PHYSICAL REVIEW D 69, 086002 (2004

Superstrings with intrinsic torsion

Jerome P. Gauntlett,Dario Martelli| and Daniel Waldrarh
Department of Physics, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
(Received 11 June 2003; published 12 April 2p04

We analyze the necessary and sufficient conditions for the preservation of supersymmetry for bosonic
geometries of the formk>* ¢x M, in the common Neveu-Schwarz—Neveu-Schw#3-NS sector of type
Il string theory and also type | or heterotic string theory. The results are phrased in terms of the intrinsic torsion
of G structures and provide a comprehensive classification of static supersymmetric backgrounds in these
theories. Generalized calibrations naturally appear since the geometries can always arise as solutions describ-
ing NS or type | or heterotic fivebranes wrapping calibrated cycles. Some new solutions are presented. In
particular we findd=6 examples with a fibered structure which presekie 1,2,3 supersymmetry in type I
and include compact type | or heterotic geometries.
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[. INTRODUCTION For heterotic or type | string theory, the bosonic field content
also includes a gauge fieldl, with field strengthF, in the

Supersymmetric backgrounds of string or M theory withadjoint of EgX Eg or SO(32)/7,. We choose conventions
nonvanishing fluxes are currently an active area of study fowhere a geometry preserves supersymmetry if there is at
at least two reasons. First, they provide a framework foleast one spinoe™ satisfying Eq.(1.1) and, in addition, the
searching for new models with attractive phenomenologygaugino variation vanishes:
and secondly, they appear in generalizations of the anti—de MN .

Sitter (AdS) conformal field theory(CFT) correspondence. ™ Fune” =0. 1.3

For both applications a detailed mathematical understandin
of the kinds of geometry that can arise is important for fur-
ther elucidating physical results. Such an understanding can dH=2a'(TrFAF—trRAR) (1.4

also lead to new methods for constructing explicit examples.

Here we will analyze supersymmetric geometries of theyhere the second term on the right hand side is the leading
common Neveu-Schwarz—Neveu-SchwdlS-NS sector  string correction to the supergravity expression. The equa-
of type IIA and 1IB supergravity. That is, we consider non- tions of motion for these conventions can be found in Ap-
vanishing dilaton® and three-formH but with all Ramond-  pendix A.

Ramond(RR) fields and fermions set to zero. The closely The geometries we consider here will be of the form
related type | and heterotic geometries which allow in addi-R%%-9x M, and hence withH,® non-vanishing only on
tion non-trivial gauge fields will also be considered. Let USMd_ Whend=9 the ana|y5i5 covers the most genera| static
introduce the basic conditions. A type Il geometry will pre- geometries. Our aim is to determine the necessary and suffi-
serve supersymmetry if and only if there is at least en@r  cient conditions on the geometr and ® in order that it

€ satisfying admits a certain number of Killing spinors™ and also

solves the equations of motion.
VKAgE(VMiEHMNPFNP) € =0, As is well known, for the special case wheh=® =0,

8 the conditions for preservation of supersymmetry are simply
that M4 admits at least one covariantly constant spinor and
hence has special holonomy. Here, and in the rest of the
paper, when we are discussing special holonomy we will
assume thaM 4 is simply connected, otherwise we consider
where for type IIB(IIA) e~ are two Majorana-Weyl spinors the universal covering space. With this understood, the only
of Spin(1,9) of the samdopposit¢ chirality andV is the  non-trivial possibilities for the special holonomy group of
Levi-Civita connection. Geometricallf’ = are connections Mg are given in Fig. 1. These manifolds are all Ricci flat and
with totally anti-symmetric torsion given by 3H. Locally  hence they automatically also solve the supergravity equa-
the three-form is given byH=dB and hence satisfies the tions of motion' Note that Fig. 1 presents only the minimal
Bianchi identity “canonical” dimensiond of the manifold in order for it to

SFhe Bianchi identity reads

€=0, (1.0

dH=0. (1.2

INote that there are also higher order corrections to the equations
of motion that give rise to tadpoles for type IIA =8 and IIB in

*Email address: j.p.gauntlett@qgmul.ac.uk d=6 (via F theory [1]. The tadpoles can often be cancelled by the
"Email address: d.martelli@gmul.ac.uk addition of spacetime filling strings or D3-branes, respectively.
*Email address: d.j.waldram@qmul.ac.uk Here we shall not explicitly refer to these corrections further.
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d=8 Spin(7) — SU(4) — Sp(2) — SU(2) x SU(2) necessary and sufficient conditions for tAgin d=7 [7-9)

and Spin7) in d=8 [10] cases have also been analyzed
from this point of view. Thus, for the cases when oRly,

say, has special holononty, we now have a fairly complete
set of results, assuming thislty has the canonical dimension
d=6 SU(3) for G as given in Fig. 1. We shall review all known cases
including the results of2]. Note that theSU(3) case was
also recently reviewed in detail from the new perspective of
intrinsic torsion in[17]. One new result of this paper will be

FIG. 1. Special holonomies of manifolds éhdimensions with ~ t0 analyze the remaining two casesdr8 whenV™ has
covariantly constant spinors with respect to either the Levi-CivitaholonomySp(2) or SU(2) X SU(2).
connection or a connection with totally anti-symmetric torskn One can also ask what happens wip does not have
Only the minimal “canonical” dimensiord is presented. The ar- the canonical dimension fdB. For example, we might con-
rows represent the different ways the groups can be embedded gider geometries of the forfi*>x M-, with M, admitting
each other. two Killing spinors leading tdV ; having anSU(3) structure

corresponding t&v * having SU(3) holonomy. In the case
have the corresponding special holonomy. It is also possiblthatH=® =0, as already noted, this would necessarily im-
to have manifolds of higher dimension with the same speciaply that M is a direct product of a flat direction with a
holonomy group: whed =® =0, the resulting geometries Calabi-Yau three-fold. WherH,®#0, however, we will
are simply direct products of special holonomy manifolds inshow that the geometries can be more general than simply
the canonical dimensions given in Fig. 1 with one or morethe direct product of a flat direction with a six-manifdidl
flat directions. with SU(3) structure of the type derived [2]. In particular,

The analysis of a set of necessary and sufficient condithe flat direction can be non-trivially fibered ovistg with
tions for the preservation of supersymmetry in certain casethe fibration determined by an Abeli&1J(3) instanton(i.e.
whereH and® are non-zero was initiated some time ago ina holomorphic gauge field satisfying the Donaldson-
[2] (see alsd3,4]). In general, from the first condition in Eq. Uhlenbeck-Yau equatign
(1.1, it is necessary that there is at least one spinor which is More generally, we will determine the most general static
covariantly constant with respect to one of the connectionsupersymmetric geometries of the fotix M4 preserving
V* with totally anti-symmetric torsionV* say. This is any number of Killing spinorse™. If there is one Killing
equivalent to requiring thaf * has holonomy given by one spinor the geometry will have Spir(7) structure[and V"
of the groups in Fig. Zbut not necessarily in the canonical will have Spin7) holonomy but now ind=9. Additional
dimension, as we shall seeAs we discuss in more detail Killing spinors lead to additionalSpin(7) structures or
below this implies the existence of various invariant formsequivalently aG structure wheres is the maximal common
on My satisfying certain differential constraints. The secondsubgroup of them embedded $Q(9). TheG structures that
equation in(1.1) then imposes additional conditions on the arise are still given by the groups as in Fig. 1 but nowdin
forms. Finally, one shows that the existence of such a set o£9. We will show that the most general geometries consist
forms with constraints is in fact sufficient for the existence ofof a number of flat directions non-trivially fibered over mani-
one or more solutions to the supersymmetry conditidn®.  folds My that posses§ structures in the canonical dimen-

It is also important to know what extra conditions are sion. The fibration is determined by Abelian generalifzd
required in order that the geometry solves the equations dfstantons orM.
motion. By analyzing the integrability conditions of Eq.  Another purpose of this paper is to present the new and
(1.1, it was proved iff5] (see als¢6]) for the entire class of the known results in a uniform way. In particular, as empha-
geometries under consideration that it is only necessary tgized in[7], the expression for the three-form can always be
impose the Bianchi identityl.2). Note that it was actually expressed in terms of th& structure in a way related to
shown that one needs to impose the Bianchi identityHor “generalized calibrations{18,19. Specifically we always
and theH equation of motion. However, the expressionifor have an expression of the form
implied by supersymmetry, to be discussed below and given
in Eq. (1.5, implies that theH equation of motion is auto- *H=e2%d(e 2%5) (1.5
matically satisfied so only the Bianchi identity is required.

Recently it has been appreciated that the necessary amchere = is an invariant form which specifies, at least par-
sufficient conditions derived if2], which just analyzed the tially, the G structure. Generalized calibrations extend the
SU(n) cases ind=2n, can also be phrased in terms @f  original definition of a calibration form to cases where the
structures, and this has allowed a number of generalizationsackground has non-vanishing fluxes. In particular a gener-
[7—-10,3. Similar ideas have been used to analyze other sualized calibration form, her&, is no longer closed and its
pergravity solutions if11-15. The invariant forms oMy  exterior derivative is related to the flux, heke (and the
define theG structure, while the differential conditions cor- dilaton ®) as in Eq.(1.5. The physical significance of gen-
respond to restricting the class of the intrinsic torsion of theeralized calibrated cycles is that they minimize the energy
G structure. We will briefly review some aspects®@ftruc-  functional of a brane wrapping the cycle in the presence of
tures later, but we refer to, e.g16] for further details. The the fluxes.

d=4 SU(2)
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TABLE I. G structures for supersymmetric geometries wieh has special holonomy in canonical

dimension.

dim(M) N Hol(V*) Hol(V™) G structure Calibrated cycle
4 1,0 SU(2) Spin(4) SU12) Point inCY,
6 1 SU(3) Spin(6) SU3) Kahler-2 inCY,
7 1 G, Spin(7) G, Associative inG,
8 (4,0 SY(2)? Spin(8) SUY(2)? CY, and/orCY, in CY,XCY,
8 (3,0 SH2) Spin(8) SH2) Quaternionic itHK,
8 2,0 SU4) Spin(8) SU4) Kahler-4 inCY,
8 (1,0 Spin(7) Spin(8) Spin(7) Cayley inSpin(7)

That Eq.(1.5 holds might have been anticipated for the *H=e2d(e 2?E KA. .- AK?9) (1.6

following reasons. First one notes that the types of geom-

etries under discussion arise as solutions describing NS fiVQ/vhereE, Ki (partly) determine theS structure, withK' one-
branes wrapping supersymmetric cycles in manifolds of speforms corresponding to the flat directions of the fivebrane.
cial holonomy including the full back reaction of the brane  The fact that the geometries all satisfy calibration condi-
on the geometry. To see this f_irst recall that the geometry ofions of the form(1.5 connects with a simple vanishing
an unwrapped NS fivebrane is a productldf® along the  theorem for compact backgrounf0,6]. Consider the dila-
W0r|d-V0|ume Of the f|Vebrane W|th a transverse four' ton equation Of mot|0|ﬁA4b) as given in Appendifoor the
dimensional space with non-vanishihigand®. In addition,  type | case, setting =0 for the type Il case. Supposind

we know that aprobe fivebrane with world-volumei*>" s’ compact, integrating the equation of motion gives

X2, will be supersymmetric i& , is a calibrated cycle in

some special holonomy background. When we go beyond

the probe approximation and consider the back reaction of f
the fivebrane on the geometry, we thus expect a geometry of Ma

the formR™* Px Mp 4 with non-vanishing and ®. This Since the integrand in each term is positive semi-definite, we
is precisely the type of geometry we are considering. Now; ust haveH = F =0 and henceb is constant. Thus, we see

on physical grounds, we know that we can always add X ;
that there are no compact solutions in type Il and type |

second probe brane without breaking supersymmetry prot

vided it is wrapping a cycle calibrated by the same Calibra_tsupergravities with non-zero fluit and dilaton. This vanish-

tion form E as the original probe brane. This implies that as"9 theorem can of course b_e evaded if one inqludgs leading-
we switch on the back reactiol, should still be a calibrat- order heterotic or type | string corrections which introduce
ing form, though now, sincél and® are non-zero, it is a additional trR? terms in the dilaton equation of motion.
generalized calibration. In other words, if the original probe The theorem is reproduced in the special supersymmetric

brane wraps a cycle calibrated by a calibration fé&mthe sub-case as a consequence of the calibration cond(tiah

. . ) d the Bianchi identity. This is a reflection of the general
final geometr should admit the corresponding gener- 2" . . I
alizeg calibra}c,i,\(glrﬁgrm that i& satisfying Eqi.)(l.S). 99 result[6,5] that the equations of motion are implied by the

In Table | we have listed thé structures for supersym- preservation of supersymmetry and the Bianchi identity. One

metric geometries, preserving® supersymmetries only, has

whenV™ has special holonomg in canonical dimension.

We have also listed the corresponding type of calibrated j e*Z‘I’H/\*Hzf HAd(e ?%E)

cycle that a NS fivebrane wraps in order to give the corre- Mg Mg

sponding supersymmetric geometry. The number of minimal

Spin(d) spinors preserved in each case is also included. =—f e 2PdHAE. (1.8

Note that for thed=4 andd=_8 cases we have listed the six- Mg

and two-dimensional chirality of the preserved supersymme-

try. Also, CY,, corresponds to a Calabi-Yaufold andHK,  The simplest casgb] is whendH=0 (as is true for any type

to a hyper-Kaler manifold ind=8. Il background. We then haveH=® =0 by the same posi-
It is interesting to note that the more general geometries ittivity argument as abovd.This simplifies and extendsan

d=9 mentioned above, with a number of flat directions fi- earlier vanishing theorem that was given for §id(n) cases

bered oveMy, have a fascinating interpretation in this re- only in[21].] In the case of type | supergravity, one finds that

gard. In particular, the flat directions correspond to directionghe Bianchi identity together with the conditions &nfor

along the world-volume of the fivebrane wrapping a flat di-supersymmetrysee Eq.(3.22 below] imply that the last

rection, and so it is surprising that supersymmetry does not

require the fibration to be trivial. Note that this interpretation

is mirrored in the refined version of E€L.5) for the flux that >Note that [21] includes results for theSU(n) case when

one obtains iMd=9: dH#0.

e—Z‘DH/\*H+2a'f e 22TrEA*FE=0. (1.7)
My
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TABLE II. G structures in type |l theories when both™ have special holonomy.

dim(M) N Nia Hol(V*) Hol(V™) G structure Calibrated cycle
4 1y (20 SU2) SY2) {1} point in R*
6 2 2 SU(3) SU3) SU(2) Kahler-2 inCY,
7 2 2 G, G, SU_3) SLAG-3inCY;
8 (2,2 (4,0 SU4) SU4) SU_3) Kahler-4 inCY,
8 4,0 (22 sU4) SU4) Sy2)2 Kahler-2x Kahler-2 in CY,X CY)
8 3,0 (29 SU4) Spin(7) SH2) C-LAG-4 inHK,
8 (20 (11  Spin?) Spin(7) SU4) SLAG-4 inCY,
8 1,9 (20 Spin(7) Spin(7) G, co-associative ilG,

expression in E¢(1.8) can be rewritten as minus the second quaternionic planes ift®. Such calibrations are linear and it
term in Eqg.(1.7), and again we fintH=®=F=0. is plausible that the solutions found [22] are the most
Up to this point the discussion has focused on geometriegeneral solutions of this kind. In any case, we will not con-
admitting one or more Killing spinors of the same tygé, sider these cases further in this paper.
say. This covers all static cases of the type | and heterotic The geometries listed in Table Il are all in their “canoni-
theories. However, for the type Il theories whérand® are  cal” dimension. We will argue that they can be generalized to
non-zero, there are solutions to Ef.1) for bothe* ande~, ~ d=9, as before, by adding a number of flat directions. In
which requires that both connectioRs andV ~ have spe- order that boths+ ande" Killing spinors survive, the fibra-
cial holonomy. This means that the general classification ofon Mmust be given by a generalized instanton with respect to
supersymmetric geometries indicated in Table I, as well ad® commorG structure. . .
the generalizations td=9, can be refined. Ifi7] we ana- |t iS natural to wonder if supersymmetric geometries ad-
lyzed the different ways in which probe fivebranes can wrag"'tind bothe™ ande " Killing spinors are necessarily of the.
calibrated cycles in manifolds of special holonomy and deyPe givenin Table 1. We shall present an interesting explicit

termined the holonomies &f* that are expected in the cor- example ind=6 which shows that this is not the case. The
P example is a toru¥? non-trivially fibered over a flak* base

respo_ndlng supergravity SOIUt'OnS’_ aﬁef including the baCi?/\/ith non-vanishing dilaton. For a particular carefully chosen
reactlon; The resqlts are summarized in Ta_lble Il. |n+theseﬁbration we show tha¥ * hasSU(3) holonomy whileV -
casese each define a different structure with grous. a5 5(2) holonomy. This solution thus preserves twelve
Equwalently, tpgether th_ey define a single structure W'thsupercharges which corresponds\fe=3 supersymmetry in
groupG which is the maximal common subgroup of the two the remaining four spacetime dimensions. It would be inter-
embedded ir5Q(d), and this is also listed in Table II. It is esting to see how it is related to the type 1IB solutions pre-
noteworthy that from the wrapped fivebrane perspective, iserving the same amount of supersymmetry with both RR
all cases this minimalG structure is the same as the ho- and NS-NS fluxes presented [i23].
lonomy of the initial special holonomy manifold that one In this paper we will not explicitly present many detailed
started with. Since botk™ are required to define ti@ struc-  proofs since the arguments follow the same lines as those in
ture, unlike theG* structures, it is not covariantly constant [7,5], and also because we do not want to obscure the main
with respect to a connection with totally anti-symmetric tor-results. The plan of the rest of the paper is as follows. In Sec.
sion. Il we review G structures and their intrinsic torsion. In Sec.
The particular class of geometries with- each having Ill we discuss the necessary and sufficient conditions on the
G, holonomy with a commorSU(3) subgroup was ana- supersymmetric geometries summarized in Table |. We also
lyzed in detail in[5]. The necessary and sufficient conditions comment on the additional constraints arising in type | or
on theSW(3) structure in order that the geometry preservesheterotic string theory. Section IV analyzes the general su-
supersymmetry were presented. This case is associated wiplersymmetric geometries iti=9 when one of the connec-
fivebranes wrapping special Lagrangi@LAG) three-cycles tionsV~ has special holonomy, which generalizes the geom-
in manifolds withSW(3) holonomy. It was also shown that etries of Table I. In Sec. V we present some simple explicit
the three-form flux can be expressed as a generalized cabolutions of the type discussed in Sec. IV including candidate
bration associated with@,0) form, as expected for a special heterotic or type | compactifications based on fibrations over
Lagrangian cycle. This result again refines that of &g5) K3 surfaces that preserve eight supersymmetries. Section VI
in a way expected from physical considerations. Here wealiscusses the cases summarized in Table Il when Bdth
shall extend the analysis fB] to cover all cases discussed in and V™~ have special holonomy. Section VII presents some
[7]. further explicit solutions ird=6 including a type Il example
Table Il lists the geometries associated with fivebranegreserving 12 supersymmetries correspondingvte3 su-
wrapping calibrated cycles. Note that explicit solutions cor-persymmetry and candidate heterotic and type | compactifi-
responding to three more cases were discuss¢ddh V* cations based on fibrations ovKi3 surfaces that preserve
hasSp(2) holonomy, whileV ~ hasSpin(7), SU4) or S2) four supersymmetries. Section VIII concludes with some dis-
holonomy. They correspond to fivebranes wrapping certaircussion and a summary of our main results.
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Il. G STRUCTURES IN CANONICAL DIMENSION whereJ" is defined using the wedge product. Together these
define a metriggy and an orientation chosen as wal"/n!.
Raising an index orJ using this metric defines an almost
complex structure satisfying>=—1. With respect to this
almost complex structuré) is an (n,0)-form while the two-
form Jis of type (1,1). Furthermore the metig is almost
Hermitian. Note that the almost complex structure is actually

It will be useful first to recall some aspects of the classi-
fication of G structures(for further details see e.g16]). A
manifold M4 admits aG structure if its frame bundle admits
a sub-bundle with fiber grou@. This implies that all tensors
and, when appropriate, spinors dfiy; can be decomposed

globally into representations @. A G structure is typically . ; S
equivalent to the existence of a set of globally defined?he;imgigmsflely by the choice 6F and is independent of

G-invariant tensors, or alternatively a set of globally defined ; L .
y 9 y For genericSU(n) structures, the intrinsic torsion decom-

G-invariant spinors. In particular, whe&c Spir(d) as is the poses into five moduleg/; [16,24,29. Consider for instance

case forG-invariant spinors, the structure defines a metric, o . )
since the corresponding sub-bundle of the frame bundle caﬁu(4)' Theadjoint representation dBpin(8) decomposes

be Viewed as a set Of orthonorma| frames_ as28—1+6+6+15 Where 15 iS the adjOint representation

The G-structure is classified by the intrinsic torsion. When 0f SU4), and so theemaining representations correspond
GC Spir(d) this is a measure of the failure of the tensors/to SU(4)". The one-formA* representation decomposes as
spinors to be covariantly constant with respect to the Levi8—4+4. We then have
Civita connection of the metric defined by the structure. As a
result, all of the components of the intrinsic torsion are en- TeAt@sun) =W oW, Wse W,0Ws, (2.2
coded in derivatives of the invariant tensors or spinors. Fur-
thermore, the intrinsic torsiorl, then takes values in!  Where the correspondin§U(4) representations ofV; are
®g- where AP is the space ofp-forms and gt@g  9diven by
=spin(d) where g is the Lie algebra ofG. The intrinsic _ _ _ - -
torsion can then be decomposed into irreduciblmodules, (4+4) X (1+6+6)=(4+4)+(20+20) + (20+ 20
Te®;W,. We will denote specific components fin each — —
module W, by W, . Only if the intrinsic torsion completely (AT 4+ (4+4). 23
vanishes does the manifold ha@holonomy.

For a supersymmetric backgrounill §,g4,H,®), where
0q is the metric onM 4, we need some non-trivial globally
defined spinors satisfying E¢L.1). Note that the spinors are
globally defined sinc& = e*=0 implies they have constant

norm, which we take to be unitg“e* =1, and so are no-
where vanishing. This necessarily defineG atructure with

GCSpind). The possible group& are precisely the pos-
sible spec(;al hf(;lqnomy gg_)l_Jps a;ppealrlng In F:,g'hl' The nT’Cfespectively. In particular, fon=2 the modulesV; and W
essary and sufficient conditions for solutions of the particulat, " oot Fon=3 note that theA;, and W, modules can
supersymmetry constraintd.1) then translate into thé& be further decomposed into real modulds, and W3 as
structure being of a particular type with certain components;. . i 2
of the intrinsic torsion vanishing. Sin€&C Spir(d) the met- discussed in detail if25].

. . >Ning. P L Each component of the intrinsic torsio, e W, can be
ric gq is completely determined by th@ structure. Similarly,

one finds expressions fét and ® in terms of the intrinsic given in terms of t_he exterior derivative ofor {3, o in one
torsion of theG structure case both. Generically, we have the decompositions

Forn=2 andn=3 the corresponding representations are
(242)X (14+1+1)=(2+2)+(2+2)+(2+2),

(3+3)X (1+3+3)=(1+1)+(8+8)+(6+6)

+(3+3)+(3+3), (2.9

In this section we will sur_nmanlze.the d_efln.ltlon of the. die W, e WseW,,
structures and how the generic intrinsic torsion is encoded in
each case. We will consider only the structures in their ca- dQ e W@ Wya Ws. (2.5

nonical dimensionsSpin7) in d=8, G, in d=7, etc. Itis

straightforward to generalize to the case that the structure iEpricitIy sincedis a (1,1)-formdJ has a (3,0) piece and a
in a higher dlmen.smr(for an example, see Appendix .E of (2,1) piece(plus the complex conjugatesThe former de-
[13]). In the following sections we then turn to the particular fines an irreducible representatitirep) of SU(n) and gives
necessary and sufficient conditions on the structure for suy,, W, component ofT. The latter splits into a primitive
persymmetry. dJD-form, i.e. one satisfyingl JdJ{>Y=0, giving Wj,

SuU(n)-structure in e2n. The structure is completely ) o ; ;
specified by a real two-fornd of maximal rank and a com- plus a (1,0)-form, givingVs, and which can be written as

plex n-form () satisfying W,=J1dJ. (2.6)
INQ=0, The same expression appears in characterizing any almost
N Hermitian metric and is known as the Lee fofof J). Here
Q/\5=i”(”+2)2—J” 2.1) we have introduced the notation v which contracts a
' 1 . . .
p-form w into a (n+ p)-form v via

086002-5



GAUNTLETT, MARTELLI, AND WALDRAM

Similarly, sinceQ) is an (n,0)-form, dQ) has an ,1) piece
plus an fi—1,2) piece. Let us first consider 2. Again the
former defines an irrep, which givé§s and can be written
as a Lee form for either R@ or equivalently In1):

1 I
W5EZ(QJdQ+QJdQ),

=ReQ Id(ReQ)=ImQid(ImQ), n#2.

(2.9

The second line is obtained by noting tHatidQ2=0. In
general, the f—1,2) piece ofd() splits into a primitive

piecedQ{""? giving W, plus another piece that encodes

the samew,; component ofT asdJ®? due to the second
compatibility condition in Eq.(2.1). Note that forSU(3),
sz can be defined as the real and imaginary parté/p$,
respectively. FoISU(2), asnoted, the classep/; and W3
are absent. In this cad#s is still given by the first line of
Eq. (2.8), while W, is defined by

1 .
Wo=7(Q1dQ +Q1d0). (2.9

Recall that we hav&U(n) holonomy if all the compo-

nents of the intrinsic torsion vanish. In this case the manifold

is Calabi-Yau. Clearly this occurs if and only #J=d()

=0. It will be useful to note some two further cases. First,

the almost complex structure is integrable if and onlyMf

=W,=0. Second, we note that under a conformal transfor-

mation of theSU(n) structure, such thal—e?J and Q
—e""Q, which implies the metric scales ag—e?®'g,
W, ,W, and W3 are invariant as is the following combina-
tion:
(2n—2)Ws+(—1)" 12" 2wy, (2.10

If this combination together withV; , W, andWy3 all vanish
and W, and W; are exact, the manifold is conformally
Calabi-Yau.

Spin(7) structures in &8. The structure is specified by a
Spin(7)-invariant Cayley four-form¥, which at any given
point in Mg can be written as

P = e1234_|_ 61256+ 61278+ 63456+ 63478+ 65678+ e1357_ e1368

1458 e1467_ e2358_ e2367_ e2457+ 82468,

—e (2.11
where e” define a local frame ana™"P%=eM/\e"/\eP
/\eY. The structure defines a metgg=(e!)2+ - - - +(€)?
and an orientation which we take to be wa@'/\.../\e®
implying *¥ =V,

The adjoint representation &#(Q(8) decomposes under
Spin7) as28—7+21, where2l is the adjoint representa-
tion of Spin(7). Onethen finds that the intrinsic torsion de-
composes into two modul¢&6]

PHYSICAL REVIEW D 69, 086002 (2004

TeAleSpin7)-=wWeW,,

8X7=8+48. (2.12
The component®V; of T in W, are given in terms of the
exterior derivativedV as, again decomposing in®pin(7)
representations,

d¥ e AS=wW,eW,,

56—8+48. (2.13
In particular theW; component in the8 representation is
given by
W=V _1dV¥, (2.19

and is the Lee form fofV. The W, component in thel8
representation is then given by the remaining pieced\bf
Note that theSpin7) manifold hasSpin(7) holonomy only
when the intrinsic torsion vanishes, which is equivalent to
d¥=0. In addition, under a conformal transformation we
have¥ —e*W¥ for some functionf, which implies that the
metric scales ag—e?'g. Such a transformation leaves the
W, component ofT invariant while the Lee fornW, trans-
forms aswW;— W, +28df.

Given the definition(2.11) one has a number of standard
identities, which will be useful in what follows. We have

myMm,msp — @/ sMimymg [m;m ma]
\primams \P“lnznap 65n1n2n3 +9ovlMm 2[n1n25n3] ,
m{m,p1p — mimy mqm
P MaMzPy Z\I,nlnzplpZ 125nln2 +4¥™M 2”1”2’
(2.15
mpyp2p = m
P MPLP2 3‘I’nplp2p3—425n .

G, structures in &7. The structure is specified by an
associative three-forrg. In a local frame this can be given

by

¢ — e246_ e235_ e145_ e136+ e127+ e347+ 8567. (216)

This defines a metrig;=(e!)?+ - - - +(e")? and an orienta-
tion vol=e!/\- .. A\e’. Explicitly we then have

* ¢ — 91234+ 91256+ e3456+ e1357_ el467_ e2367_ 62457.

(2.1

The adjoint representation &(Q(7) decomposes a2l
— 7+ 14 where 14 is the adjoint representation &,. The
intrinsic torsion then decomposes into four mody23|,

TeAlogs=W,oW,eWeW,,
TX7=1+14+27+7. (2.18

The components off in each modulelV, are encoded in
terms ofd¢ andd* ¢ which decompose as
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dpe A=W e W8 W,, could be equally well defined in terms of these forms. We
also have a natural orientation given by wqU*)2"/(2n)!
35-1+27+7, for any JA.
Forn=1 recall thatSg1)=SU2) and this case has al-
d* pe AP=W,oW,, ready been considered above. We can make the correspon-
dence by identifyingl=J% andQ=J?+iJ'. In more detail,
21-14+7. (219  first note that one can define nine Lee formg'®

Note that tha in the . =J"1dJB, but for SU2) only the diagonal Lee forms are
ote that theW, component in the’ representation appears ;,qenendent, sincd®- LA® is independent oA for eachB.

in bothd¢ andd* 4. It is the Lee form, given by The three classes of intrinsic torsion deﬁnegl2 ab?\l/e from the
= — % * SU(2) point of view are given byw,=3(L%*—LY), w,
We=de p1d*o. @29 2 L33 andWs=3(L+L?%. Note that the almost complex
The W, component in the singlet representation can be writstructure J* is integrable if and only ifL*~L*=0 and
ten as similarly for J* andJ? [29].
The only other case of interest in the context of this paper
W,=*(p/\dg). (2.21)  is Sp2). Theadjoint representation 8O(8) decomposes
under SH2) as28—3(1)+3(5)+10, wherel0 is the ad-
joint representation o6(2). Onethen finds that the intrin-
sic torsion decomposes into 9 differed(2) modules

The remaining components dfp andd* ¢ encodeW,; and
W, respectively. Thes, manifold hasG, holonomy if and
only if the intrinsic torsion vanishes, which is equivalent to
d¢p=d* ¢»=0. Note that under a conformal transformation 9
é—e% ¢ the metric transforms ag—e?'g and hence # TeAlosp2) = e W,
—e** ¢, Under this transformatiow;, W, and W5 are =1
invariant, while the Lee form transforms ad/,—W,
—12df. Finally, note thatG, structures of the type/V; (4+4)X[3(1)+3(5)]=6(4+4)+3(16+16),
®W,® W, are called integrable as one can introduc&a (2.26
Dolbeault cohomology28].

Again there are a number of useful identities given thewhere the notation takes into account that while the torsion is

definition (2.16. We have real, the representatiorsand 16 are pseudo-real. One can
show that all the components df in W, are specified in
* PP by oo =B o o 9*¢[mlmz[nln25nmj] terms of the exterior derivativesJ®. Thus theSg(2) mani-
fold hasS[2) holonomy if and only ifdJ*=0. In general
— ™Mby nong, six of the nine Lee form&*B=J* 1d J® are linearly indepen-
dent[this is actually true for ang(n) structurd, and these
* pMiM2P1P2* ¢n1n2plp2=85nm11n”2’2+ 2*¢m1m2nln2, precisely correspond to the si¥{4) representations ap-

pearing in Eq(2.26. To be more precise, one can show that

* hMP1P2P3* d’nplpzpsz 245nm, (2.22 124 21 38. (Lll— L22),
while L3L4 L 18= 32, (L38— L 1Y
¢ p= 25nm11r:f2‘2+ M, L2341 32= 1. (122 39), (2.27)
P2 =65, (2.23  and hence six independent Lee forms are giverLbly L?2
and L and L*>— L%, L3—L* and L?°-L%. (Note that
and similar definitions of the independent Lee forms in the case
] of almost quaternionic manifolds are given80].) One also
PTP* B g™ ¢>[m1[n1n25n32] : notes the relation
AN 1B Cy_ 1A.| BC, 1B.| AC
pMPiP2x ¢n1n2p1p2:4¢mnln2_ (2.24) *(IPNIPAAIY) =32 LP5+J5- LA~ (2.28

Finally in later calculations we found it useful to deter-
mine the relationships between the ten six-fordfg\J®
AJC. A general six-form, which is Hodge dual to a two-
form, corresponds to the2) representations in the decom-

JA. JB= — §AB1 4 ABCIC (2.25 position 28— 10+ 3(5) +3(1). As the six-forms of interest
are constructed frorB2) singlets, they must correspond to
Together these define a metgg. Lowering one index with  the three singlets in the decomposition, and hence there must
this metric on each almost complex structure gives a set dfe seven relationships amongst the ten six-forms. They are
maximal rank two-formsJ®. Note that theSg(n) structure given by

Sp(n) structures in &4n. The structure is specified by
three almost complex structurd§ with A=1,2,3 satisfying
the algebra
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1 with V* having special holonomy in its minimal canonical
INPNAI=INIPNIP= 531/\31/\31, dimension: the cases are listed in Table I. For each case we
present the necessary and sufficient conditions onGhe
1 structure in order to preserve supersymmetry and present the
FPAIBNAIE=J2NINI = Z IPNIPN T2, generalized calibration expression for the flux. Our aim is to
3 summarize the known cases in a uniform way as well as to
1 present new results on the two remaining ca§g$2) and
BAINIL=IBNAIZNAI2= ZBAIBN TG, SWU(2)XSU(2). At the end of thesection we will also dis-
3 cuss the generalizations needed for the heterotic or type |
string theories.
The basic technique to derive the results of this and sub-

SU(2)XSU(2) structures in &8. The structure is defined sequent sections is to construct tensors from bi-linears in the

by a pair of orthogonaBl(2) structures which we can write KiII[ng spinor .e+, which characterize the structure. Differ-
as two triplets of almost complex structure(J' A) satis- ential constraints on the structure are obtained from the van-

ishing of the dilatino and gravitino variations. The expres-

JINIPNIE=0. (2.29

fying sion for the three-formrH as a generalized calibration can
JA.JB= — §AB] 4 (ABCIC easily be obtained using the method [af. We will not
present any details of these calculations in this section, for
J'A Y B= — §AB4 (ABCYI C reasons of clarity. Note, however, that the next section will
contain some representative calculations.
JA.J'B=0. (2.30 SU(n)-geometries in&d2n. We start with the case where

V* has SU(n) holonomy ind=2n first considered in the

Again these define a metric. Lowering one index on the alcase of heterotic and type | theoried #. In other words we
most complex structures gives six half-maximal rank two-consider supersymmetric geometries ds=2n preserving
forms. We also have a natural eight-dimensional orientationwo complex chirald=2n spinors related by complex con-
given by vol\vol’ where vok=(J*)%/2 and vol=(J'B)?/2  jugation. Forn=2,4 both spinors have the same chirality,
for any A andB. while for n=3 they have opposite chirality. The necessary

Following the usual prescription decomposing the adjointand sufficient conditions for preservation of supersymmetry
representation o8Q(8) into SU2)X SU(2) representations are that the manifoldV,, has anSU(n) structure (,Q)
to give[su(2)®su2)]* one finds 28 different real modules: satisfying the differential conditions

28
TeAl®[su2)esu2)}* = o Wi, d(e"**Q)=0,
i=1
_ _ d(e 2**J)=0, (3.2
[(2+2,1)+(1,2+2)]
C with the flux given in terms of the structure, in each case,
><[6(1,1)_+(2+2,2+ )]_ B B by [7]
=10(2+2,1)+10(1,2+2) +4(3,2+2) + 4(2+2,3).
230 *H=—e??d(e 2®) for SU2),

Since theSU2) structures are orthogonal, we necessarily *H=—e??d(e 2%J) for SU3),
have an almost product structufe. This is a tensodl,,"
satisfyingll-IT=1. It can be written in terms of the complex . N
structure adl=JA.JA—J'B.J’ B for any A andB. This can H=-e""d| e EJ/\J for SU4).
be written as the product of two commuting almost complex (3.2

structures)*=JA+J' B, As discussed in Appendix C, ge-

nerically the almost product structure is not integrable. Note that here and throughout the paper the Hodge star is

. defined with respect to the canonical orientation fixed by the
IIl. GEOMETRIES WITH €™ KILLING SPINORS structure. FoiSU(n) this is vol=J"/n!. Our conventions for
IN'CANONICAL DIMENSION defining the spinors, and the constructionJpf) and vol in

We now consider the generic supersymmetric type Il gel€rms Of spinors are given in Appendix B.
ometries 14,g4,®,H) preserving just one type of spinor, These gondmons od ant_jQ are equwalent_to those [12]
which for definiteness we take to k€. This requires that (e}fter setting the gauge f|eld.to. zgrdn particular, as we
V* has special holonomy group given by one of the group§ilscuss .below, they imply th_dtls |.ntegrable. As a result, the
given in Fig. 1(recall that when we discuss holonomy we are&Xpression foH can be rewritten in the form, as given[i,
referring to the covering space W4 is not simply con- .
nected. In this section we will consider only geometries H=i(d—9)J, (3.3
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whered=d+ 4. (Note that this corrects a sign in the corre- based on the Iwasawa manifold, although supersymmetric,

sponding expression if2].%) However, it is the form(3.2) do not solve the leading order equations of motion. In gen-

that naturally generalizes to other cases. eral, solutions withH+#0, and® non-constant must have
In particular we note that the expression for the three\W,;#0 andWs# 0. Similar comments apply to other cases

form flux is that of a generalized Kéer calibration. This is considered below.

physically reasonable since we expect that geometries with SPin(7)-geometries in-d8. Now consider the case when

flux should arise as solutions describing fivebranes wrappin§ * has Spin(7) holonomy. This corresponds to supersym-

supersymmetric cycles, as discussed in detal7in For in- ~ metric geometries il=8 preserving a single chiral spinor

stance, in theSU4) case, geometries with non-zero flux of Spin(8). Thenecessary and sufficient conditions are that

with V' havingSU(4) holonomy correspond to a fivebrane Mg admits aSpir(7) structure whose only constraint is that

wrapped on a Kaler four-cycle in a Calabi-Yau four-fold. the Lee form is again exa¢10]

Such branes are calibrated By/\J which is precisely the

generalized calibration appearing in the expressionHor W;=12dD. (3.5

Similarly, the SU(3) geometries correspond to fivebranes

wrapping Kaler two-cycles inCY three-folds which are The flux is then given by7]

calibrated byJ. The solutions found if31] are of this type

(see[32] for an explicit discussion Finally the slightly de- *H=—e2%d(e 2%V). (3.6)

generateSU(2) case corresponds to a fivebrane wrapping a

point in aCY tW-O-f0|d,- i.e., the fivgbrane is transvgrse to FheAs in the SU(N) case we can understand these geometries

CY,. Such cppflguratlons are calibrated by the unit function.;ng conditions in terms of wrapped branes. They arise as
The cpndmons on théSU(r_l)_ structure_(3._l) can b_e '€~ solutions for fivebranes wrapping Cayley four-cycles in

phrased in terms of th_e clqssmcatmn of intrinsic torsion. Theyanifolds withSpir(7) holonomy and the expression fer

first condition in(3.1) implies thatW,=W,=0, and hence jndeed corresponds to a generalized calibration for such a

the almost complex structure is in fact integrafds pointed cycle.

l‘?Ut in [)2/]\/)' T{/‘\‘}‘S f]%sul(f) SFLIJ?ZS)UM) themi}ntrinzicmt}orsion It is interesting to note that if we perform a conformal

ies in Wi W,&Ws. For , since W, and Ws are Ty o

always absent, we haviee W,® Ws. In all cases the second transformat|qrg_~e 9 theh the correspondingpir(7)

condition in(3.1) is equivalent to the statement that the LeeStructure definingy has vanishing Lee form, and hence has

form is exact and related @, namelyW,=2d®. The first intrinsic torsion just in the clask, [10]. One might enter-

condition also implies that Lee form fd® is similarly pro- ~ t@in the idea of solutions that are conformal to a

portional tod® with Ws=(—1)"2""2W,. For SU3), this  Spin7) holonomy manifold, i.e. with g having

was first noticed if17]. Spin7) holonomy. While such a geometry, with non-
Note that this relation implies that under a conformalVvanishing flux, certainly admits Killing spinors, we cannot

transformation, the invariant combinatid@.10 is propor- ~ solve the Bianchi identitglH=0 with non-zero flux. To see

tional to (n—2)W,. Thus only whem=2 is it possible to this observe that the geometry has the form

have geometries that are conformal to Calabi-¥euolds, as

noticed by[2]. In this caséNs=W,=2d® with W,=0. The g=e®7g,
general form of these geometries in ten dimensions is thus
given by 1
Hmnp: - §\Pmnpqvq(eﬁl7®)- (3.7

ds?=dsA(R19) +e2*d<?,

The expression fodH contains both th&5 and 1 represen-
tations of Spin(7). The singlet is proportional t&%(e®7%)
while the 35 corresponds to the trace-free part of
ViV,(e%™). We thus conclude thaiH=0 implies that®
=const which in turn impliesd1=0.

G, geometries in & 7. Next consider the case wh&h"
hasG, holonomy. These geometries preserve a sigie/
spinor. The necessary conditions for supersymmetry were de-
rived in[7-9] and sufficiency was proved {18,9]. This case
was discussed in detail from the point of view of this paper
in [5]. The geometry admits &, structure satisfying the

V2e2?=0, (3.4

with H given as in Eq(3.2) andds? the metric onCY,. This

is just the usual fivebrane solution transverseCté,. The
possibility of conformallyCY, geometries was considered in
[2] but here we claim the stronger result that it is in fact
necessary.

It is worth emphasizing that b = const then the leading
order equations of motion impid=0 and in additionF
=0 for the heterotic or type | cadesee for example Eq.
(Adb)]. Thus, for instance, the solutions presented 1]

conditions
%To see this one must take into account that our convention for the d)/\dd): 0,
definition ofH has the opposite sigland a factor of twpcompared
to that in[2]. d(e 2®* ¢)=0, (3.9

086002-9



GAUNTLETT, MARTELLI, AND WALDRAM PHYSICAL REVIEW D 69, 086002 (2004

which means that the intrinsic torsion lies)ti;® W, in the  plex with respect to all three complex structures. It was
representation®7+ 7. Moreover it implies that the Lee form shown in[36] that these are linear. If22] solutions were

is again exact withV,= —6d®d. The flux is given by 7] written down for these configurations and it is plausible that
they are the most general, once the Bianchi identity is im-
*H=e2%d(e 2%¢). 39  posed.

. . . . SU(2)xSU(2) geometries in €8. Finally consider the
It is worth noting that these geometries are special cases %fase whelV* hasSU(2)x SU(2) holonomy. This case cor-
integrableG, structures in which one can introduceGy .

: . o § i
Dolbeault cohomology28]. responds to supersymmetric geometries preserving four chi

Th backarounds ari lutions describing fiv ral d=8 spinors, all with the same chirality. The necessary
€se backgrounds ariseé as solutions describing eé}nd sufficient conditions are thdflg admits anSU(2)
branes wrapped on associative three-cycles in manifolds °><SU(2) structure satisfying

G, holonomy. This is reflected in the expression for the flux

which is the condition on a generalized calibration for such a d(e 2*3*Avol’)=0,
cycle. Solutions of this type were presented38,34,5 (see
[5] for an explicit demonstration dB33)). d(e 2?32 Avol)=0,
If we perform a conformal transformatian=e ™~ ®g, then
the correspondings, structure has vanishing Lee form, and d(e ?®JANJB ") =0, (3.13

hence has intrinsic torsion just in the clagg [9]. In par- . .
ticular one can consider an ansatz for solutions that are cowhere, e.g., voF (IAMNIMN/2 for eachA, while the flux is
formal to aG, holonomy manifold: given by

g=¢%G, *H=—e?d(e 2®vol+e ?®val"). (3.14

1 As discussed in Appendix C, the almost product structure
Himnp=— 5 bmnp Vq(e®). (3.10  defined byll=(J*+J’B).(JA—J’B) is not integrable. This
is because the mixed componehts, andH,;, using the
However, as in thépin(7) case, Eq(3.7), the Bianchi iden- notation of Appendix C, are generically non-zero. A notable
tity dH=0 implies that® is constant and hendé=0. subclass of solutions, with integrable products, is given by
SH(2) geometries in e 8. Next consider the case when those corresponding to two orthogonal fivebranes intersect-
V* hasSp(2) holonomy. The geometries preserve three chi{"9 In a string, one fivebrane wrappir@Y, and the other
ral d=8 spinors with the same chirality. The necessary and® Y2 in CY>XCY;. Such solutions are discussed for in-
sufficient conditions for preservation of this supersymmetrystance in37].

are thatM g admits arS(2) structure satisfyingsee Appen- Let us now consider the modifications required for het-

dix B for the definition ofQ*) erotic and type | string theory. In addition tg{,H,®) the
bosonic field content also includes a gauge figlavith field
d(e ?*0%=0 for A=1,2,3, strengthF, in the adjoint ofEgX Eg or SQ(32)/Z,. In order

to preserve supersymmetry we require the expressions in

d(e 2**J=0 for A=1,2,3, (3.1) (1.1 for € only, and thus the cases described in Table | and

. ) . the above discussion are equally applicable to the heterotic

with the flux being given by and type | theories. In addition, preservation of supersymme-

try requires the vanishing of the gaugino variatidnd)

1
*H=—e2%( eZ‘DEJA/\JA) for A=1,2,3. (3.12

I'MNE et =0. (3.15

Note that the conditions on the structure are given by thoseor each case in Table |, sine€ is a singlet of the special
for the SU(4) case for each complex structure. holonomy groupG of V', this is satisfied, breaking no fur-
The conditions(3.11) imply that the parts oflJ* trans-  ther supersymmetry, if the two-forrf, considered as the
forming in the twol6's are independent @& In addition the  adjoint of SO(d), lies within the adjoint ofG.
12 4's are determined by the dilaton. The “diagonal” Lee For theSpin(7) case we therefore need to consiéen be
forms are all equal*'=L?*=L%=2d® and hence the off a Spir(7) instanton satisfying
diagonal Lee formd *B, A#B are anti-symmetric with_'2
=-23%.d®, L3*=-232.d® andL?=-231.dd. 1o o
SinceV*" hasSp(2) holonomy, these geometries are ex- Fmn=— E\Pmn Fpa (3.18
amples of manifolds known as hyperddar with torsion
(HKT). A discussion of these geometries can be found, fowhile for G, we need
example, in[35] and also[30]. Our geometries are special
examples since the dilaton places additional constraints as 1
listed F?’;1b0ve. P Fmn==35" bmn”F pq- 317
It is worth noting that this case arises when fivebranes
wrap quaternionic planes iR8, that is cycles that are com- For theSU(n) cases, we require
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1 ometry of the formR** 9xM, when V' has special ho-
Fmn=— 2 EJ/\J PP pq (3.18 lonomy in the corresponding canonical number of
mn dimensions,Spin(7) in d=8, G, in d=7 and so on. The
analysis forV ™ is simply obtained by takingl — —H. More
generally one can ask for the generic static supersymmetric
JBE ——F —F—=0 (3.19 background of the fornikR X M4 preserving some number of
ap =l ap T apT ' supersymmetries. In this section, we give a complete analy-
That is we need a holomorphic gauge field on a holomorphi€iS Of this question when the spinors are all of the same type
vector bundle satisfying the Donaldson-Uhlenbeck-Yau2nd Show that in addition to recovering the results of the
equation, as noticed if2]. For the S{2) case we require previous section we find more general clgs§es of.geometrles.
that the gauge field satisfies .18 for all three complex As before, for deflnltt_ane.ss we take the Killing spinors to be
structures, or equivalently - all of the typee* satisfyingV*e™=0. In the next section
' ' we turn to the case where some Killing spinors satisfy
VT e"=0 and som&V e =0.
Suppose we havhl independent spinorsg) ind=9 all

which are the same as the Bogomol'nyi-Prasad-SommerfielgatisfyingV ", =0. In general, these defineGstructure,
(BPS equations of38]. For SU(2)?, with self-dual complex WhereGCSpin(9) is the stabilizer group of rotations which
structures, the gauge fields must describe an anti-self-duigave all the spinors invariant. One finds the seven special

instanton for each of theU(2) structures. This can be writ- 10lonomy groups given in Fig. 1 as possibilities. Further-
ten as more these embed i8pin(9) in the conventional way fol-

lowing the pattern of the dimensional reduction. That is to
1 say GC SQ\n)CSQ9) wheren is the canonical dimension
Fmn=— §V0|mnpq|:pq= - §V0|r'nnpq|:pq- (3.2)  for the G structure as given in Fig. 1.
As usual the structures can also be defined in terms of a
Note that in all cases the instanton condition can be writterf€t of forms which can be constructed out of the spinors. In
as general, these are of the typ&KY, ... K® " EA) with
iKiZ2*=0. HereE” are the set of forms used to define the
*F=E/AF (3.22  structure in its canonical dimensionas described in Sec. Il.
TheK' are a set of 9-n independent one-forms required to
whereE is the invariant form entering the generalized cali- define the additional orthogonal dimensions to give a struc-
bration expression for the fluxtf=e?*d(e ??2). ture in d=9. Thus for instance &, structure ind=9 is

As shown in[5,6] the equations of motion of type | su- defined by the set!,K?, ¢) with ixi¢=0. In a local or-
pergravity are automatically satisfied if one imposes thehonormal framee™, we can take the formp to have the
modified Bianchi identity foH, standard form(2.11) in terms ofel, ... e’ while K!=g8
andK2=g®. Thus, at any given point iMg, the formsK?!
andK? define a reduction oR® into R’@R? and hence de-
fine aSQ(7)CSQ9) structure. The three-fornp then de-
scribes aG,CSQ(7) structure on theék’ subspace in the
usual way. Note that the structure always defines a metric.

dH=2a'(TrFFAF—trRAR) (3.24 Using this metric we can also view th€' as vectors. In
addition, as we will see, the inner product: K! is constant

which allows solutions wittdH=0 as for the type Il theo- for all i andj and so we normaliz&' to be orthonormal.
ries. If the flux H is zero, we havé&VK'=0 andMy is then,

We noted above for thepin(7) case that the ansat3.7)  after going to the covering space, just a produg=R%""
preserves Killing spinors but does not solve the BianchiXM, whereM, is aG holonomy manifold in the canonical
identity dH=0, and hence the equations of motion, for non-dimension. From this point of viewG holonomy extends
vanishingH,®. It is interesting to ask whether there are trivially to nine dimensions. With flux however, this is no
heterotic solutions solvingH=2a'TrF/AF. Indeed, when longer the case. We will show that there are new possibilities
g is flat such solutions have already been fo(ig€l]. Simi- WhiCh are not simply diregt products of the ggometries given
larly heterotic solutions fod=7 that are conformal to flat in the previous section with flat space. We discuss the most

space were found if¥0]. It would be interesting to construct ge_neral_ case .OG:SP"(?)’ corre_spondmg to one Killing
. . ~ spinor, in detail and then summarize the analogous results for
heterotic solutions wherg is conformal to a non-flat

. ) the other structure groups, corresponding to the existence of
Spir(7) or Gz-holonomy manifold. more than one Killing spinor.

which, in complex coordinates, is equivalent to

Fun=JnPIn9F,q, NOsumonA, (3.20

dH=2a'TrF/AF. (3.23

In type | or heterotic string theory the Bianchi identity is
modified by higher order corrections

IV. GENERAL GEOMETRIES WITH €™ KILLING A. Single Killing spinor: Spin(7) structure in d=9

SPINORS First assume we have a single Killing spinef on Mg,

In the previous section, we gave the necessary and suffand sinceV*e*=0, we can takeete"=1. It is easy to
cient conditions for preservation of supersymmetry for a geshow that the stability group iSpin(7)C Spin(9). Equiva-
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lently we have the set o$pin(7)-invariant forms K,¥) preserves th&pin(7) structure. That is, the Lie derivative of
with i, ¥=0 andK?=1. In a particular basie™, we can the spinore* vanishes and hence the Lie derivative bf
takeK =e® and¥ given by the standard forif2.11) in terms  also vanishes,

of el, ... €% In terms of the spinoe™, we have

Kn=€" yme", Y nnp= —€t YmnpE s 4.1 L¥=0, 4.9

where y, are nine-dimensional gamma matrices Wwithyhich implies similarly thatCyH=£,®=0. The Lee form
v1...9=1. From the Killing spinor condition§l.1), as in the  gndition in Eq.(4.6) can then be written
previous section, one derives a set of necessary and sufficient

conditions on K,¥). The conditionV " e* =0 simply trans-
lates intoV*¥=V*K=0. From the latter constraint we W 1doW=12d,® (4.10
immediately see, sindd is totally antisymmetric, tha is a

Killing vector, and in addition that the norm &fis constant, \hered, is the exterior derivative on the eight-dimensional
as claimed above. In addition one finds spaceM,. Similarly the condition(4.7) reduces to

dK=G, 4.2

. *OHOZ _eijdo(eizq’q’), (411)
where we have made the geneHE(8) decomposition

H=H,—KAG, (4.3)  where *, is the Hodge star oM. In other words, thel
=8 Spin7) structure¥ on M, is independent o and sat-
with ixkHe=ixG=0. We can now introduce local coordi- isfies exactly the same conditioi3.5) and (3.6) as in the
nates such that the metric has the canonical form of a fibraast section. In particular, the only constraint on the intrinsic
tion torsion ind=8 is that the Lee form is given as in E@.6).
By substituting back into the supersymmetry conditighd)
ds’=ds*(Mo) + (dy+B)?, (4.4) it is easy to see that these conditions are sufficient for super-
symmetry. We should point out that it is straightforward to
also define and characterize the intrinsic torsion of the
Spin(7) structure directly id=9 but as it provides no extra
information on how to characterize the geometries we shall
not present any details here.

To summarize, the generdkE=9 geometry is simply a flat
direction fibered over @=8 Spin7) geometry, with the fi-
bration determined by an AbeliaSpin7) instanton ind

_ 1 _ =8. The metric is given by Ed4.4), the three-form by Eqgs.

Im®e A,y et + 1—2Hmnpe+[A,ym”p]ie+=0 (4.5 (4.3, (4.11) and the dilaton by Eq4.10. In order to obtain

a supersymmetric solution to the equations of motion we also
where A is an operator built out of gamma matrices andgneed to impose the Bianchi identity fer. Explicitly we get
[-,- ]+ refer to the anti-commutator and commutator respec-

with K=dy+ B, while dB=G is a two-form onM g and the
metric ds>(M) is independent of and admits aSpin(7)
structure defined by, which may, however, at this point,
depend ory.

Now we turn to the dilatino equation. Following the dis-
cussion in[7], given the symmetry properties of the nine-
dimensional gamma matrices, one has

tively. By taking A=+™ with the lower sign andA 0 fortypell,
=M. --- M6 with the upper sign in Eq4.5), one finds two ,
constraints on K, V). First one has the Lee form condition doHo—GNAG=1 2a'(TTEAF-trRAR) (4.1
for heterotic and type I,
Vidv=12d®, (4.6)
and then the familiar calibration form for the flux whereF is aSpin7) instanton.
. o A number of further comments are in order. First, when
*H=e*"d(e **W/\K). (4.7)  the flux is zero, we commented above that, after going to the

covering space, the geometry is necessarily a direct product
- --.mg  of ad=8 Spin7) holonomy manifold with a flat direction.

=e" ymL o Mogt By contrast when the flux is non-zero, it is only in the special
If we decompose Eq(4.7) into SQ(8) representations, case whemdK=G=0, when the fibration is trivial, that the
consistency with Eq(4.2) requires geometries are simply the product of thel=8
Spin(7) geometries considered in the last section with a flat
1 direction.
S pq . .
Grmn 2 Wmn"Gpg- (4.8 Second, sinc& generates a symmetry of the full solution,

including the spinors, we can dimensionally reduce a type |
In other wordsG satisfies theSpin(7) instanton equation on solution to get a supersymmetric heterotic solutiordin8
My. As a resultK is not only a Killing vector but actually with an Abelian instantorF proportional toG. Similarly,
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given a heterotic solutiongg,Hy,®,F) in d=8 with an B. Multiple Killing spinors
Abelian Spin(7) instantonF, we can oxidize it to obtain a
type Il solution ind=9 with G proportional toF, a metric
given by Eq.(4.4 andH=Hy—G/\K.

Third, the solutions are invariant undefaduality in the
y direction.

Finally, note that thel=9 expression for the fluxd.7) is
again that of a generalized calibration. It corresponds to a N

. . Co 1
fivebrane W'app'”?‘ a super.symrletn'c flve-'cyélgis |1n bedding ofSpin(7) in Spin9). Thestructure grougs is then

the produc_t of &Spin7) manifold M with a circle,M X S, the common subgroup of this set of embeddgpin(7)

with 3 ,C M being a Cayley four-cyclgNote that one could groups. From this perspective, ea@tstructure is equivalent
equally well replace the circle with a lineThe simplest way to a set of distincSpin(7) structures.

of wrapping the fivebrane leads tada=9 geometry consist- Recall that the structure can be defined in terms of
ing of the product of al=8 Spin7) geometry considered in (K',Z*) whereE* are forms used to define the structure in
the last section with as®. The S is a flat direction on the its canonical dimension andK' are 9-n one-forms. The
world-volume of the fivebrane. The analysis of this sectioncondition V*K'=0 implies eachK' is Killing and we can
shows that more complicated geometries can arise leading take them to be orthonormal. In addition, as in B@n(7)

the world-volume direction being fibered over tle=8  case one can always derive a set of necessary and sufficient
manifold. As wrapped branes have holographic duals, it willconditions on K',E4) using the dilatino constraint. One al-

be interesting to determine the holographic interpretation ofvays finds the familiar calibration condition foH-. Explic-

The case of multiplee™ Killing spinors is completely
analogous to theSpin(7) case discussed above. As men-
tioned, the set of spinors(ﬁ) in general define & structure
in d=9 with G being one of the standard special holonomy
groups SU4), Sp2), SU2)xXSsuUz2), G,, SU3) or

U2). One way toview how these groups appear is to see
at the stability group of eachg) defines a different em-

this. itly, for the cases whera=8 one has
|
20 —2<I)1
e?®dl e EJ/\J/\K for SU4),
*H = 1
H=Y g ez‘DEJA/\JA/\K) for SH2) with A=1,2,3, (4.13

e’®d(e ?®vol\AK+e ?®Pvol’ AK) for SU2)XSU?2),
whereK is the single one-form, while for the<8 cases we have
e??d(e 2®p/\KLA\K?) for G,,
*H=1{ e®®d(e 2PJAKIAKZAK?3) for SU?3), (4.14)
e?®d(e 2PKIN. . AK®)  for SU2).

The necessary and sufficient conditions also imply thaSpir(7) case these turn out to be precisely the canonical
the Killing vectorskK' all commute and furthermore each dimension conditions given in the last section.

preserves the underlying structureE”. This implies that The additional freedom in nine-dimensional geometries is
the metric can be put in the canonical fibration form given by the two-formsG' defining the fibration. Again as in
the Spin(7) case consistency between the calibration condi-
o-n tions (4.13 and(4.14) and the expansiot#.16) implies that
ds’=ds*(Mg)+ Z (dy'+B")?, (419  eachG' satisfies the appropriate Abelidh instanton equa-
tion on M.

In summary, general supersymmetric geometried 0
are closely related to the supersymmetric geometries in the
canonical dimensions discussed in the last section. They all
have a fibered structure where the base spdgehas aG
9-n structure in the canonical dimension satisfying one of the
_ 2 KIAG, (4.16 sets of conditions given in Sec. lll. The flux is given by a
i= generalized calibration conditiof4.13 or (4.14), corre-
_ _ sponding to a fivebrane wrapping a five-cycle. The twisting
whereG'=dB' are two-forms orM,. In addition one finds a of the fibration is described by two-forn@' which are all
set of constraints on th& structureE” on M. As in the  Abelian G instantons orM,. If one makes a dimensional

where M, is an n-dimensional manifold an&'= dy +B'.
FurthermoreM, has aG structure defined b§g”* indepen-
dent ofy'. The fluxH has the related decomposition
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reduction on theK', the solutions correspond to heterotic whereG=dB is an Abelian anti-self-dual instanton agds

solutions in canonical dimensioti=n with 9—n Abelian w0 \olume form ond$2. Generically, these solutions pre-
instantons. In order to obtain a solution to the equations o erve 1/2 of thee* supersymmetries, and none of the

motqudthe .ﬂUXHO on M, must also satisfy a modified Bi- supersymmetries for the type Il theories, corresponding to
anchi identity eight supercharges for both the heterotic and the type Il theo-
ries. For solutions, we must impose the Bianchi identity for

0 fort Il
(N orpe il H. This gives
doHo— X, G'/AG'=1 2a’(TrF/AF—trRAR)
o for heterotic and type I. GAG fortypell,
(4.17) —d%¥de?*={ GAG+2a'(TTFAF—trRAR) (5.2
These results provide a comprehensive classification of all for heterotic and type I.

the possible supersymmetric heterotic or type | or NS-NS L )
type Il bosonic geometries of the forith® 94X M 4 preserv- Recall that supersymmetry implies thHats also an anti-self-

ing Killing spinors satisfying Eq(1.1) for e*. Any solution dual instanton on the base. In the special case tHRA\R

with d<9 can be obtained simply by setting-@l of the B' =0,. satisfyin_g the Bianphi identity then implie; that the
twists to zero, so that the fibration becomes, at least partially€2ding equations of motion are automatically satisfied. Oth-
a productMgz]Rg*dx My. erwise, one must separately check that one has a solution of

Note that there is one possible caveat to this analysid!® €quations of motion, including at this ordef correc-

which is the existence of geometries with exactly five, six ort!ons- ,
seven Killing spinors. This necessarily defines 80(2) Particular solutions can be found whenever we have an

structure and would require the existence of a compatibl&XPliCit anti-self-dual Abelian instanto@ on a hyper-Kaler

connectionV * without the particular fibration structure de- manifold. The simplest cases are when the hypériétemet-
scribed in the text. It is unclear to us whether this is possibl

dic is flat. Let us present some examples just for the type I

or not. Similar comments apply to the existence of solution<@S€; for simplicity, where the Bianchi identity becomes

with nine or more supersymmetri¢so defining an identity
structurg@ which are not simply flat space. V2e2® = _ 32, (5.3
It is interesting to note that particular examples of these 2

general types of solutions have already appeared in the lit- i i , o ,
erature. Examples d8U(2) structure ind=6 andSU(2)? Then a simple anti-self-dual instantons is given for instance
in d=9 were considered ip41] using conformally Eguchi-
Hanson metrics. Similar solutions related to D3-branes were
considered i42]. Further examples will be presented in the
next section. . corresponding to a constant field strength. A radial solution

. We should alsq note tha1=_6 ggometnes_of_ the type for the dilaton is given by
discussed here with two flat directions are similar to those
studied in[43]. However, the motivation of that work was m 1
rather different; namely, the idea was to exploit the fibration e2P=1+—— %2 (5.5
structure in order to construct examples of manifolds with r2 4

SU(3) structures in six dimensions of the type described in
the last section. A different radial solution can be obtained by writing the

flat metric in terms of left-invariant one-forms on the three-
V. EXPLICIT EXAMPLES | sphere:

B=y(x*dx?—x3dx?*), (5.9

We now present explicit solutions of the type described in IR SRR 202 3.0
the last section. For illustration we shall consider here just a ds’=dr+ 2’ [(oR)"+ (oR)"+ (0R)"] (5.6
single flat direction fibered over a base manifg. Addi-
tional examples with two flat directions fibered over a four-with positive orientation given bydrAckA\oa/\ad (our
dimensional base will be considered in Sec. VII. To beginconventions are as |[<ﬂ_1:|) A Singu'ar anti-self-dual instan-
with we considerM, to be four dimensional, and the three ton is then given by
complex structures are taken to be self-dual. As noted in Sec.

[, My is necessarily conformally hyper-Keer. The five- Y

dimensional geometry thus takes the form B= paR. (5.7
r
ds’=e?®(ds?) + (dy+B)?, 5.1
(ds)+(dy+B) ®.D A radial solution for the dilaton is
Hmnp: _;mnprﬁleZ(D_?’B[man] ) m ’}/2
e2“’=1+—2——6. (5.9
Hymn: —Gmn, r 12r
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When the hyper-Klaler metric is Eguchi-Hanson space or d?=e®(d<?) + (dy+B)?,
Taub Newman-Unti-TamborindNUT) space any of the anti-
self-dual harmonic two-forms on these spaces can be used as 1. _
the Abelian instanton and if they are normalizable they lead Himnp=— 5" bmnp'Vee” — 3BmGnpy »
to non-singular solutions. These cases have already appeared
in the literaturg 41].

Let us now consider whether we can obtain compact het-
erotic solutions of the fornt5.1). (Recall that there are no where G=dB is an AbelianG, instanton on theG, ho-
compact solutions with flux for the type Il casgs]) The  jonomy manifoldM. A type Il solution is then obtained by
base spac& must admit a hyper-Kaer metric so is either solving the Bianchi identity which reads
T# or K3. In addition, we will compactify the fiber direction — o
on a circleS! of radius R. By construction such a back- * Bimnp Vi1 Vge* = 3G mrGpiy - (5.12
ground preserves eight supersymmetries. For a solution we. . . L .
must also satisfy the Bianchi identity. The left-hand side Of&ven thatG is a G, instanton, this is equivalent to

Hymn:_Gmn (5.1

Eqg. (5.2) is exact, thus the sum of the sources on the right- o _ 1.

hand side must be trivial in cohomology. Since the manifold VinVne® = —2G ¥ G+ ZGzamn- (5.13
is compact, each of the sources is also quantized, being some

multiple of the first Pontrjagim,; e H*(Ms,Z) class(instan- To get explicit solutions we need explid@, holonomy

ton chargg of t?e_corr_espondlng bundle. B is the bundle  eyricsd's? and explicit Abelian instantonG. One approach
describing theS flpratlon andV the bundle of the heterotic s ig note that if theG, holonomy metric admits a Killing
and type | gauge fields we have vectory, then the two-formdv is aG, instanton if and only
if v preserves th&, structure:L,¢=di,¢=0. Since all of
R2p,(E)+2a'py(V)—2a'py(TMs)=0 (5.9  the known explicitG, manifolds have many isometries, this
result allows one in principle to find new solutions and
would be interesting to investigate further.
in C0h0m0|Ogy. Note that given the definition Gfthe field If the G2 ho|0nomy manifold is flat, solutions with con-

strength entering, (E) is G/R, hence the factor dR?inthe  stant flux can be obtained as follows. We take
first term. Since botlG andF are anti-self-dual instantons on

the base,(V) cannot cancel againgt(E) and we can sat-
isfy Eq. (5.9 only by including non-trivialp;(TMs). The
equation for the dilaton ol then becomes

1
B= ECmnxmdx”, (5.149

giving constant field strengte=C. This is aG, Abelian
instanton providedC = — 3* ¢mP9Cpq. In other words,

V2020 _ EGZ_ o (TrE2—trR?). (5.10 using a suitable projection, we have in general
2 1.~
Cmn:§ éﬁ]qn_ Z* ¢mnpq) qur (5.19

One would then have to check whether such a solutiodfor
in fact leads to a background satisfying the f(ligher-  for an arbitrary constant two-for,,. We then find that
ordep equations for motion. One important point to note is
thzat satisfying Eq(5.9) with npn-vanishingpl(E) requires eP=_ l(zémkenk_ Eéfémn) X™"+ const (5.16)
R“~a’. In other words the size of th& fiber must be of 2 4
order the string scale. As such the supergravity description of
these compactifications is breaking dowNote, in addition, solves Eq(5.13.
that R? is constrained to be a rational multiple ef , so
cannot be a moduluslt would be interesting to find a cor-
responding conformal field theory description, for instance
by taking the orbifold limit of the bas&3 manifold. Note Let us now turn our attention to the type Il cases summa-
that it is trivial to extend these solutions to six-dimensionalrized in Table Il. These geometries preserve hothande™
compactifications with\V'=2 supersymmetry simply by in- Killing spinors and thus define two different structurés;,
cluding a second fibered direction. one for each set of Killing spinors, of the type described in
Now let us consider solutions where the base geometrgec. Ill. Taking both sets together definesGastructure
My is in more than four dimensions. Specifically we considerwhereG is the maximal common subgroup & and G~
solutions whereM, is conformal to a special holonomy given their particular embeddings 80Q(d). One can follow
manifold. We noted in Sec. Il that this rules out t8&(n) the detailed strategy ¢5] to derive the necessary and suffi-
cases fon#2. Let us thus conside¥l, to be conformal to a cient conditions on this structure in order that the geom-
G, holonomy manifold. An eight dimensional geometry pre-etry preserves the corresponding supersymmetry. This is
serving twoe ™ supersymmetries, one of eadk8 chirality,  based on direct manipulations of the Killing spinor equations
is given by and some details of this approach appedr7ih

VI. GEOMETRIES WITH BOTH € AND €~ KILLING
SPINORS
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Equivalently, we can obtain the conditions on tBatruc-  directions corresponding to the two directions transverse to
ture by writing theG™* structures in terms of thé structure  the fivebrane and the initia@ Y,. Explicit examples of such
and then imposing the conditions on t&e" structures de- solutions were presented §#4,45 and were further ex-
rived in Sec. lll. In implementing this strategy it is crucial to plored from the world-sheet point of view [@6].
recall that the signs presented in Sec. Il assumed that the SU(3) geometries in<7. This case arises whéfi™ each
preserved spinors were of the type and also took, in the haveG, holonomy and was discussed [i&]. These geom-
relevant cases, the preserved spinors to have a definite chiratries preserve twd=7 spinors, onee™ and onee . The
ity. In order to get the results of this section, one needs thgeometries have aBU(3) structure ind=7 is specified byl
appropriate generalizations f8 and sometimes the oppo- and(} satisfying Eq.(2.1) for n=3, and a one-fornkK such
site chirality. that

SU(2) geometries in€6. This case arises when both-
have SU3) holonomy with a commorSU(2) subgroup. ikQ=ikJ=0. (6.7
These geometries preserve two complex chdralb spinors,
onee™ and onee”. The necessary and sufficient conditions
for preserving th_is supersymr_netry are thﬂ% admits an B =IAKTIMQ 6.9
SU(2) structure ind=6 satisfying the conditions given be-

low. The SU(2) structure ind=6 is specified by a two-form  and demanding that they satisfy Eq8.8),(3.9) (and their

The two G, structures are given by

J, a complex two-form() and two Ol"!e-f0fnfl$‘<i with i generalization folv ") leads to the necessary and sufficient
=1,2, satisfying Eq(2.1) for n=2 and in addition conditions on theSU(3) structure
ikiQl=ikiJ=0. (6.2 d(e"®K)=0,
The correspondin@U(3) structures associated with™ are d(e"®2)=0
given by ’
£ 34 KIAK2, d(e"*ReQ)/\K=0,

Demanding that each of tH8U(3) structures satisfies the With the flux given by
necessary and sufficient conditions for supersymmetry dis- L 220 am 20
cussed in Eqs(3.1),(3.2) (with appropriate sign changes for H e d(e” ™ Im 2). (6.10

V™, as mentioned aboydeads to necessary and sufficient  The gbvious almost product structure is again integrable

conditions on theSU(2) structure. Specifically, we find and hence the metric can be cast in the canonical form
—Dpeiy

d(e *K)=0, ds?=g5,(x,y)dx2dxP+ e?* ¥ dy?, (6.11
—-&d —

d(e"7"Q)=0, The six-dimensional slices at fixgdhave anSU(3) struc-

ture with intrinsic torsion lying inV,® W,®Ws, and it is

dINKTAKZ=0. 6.3 straightforward to see th&V,= —Ws;=2d®. Recall that for
with the flux given by SU(3) the moduleWV, splits into two modulesV; . The
third condition in Eq.(6.9) implies that whileW, vanishes

*H=—e?"d(e™??J). (6.4 W, does not. These geometries are not Hermitian, as noted

in [5]. This case corresponds to fivebranes wrapping SLAG
L{Fﬁ'ee—cycles and explicit solutions were given h47].
[I=2KloK1#+ 2K2e K21, (6.5) SU(3) geometries in €8. This is one of the cases when
V* each havesU(4) holonomy. These geometries preserve
whereK? is the vector field dual to the one-for satisfy- ~ two pairs ofd=8 spinors with opposite chirality, twe* and
ing IT-TI=1. Sinced(e”®K')=0 this structure is integrable two e . It is in fact very similar to the case of a®U(2)
and hence the metric can be cast in the canonical form  structure ind=6 considered above. TH&U(3) structure in
o d=8 is specified by, satisfying Eq.(2.1) for n=3 and
ds?=gap(x,y)dxPdx*+e?®CY 5, dy'dyl.  (6.6)  two one-formsK' satisfying Eq/(6.1). The twoSU(4) struc-
tures are given by

These geometries also possess an almost product struct

The conditions(6.3) then imply that at fixed/', the SU(2)

structure on the four-manifold hag#/,=W,=0 and W5 J*=J+KINK?,
=d®d. Such geometries, which in particular aretfer, are
called almost Calabi-Yau. QT =0QN(K'*iK?). (6.12

This case corresponds to fivebranes wrappinglé&atwo-
cycles inCY,. This is mirrored in the expression for the flux Demanding that they satisfy the necessary and sufficient con-
(6.4), and also in the structure of the met(&.6) with they  ditions for SU(4) structures given in Eqg3.1),(3.2 (and
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their generalization folV ~) leads to the differential condi- tegrable(see Appendix Cand implies the canonical form of
tions (6.3) which are the necessary and sufficient conditionshe metric
on theSU(3) structure. The flux is given by

FHo _ 620 ds’=g; (x,y)dxdx +g'ap(x,y)dy?dy°,  (6.19

1
e‘zq’EJ/\J). (6.13

Again there is an integrable product structure and the meteach block being 44. The four-dimensional slices each
ric can be written in the form have anSU(2) structure, withW,=W,=0 andWs;=d® at
any point in their transverse directions. These geometries
o arise when a fivebrane wraps a two-cycle in one Calabi-Yau
ds’=gg,(x,y)dxPdx’+e** 0N g;dy'dy!.  (6.14  two-fold and a second two-cycle in a second Calabi-Yau
_ two-fold and it would be interesting to find explicit ex-
At fixed y', the SU(3) structure on the six-manifold is al- amples.
most Calabi-Yau, with the only non-vanishing class being Sp(2) geometries in€8. This case arises whef* has
W5=d¢>. This case corresponds tg fivebranes wrappingsu(4) holonomy whileV~ has Spir(7) holonomy. These
Kahler four-cycles inCY; and solutions were found in  geometries preserve three=8 spinors of the same chirality,
[46,48. o two € and onee . We have aS[(2) structure given by a
SU(2)xSU(2) geometries in €8. The second way that triplet of complex structures satisfying Eq&2.25. The
V= both haveSU(4) holonomy is when they give a common gy4) structure is given byJé,Q3), where
SU(2)XSU(2) structure. These geometries preserve four
d=8 spinors with the same chirality, twe® and twoe™.
The two orthogonaBU(2) structures)* andJ’ A satisfy the

conditions(2.30. The twoSU(4) structures are given by 1 1
Q3=§J2/\J2—EJl/\Jl+i(J1/\J2), (6.20

Jr=3=x0'3,
QNQ’, - . . . .
*_ _ (6.15 and satisfies Eq3.1) while the Spin(7) structure is defined
QNQ’ by

where e.gQ)=J?+iJ!. Demanding that they satisfy the nec-

essary and sufficient conditions f&U(4) structures given 1
in Egs.(3.1),(3.2) (and their generalization fov ) leads to V= 2
the necessary and sufficient conditions on t8&J(2)

X SU(2) structure given by

1 1
JINIT+ zJZ/\JZ— §J3AJ3 (6.2

, 3 which satisfies Eq(3.5 (with appropriate sign changes
vol’AdJ*=0, This leads to the following necessary and sufficient condi-

tions on theSp(2) structure:
d(e ®J"=0 for A=1.2, H2)

vol/AdJ’ 3=0, d(e"®JM=0 for A=1.2,
d(e"®J’"=0 for A=1,2, (6.16

tra—20 13y _
where e.g. vok 333/ J3. The flux is given by d'(e”"1J%)=0, 6.22

*H=—e*0d(e™**°N\"%). (610 it the flux given by
The almost product structure

M=J+.3-=33.33-73'3.3'3 (6.19 *H=—e??d(e ?*?Re?})=e?®?d(e ?*Re0?)

is integrablé sinceV=J*=0, J* commute and® are in- — _ 20y

1
e—2‘D§J3/\J3). (6.23

“Note that the existence of a generic péir of integrable com- N ) )
plex structures satisfying onfyd*,J~1=0 does not guarantee that Note that the conditions imply that the twi®'s in each of

the almost product structui=J*-J~ is integrable. A concrete dJ' and dJ? vanish. Moreover, the six independent Lee
counterexample is discussed in Appendix C. forms are given by
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L11=3d®, L%**=3d®, L*3=2dd, d(e ®¢)/AK=0, (6.30)
L12-L2=-23%.dd, L3¥-LB=-J2.do, *d(ig* )/ \p/\K=0, (6.32
L2 %=—J1.d. (6.24) *d(ix* @)/Nigr p=4*dd, (6.33

It is worth emphasizing that the intrinsic torsion of this With flux given by

Sp(2) structure is not totally anti-symmetric, and hence Fhe *H=e22d(e 2% * ¢). (6.34)
geometry is not HKT. These geometries arise when NS five-

branes wrap complex-Lagrangid@-LAG) four-cycles in The intrinsic torsion of thé&s, structure lies inV,® W,

hyper-Kanler eight-manifolds. Recall that these cycles arewith W,= —4dd. This means one cannot introduceGa
complex with respect to one complex structure and specidbolbeault cohomology[28]. These geometries arise when
Lagrangian with respect to the remaining two. It would befivebranes wrap co-associative four-cyclesGa manifolds
interesting to find explicit example@ote that a promising and it would be interesting to find explicit exampléagain
ansatz and the corresponding BPS equations for this casepromising ansatz and the corresponding BPS equations for
were given in[48]). this case were given if8].)

SU(4) geometries in€8. This is the first case whewi™ {1} geometries For completeness let us briefly mention
each havespin7) holonomy. These geometries preserve twothe case corresponding to the first entry in Table Il. This case
d=8 spinors with the same chirality, or€ and onee™. In  has two differentSU(2) structures each satisfying E@.1
this case we have aBU(4) structureJ,() satisfying Eq. giving a trivial structure defined by four real one-foris A

(2.1) for n=4. The twoSpin7) structures are given by little calculation reveals that this case can always be put in
L the canonical form
\Ifi=§J/\Ji Re() (6.29 ds2=e2®d2(R%),
*H=—e*"d(e™??), (6.39

and satisfy Eq(3.5 (with sign changes foV ) leading to

the following necessary and sufficient conditions on theyhich is just the transverse space to the simple fivebrane
SU(4) structure: solution.

We conclude this section with two comments. First, con-

~d )=
d(e "J)=0, sidering either set o™ or €~ Killing spinors we see that the
B geometries of this section are special cases of those appear-
*(*dRe()/\ReQ))=—6d®, (6:28  ing in Sec. Ill. It is then clear, from the results of Sec. IV,

that supersymmetric geometriesdi=9 can be obtained by
fibering an appropriate number of flat directions over the
*H=—e?’d(e 2’Re). (6.27) geometries in this section. In order that the same amount of
supersymmetry is preserved, the fibrations are determined by
The intrinsic torsion of theSU(4) structure lies inW, Abelig_n instantons that sgtisfy the generalized self-duality
® W, Ws, With 2W,=Ws=6d®, and so in particular the condltlon_s for both of théB_— structures. _In other_vyords they
geometries are not Hermitian. These geometries arise wheRUSt satisfy the generalized self-duality conditions for the
fivebranes wrap SLAG four-cycles i@Y, and it would be ~ Maximal common subgrou@. Note that in general the Bi-
interesting to find explicit examplegAgain, a promising anchi identity forH may further restrict which fibrations are

ansatz and the corresponding BPS equations for this caf@Ssible. For instance in the cases where Bothand V™

were given in[48].) have SUn+1) holonomy, one can show thatH has no
G, geometries in é8. This is the second case wh&+  components  transforming as a four-form  under

each haveSpir(7) holonomy. These geometries preserve one>X2n) 2 SUN) for the commonSWU(n) structure. As such,

" and onee~ d=8 spinor of opposite chirality. In this case there are in fact no solutions with non-trivial twisting.
the two Spir(7) structures give rise to &, structure ind The second comment is to note that we have considered

with the flux given by

—8 with ¢ as in Eq.(2.16 and a one-fornK satisfying only structuresG™= that are orthogonal in the sense that pre-
served spinorg® and e~ are orthogonal, that is" e =0.
ikp=0. (6.28 In fact, as we now show, this is a necessary condition for a
non-trivial solution to be supersymmetric. Take any two Kill-
The two Spin(7) structures are given by ing spinorse* ande™. The vanishing of the gravitini varia-
L tions implies that
Tr=—igxp+ p/\K (6.29
_ 1 _
—\ b —
and satisfy Eq(3.5 (and sign changes fov ~) leading to V(€T €)= ZHmabH yPe . (6.36

the necessary and sufficient conditions on @estructure:
The dilatino equation implies that for any gamma-matrix op-
d(e”®K)=0, (6.30  eratorA we have
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— N — mn 3 still preserves 16 supercharges correspondiny$o4 super-
Im®@e [A, Y] € —1_2Hmnpf [Ay™™P.e”.  (6.37) symmetry in the remaining four spacetime dimensions.
We now twist the two flat directions, as in Sec. V, with
Taking A= y™ and using the upper sign, we conclude that two Abelian instantons,

V(e e )=d,P(e e). (6.39 ds?=e?®ds+ (dy+Bh)2+ (dz+ B?)?,

This is trivially satisfied if theG* structures are orthogonal Hmnp= — €mnp Va€® +3B[1nGppy + 3BnGiy »

since thene" e =0. If the structures are not orthogonal, we oG Ho g2 7.2
have some point where" e~ is non-zero and then by con- mny - =mn: mnz-=mn: '
tinuity there will be a neighborhood in which it is non-zero. giving the dilaton equation

In this neighborhood we hawe" e~ =e®*®o, for some con-
stant®g.

The two spinorss™ define a pair o= structures both of
which are sub-bundles of the sar8€(d) bundle of ortho- _ _
normal frames defined by the metgg.® Togethere™ define ~ Wherem,n=1, ... .4 and nowG'=dB' are taken to beelf-

a commonG structure sub-bundle of the tw®* structures.  dual instantons on th&* base spacds?. This twisting still
Furthermore, there always existome metric-compatible preserves eigh¢™ spinors so tha¥v ~ still hasSW2)~ ho-
connectionV that preserves thi€ structure.(Note that this  lonomy. For non-zer@', generically the solution breaks all
connection generically does not have totally antisymmetri®f the e” supersymmetry howevefNote that, simply for
torsion) Necessarily it preserves th@" structures, so that convenience of later discussion, we have exchanged the roles
Ve*=0. Thus in fact we hav§(?+e*)=§(?+e*)=0 im- Of V* andV~, by takingH— —H and changing the orien-

plying @ is a constant. However, the equations of motiontation on the base, as compared to the discussion in Sec. V.
There we took anti-self-dual instantons so tledt spinors

then imply thatH is constant. We thus conclude that there are i ) M
were preserved. This accounts for the difference in signs of

no supersymmetric solutions with non-vanishing flux when ; i X
the structure§s* are not orthogonal. Fhe terms involvingB and G'II’] Eq. (7.2 compared to those

in Eq. (5.1).] Hence, generically these solutions presekje
=2 supersymmetry in the remaining four spacetime dimen-
sions.

In this section, we present some further explicit solutions Interestingly, it is nonetheless possible to preserve &ur
in d=6, some preserving both" and e~ supersymmetries, Killing spinors corresponding toV " having SU3) ho-
for the type Il theories, including a solution that preservesonomy, for suitably chosen non-generic instantons. To see
the unusual fraction of 12/32 supersymmetry. The basic sothis we define arSU(3) structure by
lutions have two flat directions fibered over a four dimen-

V2e2®=— %[(61)2+(c”32>2], (7.3

VII. EXPLICIT EXAMPLES I

sional base space, with the fibration being specified by two J=e?"J+(dy+BhH/\(dz+B?),

Abelian instantons on the base, and thus generalize those _

discussed in Sec. V. We shall also discuss compact heterotic Q=e**O/A\[(dy+B")+i(dz+B?)], (7.4
geometries ind=6 preserving both eight and four super- - -

charges. where J=dx*\dx*+dx3Adx* and Q= (dx*+idx?)

It will be convenient in this section to distinguish different /\(dx®+idx?) define theSU(2)* structure orR*. Demand-
six-dimensional solutions by the number of preserved supeing that theSU(3) structure satisfies the conditions for su-
symmetries. Let us start with the most supersymmetric caseersymmetry(3.1), we find that
corresponding to a flat NS five-brane as discussed at the end

of the last section. Recall that tlde=4 solution transverse to JJG' =0,
a simple fivebrang6.35 preserves eight™ spinors and ~
eight e~ spinors satisfying the projections Q1(G*+iG?=0. (7.5
Yt =—et Y% =14¢, (7.1  The generic constant flux solution to these equations is given
by

As previously notedv* have SU(2)* holonomy inSQ(4) ~

=SU2)"xXSU2)~ with the maximal common subgroup G'+iG?%=kQ (7.6)

being the identity. We can trivially lift this to a six-

dimensional solution by adding two extra flat directions. Thisfor some complex constait (Note that, as we discuss be-
low, this is the same twisting that appears in the Iwasawa
manifold analyzed if17].) The Bianchi identity then implies

5Note that this is true only foD*e*=0 with D* a pair of spin  the equation for the dilaton
connections, compatible with the metgg, and not, for instance, if _
D* are general Clifford connections. V2e2®=—g|k|?, (7.7
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which can easily be solved. To summarize, the solut®  where() is the holomorphic2,0) form onCY.,, we find that
with flat base space will preserve eight and foure™ v+ hasSU3) holonomy and the solution still preserves four
spinors for the specific choice of self-dual instant¢i<) et supersymmetries, correspondinghe=1 supersymmetry
and dilaton satisfying7.7). in four dimensions. Alternatively, if the orientation of the
A number of comments are now in order. First, this spe-CY, is chosen so that the complex structures are anti-self-
cial solution corresponds t&=3 supersymmetry in the re- dual, we impose the projectiong?**= =+ ¢*. These solu-
maining four spacetime dimensions. It would be interestingions break all of thes* supersymmetry, but preserve eight
to relate this solution to those discussed2s]. €~ spinors. The latter choice of orientation correspo(afs
Second, the holonomy of the connectidhs$ for the spe-  ter exchanging ™ with e~ by takingH— —H and switching
cial solution areSU(3) andSU2), respectively. This is not the orientation on the baséo a simple generalization from
a combination appearing in Table II. The form of the solutiond=5 to d=6 of the solutions discussed in Sec. V and ex-
indicates that this solution is related to fivebranes wrappin%“c'“)’_ObtaWEd in[41] for the cases of Taub-NUT and
two flat directions, but a world-volume interpretation of the Eguchi-Hanson space. The former choice of orientation on
twisting and preservation of supersymmetry are obscure t§'€ other hand, gives a new kind of supersymmetric solution
us at present. that exploits the fact that one is twisting two flat directions

Third, this special background is also a heterotic or type RNd Not just one as considered[#]. _
solution. In this case, one loses the supersymmetries and  Similarly, one can obtain heterotic and type | geometries

the solution preserves only four" spinors, and so ha/ preserving/\/zl,z supersymmetry. By taking the flat direc-
=1 supersymmetry in four dimensions. Including additionalt'cjns to be a two-torus, anil, to to be either conformally.
heterotic instantons simply adds to the soufk in the 1 Of conformallyK3, we get compact and supersymmetric
dilaton equation(7.7). Note that by takingH— —H and heterotic geometries. It will be interesting to see whether it is
switching the orientation of the base, we switch and e~ possible to solve the heterotic Bianchi identity for these ge-
and hence we can also obtain a heterotic solution from th@Metries; if it is, as in Sec. V, the ®/\R contribution will

generic solution(7.2) with an SU(2) structure andvV=2 e essential. In addition, one should again find that the radius
supersymmetry. ' of the two-torus is required to be of order the string scale and

Finally, the metric and three-form obtained by setting thet"at several of the moduli are fixed.

dilaton constant in Eq(7.2) with G1+iG2=k{}, were first
considered in the heterotic cdsecluding an additional Abe- VIIl. DISCUSSION
lian instanton embedded iEgXEg or SQ(32)] in [17].
There it was demonstrated that the conditions for the preser- In this paper we have studied the necessary and sufficient
vation of e" supersymmetry withV* having SU3) ho-  conditions for static geometries of type | or heterotic string
lonomy were satisfied. However, given the analysis here, théheory, or type Il theories with only non-vanishing NS-NS
background in[17] is problematic for the following some- fields, to preserve supersymmetry and solve the equations of
what subtle reason. As we have already noted when the dmotion. The Killing spinors defin& structures on the geom-
laton is constant andi#0, the leading-order type I{for  etries and we determined the intrinsic torsion of @etruc-
heterotic or type )l equations of motion are not satisfied. As ture. We emphasized the universal expression for the three-
shown in[5], these equations of motion are a direct conseform flux in terms of generalized calibrations and the
quence of the preservation of supersymmetry once the Biarfonnection with wrapped branes, followifg,5].
chi identity (3.23 is imposedor equivalently(3.24 if tr R The geometries always have a connection with totally
/AR=0 as for the geometry considered[it¥].] This contra-  anti-symmetric torsiony * (or V™ for the type Il theorie
diction is resolved by the fact that the background17] ~ Which has special holonomy. We first discussed the geom-
actually satisfies a Bianchi identity with the opposite sign toetries in the canonical dimension for the special holonomy
the one arising in type | supergravity. This discrepancy isgroup,d=8 for Spin(7), d=7 for G,, etc. We then showed
probably related to the sign discrepancy between the expre§iat the most general geometriesdr9 have a number of
sion (3.3 and the corresponding expression 2).5 flat directions fibered over these geometries in the canonical
The type Il solutions we have been discussing can also b@imensions, with the fibration being determined by Abelian
generalized by replacing the flat space in Ef2) with a  generalized instantons. We also discussed the physical inter-
generic Calabi-Yau two-fol€CY,. As usual for type II, the pretation of these geometries in terms of wrapped fivebranes.
Calabi-Yau two-fold cannot be compact in order to satisfyFor example, the eight-dimensional geometries with a single
the Bianchi identitydH=0. If we take the orientation of the flat dimension fibered over a seven-dimensional geometry
CY, to be such that the complex structures are self-dual, wéith G structure correspond to fivebranes wrapping super-
impose the projections?%*=— *. In this case, the so- Symmetric cycles of the formS'x3;CS'xMg, where

lution preserves n&~ supersymmetry, and generically no E3CMG2 is an associative three-cycle in @, holonomy

€ supersymmetry. However, choosinG'+iG?=k{),  manifold. The fact that the resulting eight-dimensional ge-

ometry is not necessarily a direct productS3fwith a seven-
dimensional geometry is worth further investigation. We pre-
SFollowing recent correspondence the author§ldfi have inde-  sented some explicit examples, that would be worth studying
pendently confirmed this discrepancy[iy. further and generalizing.
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These results provide a comprehensive classification of ak=e?®d(e 2*=) just for wrapping different cycles. The first is
of the supersymmetric static geometries of the heterotic ofor a fivebrane wrapping a Kéer four-cycle in the Calabi-
type | theory. For the type Il theories, we also analyzed thevau, the second for wrapping a special Lagrangian cycle
geometries that arise when both connectiBrishave special (and one of thek' directions, while the last is the familiar
holonomy. Our analysis covers all cases of NS fivebranesxpression for the wrapping of a Kker two-cycle in the
wrapping calibrated cycles, as listed in Tables | and II. Calabi-Yau together with the toru§?. This is physically

We also presented an explicit solution with a tofl&s  reasonable, since the geometwx T2, corresponding to
fibered over amR* base withV* having SU(3) holonomy the full back reaction solution around a brane wrapping a
andV~ havingSU2) holonomy. This solution has four" Kahler two-cycle, should still admit probe branes wrapping
Killing spinors and eighte~ spinors. The form of the flux the special Lagrangian three- andHer four-cycles. Similar
suggests that the solution should be interpreted as a flat fivewrguments extend to the fibration cases in Sec. IV and the
brane with two of the world-volume directions further geometries withe™ ande™ in Sec. VI.
wrapped on the two-torus. Naively, one would therefore ex- An important motivation for this work is that a good un-
pect 8 plus 8 Killing spinors and so it would also be inter-derstanding of the geometry underlying supergravity con-
esting to find a physical interpretation of the twisting which figurations might allow us to find new explicit solutions. In-
leads to this reduction of supersymmetry. [[B3] type Il  deed for the cases listed in Tabl a co-homogeneity one
solutions onT® orientifolds with non-vanishing RR and ansatz is useful for finding solution§]. This is a practical
NS-NS fluxes were presented that also preserve 12 Killinglternative to finding solutions describing wrapped five-
spinors and it would be interesting to see if they are relatedoranes using the gauge supergravity approach initiated in

Candidate heterotic compactificationsdrs=6 were also [53]. For the cases in Table Il, on the other hand, a simple
presented, preserving both four and eight supersymmetriegeneralization of this technique can lead to co-homogeneity
They are based on manifolds which are fibrationgobver ~ one but also to a co-homogeneity two or more ansatz, and
a K3 base. The models with four supersymmetries arise foprogress in the latter case is much more diffid@t. At
non-generic complex structure on tK8 and there are ad- present the gauge supergravity approach is the best available
ditional constraints on the radii of the circles of the torus.tool to produce solutions for these latter cases. It should be
This indicates that many moduli are fixed. We showed thanoted, however, that since the configurations in Table Il pre-
the size of the torus is necessarily of order the string scaleserve more supersymmetry than those in Table I, one expects
indicating that the supergravity approximation is breakingthat with new techniques, ultimately, they could be easier to
down. One would also have to check the equations for moanalyze.
tion are satisfied. To pursue these models further one might Finally, it is natural to generalize this work to also include
aim to construct a conformal field theory description. ItRR fields in the type Il theories, as well as to consider
would also be interesting to relate our compactifications td-orentzian geometries. Such geometries will allow one to
those of[49-52. describe both wrapped NS and D-branes, as wealpasaves

We have emphasized that the expression for the threeand general non-static backgrounds. Based on this work and
form flux is easy to understand as a generalized calibrationn [13] we expect generalized calibrations to play an impor-
since the geometry should still admit fivebranes wrappindant role.
the corresponding cycles. It is very interesting to note that
many, and in some cases all, of the other conditions con- ACKNOWLEDGMENTS
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addition the intrinsic torsion is constrained to satisfy Eq.
(3.1). Suppose we consider the trivial product of &ly3)
manifold Mg with a torusT2. Let K!=dy! and K?=dy? The low-energy effective action for heterotic or type |
represent the extra directions. The full set of conditions orstring theory is given by the type | supergravity action

the structure can then be written on the eight-dimensional

APPENDIX A: EQUATIONS OF MOTION

2 1 1
spaceMgX T? as S= FJ d%—ge 2®| R+4(Vd)2— 1—2H2—a’TrF2
dle 2*3AJ]=0, “ (A1)
dle QA (K +iK?)]=0, whereF is in the adjoint ofSO(32) or EgX Eg. In type |
supergravity the three-forril satisfies a modified Bianchi
d[e72le/\Kl/\K2]: _e72¢* H. |dent|ty
(8.1) dH=2a'TrFAF. (A2)

Given thatH lies solely inMg, we see that all three expres- Including the leading order string correction from anomaly
sions are calibration conditions of the form H* cancellation we get
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then matches the expressi¢h1l). The corresponding vol-
ume form is given by
but to fully consistently implement this one should also in-

clude modifications to the action. The equations of motion
coming from(Al) are given by

dH=2a'(TrFAF—trRAR) (A3)

(B4)

Note that one can always choose a real basis for the gamma

matrices so that=e'. The conventions for lifting Spir(7)
structure tod=9 are given in Sec. IV A.

SWU(4). An SU(4) structure leaves invariant two real or-
thogonal spinorg,, with a=1,2 of the same chirality inl
=8. These can be defined by

1

4HMR5HNRS+ ZVMVNQ_ZCY,TrFMRFNR: 0,

(Ada)

RMN_

1
VZ(e—2Q))_ ge—ZQ)HMNRHMNR_ a/e—Z(I’TrFMNFMN:O'

(A4b) Y%= v %) = v %)= — € (BS)
_ ith
VM(e ZCI)HMNR):O' Wi
Adc
(A4c) Pl =+eny, 1 em=—€p). (B6)

1e*2¢FRSHRSN=O. Defining a complex spinor7_7=(1/\/§)(e(l)+i6(2)), the
forms J and () can then be written as

DM(e 2%Fyn) — >
(A4d)

Jn= =i 7YmnT:
The action and equations of motion for the type Il theories mn= =17 Ymn7

with all RR fields set to zero are obtained by simply setting
the gauge field= to zero and using the Bianchi identityH
=0.

anpq: 77C'ymnpq7]- (B7)
Note that in the basis wheke= €', we have the more famil-
iar expressionsJyn,=in" Ymnn and Qunpe= 7" Ymnpq?-

APPENDIX B: SPINOR AND G STRUCTURE Given y*%(;)= — €. we get the standard expressions

CONVENTIONS

: o . J=el2+ e+ e+ e’8
In doing calculations it is often useful to have an explicit

set of projections defining the Killing spinors and the corre- (B8)
spondingG structures. Here we define one possible set of

conventions consistent with the expressions given in the parpe corresponding volume form is given by E@®4) as
per. In particular, we will use the same set of projeci@s  apove. Note that each real spingg, also defines a corre-
subset of themto define the invariant spinors in all cases. snondingSpin(7) structure as in EqB3) given by
Specifically, the Killing spinors will be defined by their1
eigenvalues for the set of commuting gamma matrices

Q=(et+ie?)(e+ie*)(e5+ie®)(e’+ied).

1
\If(l)zzJ/\J—ReQ,

1234 _ 5678 . 1256

oy 'y ] 1357.

Y (B1)

We concentrate on the cases@fstructure in canonical di-
mension. However, in each case we also give how the struc-
ture embeds in the next simplest structure group following . .
Fig. 1. Using these embeddings one can obtain conventions _Sp(2). We _now_have three real orthqgo_nal_ m_varlant
for any of theG structures in arbitrary dimensioms<9. Spinors e with a=1,2,3 of the same chirality ini=8.

1
v = EJ/\J+ Re(). (B9)

Note that in all dimensions the gamma matrix algebra i
taken to b€y, ¥n} =236mn and the adjoint spinor is written
ase and the conjugate spinor a& We always normalize the
Killing spinors to satisfyee=1.

Spin(7) In eight dimensions, &pin(7) structure defines a
single real chiral invariant spinoe. For definiteness, we

.....

ing projections defining ae are

Y1230 = 15678 — 11256, — , 1357, — _ ¢ (B2)
Writing the Cayley four-forntV as
\Pmnpq: _:ymnqu (B3)

€= €. Apossible set of independent, commut-

SThese can be defined by

),12346(3) _ 756786(3) =( y1256 n 71357 + 71453) €= €@
(B10)
with
’)/12566(1): 4 6(1), ‘)/14586(2): 4 6(2), 713576(3): 4 6(3).

(B11)

Note that the eigenvalues undep't>® y3>" y4°9 of €,
are (+1,-1,-1), (-1,-1,+1) and (-1,+1,—-1) for a
=1,2,3 respectively. The three two-forndé are then given
by
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‘]}nn: ~ €(2)Ymn€(3)»
‘]ﬁm: ~ €3)Ymn€(1)»

3 _
Jmn_

— €(1)Ymn€(2) - (B12)
leen ’y E 2)= ’)/ 6(2)— €(3) ’y 6(3)— ’y 6(3)— €(1) and
! e(l)— y° €(1)= €(2), We have the explicit expressions

Jl=el2y @341 564 78
J2=eldy 231 584 b7

J3=el3+ e+ 57+ 86, (B13)

The corresponding volume form is given by E@®4) as

above. Note that each almost complex structiffeas an
SU4) structure has a corresponding (4,0)-fdifi given by

1 1
Q= EJ3/\J3— EJZ/\J2+ REZANES

0?%=

1 1
EJl/\Jl— §J3/\J3+iJ3/\J1,

1 1
RER E\]2/\\]2_ E‘]l/\J1+iJl/\J2' (B14)

Each spinore(,) also defines a correspondigpin(7) struc-
ture given by

1 1 1
M= Z12A 124 2 13A 13— = LA 7L
v 2J/\J +2J/\J 2J/\J,
1 1 1
@)= Z13A 13+ ZJIA L T 12/ 72
v 2.J/\J +2J/\J 2J/\J,

1 1 1
W3 = SIS PN = SN, (B15)

SU(2)xSU(2) We now have four orthogonal, real invari-
ant spinors all of the same chirality ih=8. They can be
defined by

Y12 0= Y8 = — €(a) (B16)
with
zsee | @ for a=23,
(a) —|—E(a) fOF a= 1141
1357 €(a) for a=1,2, B1
Y E(a + E(a) for a= 314 ( 7)

The three two-formg” are given by combinations, self-dual
on the(a) index,
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Jrlnn: - (;(2)7mn€(3)+:(1)7mn6(4)),
Jﬁm: - (?(3)7mn6(1)+?(2)7mn6(4)),

I3 0=~ (€(1)Ymn€(2)+ €3) Ymn€(a))- (B18)

The second set af’ A two-forms is given by the correspond-
ing anti-self-dual combinations with minus signs between the
flrst and second terms |n parentheses. leeh’-e(z)
=Vea=€@) Y €=V e@Tem, and  yleq

_]_?1/ €1)T €2), together W|t|; Y 6(1)—5_’)/ €(1)~ €4),
ye@)= =7 @)= €4), and yeq)=—y"e(3)= €(a), We
have the explicit expressions

Jl=gl2y g3 371-g564¢78
J2=gl4y ezs, J'2=g584 e67,
PB=eB+e?  J'3=e+¢% (B19)

Again, the corresponding volume form is given by EB4)
as above. Note that there are §k4) structures given by
J2=J3A+J"A and similarly each spinog, defines a corre-
spondingSpin(7) structure given by

v =vol+vol' —INI" 1+ 2N 2+ I3NJ' 3,

V@ =vol+vol +INI' 1-F2NJ 2+ I3NJ' 3,
P =vol+vol' +INJ" 1+ I2NJ' 2= BN 3,

NETAW LR LA L
(B20)

v ®=vol+vol’ —J'A\J 1~

G,. A G, structure defines a single invariant spinordin
=7. This can be defined by the projections

1234

1234 1256, —

1357

yole= —¢, (B21)

where we have takeiny;
(2.16 is then given by

1. The associative three-form

¢mnp: - i?'ymnpf- (B22)
The corresponding volume form is given by
VOlm ..... m, = 'z')’m1 ..... m, € (823)

Note that the relation betwee# and vol is slightly non-
standard. It is the opposite of the conventions given, for in-
stance iff54]. To match the expressions|if4], one replaces

e; with —e; and permutes the new basis %ot €1534567t0
e3054761- NOte that one can choose an imaginary basis for the

v matrices wheree=¢".

Lifting to d=8, the G, structure defines a pair of real
spinors e,y with a=1,2 satisfying Eq.(B21) of opposite
chirality. They can be distinguished by

5678

Y %0y=—€qy, ¥4 (B24)

€2)= T €2)-

The G, structure is defined by andK given by
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¢mnp: T €1)Ymnp€(2)

Km= €(1)Ym€(2)- (B25)

With y%€(1)= €2, we haveK =e® and ¢ takes the standard
form (2.16). The corresponding volume form vek!/A - - -
/N\e? is given by

The two Spin(7) structures defined by, are given by
V= —jx p+ /K,
Y@= —jxp— p/\K. (B27)

Note that with these conventionig,* ¢= —*,¢ wherex ;¢
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Given y'%e(;)= €() , this givesK=e’ andJ and{} take the
standard form(B30). The corresponding volume form vol
=elA.../\e' is given by

V0|ml ..... m,= [ €L)Ymy, ..., m,€(1)= [ €2)Ymy, ..., m,€(2) -
(B34)
The two G, structures defined by, are given by
dMP=JA\K-ImQ,
dP=JAK+ImQ, (B35)

SUY(2). Finally for SU2) the structure again defines a
single complex spinor of definite chirality. We take the nega-
tive chirality

y12%e=—e. (B36)

is the usual coassociative four-form, which is the Hodge dual he formsJ and() are then given by

of ¢ on the seven-dimensional subspace orthogon#l.to

SU(3) The SU(3) structure defines a single chiral com-

plex spinore. This can be defined by the conditions

712346': ')/125652 — €. (828)

We choose the chiralityy® - %= e so thaty*?e=ie. The

forms J and() are then given by

Jmn= —1€Ymne,
Qmnp= éc')’mnpe- (B29)
Given y*¥%e= €¢, we get the standard expressions

J=e'?+e3+e%

Q=(el+ie?)(e3+ie*)(e>+ief). (B30)
The corresponding volume form is
VOl | m.=1€¥m . me€ (B31)

Again one can always choose a basis wheree! and €
=€*.

Lifting to d=7, the SU3) structure defines a pair of
invariant spinorse ) with a=1,2 satisfying Eq(B28). Fix-
ingivyy ... 71 they can be distinguished by

135

Y 76(1): - 6(1) y ’}/13576(2): + 6(2) . (832)

The SU(3) structure is given by

Jmn=— €(1)Ymn€(2) s
_ 1 -
anp: 1 €(1)Ymnp€2) ™~ z(f(l)Ymnpe(l)_ E(Z)?’mnpe(z))v

Km=—1€(1)Ym€)- (B33

— 13 _ _ i
JImn=Jmn= ~1€¥Ymne,

(B37)

Given y'2%e=ie and y'%¢= ¢° we get the self-dual combina-
tions

_ 12 11 ¢
anz‘]mn"_l‘]mn_ec')’mnf-

Jl=el4t e
JP=eld+e®
PB=el2+e3 (B38)
The corresponding volume form is
vol, .. m, |?ym1 _____ m,€ (B39

Again one can always choose a basis wheree" and €°
=e€*.

Lifting to d=6, the SU2) structure defines a pair of
complex invariant spinorg, with a=1,2 satisfying Eq.
(B36). These have opposite chirality and can be distin-
guished by

Y %uy=—€qy, Y% 0=+ ep). (B40)
The SU(2) structure is given by
1 _
Jmn=— E'(G(l)?’mne(l)Jr €(2)Ymn€(2))
Qmn= Et(:l)'}’mnf(z)a
Kh+iK2= €2)Ymeq) - (B41)

GiVen ’yle(i): G(i) and 71356(0: E?i) Whlle ’)/56(1): 6(2) and
YPe)=i€), we haveK;=e° K,=e® andJ and () take
the standard form(B38). The corresponding volume form
vol=e!/\.../\e% is given by
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—i — 1
1€ € le € .
o e mg WYmy, ..., mg€(1) @)Ymy, ..., mg ((2)42) Nl = +_2 (Hppp +11,,PT1 anpqr

—II'PIT.4 —TI.PIT™@
The twoSU(3) structures defined by, are given by I H pgn = Iy I Hpg ) (CH

i Using the tangent space decomposition, one finds that the
(1)_ 1A K?2 (1)_ 1 2 :
J JHKIAKS, - Q OA(K +iK?), only non-zero components are given by

JP=3-KWAK?2, QP=QA(K'-iK?). (B43

APPENDIX C: ALMOST PRODUCT STRUCTURES

An almost complex structure is@L(n,C) structure on a Nap‘=*+2H 4% (C6)
2n-dimensional manifold, which is characterized by a tensor
J.," satisfyingd- J= —1. Using this one can split the tangent )
space TpM“ at any point in the two subspacé,M + If instead we assume that ,J~ are commuting and are both
®T,M ™ corresponding to the-i and —i eigenvalues off  integrable, and als§ " J*=V"J~=0, then all the compo-

respectively. The Nijenhuis tensor for the almost complexents ofNy,," vanish, hencél is integrablg[56]. To see this
structure is defined by we first note that given the assumptiorid, is a (2,1)

+(1,2) form with respect to either complex structuré:
Nmnr:JmSé’[s‘Jn]r_‘Jnsé’[s‘-]m]r - (Cy
=J Pja PJ 4 Pja
The almost complex structure is integrable if and only if the Hinne=Jm"In*Hpgr 3P Im Hpgnt In"Jr*Hpgm. (C7)
Nijenhuis tensor vanishes and in this case one can introduce
holomorphic co-ordinates on the manifold.Jifs compatible
with a metric, namely]quJm”gnq is a two-form, then the
metric is called almost Hermitian and HermitianJifs inte-
grable. 2Vl P=3/ TI7SPH = 3, T3P PH . (CB
Similarly, an almost product structure is @L(P,R) menen mrs o mrs 8
XGL(Q,R) structure on a R+ Q)-dimensional manifold,
which is characterized by a tenséf," satisfying II-II  Then using Eq(C7) we find
=+1. At any point the tangent space splits accordingly as
T,M=T,M"®T M, whereP (Q) is the number of+1
(-1) eigenvalues. ofI. '_I'he Nijer_lhuis tensor for the almost AV Il P= =I5 "3 SH TP+ 3 "3 SH G TP (C9)
product structure is defined again by

To proceed, write I=J*-J"+J-J" to get

Nimn =11, *dgsI " — L 20Ty (C2  from which it easily follows thatN(II)=0.

It is sometimes incorrectly stated in the literatusee for
and the almost product structure is integrable if and only ifinstance[56-58) thatIl, defined by Eq(C4), is integrable
the Nijenhuis tensor vanishésee e.g[55)). If furthermore  if and only if the two commuting almost complex structures
the almost product structure is metric compatible, Tlg,, @€ intégrable. A concrete class of counter-example is pro-
EHmngnq is a symmetric tensor, one can introduce “sepa-V'ded by the geometry7.2) for generic |nstantog§._'l_'h|s
rating co-ordinates” on the manifold such that the metric9®0Metry has aBU(2) structure, built from the~ Killing

takes the PX P,Qx Q) block-diagonal form spinors, which can be specified by t8&(3) structures. The
’ corresponding two almost complex structures, written as

dszzgijP(X,y)dxidxj+gabQ(X,y)dyadyb (C3) two-forms, are given by

Wherei,j=1,. x P anda,b=1,.. . ,Q. . J=ez(p(dxl/\dxz—dx3/\dx4)+(dy+Bl)/\(dz+BZ),
Two commuting almost complex structurdsl’, satisfy-

ing J-J'=J"-J give rise to an almost product structure

) J'=e2?(dx*Adx2—dx3A\dx*) — (dy+BY)A(dz+B?).
m=J3.7. (C4) (10

Supposel and J’ are metric compatible and satisfy*J

=V*)' =0, orV J=V J' =0, whereV~ is a metric con- Both almost complex structures are integrable. A quick way
nection with totally anti-symmetric torsion 3H. The Nijen-  to see this is to note that the geometry is a special example of
huis tensor then reads in general the canonicaBU(3) geometry ind=6 (preserving twice as
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much supersymmetyythat was discussed in Sec. livith 0 1 0 0 —x¥ —x
expressions foe* spinors rather thar™ spinors that we 10 0 oIyl
have herg for either SU(3) structure. In particular, as
pointed out in Sec. lll, the almost complex structures are 0 00 -1 x° x3
: J/ b= . (c12
integrable. Moreover, the two complex structures clearly a 0 0 1 3 =3
commute and thus define an almost product structure given
by I[I=J-J’. On the other hand, becau§e J=V~J'=0 0 00
and henceV I1=0, from Eq.(C6) we see that there are 0O 00 0 -1 0
non-zero components of the associated Nijenhuis tensor, i i
namely It is not difficult to check directly that these are both inte-
grable and indeed commute. The corresponding almost prod-
Nmw'=—2GL uct structure is
Npp= —2G2, . (C11) -1 0 0 0 0 0]
_ 1 1
For definiteness, let us briefly present a simple example 0 1o 0 2 2x
very explicitly. In particular, set the dilaton field to zero and He3.3— 6 o -1 0 0 O
Blszledx2+d>§3dx4. E'I'helnO the dalmost complex struc- =3EL 0 0 0 1 2@ 28]
tures corresponding to rea
ponding to E(C10 O 0 0 0 1 0
[0 1 0 0 —x* —x] i 0 0 0 0 0 1 ]
-1 0 0 0 —xt x (C13
, | 0 00 —1 x*x3 Computing the corresponding Nijenhuis tensor, we find that
Ja 0 0 1 0 —=x3 x3| it has the non-zero components given by EG1l) with
Gl=G2=dx*\dx?>+dx3/\dx*. It would be interesting to
0 00 0 0 1 investigate the consequences of this counter example, espe-
O 00 O -1 0 cially in the context of the sigma model literature.
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