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We perform a one-loop test of the holographic interpretation of the Karch-Randall model, whereby a massive
graviton appears on an Ad®rane in an Ad$bulk. Within the AdS/CFT framework, we examine the quantum
corrections to the graviton propagator on the brane, and demonstrate that they induce a graviton mass in exact
agreement with the Karch-Randall result. Interestingly enough, at one loop order, the spin-0, spin-1/2, and
spin-1 loops contribute to the dynamically generated (nfassthe same 1:3:12atio as enter the Weyl
anomaly and the 17 corrections to the Newtonian gravitational potential.
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[. INTRODUCTION in the limit L,—, whereL, andLg are the “radii” of AdS,
. , and AdS, respectively. From the Karch-Randall point of
An old question is whether the graviton could have ayje, the massive graviton bound to the brane arises from
small but nonzero rest mass. If so, it is unlikely to be de-g4)ing the classicad =5 linearized gravity equations in the

scribed by the explicit breaking of general covariance thabrane background9]. Furthermore, holography of the

Eig![tesir:rﬁ;n rtgr? ?;nd't.'l%?sc’f i\?ega:ilfs“e;Ftlc?rtiemv?;ﬁ-tkiron\]/vrgovg]n arch-Randall moddl10,11] consistently predicts an identi-
grangian. 9 cal graviton mass.

Dam-Veltman—Zakharop,2] discontinuity problems in the In a previous papef12], the complementarity between

massless limit that come about by jumping from five degree .
of freedom to two. Moreover, recent attempig4] to cir- %e Maldacena AdS/conformal field thedi@FT) correspon-

cumvent the discontinuity in the presence of a nonzero cosdénce[13-19 and the Randall-Sundrurfil6] Minkowski
mological constant work only at the tree level and the dis-Praneworld picture was put to the test by calculating thé 1/
continuity resurfacésat one loog6]. On the other hand, in Corrections to the Newtorjlan grawtatlongl potential arising
analogy with spontaneously broken gauge theories, onom the CFT loop corrections to the graviton propagator. At
might therefore prefer a dynamical breaking of general coone loop we hav¢l7]
variance, which would be expected to yield a smooth limit.
However, a conventional Higgs mechanism, in which a sca- 4mym, aG,
lar field acquires a nonzero expectation value, does not yield V(r)=—o1 1+ —
a mass for the graviton. The remaining possibility is that the r
graviton acquires a mass dynamically and that the would-be , . .
Goldstone boson is spin-one bound statglust such a pos- whereG, is the four-dimensional Newton’s constant,
sibility was suggested in 1979].

Interestingly enough, the idea of a massive graviton aris-
ing from a spin-one bound state Goldstone boson has re-
cently been revived by Porrafi8] in the context of the

Karch-Randall brane-worl@9] whereby our universe is an and wheren,, ny,, andn; count the number ofrea) sca-
AdS, brane embedded in an Ad®ulk. This model predicts |ars, (Majorana spinors, and vectors in the multiplet. The

: 2

1
a=ﬁ(12|’11+3n1,2+n0), (3)

a small but finite four-dimensional graviton mass coefficienta is the same one that determines that part of the
) Weyl anomaly involving the square of the Weyl ten§d8].
3L ) . - N
M2=_—3 1) The fields on the brane are given by=4 supergravity
2L% coupled to a\V=4 super-Yang-Mills CFT with gauge group

U(N), for which (n;,ny,,,ng)=(N?4N2 6N?). Using both
the AdS/CFT relationN?= 7L¢%/2G5, and the brane world

*Email address: mduff@umich.edu relation,G,=2Gs/Ls, we find
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A similar quantum discontinuity arises in the “partially mass- 3Gs 3
less” limit as a result of jumping from five degrees of freedom to
four [5]. whereGgs is the five-dimensional Newton constant. Hence
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8
which agrees exactly with the Randall-Sundrum bulk resultis the transverse but trace projection. More generally,

This complementarity can be generalized to the Karch-
Randall AdS braneworld picture. From an AdS/CFT point of

) ; oy +K),,P=0580+ “

view, one may equally well foliate a Poincguatch of Adg (MK udy A—-2A AL Ve

in AdS, slices. The Karch-Randall brane is then such a slice 1

that cuts off the Ad$ bulk. However, unlike for the TN — A A A
. . . . /,L

Minkowski braneworld, this cutoff is not complete, and part (A=2A)(A=A)

of the original AdS boundary remainf9,11]. Starting with a
maximally supersymmetric gaugeéd= 8 supergravity in the
five-dimensional bulk, the result is a gaugdt=4 super-

is an overall transverse projection, regardless of trace. Here,
A=-3/L3 is the four-dimensional cosmological constant

gravity on the brane coupled to &=4 super-Yang-Mills andA is the general Lichnerowicz operator which commutes

CFT with gauge group)(N), however, with unusual bound- with covariant derivatives. Symmetrization o) and

ary conditions on the CFT field8,10,11,19,20 (ap) is implied throughout. In flat space, these expressions
As was demonstrated in RdB], the CFT on Ad$ pro-  reduce simply to the familiar

vides a natural origin for the bound state Goldstone boson, 1 1

which turns out to correspond toraassiverepresentation of Hwaﬁzdzdf— §dwd“5, Kzf=§dwd“ﬁ (10

S(O(3,2). However, while Ref.8] considers the case of cou-

pIing_ to a single conformal scalar, _in this paper we provide 3y here

crucial test of the complementarity by computing the dy-

namically generated graviton mass induced by a complete 3,0,

N=4 super-Yang-Mills CFT on the brane and showing that A= 0~ o (12)

this quantum computation correctly reproduces the Karch-

Randall result, Eq(1). In Feynman gauge, the tree-level massless graviton propa-

We begin in Sec. Il by discussing properties of the gravi-gator in AdS takes the form
ton propagator and providing a general framework for the
dynamical generation of graviton mass. In Sec. Ill, we intro- D ab— 1 <5a5,8_ Eg gaﬁ)
duce homogeneous coordinates, and set up the loop compu- wy A—-2A wy
tation, which we carry out in Sec. IV. Finally, in Sec. V, we ) )
recover the Karch-Randall graviton mass, £, from the ~ Using the self-energy written in the form E(), the quan-

(12

quantum CFT perspective. tum corrected propagator may be summed to yield
D ap ! o A7 8
D, = 5, «
II. TRANSVERSALITY AND THE GRAVITON MASS wv A—2A—pB\ *7 3A— 4A9Mvg

We are mainly interested in the properties of the one-loop

graviton self-energys. ,, ,5(x,y). As emphasized in Refs. _ 1 E A-A g gaﬁ) (13

[7,8], mass generation is compatible with the gravitational A—A+vy2\ 2 BA—4A7H

Ward identity arising from diffeomorphism invariance. Thus L

the self-energy remains transversets ,, ,s=Vos ,, s when evaluated between conserved sources. This indicates
X uv,a y < uv,a

that a constant piece in the traceless self-engdgy— M?,

will shift the spin-2 pole in the propagator, thus yielding a
nonzero graviton mass. The second term, involving the trace,
_ may combine with the scalar part of the first. However, a
2 0= BT, 0p(A) + ¥(A)K s 0p(A), (6) potentially dangerous scalar ghost pole at=34A may ap-
pear. This ghost is absent whenever the residue of the pole

—0. One is then able to writ& as a nonlocal expression
evaluated at point*, compatible with transversality

where[8] vanishes, i.e. providegt= |4, _3, . This is in fact the case,
as may be seen by explicit computation below. Although the

SBLV VAI2A field theory is conformal, the presencelofis demanded by

I,,*A=5060— —gwg"BJr 2v, ﬁ) ve the Weyl anomalyf18]. However, this trace piece is entirely

contained in the local part of, and does not contribute
A 3 1 3 directly to the mass. The net result is a pure massive spin-2

gl“/+ V \Y ) m(gaﬁ'i‘ KV“Vﬁ) propagator
7) - 1 1[2A-2M?
D‘”aﬁ:m 300 5\ 57— 7vrz ) 98P |,
—2A+M 2\ 2A—-3M
is the transverse-traceless projection and (14)
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where we have takep=—M? and the Pauli-Fierz combi- This serves the same function as the “parallel propagator” of

nation, y=(3/A)(A—A)B. Ref. [22]. However, when converted from intrinsic coordi-
Thus the procedure we follow in determining the gravitonnates, the parallel propagator has the faygb=Gyp—(Z

mass is to compute the one-loop self-energy in an AdS backs+ 1)N\,Np, which differs at large separations. We choose to

ground, and to identify the appropriate constant pigte use Gyp because it is symmetric under the antipodal map

Viewed in cqordlngte space, t.h|s isa nonlocall contribution tWH—Y in the covering space of AdS, whilgy,p is not.

3. But this is precisely what is necessary to induce a gravi- It is clear from the condition of maximal symmetry that

ton mass. all bi-tensors may be expressed in terms of the metrics
Gun(X), Gpo(Y), unit vectorsNy (X), Np(Y), and mixed
tensoréM p(X,Y). For the graviton self-energy, we are inter-
Before turning to an explicit calculation of the graviton ested in the two-point function{Tyn(X) Tpg(Y)). Since
self-energy, we consider some preliminaries for studyinghis is symmetric under eithédl <N or P Q or the simul-
quantum fields in homogeneous spaces. In particular, we etaneous interchange N« PQ and X« Y, it may always
tablish our notation and review some useful facts about mabe decomposed in terms of a set of five basis bi-tensors,
nipulating tensors in homogeneous space. Many of thesehich we take to b¢23]
techniques are by now standard; further details may be found

IIl. HOMOGENEOUS COORDINATES AND BI-TENSORS

in, e.g., Refs[21-25. 0;=GynGpo, O2=NyNyNpNg, 03=2G,PGy?,
We find it convenient to work in homogeneous coordi-

nates, which corresponds to the embedding of AGSR® 0,=GrnNoNa+ NuNuG =46, PN NQ.

with the pseudo-Euclidean metrigy,y=diag(—,+,+,+, 4 TMNTRTQ T TMENTRQ: ° N (18)

—). AdS, is then given by the restriction to the hyperboloid

XMXN = — Li. Note that we denote homogeneous coor-To avoid lengthening the notation, we do not include Xhar

dinates ax™,YM, ... (M,N=0, ... ,4) andntrinsic coor- Y dependence explicitly; indicdd andN always refer toX,

dinates ax*,y*, ... (u,v=0,...,3). and P and Q always refer toY. With all indices contracted
Tensor fieldséynp...(X) restricted to the hyperboloid against proper homogeneous tensors, these operators may be

must satisfyXM ¢y ne...(X)=0. In addition, we take them represented simply by

to be homogeneous dhrbitrary) degreen, ¢ynp...(AX)

=\"¢une...(X). An important point to note in transforming O1=nunn™ 0= Y Y\ XpXo/LH(Z2~1)?,
from intrinsic coordinates to homogeneous coordinates is
that all tensor indices must be restricted to lie on the hyper- 03=25E,\P,|5%
boloid, namelyX™ ¢y np...(X)=0. Projecting into the tan-
gent direction at a poink™ is accomplished by the operator Oa= (gunX"XC+ Yy Yy /IL2(Z%- 1),
Gun(X)= nun+ XuXn/L? (15 05:45E1\P/|YN)XQ)/L2(ZZ_1)- (19

which also serves as a metric tensor where QY ( h . fici ¢ - h
=Gy G"N=4 (recall thatX?= — L ?). These expressions are sufficient for determining the appro-

Two-point functions in coordinate space are in generaPriate linear combinations of the operators without having to
bi-tensor functions of the pointX™ and YP. Maximally keep track of complete projections. T_he complete operators,
symmetric scalar functions$(X,Y), are simple and can Eq. (18), may be recovered by projecting all external indices

only depend on the invariahX— Y|?/L?= —2(Z+1) where  With Eq. (15). . .
Z=%(~YF/)L2 However. in géhz(era” we must ;Iso c)onsider bi- Note that this decomposition follows the notation of Ref.

tensors of the formgyy. .. po...(X,Y), where the firstsec- [22] (with tensor quantities converted to homogeneous coor-

bi-tensors, we define the unit vectors the parallel propagatayp . This choice leads to more sym-
metric expressions, and highlights the interplay between
Y+ ZX Xp+ZYp boundary conditions and the use of image charges below. In

Np(Y)= (16)  terms of the parallel propagator, R€23] would define in-

LVZ?—-1 stead

where, as beforgZ=X-Y/L2. These serve the same purpose
as the unit tangent vectors of RE22], except that here they

are given in homogeneous coordinates. In addition, we also
make use of the mixed tensor

03=29yPgn?,  Os=4gPNyN?. (20
The relation between the two bases is given by
Gup(X,Y)=Gun(X) 7" Gpg(Y)

= 7]Mp+(XMXp+YMYp+ ZXMYP)/L2
(17) O05=05+(Z+1)0, (21)

O3=03+(Z+1) D5+ 2(Z+1)%0,,
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(with the remainder unchangedThis is a straightforward Returning to AdS, it should be noted that, while traceless,
identification at short distanceZ{> — 1), and only differsat T,, T,, andT; are not in themselves transverse. However,
long distances. any transverse traceless bi-tensor must be able to be written

In order to investigate the graviton self-energy, it is usefulas a combination
to obtain a basis of transverse traceless bi-tensors. Although,
in the flat space limit, transversality is easily expressed in T=a,(2)(3Z%+ 1) T +a,(2)T,+az(2)T;  (26)
momentum space, this is not the case when working in ho-
mogeneous coordinates. We first define the three tracele

L Where transversality imposes two conditions on the three
combinations

functionsa;, a,, andas. The details are carried out in Ap-
1 pendix B; the result is that to highlight the large separation
T1= 57 [01+160,—40,], behavior of 7, we construct a basic of transverse traceless
3(3Z2°+1) ) L .
bi-tensors{ 7, }. Below, when examining the graviton self-
energy, we will make use of this basis for extracting the

1 2 1 1 1. . - ) .
T,=— §01+ 5(92+ 503+ §O4+§OS’ nonlocal quantity responsible for graviton mass generation.
1 _ IV. COMPUTATION OF THE GRAVITON SELF-ENERGY
=— + . :
Ts 22[4(92 Osl, (22 Before addressing the one-loop computation, we start by

examining the scalar, fermion, and vector two-point func-
where T,, T, and T3 are traceless in the sense tions, paying attention to necessary boundary conditions
GMNTyn po=Tun,poGT9=0. For completeness, there is [8,26]. Details are provided in the Appendix; here we simply
also a pure trace combination summarize the results. A normalized scalar propagator nec-
L essarily has short-distance behavior
— 4 2 2 272
22(322+1)[Z O1+(Z2°=1)°0y—Z9(Z°— 1) O4]. 1 1 N .
(23 Ag(X,Y)~—

Pr

- ~ , 2
4% [X=Y[* gn22Z+1 @7

While there is some arbitrariness in the definitioriTef T,

andTs, the above definitionéincluding normalizationwere  so that it reduces properly in the flat space limit. However,

chosen to have a natural reduction in the flat sgaceshort  houndary conditions must still be satisfied by the addition of

distancg limit. an appropriate solution to the homogeneous equation. For
This limit corresponds to taking— X, so thatZ—1, and  AdS energyE,=1 or 2, and for mixed boundary conditions

both G and G reduce to the(four-dimensional flat space encoded by parametess, , «_ , the scalar propagator takes

metric . In addition, the tangent vectors, E@.6), reduce the form[26]

according to

- N 1
NM—>I’M, Np—>_rp (24) A((.)a)z

[ a_
+ ) (28

8772Li Z+1 Z-1

where r=(y—x)/|y—x|. The resulting traceless Eq22)

and trace Eq(23) combinations take on the projection form Although normalization demands, =1, we nevertheless

find it illuminating to keepa, arbitrary, as it highlights the

symmetries in the latter expressions for the graviton self-

energy computation. Note that =0 corresponds to trans-

parent boundary conditions, while=*1 corresponds to

1 " a A n
T,— 1—2( Ny =41, 1) (77— 4rPr?),

T, (8% -1 Fp)(gU_FV)FU)) ordinary reflecting ones.
GO ! Similarly, the appropriate fermion propagator has the
1 ~ A form
—g(nw—rﬂfy)(ﬂp"—r”r"),
1 'M(Xpy—=Yw) ™(Xy+Yw)
Af3= +

Ta— (88— ,,F)F )f 7, 8n2lt\ T (zr 12z T (z-1)2

(29
1 oo
PR_)Z””M ' (25 The vector propagator is the first case where we have to
worry about bi-tensor structures as well as gauge fixing.
These projections are essentially onto longitudinal, transHowever, for correlators of the stress tensor, we only need
verse traceless, transverse, and pure trace components, witlte expression for the gauge invariant two-point function
rank 1, 5, 3, and 1, respectively. (Fun(X)Fpa(Y)). The result is
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(Fun(X)FPRY)) @ whereA is the scalar propagator. Working in homogeneous
coordinates, after considerable manipulation, we obtain the
- 1 self-energy as a bi-local tensor
2724
N (Tun(X) Tpa(Y))
X | ——— [ & PGB D — 2(Z— 1)Niy G ONP] O (ZAT 4 A A2 LA AT
(Z+l)2 [ | [ ] —Ol[ﬁ(z 0+ 0) — 18 0+§ 0Ap
a R +0x(Z2=1)’[Ag*+ 15 A0Ag" — § AgAg]
] ——— GG\ ¥ —2(Z+ 1)N Gy [ONPIT [
( ) +03[5 8>+ 5 A0Ag
(30)

+O0,Z2-1)[— B AP+ §AAL+ § ZAAY

A. The scalar contribution "
e _ — 3 ZAgAG1+05(Z2 - 1)[5 AoAg ], (35)
The scalar loop contribution to the graviton self-energy
was partially computed in Ref8], where the proper role of

" S where primes denote differentiation with respecZtd\ote
boundary conditions was highlighted. The relevant Lagrang P P

that, to simplify the expression, we have used the scalar

ian for a conformally coupled scalar is given by equation of motion, Z?—1)Aj=—2(Ay+2ZA}), where
we have dropped the short-distance tef(X—Y). Substi-
e lL=—310¢*— R¢>2 (3)  tuting in the explicit form of the scalar propagator, E28),
we find
This gives rise to the equation of motio,J R) »=0, as
well as the improved stress tensor (Tun(X) Teo(Y))o
T,,=0,b0,6—1g,,(9)> 1 o [3Z%+1
12 ,u¢ ¢ 29#( ¢) _ + ’ T1+T2+ZT3
1 ) , 48748 (Z+1) 4
_E[V,u,vv_g/u/l:]_(R,uv_ig,u,vR)](ﬁ . (32) 5 )
at 32°+1
+ +T,—
This stress tensor is both conserved and tracelessthe (z-1)*\ 4 Tt T2m2Ts
equations of motion as expected for a conformal scalar. For
computational purposes, we find it convenient to reexpress 2 e ) - )
Eq. (32 as 3 —(22 1)3(5(32 +1)T,+(3Z2°-1)T,— 10Z°T3)
2 1 P PR | (36)
T/Luzgo’),ugbavd)_ Egﬂv[(&gb) + ¢ /L ]_ §¢V,uvv¢
(33)  (up to contact terms, which we drpp
where we have fixed the background AdS metric and made ) o
use of the scalar equation of motién. B. The fermion contribution
Evaluation of(T ,,(X)T,,(y)) follows from Wick’s theo- Turning next to spin 1/2, we take for simplicity a massless
rem Dirac fermion with Lagrangian
4 1 _l——> —
4 and stress tensor
= §[apapA0(x_y) BV&ITAO(X_ y)
1= — = 1 — = =
+ﬁMaUAo(X_y)(?VﬁpAo(X_y)]‘l‘ ceey T/.LV: ZlﬁY(M(Vv_ v V))lp— ng} ( V-V )l/l (38)

(39

Note that this is both traceless and covariantly conserved on
—

the equations of motior¥ ¢y= ¢y ¥=0.

2Since the induced graviton mass is a long-distance effect, we are AS in the scalar case, use of the equations of motion on
unconcerned with any contact terms that may be discarded bjhe external vertices allows us to ignore the second term in
evaluation of the equation of motion on the Green's functions. InEd. (38) when E'Va|UatlanW(X)Tpa.(y)>- Promoting this
any case, such issues may be avoided by, e.g., use of a point spi@xpression to homogeneous coordinates, and using Wick's
ting regulator. theorem, we find

085012-5



DUFF, LIU, AND SATI PHYSICAL REVIEW D 69, 085012 (2004

C. The vector contribution

1 — —
<TMN(X)TPQ(Y)>:_ZTr[F(M( INT I ) A% Y) The remaining contribution to the graviton self-energy

arises from vector loops. For a massless gauge boson with
— — :
XT(p(d g 9 g)AuAY,X)] (39  Lagrangian

1
(the — sign is for a fermion loopwhere A;5(X,Y) is the e L=—-F2 (43
spin-1/2 propagator given in E¢R9). The Dirac trace may 4 *

. _ A
be evaluated by writingh 1,5(X,Y) =T ,A%75(X,Y), so that the stress tensor is simply

1
— N_ 2
(TunX) Tpo(Y))=— (S dp+ Spdy— mmpn™®) Tuw=FunF = 70,,F% (44)

X{INATAX,Y) QAT Y, X) Converting all expressions to homogeneous coordinates, we
need to evaluate
+ A X, Y)INAT A Y, X)

— AP X,Y) IndoAT A Y, X) (Tun(X) Tpo(Y))=2(F A FpB)(F\AFB)

1
- [3N3QA?/2(X7Y)]A?/2(Y=X)} ~ 5 n(FcF PB><FCAFQB>
(40)

_ A B A-CB
where a further symmetrization oM(N) and P Q) is im- 2 7eQ{Fu"F ) (FNFE)
plied. This expression is symmetric under interchange of
X«Y in the propagators. Since this corresponds to te_lking EWMNWPQ<FCAFDB><FCAFDB>,
a < —a, [asis evident from Eq29)], the overall result is 8

to project onto terms even i, . In particular, this kills any (45)
possible terms proportional i@, «_ in the two-point func-
tion. where again symmetrization iMN) and (PQ) is assumed.
A straightforward computation results in the expression Note that all contractions are performed with eitksgyy(X)
or Gp(Y). The main difficulty is in evaluating the first term

(Tun(X) Tpo(Y)) in this expression; the remaining ones follow simply from
5 tracing over the appropriate indices. Using the explicit form
1 ay for the vector propagator, E¢30), we obtain
= 41 8l 4(01 203+2(Z 1)05
32m'L9(Z+1) (Fm"Fp®)(FNFQ®)
2 az 1 a2+
—-4(Z-1)°0O 0,-20 - —(7—
( )°O,) + Z- 1)4( 1~ 203 = Toe (z+1)4[01+ 03— (Z—1)Os
2
a_
+2(Z+1)O5—4(Z+ 1)202) (41) +2(Z2— 1)202]+ [Ol+ O3—(Z+1)0s
(z-1)*
which may be rewritten in terms of the tracel@sgensors of ) L
Eq. (22 as +2(Z+1)°0,]+ Z= )2(01 20,) | (46)
(TunX) Tpa(Y)) 12 Substituting this into Eg45), we find that the mixedy, «_

term vanishes. The result is identical to the fermion case, Eq.

2
1 [ @y 3ZZ+1T - (41), except that it is twice as larg@s that for the Dirac
_87T4L8[(Z+1)4 4 1t Tt 21T fermion). Explicitly, this is given by
o?  (37%+1
Tyt e T 42 (Tun(X) Tegl Y>>1
_ _ 1 [ of (37241

Other than for the absence of the mixad «, term, this e T+ T,+2ZT;
contribution for a Dirac fermion is identical to that of a sca- TaniL [(Z+ n*l 4
lar loop, Eq.(36), but six times larger. For a Majorana fer- o2 37241
mion, this should be halved, so that the contribution is three 4 - T +T-—7T 47)
times that of a scalar. (z-1)4 4 270
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The complete supermultiplet

Until now, we have treated spins §, and 1 separately.

PHYSICAL REVIEW D 69, 085012 (2004

the scalar and pseudoscalar transform with opposite bound-
ary conditions(even when the parity condition is relaxed

However, to preserve supersymmetry, the boundary condSince this corresponds to opposite signsdar between the
tions on all fields in the multiplet have to be chosen consisscalar and pseudoscalar, we see that the mixed term in Eq.

tently[27]. This means a single set af, (actually always 1

(36) always drops out when considering pairs of spin-0 states

and «_ suffices for specifying the boundary conditions. Fur-as members of supermultiplets. As a result, we find the
thermore, for a complex scalar in a Wess-Zumino multipletsimple universal structure for the graviton self-energy

2un,pa(X,Y)=87G - Tyun(X) Tpo(Y))

2

n0+3n1/2+ 12n1 a

37%2+1

:87TG4

48748 [(Z+1D)°

V. EXTRACTION OF THE GRAVITON MASS

We now extract the induced graviton mass from the lon

distance behavior of the self-energy E48). We first note

that the three terms dil in Eq. (7) correspond to local ten-
sor, nonlocal spin-1 and spin-0 exchange, respectively. Fo

lowing Ref.[8], the mass can be read off by identifying3n

a piece proportional to the spin-1 Goldstone boson exchang

given by the second term in E7):

9,5+ V, V420

T )vazzvﬂoyﬁva. (49)

=2,

Here,D,, is the spin-1E,=4, propagator. .
Working in coordinate space, we now rewrfESP™1) as

a bi-local tensor. To accomplish this, we start with the ho-
mogeneous spac&,=4 vector propagator, which was

worked out in Ref[22]:
1 [2(8—1522+97%
48722 (22—1)2
1 [2Z(—23+247?—97%
+
48m%L2 (Z22-1)?

Z+1
—9Zlog——
zZ-1

Gup

Dmp

Z+1

+9(Zz—1)loga NyuNp. (50)

We now freely integrate by parts to obtain

H(N?R‘I?)_é): ZVXMDNQVYP: - Z(VXMVYPDNQ)
22 [5(3Z%+1)T,+2T
372L4(22—1)3 e

—5(Z%+1)T3]. (51)

a® (37241
T+ T +2T,

17 3 T1+T2—ZT3”.

MK

(48)

terplay among all terms to ensure transversality. This dis-
crepancy arises only through local terms that we have ig-

%hored throughout.

While the one-loop self-energies we have computed all
I_f,atisfy the homogeneous coordinate transversality condition,
Eq. (B6), this condition still allows an undetermined
Z-dependent form factor. To read off the correctly induced
ﬁraviton mass, we essentially need to obtain the constant
piece of B(A) in Eqg. (6), which may be determined by
matching the largeZ behavior of Eq.(48) with that of the
spin-1 part ofll, given by Eq.(51). To do so, we expand
both expressions for largé and match the asymptotic be-
havior. For the self-energy, we find

No+ 3N+ 1204

> =87G
* 48748

X

1 5 35

+(ai—a2)(’f(5)+57(7)+-~-)}, (52
while
spinl 10
[15P'™*= Ty +3Tp+ -], 53
3772|_4[ 134 ] (53)

where the basis forms7,, are given in Appendix B.
Matching the leadind(s) term gives

No+3ny+12n; 2)
— .\, —a_).
16072L4 *

M2=87G, (54)

This expression is our main result, and generalizes that ob-
tained in Ref[8]. Note, however, that this result differs by a

Note that this nonlocdll *P"1) is transverse and traceless in factor of 160 from that of Ref[8]. We believe that this

itself, while the original expression, E¢7), requires an in-

discrepancy arises from three sources. Firstly, normalization
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of the Eq=4 scalar propagator is determined by demanding While we have focused on the dynamical breaking of gen-
the proper strength of the short-distance singularity in the flaéral covariance, as evidenced by a mass for the graviton, in a

space limit[22]. This yields

1 [3z2-2 3 Z+1
Bolo= )= o 72 27197
1 1
Hmm as Z—-1 (55)

[compare with Eq(27)]. Taking the large separation limit,
Z—o, then gives

1 1

Ao(Eg=4)~— ———— —
o(Eo=4) 107212 74

as Z—o (56)

which accounts for a factor of four. Secondly, without exam-
ining the tensor structure in detail, there is an ambiguity in
attributing the long range structure of the self-enekgyo
the propagation of a spin-1 Goldstone bosorllin In par-
ticular, both75y and 77 of Eq. (52) and Eq.(53) have the
requisite long range falloff upon integration by parts

7INQ

3
h'ﬂs)'hNEaMhMN Z4

aPhPQl

7INQ
Z4

3
h'??7)'h~_2_5aMhMN &phpQ. (57)

As a result, both terms would contribute to the coefficient of
the 1z* piece, while only the actual combinatiofs,
+ 377 of Eq. (53) may be attributed to the induced graviton

supersymmetric Karch-Randall model, a dynamical breaking
of local supersymmetry and local gauge invariance also oc-
curs, as evidenced by a mass for the gravitinos and the gauge
bosons. For the Karch-Randall branewofR], where the
CFT fields are that of/=4 U(N) super-Yang-Mills, we
substitute transparent boundary conditions €1, & =0)

into the expression for the graviton mass, Esf), and find
simply

_ 9G,

2
=
4Ly

(59

which reproduces exactly the Karch-Randall result of @y.
upon using Eq(4). Although we focused on th&'=4 SCFT

to relate the coefficienk to the central charge, the result Eq.
Eq. (4) is universal, being independent of which particular
CFT appears in the AdS/CFT correspondence. This suggests
that« plays a universal role in both the Minkowski and AdS
braneworlds, as indicated in Eq&9) and (5), and that our
result is robust at strong coupling. This presumably explains
why our one-loop computation gives the exact Karch-
Randall result. However, we do not know for certain whether
this persists beyond one loop.
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ing 75y behavior betweel andIl of Egs.(52) and(53). Of

course, this would have been immaterial if the asymptotic
expansions had been identical. However, in this case they ar

not, and this accounts for another factor of five between ou
expression and that of Rg8]. Finally, the remaining factor

of eight comes in when determining the mass via the shift ifluadratic Casimir invariant ofSQ(2,3) is Q=3L

the pole of the resummed propagator, EB). We find the
mass squared to be simply the constant multiplyliit'™*
(up to a sign. Since a canonically normalized graviton
couples to the stress tensor with strength*'T,,, and

since we do not include symmetry factors in our coordinate

space Feynman rules, we have simply

Sunpa(X,Y)= kX Tun(X) Tro(Y))

=87CHTun(X)Tpo(Y)). (58)
We believe this provides a proper accounting for Newton’s
constant in the self-energy. Comparing with RE8], this
appears to be the origin of the remaining factor discrepanc
Note that the spin-0 term ihl has a different structure.
However this term is canceled by the nonlocal parKoThe

absence of spin-0 exchange Ynis in agreement with the €

AdS Higgs mechanisni8], and yields the massive spin-2
propagator(14) without ghosts.

APPENDIX A: PROPAGATORS IN ADS

e . . .
r Here we collect some information on spin-0, -1/2, and -1

propagators in homogeneous coordinates. First recall that the

2
MN

=Eq(Eq—3)+s(s+1) whereE, ands label the representa-
tion D(Eg,s). Acting on scalarsh(X), the operatoR (cor-
responding to the Casimir invariartias the form

Q=3Lin=— 3 (Xydn—Xndw)?
=N(N+3)— X252 (A1)

whereN=X- 4. As a result, the scalar Klein-Gordon equa-
tion is simply

[N(N+3)=X292—Eo(Eg—3)]¢(X)=0.  (A2)

Yo obtain the scalar Green's function between poisnd

Y, we note thatg’=—g2/L? and N=X.9=Zd;. In this
ase, we find thah o(Z2)=Ay(X,Y) satisfies the equation

[(1—Z%)95—4Zd,+Eo(Eg—3)]Ao(Z)=0. (A3)
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ior eitherEqg=1 or 2, thi_s has a simple pair of solution_s, [K—(Eq+3)]¥(X)=0 or [K+(Ey— 1)]W(X)=0.
o~1/(Z*=1). However, in order to reproduce a short dis- (A8)
tance behaviony~ 1//X—Y|?, we must take the one with
the positive sign. As a result, we obtain
For the massless casEq=3), both equations degenerate to
1 1 1 1 (K—2)¥(X)=0.
T87227+1 4n? IX—V|2" (A4) Next, we note the factorization K(—\)(K+X\—3)
=N(N+3)—X252—\(x—3), which holds for arbitrary\.
The normalization is fixed by demanding thAp reduces Since the right hand side is simply the scalar Klein-Gordon
properly in the flat space limit. operator, Eq(A2), this provides the AdS equivalent of the
The propagator of Eq/A4) in fact corresponds to impos- relation (#—m)(4+m)=0C—m?. Denoting eitherx or 3
ing transparent boundary conditions on the scalar. This is-\ by E{”) (indicating the canonical value d, in the
seen by recalling that whiléhe covering space pfAdS,  scalar equation this may be rewritten in the suggestive
may be conformally mapped into half of the Einstein staticmanner 28]
universe, with topolog\RX S;, Eg. (A4) is in fact well de-
fined on the complet&; (so that the boundary is in effect
invisible) [26]. Reflective boundary conditions may be im- [K=(Ep+3)[K+(Eo— 2)]
posed by a method of images so that

Ao

=N(N+3)—X22—EEP-3), EP=Ey+3

. 1( 1 1
Af=—— +
O 4m2||X=Y]2T [X+Y|? e e 1
[K+(Eo— 2)I[K—(Eo—32)]
1 1 1
_ — KNI/ K 0 0 0)_
~ s\ 71 1) (A5) =N(N+3)-X22—EPEP-3), EP=E,-3
(A9)

It is now evident that mixed boundary conditions may be

encoded by parametets, ,a_ where ) _ _ )
yP B so that solutions to the Dirac equation, E48), are easily

1 a, o obtained from solutions to the scalar equation, &2), by
Ale) = + _ A6)  taking
° gn?L2\z+1 z—1) (A6)
While the residue of the short distance pole must be fixed V(X)=[K+(Eg— )W op(X;EQV=Eq+2)

(i.e.ay=1), we find it illuminating to keepy, arbitrary, as

it highlights the symmetries in the latter expressions for the
graviton self-energy computation. In terms of Porradéi'and  or
B coefficients, definetiby [8]

1

4722

1 Z
o _
Z%—1 B22—1

B W(X)=[K=(Eo=3)]¥op(XEF'=Eo—3) (AL0)

Ag=

: (A7)

with W a constant spinor. This result allows us to immedi-

we find a, =(a+p) anda_=—(a—B). _ ately determine the fermion propagator in terms of the scalar
For the fermion propagator, we consider the Dirac equagne in much the same way as one would computé 1/
tion in homogeneous coordinates. Start by defining the Dirac_ ;7 iy the flat limit.

operatork =I"""Xy, gy where{I'™,I""} =24"". By squar- For Eo=2 (corresponding tE{”’=1 or 2, we use the

ing this operator, it is easy to show th&{(K—3)=N(N " form of the scalar propagator, E¢A4), and the relation Eq.

+3)—X?3. On the other hand, by squaring t8(2,3)  (A10) to obtain

generators acting on a spinstate,L y,n=1(Xydn—Xndm)

+(i/2)Tyn, We may show thalQ=N(N+3)—X25%+3

—K=K(K—4)+ 2. When acting onV'(X), this must repro- Ay _

duce the quadratic Casimir invaria@=Eq(Ey,—3)+ :. gm’Lt  (Z+1)? 2% [X=Y[*

Equating these expressions, we find the factorized relation

(K= ) (K= 1)=Ey(Eo—3), so that eithelEq=K— 3 or

Eo=4 —K. This gives two possible Dirac equations This is the massless fermion propagator corresponding to
transparent boundary conditions. Similar to E&6), general
boundary conditions may be imposed by introducing param-

3Some signs have been changed to conform to our conventionsetersa, ,a_ and taking

1 TYXw=Yw) 1 TY(Xu—Yw)

(A11)
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TABLE I. First few elements of the transverse traceless bi-tensor BggisThe coefficients, , a,, and
a; correspond to the decompositi@f=a;(322+ 1) T, +a,T,+asTs.

a a, as
T4 z* —227%+62°° 474
Zs) z° ~5275+97°7 _7-3457°5
) z* VAR VAREE VAN —274+462°6
T z”’ 32 5-Fz7+ %z -327%+72°7
Al@)— ! T (Xu=Yw) M (X +Yi) M z?-1
g2\ T e Y (zen? ) VM Tunop= \| —Hl(3Z%+ Daj +6ZayIN-T,
(A12)

+a,N-To+agN-Tgh+a,(322+1)VMT,

Turning next to the vector propagator, we use the results +a,VMT,+a,VMT,. (B1)
of Ref. [22], converted to homogeneous coordinates. The
vector propagator is the first case where we have to WO, i com pute
about bi-tensor structures as well as gauge fixing. However,
fortunately, for correlators of the stress tensor, we only need
the expression for the gauge invariant two-point function
(Fun(X)Fpq(Y)). Based on symmetry, this expression can
be written as

1 1

N.T1=—3ZZ+1A, N-T,=0, N'T3:§B (B2)

and

(Fun(X)FPRY)) = 0(2)Gu PG+ 7(Z) N Gy ONP!
(AL3) 27(3Z%+5) 4

221V - Ty= ———5 A~ >——B,
(3Z2°+1) 3(3Z2°+1)
where o(Z) and 7(Z) may be determined as in RgR2].
Taking into account mixed boundary conditions as well as 5
normalization of the short distance behavior, we find /22—1V-T2= -°B (B3)
3 L
(Fun(X)FPO(Y))t i1 1
+
1 a . . VZ?=1V - Tg= ———B— —A,
— T [B PGy 22— DNy Gy NP T oz2 T2

2m2L4 (Z+ 1)
a. where the tensord andB are given by

+ Z—l)z[G[M[PGN]Q]—Z(B 1)Npu Gy ONPIT |
{ Anpo=(4NWNpNg—NyGpg),
(A14)
_ » BNPQ:[(GNPNQ+GNQNP)_ZZNNNPNQ]-
These mixed boundary condition propagators, B®), Eq. (B4)
(A12), and Eq.(A14), are the ones used in the one-loop
computation. Thus the vanishing of the divergence in EB1) leads to two
conditions on the three functions,
APPENDIX B: A TRANSVERSE-TRACELESS ) , 5
BI-TENSOR BASIS (Z°=1)Za;=—4Z%a; +as,
In this appendix, we present a convenient basis into which 8 10
any transverse-traceless bi-local tensor may be depomposed. (Z2—1)Za,= = 7%a,+ = Z%a,— (3Z2+1)a;.
Since any traceless tens@f, may be decomposed in terms 3 3
of the threeT tensors defined in Eq22), we start by writing (BS)

T=a,(3Z%+1)T,+a,T,+asT;. The factor (Z?+1) is in-

troduced for convenience. We now impose transversality offhese equations may be solved to gaseandas in terms of

7. In particular, taking the divergence @fon the first index a; and its derivatives. As a result, any transverse traceless
gives bi-tensor must take the form

085012-10
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T=a(3Z2%+1)T,
3 2 2 2 2
+ 15(Z*- 1) a’+3(z2-1)za' +2(3z%-1)a|T,

+[(Z2—1)Za’ +4Z%a]T, (B6)

and is fully specified by the functioa(Zz).

PHYSICAL REVIEW D 69, 085012 (2004

By choosing a complete set of functioa$Z), we may
obtain a basis of transverse traceless bi-tensors. A convenient
choice is to take, = 1/2", whereupon the resulting expres-
sion of Eq.(B6) may be denotedy,,. The first few basis
bi-tensors with sufficiently fast large distance falloff are
shown in Table I. Note the absence of leading ord&¢ Hhd
1/Z3 behavior in thea, anda; coefficients of7 4y and7 s,
respectively.
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