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Superstrings with intrinsic torsion
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We analyze the necessary and sufficient conditions for the preservation of supersymmetry for bosonic
geometries of the formR1,92d3Md , in the common Neveu-Schwarz–Neveu-Schwarz~NS-NS! sector of type
II string theory and also type I or heterotic string theory. The results are phrased in terms of the intrinsic torsion
of G structures and provide a comprehensive classification of static supersymmetric backgrounds in these
theories. Generalized calibrations naturally appear since the geometries can always arise as solutions describ-
ing NS or type I or heterotic fivebranes wrapping calibrated cycles. Some new solutions are presented. In
particular we findd56 examples with a fibered structure which preserveN51,2,3 supersymmetry in type II
and include compact type I or heterotic geometries.
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I. INTRODUCTION

Supersymmetric backgrounds of string or M theory w
nonvanishing fluxes are currently an active area of study
at least two reasons. First, they provide a framework
searching for new models with attractive phenomenolo
and secondly, they appear in generalizations of the anti
Sitter ~AdS! conformal field theory~CFT! correspondence
For both applications a detailed mathematical understan
of the kinds of geometry that can arise is important for f
ther elucidating physical results. Such an understanding
also lead to new methods for constructing explicit examp

Here we will analyze supersymmetric geometries of
common Neveu-Schwarz–Neveu-Schwarz~NS-NS! sector
of type IIA and IIB supergravity. That is, we consider no
vanishing dilatonF and three-formH but with all Ramond-
Ramond~RR! fields and fermions set to zero. The close
related type I and heterotic geometries which allow in ad
tion non-trivial gauge fields will also be considered. Let
introduce the basic conditions. A type II geometry will pr
serve supersymmetry if and only if there is at least onee1 or
e2 satisfying

¹M
6e6[S ¹M6

1

8
HMNPGNPD e650,

S GM]MF6
1

12
HMNPGMNPD e650, ~1.1!

where for type IIB~IIA ! e6 are two Majorana-Weyl spinor
of Spin(1,9) of the same~opposite! chirality and ¹ is the
Levi-Cività connection. Geometrically¹6 are connections
with totally anti-symmetric torsion given by6 1

2 H. Locally
the three-form is given byH5dB and hence satisfies th
Bianchi identity

dH50. ~1.2!

*Email address: j.p.gauntlett@qmul.ac.uk
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For heterotic or type I string theory, the bosonic field conte
also includes a gauge fieldA, with field strengthF, in the
adjoint of E83E8 or SO(32)/Z2. We choose convention
where a geometry preserves supersymmetry if there i
least one spinore1 satisfying Eq.~1.1! and, in addition, the
gaugino variation vanishes:

GMNFMNe150. ~1.3!

The Bianchi identity reads

dH52a8~Tr F`F2tr R`R! ~1.4!

where the second term on the right hand side is the lead
string correction to the supergravity expression. The eq
tions of motion for these conventions can be found in A
pendix A.

The geometries we consider here will be of the fo
R1,92d3Md , and hence withH,F non-vanishing only on
Md . Whend59 the analysis covers the most general sta
geometries. Our aim is to determine the necessary and s
cient conditions on the geometry,H and F in order that it
admits a certain number of Killing spinorse6 and also
solves the equations of motion.

As is well known, for the special case whenH5F50,
the conditions for preservation of supersymmetry are sim
that Md admits at least one covariantly constant spinor a
hence has special holonomy. Here, and in the rest of
paper, when we are discussing special holonomy we
assume thatMd is simply connected, otherwise we consid
the universal covering space. With this understood, the o
non-trivial possibilities for the special holonomy group
Md are given in Fig. 1. These manifolds are all Ricci flat a
hence they automatically also solve the supergravity eq
tions of motion.1 Note that Fig. 1 presents only the minim
‘‘canonical’’ dimensiond of the manifold in order for it to

1Note that there are also higher order corrections to the equat
of motion that give rise to tadpoles for type IIA ind58 and IIB in
d56 ~via F theory! @1#. The tadpoles can often be cancelled by t
addition of spacetime filling strings or D3-branes, respective
Here we shall not explicitly refer to these corrections further.
©2004 The American Physical Society02-1
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have the corresponding special holonomy. It is also poss
to have manifolds of higher dimension with the same spe
holonomy group: whenH5F50, the resulting geometrie
are simply direct products of special holonomy manifolds
the canonical dimensions given in Fig. 1 with one or mo
flat directions.

The analysis of a set of necessary and sufficient co
tions for the preservation of supersymmetry in certain ca
whereH andF are non-zero was initiated some time ago
@2# ~see also@3,4#!. In general, from the first condition in Eq
~1.1!, it is necessary that there is at least one spinor whic
covariantly constant with respect to one of the connecti
¹6 with totally anti-symmetric torsion,¹1 say. This is
equivalent to requiring that¹1 has holonomy given by one
of the groups in Fig. 1~but not necessarily in the canonic
dimension, as we shall see!. As we discuss in more deta
below this implies the existence of various invariant form
on Md satisfying certain differential constraints. The seco
equation in~1.1! then imposes additional conditions on th
forms. Finally, one shows that the existence of such a se
forms with constraints is in fact sufficient for the existence
one or more solutions to the supersymmetry conditions~1.1!.

It is also important to know what extra conditions a
required in order that the geometry solves the equation
motion. By analyzing the integrability conditions of E
~1.1!, it was proved in@5# ~see also@6#! for the entire class of
geometries under consideration that it is only necessar
impose the Bianchi identity~1.2!. Note that it was actually
shown that one needs to impose the Bianchi identity foH
and theH equation of motion. However, the expression forH
implied by supersymmetry, to be discussed below and gi
in Eq. ~1.5!, implies that theH equation of motion is auto
matically satisfied so only the Bianchi identity is required

Recently it has been appreciated that the necessary
sufficient conditions derived in@2#, which just analyzed the
SU(n) cases ind52n, can also be phrased in terms ofG
structures, and this has allowed a number of generalizat
@7–10,5#. Similar ideas have been used to analyze other
pergravity solutions in@11–15#. The invariant forms onMd
define theG structure, while the differential conditions co
respond to restricting the class of the intrinsic torsion of
G structure. We will briefly review some aspects ofG struc-
tures later, but we refer to, e.g.,@16# for further details. The

FIG. 1. Special holonomies of manifolds ind dimensions with
covariantly constant spinors with respect to either the Levi-Civ`
connection or a connection with totally anti-symmetric torsionH.
Only the minimal ‘‘canonical’’ dimensiond is presented. The ar
rows represent the different ways the groups can be embedde
each other.
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necessary and sufficient conditions for theG2 in d57 @7–9#
and Spin~7! in d58 @10# cases have also been analyz
from this point of view. Thus, for the cases when only¹1,
say, has special holonomyG, we now have a fairly complete
set of results, assuming thatMd has the canonical dimensio
for G as given in Fig. 1. We shall review all known cas
including the results of@2#. Note that theSU(3) case was
also recently reviewed in detail from the new perspective
intrinsic torsion in@17#. One new result of this paper will be
to analyze the remaining two cases ind58 when¹1 has
holonomySp(2) or SU(2)3SU(2).

One can also ask what happens whenMd does not have
the canonical dimension forG. For example, we might con
sider geometries of the formR1,23M7, with M7 admitting
two Killing spinors leading toM7 having anSU(3) structure
corresponding to¹1 having SU(3) holonomy. In the case
that H5F50, as already noted, this would necessarily i
ply that M7 is a direct product of a flat direction with
Calabi-Yau three-fold. WhenH,FÞ0, however, we will
show that the geometries can be more general than sim
the direct product of a flat direction with a six-manifoldM6
with SU(3) structure of the type derived in@2#. In particular,
the flat direction can be non-trivially fibered overM6 with
the fibration determined by an AbelianSU(3) instanton~i.e.
a holomorphic gauge field satisfying the Donaldso
Uhlenbeck-Yau equation!.

More generally, we will determine the most general sta
supersymmetric geometries of the formR13M9 preserving
any number of Killing spinorse1. If there is one Killing
spinor the geometry will have aSpin~7! structure@and ¹1

will have Spin~7! holonomy# but now in d59. Additional
Killing spinors lead to additionalSpin~7! structures or
equivalently aG structure whereG is the maximal common
subgroup of them embedded inSO(9). TheG structures that
arise are still given by the groups as in Fig. 1 but now ind
59. We will show that the most general geometries con
of a number of flat directions non-trivially fibered over man
folds Md that possessG structures in the canonical dimen
sion. The fibration is determined by Abelian generalizedG
instantons onMd .

Another purpose of this paper is to present the new
the known results in a uniform way. In particular, as emph
sized in@7#, the expression for the three-form can always
expressed in terms of theG structure in a way related to
‘‘generalized calibrations’’@18,19#. Specifically we always
have an expression of the form

* H5e2Fd~e22FJ! ~1.5!

whereJ is an invariant form which specifies, at least pa
tially, the G structure. Generalized calibrations extend t
original definition of a calibration form to cases where t
background has non-vanishing fluxes. In particular a gen
alized calibration form, hereJ, is no longer closed and its
exterior derivative is related to the flux, hereH ~and the
dilaton F) as in Eq.~1.5!. The physical significance of gen
eralized calibrated cycles is that they minimize the ene
functional of a brane wrapping the cycle in the presence
the fluxes.

a

in
2-2
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TABLE I. G structures for supersymmetric geometries when¹1 has special holonomy in canonica
dimension.

dim(M ) N Hol(¹1) Hol(¹2) G structure Calibrated cycle

4 ~1,0! SU(2) Spin(4) SU(2) Point inCY2

6 1 SU(3) Spin(6) SU(3) Kähler-2 in CY3

7 1 G2 Spin(7) G2 Associative inG2

8 ~4,0! SU(2)2 Spin(8) SU(2)2 CY2 and/orCY28 in CY23CY28

8 ~3,0! Sp(2) Spin(8) Sp(2) Quaternionic inHK2

8 ~2,0! SU(4) Spin(8) SU(4) Kähler-4 in CY4

8 ~1,0! Spin(7) Spin(8) Spin(7) Cayley inSpin(7)
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That Eq.~1.5! holds might have been anticipated for th
following reasons. First one notes that the types of geo
etries under discussion arise as solutions describing NS
branes wrapping supersymmetric cycles in manifolds of s
cial holonomy including the full back reaction of the bra
on the geometry. To see this first recall that the geometry
an unwrapped NS fivebrane is a product ofR1,5 along the
world-volume of the fivebrane with a transverse fou
dimensional space with non-vanishingH andF. In addition,
we know that aprobe fivebrane with world-volumeR1,52p

3Sp will be supersymmetric ifSp is a calibratedp cycle in
some special holonomy background. When we go bey
the probe approximation and consider the back reaction
the fivebrane on the geometry, we thus expect a geometr
the formR1,52p3M p14 with non-vanishingH andF. This
is precisely the type of geometry we are considering. N
on physical grounds, we know that we can always ad
second probe brane without breaking supersymmetry
vided it is wrapping a cycle calibrated by the same calib
tion form J as the original probe brane. This implies that
we switch on the back reaction,J should still be a calibrat-
ing form, though now, sinceH and F are non-zero, it is a
generalized calibration. In other words, if the original pro
brane wraps a cycle calibrated by a calibration formJ, the
final geometryM p14 should admit the corresponding gene
alized calibration form, that isJ satisfying Eq.~1.5!.

In Table I we have listed theG structures for supersym
metric geometries, preservinge1 supersymmetries only
when ¹1 has special holonomyG in canonical dimension
We have also listed the corresponding type of calibra
cycle that a NS fivebrane wraps in order to give the cor
sponding supersymmetric geometry. The number of minim
Spin(d) spinors preserved in each case is also includ
Note that for thed54 andd58 cases we have listed the si
and two-dimensional chirality of the preserved supersymm
try. Also, CYn corresponds to a Calabi-Yaun-fold andHK2
to a hyper-Ka¨hler manifold ind58.

It is interesting to note that the more general geometrie
d59 mentioned above, with a number of flat directions
bered overMd , have a fascinating interpretation in this r
gard. In particular, the flat directions correspond to directio
along the world-volume of the fivebrane wrapping a flat
rection, and so it is surprising that supersymmetry does
require the fibration to be trivial. Note that this interpretati
is mirrored in the refined version of Eq.~1.5! for the flux that
one obtains ind59:
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* H5e2Fd~e22FJ`K1`•••`K92d! ~1.6!

whereJ, Ki ~partly! determine theG structure, withKi one-
forms corresponding to the flat directions of the fivebrane

The fact that the geometries all satisfy calibration con
tions of the form ~1.5! connects with a simple vanishin
theorem for compact backgrounds@20,6#. Consider the dila-
ton equation of motion~A4b! as given in Appendix A for the
type I case, settingF50 for the type II case. SupposingMd
is compact, integrating the equation of motion gives

E
Md

e22FH`* H12a8E
Md

e22FTr F`* F50. ~1.7!

Since the integrand in each term is positive semi-definite,
must haveH5F50 and henceF is constant. Thus, we se
that there are no compact solutions in type II and typ
supergravities with non-zero fluxH and dilaton. This vanish-
ing theorem can of course be evaded if one includes lead
order heterotic or type I string corrections which introdu
additional trR2 terms in the dilaton equation of motion.

The theorem is reproduced in the special supersymme
sub-case as a consequence of the calibration condition~1.5!
and the Bianchi identity. This is a reflection of the gene
result @6,5# that the equations of motion are implied by th
preservation of supersymmetry and the Bianchi identity. O
has

E
Md

e22FH`* H5E
Md

H`d~e22FJ!

52E
Md

e22FdH`J. ~1.8!

The simplest case@5# is whendH50 ~as is true for any type
II background!. We then haveH5F50 by the same posi-
tivity argument as above.@This simplifies and extends2 an
earlier vanishing theorem that was given for theSU(n) cases
only in @21#.# In the case of type I supergravity, one finds th
the Bianchi identity together with the conditions onF for
supersymmetry@see Eq.~3.22! below# imply that the last

2Note that @21# includes results for theSU(n) case when
dHÞ0.
2-3
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TABLE II. G structures in type II theories when both¹6 have special holonomy.

dim(M ) NIIB NIIA Hol(¹1) Hol(¹2) G structure Calibrated cycle

4 ~1,1! ~2,0! SU(2) SU(2) $1% point in R4

6 2 2 SU(3) SU(3) SU(2) Kähler-2 in CY2

7 2 2 G2 G2 SU(3) SLAG-3 in CY3

8 ~2,2! ~4,0! SU(4) SU(4) SU(3) Kähler-4 in CY3

8 ~4,0! ~2,2! SU(4) SU(4) SU(2)2 Kähler-23Kähler-2 in CY23CY28

8 ~3,0! ~2,1! SU(4) Spin(7) Sp(2) C-LAG-4 in HK2

8 ~2,0! ~1,1! Spin(7) Spin(7) SU(4) SLAG-4 in CY4

8 ~1,1! ~2,0! Spin(7) Spin(7) G2 co-associative inG2
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expression in Eq.~1.8! can be rewritten as minus the seco
term in Eq.~1.7!, and again we findH5F5F50.

Up to this point the discussion has focused on geomet
admitting one or more Killing spinors of the same type,e1,
say. This covers all static cases of the type I and heter
theories. However, for the type II theories whenH andF are
non-zero, there are solutions to Eq.~1.1! for bothe1 ande2,
which requires that both connections¹1 and¹2 have spe-
cial holonomy. This means that the general classification
supersymmetric geometries indicated in Table I, as wel
the generalizations tod59, can be refined. In@7# we ana-
lyzed the different ways in which probe fivebranes can w
calibrated cycles in manifolds of special holonomy and
termined the holonomies of¹6 that are expected in the co
responding supergravity solutions, after including the ba
reaction. The results are summarized in Table II. In th
cases,e6 each define a different structure with groupsG6.
Equivalently, together they define a single structure w
groupG which is the maximal common subgroup of the tw
embedded inSO(d), and this is also listed in Table II. It is
noteworthy that from the wrapped fivebrane perspective
all cases this minimalG structure is the same as the h
lonomy of the initial special holonomy manifold that on
started with. Since bothe6 are required to define theG struc-
ture, unlike theG6 structures, it is not covariantly consta
with respect to a connection with totally anti-symmetric to
sion.

The particular class of geometries with¹6 each having
G2 holonomy with a commonSU(3) subgroup was ana
lyzed in detail in@5#. The necessary and sufficient conditio
on theSU(3) structure in order that the geometry preserv
supersymmetry were presented. This case is associated
fivebranes wrapping special Lagrangian~SLAG! three-cycles
in manifolds withSU(3) holonomy. It was also shown tha
the three-form flux can be expressed as a generalized
bration associated with a~3,0! form, as expected for a specia
Lagrangian cycle. This result again refines that of Eq.~1.5!
in a way expected from physical considerations. Here
shall extend the analysis of@5# to cover all cases discussed
@7#.

Table II lists the geometries associated with fivebra
wrapping calibrated cycles. Note that explicit solutions c
responding to three more cases were discussed in@22#: ¹1

hasSp(2) holonomy, while¹2 hasSpin(7), SU(4) or Sp(2)
holonomy. They correspond to fivebranes wrapping cer
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quaternionic planes inR8. Such calibrations are linear and
is plausible that the solutions found in@22# are the most
general solutions of this kind. In any case, we will not co
sider these cases further in this paper.

The geometries listed in Table II are all in their ‘‘canon
cal’’ dimension. We will argue that they can be generalized
d59, as before, by adding a number of flat directions.
order that bothe1 ande2 Killing spinors survive, the fibra-
tion must be given by a generalized instanton with respec
the commonG structure.

It is natural to wonder if supersymmetric geometries a
mitting bothe1 ande2 Killing spinors are necessarily of th
type given in Table II. We shall present an interesting expl
example ind56 which shows that this is not the case. T
example is a torusT2 non-trivially fibered over a flatR4 base
with non-vanishing dilaton. For a particular carefully chos
fibration we show that¹1 hasSU(3) holonomy while¹2

has SU(2) holonomy. This solution thus preserves twel
supercharges which corresponds toN53 supersymmetry in
the remaining four spacetime dimensions. It would be int
esting to see how it is related to the type IIB solutions p
serving the same amount of supersymmetry with both
and NS-NS fluxes presented in@23#.

In this paper we will not explicitly present many detaile
proofs since the arguments follow the same lines as thos
@7,5#, and also because we do not want to obscure the m
results. The plan of the rest of the paper is as follows. In S
II we review G structures and their intrinsic torsion. In Se
III we discuss the necessary and sufficient conditions on
supersymmetric geometries summarized in Table I. We a
comment on the additional constraints arising in type I
heterotic string theory. Section IV analyzes the general
persymmetric geometries ind59 when one of the connec
tions¹6 has special holonomy, which generalizes the geo
etries of Table I. In Sec. V we present some simple expl
solutions of the type discussed in Sec. IV including candid
heterotic or type I compactifications based on fibrations o
K3 surfaces that preserve eight supersymmetries. Sectio
discusses the cases summarized in Table II when both¹1

and ¹2 have special holonomy. Section VII presents so
further explicit solutions ind56 including a type II example
preserving 12 supersymmetries corresponding toN53 su-
persymmetry and candidate heterotic and type I compac
cations based on fibrations overK3 surfaces that preserv
four supersymmetries. Section VIII concludes with some d
cussion and a summary of our main results.
2-4
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II. G STRUCTURES IN CANONICAL DIMENSION

It will be useful first to recall some aspects of the clas
fication of G structures~for further details see e.g.@16#!. A
manifold Md admits aG structure if its frame bundle admit
a sub-bundle with fiber groupG. This implies that all tensors
and, when appropriate, spinors onMd can be decompose
globally into representations ofG. A G structure is typically
equivalent to the existence of a set of globally defin
G-invariant tensors, or alternatively a set of globally defin
G-invariant spinors. In particular, whenG,Spin(d) as is the
case forG-invariant spinors, the structure defines a met
since the corresponding sub-bundle of the frame bundle
be viewed as a set of orthonormal frames.

TheG-structure is classified by the intrinsic torsion. Wh
G,Spin(d) this is a measure of the failure of the tenso
spinors to be covariantly constant with respect to the Le
Cività connection of the metric defined by the structure. A
result, all of the components of the intrinsic torsion are e
coded in derivatives of the invariant tensors or spinors. F
thermore, the intrinsic torsion,T, then takes values inL1

^ g' where Lp is the space ofp-forms and g'
% g

5spin(d) where g is the Lie algebra ofG. The intrinsic
torsion can then be decomposed into irreducibleG modules,
TP % iWi . We will denote specific components ofT in each
moduleWi by Wi . Only if the intrinsic torsion completely
vanishes does the manifold haveG holonomy.

For a supersymmetric background (Md ,gd ,H,F), where
gd is the metric onMd , we need some non-trivial globall
defined spinors satisfying Eq.~1.1!. Note that the spinors ar
globally defined since¹6e650 implies they have constan
norm, which we take to be unity,ē6e651, and so are no-
where vanishing. This necessarily defines aG structure with
G,Spin(d). The possible groupsG are precisely the pos
sible special holonomy groups appearing in Fig. 1. The n
essary and sufficient conditions for solutions of the particu
supersymmetry constraints~1.1! then translate into theG
structure being of a particular type with certain compone
of the intrinsic torsion vanishing. SinceG,Spin(d) the met-
ric gd is completely determined by theG structure. Similarly,
one finds expressions forH and F in terms of the intrinsic
torsion of theG structure.

In this section we will summarize the definition of th
structures and how the generic intrinsic torsion is encode
each case. We will consider only the structures in their
nonical dimensions:Spin~7! in d58, G2 in d57, etc. It is
straightforward to generalize to the case that the structur
in a higher dimension~for an example, see Appendix E o
@13#!. In the following sections we then turn to the particul
necessary and sufficient conditions on the structure for
persymmetry.

SU(n)-structure in d52n. The structure is completely
specified by a real two-formJ of maximal rank and a com
plex n-form V satisfying

J`V50,

V`V̄5 i n(n12)
2n

n!
Jn, ~2.1!
08600
-

d
d

,
an

/
i-
a
-
r-

c-
r

s

in
-

is

u-

whereJn is defined using the wedge product. Together th
define a metricgd and an orientation chosen as vol5Jn/n!.
Raising an index onJ using this metric defines an almo
complex structure satisfyingJ2521. With respect to this
almost complex structure,V is an (n,0)-form while the two-
form J is of type (1,1). Furthermore the metricgd is almost
Hermitian. Note that the almost complex structure is actua
determined solely by the choice ofV and is independent o
the two-formJ.

For genericSU(n) structures, the intrinsic torsion decom
poses into five modulesWi @16,24,25#. Consider for instance
SU(4). The adjoint representation ofSpin(8) decomposes
as 28→11616̄115 where15 is the adjoint representatio
of SU(4), and so theremaining representations correspo
to su(4)'. The one-formL1 representation decomposes
8→414̄. We then have

TPL1
^ su~n!'5W1% W2% W3% W4% W5 , ~2.2!

where the correspondingSU(4) representations ofWi are
given by

~414̄!3~11616̄!5~414̄!1~20120̄!1~20120̄!

1~414̄!1~414̄!. ~2.3!

For n52 andn53 the corresponding representations are

~212̄!3~11111!5~212̄!1~212̄!1~212̄!,

~313̄!3~11313̄!5~111!1~818!1~616̄!

1~313̄!1~313̄!, ~2.4!

respectively. In particular, forn52 the modulesW1 andW3
are absent. Forn53 note that theW1 andW2 modules can
be further decomposed into real modulesW 1

6 and W 2
6 as

discussed in detail in@25#.
Each component of the intrinsic torsionWiPWi can be

given in terms of the exterior derivative ofJ or V, or in one
case both. Generically, we have the decompositions

dJPW1% W3% W4 ,

dVPW1% W2% W5 . ~2.5!

Explicitly, sinceJ is a (1,1)-form,dJ has a (3,0) piece and
(2,1) piece~plus the complex conjugates!. The former de-
fines an irreducible representation~irrep! of SU(n) and gives
the W1 component ofT. The latter splits into a primitive
dJ0

(2,1)-form, i.e. one satisfyingJ4dJ0
(2,1)50, giving W3,

plus a (1,0)-form, givingW4, and which can be written as

W4[J4dJ. ~2.6!

The same expression appears in characterizing any alm
Hermitian metric and is known as the Lee form~of J). Here
we have introduced the notationv4n which contracts a
p-form v into a (n1p)-form n via
2-5
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~v4n! i 1 , . . . ,i n
5

1

p!
v j 1 , . . . ,j pn j 1 , . . . ,j pi 1 , . . . ,i n

. ~2.7!

Similarly, sinceV is an (n,0)-form, dV has an (n,1) piece
plus an (n21,2) piece. Let us first considernÞ2. Again the
former defines an irrep, which givesW5 and can be written
as a Lee form for either ReV or equivalently ImV:

W5[
1

4
~V4dV̄1V̄4dV!,

5ReV4d~ReV!5Im V4d~ Im V!, nÞ2.
~2.8!

The second line is obtained by noting thatV4dV50. In
general, the (n21,2) piece ofdV splits into a primitive
piecedV0

(n21,2) giving W2 plus another piece that encod
the sameW1 component ofT as dJ(3,0) due to the second
compatibility condition in Eq.~2.1!. Note that forSU(3),
W1,2

6 can be defined as the real and imaginary parts ofW1,2,
respectively. ForSU(2), asnoted, the classesW1 and W3
are absent. In this caseW5 is still given by the first line of
Eq. ~2.8!, while W2 is defined by

W25
1

4
~V4dV1V̄4dV̄!. ~2.9!

Recall that we haveSU(n) holonomy if all the compo-
nents of the intrinsic torsion vanish. In this case the manif
is Calabi-Yau. Clearly this occurs if and only ifdJ5dV
50. It will be useful to note some two further cases. Fir
the almost complex structure is integrable if and only ifW1
5W250. Second, we note that under a conformal trans
mation of theSU(n) structure, such thatJ→e2 fJ and V
→en fV, which implies the metric scales asg→e2 fg,
W1 ,W2 and W3 are invariant as is the following combina
tion:

~2n22!W51~21!n112n22nW4 . ~2.10!

If this combination together withW1 , W2 andW3 all vanish
and W4 and W5 are exact, the manifold is conformall
Calabi-Yau.

Spin(7) structures in d58. The structure is specified by
Spin(7)-invariant Cayley four-form,C, which at any given
point in M8 can be written as

C5e12341e12561e12781e34561e34781e56781e13572e1368

2e14582e14672e23582e23672e24571e2468, ~2.11!

where em define a local frame andemnpq5em`en`ep

`eq. The structure defines a metricg85(e1)21•••1(e8)2

and an orientation which we take to be vol5e1`•••`e8

implying *C5C.
The adjoint representation ofSO(8) decomposes unde

Spin(7) as28→7121, where21 is the adjoint representa
tion of Spin(7). Onethen finds that the intrinsic torsion de
composes into two modules@26#
08600
d

,

r-

TPL1
^ Spin~7!'5W1% W2 ,

83758148. ~2.12!

The componentsWi of T in Wi are given in terms of the
exterior derivativedC as, again decomposing intoSpin(7)
representations,

dCPL5>W1% W2 ,

56→8148. ~2.13!

In particular theW1 component in the8 representation is
given by

W1[C4dC, ~2.14!

and is the Lee form forC. The W2 component in the48
representation is then given by the remaining pieces ofdC.
Note that theSpin~7! manifold hasSpin~7! holonomy only
when the intrinsic torsion vanishes, which is equivalent
dC50. In addition, under a conformal transformation w
haveC→e4 fC for some functionf, which implies that the
metric scales asg→e2 fg. Such a transformation leaves th
W2 component ofT invariant while the Lee formW1 trans-
forms asW1→W1128d f .

Given the definition~2.11! one has a number of standa
identities, which will be useful in what follows. We have

Cm1m2m3pCn1n2n3p56dn1n2n3

m1m2m319C [m1m2
[n1n2

dn3]
m3] ,

Cm1m2p1p2Cn1n2p1p2
512dn1n2

m1m214Cm1m2
n1n2

,

~2.15!

Cmp1p2p3Cnp1p2p3
542dn

m .

G2 structures in d57. The structure is specified by a
associative three-formf. In a local frame this can be give
by

f5e2462e2352e1452e1361e1271e3471e567. ~2.16!

This defines a metricg75(e1)21•••1(e7)2 and an orienta-
tion vol5e1`•••`e7. Explicitly we then have

* f5e12341e12561e34561e13572e14672e23672e2457.
~2.17!

The adjoint representation ofSO(7) decomposes as21
→7114 where14 is the adjoint representation ofG2. The
intrinsic torsion then decomposes into four modules@27#,

TPL1
^ g2

'5W1% W2% W3% W4 ,

7375111412717. ~2.18!

The components ofT in each moduleWi are encoded in
terms ofdf andd* f which decompose as
2-6
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dfPL4>W1% W3% W4 ,

35→112717,

d* fPL5>W2% W4 ,

21→1417. ~2.19!

Note that theW4 component in the7 representation appear
in both df andd* f. It is the Lee form, given by

W4[f4df52* f4d* f. ~2.20!

TheW1 component in the singlet representation can be w
ten as

W1[* ~f`df!. ~2.21!

The remaining components ofdf andd* f encodeW3 and
W2 respectively. TheG2 manifold hasG2 holonomy if and
only if the intrinsic torsion vanishes, which is equivalent
df5d* f50. Note that under a conformal transformatio
f→e3 ff the metric transforms asg→e2 fg and hence *f
→e4 f* f. Under this transformationW1 , W2 and W3 are
invariant, while the Lee form transforms asW4→W4
212d f . Finally, note thatG2 structures of the typeW1
% W3% W4 are called integrable as one can introduce aG2
Dolbeault cohomology@28#.

Again there are a number of useful identities given
definition ~2.16!. We have

* fm1m2m3p* fn1n2n3p56dn1n2n3

m1m2m319*f [m1m2
[n1n2

dn3]
m3]

2fm1m2m3fn1n2n3
,

* fm1m2p1p2* fn1n2p1p2
58dn1n2

m1m212*fm1m2
n1n2

,

* fmp1p2p3* fnp1p2p3
524dn

m , ~2.22!

while

fm1m2pfn1n2p52dn1n2

m1m21* fm1m2
n1n2

,

fmp1p2fnp1p2
56dn

m , ~2.23!

and

fm1m2p* fn1n2n3p5f [m1
[n1n2

dn3]
m2] ,

fmp1p2* fn1n2p1p2
54fm

n1n2
. ~2.24!

Sp(n) structures in d54n. The structure is specified b
three almost complex structuresJA with A51,2,3 satisfying
the algebra

JA
•JB52dAB11eABCJC. ~2.25!

Together these define a metricgd . Lowering one index with
this metric on each almost complex structure gives a se
maximal rank two-formsJA. Note that theSp(n) structure
08600
t-

e

of

could be equally well defined in terms of these forms. W
also have a natural orientation given by vol5(JA)2n/(2n)!
for any JA.

For n51 recall thatSp(1)>SU(2) and this case has a
ready been considered above. We can make the corres
dence by identifyingJ[J3 andV[J21 iJ1. In more detail,
first note that one can define nine Lee formsLAB

[JA
4dJB, but for SU(2) only the diagonal Lee forms ar

independent, sinceJA
•LAB is independent ofA for eachB.

The three classes of intrinsic torsion defined above from
SU(2) point of view are given byW25 1

2 (L222L11), W4
5L33 and W55 1

2 (L111L22). Note that the almost comple
structureJ3 is integrable if and only ifL112L2250 and
similarly for J1 andJ2 @29#.

The only other case of interest in the context of this pa
is Sp(2). Theadjoint representation ofSO(8) decomposes
under Sp(2) as 28→3(1)13(5)110, where10 is the ad-
joint representation ofSp(2). Onethen finds that the intrin-
sic torsion decomposes into 9 differentSp(2) modules

TPL1
^ sp~2!'5 %

i 51

9

Wi ,

~414!3@3~1!13~5!#56~414!13~16116!,

~2.26!

where the notation takes into account that while the torsio
real, the representations4 and 16 are pseudo-real. One ca
show that all the components ofT in Wi are specified in
terms of the exterior derivativesdJA. Thus theSp(2) mani-
fold hasSp(2) holonomy if and only ifdJA50. In general
six of the nine Lee formsLAB[JA

4dJB are linearly indepen-
dent@this is actually true for anySp(n) structure#, and these
precisely correspond to the six (414) representations ap
pearing in Eq.~2.26!. To be more precise, one can show th

L121L215J3
•~L112L22!,

L311L135J2
•~L332L11!,

L231L325J1
•~L222L33!, ~2.27!

and hence six independent Lee forms are given byL11, L22

and L33 and L122L21, L312L13 and L232L32. ~Note that
similar definitions of the independent Lee forms in the ca
of almost quaternionic manifolds are given in@30#.! One also
notes the relation

* ~JA`JB`dJC!5JA
•LBC1JB

•LAC. ~2.28!

Finally in later calculations we found it useful to dete
mine the relationships between the ten six-formsJA`JB

`JC. A general six-form, which is Hodge dual to a two
form, corresponds to theSp(2) representations in the decom
position 28→1013(5)13(1). As the six-forms of interest
are constructed fromSp(2) singlets, they must correspond
the three singlets in the decomposition, and hence there m
be seven relationships amongst the ten six-forms. They
given by
2-7
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J1`J2`J25J1`J3`J35
1

3
J1`J1`J1,

J2`J3`J35J2`J1`J15
1

3
J2`J2`J2,

J3`J1`J15J3`J2`J25
1

3
J3`J3`J3,

J1`J2`J350. ~2.29!

SU(2)3SU(2) structures in d58. The structure is defined
by a pair of orthogonalSU(2) structures which we can writ
as two triplets of almost complex structures (JA,J8 A) satis-
fying

JA
•JB52dAB11eABCJC,

J8 A
•J8 B52dAB11eABCJ8 C,

JA
•J8 B50. ~2.30!

Again these define a metric. Lowering one index on the
most complex structures gives six half-maximal rank tw
forms. We also have a natural eight-dimensional orienta
given by vol̀ vol8 where vol5(JA)2/2 and vol85(J8 B)2/2
for any A andB.

Following the usual prescription decomposing the adjo
representation ofSO(8) into SU(2)3SU(2) representations
to give @su(2)^ su(2)#' one finds 28 different real modules

TPL1
^ @su~2! ^ su~2!#'5 %

i 51

28

Wi ,

@~212̄,1!1~1,212̄!#

3@6~1,1!1~212̄,212̄!#

510~212̄,1!110~1,212̄!14~3,212̄!14~212̄,3!.

~2.31!

Since theSU(2) structures are orthogonal, we necessa
have an almost product structureP. This is a tensorPm

n

satisfyingP•P51. It can be written in terms of the comple
structure asP5JA

•JA2J8 B
•J8 B for any A andB. This can

be written as the product of two commuting almost comp
structuresJ65JA6J8 B. As discussed in Appendix C, ge
nerically the almost product structure is not integrable.

III. GEOMETRIES WITH e¿ KILLING SPINORS
IN CANONICAL DIMENSION

We now consider the generic supersymmetric type II
ometries (Md ,gd ,F,H) preserving just one type of spino
which for definiteness we take to bee1. This requires that
¹1 has special holonomy group given by one of the grou
given in Fig. 1~recall that when we discuss holonomy we a
referring to the covering space ifMd is not simply con-
nected!. In this section we will consider only geometrie
08600
l-
-
n

t

y

x

-

s

with ¹1 having special holonomy in its minimal canonic
dimension: the cases are listed in Table I. For each case
present the necessary and sufficient conditions on theG
structure in order to preserve supersymmetry and presen
generalized calibration expression for the flux. Our aim is
summarize the known cases in a uniform way as well as
present new results on the two remaining cases,Sp(2) and
SU(2)3SU(2). At the end of thesection we will also dis-
cuss the generalizations needed for the heterotic or typ
string theories.

The basic technique to derive the results of this and s
sequent sections is to construct tensors from bi-linears in
Killing spinor e1, which characterize the structure. Diffe
ential constraints on the structure are obtained from the v
ishing of the dilatino and gravitino variations. The expre
sion for the three-formH as a generalized calibration ca
easily be obtained using the method of@7#. We will not
present any details of these calculations in this section,
reasons of clarity. Note, however, that the next section w
contain some representative calculations.

SU(n)-geometries in d52n. We start with the case wher
¹1 has SU(n) holonomy in d52n first considered in the
case of heterotic and type I theories in@2#. In other words we
consider supersymmetric geometries ind52n preserving
two complex chirald52n spinors related by complex con
jugation. Forn52,4 both spinors have the same chirali
while for n53 they have opposite chirality. The necessa
and sufficient conditions for preservation of supersymme
are that the manifoldM2n has anSU(n) structure (J,V)
satisfying the differential conditions

d~e22FV!50,

d~e22F* J!50, ~3.1!

with the flux given in terms of the structure, in each ca
by @7#

* H52e2Fd~e22F! for SU~2!,

* H52e2Fd~e22FJ! for SU~3!,

* H52e2FdS e22F
1

2
J`JD for SU~4!.

~3.2!

Note that here and throughout the paper the Hodge sta
defined with respect to the canonical orientation fixed by
structure. ForSU(n) this is vol5Jn/n!. Our conventions for
defining the spinors, and the construction ofJ, V and vol in
terms of spinors are given in Appendix B.

These conditions onJ andV are equivalent to those in@2#
~after setting the gauge field to zero!. In particular, as we
discuss below, they imply thatJ is integrable. As a result, the
expression forH can be rewritten in the form, as given in@2#,

H5 i ~ ]̄2]!J, ~3.3!
2-8
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whered5 ]̄1]. ~Note that this corrects a sign in the corr
sponding expression in@2#.3! However, it is the form~3.2!
that naturally generalizes to other cases.

In particular we note that the expression for the thr
form flux is that of a generalized Ka¨hler calibration. This is
physically reasonable since we expect that geometries
flux should arise as solutions describing fivebranes wrapp
supersymmetric cycles, as discussed in detail in@7#. For in-
stance, in theSU(4) case, geometries with non-zero flu
with ¹1 havingSU(4) holonomy correspond to a fivebran
wrapped on a Ka¨hler four-cycle in a Calabi-Yau four-fold
Such branes are calibrated by1

2 J`J which is precisely the
generalized calibration appearing in the expression forH.
Similarly, the SU(3) geometries correspond to fivebran
wrapping Kähler two-cycles inCY three-folds which are
calibrated byJ. The solutions found in@31# are of this type
~see@32# for an explicit discussion!. Finally the slightly de-
generateSU(2) case corresponds to a fivebrane wrappin
point in aCY two-fold, i.e., the fivebrane is transverse to t
CY2. Such configurations are calibrated by the unit functi

The conditions on theSU(n) structure~3.1! can be re-
phrased in terms of the classification of intrinsic torsion. T
first condition in~3.1! implies thatW15W250, and hence
the almost complex structure is in fact integrable~as pointed
out in @2#!. Thus forSU(3) andSU(4) the intrinsic torsion
lies in W3% W4% W5. For SU(2), since W1 and W3 are
always absent, we haveTPW4% W5. In all cases the secon
condition in~3.1! is equivalent to the statement that the L
form is exact and related toF, namelyW452dF. The first
condition also implies that Lee form forV is similarly pro-
portional todF with W55(21)n2n22W4. For SU(3), this
was first noticed in@17#.

Note that this relation implies that under a conform
transformation, the invariant combination~2.10! is propor-
tional to (n22)W4. Thus only whenn52 is it possible to
have geometries that are conformal to Calabi-Yaun-folds, as
noticed by@2#. In this caseW55W452dF with W250. The
general form of these geometries in ten dimensions is t
given by

ds25ds2~R1,5!1e2Fds̃2,

¹̃2e2F50, ~3.4!

with H given as in Eq.~3.2! andds̃2 the metric onCY2. This
is just the usual fivebrane solution transverse toCY2. The
possibility of conformallyCY2 geometries was considered
@2# but here we claim the stronger result that it is in fa
necessary.

It is worth emphasizing that ifF5const then the leading
order equations of motion implyH50 and in additionF
50 for the heterotic or type I case@see for example Eq
~A4b!#. Thus, for instance, the solutions presented in@17#

3To see this one must take into account that our convention for
definition ofH has the opposite sign~and a factor of two! compared
to that in @2#.
08600
-

th
g

a

.

e

l

s

t

based on the Iwasawa manifold, although supersymme
do not solve the leading order equations of motion. In g
eral, solutions withHÞ0, andF non-constant must hav
W4Þ0 andW5Þ0. Similar comments apply to other cas
considered below.

Spin(7)-geometries in d58. Now consider the case whe
¹1 has Spin~7! holonomy. This corresponds to supersym
metric geometries ind58 preserving a single chiral spino
of Spin(8). Thenecessary and sufficient conditions are th
M8 admits aSpin~7! structure whose only constraint is th
the Lee form is again exact@10#

W1512dF. ~3.5!

The flux is then given by@7#

* H52e2Fd~e22FC!. ~3.6!

As in the SU(n) case we can understand these geomet
and conditions in terms of wrapped branes. They arise
solutions for fivebranes wrapping Cayley four-cycles
manifolds withSpin~7! holonomy and the expression forH
indeed corresponds to a generalized calibration for suc
cycle.

It is interesting to note that if we perform a conform
transformationg̃[e26/7Fg, then the correspondingSpin(7)
structure definingg̃ has vanishing Lee form, and hence h
intrinsic torsion just in the classW2 @10#. One might enter-
tain the idea of solutions that are conformal to
Spin~7! holonomy manifold, i.e. with g̃ having
Spin~7! holonomy. While such a geometry, with non
vanishing flux, certainly admits Killing spinors, we cann
solve the Bianchi identitydH50 with non-zero flux. To see
this observe that the geometry has the form

g5e6/7Fg̃,

Hmnp52
1

3
C̃mnp

q¹̃q~e6/7F!. ~3.7!

The expression fordH contains both the35 and1 represen-
tations of Spin~7!. The singlet is proportional to¹̃2(e6/7f)
while the 35 corresponds to the trace-free part
¹̃l¹̃p(e6/7f). We thus conclude thatdH50 implies thatF
5const which in turn impliesH50.

G2 geometries in d57. Next consider the case when¹1

hasG2 holonomy. These geometries preserve a singled57
spinor. The necessary conditions for supersymmetry were
rived in @7–9# and sufficiency was proved in@8,9#. This case
was discussed in detail from the point of view of this pap
in @5#. The geometry admits aG2 structure satisfying the
conditions

f`df50,

d~e22F* f!50, ~3.8!

e

2-9
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which means that the intrinsic torsion lies inW3% W4 in the
representations2717. Moreover it implies that the Lee form
is again exact withW4526dF. The flux is given by@7#

* H5e2Fd~e22Ff!. ~3.9!

It is worth noting that these geometries are special case
integrableG2 structures in which one can introduce aG2
Dolbeault cohomology@28#.

These backgrounds arise as solutions describing fi
branes wrapped on associative three-cycles in manifold
G2 holonomy. This is reflected in the expression for the fl
which is the condition on a generalized calibration for suc
cycle. Solutions of this type were presented in@33,34,5# ~see
@5# for an explicit demonstration of@33#!.

If we perform a conformal transformationg̃[e2Fg, then
the correspondingG2 structure has vanishing Lee form, an
hence has intrinsic torsion just in the classW3 @9#. In par-
ticular one can consider an ansatz for solutions that are
formal to aG2 holonomy manifold:

g5eFg̃,

Hmnp52
1

2
*̃ f̃mnp

q¹q~eF!. ~3.10!

However, as in theSpin~7! case, Eq.~3.7!, the Bianchi iden-
tity dH50 implies thatF is constant and henceH50.

Sp(2) geometries in d58. Next consider the case whe
¹1 hasSp(2) holonomy. The geometries preserve three c
ral d58 spinors with the same chirality. The necessary a
sufficient conditions for preservation of this supersymme
are thatM8 admits anSp(2) structure satisfying~see Appen-
dix B for the definition ofVA)

d~e22FVA!50 for A51,2,3,

d~e22F* JA!50 for A51,2,3, ~3.11!

with the flux being given by

* H52e2FdS e22F
1

2
JA`JAD for A51,2,3. ~3.12!

Note that the conditions on the structure are given by th
for the SU(4) case for each complex structure.

The conditions~3.11! imply that the parts ofdJA trans-
forming in the two16’s are independent ofA. In addition the
12 4’s are determined by the dilaton. The ‘‘diagonal’’ Le
forms are all equalL115L225L3352dF and hence the off
diagonal Lee formsLAB, AÞB are anti-symmetric withL12

522J3
•dF, L31522J2

•dF andL23522J1
•dF.

Since¹1 hasSp(2) holonomy, these geometries are e
amples of manifolds known as hyper-Ka¨hler with torsion
~HKT!. A discussion of these geometries can be found,
example, in@35# and also@30#. Our geometries are specia
examples since the dilaton places additional constraint
listed above.

It is worth noting that this case arises when fivebran
wrap quaternionic planes inR8, that is cycles that are com
08600
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plex with respect to all three complex structures. It w
shown in @36# that these are linear. In@22# solutions were
written down for these configurations and it is plausible th
they are the most general, once the Bianchi identity is
posed.

SU(2)3SU(2) geometries in d58. Finally consider the
case when¹1 hasSU(2)3SU(2) holonomy. This case cor
responds to supersymmetric geometries preserving four
ral d58 spinors, all with the same chirality. The necessa
and sufficient conditions are thatM8 admits an SU(2)
3SU(2) structure satisfying

d~e22FJA`vol8!50,

d~e22FJA 8`vol!50,

d~e22FJA`JB 8!50, ~3.13!

where, e.g., vol5(JA`JA)/2 for eachA, while the flux is
given by

* H52e2Fd~e22Fvol1e22Fvol8!. ~3.14!

As discussed in Appendix C, the almost product struct
defined byP5(JA1J8 B)•(JA2J8 B) is not integrable. This
is because the mixed componentsHi ja and Habi , using the
notation of Appendix C, are generically non-zero. A notab
subclass of solutions, with integrable products, is given
those corresponding to two orthogonal fivebranes inters
ing in a string, one fivebrane wrappingCY2 and the other
CY28 in CY23CY28 . Such solutions are discussed for i
stance in@37#.

Let us now consider the modifications required for h
erotic and type I string theory. In addition to (gd ,H,F) the
bosonic field content also includes a gauge fieldA, with field
strengthF, in the adjoint ofE83E8 or SO(32)/Z2. In order
to preserve supersymmetry we require the expression
~1.1! for e1 only, and thus the cases described in Table I a
the above discussion are equally applicable to the heter
and type I theories. In addition, preservation of supersymm
try requires the vanishing of the gaugino variation~1.3!

GMNFMNe150. ~3.15!

For each case in Table I, sincee1 is a singlet of the specia
holonomy groupG of ¹1, this is satisfied, breaking no fur
ther supersymmetry, if the two-formF, considered as the
adjoint of SO(d), lies within the adjoint ofG.

For theSpin~7! case we therefore need to considerF to be
a Spin~7! instanton satisfying

Fmn52
1

2
Cmn

pqFpq , ~3.16!

while for G2 we need

Fmn52
1

2
* fmn

pqFpq . ~3.17!

For theSU(n) cases, we require
2-10
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Fmn52
1

2 S 1

2
J`JD

mn

pqFpq ~3.18!

which, in complex coordinates, is equivalent to

Jab̄Fab̄5Fab5F āb̄50. ~3.19!

That is we need a holomorphic gauge field on a holomorp
vector bundle satisfying the Donaldson-Uhlenbeck-Y
equation, as noticed in@2#. For theSp(2) case we require
that the gauge field satisfies Eq.~3.18! for all three complex
structures, or equivalently,

Fmn5Jm
A pJn

A qFpq , no sum onA, ~3.20!

which are the same as the Bogomol’nyi-Prasad-Sommer
~BPS! equations of@38#. ForSU(2)2, with self-dual complex
structures, the gauge fields must describe an anti-self-
instanton for each of theSU(2) structures. This can be writ
ten as

Fmn52
1

2
volmn

pqFpq52
1

2
volmn8 pqFpq . ~3.21!

Note that in all cases the instanton condition can be writ
as

* F5J`F ~3.22!

whereJ is the invariant form entering the generalized ca
bration expression for the flux *H5e2Fd(e22FJ).

As shown in@5,6# the equations of motion of type I su
pergravity are automatically satisfied if one imposes
modified Bianchi identity forH,

dH52a8Tr F`F. ~3.23!

In type I or heterotic string theory the Bianchi identity
modified by higher order corrections

dH52a8~Tr F`F2tr R`R! ~3.24!

which allows solutions withdH50 as for the type II theo-
ries.

We noted above for theSpin~7! case that the ansatz~3.7!
preserves Killing spinors but does not solve the Bian
identity dH50, and hence the equations of motion, for no
vanishing H,F. It is interesting to ask whether there a
heterotic solutions solvingdH52a8TrF`F. Indeed, when
g̃ is flat such solutions have already been found@39#. Simi-
larly heterotic solutions ford57 that are conformal to fla
space were found in@40#. It would be interesting to construc
heterotic solutions wheng̃ is conformal to a non-flat
Spin~7! or G2-holonomy manifold.

IV. GENERAL GEOMETRIES WITH e¿ KILLING
SPINORS

In the previous section, we gave the necessary and s
cient conditions for preservation of supersymmetry for a
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ic
u

ld

al

n

e

i
-

fi-
-

ometry of the formR1,92d3Md when ¹1 has special ho-
lonomy in the corresponding canonical number
dimensions,Spin(7) in d58, G2 in d57 and so on. The
analysis for¹2 is simply obtained by takingH→2H. More
generally one can ask for the generic static supersymme
background of the formR3M9 preserving some number o
supersymmetries. In this section, we give a complete an
sis of this question when the spinors are all of the same t
and show that in addition to recovering the results of
previous section we find more general classes of geomet
As before, for definiteness we take the Killing spinors to
all of the typee1 satisfying¹1e150. In the next section
we turn to the case where some Killing spinors sati
¹1e150 and some¹2e250.

Suppose we haveN independent spinorse ( i )
1 in d59 all

satisfying¹1e ( i )
1 50. In general, these define aG structure,

whereG,Spin(9) is the stabilizer group of rotations whic
leave all the spinors invariant. One finds the seven spe
holonomy groups given in Fig. 1 as possibilities. Furth
more these embed inSpin(9) in the conventional way fol-
lowing the pattern of the dimensional reduction. That is
say G,SO(n),SO(9) wheren is the canonical dimension
for the G structure as given in Fig. 1.

As usual the structures can also be defined in terms
set of forms which can be constructed out of the spinors
general, these are of the type (K1, . . . ,K92n,JA) with
i KiJA50. HereJA are the set of forms used to define th
structure in its canonical dimensionn as described in Sec. II
The Ki are a set of 92n independent one-forms required
define the additional orthogonal dimensions to give a str
ture in d59. Thus for instance aG2 structure ind59 is
defined by the set (K1,K2,f) with i Kif50. In a local or-
thonormal frameem, we can take the formf to have the
standard form~2.11! in terms of e1, . . . ,e7 while K15e8

andK25e9. Thus, at any given point inM9, the formsK1

andK2 define a reduction ofR9 into R7
% R2 and hence de-

fine a SO(7),SO(9) structure. The three-formf then de-
scribes aG2,SO(7) structure on theR7 subspace in the
usual way. Note that the structure always defines a me
Using this metric we can also view theKi as vectors. In
addition, as we will see, the inner productKi

•K j is constant
for all i and j and so we normalizeKi to be orthonormal.

If the flux H is zero, we have¹Ki50 andM9 is then,
after going to the covering space, just a productM95R92n

3Mn whereMn is a G holonomy manifold in the canonica
dimension. From this point of view,G holonomy extends
trivially to nine dimensions. With flux however, this is n
longer the case. We will show that there are new possibili
which are not simply direct products of the geometries giv
in the previous section with flat space. We discuss the m
general case ofG5Spin(7), corresponding to one Killing
spinor, in detail and then summarize the analogous results
the other structure groups, corresponding to the existenc
more than one Killing spinor.

A. Single Killing spinor: Spin„7… structure in dÄ9

First assume we have a single Killing spinore1 on M9,
and since¹1e150, we can takeē1e151. It is easy to
show that the stability group isSpin(7),Spin(9). Equiva-
2-11
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lently we have the set ofSpin(7)-invariant forms (K,C)
with i KC50 andK251. In a particular basisem, we can
takeK5e9 andC given by the standard form~2.11! in terms
of e1, . . . ,e8. In terms of the spinore1, we have

Km5 ē1gme1, Cmnpq52 ē1gmnpqe
1, ~4.1!

where gm are nine-dimensional gamma matrices w
g1•••951. From the Killing spinor conditions~1.1!, as in the
previous section, one derives a set of necessary and suffi
conditions on (K,C). The condition¹1e150 simply trans-
lates into ¹1C5¹1K50. From the latter constraint w
immediately see, sinceH is totally antisymmetric, thatK is a
Killing vector, and in addition that the norm ofK is constant,
as claimed above. In addition one finds

dK5G, ~4.2!

where we have made the genericSO(8) decomposition

H[H02K`G, ~4.3!

with i KH05 i KG50. We can now introduce local coord
nates such that the metric has the canonical form of a fi
tion

ds25ds2~M0!1~dy1B!2, ~4.4!

with K5dy1B, while dB5G is a two-form onM0 and the
metric ds2(M0) is independent ofy and admits aSpin(7)
structure defined byC, which may, however, at this poin
depend ony.

Now we turn to the dilatino equation. Following the di
cussion in@7#, given the symmetry properties of the nin
dimensional gamma matrices, one has

]mFē1@A,gm#7e11
1

12
Hmnpē

1@A,gmnp#6e150 ~4.5!

where A is an operator built out of gamma matrices a
@•,•#6 refer to the anti-commutator and commutator resp
tively. By taking A5gm1 with the lower sign andA
5gm1 , . . . ,m6 with the upper sign in Eq.~4.5!, one finds two
constraints on (K,C). First one has the Lee form conditio

C4dC512dF, ~4.6!

and then the familiar calibration form for the flux

* H5e2Fd~e22FC`K !. ~4.7!

Note that we have fixed our orientation by volm1 , . . . ,m9

5 ē1gm1 , . . . ,m9e1.
If we decompose Eq.~4.7! into SO(8) representations

consistency with Eq.~4.2! requires

Gmn52
1

2
Cmn

pqGpq . ~4.8!

In other words,G satisfies theSpin(7) instanton equation on
M0. As a result,K is not only a Killing vector but actually
08600
ent
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preserves theSpin(7) structure. That is, the Lie derivative o
the spinore1 vanishes and hence the Lie derivative ofC
also vanishes,

LKC50, ~4.9!

which implies similarly thatLKH5LKF50. The Lee form
condition in Eq.~4.6! can then be written

C4d0C512d0F ~4.10!

whered0 is the exterior derivative on the eight-dimension
spaceM0. Similarly the condition~4.7! reduces to

* 0H052e2Fd0~e22FC!, ~4.11!

where *0 is the Hodge star onM0. In other words, thed
58 Spin~7! structureC on M0 is independent ofy and sat-
isfies exactly the same conditions~3.5! and ~3.6! as in the
last section. In particular, the only constraint on the intrin
torsion ind58 is that the Lee form is given as in Eq.~4.6!.
By substituting back into the supersymmetry conditions~1.1!
it is easy to see that these conditions are sufficient for su
symmetry. We should point out that it is straightforward
also define and characterize the intrinsic torsion of
Spin~7! structure directly ind59 but as it provides no extra
information on how to characterize the geometries we s
not present any details here.

To summarize, the generald59 geometry is simply a flat
direction fibered over ad58 Spin~7! geometry, with the fi-
bration determined by an AbelianSpin~7! instanton in d
58. The metric is given by Eq.~4.4!, the three-form by Eqs
~4.3!, ~4.11! and the dilaton by Eq.~4.10!. In order to obtain
a supersymmetric solution to the equations of motion we a
need to impose the Bianchi identity forH. Explicitly we get

d0H02G`G5H 0 for type II,

2a8~Tr F`F2tr R`R!

for heterotic and type I,

~4.12!

whereF is a Spin~7! instanton.
A number of further comments are in order. First, wh

the flux is zero, we commented above that, after going to
covering space, the geometry is necessarily a direct pro
of a d58 Spin~7! holonomy manifold with a flat direction
By contrast when the flux is non-zero, it is only in the spec
case whendK5G50, when the fibration is trivial, that the
geometries are simply the product of thed58
Spin~7! geometries considered in the last section with a
direction.

Second, sinceK generates a symmetry of the full solutio
including the spinors, we can dimensionally reduce a typ
solution to get a supersymmetric heterotic solution ind58
with an Abelian instantonF proportional toG. Similarly,
2-12
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given a heterotic solution (g0 ,H0 ,F,F) in d58 with an
Abelian Spin~7! instantonF, we can oxidize it to obtain a
type II solution ind59 with G proportional toF, a metric
given by Eq.~4.4! andH5H02G`K.

Third, the solutions are invariant under aT duality in the
y direction.

Finally, note that thed59 expression for the flux~4.7! is
again that of a generalized calibration. It corresponds to a
fivebrane wrapping a supersymmetric five-cycleS43S1 in

the product of aSpin~7! manifold M̄ with a circle,M̄3S1,

with S4,M̄ being a Cayley four-cycle.~Note that one could
equally well replace the circle with a line.! The simplest way
of wrapping the fivebrane leads to ad59 geometry consist-
ing of the product of ad58 Spin~7! geometry considered in
the last section with anS1. The S1 is a flat direction on the
world-volume of the fivebrane. The analysis of this sect
shows that more complicated geometries can arise leadin
the world-volume direction being fibered over thed58
manifold. As wrapped branes have holographic duals, it w
be interesting to determine the holographic interpretation
this.
ha
h
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B. Multiple Killing spinors

The case of multiplee1 Killing spinors is completely
analogous to theSpin(7) case discussed above. As me
tioned, the set of spinorse ( i )

1 in general define aG structure
in d59 with G being one of the standard special holonom
groups SU(4), Sp(2), SU(2)3SU(2), G2 , SU(3) or
SU(2). One way toview how these groups appear is to s
that the stability group of eache ( i )

1 defines a different em-
bedding ofSpin(7) in Spin(9). Thestructure groupG is then
the common subgroup of this set of embeddedSpin(7)
groups. From this perspective, eachG structure is equivalen
to a set of distinctSpin(7) structures.

Recall that the structure can be defined in terms
(Ki ,JA) whereJA are forms used to define the structure
its canonical dimensionn and Ki are 92n one-forms. The
condition ¹1Ki50 implies eachKi is Killing and we can
take them to be orthonormal. In addition, as in theSpin(7)
case one can always derive a set of necessary and suffi
conditions on (Ki ,JA) using the dilatino constraint. One a
ways finds the familiar calibration condition for *H. Explic-
itly, for the cases wheren58 one has
* H55
e2FdS e22F

1

2
J`J`K D for SU~4!,

e2FdS e22F
1

2
JA`JA`K D for Sp~2! with A51,2,3,

e2Fd~e22Fvol`K1e22Fvol8`K ! for SU~2!3SU~2!,

~4.13!

whereK is the single one-form, while for then,8 cases we have

* H5H e2Fd~e22Ff`K1`K2! for G2 ,

e2Fd~e22FJ`K1`K2`K3! for SU~3!,

e2Fd~e22FK1`•••`K5! for SU~2!.

~4.14!
ical

is

di-
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The necessary and sufficient conditions also imply t
the Killing vectors Ki all commute and furthermore eac
preserves the underlyingG structureJA. This implies that
the metric can be put in the canonical fibration form

ds25ds2~M0!1 (
i 51

92n

~dyi1Bi !2, ~4.15!

where M0 is an n-dimensional manifold andKi5dyi1Bi .
Furthermore,M0 has aG structure defined byJA indepen-
dent ofyi . The fluxH has the related decomposition

H[H02 (
i 51

92n

Ki`Gi , ~4.16!

whereGi5dBi are two-forms onM0. In addition one finds a
set of constraints on theG structureJA on M0. As in the
tSpin(7) case these turn out to be precisely the canon
dimension conditions given in the last section.

The additional freedom in nine-dimensional geometries
given by the two-formsGi defining the fibration. Again as in
the Spin(7) case consistency between the calibration con
tions ~4.13! and~4.14! and the expansion~4.16! implies that
eachGi satisfies the appropriate AbelianG instanton equa-
tion on M0.

In summary, general supersymmetric geometries ind59
are closely related to the supersymmetric geometries in
canonical dimensions discussed in the last section. They
have a fibered structure where the base spaceM0 has aG
structure in the canonical dimension satisfying one of
sets of conditions given in Sec. III. The flux is given by
generalized calibration condition~4.13! or ~4.14!, corre-
sponding to a fivebrane wrapping a five-cycle. The twisti
of the fibration is described by two-formsGi which are all
Abelian G instantons onM0. If one makes a dimensiona
2-13
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reduction on theKi , the solutions correspond to heterot
solutions in canonical dimensiond5n with 92n Abelian
instantons. In order to obtain a solution to the equations
motion the fluxH0 on M0 must also satisfy a modified Bi
anchi identity

d0H02 (
i 51

92n

Gi`Gi5H 0 for type II,

2a8~Tr F`F2tr R`R!

for heterotic and type I.
~4.17!

These results provide a comprehensive classification o
the possible supersymmetric heterotic or type I or NS-
type II bosonic geometries of the formR1,92d3Md preserv-
ing Killing spinors satisfying Eq.~1.1! for e1. Any solution
with d,9 can be obtained simply by setting 92d of the Bi

twists to zero, so that the fibration becomes, at least parti
a productM95R92d3Md .

Note that there is one possible caveat to this anal
which is the existence of geometries with exactly five, six
seven Killing spinors. This necessarily defines anSU(2)
structure and would require the existence of a compat
connection¹1 without the particular fibration structure de
scribed in the text. It is unclear to us whether this is poss
or not. Similar comments apply to the existence of solutio
with nine or more supersymmetries~so defining an identity
structure! which are not simply flat space.

It is interesting to note that particular examples of the
general types of solutions have already appeared in the
erature. Examples ofSU(2) structure ind56 andSU(2)2

in d59 were considered in@41# using conformally Eguchi-
Hanson metrics. Similar solutions related to D3-branes w
considered in@42#. Further examples will be presented in th
next section.

We should also note thatd56 geometries of the type
discussed here with two flat directions are similar to tho
studied in@43#. However, the motivation of that work wa
rather different; namely, the idea was to exploit the fibrat
structure in order to construct examples of manifolds w
SU(3) structures in six dimensions of the type described
the last section.

V. EXPLICIT EXAMPLES I

We now present explicit solutions of the type described
the last section. For illustration we shall consider here ju
single flat direction fibered over a base manifoldM0. Addi-
tional examples with two flat directions fibered over a fou
dimensional base will be considered in Sec. VII. To be
with we considerM0 to be four dimensional, and the thre
complex structures are taken to be self-dual. As noted in S
III, M0 is necessarily conformally hyper-Ka¨hler. The five-
dimensional geometry thus takes the form

ds25e2F~ds̃2!1~dy1B!2, ~5.1!

Hmnp52 ẽmnp
l¹̃le

2F23B[mGnp] ,

Hymn52Gmn ,
08600
f

ll
S

ly,

is
r

le

le
s

e
it-

re

e

n

n

n
a

-

c.

whereG5dB is an Abelian anti-self-dual instanton andẽ is
the volume form onds̃2. Generically, these solutions pre
serve 1/2 of thee1 supersymmetries, and none of thee2

supersymmetries for the type II theories, corresponding
eight supercharges for both the heterotic and the type II th
ries. For solutions, we must impose the Bianchi identity
H. This gives

2d̃*̃ d̃e2F5H G`G for type II,

G`G12a8~Tr F`F2tr R`R!

for heterotic and type I.

~5.2!

Recall that supersymmetry implies thatF is also an anti-self-
dual instanton on the base. In the special case that trR`R
50, satisfying the Bianchi identity then implies that th
leading equations of motion are automatically satisfied. O
erwise, one must separately check that one has a solutio
the equations of motion, including at this ordera8 correc-
tions.

Particular solutions can be found whenever we have
explicit anti-self-dual Abelian instantonG on a hyper-Ka¨hler
manifold. The simplest cases are when the hyper-Ka¨hler met-
ric is flat. Let us present some examples just for the type
case, for simplicity, where the Bianchi identity becomes

¹̃2e2F52
1

2
G̃2. ~5.3!

Then a simple anti-self-dual instantons is given for instan
by

B5g~x1dx22x3dx4!, ~5.4!

corresponding to a constant field strength. A radial solut
for the dilaton is given by

e2F511
m

r 2
2

1

4
g2r 2. ~5.5!

A different radial solution can be obtained by writing th
flat metric in terms of left-invariant one-forms on the thre
sphere:

ds25dr21
1

4
r 2@~sR

1 !21~sR
2 !21~sR

3 !2# ~5.6!

with positive orientation given bydr`sR
1`sR

2`sR
3 ~our

conventions are as in@11#!. A singular anti-self-dual instan
ton is then given by

B5
g

4r 2
sR

3 . ~5.7!

A radial solution for the dilaton is

e2F511
m

r 2
2

g2

12r 6
. ~5.8!
2-14
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When the hyper-Ka¨hler metric is Eguchi-Hanson space
Taub Newman-Unti-Tamborino~NUT! space any of the anti
self-dual harmonic two-forms on these spaces can be use
the Abelian instanton and if they are normalizable they le
to non-singular solutions. These cases have already appe
in the literature@41#.

Let us now consider whether we can obtain compact h
erotic solutions of the form~5.1!. ~Recall that there are no
compact solutions with flux for the type II cases@6#.! The
base spaceM̃ must admit a hyper-Ka¨hler metric so is either
T4 or K3. In addition, we will compactify the fiber directio
on a circleS1 of radius R. By construction such a back
ground preserves eight supersymmetries. For a solution
must also satisfy the Bianchi identity. The left-hand side
Eq. ~5.2! is exact, thus the sum of the sources on the rig
hand side must be trivial in cohomology. Since the manif
is compact, each of the sources is also quantized, being s
multiple of the first Pontrjaginp1PH2(M5 ,Z) class~instan-
ton charge! of the corresponding bundle. IfE is the bundle
describing theS1 fibration andV the bundle of the heterotic
and type I gauge fields we have

R2p1~E!12a8p1~V!22a8p1~TM5!50 ~5.9!

in cohomology. Note that given the definition ofG the field
strength enteringp1(E) is G/R, hence the factor ofR2 in the
first term. Since bothG andF are anti-self-dual instantons o
the basep1(V) cannot cancel againstp1(E) and we can sat-
isfy Eq. ~5.9! only by including non-trivialp1(TM5). The
equation for the dilaton onM̃ then becomes

¹̃2e2F52
1

2
G̃22a8~Tr F̃22tr R̃2!. ~5.10!

One would then have to check whether such a solution foF
in fact leads to a background satisfying the full~higher-
order! equations for motion. One important point to note
that satisfying Eq.~5.9! with non-vanishingp1(E) requires
R2;a8. In other words the size of theS1 fiber must be of
order the string scale. As such the supergravity descriptio
these compactifications is breaking down.~Note, in addition,
that R2 is constrained to be a rational multiple ofa8, so
cannot be a modulus.! It would be interesting to find a cor
responding conformal field theory description, for instan
by taking the orbifold limit of the baseK3 manifold. Note
that it is trivial to extend these solutions to six-dimension
compactifications withN52 supersymmetry simply by in
cluding a second fibered direction.

Now let us consider solutions where the base geom
M0 is in more than four dimensions. Specifically we consid
solutions whereM0 is conformal to a special holonom
manifold. We noted in Sec. III that this rules out theSU(n)
cases fornÞ2. Let us thus considerM0 to be conformal to a
G2 holonomy manifold. An eight dimensional geometry pr
serving twoe1 supersymmetries, one of eachd58 chirality,
is given by
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ds25eF~ds̃2!1~dy1B!2,

Hmnp52
1

2
*̃ f̃mnp

q¹̃qeF23B[mGnp] ,

Hymn52Gmn ~5.11!

where G5dB is an AbelianG2 instanton on theG2 ho-
lonomy manifoldM̃ . A type II solution is then obtained by
solving the Bianchi identity which reads

*̃ f̃ [mnp
q¹̃l ]¹̃qeF53G[mnGpl] . ~5.12!

Given thatG is a G2 instanton, this is equivalent to

¹̃m¹̃neF522G̃m
kGnk1

1

4
G̃2g̃mn . ~5.13!

To get explicit solutions we need explicitG2 holonomy
metricsds̃2 and explicit Abelian instantonsG. One approach
is to note that if theG2 holonomy metric admits a Killing
vectorv, then the two-formdv is aG2 instanton if and only
if v preserves theG2 structure:Lvf5divf50. Since all of
the known explicitG2 manifolds have many isometries, th
result allows one in principle to find new solutions an
would be interesting to investigate further.

If the G2 holonomy manifold is flat, solutions with con
stant flux can be obtained as follows. We take

B5
1

2
Cmnx

mdxn, ~5.14!

giving constant field strengthG5C. This is aG2 Abelian
instanton providedCmn52 1

2 *̃ f̃mn
pqCpq . In other words,

using a suitable projection, we have in general

Cmn5
2

3 S dmn
pq 2

1

4
*̃ f̃mn

pqDDpq , ~5.15!

for an arbitrary constant two-formDmn . We then find that

eF52
1

2 S 2G̃m
kGnk2

1

4
G̃2g̃mnD xmxn1const ~5.16!

solves Eq.~5.13!.

VI. GEOMETRIES WITH BOTH e¿ AND eÀ KILLING
SPINORS

Let us now turn our attention to the type II cases summ
rized in Table II. These geometries preserve bothe1 ande2

Killing spinors and thus define two different structures,G6,
one for each set of Killing spinors, of the type described
Sec. III. Taking both sets together defines aG structure
whereG is the maximal common subgroup ofG1 and G2

given their particular embeddings inSO(d). One can follow
the detailed strategy of@5# to derive the necessary and suf
cient conditions on thisG structure in order that the geom
etry preserves the corresponding supersymmetry. Thi
based on direct manipulations of the Killing spinor equatio
and some details of this approach appear in@7#.
2-15
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Equivalently, we can obtain the conditions on theG struc-
ture by writing theG6 structures in terms of theG structure
and then imposing the conditions on theG6 structures de-
rived in Sec. III. In implementing this strategy it is crucial
recall that the signs presented in Sec. III assumed that
preserved spinors were of thee1 type and also took, in the
relevant cases, the preserved spinors to have a definite ch
ity. In order to get the results of this section, one needs
appropriate generalizations for¹2 and sometimes the oppo
site chirality.

SU(2) geometries in d56. This case arises when both¹6

have SU(3) holonomy with a commonSU(2) subgroup.
These geometries preserve two complex chirald56 spinors,
onee1 and onee2. The necessary and sufficient conditio
for preserving this supersymmetry are thatM6 admits an
SU(2) structure ind56 satisfying the conditions given be
low. TheSU(2) structure ind56 is specified by a two-form
J, a complex two-formV and two one-formsKi with i
51,2, satisfying Eq.~2.1! for n52 and in addition

i KiV5 i KiJ50. ~6.1!

The correspondingSU(3) structures associated with¹6 are
given by

J65J6K1`K2,

V65V`~K16 iK 2!. ~6.2!

Demanding that each of theSU(3) structures satisfies th
necessary and sufficient conditions for supersymmetry
cussed in Eqs.~3.1!,~3.2! ~with appropriate sign changes fo
¹2, as mentioned above! leads to necessary and sufficie
conditions on theSU(2) structure. Specifically, we find

d~e2FKi !50,

d~e2FV!50,

dJ`K1`K250. ~6.3!

with the flux given by

* H52e2Fd~e22FJ!. ~6.4!

These geometries also possess an almost product stru

P52K1
^ K1 #12K2

^ K2 #21, ~6.5!

whereK# is the vector field dual to the one-formK, satisfy-
ing P•P51. Sinced(e2FKi)50 this structure is integrable
and hence the metric can be cast in the canonical form

ds25gab
4 ~x,y!dxadxb1e2F(x,y)d i j dyidyj . ~6.6!

The conditions~6.3! then imply that at fixedyi , the SU(2)
structure on the four-manifold hasW25W450 and W5
5dF. Such geometries, which in particular are Ka¨hler, are
called almost Calabi-Yau.

This case corresponds to fivebranes wrapping Ka¨hler two-
cycles inCY2. This is mirrored in the expression for the flu
~6.4!, and also in the structure of the metric~6.6! with the y
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directions corresponding to the two directions transverse
the fivebrane and the initialCY2. Explicit examples of such
solutions were presented in@44,45# and were further ex-
plored from the world-sheet point of view in@46#.

SU(3) geometries in d57. This case arises when¹6 each
haveG2 holonomy and was discussed in@5#. These geom-
etries preserve twod57 spinors, onee1 and onee2. The
geometries have anSU(3) structure ind57 is specified byJ
andV satisfying Eq.~2.1! for n53, and a one-formK such
that

i KV5 i KJ50. ~6.7!

The twoG2 structures are given by

f65J`K7Im V ~6.8!

and demanding that they satisfy Eqs.~3.8!,~3.9! ~and their
generalization for¹2) leads to the necessary and sufficie
conditions on theSU(3) structure

d~e2FK !50,

d~e2FJ!50,

d~e2FReV!`K50,

d~ Im V!`Im V50 ~6.9!

with the flux given by

* H52e2Fd~e22FIm V!. ~6.10!

The obvious almost product structure is again integra
and hence the metric can be cast in the canonical form

ds25gab
6 ~x,y!dxadxb1e2F(x,y)dy2. ~6.11!

The six-dimensional slices at fixedy have anSU(3) struc-
ture with intrinsic torsion lying inW2% W4% W5, and it is
straightforward to see thatW452W552dF. Recall that for
SU(3) the moduleW2 splits into two modulesW 2

6 . The
third condition in Eq.~6.9! implies that whileW2

1 vanishes
W2

2 does not. These geometries are not Hermitian, as n
in @5#. This case corresponds to fivebranes wrapping SL
three-cycles and explicit solutions were given in@7,47#.

SU(3) geometries in d58. This is one of the cases whe
¹6 each haveSU(4) holonomy. These geometries preser
two pairs ofd58 spinors with opposite chirality, twoe1 and
two e2. It is in fact very similar to the case of anSU(2)
structure ind56 considered above. TheSU(3) structure in
d58 is specified byJ,V satisfying Eq.~2.1! for n53 and
two one-formsKi satisfying Eq.~6.1!. The twoSU(4) struc-
tures are given by

J65J6K1`K2,

V65V`~K16 iK 2!. ~6.12!

Demanding that they satisfy the necessary and sufficient c
ditions for SU(4) structures given in Eqs.~3.1!,~3.2! ~and
2-16
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their generalization for¹2) leads to the differential condi
tions ~6.3! which are the necessary and sufficient conditio
on theSU(3) structure. The flux is given by

* H52e2FdS e22F
1

2
J`JD . ~6.13!

Again there is an integrable product structure and the m
ric can be written in the form

ds25gab
6 ~x,y!dxadxb1e2F(x,y)d i j dyidyj . ~6.14!

At fixed yi , the SU(3) structure on the six-manifold is a
most Calabi-Yau, with the only non-vanishing class be
W55dF. This case corresponds to fivebranes wrapp
Kähler four-cycles in CY3 and solutions were found in
@46,48#.

SU(2)3SU(2) geometries in d58. The second way tha
¹6 both haveSU(4) holonomy is when they give a commo
SU(2)3SU(2) structure. These geometries preserve f
d58 spinors with the same chirality, twoe1 and twoe2.
The two orthogonalSU(2) structuresJA andJ8 A satisfy the
conditions~2.30!. The twoSU(4) structures are given by

J65J36J8 3,

V65H V`V8,

V`V̄8
~6.15!

where e.g.V5J21 iJ1. Demanding that they satisfy the ne
essary and sufficient conditions forSU(4) structures given
in Eqs.~3.1!,~3.2! ~and their generalization for¹2) leads to
the necessary and sufficient conditions on theSU(2)
3SU(2) structure given by

vol8`dJ350,

d~e2FJA!50 for A51,2,

vol`dJ8 350,

d~e2FJ8 A!50 for A51,2, ~6.16!

where e.g. vol5 1
2 J3`J3. The flux is given by

* H52e2Fd~e22FJ3`J8 3!. ~6.17!

The almost product structure

P5J1
•J25J3

•J32J8 3
•J8 3 ~6.18!

is integrable4 since¹6J650, J6 commute andJ6 are in-

4Note that the existence of a generic pairJ6 of integrable com-
plex structures satisfying only@J1,J2#50 does not guarantee tha
the almost product structureP5J1

•J2 is integrable. A concrete
counterexample is discussed in Appendix C.
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tegrable~see Appendix C! and implies the canonical form o
the metric

ds25gi j
4 ~x,y!dxidxj1g8ab

4 ~x,y!dyadyb, ~6.19!

each block being 434. The four-dimensional slices eac
have anSU(2) structure, withW25W450 andW55dF at
any point in their transverse directions. These geomet
arise when a fivebrane wraps a two-cycle in one Calabi-Y
two-fold and a second two-cycle in a second Calabi-Y
two-fold and it would be interesting to find explicit ex
amples.

Sp(2) geometries in d58. This case arises when¹1 has
SU(4) holonomy while¹2 has Spin(7) holonomy. These
geometries preserve threed58 spinors of the same chirality
two e1 and onee2. We have aSp(2) structure given by a
triplet of complex structures satisfying Eqs.~2.25!. The
SU(4) structure is given by (J3,V3), where

V35
1

2
J2`J22

1

2
J1`J11 i ~J1`J2!, ~6.20!

and satisfies Eq.~3.1! while theSpin~7! structure is defined
by

C5
1

2
J1`J11

1

2
J2`J22

1

2
J3`J3 ~6.21!

which satisfies Eq.~3.5! ~with appropriate sign changes!.
This leads to the following necessary and sufficient con
tions on theSp(2) structure:

d~e2FJA!50 for A51,2,

d†~e22FJ3!50, ~6.22!

with the flux given by

* H52e2Fd~e22FReV1!5e2Fd~e22FReV2!

52e2FdS e22F
1

2
J3`J3D . ~6.23!

Note that the conditions imply that the two16’s in each of
dJ1 and dJ2 vanish. Moreover, the six independent Le
forms are given by
2-17
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L1153dF, L2253dF, L3352dF,

L122L21522J3
•dF, L312L1352J2

•dF,

L232L3252J1
•dF. ~6.24!

It is worth emphasizing that the intrinsic torsion of th
Sp(2) structure is not totally anti-symmetric, and hence
geometry is not HKT. These geometries arise when NS fi
branes wrap complex-Lagrangian~C-LAG! four-cycles in
hyper-Kähler eight-manifolds. Recall that these cycles a
complex with respect to one complex structure and spe
Lagrangian with respect to the remaining two. It would
interesting to find explicit examples~note that a promising
ansatz and the corresponding BPS equations for this
were given in@48#!.

SU(4) geometries in d58. This is the first case when¹6

each haveSpin~7! holonomy. These geometries preserve t
d58 spinors with the same chirality, onee1 and onee2. In
this case we have anSU(4) structureJ,V satisfying Eq.
~2.1! for n54. The twoSpin~7! structures are given by

C65
1

2
J`J6ReV ~6.25!

and satisfy Eq.~3.5! ~with sign changes for¹2) leading to
the following necessary and sufficient conditions on
SU(4) structure:

d~e2FJ!50,

* ~* d ReV`ReV!526dF, ~6.26!

with the flux given by

* H52e2Fd~e22FReV!. ~6.27!

The intrinsic torsion of theSU(4) structure lies inW2
% W4% W5, with 2W45W556dF, and so in particular the
geometries are not Hermitian. These geometries arise w
fivebranes wrap SLAG four-cycles inCY4 and it would be
interesting to find explicit examples.~Again, a promising
ansatz and the corresponding BPS equations for this
were given in@48#.!

G2 geometries in d58. This is the second case when¹6

each haveSpin~7! holonomy. These geometries preserve o
e1 and onee2 d58 spinor of opposite chirality. In this cas
the two Spin~7! structures give rise to aG2 structure ind
58 with f as in Eq.~2.16! and a one-formK satisfying

i Kf50. ~6.28!

The twoSpin~7! structures are given by

C652 i K* f6f`K ~6.29!

and satisfy Eq.~3.5! ~and sign changes for¹2) leading to
the necessary and sufficient conditions on theG2 structure:

d~e2FK !50, ~6.30!
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d~e2Ff!`K50, ~6.31!

* d~ i K* f!`f`K50, ~6.32!

* d~ i K* f!` i K* f54*dF, ~6.33!

with flux given by

* H5e2Fd~e22Fi K* f!. ~6.34!

The intrinsic torsion of theG2 structure lies inW2% W4
with W4524dF. This means one cannot introduce aG2
Dolbeault cohomology@28#. These geometries arise whe
fivebranes wrap co-associative four-cycles inG2 manifolds
and it would be interesting to find explicit examples.~Again
a promising ansatz and the corresponding BPS equation
this case were given in@48#.!

$1% geometries. For completeness let us briefly mentio
the case corresponding to the first entry in Table II. This c
has two differentSU(2) structures each satisfying Eq.~2.1!
giving a trivial structure defined by four real one-formsKi . A
little calculation reveals that this case can always be pu
the canonical form

ds25e2Fds2~R4!,

* H52e2Fd~e22F!, ~6.35!

which is just the transverse space to the simple fivebr
solution.

We conclude this section with two comments. First, co
sidering either set ofe1 or e2 Killing spinors we see that the
geometries of this section are special cases of those app
ing in Sec. III. It is then clear, from the results of Sec. I
that supersymmetric geometries ind59 can be obtained by
fibering an appropriate number of flat directions over t
geometries in this section. In order that the same amoun
supersymmetry is preserved, the fibrations are determine
Abelian instantons that satisfy the generalized self-dua
conditions for both of theG6 structures. In other words the
must satisfy the generalized self-duality conditions for t
maximal common subgroupG. Note that in general the Bi-
anchi identity forH may further restrict which fibrations ar
possible. For instance in the cases where both¹1 and ¹2

have SU(n11) holonomy, one can show thatdH has no
components transforming as a four-form und
SO(2n).SU(n) for the commonSU(n) structure. As such,
there are in fact no solutions with non-trivial twisting.

The second comment is to note that we have conside
only structuresG6 that are orthogonal in the sense that p
served spinorse1 ande2 are orthogonal, that isē1e250.
In fact, as we now show, this is a necessary condition fo
non-trivial solution to be supersymmetric. Take any two Ki
ing spinorse1 ande2. The vanishing of the gravitini varia
tions implies that

¹m~ ē1e2!5
1

4
Hmabē

1gabe2. ~6.36!

The dilatino equation implies that for any gamma-matrix o
eratorA we have
2-18



t

l
e
-
o.

tri
t

on
r

en

n
,
e
s
n
tw
o

ro
r-

nt
pe
a
e

p
-
hi

th

ll

oles
-
c. V.

of

en-

see

u-

ven

-
wa

SUPERSTRINGS WITH INTRINSIC TORSION PHYSICAL REVIEW D69, 086002 ~2004!
]mFē1@A,gm#6e25
1

12
Hmnpē

1@A,gmnp#6e2. ~6.37!

Taking A5gm and using the upper sign, we conclude tha

¹m~ ē1e2!5]mF~ē1e2!. ~6.38!

This is trivially satisfied if theG6 structures are orthogona
since thenē1e250. If the structures are not orthogonal, w
have some point whereē1e2 is non-zero and then by con
tinuity there will be a neighborhood in which it is non-zer
In this neighborhood we haveē1e25eF1F0, for some con-
stantF0.

The two spinorse6 define a pair ofG6 structures both of
which are sub-bundles of the sameSO(d) bundle of ortho-
normal frames defined by the metricgd .5 Togethere6 define
a commonG structure sub-bundle of the twoG6 structures.
Furthermore, there always existssome metric-compatible
connection¹̃ that preserves thisG structure.~Note that this
connection generically does not have totally antisymme
torsion.! Necessarily it preserves theG6 structures, so tha
¹̃e650. Thus in fact we have¹( ē1e2)5¹̃( ē1e2)50 im-
plying F is a constant. However, the equations of moti
then imply thatH is constant. We thus conclude that there a
no supersymmetric solutions with non-vanishing flux wh
the structuresG6 are not orthogonal.

VII. EXPLICIT EXAMPLES II

In this section, we present some further explicit solutio
in d56, some preserving bothe1 ande2 supersymmetries
for the type II theories, including a solution that preserv
the unusual fraction of 12/32 supersymmetry. The basic
lutions have two flat directions fibered over a four dime
sional base space, with the fibration being specified by
Abelian instantons on the base, and thus generalize th
discussed in Sec. V. We shall also discuss compact hete
geometries ind56 preserving both eight and four supe
charges.

It will be convenient in this section to distinguish differe
six-dimensional solutions by the number of preserved su
symmetries. Let us start with the most supersymmetric c
corresponding to a flat NS five-brane as discussed at the
of the last section. Recall that thed54 solution transverse to
a simple fivebrane~6.35! preserves eighte1 spinors and
eight e2 spinors satisfying the projections

g1234e152e1, g1234e251e2. ~7.1!

As previously noted¹6 haveSU(2)6 holonomy inSO(4)
5SU(2)13SU(2)2 with the maximal common subgrou
being the identity. We can trivially lift this to a six
dimensional solution by adding two extra flat directions. T

5Note that this is true only forD6e650 with D6 a pair of spin
connections, compatible with the metricgd , and not, for instance, if
D6 are general Clifford connections.
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still preserves 16 supercharges corresponding toN54 super-
symmetry in the remaining four spacetime dimensions.

We now twist the two flat directions, as in Sec. V, wi
two Abelian instantons,

ds25e2Fds̃21~dy1B1!21~dz1B2!2,

Hmnp52 ẽmnp
q¹̃qe2F13B[m

1 Gnp]
1 13B[m

2 Gnp]
2 ,

Hmny5Gmn
1 , Hmnz5Gmn

2 , ~7.2!

giving the dilaton equation

¹̃2e2F52
1

2
@~G̃1!21~G̃2!2#, ~7.3!

wherem,n51, . . . ,4 and nowGi5dBi are taken to beself-

dual instantons on theR4 base spaceds̃2. This twisting still
preserves eighte2 spinors so that¹2 still hasSU(2)2 ho-
lonomy. For non-zeroGi , generically the solution breaks a
of the e1 supersymmetry however.@Note that, simply for
convenience of later discussion, we have exchanged the r
of ¹1 and¹2, by takingH→2H and changing the orien
tation on the base, as compared to the discussion in Se
There we took anti-self-dual instantons so thate1 spinors
were preserved. This accounts for the difference in signs
the terms involvingB andG in Eq. ~7.2! compared to those
in Eq. ~5.1!.# Hence, generically these solutions preserveN
52 supersymmetry in the remaining four spacetime dim
sions.

Interestingly, it is nonetheless possible to preserve foure1

Killing spinors corresponding to¹1 having SU(3) ho-
lonomy, for suitably chosen non-generic instantons. To
this we define anSU(3) structure by

J5e2FJ̃1~dy1B1!`~dz1B2!,

V5e2FṼ`@~dy1B1!1 i ~dz1B2!#, ~7.4!

where J̃5dx1`dx21dx3`dx4 and Ṽ5(dx11 idx2)
`(dx31 idx4) define theSU(2)1 structure onR4. Demand-
ing that theSU(3) structure satisfies the conditions for s
persymmetry~3.1!, we find that

J̃4Gi50,

Ṽ4~G11 iG2!50. ~7.5!

The generic constant flux solution to these equations is gi
by

G11 iG25kṼ ~7.6!

for some complex constantk. ~Note that, as we discuss be
low, this is the same twisting that appears in the Iwasa
manifold analyzed in@17#.! The Bianchi identity then implies
the equation for the dilaton

¹̃2e2F528uku2, ~7.7!
2-19
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which can easily be solved. To summarize, the solution~7.2!
with flat base space will preserve eighte2 and four e1

spinors for the specific choice of self-dual instantons~7.6!
and dilaton satisfying~7.7!.

A number of comments are now in order. First, this sp
cial solution corresponds toN53 supersymmetry in the re
maining four spacetime dimensions. It would be interest
to relate this solution to those discussed in@23#.

Second, the holonomy of the connections¹6 for the spe-
cial solution areSU(3) andSU(2), respectively. This is not
a combination appearing in Table II. The form of the soluti
indicates that this solution is related to fivebranes wrapp
two flat directions, but a world-volume interpretation of th
twisting and preservation of supersymmetry are obscure
us at present.

Third, this special background is also a heterotic or typ
solution. In this case, one loses thee2 supersymmetries an
the solution preserves only foure1 spinors, and so hasN
51 supersymmetry in four dimensions. Including addition
heterotic instantons simply adds to the sourceuku2 in the
dilaton equation~7.7!. Note that by takingH→2H and
switching the orientation of the base, we switche1 ande2

and hence we can also obtain a heterotic solution from
generic solution~7.2! with an SU(2) structure andN52
supersymmetry.

Finally, the metric and three-form obtained by setting t
dilaton constant in Eq.~7.2! with G11 iG25kṼ, were first
considered in the heterotic case@including an additional Abe-
lian instanton embedded inE83E8 or SO(32)] in @17#.
There it was demonstrated that the conditions for the pre
vation of e1 supersymmetry with¹1 having SU(3) ho-
lonomy were satisfied. However, given the analysis here,
background in@17# is problematic for the following some
what subtle reason. As we have already noted when the
laton is constant andHÞ0, the leading-order type II~or
heterotic or type I! equations of motion are not satisfied. A
shown in@5#, these equations of motion are a direct con
quence of the preservation of supersymmetry once the B
chi identity ~3.23! is imposed@or equivalently~3.24! if tr R
`R50 as for the geometry considered in@17#.# This contra-
diction is resolved by the fact that the background in@17#
actually satisfies a Bianchi identity with the opposite sign
the one arising in type I supergravity. This discrepancy
probably related to the sign discrepancy between the exp
sion ~3.3! and the corresponding expression in@2#.6

The type II solutions we have been discussing can also
generalized by replacing the flat space in Eq.~7.2! with a
generic Calabi-Yau two-foldCY2. As usual for type II, the
Calabi-Yau two-fold cannot be compact in order to sati
the Bianchi identitydH50. If we take the orientation of the
CY2 to be such that the complex structures are self-dual,
impose the projectionsg1234e652e6. In this case, the so
lution preserves noe2 supersymmetry, and generically n
e1 supersymmetry. However, choosingG11 iG25kṼ,

6Following recent correspondence the authors of@17# have inde-
pendently confirmed this discrepancy in@2#.
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whereṼ is the holomorphic~2,0! form onCY2, we find that
¹1 hasSU(3) holonomy and the solution still preserves fo
e1 supersymmetries, corresponding toN51 supersymmetry
in four dimensions. Alternatively, if the orientation of th
CY2 is chosen so that the complex structures are anti-s
dual, we impose the projectionsg1234e651e6. These solu-
tions break all of thee1 supersymmetry, but preserve eig
e2 spinors. The latter choice of orientation corresponds~af-
ter exchanginge1 with e2 by takingH→2H and switching
the orientation on the base! to a simple generalization from
d55 to d56 of the solutions discussed in Sec. V and e
plicitly obtained in @41# for the cases of Taub-NUT an
Eguchi-Hanson space. The former choice of orientation
the other hand, gives a new kind of supersymmetric solut
that exploits the fact that one is twisting two flat directio
and not just one as considered in@41#.

Similarly, one can obtain heterotic and type I geometr
preservingN51,2 supersymmetry. By taking the flat dire
tions to be a two-torus, andM0 to to be either conformally
T4 or conformallyK3, we get compact and supersymmet
heterotic geometries. It will be interesting to see whether i
possible to solve the heterotic Bianchi identity for these
ometries; if it is, as in Sec. V, the trR`R contribution will
be essential. In addition, one should again find that the ra
of the two-torus is required to be of order the string scale a
that several of the moduli are fixed.

VIII. DISCUSSION

In this paper we have studied the necessary and suffic
conditions for static geometries of type I or heterotic stri
theory, or type II theories with only non-vanishing NS-N
fields, to preserve supersymmetry and solve the equation
motion. The Killing spinors defineG structures on the geom
etries and we determined the intrinsic torsion of theG struc-
ture. We emphasized the universal expression for the th
form flux in terms of generalized calibrations and t
connection with wrapped branes, following@7,5#.

The geometries always have a connection with tota
anti-symmetric torsion,¹1 ~or ¹2 for the type II theories!,
which has special holonomy. We first discussed the geo
etries in the canonical dimension for the special holono
group,d58 for Spin~7!, d57 for G2, etc. We then showed
that the most general geometries ind59 have a number of
flat directions fibered over these geometries in the canon
dimensions, with the fibration being determined by Abeli
generalized instantons. We also discussed the physical i
pretation of these geometries in terms of wrapped fivebra
For example, the eight-dimensional geometries with a sin
flat dimension fibered over a seven-dimensional geom
with G2 structure correspond to fivebranes wrapping sup
symmetric cycles of the formS13S3,S13MG2

where

S3,MG2
is an associative three-cycle in aG2 holonomy

manifold. The fact that the resulting eight-dimensional g
ometry is not necessarily a direct product ofS1 with a seven-
dimensional geometry is worth further investigation. We p
sented some explicit examples, that would be worth study
further and generalizing.
2-20
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These results provide a comprehensive classification o
of the supersymmetric static geometries of the heterotic
type I theory. For the type II theories, we also analyzed
geometries that arise when both connections¹6 have special
holonomy. Our analysis covers all cases of NS fivebra
wrapping calibrated cycles, as listed in Tables I and II.

We also presented an explicit solution with a torusT2

fibered over anR4 base with¹1 having SU(3) holonomy
and¹2 havingSU(2) holonomy. This solution has foure1

Killing spinors and eighte2 spinors. The form of the flux
suggests that the solution should be interpreted as a flat
brane with two of the world-volume directions furthe
wrapped on the two-torus. Naively, one would therefore
pect 8 plus 8 Killing spinors and so it would also be inte
esting to find a physical interpretation of the twisting whi
leads to this reduction of supersymmetry. In@23# type II
solutions onT6 orientifolds with non-vanishing RR an
NS-NS fluxes were presented that also preserve 12 Kil
spinors and it would be interesting to see if they are rela

Candidate heterotic compactifications ind56 were also
presented, preserving both four and eight supersymmet
They are based on manifolds which are fibrations ofT2 over
a K3 base. The models with four supersymmetries arise
non-generic complex structure on theK3 and there are ad
ditional constraints on the radii of the circles of the toru
This indicates that many moduli are fixed. We showed t
the size of the torus is necessarily of order the string sc
indicating that the supergravity approximation is break
down. One would also have to check the equations for m
tion are satisfied. To pursue these models further one m
aim to construct a conformal field theory description.
would also be interesting to relate our compactifications
those of@49–52#.

We have emphasized that the expression for the th
form flux is easy to understand as a generalized calibra
since the geometry should still admit fivebranes wrapp
the corresponding cycles. It is very interesting to note t
many, and in some cases all, of the other conditions c
straining the intrinsic torsion can be interpreted in the sa
way. For example, consider the case of theSU(3) structure
with only e1 Killing spinors. The expression for the flu
~3.2! is the general calibration condition for a fivebra
wrapping a Ka¨hler two-cycle in a Calabi-Yau three-fold. I
addition the intrinsic torsion is constrained to satisfy E
~3.1!. Suppose we consider the trivial product of ourSU(3)
manifold M6 with a torusT2. Let K15dy1 and K25dy2

represent the extra directions. The full set of conditions
the structure can then be written on the eight-dimensio
spaceM63T2 as

d@e22FJ`J#50,

d@e22FV`~K11 iK 2!#50,

d@e22FJ`K1`K2#52e22F* H.
~8.1!

Given thatH lies solely inM6, we see that all three expres
sions are calibration conditions of the form *H
08600
ll
r

e

s

e-

-

g
d.

s.

r

.
t
e,

-
ht
t
o

e-
n

g
t

n-
e

.

n
al

5e2Fd(e22FJ) just for wrapping different cycles. The first i
for a fivebrane wrapping a Ka¨hler four-cycle in the Calabi-
Yau, the second for wrapping a special Lagrangian cy
~and one of theKi directions!, while the last is the familiar
expression for the wrapping of a Ka¨hler two-cycle in the
Calabi-Yau together with the torusT2. This is physically
reasonable, since the geometryM63T2, corresponding to
the full back reaction solution around a brane wrapping
Kähler two-cycle, should still admit probe branes wrappi
the special Lagrangian three- and Ka¨hler four-cycles. Similar
arguments extend to the fibration cases in Sec. IV and
geometries withe1 ande2 in Sec. VI.

An important motivation for this work is that a good un
derstanding of the geometry underlying supergravity c
figurations might allow us to find new explicit solutions. In
deed for the cases listed in Table I a co-homogeneity one
ansatz is useful for finding solutions@5#. This is a practical
alternative to finding solutions describing wrapped fiv
branes using the gauge supergravity approach initiated
@53#. For the cases in Table II, on the other hand, a sim
generalization of this technique can lead to co-homogen
one but also to a co-homogeneity two or more ansatz,
progress in the latter case is much more difficult@5#. At
present the gauge supergravity approach is the best avai
tool to produce solutions for these latter cases. It should
noted, however, that since the configurations in Table II p
serve more supersymmetry than those in Table I, one exp
that with new techniques, ultimately, they could be easie
analyze.

Finally, it is natural to generalize this work to also includ
RR fields in the type II theories, as well as to consid
Lorentzian geometries. Such geometries will allow one
describe both wrapped NS and D-branes, as well aspp waves
and general non-static backgrounds. Based on this work
on @13# we expect generalized calibrations to play an imp
tant role.
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APPENDIX A: EQUATIONS OF MOTION

The low-energy effective action for heterotic or type
string theory is given by the type I supergravity action

S5
1

2k2E d10xA2ge22FFR14~¹F!22
1

12
H22a8Tr F2G

~A1!

whereF is in the adjoint ofSO(32) or E83E8. In type I
supergravity the three-formH satisfies a modified Bianch
identity

dH52a8Tr F`F. ~A2!

Including the leading order string correction from anoma
cancellation we get
2-21
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dH52a8~Tr F`F2tr R`R! ~A3!

but to fully consistently implement this one should also
clude modifications to the action. The equations of mot
coming from~A1! are given by

RMN2
1

4
HMRSHN

RS12¹M¹NF22a8Tr FM
RFNR50,

~A4a!

¹2~e22F!2
1

6
e22FHMNRHMNR2a8e22FTr FMNFMN50,

~A4b!

¹M~e22FHMNR!50,
~A4c!

DM~e22FFMN!2
1

2
e22FFRSHRSN50.

~A4d!

The action and equations of motion for the type II theor
with all RR fields set to zero are obtained by simply sett
the gauge fieldF to zero and using the Bianchi identitydH
50.

APPENDIX B: SPINOR AND G STRUCTURE
CONVENTIONS

In doing calculations it is often useful to have an expli
set of projections defining the Killing spinors and the cor
spondingG structures. Here we define one possible set
conventions consistent with the expressions given in the
per. In particular, we will use the same set of projectors~or
subset of them! to define the invariant spinors in all case
Specifically, the Killing spinors will be defined by their61
eigenvalues for the set of commuting gamma matrices

g1234,g5678,g1256,g1357. ~B1!

We concentrate on the cases ofG structure in canonical di-
mension. However, in each case we also give how the st
ture embeds in the next simplest structure group follow
Fig. 1. Using these embeddings one can obtain convent
for any of theG structures in arbitrary dimensionsd<9.

Note that in all dimensions the gamma matrix algebra
taken to be$gm ,gn%52dmn and the adjoint spinor is written
asē and the conjugate spinor asec. We always normalize the
Killing spinors to satisfyēe51.

Spin(7). In eight dimensions, aSpin(7) structure defines a
single real chiral invariant spinore. For definiteness, we
chooseg1, . . . ,8e5e. A possible set of independent, commu
ing projections defining ane are

g1234e5g5678e5g1256e5g1357e52e. ~B2!

Writing the Cayley four-formC as

Cmnpq52 ēgmnpqe ~B3!
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then matches the expression~2.11!. The corresponding vol-
ume form is given by

volm1 , . . . ,m8
5 ēgm1 , . . . ,m8

e, ~B4!

Note that one can always choose a real basis for the gam
matrices so thatē5eT. The conventions for lifting aSpin(7)
structure tod59 are given in Sec. IV A.

SU(4). An SU(4) structure leaves invariant two real o
thogonal spinorse (a) with a51,2 of the same chirality ind
58. These can be defined by

g1234e (a)5g5678e (a)5g1256e (a)52e (a) ~B5!

with

g1357e (1)51e (1) , g1357e (2)52e (2) . ~B6!

Defining a complex spinorh5(1/A2)(e (1)1 i e (2)), the
forms J andV can then be written as

Jmn52 i h̄gmnh,

Vmnpq5h̄cgmnpqh. ~B7!

Note that in the basis whereē5eT, we have the more famil-
iar expressionsJmn5 ih†gmnh and Vmnpq5hTgmnpqh.
Given g12e (1)52e (2) we get the standard expressions

J5e121e341e561e78,

V5~e11 ie2!~e31 ie4!~e51 ie6!~e71 ie8!. ~B8!

The corresponding volume form is given by Eq.~B4! as
above. Note that each real spinore (a) also defines a corre
spondingSpin(7) structure as in Eq.~B3! given by

C (1)5
1

2
J`J2ReV,

C (2)5
1

2
J`J1ReV. ~B9!

Sp(2). We now have three real orthogonal invaria
spinors e (a) with a51,2,3 of the same chirality ind58.
These can be defined by

g1234e (a)5g5678e (a)5~g12561g13571g1458!e (a)52e (a)

~B10!

with

g1256e (1)51e (1) , g1458e (2)51e (2) , g1357e (3)51e (3) .

~B11!

Note that the eigenvalues under (g1256,g1357,g1458) of e (a)
are (11,21,21), (21,21,11) and (21,11,21) for a
51,2,3 respectively. The three two-formsJA are then given
by
2-22
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Jmn
1 52 ē (2)gmne (3) ,

Jmn
2 52 ē (3)gmne (1) ,

Jmn
3 52 ē (1)gmne (2) . ~B12!

Given g12e (2)5g56e (2)5e (3) , g14e (3)5g58e (3)5e (1) , and
g13e (1)5g57e (1)5e (2) , we have the explicit expressions

J15e121e341e561e78,

J25e141e231e581e67,

J35e131e421e571e86. ~B13!

The corresponding volume form is given by Eq.~B4! as
above. Note that each almost complex structureJA as an
SU(4) structure has a corresponding (4,0)-formVA given by

V15
1

2
J3`J32

1

2
J2`J21 iJ2`J3,

V25
1

2
J1`J12

1

2
J3`J31 iJ3`J1,

V35
1

2
J2`J22

1

2
J1`J11 iJ1`J2. ~B14!

Each spinore (a) also defines a correspondingSpin(7) struc-
ture given by

C (1)5
1

2
J2`J21

1

2
J3`J32

1

2
J1`J1,

C (2)5
1

2
J3`J31

1

2
J1`J12

1

2
J2`J2,

C (3)5
1

2
J1`J11

1

2
J2`J22

1

2
J3`J3. ~B15!

SU(2)3SU(2). We now have four orthogonal, real invar
ant spinors all of the same chirality ind58. They can be
defined by

g1234e (a)5g5678e (a)52e (a) ~B16!

with

g1256e (a)5H 2e (a) for a52,3,

1e (a) for a51,4,

g1357e (a)5H 2e (a) for a51,2,

1e (a) for a53,4.
~B17!

The three two-formsJA are given by combinations, self-dua
on the~a! index,
08600
Jmn
1 52~ ē (2)gmne (3)1 ē (1)gmne (4)!,

Jmn
2 52~ ē (3)gmne (1)1 ē (2)gmne (4)!,

Jmn
3 52~ ē (1)gmne (2)1 ē (3)gmne (4)!. ~B18!

The second set ofJ8 A two-forms is given by the correspond
ing anti-self-dual combinations with minus signs between
first and second terms in parentheses. Giveng12e (2)
5g56e (2)5e (3) , g14e (3)5g58e (3)5e (1) , and g13e (1)
5g57e (1)5e (2) , together with g12e (1)52g56e (1)5e (4) ,
g14e (2)52g58e (2)5e (4) , andg13e (3)52g57e (3)5e (4) , we
have the explicit expressions

J15e121e34, J8 15e561e78,

J25e141e23, J8 25e581e67,

J35e131e42, J8 35e571e86. ~B19!

Again, the corresponding volume form is given by Eq.~B4!
as above. Note that there are sixSU(4) structures given by
J6

A 5JA6J8 A and similarly each spinore (a) defines a corre-
spondingSpin(7) structure given by

C (1)5vol1vol82J1`J8 11J2`J8 21J3`J8 3,

C (2)5vol1vol81J1`J8 12J2`J8 21J3`J8 3,

C (3)5vol1vol81J1`J8 11J2`J8 22J3`J8 3,

C (4)5vol1vol82J1`J8 12J2`J8 22J3`J8 3.
~B20!

G2. A G2 structure defines a single invariant spinor ind
57. This can be defined by the projections

g1234e5g1256e5g1357e52e, ~B21!

where we have takenig1, . . . ,751. The associative three-form
~2.16! is then given by

fmnp52 i ēgmnpe. ~B22!

The corresponding volume form is given by

volm1 , . . . ,m7
5 i ēgm1 , . . . ,m7

e. ~B23!

Note that the relation betweenf and vol is slightly non-
standard. It is the opposite of the conventions given, for
stance in@54#. To match the expressions in@54#, one replaces
e7 with 2e7 and permutes the new basis vol52e1234567to
e3254761. Note that one can choose an imaginary basis for
g matrices whereē5eT.

Lifting to d58, the G2 structure defines a pair of rea
spinors e (a) with a51,2 satisfying Eq.~B21! of opposite
chirality. They can be distinguished by

g5678e (1)52e (1) , g5678e (2)51e (2) . ~B24!

The G2 structure is defined byf andK given by
2-23
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fmnp52 ē (1)gmnpe (2) ,

Km5 ē (1)gme (2) . ~B25!

With g8e (1)5e (2) , we haveK5e8 andf takes the standard
form ~2.16!. The corresponding volume form vol5e1`•••

`e8 is given by

volm1 , . . . ,m8
5 ē (1)gm1 , . . . ,m8

e (1)52 ē (2)gm1 , . . . ,m8
e (2) .

~B26!

The twoSpin(7) structures defined bye (a) are given by

C (1)52 i K* f1f`K,

C (2)52 i K* f2f`K. ~B27!

Note that with these conventions,i K* f52* 7f where* 7f
is the usual coassociative four-form, which is the Hodge d
of f on the seven-dimensional subspace orthogonal toK.

SU(3). The SU(3) structure defines a single chiral com
plex spinore. This can be defined by the conditions

g1234e5g1256e52e. ~B28!

We choose the chiralityig1, . . . ,6e5e so thatg12e5 i e. The
forms J andV are then given by

Jmn52 i ēgmne,

Vmnp5 ēcgmnpe. ~B29!

Given g135e5ec, we get the standard expressions

J5e121e341e56,

V5~e11 ie2!~e31 ie4!~e51 ie6!. ~B30!

The corresponding volume form is

volm1 , . . . ,m6
5 i ēgm1 , . . . ,m6

e. ~B31!

Again one can always choose a basis whereē5e† and ec

5e* .
Lifting to d57, the SU(3) structure defines a pair o

invariant spinorse (a) with a51,2 satisfying Eq.~B28!. Fix-
ing ig1, . . . ,751, they can be distinguished by

g1357e (1)52e (1) , g1357e (2)51e (2) . ~B32!

The SU(3) structure is given by

Jmn52 ē (1)gmne (2) ,

Vmnp5 i ē (1)gmnpe (2)2
1

2
~ ē (1)gmnpe (1)2 ē (2)gmnpe (2)!,

Km52 i ē (1)gme (2) . ~B33!
08600
al

Given g12e (1)5e (2) , this givesK5e7 andJ andV take the
standard form~B30!. The corresponding volume form vo
5e1`•••`e7 is given by

volm1 , . . . ,m7
5 i ē (1)gm1 , . . . ,m7

e (1)5 i ē (2)gm1 , . . . ,m7
e (2) .

~B34!

The twoG2 structures defined bye (a) are given by

f (1)5J`K2Im V,

f (2)5J`K1Im V, ~B35!

SU(2). Finally for SU(2) the structure again defines
single complex spinor of definite chirality. We take the neg
tive chirality

g1234e52e. ~B36!

The formsJ andV are then given by

Jmn[Jmn
3 52 i ēgmne,

Vmn[Jmn
2 1 iJmn

1 5 ēcgmne. ~B37!

Given g12e5 i e andg13e5ec we get the self-dual combina
tions

J15e141e23,

J25e131e42,

J35e121e34. ~B38!

The corresponding volume form is

volm1 , . . . ,m4
5 i ēgm1 , . . . ,m4

e. ~B39!

Again one can always choose a basis whereē5e† and ec

5e* .
Lifting to d56, the SU(2) structure defines a pair o

complex invariant spinorse (a) with a51,2 satisfying Eq.
~B36!. These have opposite chirality and can be dist
guished by

g3456e (1)52e (1) , g3456e (2)51e (2) . ~B40!

The SU(2) structure is given by

Jmn52
1

2
i ~ ē (1)gmne (1)1 ē (2)gmne (2)!,

Vmn5 ē (1)
c gmne (2) ,

Km
1 1 iK m

2 5 ē (2)gme (1) . ~B41!

Giveng12e ( i )5e ( i ) andg135e ( i )5e ( i )
c while g5e (1)5e (2) and

g6e (1)5 i e (2) , we haveK15e5, K25e6 and J and V take
the standard form~B38!. The corresponding volume form
vol5e1`•••`e6 is given by
2-24
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volm1 , . . . ,m6
5 i ē (1)gm1 , . . . ,m6

e (1)52 i ē (2)gm1 , . . . ,m6
e (2) .
~B42!

The twoSU(3) structures defined bye (a) are given by

J(1)5J1K1`K2, V (1)5V`~K11 iK 2!,

J(2)5J2K1`K2, V (2)5V`~K12 iK 2!. ~B43!

APPENDIX C: ALMOST PRODUCT STRUCTURES

An almost complex structure is aGL(n,C) structure on a
2n-dimensional manifold, which is characterized by a ten
Jm

n satisfyingJ•J521. Using this one can split the tange
space TpMC at any point in the two subspacesTpM 1

% TpM 2 corresponding to the1 i and 2 i eigenvalues ofJ
respectively. The Nijenhuis tensor for the almost comp
structure is defined by

Nmn
r5Jm

s] [sJn]
r2Jn

s] [sJm]
r . ~C1!

The almost complex structure is integrable if and only if t
Nijenhuis tensor vanishes and in this case one can introd
holomorphic co-ordinates on the manifold. IfJ is compatible
with a metric, namelyJmq[Jm

ngnq is a two-form, then the
metric is called almost Hermitian and Hermitian ifJ is inte-
grable.

Similarly, an almost product structure is aGL(P,R)
3GL(Q,R) structure on a (P1Q)-dimensional manifold,
which is characterized by a tensorPm

n satisfying P•P
511. At any point the tangent space splits accordingly
TpM5TpM P

% TpMQ, where P ~Q! is the number of11
(21) eigenvalues ofP. The Nijenhuis tensor for the almos
product structure is defined again by

Nmn
r5Pm

s] [sPn]
r2Pn

s] [sPm]
r ~C2!

and the almost product structure is integrable if and only
the Nijenhuis tensor vanishes~see e.g.@55#!. If furthermore
the almost product structure is metric compatible, i.e.Pmq

[Pm
ngnq is a symmetric tensor, one can introduce ‘‘sep

rating co-ordinates’’ on the manifold such that the met
takes the (P3P,Q3Q) block-diagonal form

ds25gi j
P~x,y!dxidxj1gab

Q~x,y!dyadyb ~C3!

wherei , j 51, . . . ,P anda,b51, . . . ,Q.
Two commuting almost complex structuresJ,J8, satisfy-

ing J•J85J8•J give rise to an almost product structure

P5J•J8. ~C4!

SupposeJ and J8 are metric compatible and satisfy¹1J
5¹1J850, or ¹2J5¹2J850, where¹6 is a metric con-
nection with totally anti-symmetric torsion6 1

2 H. The Nijen-
huis tensor then reads in general
08600
r

x

ce

s

if

-

Nmn
r56

1

2
~Hmn

r1Pm
pPn

qHpq
r

2P rpPm
qHpqn2Pn

pP rqHpqm!. ~C5!

Using the tangent space decomposition, one finds that
only non-zero components are given by

Ni j
c562Hi j

c

Nab
k562Hab

k . ~C6!

If instead we assume thatJ1,J2 are commuting and are bot
integrable, and also¹1J15¹2J250, then all the compo-
nents ofNmn

r vanish, henceP is integrable@56#. To see this
we first note that given the assumptions,H is a (2,1)
1(1,2) form with respect to either complex structureJ6:

Hmnr5Jm
pJn

qHpqr1Jr
pJm

qHpqn1Jn
pJr

qHpqm. ~C7!

To proceed, write 2P5J1
•J21J2

•J1 to get

2¹mPn
p5Jn

1 rJ2spHmrs2Jn
2 rJ1spHmrs . ~C8!

Then using Eq.~C7! we find

4¹[mPn]
p52Jm

1 rJn
1 sHrstP

tp1Jm
2 rJn

2 sHrstP
tp ~C9!

from which it easily follows thatN(P)50.
It is sometimes incorrectly stated in the literature~see for

instance@56–58#! that P, defined by Eq.~C4!, is integrable
if and only if the two commuting almost complex structur
are integrable. A concrete class of counter-example is p
vided by the geometry~7.2! for generic instantonsG. This
geometry has anSU(2) structure, built from thee2 Killing
spinors, which can be specified by twoSU(3) structures. The
corresponding two almost complex structures, written
two-forms, are given by

J5e2F~dx1`dx22dx3`dx4!1~dy1B1!`~dz1B2!,

J85e2F~dx1`dx22dx3`dx4!2~dy1B1!`~dz1B2!.
~C10!

Both almost complex structures are integrable. A quick w
to see this is to note that the geometry is a special examp
the canonicalSU(3) geometry ind56 ~preserving twice as
2-25
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much supersymmetry! that was discussed in Sec. III~with
expressions fore1 spinors rather thane2 spinors that we
have here! for either SU(3) structure. In particular, a
pointed out in Sec. III, the almost complex structures
integrable. Moreover, the two complex structures clea
commute and thus define an almost product structure g
by P5J•J8. On the other hand, because¹2J5¹2J850
and hence¹2P50, from Eq. ~C6! we see that there ar
non-zero components of the associated Nijenhuis ten
namely

Nmn
y522Gmn

1

Nmn
z522Gmn

2 . ~C11!

For definiteness, let us briefly present a simple exam
very explicitly. In particular, set the dilaton field to zero an
B15B25x1dx21x3dx4. Then the almost complex struc
tures corresponding to Eq.~C10! read

Ja
b53

0 1 0 0 2x1 2x1

21 0 0 0 2x1 x1

0 0 0 21 x3 x3

0 0 1 0 2x3 x3

0 0 0 0 0 1

0 0 0 0 21 0

4 ,
nd

m,
th

h

e

.S

s.

hr

08600
e
y
n

or,

le

Ja8
b53

0 1 0 0 2x1 2x1

21 0 0 0 x1 2x1

0 0 0 21 x3 x3

0 0 1 0 x3 2x3

0 0 0 0 0 1

0 0 0 0 21 0

4 . ~C12!

It is not difficult to check directly that these are both int
grable and indeed commute. The corresponding almost p
uct structure is

P5J•J853
21 0 0 0 0 0

0 21 0 0 2x1 2x1

0 0 21 0 0 0

0 0 0 21 2x3 2x3

0 0 0 0 1 0

0 0 0 0 0 1

4 .

~C13!

Computing the corresponding Nijenhuis tensor, we find t
it has the non-zero components given by Eq.~C11! with
G15G25dx1`dx21dx3`dx4. It would be interesting to
investigate the consequences of this counter example, e
cially in the context of the sigma model literature.
s
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