k cosh2

pk8

4
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~ko!kk85(
o

Vo~k!oVo~k8!

5
1

2
^kuL0uk8&1

1

2
^kuL0u2k8&. ~4.17!

The form of (ko)kk8 in terms of matrix elements ofL0 in the
k basis is shown in the next section. We apply this form
to computeġ(0) in Eq.~3.39!. The integrations in Eq.~4.16!
are well behaved forF( t̄ t)5(11 t̄ t)21. But the infinite sum
(ko)kk8 is shown to diverge in Eqs.~5.36!–~5.40!. It is
evaluated there more carefully by inserting a regulator in
form (e2tkoko)kk8 . It is finite at finite t, but whent is
small it behaves like 1/t times a quickly oscillating factor
The quick oscillations are not sufficient to overcome the
vergence of the 1/t factor. Therefore, this leads to the dive
gent result forġ(0) in Eq. ~3.39! which we used in the
previous section.

These integrals seem difficult, but can be easily p
formed with an algebraic computer program, such as Ma
or Mathematica. For example we obtain

E
0

`

dkV1~k!
2

31tanh2
pk

4

A tanh
pk

4

k cosh2
pk

4

50.54433

5
2A2

3A3
~4.18!

E
0

`

dkV2~k!

2 tanh
pk

4

31tanh2
pk

4

A tanh
pk

4

k cosh2
pk

4

50.22222

5
2

9
~4.19!
08600
a

e

-

r-
le

E
0

`

dkA tanh
pk

4

k cosh2
pk

4

2

31tanh2
pk

4

A tanh
pk

4

k cosh2
pk

4

50.523255 ln
27

16
. ~4.20!

We now turn to the more specialized cases of releva
for our computations in this paper. We would like to evalua
the scalar v5 v̄ko

21/2@2/(31 t̄ t)#ko
21/2v, the vectors bo

5(@2/(31 t̄ t)#ko
21/2v)o and be5(t@2/(31 t̄ t)#ko

21/2v)e and

matrix elementsMoo85((12 t̄ t)/(31 t̄ t))oo8 , Mee85((1
2t t̄ )/(31t t̄ ))ee8 , M̃oo85(( t̄ t21)/(113 t̄ t))oo8 , M̃ee8
5((t t̄ 21)/(113t t̄ ))ee8 . By applying the above integra
formulas we obtained easily the following values which a
the only ones we actually needed in this paper to perform
expansions ofa(t),b(t),g(t),a4(t) in powers ofe2t up to
orderO(e26t)

b15
2A2

3A3
, b25

2

9
, b352

22A2

35
, b452

19A2

35
,

b55
23/267

~27!2A15
~4.21!

M115
5

27
, M225

13

35
, M1352

25A3

~27!2
, v5 ln

27

16
,

~4.22!

M̃115
11

27
, M̃225

19

9~27!
, M̃1352

245A3

~27!2
. ~4.23!

We also show how to compute some determinants by us
Eq. ~4.14!. We especially make a point to separate the c
tribution associated with the regulatorN which will be sent
to infinity later. The steps of computation are shown for t
following explicit example
7-12
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det~~ t t̄ !!5e1/(2p) ln(2NeD) E
0
` ln(tanh2(pk/4))dk3e*0

`(2(1/4p)[c( ik/2)1c(2 ik/2)])ln(tanh2(pk/4))dk ~4.24!

5~2NeD!21/2~0.79788!5~2NeD!21/2A2

p
5~pNeD!21/2. ~4.25!
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As seen, the finite factor that comes from the nonlead
term involving c is nontrivial. We will show later in Eq.
~5.62! how both the leading and nonleading terms agree w
the regulated discrete basis. In a similar way we obtain

detS 31~ t t̄ !

4
D 5~2NeD!21/18~0.98052! ~4.26!

detS 113~ t t̄ !

4
D 5~2NeD!22/9~0.91746! ~4.27!

detS 12S 12t t̄

31t t̄
D 2D 5~2NeD!21/72~0.99340! ~4.28!

detS 12S 12 t̄ t

113 t̄ t
D 2D 5~2NeD!213/72~0.90534!. ~4.29!

Note the magical number 26 that popped up as 13526/2 in
the last ghost determinant. Inserting these determinants in
expression fora4 in Eq. ~3.5! we see that theN dependence
drops out att50, only for d526,

a4~0!5g2S 27

16D
3 ~~2NeD!213/72~0.90534!!2

@~2NeD!21/72~0.99340!#26
~4.30!

5g2S 27

16D
3

~0.97363!. ~4.31!

So the result is independent of the cutoffN,D. This is an
example of the magical role ofd526. Note thata4, as given
initially in @13,15# has factors of additional determinants th
are actually divergent, but those get absorbed into the d
nition of g and produce the overall finite factorg2(27/16)3/4
~multiplied by another factor of 4 because of 4 diagrams!.

In the case of the bare coupling in Eq.~2.3!, inserting the
results above we get

g05
1

2
gS 27

16D
3/2

~~2NeD!21/2~0.79788!!2(d26)/4

3~~2N!21/18~0.98052!!d~~2N!22/9~0.91746!!22

5gc~2NeD!3/2

for d526, with c5
1

2 S 27

16D
3/2

~2.2030!. ~4.32!

We see that the bare coupling diverges as (N)3/2.
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In the Appendix we have included many more values
the higher modes of the vectorsb and matricesM ,M̃ . Al-
though these were not needed for our analytic calculat
they were used to obtain the order ten result forf (x). Also
the general formulas we give there are useful to comput
arbitrary powers ofe2t if one needs to refine our work in th
future, or they could be useful in other applications.

V. MOYAL BASES AS THE jÄ0 REPRESENTATION
OF SL„2,R… FOR L 0 ,LÁ1

In this section we will study certain properties of thej
50 representation of SL(2,R) in relation to the continuous
and discrete Moyal bases. The connection of SL(2,R) gen-
erated byL0 ,L61 and the continuous basis is known throu
the work in@21,16#. The relevance of thej 50 representation
is emphasized in@24#. Here we will study thej 50 represen-
tation with a different technique, mainly by focusing on th
exponentiated group elemente2tL0. We will extract some of
the relevant properties of thej 50 representation that ar
needed in this paper. There are overlaps between our re
and those in related papers@16,24–28#. We will see that all
the computations in the previous sections, and similarly m
general computations, amount to various matrix element
functions of L0 ,L61 in the specialj 50 representation of
SL(2,R).

Let us first recall why we must focus on thej 50 repre-
sentation. The Virasoro operatorsL0 ,L61 are the generators
of the SL(2,R) transformations on the open string bas
X(t,s). It is well known that this representation~in terms of
differential operators! forms the zero Casimir representatio
of SL(2,R). Thus the oscillator basis labeled by the intege
n51,2,3, . . . is simply the case of the discrete series
SL(2,R) labeled asu j ,m&, m5 j 11,j 12,j 13, . . . , for j
50.

We will use the Hermitian combinationsQ15 1
2 (L1

1L21) andQ25( i /2)(L12L21) that form the SL(2,R) Lie
algebra as follows @Q1 ,Q2#52 iL 0 , @L0 ,Q1#5 iQ2 ,
@L0 ,Q2#52 iQ1.

Thus, the odd or even discrete bases in MSFT corresp
to the eigenstates of the Virasoro operatorL0un&5nun&, n
>1, with n5o,e. The continuous basis is given by th
eigenstate of the Virasoro operatorQ15 1

2 (L11L21) satisfy-
ing Q1uk&5k/2uk&. The change of basis is given by th
functions ^ouk&[(1/A2)Vo(k) and ^euk&5(1/A2)Ve(k).
The eigenvalue ofQ1 can have any sign, but in MSFT it i
possible to make transformations to the rangek>0 thanks to
the symmetry propertyVo(2k)5Vo(k) and Ve(2k)
52Ve(k) of these functions. We consider these as ortho
nal matricesVo ,Ve with matrix elements (Vo)ok[Vo(k)
7-13
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and (Ve)ek[Ve(k), for k>0, which satisfy orthogonality
relations

~VoV̄o!o1o2
5do1o2

, ~VeV̄e!e1e2
5de1e2

,

~V̄oVo!kk85d (o)~k2k8!, ~V̄eVe!kk85d (e)~k2k8!,
~5.1!

where a bar on a matrix means the transpose of the ma
Here d (o,e)(k2k8) is basically the usual Dirac delta func
tion, except for some extra care whenk,k8 arebothclose to
0 ~see below!, while their sum yields the usual delta functio
d (o)(k2k8)1d (e)(k2k8)52d(k2k8). These are equiva
lent to the orthogonality and completeness relations of
discrete and continuous bases

^nun8&5dnn8 , ^kuk8&5d~k2k8!,

(
n51

`

un&^nu51, E
2`

`

dkuk&^ku51. ~5.2!

With the normalization given above the function
Vo(k),Ve(k) are identical to the functions
A2vo(k),A2ve(k) in @16,21#, including an overall normal-
ization of A2 ~consistent with counterpart orthogonal tran
formations in the discrete basis as explained in@11#!. They
are given by the following generating functions~in the range
k>0)

(
o

Vo~k!~ tanz!o

Ao
5

sinh~kz!

Ak sinhS pk

2
D

,

(
e

Ve~k!~ tanz!e

Ae
5

cosh~kz!21

Ak sinhS pk

2
D

. ~5.3!

To define the functions for negative values ofk the right
hand side of these equations should be multiplied by the
function «(k) for consistency with the symmetry propertie
of Vo(2k)5Vo(k) andVe(2k)52Vo(k).

A fundamental quantity in MSFT is the matrixTeo @9#. In
computationsT usually appears in the formteo as given in
Eq. ~4.3!. This matrix is diagonalized@16# by teo

5*0
`dkVe(k)t(k)Vo(k) with the eigenvalues t(k)

5tanh(pk/4). To understand this matrix we introduce th
notion of the operatort. Thenteo can be recognized to be jus
the matrix elements of the operatort in the discrete basis

t5tanh
pQ1

2
5

12e2pQ1

11e2pQ1
, teo5^eutuo&. ~5.4!

This is proven by introducing identity in thek basis and
writing
08600
ix.

e

-

n

teo5^eutuo&5E
2`

`

dk^eutuk&^kuo& ~5.5!

5E
2`

`

dk
1

A2
Vo~k!tanh

pk

4

1

A2
Ve~k! ~5.6!

5E
0

`

dkVo~k!tanh
pk

4
Ve~k!, ~5.7!

where we have used the symmetry of the functions in go
from the second line to the third. By the same argument
can showtee850 andtoo850. So the matrix representatio
of the operatort is block-off-diagonal in the even or od
basis.

Now we note the special role of thek50 state and its
relation tovo . The vectorvo is a crucial state in MSFT as
seen in the calculations in this paper. Its special role in re
tion to anomalies first emerged in@9,10# as a state closely
related to the midpoint of the string. From the generat
functions in Eq.~5.3! it is seen that atk50 the even func-
tions vanishVe(0)50, while the odd onesVo(0) are finite,

Ve~0!50, Vo~0!5
1

2
Apovo , ~5.8!

where vo is given in Eq. ~4.3!. It is a normalized vector
(o>1v̄ovo51 that is a zero mode of the matri
T:(o>1Teovo50. Equivalently,Vo(0) is the zero mode of
the matrix teo . This is easily seen from the expression E
~5.4! for the t operator acting on the zero eigenstate in t
kappa basisQ1u0&50

teoVo~0!50 ↔ e2pQ1u0&5u0&. ~5.9!

Note that we can writevo in terms of thek50 state as
follows:

~ko
21/2v !o5~2/Ap!^ou

1

L0
u0&. ~5.10!

We can use the above interpretation of the operatort and
and its zero modevo to give an SL(2,R) operator represen
tation of the computations we performed in the previous s
tion. In particular, we see thatbo ,be of Eqs.~3.8! can now be
written as matrix elements in thej 50 representation of
SL(2,R)

bo5
2

Ap
^ou

2

31t2

1

L0
u0&, be5

2

Ap
^eu

2t

31t2

1

L0
u0&.

~5.11!

Note that ^eu@2/(31t2)#(1/L0)u0&50 since ^eu0&50.
Hence we can remove the bras and write the states

ubo&5
2

Ap

2

31t2

1

L0
u0&,ube&5

2

Ap

2t

31t2

1

L0
u0&

~5.12!
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where now theo,e indices may be interpreted as an odd
even number of powers of the operatort. Similarly, the quan-
tities a(t),b(t),g(t) that appear in the 4-tachyon amplitud
in Eqs. ~3.2!–~3.4! become expectation values in thek50
states. For example

b~t!5b̄P(o)e2tk~12Me2tkMe2tk!21P(o)b,
~5.13!

5
4

p
^0u

1

L0

2

31t2
e2tL0

3S 12
12t2

31t2
e2tL0

12t2

31t2
e2tL0D 21

3
2

31t2

1

L0
u0&. ~5.14!

Once we notice these forms we are tempted to use the c
mutation rules of the operators of SL(2,R) to simplify and
compute these quantities. In particular note th
e2vQ1L0evQ15L0cosv1iQ2sinv gives the following inter-
esting properties oft ande2pQ1 for v5p

e2pQ1L052L0e2pQ1, tL05L0t21,

1

L0
t5t21

1

L0
, t

1

L0
5

1

L0
t21, etc. ~5.15!

Using these it appears as if we may perform a numbe
simplifications very efficiently. Alas, there is the problem
anomalies precisely because of the existence of thek50
state on whicht vanishes. So its inverse cannot be used i
cavalier fashion. In fact not all of the above formulas a
necessarily valid in general since they depend on which s
they are applied. When we introduce a complete set of in
mediate states between operators, thek50 state must ap-
pear, causing problems. One can easily generate inconsi
results from the same formula with naive manipulations ot.
Examples of inconsistencies can be easily constructed
taking matrix elements and using naively the formulas ab
on the k50 state. The type of formal manipulations su
gested above need to be justified at every step or other
replaced by the correct result.

Thus, practical computations in string field theory requ
a regulator atk50 because the matrixteo has certain asso
ciativity anomalies that come from the zero modes review
above. This is precisely the zero mode ofTeo and the asso-
ciativity anomaly issue which are intimately related to m
point issues in string field theory as first understood in@10#.

A regulated version of the matrixteo with many nice
mathematical properties was introduced in@10,11,13#. The
regulated matrices retain the properties of the operatort that
are always valid@see Eq.~2.15! in @11##. In the regularized
theory, the continuous functionsVo(k),Ve(k) can be
thought of as the largeN limit of N3N matrices
(Vo)ok ,(Ve)ek with discrete values ofk which label theN
eigenvalues tk of the regularized N3N matrix teo
08600
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5VetV̄o . The large N limits of the matrix elements
(Vo)ok ,(Ve)ek become the functionsVo(k),Ve(k), and the
discrete eigenvaluestk becometk→t(k)5tanh(pk/4). In
the limit N→`, summation over discretek is replaced by
*0

`dk and the discrete delta functiondkk8 is replaced by the
continuous delta functionsd (o,e)(k2k8) with non-negative
k,k8>0, but with some extra care whenk,k8 are both close
to zero, as we will see below.

In this section we try to relate the largeN limit of the
regulated theory in the discrete basis to the regulated c
tinuous kappa basis, and from this extract computatio
methods that take advantage correctly of both the disc
and continuous bases. For this purpose we will study sev
quantities by taking advantage of the SL(2,R) group gener-
ated by the Virasoro operatorsL0 ,L1 ,L21.

A. Propagator ŠkzeÀtL 0zk8‹

The quantityDkk8(t)5^kue2tL0uk8& is a representation
of a group element of SL(2,R) with Lie generators
(L0 ,L615Q17 iQ2), sinceuk& is the basis that diagonalize
the generatorQ15 1

2 (L11L21), with Q1uk&5(k/2)uk&. Its
integral and derivatives are quantities of interest in vario
explicit computations in MSFT

^ku
1

L0
uk8&5E

0

`

dtDkk8~t!,

^kuL0uk8&5@2]tDkk8~t!#t50 . ~5.16!

In this section we computeDkk8(t) as a group element o
SL(2,R) in the special representationj 50. Of course, in the
discrete basise2tL0 is diagonal, therefore we expect

Dkk8(t)5^kue2tL0S (
e

ue&^eu1(
o

uo&^ou D uk8& ~5.17!

5
1

2
~V̄oe2kotVo!kk81

1

2
~V̄ee

2ketVe!kk8 . ~5.18!

where ke ,ko are the diagonal matrices ke
5diag(2,4,6, . . . ) andko5diag(1,3,5, . . . ), and theVo ,Ve
are treated as matrices with matrix elements that are
functions (Vo)ok5Vo(k), etc.

Following the methods in@22#, Chap. 7.4@leading to Eq.
~7.65!#, we can derive a differential equation forDkk8(t) as
follows. We use the fact that the eigenvalue of the quadr
Casimir operator vanishes for the statesuk& to write

^kue2tL0~~L0
22Q1

22Q2
2!!uk8&50. ~5.19!

The first two terms can be rewritten as follows:

^kue2tL0L0
2uk8&5]t

2Dkk8~t!,

^kue2tL0~2Q1
2!uk8&52S k8

2 D 2

Dkk8~t!. ~5.20!
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The third term̂ kue2tL0(2Q2
2)uk8& can also be computed b

noting the following property, etL0Q1e2tL05Q1cosht
1iQ2sinht, which can be rewritten as

e2tL0iQ25
1

sinht
Q1e2tL02

cosht

sinht
e2tL0Q1 . ~5.21!

Multiplying Eq. ~5.21! with iQ2, using Q1Q25Q2Q1
2 iL 0, and using Eq.~5.21! again, gives

2e2tL0Q2
25

i

sinht
Q1~e2tL0Q2!2 i

cosht

sinht
~e2tL0Q2!Q1

2
cosht

sinht
e2tL0L0 ~5.22!

5
1

sinh2t
Q1

2e2tL022
cosht

sinh2t
Q1e2tL0Q1

1
cosh2t

sinh2t
e2tL0Q1

21
cosht

sinht
]te

2tL0. ~5.23!

The matrix elements of this relation are easily evaluated
terms ofDkk8(t). Combining the three terms in Eq.~5.19!
we obtain the differential equation satisfied byDkk8(t)

S ]t
21

cosht

sinht
]t1

k21~k8!222kk8cosht

4 sinh2t
D Dkk8~t!50.

~5.24!
08600
n

By taking Dkk8(t)5z(12z)2 i (k1k8)/4F(z), with

z52S sinh
t

2D 22

524e2t~12e2t!22, ~5.25!

this differential equation becomes the hypergeometric diff
ential equation forF(z)

S S ]

]zD
2

1
c2~11a1b!z

z~12z!

]

]z
2

ab

z~12z! DF~z!50,

~5.26!

with F(a,b;c;z);hypergeom(@a,b#,@c#,z), and

a512 i
k

2
, b512 i

k8

2
, c52. ~5.27!

We need the solution that satisfies the boundary conditi
that follow from Eq.~5.18!

Dkk8~t ! →
t→`

1
2

V1~k!V1~k8!e2t,

Dkk8~t! →
t→0

d~k2k8!, ~5.28!

where V1(k)5Ak/sinh(pk/2), as obtained from Eq.~5.3!.
Therefore, the desired solution is given by
r

s:
Dkk8~t!5A kk8

sinh
pk

2
sinh

pk8

2

e2t

2~12e2t!2 S 12e2t

11e2tD ik/21 ik8/2

3FS 12
ik

2
,12

ik8

2
;2;

24e2t

~12e2t!2D . ~5.29!

By using the linear identityF(a,b;c;z)5(12z)c2a2bF(c2a,c2b;c;z), we see that the expression forDkk8(t) is real. At
t5` the boundary condition is satisfied sinceF(a,b;c;0)51. For smallt;0, and anyk,k8, we use the asymptotic behavio
of the hypergeometric function@23# to write

Dkk8~t! →
t;0

1

23A kk8

sinh
pk

2
sinh

pk8

2

F GS 11
i ~k2k8!

2
D

GS 11
ik

2
DGS 12

ik8

2
D

ei (k2k8)lnA2/t

i

2
~k2k8!

1c.c.G , ~5.30!

where c.c. is the complex conjugate. For small (k82k);0 and smallt;0 we can writeG(11 ik/2)G(12 ik/2)5(pk/2)
3(sinhpk/2)21, so that the singular behavior ofDkk8(t), consistent with the delta function, becomes evident as follow
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@Dkk8~t!#t;0.

sinS ~k2k8!lnA2

t
D

p~k2k8!

5
1

2p
E

2 lnA2/t

lnA2/t
dueiu(k2k8) 5

t→0
d~k2k8!.

~5.31!

We also record here the special values fork,k850, that
follow from F(a,1;2;z)5@(12z)2az2(12z)2a11#/z(1
2a) at anyt

^kue2tL0u0&5Dk0~t!5

sinFk

2
lnS 11e2t

12e2tD G
A2pk sinh

pk

2

, ~5.32!

^0ue2tL0u0&5D00~t!5
1

2p
lnS 11e2t

12e2tD , ~5.33!

where the second line follows by settingk50 in the first
line.

The integrals of these quantities give^ku1/L0u0& and
^0u1/L0u0&

^ku
1

L0
u0&5E

0

`

dtDk0~t!5S p tanh
pk

4

16k cosh2
pk

4

D 1/2

,

^0u
1

L0
u0&5

p

8
. ~5.34!

This agrees with an independent calculation in Eq.~5.64!.
The derivative neart;0 gives information about matrix

elements ofL0

^kuL0uk8&5@2]tDkk8~t!#t;0 ~5.35!

5
1

23A kk8

sinh
pk

2
sinh

pk8

2

3F GS 11
i ~k2k8!

2
D ei (k2k8)lnA2/t

GS 11
ik

2
DGS 12

ik8

2
D t

1c.c.G .

~5.36!

This diverges due to the factor 1/t. More simply, the quan-
tity ^kuL0u0& is obtained also by studying the derivative
Eq. ~5.32! at anyt
08600
^kue2tL0L0u0&52]tDk05
ke2t

12e22t

cosFk

2
lnS 11e2t

12e2tD G
A2pk sinh

pk

2

.

~5.37!

Neart;0 one sees that̂kuL0u0& and ^0uL0u0& have a sin-
gular behavior

^kuL0u0&→S pk

2

sinh
pk

2

D 1/2

cosFk2 lnS 2

t D G
2pt

,

^0uL0u0&→
1

2pt
. ~5.38!

Let us also computêkuL0uk8& for k8;k from Eq.~5.36!
or from Eq.~5.31!. We obtain the singular behavior

@^kuL0uk8&#k8;k5@2]tDkk8~t!#t;0,k8;k

'

cosS ~k2k8!lnA2

t D
2pt

, ~5.39!

which is consistent with Eq.~5.38!, but now gives

^kuL0uk&5@2]tDkk~t!#t;0'
1

2pt
~5.40!

at anyk. The divergence of̂kuL0uk8& is also discussed in
@16#.

The quickly oscillating factor exp„i (k2k8)lnA2/t… in Eq.
~5.36! suggests that only the neighborhood ofk8;k is rel-
evant in a steepest descent approximation when the func
^kuL0uk8& is integrated with smooth function
*dk*dk8 f (k)^kuL0uk8&g(k8) ;(1/2pt)*dk f (k)g(k)*dq
3cos(q lnA2/t), where we have used Eq.~5.39!, and implied
a cutoff in the integration inq which depends on the func
tions f ,g. This expression is also divergent whent vanishes
for well behavedf ,g. This last form relates directly to the
quantityġ(0) in Eq.~3.39! through Eqs.~4.16!, ~4.17! as the
regulator t is removed. We used the singular behav
ġ(0)5` to determine the midrange slope~i.e. differentiabil-
ity! of the off-shell factor in the 4-tachyon scattering.
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1. Computation of„V̄ee
ÀketVe…kk8 and „V̄oeÀkotVo…kk8

To compute (V̄ee
2ketVe)kk8 and (V̄oe2kotVo)kk8 , we

first recall their sum as in Eq.~5.18!, and then extract the
individual terms from the symmetry under reflections w
respect tok or k8:

~V̄oe2kotVo!kk85Dkk8~t!1D (2k)k8~t!

5Dkk8~t!1Dk(2k8)~t!, ~5.41!

~V̄ee
2ketVe!kk85Dkk8~t!2D (2k)k8~t!

5Dkk8~t!2Dk(2k8)~t!. ~5.42!

where we insert our result~5.29! for Dkk8(t).
In particular, if we takek850 we get (V̄ee

2ketVe)k0

50, while (V̄oe2kotVo)k052Dk0(t), which implies

v̄oko
1/2e2kotVo~k!5

2

Ap
~V̄oe2kotVo!k05

4

Ap
^0ue2L0tuk&

5
4

Ap
Dk0~t! ~5.43!

5
2

p

sinFk

2
lnS 11e2t

12e2tD G
Ak

2
sinh

pk

2

. ~5.44!

Taking alsok50 gives

v̄okoe2kotvo5
4

p
~V̄oe2kotVo!005

8

p
^0ue2L0tu0&

5
8

p
D00~t! ~5.45!

5
4

p2
lnS 11e2t

12e2tD . ~5.46!

We are now ready to tackle the quantityv̄oko
21/2Vo(k)

5(2/Ap)(o.0V̄o(0)(1/o)Vo(k) which is needed in explicit
computations in MSFT, as in Eq.~4.7! and the equations tha
follow it. Since Ve(0)50, only the oddVo(0) contribute
when the identity 15(nun&^nu is inserted in̂ ku(1/L0)1u0&

1

2 S V̄o

1

o
VoD

k0

5^ku
1

L0
u0&5S p tanh

pk

4

16k cosh2
pk

4

D 1/2

,

~5.47!

where we used the result in Eq.~5.34!. From this we obtain
immediately
08600
v̄oko
21/2Vo~k!5

4

Ap
S 1

2
V̄o

1

o
VoD

k0

5S tanh
pk

4

k cosh2
pk

4

D 1/2

.

~5.48!

This result is used to relate regulated discrete basis com
tations of the typev̄oko

21/2( f ( t̄ t))oo8ko8
21/2vo8 in the largeN

limit to kappa basis computations as shown in the previ
section.

2. Computation ofr„k…ÄŠkzk‹

We have argued in Eq.~5.31! that neart50 andk8;k
we obtain Dkk8(0)5^kuk8&5d(k2k8). The quantity
r(k)5^kuk& appears in the evaluation of determinants as

det~ f ~ t t̄ !!5expF E
0

`

dkr~k!ln f S tanh2
pk

4 D G . ~5.49!

Since we expect a singular behavior,r(k);d(0), wewould
like to perform such computations with a finite number
modes 2N and sendN to infinity at the end of the computa
tion. Thus, on the left side we have a finite determinant t
depends onN, which in principle can be computed in th
regulated basis, at least numerically. To perform such car
computations analytically by taking advantage of thek basis,
we definer(k)5^kuk& carefully atk85k for small but fi-
nite t, and compare to a similar calculation with the cutoff
terms of the number of modes 2N. Thus, fork856k the
casesDkk(t),Dk(2k)(t), ast→0, are used to compute th
quantity r(k,t).^kuk& as follows. From Eq.~5.30! and
from the asymptotic behavior of the hypergeometric funct
at large (2z)

F~a,a,c;z!→ G~c!~2z!2a

G~a!G~c2a!
~ ln~2z!12c ~1!2c ~a!

2c ~c2a!!, ~5.50!

we obtain

Dkk~t! →
t;0

5
1

4p S lnS 2
t D 2

12c ~1!2c S 12
ik
2 D

2c S 11
ik
2 D D1O~t2! ~5.51!

Dk(2k)~t! →
t;0

5
1

23i sinh
pk

2
S G~11 ik!

G2S 11
ik

2
D eik ln (2/t)

2
G~12 ik!

G2S 12
ik

2
D e2 ik ln (2/t)D 1O~t2!.

~5.52!
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Note the tricky behavior neark50: as long ask is not close
to zero, the quantity limt→0Dk(2k)(t) oscillates rapidly and
becomes negligible as a distribution compared
limt→0Dkk(t). However, neark50 we get

D (2k)k~t! →
t;0,k;0

5
1

4p
lnS 2

t
D 2

1k2S 2

p ln
2

t

24
2

ln3
2

t

12p
10.04783D

1O~k4!. ~5.53!

Hence, if kÞ0 not small, andt is small, we neglect
D (2k)k(t) and get (V̄oe2toVo)kk;(V̄ee

2teVe)kk;Dkk(t)
;r(k,t) with

r~k,t!5
1

4p S lnS 2

t D 2

12c ~1!2c S 12
ik

2 D2c S 11
ik

2 D D .

~5.54!

But, close tok50, because of Eq.~5.53!, the behavior is

k,t;0: ~V̄oe2toVo!0052@r~0,t!#t;05
2

4p
lnS 2

t D 2

,

~V̄ee
2teVe!0050. ~5.55!

The factor of 2 computed here is important to establish c
sistency between the regulators in the discrete and con
ous bases.

We concentrate onr(k) for the generalk. We already
understand its dependence onk explicitly, and therefore
write it in the form

r~k!5r~0!1
1

4p S 2c ~1!2c S 12
ik

2 D2c S 11
ik

2 D D .

~5.56!

We knowr(0) is divergent, and is given by

r~0!5
1

2
~V̄oVo!005^0u0&5

p

8
~vokovo!regulated

5
1

2p
~ ln~2N!1D8! ~5.57!

where we used a finite number of modes 2N as the regulator
and the constantD8 depends on further details of the reg
lator. Therefore the full regulatedr(k) is given by

r~k!5
1

2p
~ ln~2N!1D!2

1

4p S c S 12
ik

2 D1c S 11
ik

2 D D
~5.58!

where D is a constant. Note that this constant can be
sorbed into a redefinition ofN by writing ln(2N)1D
5ln(2NeD). We will further determineD50 by comparing to
a particular regulator in the discrete basis of MSFT in wh
08600
o

-
u-

-

we keep the frequencies as simple as possible, namelykn
5n. In principle it is a dangerous business to compare
verging quantities when using different regulators. Howev
as we have already mentioned, since theN dependence will
drop out in certain computations ind526 thenD will also
drop out, and hence its value may not be important.

B. Exact analytic tests

As tests of the formulas we derived above in the kap
basis we compare to exact computations in theregulated6

discrete basis, in the limitN→`. The first case is

v̄ko
21/21ko

21/2v where we compare Eq.~4.13! versus using
directly thevo in ~4.3! or the regulated one in footnote 6. Th
two ways of computing give the same answer:

~ v̄ko
21/21ko

21/2v !discrete

5
8

p2 (
n51

`
1

~2n21!3
1O~~ ln N!/N2!

→
N→`

7z~3!

p2
50.85256 ~5.59!

~ v̄ko
21/21ko

21/2v !kappa5E
0

`

dk

tanh
pk

4

kS cosh
pk

4
D 2 31

50.85256. ~5.60!

The second case is det(t̄ t)5exp@*0
` dkr(k)

3ln(f @tanh2(pk/4)#)# where we user(k) in Eq. ~4.24!,
while the exact computation in theregulateddiscrete basis
was given in@10,11# for any N as

6To avoid anomalies we use the standard regularization of MS
@10,11,13#. If we make the choicekn5n, at finite N the
regulated we ,vo ,Teo ,Roe take the form Teo5Teo

(`)( f e
N/ f o

N),
Roe5Roe

(`)( f e
N/ f o

N), we5we
(`) f e

N , vo5vo
(`)/ f o

N where T(`),
R(`),w(`),v (`) are identical to the expressions in th
infinite limit as in Eq. ~4.3! but truncated as N3N
matrices. The factors f n

N for n5o,e are given by

f n
N 5AG(N1

1
2 2

1
2 n)G(N1

1
2 1

1
2 n)/G(N112

1
2 n)G(N111

1
2 n)

3@G(N11)/G(N11/2)#. This was computed by simply insertin
kn5n in the general regulated formulas for arbitrarykn given in
@10,11,13#. Note that the deformation factorf n

N stays pretty close to
1 ~in the range 1.00–1.075! when 1<n<N, even for finiteN, but
grows asn approaches 2N. For n52N, and largeN, we get f 2N

N

.(pN/2)1/4. The strong deformation at the edges of the matrix c
be avoided by using a different functionkn as a function ofn.
However, in our experience the simple choicekn5n seems to work
well in numerical computations even at small values ofN. In the
present example we see that it also works exactly at infiniteN in
comparison to the continuous basis.
7-19



an

if
o

d

o
t
re

wa
to

n
he
th

n

be
s
fe

s a
t
ey

able
s to

ns
nes
rue
el.
s

of
st

d
a

as

en-

d
m

f
re

ro-

I. BARS AND I. Y. PARK PHYSICAL REVIEW D 69, 086007 ~2004!
det~ t̄ t !discrete5~11w̄w!regulated
21/2 5

detko

detke

5
kn5n

13335•••~2N21!

23436•••~2N!
~5.61!

5
G~2N11!

22NG2~N11!

.~pN!21/2S 11
1

2ND 21/4

~5.62!

where the last expression is a good approximation for
N>1 ~including smallN). Note both the leadingN behavior
as well as the overall factor (p/2)21/2(2N)21/2, both of
which are significant for the comparison of regulators in d
ferent bases. We compare this to the computation
det(t̄ t)kappa in the kappa basis usingr(k) as given in Eq.
~4.24!. We see that the leading term 1/(2p)ln(2NeD) in r(k)
reproduces the correctN dependence, while the secon
kappa dependent term produces precisely a factor ofA2/p,
leading to the total result det(t̄ t)kappa5(pNeD)21/2. Com-
paring to the regulated discrete basis result in Eq.~5.62! we
learn that we needD50 to get agreement between the tw
regulated results. Then, we seem to have an agreemen
tween the computational procedures in the regulated disc
basis and the regulated kappa basis. However, we must
the reader thatD50 is still tentative because it is possible
change the regulator in the discrete basis, and we have
understood yet the principle that could fix it in either t
discrete or the continuous basis. It is however significant
we have seen examples whereN as well asD cancel together
in finite quantities at the critical dimensiond526. So, per-
haps the value ofD is not crucial as long as one is consiste
in using the same regulator everywhere.

The third case is the exact computation ofv̄v in the regu-
lated discrete basis for anyN @10,11#

~ v̄v !discrete5S w̄w

11w̄w
D

regulated

512
detko

detke
~5.63!

5
kn5n

12
G~2N11!

22NG2~N11!
→

N→`
1. ~5.64!

At N5` in the kappa basis we useVo(0)5 1
2 Apovo and

obtain agreement with the discrete basis as follows

~ v̄v !kappa5
8

p
lim
k→0

S 1

2
V̄o

1

o
VoD

kk

5
8

p
^0u

1

L0
u0&51

~5.65!

where we used Eq.~5.34!.
In general we have noticed no problem in agreeing

tween the two bases for finite quantities where the effect
N disappear. For such quantities it turns out that even a
modes in the discrete basis (N;5 –10) gives very reliable
numerical estimates of the exactN5` values. However we
08600
y

-
f

be-
te
rn

ot

at

t

-
of
w

advise care when the quantity blows up or vanishes a
power N ~such as determinants!. Finite N estimates are no
predictably good for such quantities and furthermore th
seem to be cutoff dependent~such asD). When divergent
quantities occur in combinations in whichN cancels, the
various computational approaches seem to become reli
again, and furthermore in our experience, the result seem
be well estimated again at relatively small values ofN.

VI. NONPERTURBATIVE LANDSCAPE

The perturbative computations above have implicatio
for nonperturbative computations in MSFT such as the o
in @14#. There a proposal was made for computing the t
vacuum of Witten’s string field theory at the classical lev
This involved solving the equation of motion that follow
from the action in Eq.~1.1!

~L021!A1a8g0A!A50, ~6.1!

for fields that are independent of the midpoint~hence the D25
brane vacuum!. This could be done by treating the energy
the midpoint~calledg) as a perturbation and writing the re
of L0 as a special star product formL0!A1A!L0. All so-
lutions of Eq. ~6.1!, including the vacuum, were obtaine
exactly in the absence ofg. Then it was possible to setup
perturbation series in the midpoint energyg and compute
analytically each term order by order. The lowest term w
obtained as an exact solutionA(0)(xe ,pe), where
A(0)(xe ,pe) turned out to be related, up to an energy dep
dent factorA(0)52(2/a8g)L0!P, to the twisted butterfly
projector P5Ab(xe ,pe) written in the MSFT basis.7 The
next perturbationA(1) was also computed explicitly, while
higher ordersA(n) could be computed in a straightforwar
way with similar methods. Finally the energy of the vacuu
and the tension of the D25 brane were given analytically up
to second order ing

T255
1

V25
S~A(0)1«A(1)1«2A(2)1••• ! ~6.2!

5
21

a83g0
2 S 4

3
n31«

n2d

2 D1O~«2!, ~6.3!

with

n5
1

2
2

d22

4 S (
e.0

ke2 (
o.0

koD , d5~d22!

(
e.0

kewe
2

11w̄w
.

~6.4!

When this result was obtained the divergent nature on
and d were confusing. However the divergence of the ba

7A proposal based on the butterfly that has parallels to our p
gram appeared recently@29#.
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coupling constantg0 was not noticed. We have seen in th
paper in Eqs.~2.3!, ~4.32! that g05gc(2NeD)3/2. A quick
look at n,d show that they are both linearly divergent wi
(2N) as can be seen in a naive level truncation up to (2N)
by inserting ko5o, ke5e and using the unregulatedwe

52A2(21)e/2. Then the result forT25 is perfectly finite at
each order of the midpoint energyg since the factors of
(2N)3 cancel between numerator and denominator in
~6.3!. Thus, this nonperturbative computation should proc
by using the same regulator consistently, keeping only
leading terms to order (2N)3 in the numerator and droppin
everything nonleading. It reminds one of the largeN matrix
computations. Progress on determining the vacuum state
energy using this approach will be reported in a future pa

The observation above resolves another puzzle as follo
We recall the expression forL0 that appears in the action o
MSFT in Eq.~1.1!. We display the version in@14# including
ghostsL05L0

matter1L0
ghost,

L0
matter
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where b052 iA2a8(]/] x̄)52 iA2a8(]/]xcm) represents
the center of mass momentum. We had commented befo
previous papers that the terms involving (11w̄w)21 are
tricky. Even though they appear to vanish asN→` they
actually contribute a finite term because infinite sums can
the zero. The midpoint energyg mentioned above is in fac
just the piece ofL0 proportional to (11w̄w)21.

But how about the divergent term in the first line1
2 (1

1w̄w)b0
2 involving the center of mass momentumb0? This

divergence caused concern for some colleagues. Actually
can explain that this is the correct behavior of this term
cause otherwise there will be no center of mass momen
dependence in the largeN limit in nonperturbative physics
Let us start with the cubic termg0Tr(A3) and replaceA with
A5g0

21A8 so that it takes the formg0
22Tr(A8)3. Doing the
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same to the quadratic term, we rewrite the action w
an overall g0

22 as S52g0
22(Tr@(1/2a8)A8(L021)A8

1(1/3)Tr(A8)3#). Now it has the form of the computed non
perturbative energy in Eq.~6.3! and, from the discussion we
gave above, we see that the numerator must behave likeN3

to compensate for the behavior ofg05cg(2NeD)3/2 in the
denominator. It is clear that eachA8 accounts for a factor of
N in the numerator and also thatL0 contributes a factor ofN
in the quadratic term. Now, if we also include momentu
dependence~or x̄ dependence! in L0 the only way that
momentum will not be negligible is by getting the help fro
the factor (11w̄w);2N in the form that it appears inL0

5•••1 1
2 (11w̄w)b0

2. This explains that this factor has pre
cisely the correct behavior, and how it contributes in nonp
turbative phenomena.

Of course, there is a way of eliminating the confusi
factor by renormalizingA85(11w̄w)Ã and defining L̃0

5(11w̄w)21L0, and further absorbing the extra factors in
definition g̃05(11w̄w)3/2g0. Then in the newL̃0 every sum
is divided by the factor (11w̄w);2N which is reminiscent
of the finite quantities Tr(M )/N in largeN matrix theories. If
the theory is redefined in this manner in terms of (Ã,L̃0) then
every term of the action in every computation should
finite at every step, just like the leading terms in largeN
matrix theories.

VII. CONCLUSION

In this paper we have demonstrated that MSFT not o
agreed in great detail with other computational approache
Witten’s string field theory, but it also led to new results th
were not obtained before. We have developed several pr
cal and theoretical tools on the way to the new results,
we have indicated how certain nonperturbative computati
can be conducted by using the information provided in
present paper.
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APPENDIX

Anticipating future applications we compute also the fo
lowing quantities by performing the integrals, which can
done easily by using an algebraic program. We give the
sults for five significant figures
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4.1275

A
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rting a
ey
~ t̄ t !oo8510223S 40.528 23.399 214.097 9.8718 27.4881 •••

23.399 85.56 10.464 28.1365 6.6112 •••

214.097 10.464 91.684 6.8506 25.795 •••

9.8718 28.1365 6.8506 94.133 5.1061 •••

27.4881 6.6112 25.795 5.1061 95.46 •••

A A A A A �

D . ~A3!

Note the increasing diagonal, although the off-diagonals are much smaller. The increase on the diagonal (t̄ t)oo quickly slows
down aso increases, and stays around 160,( t̄ t)oo,167 in the range 100,o,175 and then makes a sharp drop reach
( t̄ t)oo52.261 4 ato5185, and continues to drop slowly aso increases.

The following are exact computations, like the ones above, obtained directly by using the integrals, not by inse
truncated form oft t̄ or t̄ t. If compared to what follows from the truncatedt t̄ or t̄ t one finds results that disagree although th
are in a similar range of values. Therefore, the contributions from the higher modes are not always negligible.

S 12t t̄

31t t̄
D

ee8

5Mee8510223S 5.3498 23.6787 2.7533 22.1837 1.8013 •••

23.6787 2.8931 22.3337 1.9422 21.6571 •••

2.7533 22.3337 1.9739 21.6978 1.4843 •••

22.1837 1.9422 21.6978 1.4961 21.3323 •••

1.8013 21.6571 1.4843 21.3323 1.2039 •••
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23.7613 3.3154 22.9122 2.5913 22.3348 •••
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Other matrix elements of interest are obtained from the o
above, such as 4/(31t t̄ )511M , and 2(11t t̄ )/(31t t̄ )
512M , etc.

We can also evaluate some of the quantities by us
other methods and compare to the results above. In par
lar, by exact summation over the infinite modes we can
press the infinite matrices (t t̄ )ee8 and (t̄ t)oo8 in terms of the
generalized hypergeometric function as follows:

~ t̄ t !oo85
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The values of the hypergeometric function exactly agree w
the results of the integrals given above.

Also we recognize the quantitie
v,bo ,be ,Moo8 ,Mee8 ,M̃oo8 ,M̃ee8 from our earlier work on
the computation of the Neumann matrices by using
Moyal product@11,15# and comparing to Neumann coeffi
cients which were obtained from conformal field theory@7#.
Therefore, in some sense we already knew the result
these quantities. However, what we knew is only a spe
case of the more general formulas given in Eqs.~4.8!–~4.13!,
and serves to confirm the general method. For exam
08600
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( t̄ t)oo8,(t t̄ )ee8 or the determinants evaluated in the text ca
not be obtained by using just the Neumann matrices. Th
from our earlier work we extract the following results give
in terms of the vectorsAe ,Ao ,Be ,Bo whose numerical val-
ues are given by the following generating functions:
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where a bar on a vector, such asĀ, means its transpose. Similarly we have
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The generating functions give the following values forAe ,Ao ,Be ,Bo which are useful in the present paper:
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By applying these formulas we verified that the expressions in terms of the vectorsAn ,Bn given in Eqs.~A10!–~A17! agree
with the results produced by the integrals in Eqs.~4.8!–~4.13! as listed in Eqs.~A1!–~A7!.
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