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We report on new results in Witten's cubic string field theory for the off-shell factor in the 4-tachyon
amplitude that was not fully obtained explicitly before. This is achieved by completing the derivation of the
Veneziano formula in the Moyal star formulation of Witten’s string field the@®sFT). We also demonstrate
a detailed agreement of MSFT with a number of on-shell and off-shell computations in other approaches to
Witten’s string field theory. We extend the techniques of computation in MSFT, and show thatthe
representation of SL(R) generated by the Virasoro operattrg,L .., is a key structure in practical compu-
tations for generating numbers. We provide more insight into the Moyal structure that simplifies string field
theory, and develop techniques that could be applied more generally, including nonperturbative processes.
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I. INTRODUCTION mann coefficients. These have been some of the challenging
features of Witten’s string field theory in various formula-
In this paper we will report on new results in Witten'’s tions[7,20] that, despite the beauty of Witten's basic action,
string field theory[1] for the off-shell 4-tachyon amplitude have led to limited results in string field theory.
that was not fully computed explicitly before. In previous Some of the complexities of other approaches are not
computations the off-shell factdi(x) was obtained in an present, or take an easier form in MSFT. In this formulation
implicit form [2,3], while an explicit computation reported the string joining star product is the simple Moyal product,
only the first two terms in an expansion in the vicinity of the and this reproduces directly results in string field theory, in
integration limit of the parameter [3]. These results were agreement with conformal field theory, but without mapping
obtained by using mainly conformal mapping technigisds  back to conformal field theory or other intermediate steps.
and followed the methods of Giddings’ original computation Therefore some of the lingering problems in string field
[5] of the on-shell Veneziano amplitude, which could be ex-theory seem to be good testing grounds for MSFT.
tended to off-shell under the guidance of the oscillator for- In this paper we apply the MSFT techniques to the off-
mulation of string field theory6—8]. In this paper we will  shell 3-point and 4-point amplitudes. We will derive the Ven-
obtain a fairly comprehensive profile of the off-shell factor eziano amplitude directly from MSFT and determine the off-
f(x) in its entire range &x=<1 by giving the explicit form shell factor far more accurately compared to previous
to tenth order in the parametar(first two terms in agree- computations. In this process we demonstrate that MSFT
ment with[3]), obtaining a plot in the full range, and com- agrees in detail with other approaches while bringing effi-
puting the critical slope at a turning point in midrange thatciency into the computations, and also obtain new results in
determines differentiability. Contrary to our result, previ- MSFT that other approaches could test. We view these com-
ously it was thought that the functidi{x) was not differen-  putations as a preparation for our ultimate aim which is the
tiable atx=1/2, where it was not well understood. These areinvestigation of nonperturbative string theory phenomena by
achieved in the Moyal star formulation of Witten’s string using the simpler MSFT. We believe the techniques and in-
field theory(MSFT) [9-15|. sights developed in this paper will be useful for this purpose.
The usual approach of computation starts with a precisén fact we find that some of the new results and insight
formulation of Witten’s string field theory, such as the oscil- gained by this work impact the way to compute nonpertuba-
lator formulation, to derive a formal expression for a stringtive quantities in string field theory as discussed in Sec. VI.
Feynman diagram in terms of the cubic vertex defined in In the rest of this section we will describe briefly MSFT
terms of the Neumann coefficients. After this step a jump isand introduce some notation. In Sec. Il we discuss off-shell
made to conformal maps from an analog modgland the  3-point functions. This is necessary to understand the behav-
real computation is performed by using conformal fieldior of the theory with respect to a cutoff in mode space, and
theory, if the conformal map can be constructed. The desiretb define the physical string coupling as opposed to the bare
conformal maps can be found explicitly only in certain lucky divergent coupling that appears in the action. The results we
cases, and the four point function is one of them. The conebtain for the off-shell 3-point amplitudes demonstrate de-
formal map procedure has been used virtually in every suctailed agreement between MSFT and conformal field theory
cessful analytic computation, while the oscillator basis is di-or the oscillator formulation of string field theory.
rectly pursued mainly with numerical studies using level In Sec. Ill we analyze the off-shell 4-tachyon amplitude.
truncation[18,19 because of the complexity of the Neu- We show directly from MSFT, without connecting through
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conformal field theory, that on-shell we obtain the Veneziang,q midpoint variablec. and is independent for eaeh This

amdplltude. tF utr;hefrm?:e V‘tle obtgm the off-shell facth() eparation of variables and the simplicity of the Moyal star
an co_rgpu el te' 'r.f felr; ermsga:lexpagscljor: In powirs %re the main conceptual and practical simplifications that
X, provide a piot In 1ts full range x<1, and determne its 1,4 15 ney progress by overcoming midpoint problems in

differentiability at a turning point. Previously it was thought other approaches and opening up easier computational tech-
that the derivative was discontinuous at midrange and °n|¥1iques in MSET

the lowest two terms were explicitly computg?] (in agree-

- . . It has been shown if9-15 through some explicit com-
ment with our resu)t Our computation provides the most ©-15 9 b

hensive inf r the off-shell 4-tach i putations that MSFT is in full agreement with other compu-
comprenensive information on e ofi-shell 2-tachyon ampll-4iinna| approaches to Witten's string field theory, including
tude produced so far in string field theory.

. the oscillator formulation and conformal field thedi#~2Q].

In Sec. IV we develop th? detglls of the tools that aIIow_edIn particular, the Moyal star reproduces the Neun?;nn coef-
us to perform 'ghe computations in Secs. Il and Il and Wh'Chficients that define the vertices in the oscillator formulation
would be apphcaple more generally to other computations. of string field theony[11,15. Furthermore, the MSFT propa-

In Sec. V we discuss the SLE) generated by the Vira- gator has the usual free string spectrum. Therefore, even
though it is a very different computational formalism, due to
. . . . . 3he one to one correspondence describefllB] we expect
tions. By using some group theoretic properties of this Veryye i) final results between MSFT and oscillator approach
special representation of SLE, we develop tools for com- -5 ations of any string Feynman graph. This expectation

putation in siring field theory that are need_ed in our paper Quill be confirmed in detail in this paper. This demonstrates
generate numbers. We also compare the_d|screte and contingce again, and in greater detail, that MSFT is a precise
ous Moyal bases which are simply two different bases of th‘?epresentation of Witten's string field theory.

=0 representatlé)_n. fthe i h The string in 26 dimensions is supplemented with two
In Sec. VI we discuss some of the impact that our presentqitional fermionic dimensions that describe the conformal

cr?mputau?nds havse on the nohnperturbe:jt!ve Iandsca;pe,h Yhostsb,c, with the appropriate generalization of the Moyal
then conclude in Sec. VII. In the Appendix we give further o, product for fermions. The traditional perturbative string

results produced through the techniques in Sec. IV, and relastegtachyon, vector, etpare identified through the usual
tions to Neumann coefficients. expansion

The action of Witten’s cubic string field theof] in the
MSFT formalism in the Siegel gauge is A(XemsXe s Pe) = T(Xem) Ao(Xe  Pe)

+V,u.(xcm)(a’ﬁle(Xe,pe))+ .

— 1 Jo
_ d _ 20
S(A)= fd XTH S An(Lo= DA+ ZARARA|, (1.0 12

whereL, is given in Eqs(6.5), (6.6). The zero mode ghosts WhereAq(Xe,pe) is the perturbative vacuum string field con-
have already been dealt wiffi5] so they no longer appear. figuration ande”  is a differential operator representation of
Hence the fieldA here is equivalent to the physical field in string oscillators in the spaced,p.) [11,15. A, is a spe-
Witten’s theory. The string field\(X,Xe,pe) iS Written in a cific normalized G_aussign TAG*xAp) =1, that represents the
mixed position-momentum basis, which is equivalent to a/8CUUmLoAq=0, including ghost$15] (see alsq17])). Itis
Fourier transform of the purely position basis. In this basisdiven by

string joining is represented by the usual Moyal star product

[9] in a noncommutative phase spaog (o) labeled by the  Ay(&)=|detdmo|*|detdmg *|~ 2 exp( — 7, Moo 1€”

even mode®=2,4,6 ..., The star produck is local in ) .
+|8mn§mm0 Uﬁlgn)a d=26, (1.3)

Hogm i i i
The position basis is given in terms of the even and odd modegvhereg ,&" are the noncommutative coordinates written as

(Xe,Xo)- The Fourier transform in the odd modes maps to the spacél doublet for eacl_e, V_V'th the lbosogllc pargf*=(xe 'p/e:) fozr
(xe,po). Witten's string joining star product becomes a nondiago-matter and fermionic part™= (x./ V2a', —\2a'pj), ¢

nal Moyal product in the space,p,) [9]. This is diagonalized by = (xI/\2a’, V2a'pb) for the b,c ghosts’ Each pair &,p)
defining p, as an infinite combination of thp,=p.Te, by intro-  satisfies standard commutation-anticommutation rules under
ducing the special matriff., given in Eq.(4.4). In this way we the star product. These can be written compactly as
arrive to the noncommutative space, (pe) with a diagonal Moyal [ &* ,gj”]*: 77'““1)0'”- for matter and{fim ,glﬂ}*: _ismngij for

product whose meaning is string joining. We emphasize thapthis ghosts, where the symbol= — o, is the Pauli matrixr, in
is a definition in terms of,, it should not be confused with the

first quantized momentum that is canonicalktg whose represen-

tation in this space i; the derivatii/exe. quever, inter.esti.ngly_/ this ?Relative to[ 14,15 we are improving notation by introducirg’,

can be reproduced in the noncommutative geom@tryng joinind  ith m=1,2, and the Sp(2) metris,,,, for the sake of connecting
relation —idy A(X,Xe,Pe) =[Pe A(X,Xe,Pe) .. A closely related  with an upcoming paper in which we will discuss some useful hid-
continuous Moyal basigl6] is obtained by orthogonality transfor- den symmetries that connect matter and ghosts in the MSFT for-
mations, as will be discussed later in the paper. malism, and further simplify the structure and computations.
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the doublet space multiplied with a noncommutativity pa-matrices, thereby permitting analytic computation in the
rameterd. We takef=1 by a choice of units. Then, that  finite N version. A particular form of the regulator which we
appears in the vacuum stadg(£) is a matrix in mode space have found useful in some computations is given in
determined by ,A;=0 as shown if11]. Althoughmyis a  footnote 6.
simple matrix, we will not need it explicitly in this paper. It is necessary to use the regulator in those computations
The perturbative particle fieldB(xcm),V ,(X.m), etc. are  where we suspect anomalous behavior, but otherwise the un-
expressed as functions of the center of mass. The star regulated matrices can be used, as we will do for most of the
productx is local in the midpoint of the string, not in the ~ computations in this paper. It is interesting to note that the
center of mas.,,. Therefore, before evaluating the inter- 'egulated matrices with only a few modesmallN) repro-
action for any perturbative field(Xey),V,,(Xcr), etc. one duce approximately most of the numerical results we obtain
must first write the center of mass in terms of the midpointWith more sophisticated methodshit=cc. An example is the
X=X+ WeXe, Wherew,= —\2(—1)%2. This is a crucial Neumar}n hmatrlcez as given mdth_e aﬁpendlx[lﬁ], and |
step in computations of the star products. The midpoint ha@any of the numbers computed in the current paper, al-

been a source of numerous problems in the split string fo ough we do not make the effort to demonstrate this point in

r, .
malism, and the resolution first was given in the context ofthIS paper.

MSFT in[11] with the simple prescription just described.

In the quadratic term the star product plays no role, and Il. OFF-SHELL 3-POINT FUNCTIONS
could be removed, as is usual for the Moyal product. The
coefficient of the quadratic term in the action is chosen such In this section first we briefly outline the off-shell 3-point
that the particle fields are correctly normalizedter taking ~ functions to establish the relation between the bare coupling
into account the definitions of the trace Tr including ghostsdo that appears in the action of MSFT and the on-shell
and the Virasoro operatdr, as given in[15]) tachyon couplingg, which is identified with the string cou-

pling. The relation between the two involves a factor which
1 1 , diverges with the number of modedN2asg,~ (2N)%4 as

Squadratic= _f d®x zﬁnTaﬂT“L ZF//-VFM T will be explained later. All other scattering amplitudes are
(1.4) proportional to some power of the bare couplmg and this

must be first written in terms of the finite on-shell tachyon

1 L 1 . . o :

:f A= (9 TagT—VT-VT)+ = dgVAaV qo_uplmg g. After this step, |t_ is seen that all _amplltudes are

2 2 K’ finite. In this process one finds a renormalization factor in

front of the amplitudes multiplying a power of the on-shell
couplingg. An example of this is the factay?(27/16)*/4 for

6he 4-tachyon amplitude in E@3.5) below.

The off-shell 3-tachyon amplitude is obtained by using
the Feynman rulegnote $g,x3!=2g,) and inserting the
tachyon field for the external leg in the Feynman graph, lead-
ing to the expression

T (1.5

Then from the cubic term one finds the Feynman rules an
computes the amplitudes as describediB,15. For each
external line we insert a string field representative of a par
ticle. In particular an incoming tachyon with momentit

is represented by the string field (X, pe) €'k Xem, whereA,

is the normalized vacuum field given above, affi*em is

the center of mass plane wave which is parfTék.,). To 9123(ki):290f dd;Tr‘(AOeikl‘(;"'er)
compute its interactions one must write it in the form
Ao(Xe,pe)e'® XTWeXe) which is a shifted Gaussian ix{, pe) *Agelkz OF WX 4 A ks (ctwie)y (2 q)

space. These details are fully explained9a-15|, where it is

also shown how to compute the star product and the tracene x integral gives a momentum conservation delta func-
with efficient methods based on a monoid algebra of shiftegigp, (277)265() Kk, + k,+ ks), while the trace and star prod-

Gaussian$ll]. _ ucts are easily evaluated by using the Bose-Fermi monoid
In the expressions below the constant matgkand vec-  ryjes developed ifil1,15. The result is

torswe,v, in even or odd mode spacand related matrices

Teo, Roe) @re fundamental matrices in MSFT that encode the

joining of strings[9-16], and are given explicitly in Egs. glzéki):g(

(4.9, (4.4). The matricesx,, . are diagonal matrices that

represent the odd or even oscillator frequencies

27) 3/2- (112)a’ (K2+K5+K3)

16 \ (2.2
multiplied with the delta function. This is in full agreement

=diag(0), 0=1,3,5... andk.=diagE), e=2,4,6... as . . . .
in qu((3)6) below 2bar on tngof a s?q(u)are or colﬁmn matrix with previous studies of the off-shell 3-tachyon amplitude
T : [6,7,2. It gives precisely g on shell by definition

symbol,'such as,v, gtc. means the tranqusg pf the matr'ix.gm(ki”a,k?:l:g_ The remaining off-shell factor in our

In certain computations, to avoid associativity anomalies i

these infinite matrices must be replaced with their regulate@alculation initially has the form exp(3—3a’(G+K5
NXN version as given if10,13—15% and thenN must be  +k)]), with w=(1/2a")(w,0)omy(3+m3) ~*(w,0)". This
sent to infinity at the end. The regulated matrices obey somis obtained easily by evaluating the star products and trace in
nice algebraic properties which are also shared by the infinit&q. (2.1) by using the simple monoid methods [ifhi1,15.
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Using the definition ofm, this simplifies tow=2v x, Y43 2 1

+1t) "'k, Y%, which is then evaluated a®=In(27/16) b1=ee§,l>o TerVe 3ttt e ¢

later in this paper in Eq$4.13), (4.20), to produce the result ’ ee!

in Eq. (2.2). Similarly, in the same computation, the relation 2 22

between the on-shelg and the bare couplingyy in- =|| —— Kglu =, 2.7
itially takes the following form go=21g(2Z)¥det((3 3+t , 33

+m2)/4)%2det((3+ my 2)/4) 2 detmy| ~ 4| detmg 1| %4

After insertingmy it becomes This computation, and those for similar quantities will be
given later in this paper in Eq4.21).

We see that MSFT is in full agreement with previous
computations in string field theory for off-shell 3-point func-
L tions. Previous methods used conformal mgfisand con-
det( 1+3(t )) d=26 formal field theory, while MSFT uses the Moyal product, and

3+(t)|°
4

1 3/2 -
—_ Nl o —(d—6)/4
% 29( 16) (det(tD)) det(

4 (2.3 produces the same results with considerably simpler meth-
ods. One can go on computing very simply off-shell 3-point
The right hand side of Eq.(2.39 is divergent as couplings for any other perturbative or nonperturbative fields
(2N)(d-0)/8-d/18+419 \yhich hecomes (R)%2 for d=26 as DYy similar MSFT techniques.
will be later shown in Eq(4.32. However this divergence is
everywhere reabsorbed into the definition of the on spell
just as in the 3-tachyon case. After this step, there still re-
mains similar determinants that |nd|V|dua”y produce a diver- One of the new results in our paper is a proof that the
gence or zeros at larde, but they combine together to give MSFT 4-tachyon amplitude produced by the Moyal product
finite answers magically as long a@s=26. We will see an  does give directly the Veneziano amplitude, without using
example of this impressive fact below in the 4-tachyon amtonformal mapping techniques. A second new result is a
plitude [see the determinants in E(B.5 and the computa- comprehensive understanding of the off-shell factor by going
tion in Egs.(4.24)]. considerably further in the parametric expansion, obtaining a
A similar computation can be performed for the vectorpjot of the function in the full range, and determining its
particle for an incoming wave with momentuk’t, which is  differentiability at a turning point.

Ill. OFF-SHELL 4-TACHYON SCATTERING

represented by the string field In MSFT we have been developing analytic methods of
' computation in string field theory by using directly the
AV(xcm,xe,pe,k)=e'k‘xcon(xe,pe)sﬂ(k)(p“T)lx/Za’, Moyal star product. Both the oscillator formalism and MSFT

(2.9 provide an expression for any off-shell amplitude, including
loops. Although the starting point and intermediate steps are
where ¢,(k) is the polarization and the last factor quite different, it has been argued that generally we expect
p’e‘Tel\/ﬁ resulted from applying the oscillatdri1,15  agreement in the resyli3,15.
a1 Ao(Xe,Pe). For example, the coupling between the vec- The computation of the 4-tachyon off-shell amplitude in
tor and two tachyons igomitting the Chan-Paton factors at MSFT was performed ifi13,15. There are 8 diagrams that
the string ends correspond to various permutations of the four external legs.
The s-channel diagrant>— <2 is denoted as;A3;. The
B — Ky (W) ik, (W) mathematical expressiqn for this z_amplitude was thained in
91av, (ki) =200 | d"XTr(Age™ x Aol ¢ [13,15. Thet-channel diagram is given by the cyclic permu-
_ tation of the external legg;A,3, and its mathematical ex-
*AoeiKS'(”er)sM(k3)(p"T)lx/g). (2.5  pression amounts to exchangisg in the previous result.
The remaining permutations that do not changesthehan-
Following the monoid methods ifil1,15 that led to Eq. nel properties are denoted g#\43, 43721, 34712 and 14A35,

(2.2) this is evaluated in almost the same way, giving 23A41, 39A14 respectively. After a brief computatiofas in
[13)) it can be shown that these give the same amplitudes as
1 97\ 1= (12)a’ (G +K5+K3) the initial s,t diagrams. Therefore the sum of the diagrams
J1av, (ki) = Eg(kl—kz)~8(k3)<§5) : for thes,t channels produces a factor of 4
(2.6

ZDS
with an implied momentum conservation delta function as in
Eq. (2.2). This result is in full agreement with the on-shell As)=4| i>-<i+ |
result in[7] (for a'ki=a'k3=1 anda'k3=0), as well as Na
the off-shell results summarized|i@]. To arrive at this result .
we needed to perform the computation of the following nu- _ T
merical coefficiF()ant: P ’ _4J’ 0 A7 12Asd7) + 4z 7))
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— fo dTe_T—za(T)+4’y(T)a4(7.)

4
Xexp<(7(7)+23(7))i21 (a'k?—l))
X[e(a’s+2)(r+a(r)+2,8(r))
X ela't+2)2B(7) 4 (g5 1)], (3.0
wheres,t are the Mandelstam variabfes= — (k; +k,)? and

t=—(k,+k4)? The functionsa(7),B(7),y(7),a4(7) ini-
tially given in[13] were further simplified if15]. Here, as a

first step, we simplify these functions further with a few h
algebraic steps and put them into the following form which/"€"€Xo

will be convenient in our analysis

a(T):a)—Hefm(l—MeiTK)flb, (3.2
B(7)=bPe "8 (1—Me~"*Me %) "1p(p,

(3.3

1 _

’}’(T)Z—Ew—bP(o)e_T"(l—Me‘T")—lp(O)b,

(3.9
(=45 2(27)3 deti-te MMe ™) -2
a - 4 16 1 = .
AT 4g 16 [de(l_Me*TKMef‘m)]dIZ

(3.9

The overall factor of 4 ima, is the factor in Eq.3.1). In

string mode space labeled by even and odd positive intege

e=2,4,6... ando=1,3,5..., wehave defined the matri-

ces k,M,M,P© vectorb and scalarw as follows (a bar
above a symbol means matrix transpose

1-tt
_q 0
3+tt

e

(e 0) " o
K= y = _
0 o (1—tt
0 —_—
3+tt)
(e]0)
1—tt .
1+3tt)
~ ee
M = _ (3.6)
. 1—tt
1+3tt)
(e]0)
b De p(© 00 b(1-M) . (3
- bo ] - O 1 ] W= ( - ) . ( 7)

Here the diagonal matrix with integer eigenvaluess,

PHYSICAL REVIEW 9, 086007 (2004

(eigenvalues of_ o), P(? is a projector onto the odd modes
only. The other quantities are all constructed from the matrix
teo and vectorv, which themselves are built from the fre-
guenciesc, as given i 9-13 for anyN. In the largeN limit
they take the form in Eq4.3). The combination of., in the
form of the matrixM arises frequently in the interactions in

the matter sector, while the matriM occurs in the ghost
secto The even and odd vectobs,,b, are given by

2
— K, 1/20) , be=
o]

2
t__KOIIZU) ,
3+tt o
(3.9

is the odd part of the matrix. Finally », which is
the 7—oo limit of a(7) is simplified to the form

a)EH(].—M)_leU_K_l 2_K_1U (3.9
® 3+ttt °

by using the definitions ob,M given above.

From these quantities we compute the functions
a(7),B(7),y(7),a,(7) which in turn determine the
4-tachyon scattering amplitude off-shell as well as on shell.
We will show that the on-shell amplitude far'k’=1 re-
duces to the Veneziano amplitude given by the beta function

,T(—a's— DT (—a't-1)
[(—a's—a't—-2)

Ashen(s,t) =g (3.10

gn the other hand the off-shell expression above goes be-
yond conformal field theory which only gives information
for on-shell strings.

The aim in the rest of this section is to show that the
off-shell 4-tachyon amplitude in E@3.1) can be rewritten in
the following form and then compute the functib(x)

Eiﬂ':l(“/kiz_l)

dx(7)
d

T

A(s,t>=—92f:dr (F[x(7)])

X[(X(7) "¢ S 2(1=x(7)) @2+ (se1)]

(3.1)

ia(a'kf-1)

(3.12

:92foldxxfa’3*2(1_X)7a't72(f(x))2

After the change of integration variables fromo x in the
form of Eq. (3.12 we see that the off-shell amplitude is

“The matricesM,M are simplified forms of— M (@, —CX(©)
where M () X(©) were identified in[11,15 as some of the Neu-
mann matrices for the 3-point vertex in the matter and ghost sectors

=n, represents the spectrum of string oscillation frequenciegespectively. Furthermore, it was shown that all Neumann matrices,

3The Mandelstant should not be confused with the mattix, .

for all n-point vertices, are explicit functions of the mattiy, as
obtained in[11,15. Hencet is the fundamental matrix that deter-
mines all interactions in string theory.
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consistent with the on-shell Veneziano amplitlideta func-
tion in Eq.(3.10] whena'k?=1.

We will show that the change of variables fronto x is
such thatx(0)=1/2 andx(«)=0. Then we see that the
s-channel amplitude;,As4(7)=2>——<3 contributes to
the range 8=x=<1/2 while thet-channel amplitudeA,5(7)
contributes to the range ¥X<1 after a change of vari-
ablesx— (1—x). For the first form in Eq(3.1) to agree with
the second form in EQq.(3.11) it is required that

PHYSICAL REVIEW D 69, 086007 (2004

This shows that the-channel amplitude,Az4(7) is associ-
ated with the range €x=<1/2 and thet-channel amplitude
41A23(7) contributes to the range ¥X=<1 after the change
of variablex— (1—x).

Next we examine the relations for more general values of
7. The form of the equations in Eq&.2)—(3.5 was devel-
oped to examine an expansion in powergof. In the next
section we show how to compute the coefficients for the
large 7 expansion of the functiong(7),8(7),v(7),a4(7).

a(7),B(7),v(7),a,(7) conspire to have remarkable rela- We find the following analytic result:
tions among themselves so that they can be written as func-

tions of the same&(7). Thus we need to prove that the fol-

lowing relations are satisfiefwhich also definex(7) in
terms ofa(7),B(7),v(7),a4(7)]

e_Te_“(T)_Z'B(T)=1—e_2ﬁ(T)EX( 7), (3.13
dx(7) ay(7) )
—_— 2 a7t 2a(7)+4y(7)
ar 7 e . (3.19

Note thata,(7) depends o= 26 while the other quantities

are independent of the number of dimensions. Hence if theB(7) = 5-€
relation holds ford= 26 it cannot hold for other dimensions.

We will prove below that the relations in Eg8.13, (3.14)
are indeed true. This makels=26 unique.

Once the relations are proven, then we learn that the off-

shell factorf(x) is given by

f(x(7))=e"(D+28(7, (3.15
To write f(x) in terms of only the parametarin the integral
representation of the off-shell amplitude in E§.12, the
relation betweex, 7 given in Eq.(3.13 needs to be inverted

7=7(X). We will perform the inversion and will construct

the functionf(x) as a series expansion in powersoflt

turns out that a few terms in the expansion already give the 7\3
necessary information to obtain a sufficiently accurate reprea4(r):gz(—) 1+

sentation of the functiofi(x), and hence of the full off-shell
4-tachyon amplitude.
Let us first prove that the relations in Ed8.13 hold at

16 8 2219 2572
a(r)=—INn———e - e 27— e 3
27 27 (27)? 3(27)°
2Xx13%43 24167x 229
_ e 47— e—57'_|_ O(e_BT)'
(27" 5(27)°
(3.19
2’7t 27167229
T+ T T
3(27)°2 5(27)°
+0(e™ '), (3.20
B 1I 6 8 _ 40 . 2°7%
y(T)—E N7 578 —(27)2e —3(27)3e
23829  2%167x229 -
_ 47 __ [— 57+O(e 67'),
(27)* 5(27)°
(3.21)
2217 2x 1399
727’+ *4T+ 0(6767') .
16 35 (27)3
(3.22

the integration limitsr=0p. In the next section we show 14 gpiain the expansion to this order it is sufficient to com-

how to compute the functiona(7),8(7),y(7),a4(7) at 7
=0,0. We find in particular

a(0)=0, B(O)=%In2, y(0)=—In2, (3.16

1 16
)==In

a(*)=InJg, B(=)=0, ¥=)=7lns,

27\3
a4(°°)=92(1—6) . (3.17

From this we see that indeed E@8.13 is satisfied at both
limits 7=0,0, and we also determine

1
x(0)=§, X()=0. (3.18

pute the coefficientd;,b,,bg,b,,b5,M11,M13,M o, My,

M 13, M, defined above. These results were obtained analyti-
cally without much effort. Our analytic results above to order
O(e %7 are already quite adequate to constriot). It is
possible to easily extend the expansion by inserting the re-
sults for the higher coefficients provided in the Appendix
into Egs.(3.2—(3.5. In fact we have constructed an alge-
braic computer program that does this, and using it we have
double checked our analytic results above and extended our
computation to higher orders. We will report on some of the
higher order results below.

The relations(3.13, (3.14) can now be verified directly
by inserting the large 7  expansions for
a(7),B(7),y(7),a4(7) given above, and reexpanding in
powers ofe” 7 up to orderO(e~ ’"). From either the first or
second term in Eq3.13 we obtain the same expression for
x(7), namely
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16 128 , 64 _, 19456 _,_
27°% T 729° T 729° T 531441°
X(m= 38729 1733120 | (.29
14348907 129140163 (e
59.25® "—17.55& %7+8.779%e 3"—3.661( *" 10-2 a0
= X 10 “. .
+2.699%e 5" 1.342" 5"+ 0(e" ") (3.29
Furthermore, the right hand side of E§.14) gives precisely the derivative x(7) of the expansion in Eq:3.23
16 - 256 _, 64 . 77824
a,(7) 27° T729° T 243° T 531441°
_ e~ T2a(n)+4y(1) = (3.25
g% 1936480 . 3466240 p—
14328907 a3oaer2f o€ )
|
This proves thaty(7),B(7) satisfy the relation in Eq.3.13), C(1—x(7))
and a(7),y(7),a4(7) satisfy the relation in Eq(3.14), at
least up to orde©(e”’7). Actually, as already mentioned, 1— E[x( 12— i[x( 3E
with a computer program we have shown that the relations 4\32 3277 32T
hold to much higher orders. These results are convincing that = ( 5) 1249 609
a(7),B(7),y(7),a,(7) are all expressed in terms of the — ——[X(1) ] = [ X(7)]°+O(X(D]F)
same functionx(7). We emphasize that the number of di- 8192 4096
mensionsd which appears ira,(7) in Eqg. (3.5 must bed (3.29

=26 to satisfy the relations.

Note that atr=0 we expecix(0)=1/2 exactly as in Eq.
(3.18, and indeed by replacing” "— 1 the expansiof3.23
we obtainx(0)=0.481 76 which implies that the expansion

captures an accurate representation of the full function. Note

from the trend in Eq(3.24) that the nexD(e™ ") correction
will bring the value much closer to the exact answé0)

1.5396— 0.24056&2— 0.24056¢3
—0.23474%—-0.2289%°+ O(x8) |-

|

=1/2. With the computer program we have shown that thisl hese coefficients are determined by demanding that the ex-

value becomeg(0)=0.492 95 by computing(7) to order
O(ef 107).
Finally we compute the off-shell factor, which is given by

C(1—-x(7))
2J1-x(7)

The expression on the right hand side defines the fun@ion
which is given here for comparison to the old literature.
Thus, by substituting +x(7)=exp(—28(7)) we can write
C(1—x(7))=2e"M*"A(7)_ First we obtain the expansion of
C(1—x(7)) by inserting our computation of(7) andB(7).
The result is

e 4+ O(e‘sf)).

f(x(7))=e"D"28(N= (3.26

4

!

5

32

2

eZT

16
27

C(1—x(7))=2eYN A= (

1 2

32

B 52
Next, by using Eq(3.23 we rewrite this result in terms of
x(7) so that the functiorC(1—x(7)) is given in terms ok.
The result is

pansion in powers aé~ " matches the one ofe2(?*#()_ |n

this form our result folC is in agreement with what is found

in the old literature[3] where C was computed up to the
second term—>5/32? by using Mandelstam’s conformal
mapping techniques. We, of course, used the very different
Moyal star technique and obtained the same result, but we
also easily went further by obtaining the higher order terms,
which is a new result given in this paper. As mentioned, with
our technique it is very easy to compute to even higher or-
ders[see Eq(3.33].

Since the range for is 0=<x=<1/2 the expansion given
above forC has good convergence, so we expect that we
have obtained an accurate representation of the full function
C in the relevant range. As a test let us compare the exact
value of C at 7=0 (or at x=1/2) which we can compute
exactlyC(1—x(0))=2e"0*+80)= 2=1.414 2 after using
Eg. (3.16). By evaluating the expansion abovexat 1/2, we
obtainC=1.427 6, which confirms that the expansion does
capture the function almost fully in the entire range.

Let us now turn to the full off-shell factdi(x). The exact
expansion of this function in powers of up to O(x®)
becomes
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19 19
0957 0957
0.9 0.9
0857 e 0857
0.8 08|
0 0.1 02 % 03 0.4 0.5 0 02 04 x 06 038 1
FIG. 1. Polynomial approximation t&(x). FIG. 2. Polynomial approximation t&(x).
f(x) = C(l——X) ~ 4 4
2(1—x)¥2 f(X)Iﬁ-FZ 1—ﬁ X, (3.32
1 1 7 5 5 3 129 4
4 +§X+ 3—2X +@X _8192X '
=— where the slope is chosen to guarantee the exact values at
3.3 _ 1413 5.4 O(x°) both ends of the range, namely 4/ atx=0 and 1 atx
16384° =1/2. This case corresponds to the dotted line in the figure.

(3.29 The plots suggest that the exact cui{&) lies somewhere
close to the solid line and the dotted line, and that in any case
4 [1+0.5¢+0.2187%°+0.0781%° we have obtained a fairly good approximation in the entire
=-7=\ _ 4 5 6\ |- range with the series expansion in E§.29.
3,31 ~0.0157%"~0.08624"+ O(x") (3.30 By combining thes andt channel contributions we extend
' the range of integration to ©x<1 as explained above.
At the end of the range=1/2 (i.e. 7=0) the exact value of Thus, in the range 12x=<1 the functionf(x) is given by

this function should be 1, since substitutingx by (1—x) in the expression of (x) given
above. Namely, the plot df(x) in the full range G=x<1 is
f(1/2)=1f(x(0)) =" +2AO0)=1, (33D given in Fig. 2.

; PR _ The exact function is expected to lie somewhere close to
\évrf;ergfv;/(e ;“s/g(r:l] E;ib%\%e@ .;he;;sdeer:gs(%gprgr)g;nuitéosnf l(rllr;())w the solid and the dotted lines. The shape of the curve begs
=1.0090, which is better than 1% accuracy. the question of vyhether the exaldix) ever crosses the_ dot-
To get a better feel of the functiof(x) we plot the ex- ted line. To proylde an answer we u;ed our algebraic com-
pansion in Eq(3.29 for the appropriate range farwhich is ~ Puter program in which we plugged in the contents of the
0<x=<1/2. This is shown by the solid line in Fig. 1. The Appendix into Egs(3.2—(3.5 and obtained the following
figure suggests that, for the relevant range, as a guide for tHéigher order expansiofwe do not give the details of the

eye we can compar(x) roughly to a linear functioff(x) ~ €xpansion fora(7), (), ¥(7),a4(7)]

L1 T, 5., 129, 1413 . 40973
o [ 12X 32X T 62 T 5102° T 16384° 262144

f(x)= ——= . (3.33
33| 124459 186841777, 547864633

_ _ _ 9 1
524288 53687001 1073741824 T O

6

The plot of this more accurate expansion lies slightly belowalue of 1.0090 and the exact value 1.0890003 9>1.

the solid line in the figure, and is extremely close to it in theThis analysis is consistent with the possibility that the exact
regions that are not near to=1/2. It does cross the dotted function f(x) may cross the dotted line somewhere close to
line, but it does it at mirror points closer ¥6=1/2 compared x=1/2 before settling into the valu€1/2)=1. This issue of

to Fig. 2, and finally reaches the valdi€1/2)=1.003 9 at crossing or not crossing is relevant for determining whether
x=1/2. So the new corrected peak is between the previouthe exact function is differentiable at=1/2. If it never
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crosses the dotted line then it must make a cusp and bEX) nearx=1/2. A glimpse of the slope on the left side of

nondifferentiable. Such a nondifferentiable function may bethe possible cusp is obtained by computing the derivative of

a peculiarity of Witten’s theory in which a particular confor- the expansion above and evaluating itxat1/2. We obtain

mal gauge has been effectively fixed by distinguishing thes, f(x)|,—1,=0.49849 consistent with a cusp. However it is

midpoint. We remind the reader that off-shell amplitudesnot clear how much we can trust this number, because if we

generally are not gauge invariant. examine the size of the coefficients in the expansion of the
It seems therefore interesting to investigate the slope oflerivative

38.49+ 16.8392x) +4.51052x)?>—0.606112x)3—2.07472x)*
—2.256Q2x)%—1.99872x)%— 1.6744 2x)"—1.3809 2x)8+ O(x°)

A f(x)= X102 (3.39

we see that convergence is not very fast, and the exact value . . 1. 1

may turn out to be quite different a2 1 since there are an x(0)=p(0)==57(0)~ 5. (3.40
infinite number of terms to be summed. Note that the ten-
dency of the neglected terms is to be negative thereby reduc- — , .

ing the value of the slope given above. To settle the questioWe usedvv=1 which multiplied the last constant term
we must examine an expansion nearO rather than near 1/2. In passing we mention that we have also computed
7=c0, but the reason we did not do this so far in this paper isx(0) and founda(0)=2(0) after a little algebra. Through
because the expansion does not seem to exist due to divérds.(4.16), (4.17) and Eqgs(5.36—(5.40 in the next section
gent derivatives near=0. However, precisely these diver- we show that the expression above fg(0) is divergent at

gences turn out to settle the isgue as follows. largeN. So '7,(0)+2'3(0): —1 is finite, butg((o) diverges.
We can compute the derivativedyf(x))x-12 from  Therefore from Eq(3.36) we find that the slope of(x) at
.£(x(7))| =0 as follows x=1/2 is exactly zero
X(0) (xf (X)) y=172= 9. F(X(7)] =0 (9xf (X)) x=1/2=0. (341
=(7(0)+2,3(0))eﬂ0)+2ﬁ(0)1 So, after all the off-shell functiorf(x) is continuous and

(3.35 differentiable atx=1/2. With this result on the slope, the
expansion in Eq(3.33, and the plot in Fig. 2, we have
where we have used the chain rule on the left hand side argisically understood the functidigx).
Eq. (3.26 on the right hand side. From E¢B.13 we have This discussion provides the most comprehensive result
x(0)=23(0)e 28, Inserting the exact values for for the off-shell scattering amplitude of four tachyons pro-

¥(0),B(0) given in Eq.(3.16 these equations become duced so far in string field theory.

X(0)=pB(0), xX(0)(axf(X))x—12=¥(0)+2B(0). IV. COMPUTATIONAL TECHNIQUES
(3.36 In this paper we need to evaluate the quantities

By differentiating Eqs(3.3), (3.4) we obtain expressions for ®,bo.De.Ce.Co.Mee ,Moo ,Mee , Moo, and various deter-
%(0),3(0) minants, as defined in the previous sections. These are ex-

amples of more general computations that come up in MSFT

B(0)=—H(1—M2)*1(K - MokoM,)(1—M2)~1b, which are generically of the type
[0} o] [0} o™o [0} (0] !

(3.39 — _ _
(F(tt))oo’ 1(F(tt))ee’ i(tF(tt))eo,
:y(O)ZE()(l_MO)*lKO(l—MO)*lbO, (3.39 (F(t_t)Killzv)o,(tF(F[)KﬁlIZU)e, (4.1)
whereM = (1—tt)/(3+tt) is the odd part of the matrix. de(F(T1)), ox- 2R (T o V2

After straightforward algebra, we find

vy VR (M) koF(tt)k, Y2, etc., (4.2)
1

—— Kg —
(1+tt) “(1+1t)

¥(0)=vx, koY%, (3.39

whereF (z) can be any function of the matrbt or tt. In the
present paper the functiond of interest are M

andx(0),53(0) related to the same expression by =(1-tt)/(3+1tt) and M=(1—tt)/(1+3tt) and other
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Simp|e ones constructed from them, such as -H_EG:]_ which we use the continuous basis in the next subsection,
—M, (1-M?), etc. As seen in the full~-dependent @and indeed we will find good use for it in some of the fol-

a(7),B(7) etc. there are more involved combinations of lOWing computations.

F(ﬁ) and the matrixe™ ™ which can appear in explicit cal-
culations. The techniques discussed below do not directly A. Computations via transformation to continuous basis

apply to comput_e such q.ugntities fuIIy_, but do apply to com- |, ihe following computations we are directly ht=-co
pute the expansion coefficients _analytlcally and fex_actly wherRnd work with the unregulated fundamental matrices
these quantities are expanded in powers of. This is how 1 R ;, w in MSFT that encode string joiningor a particular

we made progress in this paper. N o regularization see footnote 6
In our MSFT approach such quantities are initially de-

fined in terms of the regulated vectog and the regulated ein 242 (i)° ! 1
matrix te,. By inserting the values af, ,te, for any number ~ We= V2(i)-e*?, Vo=~ g+ leo” eTeo%,
of modes N, all of these quantities take on explicit numeri- 4.3

cal values. Generally it is seen that a few modes already give
an answer pretty close to thd—oc limit, therefore for a
quick estimate of nondivergent quantities it is generally suf- 4o(i)° et 4e?(j)oett
ficient to use finite matrices for just a few modéswith this Teom ———— =,
approach we can evaluate any quantity approximately fairly
easily.

The largeN limit is sometimes subtle because of anoma-As explained in[11,12, the matrixt is diagonalizedt,,

lies. Generally anomalies arise in the form of a zero multi—z(v 7V.)es by the orthogonal matrice¥, ,V, that act on
plied by an infinity that comes from an infinite sum over the gddooioeven sideg bar means trangbc);él'he eigen-
matrix indices(the modes producing 0<<, so that there is space is labeled by with eigenvalue%r . The labelk is

a subtle finite contribution. If one is not careful the zero iscontinuous(can happen only for infinite rﬁatric)es’st is in the
first evaluated and the infinite sum that is later performedrange O<x=o0, and the eigenvalues are given [81,16
still gives zero, thus missing the finite contribution. To avoidT =tanh(m</4)., The orthogonal matrices have matr,ix cle-
anomaly ]:subtleties ilrl] thl —co Iimi;we [use tgf re%ulalt(ed n:ents which are functions of and the indexo,e, namely
version ofv,,te, in all computationgsee[10,15), and take — _ At }
the N— only at the end of the computation. The regulated(.V°)°"_V°(K)' and Ve)e,=Ve(). Thus the matrix equa

matrices v,,te, Satisfy certain algebraic relations, also tion teo=(Ve)ex (Vo) xo IS Written as
shared by the unregulated matrices, that make it possible to
perform certain computations analytically. It has been dem- o
onstrated that this is a correct regulator consistent with other teo= fo dxVe(r)tani(mxl4)Vo( k). (4.9
computational techniques in string theory.

In certain computations, or parts of it, there are no anoma-
lies, and it becomes possible to work with the infinite un-The functionsV¢(«),V,(k) satisfy orthogonality relations
regulated matrices,,tq, directly atN=c. Then it is pos- that correspond to the orthogonality conditions on the matri-
sible to make a transformation to the basis that diagonalizesesV,,V,. These functions are given explicitly by the gen-
the infinite unregulated matrix, and do the computations in erating functions in Eq(5.3). In the next section we will
the N=c diagonal basis. AN= the eigenvalues df,, are  clarify the role of these functions as the overlafe«)
continuous and are parameterized by a continuous variable V4(«)/y2 and (o|x)=V,(x)/\/2 between the states of
k, and furthermore the transformation is known explicitly two different bases of th¢=0 representation of SL(R)
[16]. As we will discuss in detail in the next section, Mt  generated by the Virasoro generatbgsL . ;. The first basis
=0 the discrete and continuous bases are just different basésthe familiar ondn) labeled by the even or odd eigenvalues
of SL(2R) in the j(j+1)=0 unitary representation, in n=(e,0) of L,. The second basik«) diagonalizes I, ;
which t., can be understood as the matrix elements of the+ L ;)| k)= «|«).
operatort=tanh(@/4)(L,+L_;)) in the discrete basis that By evaluating the generating functions in E§.3) at «
diagonalized_o. The continuous basis is the basis in which =0 and expanding in powers af one can see thaf,(0)
this operator is diagonal. =0, while V,(0) is finite and related tw, as V,(0)

A priori it is hard to know when to expect an anomaly if = %\/ﬁvo_ Thusu, is directly related to the stafec=0).
one works directly aN=c. Therefore the regulator pro- wWe have evaluated the nontrivial infinite sum
vided in MSFT is indispensable to insure that such subtleties
will not spoil a computation. So one must be wary when
using the continuous basis directly t=cc. We emphasize  Sthjs continuous parameter should not be confused with the
that the discrete Moyal basis with a regulator is the safe wayiagonal matrix< of Eq. (3.6). As much as possible we are trying to
to proceed in general, but one can make a transformation teep the notations that were introduced in different papers by inde-
the continuous basis for specific computations to evaluatpendent authors. We hope the reader will discern them in the proper
infinite sums in parts of computations. This is the sense irtontexts.

. Roe= . 4.4
m(e’—0) mo(e’—0?) “-4
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(tF (Tt k~Y2p) = f:dKVe(K)tanl‘(?>

putations
K2
Vl(K): 3 F tan[‘? ﬂ))
TK 4
2k sinh—
1
—k+ =K
Vi(k) = —F——, (4.6)
. TK
3k smh7 vKgl’zF(tt)K;”z _
1 5 1
—k?(k*—8) 1_—1(2+—K
6 24
Vy(k)= —F——=, Vs(x)= :
1 1
4k sinh— K 5k sinh—mk
2 2
TK
Vo(x) tanhg
2 g veT — (4.7
K cosﬁT

tank?

detF(tt)= expf drp(x)In| F
0

<l

(4.19

With this preparation we are ready to compute the desired
generic quantities. Applying the d|agonal|zat|on tqf, we

have just described we can write V.7V, tt=V, 72V, and
tt=V,72V, and express the desired quantities as integrals IN the infiniteN limit we have detF(tt)) =det(F(tt)). The

(F(tt))oo,—f dxV,(«)F| tant?

))V (k) (4.9

tantf

(F(tt_))ee,=J dxVo(k)F ))v (k) (4.9

(tF(tt)eo= deV K)tam‘(TK tant? T))
X V() (4.10
J— © TK
(F(tt)x*lfzu)ozf deo(K)F<tanr?(—)>
0 4
X (4.11

quantity
i K> )

(4.1
which appears in the evaluation of determinants will be de-
rived in the next section in EQq.(5.58. Here (2)
=4d,InT'(2) is the logarithmic derivative of the gamma func-
tion, andA depends on the regulator. It could be chosen as
zero if we compare to a particular regulator in the discrete
basis of MSFT. The same result has been obtained in a very
different type of calculation i125,26. The term that con-
tains the number of moded\Ris the leading term indepen-
dent of k. In physical computations, &goes to infinity this
factor cancels magically among matter and ghost determi-
nants as long ag=26, and the bare coupling is rewritten
in terms of the on-shell tachyon coupligg Hence the non-
leading part in terms of the functiop(z) is the crucial part
that contributes in physical processes.

A more complicate type of quantity that we needed in Eq.
(3.39 takes the form of a double integral

1 K
p(K)= —|n(2NeA)——[¢ 7) +y
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vy VRt koF(tt ke, Y2 = f dx f dx’ (4.16
0 0
|
where hm( TK
- tan T 2 tanI|—4
f drx mTK TK TK
(Ko) et = 2 Vo(K)OVo(k") ° Kk costf— 3+tantf — Kk costf —
0 4 4 4
1 a1 , 27
= 5(klLolx") + 5 (k|Lo| = ). (417 =0.52325=In—. (4.20
16
The form of (x,) ..+ iIN terms of matrix elements dfy in the We now turn to the more specialized cases of relevance

x basis is shown in the next section. We apply this formulafor our computa_tions in this paper. We would like to evaluate
to computey(0) in Eq.(3.39. The integrations in Eq4.16  the scalar o=v«, Y{2/(3+tt)]«x, %, the vectorsh,

[0}

are well behaved foF (tt)=(1+tt) % But the infinite sum = ([2/(3+tt) ]k, Y%), and be=(t[2/(3+tt)]x, Y%)e and
(ko) ki 1S shown to diverge in Eqs(5.36—(5.40. It is  matrix elementsM oy = ((1—t)/(3+ t1))oors Mew=((1
evaluated there more carefully by inserting a regulator in the—tt_)/(3+tt_)) Y ,=((t_t—1)/(1+3ﬁ)) VI
form (e”™ok,) .. - It is finite at finite 7, but whenr is — ee__ oo ) ooy Tee
small it behaves like ¥/times a quickly oscillating factor. = ((tt—=1)/(1+3tt))ee . By applying the above integral
The quick oscillations are not sufficient to overcome the di-formulas we obtained easily the following values which are
vergence of the X/factor. Therefore, this leads to the diver- the only ones we actually needed in this paper toﬁeerform the
gent result for'y(O) in Eqg. (3.39 which we used in the expansions ok(7), 4(7), y(7),a4(7) in powers ofe” " up to

. ’ orderO(e %7
previous section.
These integrals seem difficult, but can be easily per-

formed with an algebraic computer program, such as Maple 22 2 222 192
or Mathematica. For example we obtain 1= —3\/5, b2:§' 3= 35 4= 35
oo 2%267 .23
f diV, (k) — =0.54433 * (27215 '
0 3+tanhzT
5 13 2°\3 27
_2‘/5 Mu=55, M=, 13:__\/; w=In_=,
= 3\/5 27 3 (27) 16
(4.22
(4.18
iy oo 19 o 253 s
) 2 tanh war MaTeyy Mm99
f dxVy(k) p =0.22222
0
3+tanf?T We also show how to compute some determinants by using
Eq. (4.14. We especially make a point to separate the con-
_ 2 tribution associated with the regulatbirwhich will be sent
9 to infinity later. The steps of computation are shown for the

(4.19  following explicit example
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de((tt_)) — @l/(2m) In(2NeX) [ 7 In(tant?(mx/4))dr s of 5(— (14m) i k/2)+ y(~i kI2)])In(tantP(mc/4))dx (4.24

=(2Ne)"12(0.79788 = (2NeA)‘1’2\/%=(7TNeA)‘1’Z. (4.25

As seen, the finite factor that comes from the nonleading In the Appendix we have included many more values for
term involving ¢ is nontrivial. We will show later in Eq. the higher modes of the vectobsand matricesM,M. Al-
(5.62 how both the leading and nonleading terms agree withthough these were not needed for our analytic calculation,
the regulated discrete basis. In a similar way we obtain  they were used to obtain the order ten resultffor). Also

the general formulas we give there are useful to compute to

3+(tt) 1 arbitrary powers o™ " if one needs to refine our work in the
de( 4 ):(ZNeA) 10.98052 (4.26 future, or they could be useful in other applications.
de 1+3(tt) — (2Ne)29(0.91746 4.27 V. MOYAL BASES AS THE j=0 REPRESENTATION
4 ' ' OF SL(2R) FOR Lg,L 4

it In this section we will study certain properties of the
== _ -7 =0 representation of SL(R) in relation to the continuous
de|( ! (3+t;_) ) (2Ne*)77%0.99349 (4.28 and discrete Moyal bases. The connection of SRjjen-
erated byl o,L .., and the continuous basis is known through
1-1t \? the work in[21,16. The relevance of thg=0 representation
det( 1—( _) ) =(2Ne*)~1¥740.90534. (4.29  is emphasized ifi24]. Here we will study thg =0 represen-
1+ 3tt tation with a different technique, mainly by focusing on the
exponentiated group elemeait ™-0. We will extract some of
Note the magical number 26 that popped up as26/2in  the relevant properties of the=0 representation that are
the last ghost determinant. Inserting these determinants in th@eeded in this paper. There are overlaps between our results
expression fom, in Eq. (3.5 we see that thél dependence and those in related papdis6,24—28. We will see that all

drops out atr=0, only ford=26, the computations in the previous sections, and similarly more
3 oAy -137 5 general computations, amount to various matrix elements of
a (0)292(2_7> ((2Ne7) 70.90534) (4.30 functions ofLy,L.4 in the specialj=0 representation of
N 16/ [(2Ne*)~17%0.993401% SL(2R).

Let us first recall why we must focus on tle=0 repre-
27\3 sentation. The Virasoro operatdrg,L . ; are the generators

=92(E) (0.97363. (4.3)  of the SL(2R) transformations on the open string basis

X(7,0). Itis well known that this representatigim terms of
differential operatorsforms the zero Casimir representation
of SL(2R). Thus the oscillator basis labeled by the integers
n=1,2,3... issimply the case of the discrete series of
SL(2R) labeled as|j,my, m=j+1j+2j+3,..., forj

So the result is independent of the cutdffA. This is an
example of the magical role af=26. Note that,, as given
initially in [13,15 has factors of additional determinants that
are actually divergent, but those get absorbed into the def
nition of g and produce the overall finite factgf(27/16)/4
(multiplied by another factor of 4 because of 4 diagrams

In the case of the bare coupling in E&.J), inserting the

We will use the Hermitian combination®;=3(L,
+L_;) andQ,=(i/2)(L;—L_,) that form the SL(R) Lie

results above we get algebra as follows [Q1,Q2]=—iLg, [Lg,Q1]1=1Q,,
[Lo,Q2]=—iQy.
1 312 Thus, the odd or even discrete bases in MSFT correspond
Jo= 59(1_6) ((2N€eb)~Y2(0.7978g) ~(d-6)/4 to the eigenstates of the Virasoro operaltgfn)=n|n), n
=1, with n=o0,e. The continuous basis is given by the
X ((2N)~Y180.98052)%((2N) ~2%(0.91746) 2 eigenstate of the Virasoro operat@f=3(L,+L_,) satisfy-
ing Q4|k)=«/2|k). The change of basis is given by the
—go(2Net)3? functions (0| k)= (1/\2)Vo(x) and (e|«)=(1/V2)Ve(k).

The eigenvalue 0€Q; can have any sign, but in MSFT it is
possible to make transformations to the rarge0 thanks to
the symmetry propertyVy(—«)=Vy(k) and Ve(—«)

= —V,(k) of these functions. We consider these as orthogo-
We see that the bare coupling diverges B3°(. nal matricesV,,V, with matrix elements V,)q.=V,(«)

312
for d=26, with C=§(1—6) (2.2030. (4.32
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I. BARS AND 1. Y. PARK

and (Vo)e,=Ve(k), for k=0, which satisfy orthogonality
relations

(VoVo)o (VeVele,e,= Gese,

102 1°2
(VoVo) e =8O (k= k"), (VeVe) eor =8 (k= k"),
(5.1

where a bar on a matrix means the transpose of the matrix.

Here 5©°®)(x—«') is basically the usual Dirac delta func-
tion, except for some extra care whenx' arebothclose to

0 (see belowy;, while their sum yields the usual delta function
5O(k—k')+ 8@ (k—«k')=28(k—«'). These are equiva-

PHYSICAL REVIEW D 69, 086007 (2004

teo=(eltlo) = [ di(eltlx(xlo) (55
) (K h K .
\/_ (k)tan \/EVe( ) (5.6
= fdeVO(K)tanh%Ve(K), (5.7
0

where we have used the symmetry of the functions in going
from the second line to the third. By the same argument we
can showt. =0 andt,,,=0. So the matrix representation

lent to the orthogonality and completeness relations of th@f the operatort is block-off-diagonal in the even or odd

discrete and continuous bases

(NIn"y=6,n, (k|c')=8(k—«"),

nZl|n><n|:1, J, di|k)(k|=1 (5.2
With the normalization given above the functions
Vo(k),Ve(k) are identical to the functions

V20 ,(k),N2ve(x) in [16,21], including an overall normal-
ization of \2 (consistent with counterpart orthogonal trans-
formations in the discrete basis as explainediit]). They
are given by the following generating functiofis the range
k=0)

V,(k)(tanz)® sinh( «z)
) Jo [ }‘(WK) ,
KSsIinnf —
2
V(k)(tanz)® coslikz)—1

(5.3

Ve

To define the functions for negative values mfthe right

basis.

Now we note the special role of the=0 state and its
relation tov,. The vectorv, is a crucial state in MSFT as
seen in the calculations in this paper. Its special role in rela-
tion to anomalies first emerged [9,10] as a state closely
related to the midpoint of the string. From the generating
functions in Eq.(5.3) it is seen that aic=0 the even func-
tions vanishV,(0)=0, while the odd one¥,(0) are finite,

Ve(0)=0, V,o(0)= %mvo, (5.9

wherev, is given in Eg.(4.3). It is a normalized vector
So=10oUo=1 that is a zero mode of the matrix
T:20=1Tevo=0. Equivalently,V,(0) is the zero mode of
the matrixt.,. This is easily seen from the expression Eq.
(5.4) for the t operator acting on the zero eigenstate in the
kappa basif,|0)=0

teoVo(0)=0 « e ™1]0)=|0). (5.9
Note that we can writey, in terms of thex=0 state as
follows:

1/2

(kg Y%0)o=(2I\m)(0| —|0> (5.10

We can use the above interpretation of the operatord

hand side of these equations should be multiplied by the sigand its zero mode, to give an SL(ZR) operator represen-

function e(«) for consistency with the symmetry properties
of Vo(—k)=Vy(k) andVe(— k)= —Vy(k).

A fundamental quantity in MSFT is the matri, [9]. In
computationsT usually appears in the fority, as given in
Eq. (4.3. This matrix is diagonalized[16] by tg,
=[odxVe(k)7(k)Vo(k) with the eigenvalues 7(k)
=tanh@x/4). To understand this matrix we introduce the
notion of the operatar. Thent,, can be recognized to be just
the matrix elements of the operatoin the discrete basis

mQ, —7Q
2

—e

t=tanh ,
1+e ™

teo={(€lt|0). (5.9

This is proven by introducing identity in the basis and
writing

tation of the computations we performed in the previous sec-
tion. In particular, we see thét, b, of Eqs.(3.8) can now be
written as matrix elements in thg=0 representation of
SL(2R)

2

2 1
by=—=(0| =—— —10),
Jr' 3+t2 Lo

b= (el 3 110
(5.1

Note that (e|[2/(3+1%)](1/Ly)|0)=0 since (e|0)=0.
Hence we can remove the bras and write the states

2
(5.12
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where now theo,e indices may be interpreted as an odd Or:Vero- The large N limits of the matrix elements
even number of powers of the operatoBimilarly, the quan- .

. . . Vo)oks (V become the function¥,(«),V«(«), and the
tities a (), (), »(7) that appear in the 4-tachyon amplitude ((jis(groekte( eei)gegnvaluesk becomer,— r?i))=taefwh)(m</4). In
in Egs. (3.2~(3.4) become expectation values in the=0 the limit N—co, summation over discretk is replaced by

states. For example [odk and the discrete delta functiafy is replaced by the
continuous delta functions®®(x— ') with non-negative
(5.13 x,k'=0, but With_ some extra care whenx' are both close
to zero, as we will see below.
In this section we try to relate the lardgé limit of the

B(7)=bP©e ™ (1—Me ™“Me ) P©p,

1 2

= i<0| e o regulated theory in the discrete basis to the regulated con-
7 Lo 3+t? tinuous kappa basis, and from this extract computational
5 5 1 methods that take advantage correctly of both the discrete
«|1- 1-1 — Lo 1-1 oo and continuous bases. For this purpose we will study several
3412 3412 guantities by _taking advantage of the SIRp,group gener-
ated by the Virasoro operatoks,L,,L_;.
2 1
X3+t2 |__0|0>' (5.149 A. Propagator {«|e™™0|«")

) The quantityD,..(7)=(x|e” ™0’} is a representation
Once we notice these forms we are tempted to use the corngs g group element of SL(R) with Lie generators
mutation rules of the operators of SLEQ,.to simplify and (Lo,L.1=Q,7iQ,), since|«) is the basis that diagonalizes
cgmgute chese quantities. In particular _note thatiye generato; = (L, +L_,), with Q;|x)=(«/2)|«). Its
e “*iloe 1fL0C05w+'QZ§('?”w gives the following inter-  jntegral and derivatives are quantities of interest in various
esting properties of ande™ "1 for o= explicit computations in MSFT

einlLo:_Loeinl, tLOI Lotil, 1 o

(K= [ CarD ()

1,1 1 1 0 °

L_t:t L tL_:L_t , etc. (5.15
° ¢ e (k|Lolk")=[=0.D(D],=0. (518

Using these it appears as if we may perform a number o{

simplifications very efficiently. Alas, there is the problem of

anomalies precisely because of the existence of kthe

state on which vanishes. So its inverse cannot be used in

cavalier fashion. In fact not all of the above formulas are

necessarily valid in general since they depend on which statep _,(7)=(«|e” ™| > |e)(e|+ >, |o)(o|||x') (5.17)

they are applied. When we introduce a complete set of inter- e 0

mediate states between operators, &0 state must ap-

pear, causing problems. One can easily generate inconsistent 1 1

results from the same formula with naive manipulations. of =5 (Ve Vo) o + 5 (Ve Vo) o . (5.18

Examples of inconsistencies can be easily constructed by

taking matrix elements and using naively the formulas abov‘\awhere o K are the diagonal matrices «

on the k=0 state. The type of formal manipulations sug- =diag(2,4?6,. f’_) andx,=diag(13,5. . . ), and the\/o,VZ

gested above need to be justified at every step or otherwisge yeated as matrices with matrix elements that are the
replaced by the correct result. functions ) o,=V,(x), etc

Thus, practical computations in string field theory require FoIIowing;)t(Fﬁe methods i|ﬁ22] Chap. 7.4leading to Eq
a regulator atc=0 because the matritg, has certain asso- 47.65)], we can derive a differential equation for, .. (7) as

m;mwty_ﬁ?omalles t'ha} c;)hme from thz Z‘I? ro mgdtis reVIEWEGs1ows. We use the fact that the eigenvalue of the quadratic
above. This is precisely the zero modeTg, and the asso- gy operator vanishes for the state$ to write
ciativity anomaly issue which are intimately related to mid-

point issues in string field theory as first understoodiliy.
A regulated version of the matrik,, with many nice
mathematical properties was introduced[i0,11,13. The
regulated matrices retain the properties of the opetattoat
are always validsee Eq.(2.15 in [11]]. In the regularized
theory, the continuous functiond/,(«),Ve(x) can be
thought of as the largeN limit of NXN matrices
(Vo) ok» (Vo) ek With discrete values ok which label theN
eigenvalues 7, of the regularized NXN matrix te,

n this section we comput®,,.(7) as a group element of
SL(2R) in the special representatigs-0. Of course, in the
éjiscrete basie™ "0 is diagonal, therefore we expect

(kle"™o((L§—Q5—-Q%))|«")=0. (5.19
The first two terms can be rewritten as follows:
(k|e”™MOLG| k") =33D e (7),

!

2
<K|e‘TL°(—Q§)|K’>=—<K7) Doc(7).  (5.20
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The third term( |~ "-o(— Q3)| k') can also be computed by By taking D, (7) = z(1—2z) 1<+ <"V4E(2) | with
noting the following property, e”0Q,e” "o=Q,coshr
+iQ,sinh7, which can be rewritten as

-2
r
— H . — —T(1 _a—T\—2
1 coshr z (smhz) 4de " "(1—-e" )74, (5.295

: e Tho— —
sthQl sinhr

e hiQ,= e "Q,. (5.2

o o _ this differential equation becomes the hypergeometric differ-
Multiplying Eq. (5.21) with iQ,, using Q:Q;=Q,Q1  gntial equation fofF(2)
—iLg, and using Eq(5.21) again, gives

((a)z c—(1+a+b)z 4 ab

i — = F(2)=0,
| . coshr 9z z(1-2) o9z z(1-2)
_a1LoMn2— —71lg _ — 1l
€ Q3 SinhTQl(e Q2)—i Sinhr(e Q2)Q1 (5.26
— C(.)ShTe*rLoL (5.22  With F(a,b;c;z)~hypergeomja,b],[c],z), and
sinhr 0
1 coshr =1 - b=1 < =2 5.2
= e 02— Q.e”0Q, amitlyy dEiTIg =2 (.27
sint?r sint?r
cosHr ., coshr . We need the solution that satisfies the boundary conditions
———e o0 — 7o
St 1t Snps 0 (5.23  that follow from Eq.(5.18
The matrix elements of this relation are easily evaluated in Diw(7) =, 5Valk)Va(k')e™,

terms ofD,,. (7). Combining the three terms in E¢5.19

we obtain the differential equation satisfied Dy, (7 ,
a Yo (7) D r(7) =, 8(kc— k), (5.28

coshr k’+(k')?—2kk'coshr
e :
sinht 4 sintfr

D,. =0.
) e (7) where V; (k)= VJ«k/sinh(m«/2), as obtained from Eq5.3).
(5.24  Therefore, the desired solution is given by

’ —r —r ikl2+ik'[2
D (7= KK e 1—e
k' \T . TR K 2(1_6_7.)2 1+e 7
sinh——sinh——
2 2
N T (5.29
21 2 il 1(1_e_7)2 . .

By using the linear identitf (a,b;c;z)=(1—2)¢ 2 PF(c—a,c—b;c;z), we see that the expression o, (7) is real. At
7=o0 the boundary condition is satisfied sirf€éa,b;c;0)=1. For smallr~0, and anyx,«’, we use the asymptotic behavior
of the hypergeometric functiof23] to write

i(k—k'")
KK' Il 1+ ei(K—K')ln\/Z—/T
DKK’(T) T . B _ +c.c.|, (53@
0 93 - wk | Tk i K i\ i
sinh—sinh—— | I'| 1+ — F(l——) —(k—«k')
2 2 2 2 2

where c.c. is the complex conjugate. For small { k) ~0 and smallr~0 we can writel (1+i«/2)['(1—i«/2)=(7k/2)
X (sinhak/2) 1, so that the singular behavior BX,,.(7), consistent with the delta function, becomes evident as follows:
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o ]
sinl (k—k")In\/— cog —In
T ke " 2 \1-e7

[D o (7)]7-0= e oL, |0y=—9.D =
W(K_K’) <K| O| > 7 k0 1_8727_ T
1 Inv2/7 ) , 27TKSinh7
=— dud'=«) = S(k—«").
2 —|n\/E' 7—0 (5 3D
(5.3)

We also record here the special values fok’ =0, that ~ Near7~0 one sees thax|Lo|0) and(0|Lo|0) have a sin-
follow from F(a,1;2;z)=[(1—2) %z—(1—2) 3+1]/z(1  gular behavior

—a) atanyr
k [1+e T mc \ M [k (2
sin Eln > cogzIn| —
l1-e 7
(xle”0]0)=D ()= . 632 e 2mr
TK sSin
2micsinh-_- 2
L 1 [1+e" 1

(Ole T°|0>:Doo(7)zz|n pe- (5.33 <0|Lo|0>—’m- (5.38

where the second line follows by setting=0 in the first

line. Let us also computéx|Lo|«") for k'~ « from Eq.(5.36)
The integrals of these quantities give|1/Lo|0) and  or from Eq.(5.31). We obtain the singular behavior

(0[1/L,/0)

1/2

1 . ﬂ_tanh? [<K|LO|K,>]KINK:[_aTDKK/(T)]TNO,K/"’K
<K|L_|0>=fo d7D o(7)= — < | co{(x—x’)ln \/§>
0 l6:<cosf?T _ T (5.39
27T ' ‘
1 T
<0|L—O|0>=§- (5.34

which is consistent with Eq5.38, but now gives

This agrees with an independent calculation in &964).
The derivative near~0 gives information about matrix
elements ol

<K|L0|K,>:[_&TDKK’(T)]T~O (535)

1
<K|L0|K>:[_&TDKK(T)]T"’0%ﬁ_ (54Q

1 KK’ at any. The divergence ofx|Lo|«’) is also discussed in
= [16].

The quickly oscillating factor exp(« — «’)In\/2/7) in Eq.
(5.36) suggests that only the neighborhood«df~ « is rel-
) , evant in a steepest descent approximation when the function
(k=K )) il k) InaT7 (k|Lolx") is integrated with smooth functions

TK K’
sinh—sinh——
2 2

F 1+ i ! !

Jdrfdr'f(x)(x|Lolx")9(k") ~(1/2m7) [dkf(x)g(«)[dg
— +c.c.|. X cos@Iny2/7), where we have used E¢.39, and implied
F( Ik )T a cutoff in the integration irg which depends on the func-

ik

rii+—
2

tionsf,g. This expression is also divergent whewanishes

for well behavedf,g. This last form relates directly to the
(5.39 quantity y(0) in Eq.(3.39 through Eqs(4.16), (4.17 as the
This diverges due to the factorzl/More simply, the quan- regulator = is removed. We used the singular behavior
tity (k|Lo|0) is obtained also by studying the derivative of y(0)=< to determine the midrange slofiee. differentiabil-
Eqg.(5.32 at anyr ity) of the off-shell factor in the 4-tachyon scattering.
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1. Computation of(V e~ %™V ) v and (Ve %07V, s

To compute Vee *e™V,) . and (Voe %o'V), ./, we
first recall their sum as in Eq5.18, and then extract the

individual terms from the symmetry under reflections with

respect tox or «':

(VoeiKoTVO)KK’ = DKK’(T) + D(—K)K’(T)

:DKK’(T)+DK(—K’)(T)! (541)
(vee_KeTVe)KK’ = DKK’(T) - D(*K)K’(T)
:DKK,(T)_DK(*K’)(T)' (542

where we insert our resul.29 for D, (7).
In particular, if we takex’'=0 we get ¥/, “c"V¢) 0
=0, while (Ve V) .0=2D ,o(7), Which implies

12—« 2 = —K 4 —Lo7
VoKo € OTVO(K):\/_;(Voe OTVO)KOZ\/_;<O|e o7l )
: D «o(7) (5.43
=—D,o(7 .
\/; 0
K 1+e 7
sin —In
2 2 \1-e 7
=— . (5.49
m K TK
—sinh—
2 2

Taking alsok=0 gives

- — KT —
VoKo€ "0Ug=

4 = —K 8 —LoT
;(Voe OTVO)OO:;<O|e 0|0>

8
= ;Doo( 7) (5.45
4 | 1+e 7 (5.46
=—1n . :
a2 1-e 7

We are now ready to tackle the quantityx, Y2V,(«)
= (2IN7) 2 4=0Vo(0) (10)V (k) which is needed in explicit
computations in MSFT, as in E¢4.7) and the equations that
follow it. Since V,(0)=0, only the oddV,(0) contribute
when the identity &= ,|n)(n| is inserted in «|(1/Ly)1|0)

TK 1/2
s tanhT

1
:<K|L—O|0>=

N[ -

v 1
2| Vog Vo >
«0 16k cosﬁT

(5.47

where we used the result in EG.34). From this we obtain
immediately

PHYSICAL REVIEW D 69, 086007 (2004

1/2

t TK

TNt v anh—
Voo Vel = 2 Yoo Yo) T
4

(5.48

This result is used to relate regulated discrete basis compu-
tations of the type oxg “A(f(tt)) o0 ko " v, i the largeN

limit to kappa basis computations as shown in the previous
section.

2. Computation ofp(rc) ={r| )
We have argued in Ed5.3)) that nearr=0 and«'~ «
we obtain D, (0)=(x|«")=8(k—«"). The quantity
p(k)={(k|k) appears in the evaluation of determinants as in

. «© TK
de(f(tt))zexp{ fo drp(k)Inf tanr?T”. (5.49

Since we expect a singular behavip(x) ~ 6(0), wewould

like to perform such computations with a finite number of
modes A and sendN to infinity at the end of the computa-
tion. Thus, on the left side we have a finite determinant that
depends o\, which in principle can be computed in the
regulated basis, at least numerically. To perform such careful
computations analytically by taking advantage of kheasis,

we definep(x)=(«x|«) carefully atx’ =« for small but fi-
nite 7, and compare to a similar calculation with the cutoff in
terms of the number of modes\2 Thus, forx’' ==k the
casesD ., (7),D (- (7), as7—0, are used to compute the
quantity p(«,7)=(«|«) as follows. From Eq.5.30 and
from the asymptotic behavior of the hypergeometric function
at large (~2)

F(a,a C'z)eM(ln(—ZHZw(l)— ¥ (a)
e I'(@)['(c—a)
—y(c—a)), (5.50

we obtain

1 [2)? i
D () = E(ln(;) +2¢(1)—¢/(1— '?K)

1 [(1+ik)
DK(*K)(T):O: iy ik gix In (2/7)
2% sinh— | I'?| 1+ —
> 2
LA | o,
i K
rz(l——>
2
(5.52

086007-18



IMPROVED OFF-SHELL SCATTERING AMPLITUDES IN . ..

Note the tricky behavior near=0: as long as< is not close
to zero, the quantity lim oD . )(7) oscillates rapidly and
becomes negligible as a distribution compared
lim,_oD,.(7). However, neaik=0 we get

D ! I 2)?
(—K)K(T)TwaNO—E n\ -~
2
mln— In®-
T T
+ K2\ - — ——+0.04783

24 127

+0(k%). (5.53

Hence, if k#0 not small, andr is small, we neglect
D(—K)K(T) and get voeiToVO)KKfv(Veeireve)m(fvDKK(T)
~p(k,7) with

B 1 | 2\2 201 1 ik 1 ik
p(em)=7—|In| =] +2¢ () =y|1- = |-y|1+ 5 ]].
(5.59
But, close tok=0, because of Eq5.53), the behavior is

\/ A— 70 2 2 2

1,702 (Vo ™Vo)oo=2[p(0,7) ];~0=7—In[ —|
(Ve ™V¢)0=0. (5.55

The factor of 2 computed here is important to establish con-
sistency between the regulators in the discrete and continu-

ous bases.

We concentrate op(«) for the generalk. We already
understand its dependence an explicitly, and therefore
write it in the form

(5.5

i K

2

1 ik
p(K)=p(0)+ 7= 2w<1)—w(1—7)—w(1+

We knowp(0) is divergent, and is given by

1 T
p(0)= E(VOVO)OO:<O|O>: g(UoKoUo)regulated

1
5 (IN(2N)+A") (5.57

where we used a finite number of modds as the regulator
and the constanA’ depends on further details of the regu-
lator. Therefore the full regulatedl( «) is given by
145
2

(5.58

_1 1 i K
p(k)= E(In(ZN)ﬂLA)— a ¢(1— ?) +y
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we keep the frequencies as simple as possible, namgly
=n. In principle it is a dangerous business to compare di-

toverging quantities when using different regulators. However,

as we have already mentioned, since hdependence will
drop out in certain computations oh=26 thenA will also
drop out, and hence its value may not be important.

B. Exact analytic tests

As tests of the formulas we derived above in the kappa
basis we compare to exact computations in iagulated®
discrete basis, in the IlimitN—o«. The first case is
vk, Y1k, Y% where we compare Eq4.13 versus using
directly thev, in (4.3) or the regulated one in footnote 6. The
two ways of computing give the same answer:

12 —1/2
(VKo "Lk " Vdiscrete

(5.59

TK
tanh—
® 4

dx
K(

=0.85256.

12 —-1/2 —
(vKg 1k U)kappa_f x1

0 TK

2
cosh—)
4
(5.60

The second case is detf=exd [§ dxp(k)
XIn(f [tantf(7x/4)])] where we usep(x) in Eq. (4.24,
while the exact computation in thegulateddiscrete basis
was given in[10,11] for any N as

5To avoid anomalies we use the standard regularization of MSFT
[10,11,13. If we make the choicex,=n, at finite N the
regulated We,v,,Teo.Roe take the form To,=TC)(FN/£)),
Roe=REI(FN/EN),  we=w{MY,  vo=0{fN  where T,
R w) ™) are identical to the expressions in
infinite limit as in Eqg. (4.3 but truncated asNXN
matrices. The factors fﬁ for n=o0,e are given by
N = VT (N+ = 2n)T(N+ 2+ 2n)/T(N+1— 3n)[(N+1+ 1n)
X[T'(N+1)/T'(N+1/2)]. This was computed by simply inserting
kp=n in the general regulated formulas for arbitraty given in
[10,11,13. Note that the deformation factcbh‘ stays pretty close to
1 (in the range 1.00—-1.0F7%hen 1=n=<N, even for finiteN, but
grows asn approaches 8. For n=2N, and largeN, we getfyN
= (wN/2)* The strong deformation at the edges of the matrix can
be avoided by using a different functioq, as a function ofn.

the

WhereA iS a constant. Note that th|S constant can be abHowever’ in our experience the simp|e Chojq&n seems to work

sorbed into a redefinition ofN by writing In(2N)+A
=In(2Ne*). We will further determine\ =0 by comparing to

well in numerical computations even at small valuesN\ofin the
present example we see that it also works exactly at infidiia

a particular regulator in the discrete basis of MSFT in whichcomparison to the continuous basis.
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_ — i detk, advise care when the quantity blows up or vanishes as a
dettt) giscrete™ (L +WW) egiiated™ detr. power N (such as determinantsFinite N estimates are not
e . "
predictably good for such quantities and furthermore they
_ 1IX3X5---(2N-1) (561 Seem to be cutoff dependefguch asA). When divergent

kn=n 2X4X6---(2N) quantities occur in combinations in whidd cancels, the
various computational approaches seem to become reliable
I'(2N+1) again, and furthermore in our experience, the result seems to

= m be well estimated again at relatively small values\of

:(WN)71/2

1 —-1/4
14 _) (5.62 VI. NONPERTURBATIVE LANDSCAPE

The perturbative computations above have implications

where the last expression is a good approximation for an)f/or nonperturbative computations in MSFT such as the ones
N=1 (including smallN). Note both the leadin behavior N [14]- There a proposal was made for computing the true
as well as the overall factorm/2) *3(2N)"Y2 both of vacuum of Witten’s string field theory at the classical level.
which are significant for the comparison of regulators in dif- This mvoIveQ sglvmg the equation of motion that follows
ferent bases. We compare this to the computation offom the action in Eq(1.1)

det(tt)kappa in the kappa basis using(«) as given in Eq.
(4.24). We see that the leading term 1#@n(2Ne") in p(«)

reproduces the corredi dependence_, while the second for fields that are independent of the midpaihénce the By
kappa dependent term produces precisely a factojafr,  pane yacuum This could be done by treating the energy of
leading to the total result det)appa=(7Ne*) "% Com-  the midpoint(calledy) as a perturbation and writing the rest
paring to the regulated discrete basis result in BG2 we  of L, as a special star product for@yx A+ Ax Lo. All so-
learn that we need =0 to get agreement between the two |ytions of Eq.(6.1), including the vacuum, were obtained
regulated results. Then, we seem to have an agreement hggactly in the absence of. Then it was possible to setup a
tween the computational procedures in the regulated discre}%rturbation series in the midpoint energyand compute

basis and the regulated kappa basis. However, we must waghalytically each term order by order. The lowest term was
the reader thaA =0 is still tentative because it is possible t0 gptained as an exact solutiom©(x.,p.), Where

change the regulator in the discrete basis, and we have nﬁ\t(o)(xe,pe) turned out to be related, up to an energy depen-
understood yet the principle that could fix it in either the gent factorA(®= — (2/a’g) Lox P, to the twisted butterfly
discrete or the continuous basis. It is however significant th%rojector P=Ay(Xe,ps) Written in the MSFT basié. The

we have seen examples whét@s well asA cancel together oyt perturbatiomA™® was also computed explicitly, while
in finite quantities at the critical dimensiah=26. So, per- higher ordersA(™ could be computed in a straightforward
haps the value oA is not crucial as long as one is consistentWay with similar methods. Finally the energy of the vacuum

in using the same regulator everywhere. and the tension of the 9 brane were given analytically up
The third case is the exact computatiorvofin the regu-  to second order iry
lated discrete basis for arly [10,11]]

(Lo—1)A+a'goA*xA=0, 6.1

1
_ ww detx, Tos= V—S(A(O)+8A(1)+82A(2)+ ) (6.2
(vV)discrete™ — :1_d (5.63 25
14+ ww etke
regulated
- (4 360 +0(s?) 6.3
I'(2N+1 = SV te— £9), .
= 1—¥ — 1. (5.69 a'3g3 |3 2
= 22NIA(N+1) N
. . . with
At N== in the kappa basis we usé,(0)=3+mov, and
obtain agreement with the discrete basis as follows
1 d-2 2, ke
— 8 11 8 1 - e>0
= liml2v. =2 =—(0|—1]0)= =-—— - , 60=(d-2)———.
(V0)kappd wi@o(zvoovo)w 7T<0|L0|0> ! "2 4 (eZo e oZo Ko) ( ) 1+ww
(5.65 (6.4)
where we used Ed5.34). When this result was obtained the divergent nature of

In general we have noticed no problem in agreeing beand § were confusing. However the divergence of the bare
tween the two bases for finite quantities where the effects of
N disappear. For such quantities it turns out that even a few————
modes in the discrete basidl{-5-10) gives very reliable  ’A proposal based on the butterfly that has parallels to our pro-
numerical estimates of the exadt= values. However we gram appeared recentf29].
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coupling constang, was not noticed. We have seen in this same to the quadratic term, we rewrite the action with
paper in Egs(2.3), (4.32 that go=gc(2Ne*)®2 A quick an overall g;2 as S=-—gg (T (1/2a’)A’ (Lo—1)A’
look at v, show that they are both linearly divergent with + (1/3)Tr(A’)3]). Now it has the form of the computed non-
(2N) as can be seen in a naive level truncation up tNX2 perturbative energy in E46.3) and, from the discussion we
by inserting x,=0, k.=€ and using the unregulatedle  gave above, we see that the numerator must behavé\fike
=—\2(—1)®2 Then the result folf 5 is perfectly finite at  to compensate for the behavior g§=cg(2Ne*)®2 in the
each order of the midpoint energy since the factors of denominator. It is clear that eadi accounts for a factor of
(2N)® cancel between numerator and denominator in EQN in the numerator and also thiag contributes a factor ol
(6.3). Thus, this nonperturbative computation should procee¢h the quadratic term. Now, if we also include momentum
by using the same regulator consistently, keeping only th?jependence(or X dependendein L, the only way that

leading terms to order (2)° in the numerator and dropping momentum will not be negligible is by getting the help from
everything nonleading. It reminds one of the lafgenatrix

computations. Progress on determining the vacuum state a . — _ )
energy using this approach will be reported in a future paper- * - - 1 z(1+ww)Sg. This explains that this factor has pre-
The observation above resolves another puzzle as follow§isely the correct behavior, and how it contributes in nonper-

We recall the expression far, that appears in the action of turbative phenomena.

ﬁ%e factor (:ww)~2N in the form that it appears ih,

MSFT in Eq.(1.1). We display the version ifl4] including Of course, there is a way of eliminating the confusing
ghostsLong‘attef+ LghOSt, factor by renormalizingA’=(1+ww)A and definingL,
=(1+ww) 1L, and further absorbing the extra factors in a
 matter definitiongy= (1+Ww)3’zgo._Then in the newi, every sum
is divided by the factor (*ww)~2N which is reminiscent
2 , 92 1 ) 92 . 1 22 4102 of the finite quantities Ti¢1)/N in largeN matrix theories. If
= @ axﬁ 164’ Ke ﬁpi da’ KeXeT 4 Pe the theory is redefined in this manner in termsAfl(,) then

every term of the action in every computation should be
finite at every step, just like the leading terms in lafge

1 \2 ! 9 : |
+—(1+ww) B3+ e Bo>, We— matrix theories.
2 2 e>0 X
’ 2N
- da > wep )2—9 > ok (6.5) VIl. CONCLUSION
— erMe ns .
e 20 In this paper we have demonstrated that MSFT not only

agreed in great detail with other computational approaches to
Witten'’s string field theory, but it also led to new results that
were not obtained before. We have developed several practi-
ghost_; g 9 1,9 9 2,b,c b,.c cal and theoretical tools on the way to the new results, and
L — —+ — ke —— + kXX T 4PePe N . . .
&0\ xR oxS 4 3p2 aps we have indicated how certain nonperturbative computations
can be conducted by using the information provided in the
d ) 2N present paper.
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+ww),8(2) involving the center of mass momentysg? This
divergence caused concern for some colleagues. Actually we
can explain that this is the correct behavior of this term be-
cause otherwise there will be no center of mass momentum Anticipating future applications we compute also the fol-
dependence in the large limit in nonperturbative physics. lowing quantities by performing the integrals, which can be
Let us start with the cubic tergyTr(A®) and replacéA with  done easily by using an algebraic program. We give the re-
A=g, A’ so that it takes the formg, “Tr(A’)%. Doing the  sults for five significant figures

APPENDIX
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22.222 54.433
—11.058 —12.804
2 7.1982 2 6.7119
-1/2 — 2 -1/2 —2
o = = X — = = X
(t3+ttK° v>e be=10 —52719|" AV <3+tt ° U)o bo=10 —ams3| AP
4.1275 3.2432
|
40.528  23.399 —14.097 9.8718 —7.4881
23399 8556  10.464 —8.1365 6.6112
_ —-14.097 10.464  91.684  6.8506 —5.795
(tt) oo =102X% (A3)

9.8718 —8.1365 6.8506 94.133 5.1061 - --
—7.4881 6.6112 —-5.795 5.1061 95.46

Note the increasing diagonal, although the off-diagonals are much smaller. The increase on the dﬁp,qrmji(:kly slows
down aso increases, and stays around £6Qt),,<167 in the range 1600<175 and then makes a sharp drop reaching

(ﬁ)00=2.261 4 ato=185, and continues to drop slowly asncreases.
The following are exact computations, like the ones above, obtained directly by using the integrals, not by inserting a

truncated form oft or tt. If compared to what follows from the truncatedor tt one finds results that disagree although they
are in a similar range of values. Therefore, the contributions from the higher modes are not always negligible.

5.3498 —3.6787 2.7533 —2.1837 1.8013
—3.6787 2.8931 —2.3337 19422 -1.6571

1-—tt 27533 —2.3337 19739 —1.6978 1.4843
——| =Mge=10"2X (A4)
3+t —2.1837 19422 -—-1.6978 14961 —1.3323
ee/
1.8013 —1.6571 1.4843 -—-1.3323 1.2039
18.519 —7.6030 4.7259 —3.3933 2.6287
—7.6030 4.5369 —3.2882 25723 —2.106
1—tt 47259 —3.2882 25820 —2.1243 1.8012
— =Myor = 107 2x (A5)
3+t —3.3933 25723 —2.1243 1.8088 —1.5725
oo’
2.6287 —2.106 1.8012 —-1.5725 1.3933
7.8189 —5.7480 4.5367 —3.7613 3.2233
—5.7480 4.6577 —3.8725 3.3154 —2.9035
tt—1 ~ 45367 —3.8725 3.3266 —2.9122 2.5918
—| =Mge=102X (AB)
1+3tt) —3.7613 3.3154 —29122 2.5913 -—2.3348

3.2233 —2.9035 25918 —2.3348 2.1241
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40741  19.007 -12.905 9.9171 —8.1191

19.007  10.664  7.8008 —6.2376  5.2334

tt—1 . | —12905 3.2882 59573  4.8957 —4.1851
(1+3ﬁ) Moo =10 99171 —62376 48957 41014  3.5561 -
" ~81191 52334 —4.1851 35561  3.1171 ---

(A7)

Other matrix elements of interest are obtained from the onegtt)  , (tt).. or the determinants evaluated in the text can-

above, such as 4/(Btt)=1+M, and 2(L+tt)/(3+tt)
=1—-M, etc.

not be obtained by using just the Neumann matrices. Thus,
from our earlier work we extract the following results given

We can also evaluate some of the quantities by usingn terms of the vector#\.,A,,B.,B, whose numerical val-
other methods and compare to the results above. In particues are given by the following generating functions:

lar, by exact summation over the infinite modes we can ex-

press the infinite matrices*.t_oee, and (t_t)OO, in terms of the
generalized hypergeometric function as follows:

_ 32(1)°° oo’

(tt) oo = 5 5 5
m(0°—4)((0")°—4)

o] o’ o’ o]
X hypergeom| 2,1+ —,1— —,1+ —,1— —|,
yperg 5 5 5
o] o] o’ o’
2+ —-2——-2——,2+—|,1]. (A8)
2 2 2

The values of the hypergeometric function exactly agree with
the results of the integrals given above.

Also we recognize the guantities
®,05,06, Moo \Mee ;Moo ,Mee from our earlier work on
the computation of the Neumann matrices by using the
Moyal product[11,15 and comparing to Neumann coeffi-
cients which were obtained from conformal field thepry.

1/3

1+z

T =1+ AZS+iY, AZ°,
1+iz\?3

- =1+, Bez®+i, By’

b=

_Z_Kfl/Zv :\/gﬁ
3+ttt . 3o’

b.= 2_ —1/2, :\/gi
> \1+3tt ° . V3o
2 A
bo=|t——=x_ Y% - 2—e,
C ol 3+t ° . \/_@

Therefore, in some sense we already knew the result for Bo=| t 2 12, :_EE
these quantities. However, what we knew is only a special © o\ 143t ° 3 Je
case of the more general formulas given in E¢s8)—(4.13), ¢
and serves to confirm the general method. For exampland
|
0—2 o—1
2 2 ’
- 3 1-A2-22> A%+22> AL, for o=0,
1—tt o’=1 e"=2
oo T\ o = —  _— - _—
3+tt) 1 AB+BA),es (AB—BA)yy
00 _W ( %0 +( oo , for o#0’,
3 o+o’ o—o’
e—2 e—1
2 2 ’
3 1+A2+2 > AL -2 Al |, for e=e,
]_—t?) e"=2 o’=1
ee |\ 2 1 T — _— - =
3+tt) 1 AB+BA)eey (AB—BA)c
< | 1eal! @ | for ere,
3 et+e’ e—e’
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(A9)

In terms of these we have the desired quantities as obtained
from [11,15 with a little algebra

(A10)

(A11)

(A12)

(A13)
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1 Jeo[ (AB—BA)., (AB+BA).,
o= |to——= =-— (A14)
3+tt)  4V3 e+o e-o
where a bar on a vector, such As means its transpose. Similarly we have
r 0—2 o—1
_ ——|1-A2-23 A%+2> AZ-2AB,|, foro=o’,
- 1—tt o"= e'=
Moo= w1 (AB+BA),, (AB—BA) (AL
1+3tt) + : - '
0 ——\Jo0’ - 2|, foro#o’,
. 3 0+o0’ 0o—o’
r e—2 e—1
_ ——|1+AZ+2> A%-2D A% -2AB.|, for e=¢e,
~ 1-tt e"=2 o"=1
Moo = —| = _ _ (A16)
1+3tt) 1 (AB+BA)ee (AB—BA)qe
© + —e€ - , for e#e’,
[ 3 ete’ e—e’
- ( 1 Veo[(AB-BA)e; (AB+BA),
Yoo= | t —| = - . (A7)
o\ 143t ., M3l eto e-0
The generating functions give the following values f&y,A,,B,B, which are useful in the present paper:
2 2X19 2X409 2X11x283 2X 220721
> A= — —22+ AL 2+ AR 704 .. (A18)
32 35 38 310 314
2 2x11 2X67 2X1409 = 2X94993
> A= —z— yARS A z'+ 22+ (A19)
3 34 36 39 313
2% 2711 2%523 = 2°29x37 = 2°323381
> Bezt=— —22+ Al 5+ 28— z80+. .. (A20)
32 35 38 310 314
22 2217 27127 2%11x277 _ 2223x9839
> Byz’=—z— 2+ Al '+ 4. (A21)
3 34 36 39 313

By applying these formulas we verified that the expressions in terms of the végtdBg given in Eqs.(A10)—(A17) agree

with the results produced by the integrals in E@s8)—(4.13 a

s listed in Eqs(A1l)—(A7).
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