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We perform a one-loop test of the holographic interpretation of the Karch-Randall model, whereby a massive
graviton appears on an AdS4 brane in an AdS5 bulk. Within the AdS/CFT framework, we examine the quantum
corrections to the graviton propagator on the brane, and demonstrate that they induce a graviton mass in exact
agreement with the Karch-Randall result. Interestingly enough, at one loop order, the spin-0, spin-1/2, and
spin-1 loops contribute to the dynamically generated (mass)2 in the same 1:3:12ratio as enter the Weyl
anomaly and the 1/r 3 corrections to the Newtonian gravitational potential.
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I. INTRODUCTION

An old question is whether the graviton could have
small but nonzero rest mass. If so, it is unlikely to be d
scribed by the explicit breaking of general covariance t
results from the addition of a Pauli-Fierz mass term to
Einstein Lagrangian. This gives rise to the well-known v
Dam–Veltman–Zakharov@1,2# discontinuity problems in the
massless limit that come about by jumping from five degr
of freedom to two. Moreover, recent attempts@3,4# to cir-
cumvent the discontinuity in the presence of a nonzero c
mological constant work only at the tree level and the d
continuity resurfaces1 at one loop@6#. On the other hand, in
analogy with spontaneously broken gauge theories,
might therefore prefer a dynamical breaking of general
variance, which would be expected to yield a smooth lim
However, a conventional Higgs mechanism, in which a s
lar field acquires a nonzero expectation value, does not y
a mass for the graviton. The remaining possibility is that
graviton acquires a mass dynamically and that the would
Goldstone boson is aspin-one bound state. Just such a pos
sibility was suggested in 1975@7#.

Interestingly enough, the idea of a massive graviton a
ing from a spin-one bound state Goldstone boson has
cently been revived by Porrati@8# in the context of the
Karch-Randall brane-world@9# whereby our universe is a
AdS4 brane embedded in an AdS5 bulk. This model predicts
a small but finite four-dimensional graviton mass

M25
3L5

2

2L4
4

, ~1!

*Email address: mduff@umich.edu
†Email address: jimliu@umich.edu
‡Email address: hsati@maths.adelaide.edu.au
1A similar quantum discontinuity arises in the ‘‘partially mas

less’’ limit as a result of jumping from five degrees of freedom
four @5#.
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in the limit L4→`, whereL4 andL5 are the ‘‘radii’’ of AdS4
and AdS5, respectively. From the Karch-Randall point
view, the massive graviton bound to the brane arises fr
solving the classicalD55 linearized gravity equations in th
brane background@9#. Furthermore, holography of th
Karch-Randall model@10,11# consistently predicts an identi
cal graviton mass.

In a previous paper@12#, the complementarity betwee
the Maldacena AdS/conformal field theory~CFT! correspon-
dence @13–15# and the Randall-Sundrum@16# Minkowski
braneworld picture was put to the test by calculating the 1r 3

corrections to the Newtonian gravitational potential arisi
from the CFT loop corrections to the graviton propagator.
one loop we have@17#

V~r !5
G4m1m2

r S 11
aG4

r 2 D , ~2!

whereG4 is the four-dimensional Newton’s constant,

a5
1

45p
~12n113n1/21n0!, ~3!

and wheren0 , n1/2, andn1 count the number of~real! sca-
lars, ~Majorana! spinors, and vectors in the multiplet. Th
coefficienta is the same one that determines that part of
Weyl anomaly involving the square of the Weyl tensor@18#.
The fields on the brane are given byN54 supergravity
coupled to aN54 super-Yang-Mills CFT with gauge grou
U(N), for which (n1 ,n1/2,n0)5(N2,4N2,6N2). Using both
the AdS/CFT relation,N25pL5

3/2G5, and the brane world
relation,G452G5 /L5, we find

G4a5
G4L5

3

3G5
5

2L5
2

3
, ~4!

whereG5 is the five-dimensional Newton constant. Hence
©2004 The American Physical Society12-1
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V~r !5
G4m1m2

r S 11
2L5

2

3r 2 D , ~5!

which agrees exactly with the Randall-Sundrum bulk res
This complementarity can be generalized to the Kar

Randall AdS braneworld picture. From an AdS/CFT point
view, one may equally well foliate a Poincare´ patch of AdS5
in AdS4 slices. The Karch-Randall brane is then such a s
that cuts off the AdS5 bulk. However, unlike for the
Minkowski braneworld, this cutoff is not complete, and pa
of the original AdS5 boundary remains@9,11#. Starting with a
maximally supersymmetric gaugedN58 supergravity in the
five-dimensional bulk, the result is a gaugedN54 super-
gravity on the brane coupled to aN54 super-Yang-Mills
CFT with gauge groupU(N), however, with unusual bound
ary conditions on the CFT fields@8,10,11,19,20#.

As was demonstrated in Ref.@8#, the CFT on AdS4 pro-
vides a natural origin for the bound state Goldstone bos
which turns out to correspond to amassiverepresentation of
SO(3,2). However, while Ref.@8# considers the case of cou
pling to a single conformal scalar, in this paper we provid
crucial test of the complementarity by computing the d
namically generated graviton mass induced by a comp
N54 super-Yang-Mills CFT on the brane and showing th
this quantum computation correctly reproduces the Kar
Randall result, Eq.~1!.

We begin in Sec. II by discussing properties of the gra
ton propagator and providing a general framework for
dynamical generation of graviton mass. In Sec. III, we int
duce homogeneous coordinates, and set up the loop com
tation, which we carry out in Sec. IV. Finally, in Sec. V, w
recover the Karch-Randall graviton mass, Eq.~1!, from the
quantum CFT perspective.

II. TRANSVERSALITY AND THE GRAVITON MASS

We are mainly interested in the properties of the one-lo
graviton self-energy,Smn,ab(x,y). As emphasized in Refs
@7,8#, mass generation is compatible with the gravitatio
Ward identity arising from diffeomorphism invariance. Th
the self-energy remains transverse,¹x

mSmn,ab5¹y
aSmn,ab

50. One is then able to writeS as a nonlocal expressio
evaluated at pointxm, compatible with transversality

Smn,ab~x!5b~D!Pmn,ab~D!1g~D!Kmn,ab~D!, ~6!

where@8#

Pmn
ab5dm

adn
b2

1

3
gmngab12¹mS dn

b1¹n¹b/2L

D22L D¹a

2
L

3 S gmn1
3

L
¹m¹nD 1

3D24L S gab1
3

L
¹a¹bD

~7!

is the transverse-traceless projection and
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Kmn
ab5

D2L

3D24L
dmndab; dmn5gmn1

1

D2L
¹m¹n

~8!

is the transverse but trace projection. More generally,

~P1K !mn
ab5dm

adn
b1

2

D22L
dm

a¹n¹b

1
1

~D22L!~D2L!
¹m¹n¹a¹b ~9!

is an overall transverse projection, regardless of trace. H
L523/L4

2 is the four-dimensional cosmological consta
andD is the general Lichnerowicz operator which commu
with covariant derivatives. Symmetrization on (mn) and
(ab) is implied throughout. In flat space, these expressi
reduce simply to the familiar

Pmn
ab5dm

adn
b2

1

3
dmndab, Kmn

ab5
1

3
dmndab ~10!

where

dmn5hmn2
]m]n

h
. ~11!

In Feynman gauge, the tree-level massless graviton pro
gator in AdS takes the form

Dmn
ab5

1

D22L S dm
adn

b2
1

2
gmngabD . ~12!

Using the self-energy written in the form Eq.~6!, the quan-
tum corrected propagator may be summed to yield

D̃mn
ab5

1

D22L2b
S dm

adn
b2

D2L

3D24L
gmngabD

2
1

D2L1g/2
S 1

2

D2L

3D24L
gmngabD ~13!

when evaluated between conserved sources. This indic
that a constant piece in the traceless self-energy,b52M2,
will shift the spin-2 pole in the propagator, thus yielding
nonzero graviton mass. The second term, involving the tra
may combine with the scalar part of the first. However
potentially dangerous scalar ghost pole at 3D54L may ap-
pear. This ghost is absent whenever the residue of the
vanishes, i.e. providedg5bu4D53L . This is in fact the case
as may be seen by explicit computation below. Although
field theory is conformal, the presence ofK is demanded by
the Weyl anomaly@18#. However, this trace piece is entirel
contained in the local part ofS, and does not contribute
directly to the mass. The net result is a pure massive sp
propagator

D̃mn
ab5

1

D22L1M2Fdm
adn

b2
1

2
S 2L22M2

2L23M2D gmngabG ,

~14!
2-2
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where we have takenb52M2 and the Pauli-Fierz combi
nation,g5(3/L)(D2L)b.

Thus the procedure we follow in determining the gravit
mass is to compute the one-loop self-energy in an AdS ba
ground, and to identify the appropriate constant pieceb.
Viewed in coordinate space, this is a nonlocal contribution
S. But this is precisely what is necessary to induce a gra
ton mass.

III. HOMOGENEOUS COORDINATES AND BI-TENSORS

Before turning to an explicit calculation of the gravito
self-energy, we consider some preliminaries for study
quantum fields in homogeneous spaces. In particular, we
tablish our notation and review some useful facts about
nipulating tensors in homogeneous space. Many of th
techniques are by now standard; further details may be fo
in, e.g., Refs.@21–25#.

We find it convenient to work in homogeneous coor
nates, which corresponds to the embedding of AdS4 in R5

with the pseudo-Euclidean metric,hMN5diag(2,1,1,1,
2). AdS4 is then given by the restriction to the hyperbolo
XMXNhMN52L4

2. Note that we denote homogeneous co
dinates asXM,YM, . . . (M ,N50, . . . ,4) andintrinsic coor-
dinates asxm,ym, . . . (m,n50, . . . ,3).

Tensor fieldsfMNP•••(X) restricted to the hyperboloid
must satisfyXMfMNP•••(X)50. In addition, we take them
to be homogeneous of~arbitrary! degreen, fMNP•••(lX)
5lnfMNP•••(X). An important point to note in transformin
from intrinsic coordinates to homogeneous coordinates
that all tensor indices must be restricted to lie on the hyp
boloid, namelyXMfMNP•••(X)50. Projecting into the tan-
gent direction at a pointXM is accomplished by the operato

GMN~X!5hMN1XMXN /L2 ~15!

which also serves as a metric tensor where Tr (G)
[GMNGMN54 ~recall thatX252L2).

Two-point functions in coordinate space are in gene
bi-tensor functions of the pointsXM and YP. Maximally
symmetric scalar functions,f(X,Y), are simple and can
only depend on the invariantuX2Yu2/L2522(Z11) where
Z5X•Y/L2. However, in general, we must also consider
tensors of the form,fMN•••,PQ•••

(X,Y), where the first~sec-
ond! set of indices refer to pointXM (YP). To construct such
bi-tensors, we define the unit vectors

NM~X!5
YM1ZXM

LAZ221
, NP~Y!5

XP1ZYP

LAZ221
~16!

where, as before,Z5X•Y/L2. These serve the same purpo
as the unit tangent vectors of Ref.@22#, except that here they
are given in homogeneous coordinates. In addition, we
make use of the mixed tensor

ĜM P~X,Y!5GMN~X!hNQGPQ~Y!

5hM P1~XMXP1YMYP1ZXMYP!/L2.

~17!
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This serves the same function as the ‘‘parallel propagator
Ref. @22#. However, when converted from intrinsic coord
nates, the parallel propagator has the formgM P5ĜM P2(Z
11)NMNP , which differs at large separations. We choose
use ĜM P because it is symmetric under the antipodal m
Y→2Y in the covering space of AdS, whilegM P is not.

It is clear from the condition of maximal symmetry th
all bi-tensors may be expressed in terms of the met
GMN(X), GPQ(Y), unit vectorsNM(X), NP(Y), and mixed
tensorĜM P(X,Y). For the graviton self-energy, we are inte
ested in the two-point function,̂TMN(X)TPQ(Y)&. Since
this is symmetric under eitherM↔N or P↔Q or the simul-
taneous interchange ofMN↔PQ andX↔Y, it may always
be decomposed in terms of a set of five basis bi-tens
which we take to be@23#

O15GMNGPQ , O25NMNNNPNQ , O352ĜM
(PĜN

Q),

O45GMNNPNQ1NMNNGPQ , O554Ĝ(M
(PNN)N

Q).
~18!

To avoid lengthening the notation, we do not include theX or
Y dependence explicitly; indicesM andN always refer toX,
and P and Q always refer toY. With all indices contracted
against proper homogeneous tensors, these operators m
represented simply by

O15hMNhPQ, O25YMYNXPXQ /L4~Z221!2,

O352d (M
(P dN)

Q)

O45~hMNXPXQ1YMYNhPQ!/L2~Z221!,

O554d (M
(P YN)X

Q)/L2~Z221!. ~19!

These expressions are sufficient for determining the ap
priate linear combinations of the operators without having
keep track of complete projections. The complete operat
Eq. ~18!, may be recovered by projecting all external indic
with Eq. ~15!.

Note that this decomposition follows the notation of Re
@22# ~with tensor quantities converted to homogeneous co
dinates!, except that we use the mixed tensorĜM P instead of
the parallel propagatorgM P . This choice leads to more sym
metric expressions, and highlights the interplay betwe
boundary conditions and the use of image charges below
terms of the parallel propagator, Ref.@23# would define in-
stead

Õ352gM
(PgN

Q), Õ554g(M
(PNN)N

Q). ~20!

The relation between the two bases is given by

O35Õ31~Z11!Õ512~Z11!2O2 ,

O55Õ51~Z11!O2 ~21!
2-3
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DUFF, LIU, AND SATI PHYSICAL REVIEW D 69, 085012 ~2004!
~with the remainder unchanged!. This is a straightforward
identification at short distances (Z→21), and only differs at
long distances.

In order to investigate the graviton self-energy, it is use
to obtain a basis of transverse traceless bi-tensors. Altho
in the flat space limit, transversality is easily expressed
momentum space, this is not the case when working in
mogeneous coordinates. We first define the three trace
combinations

T15
1

3~3Z211!
@O1116O224O4#,

T252
1

3
O11

2

3
O21

1

2
Õ31

1

3
O41

1

2
Õ5 ,

T35
1

2Z
@4O21Õ5#, ~22!

where T1 , T2, and T3 are traceless in the sens
GMNTMN,PQ5TMN,PQGPQ50. For completeness, there
also a pure trace combination

PR5
1

Z2~3Z211!
@Z4O11~Z221!2O22Z2~Z221!O4#.

~23!

While there is some arbitrariness in the definition ofT1 , T2,
andT3, the above definitions~including normalization! were
chosen to have a natural reduction in the flat space~or short
distance! limit.

This limit corresponds to takingY→X, so thatZ→1, and
both G and Ĝ reduce to the~four-dimensional! flat space
metric h. In addition, the tangent vectors, Eq.~16!, reduce
according to

NM→ r̂ m , NP→2 r̂ r ~24!

where r̂ 5(yW2xW )/uyW2xW u. The resulting traceless Eq.~22!
and trace Eq.~23! combinations take on the projection for

T1→
1

12
~hmn24r̂ m r̂ n!~hrs24r̂ r r̂ s!,

T2→~d (m
(r 2 r̂ m r̂ r!~dn

s2 r̂ n) r̂
s)!

2
1

3
~hmn2 r̂ m r̂ n!~hrs2 r̂ r r̂ s!,

T3→~d (m
(r 2 r̂ m r̂ r! r̂ n) r̂

s),

PR→ 1

4
hmnhrs. ~25!

These projections are essentially onto longitudinal, tra
verse traceless, transverse, and pure trace components
rank 1, 5, 3, and 1, respectively.
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Returning to AdS, it should be noted that, while tracele
T1 , T2, andT3 are not in themselves transverse. Howev
any transverse traceless bi-tensor must be able to be wr
as a combination

T5a1~Z!~3Z211!T11a2~Z!T21a3~Z!T3 ~26!

where transversality imposes two conditions on the th
functionsa1 , a2, anda3. The details are carried out in Ap
pendix B; the result is that to highlight the large separat
behavior ofT, we construct a basic of transverse tracele
bi-tensors$T(n)%. Below, when examining the graviton sel
energy, we will make use of this basis for extracting t
nonlocal quantity responsible for graviton mass generatio

IV. COMPUTATION OF THE GRAVITON SELF-ENERGY

Before addressing the one-loop computation, we start
examining the scalar, fermion, and vector two-point fun
tions, paying attention to necessary boundary conditi
@8,26#. Details are provided in the Appendix; here we simp
summarize the results. A normalized scalar propagator n
essarily has short-distance behavior

D0~X,Y!;2
1

4p2

1

uX2Yu2
;

1

8p2L4
2

1

Z11
, ~27!

so that it reduces properly in the flat space limit. Howev
boundary conditions must still be satisfied by the addition
an appropriate solution to the homogeneous equation.
AdS energyE051 or 2, and for mixed boundary condition
encoded by parametersa1 , a2 , the scalar propagator take
the form @26#

D0
(a)5

1

8p2L4
2 S a1

Z11
1

a2

Z21
D . ~28!

Although normalization demandsa151, we nevertheless
find it illuminating to keepa1 arbitrary, as it highlights the
symmetries in the latter expressions for the graviton s
energy computation. Note thata250 corresponds to trans
parent boundary conditions, whilea561 corresponds to
ordinary reflecting ones.

Similarly, the appropriate fermion propagator has t
form

D1/2
(a)5

1

8p2L4 S a1

GM~XM2YM !

~Z11!2 1a2

GM~XM1YM !

~Z21!2 D .

~29!

The vector propagator is the first case where we have
worry about bi-tensor structures as well as gauge fixi
However, for correlators of the stress tensor, we only n
the expression for the gauge invariant two-point functi
^FMN(X)FPQ(Y)&. The result is
2-4
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COMPLEMENTARITY OF THE MALDACENA AND KARCH- . . . PHYSICAL REVIEW D 69, 085012 ~2004!
^FMN~X!FPQ~Y!& (a)

5
1

2p2L4

3F a1

~Z11!2 @Ĝ[ M
[ PĜN]

Q]22~Z21!N[MĜN]
[QNP]#

1
a2

~Z21!2 @Ĝ[ M
[ PĜN]

Q]22~Z11!N[ MĜN]
[QNP] #G .

~30!

A. The scalar contribution

The scalar loop contribution to the graviton self-ener
was partially computed in Ref.@8#, where the proper role o
boundary conditions was highlighted. The relevant Lagra
ian for a conformally coupled scalar is given by

e21L52 1
2 ]f22

1

12
Rf2. ~31!

This gives rise to the equation of motion, (h2 R)f50, as
well as the improved stress tensor

Tmn5]mf]nf2 1
2 gmn~]f!2

2
1

6
@¹m¹n2gmnh2~Rmn2 1

2 gmnR!#f2. ~32!

This stress tensor is both conserved and traceless~on the
equations of motion!, as expected for a conformal scalar. F
computational purposes, we find it convenient to reexpr
Eq. ~32! as

Tmn5
2

3
]mf]nf2

1

6
gmn@~]f!21f2/L2#2

1

3
f¹m¹nf

~33!

where we have fixed the background AdS metric and m
use of the scalar equation of motion.2

Evaluation of^Tmn(x)Trs(y)& follows from Wick’s theo-
rem

^Tmn~x!Trs~y!&5
4

9
^]mf~x!]nf~x!]rf~y!]sf~y!&1•••

5
4

9
@]m]rD0~x2y!]n]sD0~x2y!

1]m]sD0~x2y!]n]rD0~x2y!#1•••,

~34!

2Since the induced graviton mass is a long-distance effect, we
unconcerned with any contact terms that may be discarded
evaluation of the equation of motion on the Green’s functions
any case, such issues may be avoided by, e.g., use of a point
ting regulator.
08501
-

ss
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whereD0 is the scalar propagator. Working in homogeneo
coordinates, after considerable manipulation, we obtain
self-energy as a bi-local tensor

^TMN~X!TPQ~Y!&

5O1@ 1
18 ~ZD081D0!22 11

18 D08
21 1

9 D0D09#

1O2~Z221!2@D09
21 1

19 D0D0-82 8
9 D08D0-#

1O3@ 4
9 D08

21 1
9 D0D09#

1O4~Z221!@2 14
9 D08

21 7
9 D0D091 1

9 ZD0D0-

2 1
3 ZD08D09#1O5~Z221!@ 1

9 D0D0-#, ~35!

where primes denote differentiation with respect toZ. Note
that, to simplify the expression, we have used the sc
equation of motion, (Z221)D09522(D012ZD08), where
we have dropped the short-distance termd(X2Y). Substi-
tuting in the explicit form of the scalar propagator, Eq.~28!,
we find

^TMN~X!TPQ~Y!&0

5
1

48p4L4
8
F a1

2

~Z11!4 S 3Z211

4
T11T21ZT3D

1
a2

2

~Z21!4 S 3Z211

4
T11T22ZT3D

1
2

3

a1a2

~Z221!3„5~3Z211!T11~3Z221!T2210Z2T3…G
~36!

~up to contact terms, which we drop!.

B. The fermion contribution

Turning next to spin 1/2, we take for simplicity a massle
Dirac fermion with Lagrangian

e21L5 1
2 c̄~ ¹”

→
2 ¹”

←
!c ~37!

and stress tensor

Tmn5 1
2 c̄g (m~¹n

→
2 ¹

←
n)!c2 1

2 gmnc̄~ ¹”
→

2 ¹”
←

!c. ~38!

Note that this is both traceless and covariantly conserved
the equations of motion,¹” c5c̄ ¹”

←
50.

As in the scalar case, use of the equations of motion
the external vertices allows us to ignore the second term
Eq. ~38! when evaluatinĝ Tmn(x)Trs(y)&. Promoting this
expression to homogeneous coordinates, and using Wi
theorem, we find

re
by
n
lit-
2-5
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^TMN~X!TPQ~Y!&52
1

4
Tr @G (M~ ]

→
N2 ]

←
N)!D1/2~X,Y!

3G (P~ ]
→

Q2 ]
←

Q)!D1/2~Y,X!# ~39!

~the 2 sign is for a fermion loop! whereD1/2(X,Y) is the
spin-1/2 propagator given in Eq.~29!. The Dirac trace may
be evaluated by writingD1/2(X,Y)5GAD1/2

A (X,Y), so that

^TMN~X!TPQ~Y!&52~dM
A dP

B1dP
AdM

B 2hM PhAB!

3$]ND1/2
A ~X,Y!]QD1/2

B ~Y,X!

1]QD1/2
A ~X,Y!]ND1/2

B ~Y,X!

2D1/2
A ~X,Y!]N]QD1/2

B ~Y,X!

2@]N]QD1/2
A ~X,Y!#D1/2

B ~Y,X!%

~40!

where a further symmetrization on (MN) and (PQ) is im-
plied. This expression is symmetric under interchange
X↔Y in the propagators. Since this corresponds to tak
a1↔2a1 @as is evident from Eq.~29!#, the overall result is
to project onto terms even ina1 . In particular, this kills any
possible terms proportional toa1a2 in the two-point func-
tion.

A straightforward computation results in the expressio

^TMN~X!TPQ~Y!&

52
1

32p4L8F a1
2

~Z11!4 ~O122O312~Z21!O5

24~Z21!2O2!1
a2

2

~Z21!4 ~O122O3

12~Z11!O524~Z11!2O2!G ~41!

which may be rewritten in terms of the tracelessT tensors of
Eq. ~22! as

^TMN~X!TPQ~Y!&1/2

5
1

8p4L8F a1
2

~Z11!4 S 3Z211

4
T11T21ZT3D

1
a2

2

~Z21!4 S 3Z211

4
T11T22ZT3D G . ~42!

Other than for the absence of the mixeda2a1 term, this
contribution for a Dirac fermion is identical to that of a sc
lar loop, Eq.~36!, but six times larger. For a Majorana fe
mion, this should be halved, so that the contribution is th
times that of a scalar.
08501
f
g

e

C. The vector contribution

The remaining contribution to the graviton self-ener
arises from vector loops. For a massless gauge boson
Lagrangian

e21L52
1

4
Fmn

2 , ~43!

the stress tensor is simply

Tmn5FmlFn
l2

1

4
gmnF2. ~44!

Converting all expressions to homogeneous coordinates
need to evaluate

^TMN~X!TPQ~Y!&52^FM
AFP

B&^FN
AFQ

B&

2
1

2
hMN^FC

AFP
B&^FCAFQ

B&

2
1

2
hPQ^FM

AFC
B&^FN

AFCB&

1
1

8
hMNhPQ^FC

AFD
B&^FCAFDB&,

~45!

where again symmetrization in (MN) and (PQ) is assumed.
Note that all contractions are performed with eitherGMN(X)
or GPQ(Y). The main difficulty is in evaluating the first term
in this expression; the remaining ones follow simply fro
tracing over the appropriate indices. Using the explicit fo
for the vector propagator, Eq.~30!, we obtain

^FM
AFP

B&^FN
AFQ

B&

5
1

16p4L8 F a1
2

~Z11!4 @O11O32~Z21!O5

12~Z21!2O2#1
a2

2

~Z21!4 @O11O32~Z11!O5

12~Z11!2O2#1
a1a2

~Z221!2 ~O122O4!G . ~46!

Substituting this into Eq.~45!, we find that the mixeda1a2

term vanishes. The result is identical to the fermion case,
~41!, except that it is twice as large~as that for the Dirac
fermion!. Explicitly, this is given by

^TMN~X!TPQ~Y!&1

5
1

4p4L8F a1
2

~Z11!4 S 3Z211

4
T11T21ZT3D

1
a2

2

~Z21!4 S 3Z211

4
T11T22ZT3D G . ~47!
2-6
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The complete supermultiplet

Until now, we have treated spins 0,1
2 , and 1 separately

However, to preserve supersymmetry, the boundary co
tions on all fields in the multiplet have to be chosen cons
tently @27#. This means a single set ofa1 ~actually always 1!
anda2 suffices for specifying the boundary conditions. Fu
thermore, for a complex scalar in a Wess-Zumino multip
n

-
Fo

ng

o
s

in

08501
i-
-

-
t,

the scalar and pseudoscalar transform with opposite bou
ary conditions~even when the parity condition is relaxed!.
Since this corresponds to opposite signs fora2 between the
scalar and pseudoscalar, we see that the mixed term in
~36! always drops out when considering pairs of spin-0 sta
as members of supermultiplets. As a result, we find
simple universal structure for the graviton self-energy
SMN,PQ~X,Y!58pG4^TMN~X!TPQ~Y!&

58pG4

n013n1/2112n1

48p4L4
8 F a1

2

~Z11!4 S 3Z211

4
T11T21ZT3D1

a2
2

~Z21!4 S 3Z211

4
T11T22ZT3D G .

~48!
is-
ig-

all
ion,
d
ed
tant

-

ob-
a

tion
V. EXTRACTION OF THE GRAVITON MASS

We now extract the induced graviton mass from the lo
distance behavior of the self-energy Eq.~48!. We first note
that the three terms ofP in Eq. ~7! correspond to local ten
sor, nonlocal spin-1 and spin-0 exchange, respectively.
lowing Ref.@8#, the mass can be read off by identifying inS
a piece proportional to the spin-1 Goldstone boson excha
given by the second term in Eq.~7!:

Pmn ab
(spin-1)52¹nS gnb1¹n¹b/2L

D22L D¹a52¹mDnb¹a . ~49!

Here,Dmn is the spin-1,E054, propagator.
Working in coordinate space, we now rewriteP (spin-1) as

a bi-local tensor. To accomplish this, we start with the h
mogeneous spaceE054 vector propagator, which wa
worked out in Ref.@22#:

DM P5
1

48p2L2 F2~8215Z219Z4!

~Z221!2 29Z log
Z11

Z21
GĜM P

1
1

48p2L2 F2Z~223124Z229Z4!

~Z221!2

19~Z221!log
Z11

Z21
GNMNP . ~50!

We now freely integrate by parts to obtain

PMNPQ
(spin-1)52¹XMDNQ¹YP522~¹XM¹YPDNQ!

52
2Z

3p2L4
4~Z221!3

@5~3Z211!T112T2

25~Z211!T3#. ~51!

Note that this nonlocalP (spin-1) is transverse and traceless
itself, while the original expression, Eq.~7!, requires an in-
g

l-

e,

-

terplay among all terms to ensure transversality. This d
crepancy arises only through local terms that we have
nored throughout.

While the one-loop self-energies we have computed
satisfy the homogeneous coordinate transversality condit
Eq. ~B6!, this condition still allows an undetermine
Z-dependent form factor. To read off the correctly induc
graviton mass, we essentially need to obtain the cons
piece of b(D) in Eq. ~6!, which may be determined by
matching the largeZ behavior of Eq.~48! with that of the
spin-1 part ofP, given by Eq.~51!. To do so, we expand
both expressions for largeZ and match the asymptotic be
havior. For the self-energy, we find

S58pG4

n013n1/2112n1

48p4L8

3F ~a1
2 1a2

2 !S 1

4
T(4)1

5

2
T(6)1

35

4
T(8)1••• D

1~a1
2 2a2

2 !~T(5)15T(7)1••• !G , ~52!

while

Pspin-15
10

3p2L4 @T(5)13T(7)1•••#, ~53!

where the basis forms,T(n) , are given in Appendix B.
Matching the leadingT(5) term gives

M258pG4

n013n1/2112n1

160p2L4
~a1

2 2a2
2 !. ~54!

This expression is our main result, and generalizes that
tained in Ref.@8#. Note, however, that this result differs by
factor of 160 from that of Ref.@8#. We believe that this
discrepancy arises from three sources. Firstly, normaliza
2-7
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of the E054 scalar propagator is determined by demand
the proper strength of the short-distance singularity in the
space limit@22#. This yields

D0~E054!52
1

4p2L2 F3Z222

Z221
2

3

2
Z log

Z11

Z21
G

→
1

8p2L2

1

Z11
as Z→21 ~55!

@compare with Eq.~27!#. Taking the large separation limi
Z→`, then gives

D0~E054!;2
1

10p2L2

1

Z4 as Z→` ~56!

which accounts for a factor of four. Secondly, without exa
ining the tensor structure in detail, there is an ambiguity
attributing the long range structure of the self-energyS to
the propagation of a spin-1 Goldstone boson inP. In par-
ticular, bothT(5) andT(7) of Eq. ~52! and Eq.~53! have the
requisite long range falloff upon integration by parts

h•T(5)•h;
3

10
]MhMN

hNQ

Z4
]PhPQ ,

h•T(7)•h;2
3

25
]MhMN

hNQ

Z4
]PhPQ . ~57!

As a result, both terms would contribute to the coefficient
the 1/Z4 piece, while only the actual combinationT(5)
13T(7) of Eq. ~53! may be attributed to the induced gravito
mass. In other words, it is important to match only the le
ing T(5) behavior betweenS andP of Eqs.~52! and~53!. Of
course, this would have been immaterial if the asympto
expansions had been identical. However, in this case they
not, and this accounts for another factor of five between
expression and that of Ref.@8#. Finally, the remaining factor
of eight comes in when determining the mass via the shif
the pole of the resummed propagator, Eq.~13!. We find the
mass squared to be simply the constant multiplyingPspin-1

~up to a sign!. Since a canonically normalized gravito
couples to the stress tensor with strengthkhmnTmn , and
since we do not include symmetry factors in our coordin
space Feynman rules, we have simply

SMNPQ~X,Y!5k2^TMN~X!TPQ~Y!&

58pG4^TMN~X!TPQ~Y!&. ~58!

We believe this provides a proper accounting for Newto
constant in the self-energy. Comparing with Ref.@8#, this
appears to be the origin of the remaining factor discrepa

Note that the spin-0 term inP has a different structure
However this term is canceled by the nonlocal part ofK. The
absence of spin-0 exchange inS is in agreement with the
AdS Higgs mechanism@8#, and yields the massive spin-
propagator~14! without ghosts.
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While we have focused on the dynamical breaking of g
eral covariance, as evidenced by a mass for the graviton,
supersymmetric Karch-Randall model, a dynamical break
of local supersymmetry and local gauge invariance also
curs, as evidenced by a mass for the gravitinos and the ga
bosons. For the Karch-Randall braneworld@9#, where the
CFT fields are that ofN54 U(N) super-Yang-Mills, we
substitute transparent boundary conditions (a151, a250)
into the expression for the graviton mass, Eq.~54!, and find
simply

M25
9G4

4L4
4

a, ~59!

which reproduces exactly the Karch-Randall result of Eq.~1!
upon using Eq.~4!. Although we focused on theN54 SCFT
to relate the coefficienta to the central charge, the result E
Eq. ~4! is universal, being independent of which particul
CFT appears in the AdS/CFT correspondence. This sugg
thata plays a universal role in both the Minkowski and Ad
braneworlds, as indicated in Eqs.~59! and ~5!, and that our
result is robust at strong coupling. This presumably expla
why our one-loop computation gives the exact Karc
Randall result. However, we do not know for certain wheth
this persists beyond one loop.
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APPENDIX A: PROPAGATORS IN ADS

Here we collect some information on spin-0, -1/2, and
propagators in homogeneous coordinates. First recall tha

quadratic Casimir invariant ofSO(2,3) is Q5 1
2 LMN

2

5E0(E023)1s(s11) whereE0 ands label the representa
tion D(E0 ,s). Acting on scalarsf(X), the operatorQ ~cor-
responding to the Casimir invariant! has the form

Q5 1
2 LMN

2 52 1
2 ~XM]N2XN]M !2

5N̂~N̂13!2X2]2 ~A1!

whereN̂5X•]. As a result, the scalar Klein-Gordon equ
tion is simply

@N̂~N̂13!2X2]22E0~E023!#f~X!50. ~A2!

To obtain the scalar Green’s function between pointsX and
Y, we note that]252]Z

2/L2 and N̂5X•]5Z]Z . In this
case, we find thatD0(Z)[D0(X,Y) satisfies the equation

@~12Z2!]Z
224Z]Z1E0~E023!#D0~Z!50. ~A3!
2-8
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For eitherE051 or 2, this has a simple pair of solution
D0;1/(Z61). However, in order to reproduce a short d
tance behaviorD0;1/uX2Yu2, we must take the one with
the positive sign. As a result, we obtain

D05
1

8p2L2

1

Z11
52

1

4p2

1

uX2Yu2
. ~A4!

The normalization is fixed by demanding thatD0 reduces
properly in the flat space limit.

The propagator of Eq.~A4! in fact corresponds to impos
ing transparent boundary conditions on the scalar. Thi
seen by recalling that while~the covering space of! AdS4
may be conformally mapped into half of the Einstein sta
universe, with topologyR3S3, Eq. ~A4! is in fact well de-
fined on the completeS3 ~so that the boundary is in effec
invisible! @26#. Reflective boundary conditions may be im
posed by a method of images so that

D0
652

1

4p2 S 1

uX2Yu2 6
1

uX1Yu2D
5

1

8p2L2 S 1

Z11
7

1

Z21
D . ~A5!

It is now evident that mixed boundary conditions may
encoded by parametersa1 ,a2 where

D0
(a)5

1

8p2L2 S a1

Z11
1

a2

Z21
D . ~A6!

While the residue of the short distance pole must be fi
~i.e. a151), we find it illuminating to keepa1 arbitrary, as
it highlights the symmetries in the latter expressions for
graviton self-energy computation. In terms of Porrati’sa and
b coefficients, defined3 by @8#

D052
1

4p2L2 S a
1

Z221
2b

Z

Z221
D , ~A7!

we find a15(a1b) anda252(a2b).
For the fermion propagator, we consider the Dirac eq

tion in homogeneous coordinates. Start by defining the D
operatorK5GMNXM]N where$GM,GN%52hMN. By squar-
ing this operator, it is easy to show thatK(K23)5N̂(N̂
13)2X2]2. On the other hand, by squaring theSO(2,3)
generators acting on a spin-1

2 state,LMN5 i (XM]N2Xn]M)
1( i /2)GMN , we may show thatQ5N̂(N̂13)2X2]21 5

2

2K5K(K24)1 5
2 . When acting onC(X), this must repro-

duce the quadratic Casimir invariantQ5E0(E023)1 3
4 .

Equating these expressions, we find the factorized rela

(K2 1
2 )(K2 7

2 )5E0(E023), so that eitherE05K2 1
2 or

E05 7
2 2K. This gives two possible Dirac equations

3Some signs have been changed to conform to our conventio
08501
is

d

e

-
c

n

@K2~E01 1
2 !#C~X!50 or @K1~E02 7

2 !#C~X!50.
~A8!

For the massless case (E05 3
2 ), both equations degenerate

(K22)C(X)50.
Next, we note the factorization (K2l)(K1l23)

5N̂(N̂13)2X2]22l(l23), which holds for arbitraryl.
Since the right hand side is simply the scalar Klein-Gord
operator, Eq.~A2!, this provides the AdS equivalent of th
relation (]”2m)(]”1m)5h2m2. Denoting eitherl or 3
2l by E0

(0) ~indicating the canonical value ofE0 in the
scalar equation!, this may be rewritten in the suggestiv
manner@28#

@K2~E01 1
2 !#@K1~E02 5

2 !#

5N̂~N̂13!2X2]22E0
(0)~E0

(0)23!, E0
(0)5E01 1

2

@K1~E02 7
2 !#@K2~E02 1

2 !#

5N̂~N̂13!2X2]22E0
(0)~E0

(0)23!, E0
(0)5E02 1

2

~A9!

so that solutions to the Dirac equation, Eq.~A8!, are easily
obtained from solutions to the scalar equation, Eq.~A2!, by
taking

C~X!5@K1~E02 5
2 !#C0f~X;E0

(0)5E01 1
2 !

or

C~X!5@K2~E02 1
2 !#C0f~X;E0

(0)5E02 1
2 ! ~A10!

with C0 a constant spinor. This result allows us to imme
ately determine the fermion propagator in terms of the sc
one in much the same way as one would compute]”
5]” /h in the flat limit.

For E05 3
2 ~corresponding toE0

(0)51 or 2!, we use the
form of the scalar propagator, Eq.~A4!, and the relation Eq.
~A10! to obtain

D1/25
1

8p2L4

GM~XM2YM !

~Z11!2 5
1

2p2

GM~XM2YM !

uX2Yu4
.

~A11!

This is the massless fermion propagator corresponding
transparent boundary conditions. Similar to Eq.~A6!, general
boundary conditions may be imposed by introducing para
etersa1 ,a2 and taking.
2-9
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TABLE I. First few elements of the transverse traceless bi-tensor basisT(n) . The coefficientsa1 , a2, and
a3 correspond to the decompositionT5a1(3Z211)T11a2T21a3T3.

a1 a2 a3

T(4) Z24 22Z2416Z26 4Z24

T(5) Z25 25Z2519Z27 2Z2315Z25

T(6) Z26 3
5 Z242

46
5 Z261

63
5 Z28 22Z2416Z26

T(7) Z27 9
5 Z252

73
5 Z271

84
5 Z29 23Z2517Z27
GM~XM2YM ! GM~XM1YM !

ul
h
r

ve
ee
ion
an

a

p

ic
s
s

o

Z221

less
D1/2
(a)5

8p2L4 S a1
~Z11!2 1a2

~Z21!2 D .

~A12!

Turning next to the vector propagator, we use the res
of Ref. @22#, converted to homogeneous coordinates. T
vector propagator is the first case where we have to wo
about bi-tensor structures as well as gauge fixing. Howe
fortunately, for correlators of the stress tensor, we only n
the expression for the gauge invariant two-point funct
^FMN(X)FPQ(Y)&. Based on symmetry, this expression c
be written as

^FMN~X!FPQ~Y!&5s~Z!Ĝ[ M
[ PĜN]

Q]1t~Z!N[ MĜN]
[QNP]

~A13!

wheres(Z) and t(Z) may be determined as in Ref.@22#.
Taking into account mixed boundary conditions as well
normalization of the short distance behavior, we find

^FMN~X!FPQ~Y!& (a)

5
1

2p2L4F a1

~Z11!2 @Ĝ[ M
[ PĜN]

Q]22~Z21!N[MĜN]
[QNP]#

1
a2

~Z21!2 @Ĝ[ M
[ PĜN]

Q]22~Z11!N[ MĜN]
[QNP] #G .

~A14!

These mixed boundary condition propagators, Eq.~A6!, Eq.
~A12!, and Eq.~A14!, are the ones used in the one-loo
computation.

APPENDIX B: A TRANSVERSE-TRACELESS
BI-TENSOR BASIS

In this appendix, we present a convenient basis into wh
any transverse-traceless bi-local tensor may be decompo
Since any traceless tensor,T, may be decomposed in term
of the threeT tensors defined in Eq.~22!, we start by writing
T5a1(3Z211)T11a2T21a3T3. The factor (3Z211) is in-
troduced for convenience. We now impose transversality
T. In particular, taking the divergence ofT on the first index
gives
08501
ts
e
ry
r,
d

s

h
ed.

n

¹MTMNQP5A
L

$@~3Z211!a1816Za1#N•T1

1a28N•T21a38N•T3%1a1~3Z211!¹MT1

1a2¹MT21a3¹MT3 . ~B1!

We compute

N•T15
1

3Z211
A, N•T250, N•T35

1

2Z
B ~B2!

and

AZ221¹•T15
2Z~3Z215!

~3Z211!2 A2
4

3~3Z211!
B,

AZ221¹•T252
5

3
B, ~B3!

AZ221¹•T35
3Z211

2Z2 B2
1

Z
A,

where the tensorsA andB are given by

ANPQ5~4NNNPNQ2NNGPQ!,

BNPQ5@~ĜNPNQ1ĜNQNP!22ZNNNPNQ#.
~B4!

Thus the vanishing of the divergence in Eq.~B1! leads to two
conditions on the three functions,

~Z221!Za18524Z2a11a3 ,

~Z221!Za385
8

3
Z2a11

10

3
Z2a22~3Z211!a3 .

~B5!

These equations may be solved to givea2 anda3 in terms of
a1 and its derivatives. As a result, any transverse trace
bi-tensor must take the form
2-10
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T5a~3Z211!T1

1F 3

10
~Z221!2a913~Z221!Za812~3Z221!aGT2

1@~Z221!Za814Z2a#T3 ~B6!

and is fully specified by the functiona(Z).
. B

tt.

08501
By choosing a complete set of functionsa(Z), we may
obtain a basis of transverse traceless bi-tensors. A conven
choice is to takea(n)51/Zn, whereupon the resulting expres
sion of Eq.~B6! may be denotedT(n) . The first few basis
bi-tensors with sufficiently fast large distance falloff a
shown in Table I. Note the absence of leading order 1/Z2 and
1/Z3 behavior in thea2 anda3 coefficients ofT(4) andT(5) ,
respectively.
. B
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