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D=4 supergravity dynamically coupled to superstring in a superfield Lagrangian approach
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We elaborate a full superfield description of the interacting system of dynaiiead, N=1 supergravity
and a dynamical superstring. As far as a minimal formulation of simple supergravity is used, such a system
should contain as well the tens@eal lineaj multiplet which describes the dilaton and the two-superform
gauge field whose pullback provides the Wess-Zumino term for the superstring. The superfield action is given
by the sum of the Wess-Zumino action for=4, N=1 superfield supergravity, the superfield action for the
tensor multiplet in curved superspace, and the Green-Schwarz superstring action. The latter includes the
coupling to the tensor multiplet both in the Nambu-Goto and in the Wess-Zumino terms. We derive superfield
equations of motion including, besides the superfield supergravity equations with the source, the source-full
superfield equations for the linear multiplet. The superstring equations keep the same form as for the super-
string in supergravity and 2-superform background. The analysis of gauge symmetries shows that the superfield
description of the interacting system is gauge equivalent to the dynamical system described by the sum of the
spacetime, component action for supergravity interacting with the tensor multiplet, and of the purely bosonic
string action.
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[. INTRODUCTION higher-dimensional supergravity. The superbrane is defined
as a brane moving in superspace. It is well kndi,11]
Recently, there has been renewed interest in the superfielfat the requirement of a smooth flat superspace limit for the
description of supergravityL—4]. It is motivated, in particu- SuPerbrane in curved superspdadich implies that the su-
lar, by the search for a superfield formulation of 10-Perbrane action in a curved superspace background should
dimensional supergravity incorporating superstring correci?oss.ess. the same _number of lgal_Jgehsymmgtrlgs, 'nciiuii'ng
tions (see[5-7] for early studies an{i8,9] for discussions ermionic x symmetrieg 12]) results in the standard on-she

S ) K h ke limi fsupergravity constraints. However, as said above, such con-
upergravity was known to appear at the pointlike limit of g qints imply “free” supergravity equations of motion with-

the superstring which corresponds to #e—0 limit—i.e., oyt any superbrane source. On the other hand, as is clear
to zeroth order in the decomposition in the Regge slope parom the purely bosonic limit(gravity interacting with a
rametera’. Already at first order ine’, the string correc- bosonic brang the brane should provide a source in the
tions modify the supergravity equations of motion. On theEinstein equation.So one could get thémistaken impres-
other hand, the known superfield formulationsDof 10 su-  sion that supersymmetry forbids interaction with an extended
pergravity provide its on-shell description; itis given by the ObjeCt, at least at the classical level. Certainly this is not the
on-shellconstraints on superspace torsion, which imply thecase. The resolution of such a paradox and the search for a

dynamical equations for the physical fields. These are jusgonsistent(quasiclassical description of theupergravity-
the equations which correspond to thé—0 limit of the superbraneinteracting systems is of interest in its own, as

superstring. Thus the incorporation ef corrections re-
quires modification of the standard superspace constraints: g
search for a possibility to replace the on-shell constraints b
a set of off-shell constraints or, at least, by a set of “on an
shell” constraints [1] including some parameters which

SpeC'fy the right-hand side of the supergravity _equatlons antbsults in constraints which describe decoupled SUGRA and SYM
which can be _Chosen to describe the superstring Correctlorglstem& while the Green-Schwarz anomaly cancellation mecha-
to Such equations. nism required their nontrivial interaction. This problem had moti-
Basically the same problem appears when one searchggie the study7] of (one-loop quantum anomalies in the sym-
for a superfield description of a superbrane interacting Wlth‘netry transformations. As was shown([if, such anomalies occur,
but may be absorbed by consistent quantum corrections to the clas-
sical (tree-leve)] expressions for superspace torsion and curvature.
*Email address: bandos@ific.uv.es; bandos@kipt.kharkov.ua  The new(one-loop torsion constraints lead to the desired coupled
"Email address: jmisidro@ific.uv.es equations for the SUGRA-SYM system.

Note that a similar problem appeared for the heterotic superstring
13] in D=10, N=1 supergravity andg®Eg [or SQ32)] super

Yang-Mills (SUGRA-SYM) background 7]. Namely, the require-
ent of k symmetry of the classical heterotic superstring model

0556-2821/2004/68)/08500917)/$22.50 69 085009-1 ©2004 The American Physical Society



I. A. BANDOS AND J. M. ISIDRO PHYSICAL REVIEW D69, 085009 (2004

well as in relation with its possible applications to the studywhere s is the coupling constant for the tensor multiplet,
of quantum gauge theories in the language of classical/2wa’ is the superstring tension, which we set equal to
supergravity-superbrane models along the line of the AdSinity in the main text of the present articl€]'=(7,0) are
corjlfﬁrmal ;ieldftr;‘eor)(CFP colirespont.ienCEM—fl.QI-OI deser local coordinates of the string world sheet?, E2

e study of the complete Lagrangian superfield descrip-_ . 5\ AL . . A
tion of the supergravity-superbrane interacting system, Whe'a_amZ ]Eg)E'\é (E(f;);,M/{r:jeZNguperzvlelbem E'\g. (2) ang
it is possible, e.g., i =4, N=1 curved superspace, might ~Superform By:=3 nm(Z) are subject to t2e
provide new insights into the search for a modification ofconstraints given in sec. I, ar_ld, finally, the superﬂe_?'d :
higher-dimensional D =10, 11 supergravity constraints in satisfies the defining constraints of a tensor multiplet in
such a way that they would produce dynamical equationgurv8d superspace,
with sources, including singular sources from superbranes
and nonsingular sources describing the stringy corrections.

Such a study has been carried out1ff] for the interact- One of the main results of this paper is the complete set of

ing system of dynamicaD=4, N=1 supergravity and a . . . . . ;

. superfield equations of motion for the interacting dynamical
massless superparticle source. Here we elaborate the SUDgr'stem(l 1), including the superfield supergravity equations
field description of the next more complex system which Y o 9 P berg y ed

includes, besides dynamicBl=4, N=1 supergravity, the ar_ld the dynamic_al equations for the tensor multigle®)
dynamic’al superstring. It has sor’ne specific features’in co with the superstring s.our(f’eAIthc_)ug_h th? original hope was

arison with the s stém already studied[i¥]. First, the Mhat these might provide some insight in a search for source-
P . € sy y Lo ¢ full superfield equations for more complicated interacting
source is provided by a supersymmetegtendedobject. systems inD=10,11 superspaces, one might find the ob-
Second, as far as the minimal formulation D=4, N=1 ' '

o X ' tained superfield equations quite complicated and rather
supgrgrawty is considered, one f|ddxee[;8]) that the Wess— showing difficulties which should appear in the construction
Zumino term of the superstring describes a coupling to an

o . X . of their higher-dimensional generalizations. However, as we
adqlmonal, dynamical tensdor real lineay mu_lt!plet[lg,zq hope, these superfield equations, supplemented by a proper
\é\':g; Ctﬁgot?; iL:]SeS?J;gr;%gé;gtel\;g?e282:”\;'3:);55;#5] egiformsupersymmetric ansatz, can be used to search for superfield
symmetry requires the identification of the tensor multipletSOIutlons of the superfield supergravity equatibitsis might

. d ; . ; - F ™ open completely new possibilities.
i 5 Shon stk ad s coupin to e neh. ™ On e er hand, as far a e mtcimensional gener
field action for the interacting system which we will study in alizafion ot Ih€ supergravity-superbrane interacting system is
this paper includes, in addition to the Wess-Zumino actio
for supergravity[22] and theD=4, N=1 Green-Schwarz
superstring actioi23], also a superfield actiof24] for the
tensor multiplet[19] in a curved superspace of minimal
supergravity. It has the form(see the main text for the no-
tation)

(DD-R)e®2=0, (DD-R)e*?2=0. (1.3

concerned, we also discuss a more pragmatic approach to
Nheir investigation, using thB=4, N=1 system as a sim-
plified model. A recent study of supergravity-superbrane in-
teractions indicates the gauge equivalence of the superfield
description of the dynamical supergravity interacting with a
superbrane source with a simpler system which is described
by the sum of a standar@omponent supergravity action
and of the action of a purely bosonic brai@epurely bosonic
limit of the associated superbrgnélithough the proof of
+ Fssstra such a gauge equivalen¢7,32 is quite general and does
ey . . . -
(1.1) not need. a detailed superfield supergrawty fqrmula(stnl
hypothetical and, probably, even not existing for tbe
=10,11 cases one may find it necessary to check it explic-

1 < = N itly by comparing the equations of motion derived from the
_= 250012, b _ ' ; . i ;
Sss“_szzd se |det EqEn7a)| JWzBZ’ 1.2 gauge-fixed action with the gauge-fixed version of the dy-
namical equations derived from the complete superfield ac-
tion, at least for the cases when the latter exists. The gauge

2The sum of the superfield minimal supergravity action and a€duivalence and completeness of the gauge-fixed description,
superfield tensor multiplet action was motivated by being a low-Shown by general arguments 7,32, implies that these
energy limit of aD=4, N=1 compactification of the heterotic two set of equations should coincide. Until now this had
string [18,25. Nevertheless, this limit, as well as it6>1 gener-
alizations, which was intensive studied in the 1980s and 1p8®s
29], is not a subject of the present paper. We rather consider the 3Note that superfield equations of motion for the field theoretical
D=4 supergravity-superstring interacting system as a relativelypart of our interacting system—i.e., following from the actin
simple model for a more complicateB=10,11 supergravity- = [d®Z sdetEy,")[1+s(P/2)e®?], but without theS.y, term—
superbrane systenisee[41]). An interesting alternative possibility were considered if27,29.
is to consider the new minimal formulation of superfield supergrav- “Note that a toy model of the superfield interacting system—the
ity [30], where the supergravitguxiliary fields are provided by a coupled system oD=2 supergravity and a superparticle—was
tensor multiplet, interacting with the Green-Schwarz superstringstudied in[31]. We thank W. Kummer and A. Nurmagambetov for
This, however, is beyond the score of the present paper. pointing out this reference.

[}
Szj d®Z sdetEy”) 1+sEe‘I”2
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been checked by a straightforward study of tbe=4  gauge equivalence at the level of equations of motion by
supergravity-superparticle interacting systgi]. In this pa-  proving that the dynamical equations of motion which follow
per we show the coincidence of the two sets of equations foirom the complete superfield description, when considered in
theD=4, N=1 supergravity-superstring and thus check thethe special ~ “fermionic  unitary  gauge” [2""(5)
gauge equivglence for the dynami_cal system including a@:(?(“(g),b“(g)):(f(“(g),O)] have the same properties as
extended object. This should convince one that the abovgne equations derived from the gauge-fixed acttbe action
mentioned gauge equivalence is not an artifact of the system, the “fermionic unitary gauge). Namely, we show that all
including material superparticles in addition to dynamical4ynamical equations for fermions become sourceless in this
supergravity, but rather a general property of thegayge. Our conclusions are collected in Sec. VL.
supergravity-superbrane interacting system. The flat superspace limit of the superstring action is re-

_ Notice that the above-discussed gauge-equivalent descripiewed in Appendix A. Appendix B collects some useful
tion of the supergravity-superbrane system promises to bgmulas.

useful to search for new solitonic solutions of superfield su-
pergravity, with nontrivial fermionic fields(Very few such
solutions are known; an example is thp-wave solution of
[33].)
This paper is organized as follows. In Sec. Il we review The Green-Schwarz superstring spans a two-dimensional
the properties of the Green-Schwarz superstring in curvedorld sheeth'? in superspacé“"“):
D=4, N=1 superspace, Eql.2), which are necessary for
the study of the interacting system. The superstring action w2c 3 @4, zMzzM(gm)_ (2.1
(1.2) involves, in addition tdthe pullbacks ofthe superviel- §
bein, _the_sc_alar supe_rfietﬁ and thg 2-superfor_n32, neit_h(_ar In Egs. (2.1) ZM=(x*,6%) are coordinates ob=4, N=1
of which is mvolved' in the superflgld description of minimal superspace £=0,1,2,3, «=1,2,3,4), £"=(r,o) are local
D=4, N=1 superfield supergravity. In Sec. Il A we show . 2M
(in a way close td18]) that the requirement of preservation World ~ sheet  coordinates n(=0,1), and Z%(¢)
of the superstringc symmetry in the minimal curved® = (X*(§),0(¢)) are supercoordinate functionthat define
=4, N=1 superspace results in constraints for the fieldthe surface/V? in 34, One can also say th@aV(¢) are
strengthdH ;= dB, and find that these constraints exprelss  defined by the map
in terms of the dilaton superfiel#. Furthermore, a study of .
the Bianchi identitiesiH;=0 in a way close to the one of W2 WA em L 7Me) = (XH(£),09(8)), (2.2)
Refs.[18,21] (Sec. 1B concludes that the superfielf’?
obeys the defining constraints of the tensor multiplet, Eqsof the coordinate chaitv? into 34,
(1.3. The D=4, N=1 version of the Green-Schwarz super-
Section Ill collects the necessary information about thestring action reads
superfield supergravity action22,37 and its variation
[17,22. Section IV describes admissible variations of the _f 7 _f
tensor multiplet(the dilaton superfieldP) and of theB, Ssstr= w2 2 w2
superform. In Sec. V we present the complete superfield ac-
tion for the supergravity-tensor-multipletsuperstringinter- N
acting system and derive the superfield equations of motion Ef d?¢\/defg|— jw252'
by its variation(Secs. VA, VB, V Q. (Superfield equations
which follow from the sum of the superfield action of the _ _fap
minimal supergravity and the tensor multiplet, without in- g=delgmn);  gmn=EnE 24
cluding the superstring action, were consideref@in,29 in
connection with thed=4, N=1 limit and compactification
of the heterotic superstringThe superfield generalizations
of the Einstein and Rarita-Schwinger equatiovith sources
are presented in Sec. VD and those of the Kalb-Ramond A N -
equations for tensor gauge fields in Sec. VE. En=dmZMEN(Z(€)), 2.9
Then, in Sec. VI A, by studying the gauge symmetries and ] ) ]
using known results about fixing the Wess-Zumino gaugdor the bosonic supervielbein for@® on 3 (414),
(se€e[17] and references thergime show that the superfield _
description of the supergravity—tensor-multiplet—superstring ~ E*=(E? E%)=(E?E*,E,), (2.6)
interacting system is gauge equivalent to a supergravity—
tensor-multiplet—bosonic string dynamical system described E2=dZME}(2), (2.7
by the sum of thecomponentspacetimg action for super-
gravity interacting with tensor multipld®4] and the action E*=dZMEY(2),
for the purely bosonic string, the purely bosonic limit of the Ee=dzM E,%,,(Z) — _ =
Green-Schwarz superstring. In Sec. VIB we check this E“=dZVEy(2).

Il. GREEN-SCHWARZ SUPERSTRING INA D=4, N=1
SUPERGRAVITY BACKGROUND

1 .. . A N
ZeCIJIZ* Ea/\ Eb Nab— BZ

2.3

It involves the pullbacks of the forms on superspac#td,

E2=¢* (E?)=dZM(£)E(2)=d¢™ES,,

(2.9
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In Egs.(2.6)—-(2.8), a=0,1,2,3 is a tangent space vector in- 1 - . o1 - .
dex, «=1,2,3,4 is a Majorana spinor index, anc=1,2, @  9Ssstr f ) 59(1)/2* Ea/\5Ea+§ed’/2* Ea/\Ea5‘1)—5Bz}
=1,2 are Weyl spinor indices. (2.19
The action(2.3) involves also the pullbacﬁ)z&&*(@)
=d(Z) of a dilaton superfieldd(Z) and the pullback

As the only dynamical variables in a curved superspace
backgroundare the supercoordinate functioﬁé"(f), one

B,=¢*(B,)=B,(Z(¢)) only considers, in this case,
1AB EA z - 1 DI2x P ~Fa
= EE NE Bag(Z(€)) 07Ssstr= ’ Ee Ea/\‘sZE
W
1 m nR 1 Dl24 £ ca o~ B
= 5 dé"NdEBon(£), +get BB 0 53B,|, (219
Brm(&) :=0mZM I, ZNBam(2), (2.9  and the variationss; of the pullbacks of differential forms

f a two-f 5. (4]4) are given by Lie derivatives,
of a two-form on ,

1 5ZE"" 5ZE""(Z) :=E&(Z+ 62)—E¥(Z)
BZZEEB/\EABAB(Z). (2.10

=i s2(dE™) +d(i E7)
The world sheet Hodge star operator *, & ”

*E2=dgn g ey g MER =i T2+ D(i 55E2) + EPi s5wp,2, (2.16
= *E2AEP=d%\|g[g™E2ED, (2.1 85B,=i 5Ha+digB,, Ha=dBy, (2.17)
can be defined using the induced world sheet mégid). where
Then | EX(2):=62VER(2), (2.18
1. .. 1
x a__42 ~ ~
4 B/ \ET=5d &lal, (2.12 i spWaP:= SZMWEP(2), (2.19
o(* EaAEa)IZ*Ea/\(SEa. (2.13 i52:|\—a==|éci52EBTBCa(2), etc., (2.20

Substituting Eq(2.12) into Eq. (2.3) one arrives at the more the torsionT? and the covariant exterior derivativ® are

familiar form of the Green-Schwarz superstring acti@r®). ab_ ¢ 7Myy, &b
The Green-Schwarz superstring action in flat superspac‘ge'c""ed below[Egs. (2.20~(2.23] and w™=dZ"w
is the spin connection.

and itsk symmetry are discussed in Appendix A.

Now it is clear thatc symmetry is not present in a general
curved superspace. As we are interested in the superstring
interaction with supergravity, we have to impose first the
constraints on the torsion of curved superspace,

When the Green-Schwarz superstring is considered in
curved superspace—i.e., in the presence of superfield T2:=DE?=dE*~E"/Aw,,?
supergravity—the natural self-consistency condition is the
existence of a smooth flat superspace limit. This implies, in
particular, that the number of local symmetries of the action
in a superfield supergravity backgroumstiould be the same
as in the case of flat superspaee Appendix A This T*=DE“=dE“— E#/\w"
means, again in particular, that symmetry should be
present in the superstring model in a supergravity back-
ground. =
However, it is well known thatc symmetry occurs only
when the background satisfies certain constrajt;11]. : — :
This occurs also with th®=4, N=1 Green-Schwarz su- T*:=DE*=dE*—EF/\w;"
perstring[18] (see alsd25,27,28). For the sake of com-

A. Superstring ¥ symmetry and superspace constraints for
supergravity and the tensor multiplet

Il
N =

EBAECT R, (2.21

N| =

EBAECTSg, (2.22

pleteness and to establish the notation used in next sections _ EEB/\ECTAV 2.23

we present here some details of the constraint derivation. 2 CB’ ’
The variation of the Green-Schwarz superstring action

(2.3 in a general curved superspace looks like and on the Riemann curvature 2-form
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1
Rab::dvvab—wac/\wcbzEEC/\EDRDCab. (2.24
Notice that
Rab_lRa,B a~_b _1Ra'B ~a_ _b..
_E (0% )aﬁ E (U o )aB

(2.295

and it is convenient to formulate constraints in terms of

(2.2

1 ~
R*:=7 R®(oy0,) “P=dw* —w*'A\w. f,

andR*= — ;R(ggP) *F = (R*F)*

The minimal off-shell formulation ofD=4, N=1 super-
gravity is described by the set of constraii$ee[34] and
references therejn

La_ . a
Taﬁa—_2|0'a'ﬂ,

T =0=T.;" T.;7=0, Tu=0, (227

R,2"=0. (2.28

These constraints and their consequencksived from
the Bianchi identitiescan be collected in the following ex-
pressions for the torsion 2-fornj&2,34],

a_ LA aaFa 1 b c.a d
T __Zlo-a&E NE*+ —E°/\E‘e bedG

16 (2.29

i ~ i =
Tt =g BB (0c0q) 4G~ gE/N\E e PR
1 c b a
+§E AE T,

(2.30

o .. i . .
Tt =g EAEPePoppR— g ESNEF(040c) 4G

PHYSICAL REVIEW D69, 085009 (2004
D, Wh7= E-YD(aGB) ,

D, WFr=D DlalG7A), (2.35
Here and below the bracketsquare bracketsdenote sym-
metrization (antisymmetrization with unit weight—e.g.,
DGA):=3(DGFY+ DPG™).

After the minimalD=4, N=1 supergravity constraints
(2.29, (2.30 are taken into account, one finds thatsym-
metry occurs in the actiof2.3) when also the constraints

Hup,=0, H,z,=0, andc.c,
Hape=0, H,pc=0, (2.36
Hooa=— ie(i)/zo'aa& (2.37

are imposed on the field strengthi;=dB, of the
2-superformB,, (2.10.

B. Gauge superform and tensor multiplet

The study of the Bianchi identitiesH;=0 in the super-
space restricted by the supergravity constrai2i29), (2.30),
(2.31 shows that the field strengti; is completely deter-
mined by the constraint2.36), (2.37). It is expressed in
terms of the dilaton superfiel#t(Z) and the main superfields
of the minimal supergravity by

Hy=dB,= —iE*AE*\E%,,,e""?

1 ~
+ § Ea/\Eb/\ Ea( O'[aO'b])a’Beq)/ZVBCD +cC.C.

1 b
+ —E3AEPAEH pa,

T (2.38

5 1 - —
Habc= 3_2e(b/2€abchd+ ) Eabcdo'daa[pa D, ] e,

1 .
+ EEC/\EbTbC“, (2.3) (2.39

and in the expression for the superspace Riemann curvature Thus the 2-form field strength is expressed, essentially,
2-form (2.26) which can be found in Appendix B. through one real dilaton superfiefl(Z).
The right-hand sidedRHS) of Egs.(2.29), (2.30 [and Eq. Moreover, the same study of Bianchi identities brings also

(B1)] include the so-called “main superfields®, R=R*,  the equations which, on first sight, seem to be relations be-
G.=(G,)* and the symmetric spin tenstl,z, =Wz,  Ween the dilaton superfield and the chiral main superfield of

=(V_Vd,;3'7)*, which obey(also as a result of Bianchi identi- minimal supergravity:

ties) B
L R=e ?2pye?2 R=g ?2pye??2 (2.40
D,R=0, D,R=0, (2.32
anal?y: 0, DaWd.ﬁly:oy (2.33 However, one notes that EqR.40 can be written as
D“G,.=D,R, D°G,,=D.R, (2.34) (DD-R)e®2=0, (DD-R)e®?=0, (2.41
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with the description of superstring interacting with dynami-

and they just imply that th®=4, N=1 dilaton superfield cal real linear multiplet and minimal=1 supergravity.

describes the real linear multipfet.

The fact that a 2-form ilD=4, N=1 superspace is de-
scribed by a real linear multiplétensor multiplexis known _
from the study in21]. multiplet background

Thus we conclude that the complete superfield action for With the constraints(2.29, (2.30, (2.31), and (2.38
theD =4, N=1 interacting system including the superstring variation of the superstring actid@.3) [see Eq(B3) in Ap-
should involve, in addition to the superstring acti@®) and  pendix B] becomes
the Wess-Zumino action for theainimal supergravity mul-
tiplet, [d®ZE [see Eq.(3.1) below] also an action for the 55 _ Ef
tensor multiplet, described by the real superfief# which 2Sssu= 2 w2
obeys the constraint®.41). The kinetic term of the latter
actio_n should i_nvolve, ir_1 particular, the kine_tic term for the +iJ e&/z(éa_*éa)/\aaa&é ai(iEuC_C_
two-index antisymmetric tensor gauge fiel@r Kalb- w2
Ramond field 35], first introduced inD =4 under the name i R
notoph[36]) which interacts naturally with a string. Such a T _j e(blz(éb_*éb)/\éb%a&)i sE¥+c.c.
kinetic term can be written d24] 8Jw?

C. Superstring « symmetry in the supergravity and tensor

« R 1 - R PPN
D(e®%E,)— Zeq”z* Ep/\EPV,® |i 55E2

(2.43
dng?e‘l”z (2.42 Equqtion(2.43) makes ev_ident the presence of the Ioc_al fer-
2 : ' mionic k symmetry defined by Eq(A4), but now with
curved space supervielbein:
Note that the first proposal for the tensor multiplet action i E2=0, i,E%,,,(*E®—E?)=0. (2.44

was different fd®ZEe®= [d8ZE(e®/?)? (see[21] and refer-
ences therein The tensor multiplet with the actiof2.42  The solution of Eqs(2.44) [cf. Eq.(A5) and abovégprovides
was referred to as the “improved tensor multiplg24]. Its  us with an explicit form of thec-symmetry transformations,
distinguishing property is invariance under the Weyl trans- . — N .

formations acting also on the dilaton superficid,—e*E?, 8. ZM(&) =K' (on— Vgl en@ M EGo S “EN(2) +c.C.,

E2 —eMEe, d(z) »P(Z)—4A, when A is given by a (2.45
sum of chiral and antichiral superfield§ =i(¢— ¢), D,¢

pl i ] whereg"™(£) is the matrix inverse to the induced metric:
=0=D,¢. The fact that the superstring acti¢@.3) also

possesses such a symmetry makes the improved tensor mul- Imn( €)= E%(Z)qu(z) Nab
tiplet action preferable for a description of the tensor
multiplet-superstring interacting system. =amZM(g)anZN(g)ENa(Z)Eﬁ‘A(Z). (2.46

Actually in the study oD =4, N=1 limit and compacti-

fication of the heterotic strinf8,25-29 it was argued that The standard flat superspace Green-Schwaymmetry
such a limit rather provided the minimal supergravity— transformationdEgs. (A5) in Appendix A] can be derived
tensor-multiplet actiorj18,25. We are not addressing this from Eq.(2.45 by substitution of the flat superspace expres-
pro_blem here .bUt ra.ther considering the-4, N:.l N jons for the(inverse supervielbein coefficientE';"(Z) and
acting systen{including theD =4, N=1 superstringas a a5 -

relatively simple model for théquasjclassical description of ~for Em(Z) in Eq. (2.46.

a more complicated, higher-dimensionalD+£10,11)

supergravity-superbrane interacting sys{émparticular, the . _
D=10, N=1 supergravity—super Yang-Mills—heterotic- In the framework of the conformal tensor calculus, to arrive at
string interacting system described by a hypothetical supefh® componentorm of the action of the new minimabff-shel)
field action also including, in addition to the supergravity andSUPergravity one starts from the improved tensor multiplet action in
the super-YM parts, the heterotic string actidrg], as well 1t superspacefd°ZLInL with DDL=0=DDL, performs the

as theD=10 type-ll-supergravity—supép-brane andD Grassmann integration in it, then one introduces the coupling to the
=11 supergravity—supévip-brane systenisAs such, an in- confqrmal supergravity and make.s a gauge choice for .the
teresting alternative possibility is to consider the so-calledP¢?! s‘fperconfoamal tranifiznlatnon. As a requLt;pfne arrives
new minimalformulation of simple supergravityd0], where &t 1the#3]<it|or{30]2fd X[eR+ 7Y, y5y,Dpipot A e ?70,B,,

the auxiliary fields can be collected into a real linear multip- +2(€“"”79,B,,)°], which includes both the antisymmetric tensor

let. Here we will not consider this possibility, but proceed Bx» @nd the vector gauge fiel, asauxiliary fields(see[24]). In
contrast, in our case the interacting actidnl)) involves the im-

proved tensor multiplet action coupled to minimal supergravity in
s ) _ — ) ) superfield formulationfd®ZELInL with InL=®/2. In this case
One should keep in mind thalP—R) is a chiral projector—  the antisymmetric tensor fieB,,, is dynamical and its equations of
i.e., thatD (DD—-R)U=0 for any superfieldd =U(Z). motion contain a source from the superstring.
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. D=4, N=1 SUPERFIELD SUPERGRAVITY ACTION Note that the variations representing the manifest gauge

symmetries of supergravity are factored out from the above

expressions. These are the superspace local Lorentz transfor-

mations and the variational version of the superspace general

coordinate transformationsee[22]).

SSG:J d*xd*6 sdet E/,\*A)Ef déZE, (3.9 For the free supergravity actiof8.1) the nontrivial dy-
namical equations of motion should follow from the varia-

tions (3.3), (3.4) with (3.5, (3.6) only. The variation of the

superdeterminanE =sdet€j;) under Egs.(3.9), (3.4) has

the form (see[22])

The action ofD=4, N=1 supergravity is given by the
invariant supervolume dd =4, N=1 superspacg22]:

whereE: sdetEM) is Berezinian(superdetermina)mf the
superwelbelrE (2), Eq. (2.7), andE% w(Z) are assumed to
be subject to the constrain®.27), (2. 28)

1. 1
A. Admissible variations of supervielbein SE= E[— 73 [Da,Da]ﬁHa-i—GG SH?

As the supervielbein is considered to be restricted by the
constraints, its variation cannot be treated as indeperident. prpml =
To find its admissible variations one can, followifg2], +2(DD=R)dU+2(DD-R)éU|. (3.7
denote the general variation of the supervielbein and spin
connections by In the light of the identity

A _EB A ab _=C, ab
SEM(Z)=EnKg(d), owy(Z)=Eyuc(d), (3.2 f dSZEDAgA(—l)A=f BBZE(D neh+ 5T M) (— 1)
and obtain the equations to be satisfied 6g(5), u2 b(5)
from the requirement that the constrai®s27), (2. 28) be =0, (3.9
preserved under E¢3.2).

Quite complicated but straightforward calculations resultall the terms with derivatives can be omitted in E§.7)

in the following expressiofil7] for admissible variations of When one considers the variation of the acti@l). [The
the supervielbein: first equation in Egs(3.8) uses the minimal supergravity

constraints which implyTg,A(—1)*=0.] Hence,

_ 1 - _
SE3= Ea(A(5)+A(5))—ZEbaga[Da,D&]éHa 1 o
5SSG=J d825E=f d®ZE 6GaaHa—zRa‘u—2R5u

+IEYD, SHA—IE“D,,6H?, (3.3 3.9
o 1— and one arrives at the following superfield equations of mo-
OE“=E*E3(8) +E“A(8) + gE"Rog“oH™. tion for “free,” simple D=4, N=1 supergravity:
(3.9
- 8Ssg - .
In Egs.(3.3), (3.4), A(S), A(S) are given by SH2 =0 = G.=0 (3.10
AO)= 03D, DJoH D oM+ =G, oHe 5Ss
a 4@ 242 65(;:0 = R=0, (3.1
+2(DD—E)5U—(%— R)8U, (3.5
5 _
1. . . ;f{@:o - R=0 (3.12
A(5)+A(5)—12 “[p_ D,]oH +1ZG SH
+('DD—§) 5L{+(D—D— R)ﬁﬁ (3.6) IV. TENSOR MULTIPLET IN CURVED SUPERSPACE

A. “Improved” action for the tensor multiplet

As was argued in Sec. Il Bsee alsq18,25,27), the most
Suitable action for the description of a tensor multiplet inter-
acting with a superstring is provided by the Weyl invariant
de Wit—Roek action[24], Eq. (2.42,

the explicit expression foE 5(5) in Eq. (3.4 as well as the
expressmn for the basic variations of the spin connection,

(5) in Eqg. (3.2, will not be needed belowthey can be
found in[17)).

D
"Note that with an independent variation of the supervielbein, the Sq):Sf déz EEe(I)/2
action(3.1) would lead to the equation stating the vanishing of the

superdeterminang, which contradicts the original assumption . o
about its nondegeneracy. (DD—R)e®?=0, (DD-R)e®?=0. 4.1
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The variation of such an action with respect to the superfield
& constrained by Eq(2.41) and with respect to the super-

gravity multiplet is technically quite involved. However, the
following observation helps. The 2-form satisfying the con-
straints(2.38) is expressed essentially in terms of the tensor

multiplet superfielde®’?. Thus the problem of varying the

real linear multiplet is equivalent to the problem of finding

admissible variations of the 2-formB, satisfying the con-

PHYSICAL REVIEW D69, 085009 (2004

V. INTERACTING ACTION AND SUPERFIELD
EQUATIONS OF MOTION

Now that we have found all the necessary basic varia-

tions, we may turn to varying the coupled action

+Sssrr, (5.1

P
+ @12
1 s5¢€

S= f d8Z sdetEy”)

straints(2.38). Such a task appears to be more algorithmic.

Moreover, for the variation of the interacting action we will,

anyway, need the form of the admissible variationsBof

superform, as its pullback defines the Wess-Zumino term of

the Green-Schwarz superstri(@ 3).

B. Varying the tensor multiplet: Admissible variations
of the 2-form gauge superfield

Clearly the constraint§2.38 make it impossible to con-

1 . . s .
Ssstr= f FEN E2e®2— Bl (5.2
w2 4
to derive the equations of motion.

A. Superstring equations

Clearly, the superstring equations of motion for the inter-

sider the variations of the 2-forrB, as independent. One acting system keep the same form as the superstring equa-

rather has to defin&f. Sec. Il A)

1
6BZ=EEA/\EBbBA( 5) (4.2
and find the expressions fog(8) = — (— 1)BAbag(5) from
the conditions of conservation of the constrai(#s38. Fac-
toring out the gauge transformatio®8?'98B,=da,, one
finds, after tedious calculations,

bas(8)=0, b,i(8)=0, b,;(5)=0, (4.3
bsn(8)= o 55( DD~ R) 8vP+ O(8H?), (4.4)
bjo(8)=— ops5(DD—R) 1P+ O( 5HY), (4.5

i~ S .
Dap(6)=— Z(U[aab])BaDB(DD_ R) ov*

i - -
~ 3(01a00) DR DD R) v+ O(3H),
(4.6)

where O(SH?) denotes terms containing th#H? variation
[see Appendix B, EqeB4)—(B7) for the complete expres-
siong.

tions in the superspace background of the superfield super-
gravity and tensor multiplet:

A A 2 a - ~ a
(*EA-EHN Uaa&Ea_gEb(Uan)a'BVﬁq) =0,

and c.c., (5.3

D(e®"% B+ ESANE Hape— 5* Bp/\E Va2 + E°

NEX(01501)) V52— 2IECNE “y ,672=0,
(5.4)

B. Superfield equations for tensor multiplet

The equations of motion for the tensor multiplet appear as

a result of thesv® and 5v* variations of the dilaton super-
field, Eq. (4.7), and the 2-superfornB,, Egs. (4.3—(4.6).
They are

s(DD—R)(e” D e*?)

= —(DD—R)D,K 2+ 4i oo (DD~ R)WPP

As the components of the superfield strength of the

2-form B, are expressed through the dilaton superfield, it 1 _ _
should not be a surprise that the preservation of the con- - E(U[aab])aﬁ(DD— R)D g WP, (5.9
straints (2.38 defines as well the variation of the dilaton
superfield, _ _

_ _ s(DD—R)(e” *2D; e??)

i— — S

5e‘1”2=§1>&(m>— R)6v*~ 5Do(DD—R) 6v* o -
= —(DD—R)D,K2+4i oy p,(DD— R)WPA
1. — _
— 704" [Dy Dyle™25H— 26" A(5) + A(9)], 1 ‘ L
+ E(o[arrm)%(DD— R)DZW2P, (5.6)

(4.7

where[A(5)+K(5)] is defined in Eq(3.6). where
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1 1., . A

WBA::—f ~EBAEASS(Z—-2) (5.7 5—§=o = R=0. (5.12
2 W2E SU

are current prepotentials which appear naturally in any varia- Thus, in this case, as in the case of supergravity-massless

tion of the Wess-Zumino term of the superstring action. Insuperparticle[17], only the vector superfield supergravity

the same manner, any variation of the Nambu-Goto terms adquationdS/ SH®=0 acquires a source term from the super-
the superstring action will be expressed through the currergtring. However, in the coupled system under consideration,

prepotential these equations are more complicated due to the supergravity
interaction with the tensor multiplet:
1 D/2 . N .
KB::—f —*E,/\EB&%(Z2-2 5.8 5S
4lw g 0 (272 -9 sqa=0 =Ga(l-se™?)
(cf. with the superparticle current prepotentiald 117]). - -
=Jats| 5+35 | 021Dy, Dyle™
C. Superfield supergravity equations
Now let us turn to the supergravity equations for the +3s}gﬁe“‘”2DBe‘p’zﬁge‘p’z. (5.13

coupled system, which appear as a result of 8#&?, o,

S8U variations(see Sec. Il for free supergravijty The superstring current potential

The first observation is that, in accordance with Eds?) 55,
and(3.3), the variation of the Nambu-Goto terms of the su- Ta= —p——1 (5.14
perstring action with respect to supergravity superfields does oH®
not contain an input from (), A(9), defined in Eqs(3.9),  entering the RHS of Eq(5.13, can be expressed through
(3.6): two typesof current prepotentials, Eq$5.8) and (5.7), as
follows
1. P S R, <
5uSsstr: f i E* Ea/\ 5uEae<I)/2+ Z* Ea/\Eaéueq)/Z 1 B . . B
W — gJa=2iDgKE =21 DpKE 5[ Dy DIK,"
1 A _
=5 f +Ea/\E*®(DD—R) U 1 _ .
W _ Z Kbbo,gﬁ[»DB lDB] e(IJ/Z
1 “ 2 _
_ * /\ ad/2 _ =0. ) . -
4sz E./\E2e®22(DD-R)sU/=0. (5.9 FIWP a8t pra) PV,
Clearly, no such inputs come from the variations of the pull- — iwb&( Npad+ Z'ag'b)[-;&% e®/2
backB, of the 2-formB,, as Eqs(4.3)—(4.6) does not con- 1
tain A(8), A(8) at all. As the chiral variations D + icrbﬁﬁ[l)ﬂ D](e*2W,y)
—R) éU and c.c. are involved in the variations of the super-
vielbein only inside theA(d), A(J) combEatlons, this b = eape POV P72 (5.15

means that the equatior¥S/ /=0 and §S/6U/=0 do not 2

POSSESS an input from th? superbrang so(asevas also the The first line of the RHS of Eq5.15 has exactly the same
E:r?]se with trt'.e supergravﬂy-super_partltc]!e sy;:em, Egg@)_ f thform as the expression for the current through the superpar-
ese equations can acquire an input rom e action ot Mqe - ¢rrent potential in the supergravity-superparticle

real linear multiplet, which, in general, has the form . . . b
8 . X . coupled systemi17]; the second line contains the trakg
s/d"ZEf(®/2) with an arbitrary functiorf. However, one of the bosonic current potentig.8) which vanishes in the

can check that an input in th&/ vanation of the improved superparticle case but is nonzero for the superstring; the re-

kinetic term,sfd®ZE%e®, also vanishes maining part of the RHS of Eq5.15 contains the current
prepotentialg5.7) which come from the variation of the su-
5”_[ d8ZELe®2=0. (5.10 perstring Wess-Zumino term. B
Note that on the shell of Eqé5.12), (5.12, R=0=R, the

Thus for the coupled actiofb.1) one finds that the chiral equations for the tensor multiples.5), (5.6) simplify to

superfield equationsS/ 6U/=0 remains the same as in the o ) o . oi
case of “free” supergravity: DD|se "D e+t DKy "~ 4iop, W
58— R= 1 p B ab
0 = R0 (5.11 + 5(01a01)) oD W =0, (5.16
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DD[se ¥2D; e+ D. K 2~ 4i o 5 WPP « |~ 37
[ 8 Ko Ao, W =€ 000 =g DG (P)
— L(Tra0v)) EL DaWRY = 0. 5.1 P
2(01a00) "3 Dp "] (5.17 +ggaﬁﬁp(m(jﬁm)/(1—se‘1’/2)) (5.23

D. Superfield generalization of the Einstein

and Rarita-Schwinger equations with sources and

In the minimal(off-shell) supergravity the superfield gen-
eralization of the Ricci tensor and of the Rarita-Schwinger
spin tensor are expressed through the vector and chiral scalar =~ 1 Bl 2l B) o (Ba)a a _
superfields as followfsee Appendix B, Eq(B1), as well as  Roc 32 (DPDGUP(@) = DPDPGUU(®@) ] o, 0npp
[34,17] and references therdin

.
1 . + A DPDE TP (1-56™)]
Rbc“:3—2(DﬁD<alea\ﬁ>—DﬁD(ﬁG“)“)UiafbeB >

—DBDB 7 (1-se") 1o rpp.  (5.29

3 _
— 54(PPR+DDR—4RR) 53, (5.18

The spacetime Einstein and Rarita-Schwinger equations
i 3] can be obtained as the leading=0) components of the
xpi:: eadeTbcao'da&:_UaBBD(Bleﬁl&)+ _UZaDBR. superfield equation®.24), (5.23 in the Wess-Zumino gauge
8 8 (see[17,22,34, and references therein and also Sec. VIA
(5.19 below). One should note that

On the mass shell of the interacting system, taking into
account the superfield equations of motiéri2), (5.11), one N o N i ~aB
finds that the scalar curvature vanishes, Tap*|9=0=2€5ep Dy, Py (X) — 2 (Y1200 5G7 o=0

ab_ [[—
Rap™=0, (5.20 — 7 (Oraty) R (5.29
4 6=0
and the Ricci tenso(5.18 and the Rarita-Schwinger spin
tensor(5.19 simplify. Then, to obtain the superfield gener- . _— - ,
alization of the Einstein and Rarita-Schwinger equations fofliffers from the standard definition of the gravitino field

@ _ @ _ B a
the interacting system one substitutes in E&s18, (5.19  StreNIth Dy, iy (X) = dp,uihy (X) = Y1, (X)W, 8 |4-0, by the
. — . leading components of the main superfiel@$|,_, and
with R=0=R the formal solution

R|4=o only. In our case on the mass sheg|l,—,=0 [see Eq.
(5.12] and theG? superfield is determined by Eq&.21),

1 (5.22. Thus
Ga=?e®/2ja+ga(¢)) (5.21)
i .
of the superfield equatiof5.13. In Eq. (5.21), G,(P) de- Tap”| 9=0=2€5ep Dy, ) (X) — Z(l//[an])[sg“B(q)) =0
notes the on-shell “value” of th&, superfield in the system
of supergravity interacting with a dynamical tensor multiplet; i _
i.e., in the absence of the superstring, (Y140 3 TP(D) i
a(1—seb0ry 12701 "o
D
5+35 (5.26
Ga(®) =5 — 504 [ D Dyle””
where ¢(x) = ®| 5—o.
3s -~ —
+ ————0hPe” ¥2D ,e®2D e (5.22 _ o _
1—seP”? E. Superfield generalization of the Kalb-Ramond gauge field

equations with source for the interacting system

Thus the superfield generalizations of the Rarita- Taking the vector covariant derivative of the expression
Schwinger and Einstein equations in the supergravity«2.39 for H,,., one finds the off-shell expression for the
tensor-multiplet—superstring interacting system read LHS of the 2-superform gauge field equation:
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1 - — E'" (Z)=ENZ), ®'(Z')=d(2),
DCH abc: 3_2( U[an])aﬁD(aDDDﬁ)e¢/2+ C.C.

w'a (2" =waP(Z), etc., (6.2

1 1 1
_ b2, T o2, - c
51 Da Dple™"+ 5 GraDy€ "+ 5 HanG which act on the superstring variables, coordinate functions
ZM=ZM(&)=(x*(&),0%(£)), by the pullback of the trans-
+ 35 €abed? °(e®2GY) formations(6.1):
X'#(€)=X"+DH(X,0),

. - .. (63
0’ (§)=0+e“(X,0).

i - - .
—a(a[aab])aﬁwaﬁpVe¢/2+c.c. (5.27) z’M =7ZM+pM(2):

The action(5.1) is also invariant under the world sheet rep-

To arrive from Eq«(5.27) at the(superfield generalizatigrof arametrizations and under thkesymmetry(2.45, which act

the antisymmetric tensor gauge field equatiofi€alb- . the coordinate functions only.
Ramond equationswe shall substitute the expression for Thus, omitting the world volume reparametrization for

D, DDDg e®"? which follows from acting by the spinor co- simplicity, the complete variation of the superstring coordi-
variant derivativeD,; on the superfield equations of motion nate function under the local symmetries of the interacting
(5.16 for the tensor multiplet and, then, substitute Ej21) action (5.1) is given by

for G The equations thus obtained have quite a compli-

cated form. Writing explicitly only the terms with the maxi- SZM(&)=bM(Z(£)+ 6.2M(¢), (6.4)

mal number of the spinor covariant derivatives acting on the “

current prepotentialésee below for a special role of such ~ . . .
t:rms) or?e gpets lalgs W pect . where §,ZM(¢) is defined in Eq(2.45.

Now we observg 17,37 that the superdiffeomorphism
symmetry can be used to fix the “fermionic unitary gauge”

1 —d -~ @ N ~~ 2 ~
SDHape=~ 358 " A01a0%)) “D(DDDgKa"+ (9=0 & MH=x40. (65

—ap, |~ — Moreover, in the same manner as[itv] one can show that
+ §e (O'[aO'b]O'C)a&DaDDWa

this gauge can be fixed simultaneously with the Wess-Zumino
gauge for supergravitysee[17,37 and references thergin
1 - - .
P Y7 B aypjcd . .
e DsDDD “W°

(U'[aO'b]U'[cU'd])a B 0“E2(x,0)=0, HQ(Eg(X,H)_ 5§)=0, (6.6)

+c.ct---. (5.28 5

6°w2°(x,0)=0,

A further study of the complete form of the superfield equa-yhere. in particulaf22,34
tions for the tensor multiplet and for the Kalb-Ramon gauge
field entering that multiplet will be the subject of a separate

a a o o
paper. ELl,_,<eh(x), Egil, _ =y, (6.7)
Below we will show that the knowledge of the general N u
form of the tensor multiplet superfield equations with the E%|6:0=0, Ez 6:0=é§, (6.9
source, Eq(5.16), and of its relation to the gauge field equa-
tion [through Eq.(5.28)] already allow one to make interest- WA o 30 x) 6.9
ing conclusions that provide a shortcut in the study of the mlg=0 T AT '

interacting system. , .
This can be understood by observing that, although both

gauges, Eqs(6.6) and (6.5), are fixed with the use of the

VI. GAUGE-EQUIVALENT DESCRIPTION E?Ame _SLtJ)?Aerdﬁfeorr?orphlsrfn symmetr); Wlt? rt]he parameter
OF THE SUPERFIELD INTERACTING SYSTEM b™(2)=b"(x,6), the transformation rules of the supergrav-
ity superfields involve only derivatives @"(x,6) (charac-
A. Superdiffeomorphism symmetry gauge fixing teristic property of the gauge field transformatipnahile

The interacting actiori5.1) is manifestly invariant under the transformation rules of the coordinate functiay(¢),
the local Lorentz symmetry and under superdiffeomorphismgq. (6.4), contain the additive contribution ob™(Z(¢))

X'E = x4 (X, ). _=bM()A<(§),A6(§)) (characteristic property of the Goldstone
Z'M=7ZM 1 pM(Z): 5 5 . (6.1 field transformations, but for Goldstone fields defined on a
0’ =0“+e%(x,0), surface in superspace, see Sec. VII §bf] and[32,38).
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B. Gauge-fixed action 1 . . . TP .
Let us discuss what happens with the interacting action Ba(x)= EdXMAdX Bun()=0d760:x0,X"B,,(X).
(5.1, (5.2 in the gauge(6.5), (6.6). After integration over
the Grassmann coordinates, the Wess-Zumino supergravity Thus the complete gauge-fixed action for the interacting
action (3.1) becomes the standard supergravity action withsystem reads
the minimal set of auxiliary fieldg39],

SintGF:Ssg(ev'r//!ga !r!r_)+stm(¢1X|B;ea (//vga)
Ss= f d*xd*¢ sdetEyy) = Sqq

+Spsu(X;€,B), (6.16
:J d*x(eR+ EWPUEM%%DP%) with Sgg, Sim, _andSbStr defined in Eqs(6.10, (6.12), and
(6.195), respectively.

+O(ga(X),r(X),r(X)), 6.1
(9a(X),r (x).r (x)) 6.19 C. Supersymmetry of the gauge-fixed action

where R= Rﬂvab(x)eg‘(x)e;(x) is the scala_r curvature of Note that, although the gauge-fixed acti@nl6) includes
spacetime,e=det(ez), and O(ga(x),r(x),r(x)) denotes the action for the purely bosonic strin§.15), it possesses
terms with auxiliary fields, 1/2 of the local supersymmetry characteristic for the super-
gravity action. Actually, the direct proof of this fact can be
=] iy found in [40]. Here we will show this in a different way
xr(x), R| __«r(x), (6.1 L . )
(x) |9=° (x), (613 which is based on the observation that the symmetries of the

which are not essential for the consideration below. The im_gauge-ﬂxed actiof6.1G can be identified as a subset of the

. . . symmetries of the completeuperfield action (5.1) which
Ere?:\:)engjetsensgl*r]ermjzli?igﬁ;ecg[%%fz also entering Ea(5.1), preserve the gaugé.5 and the Wess-Zumino gaugdsee
' ' [17] for the supergravity-superparticle interacting system

First, note that in the Wess-Zumino gau@e6) the index

Gdl, ,#0u(x), Rl

6=0

STM:sf dSZE@e‘I’(Z)/Zocstm of the superspace Grassmann coordinate is identified with
2 the Lorentz group spinor index. Indeed, due to the second
f 1 1 equation in Eqs(6.6),
= d4xe[—e¢(x)’zg‘”7) ¢D,p+—H*"PH,,, . .
2 8 3! e 0P=(0P,0) = 0°ES(Z) = 0765 6.17)
+ie?2(Dx ol x e+, (6.12  Clearly, the same is true for the superstring spinorial Grass-

mann coordinate functions. Their transformation rules can be

where D, denotes the spacetime covariant derivatives andiead off Eq.(6.4),

the component fields of the tensor multiplet are defined by

D xp(x), D" _rx.x), (613

56%(&)=bM(X,0)E (X, 0)+ 5,.6%(&), (6.18

where §,6%(£) reads[see Eqs(2.45 and(6.17)]
and[cf. Eq.(2.38)] A .
_ 8.0(&)=ro( 57— lglen@ M ER(X, B) o5,
[Do.,D.1e",  * Tanall (X)€" P H e, (6.14

| 8,0(8)=(3,0°(&)*. (6.19
H,.p(X)=3d;,B,,(X). In Eq. (6.12 we have written ex-
plicitly only the kinetic terms; the remaining ones may be Clearly, the superdiffeomorphism parametét(x, 6) in Eq.
extracted from the formulas if24] and are not essential for (6.18 is to be restricted by the conditions of the preservation

wha_t follows. _ _ _ of the Wess-Zumino gauge. Howevésee[17,22,37 and
Finally, the superstring actiof5.2) in the gauge6.5) re-  references therejnthe parametee(x) =bM(x,0)Eg(x,0)
duces to thébosonic string action remains unrestricted and is identified with the parameter of

the local supersymmetry of the componéspacetime for-
mulation of supergravity.

Now, the preservation of the gaug@.5), 6%(£)=0, im-
poses the conditiodd*(£)|ja(s-o=0—i.€.,

1. . - -
7 e,/\e?e??—B,(x)

1 = - -
= sz[zdzgwdeteﬁqean)le"ﬁ“)’z— B2(X)

Ssstr|?9:O°chstr:f -
W

3

(6.15
where = — k() (- | glenmg MR ()T, (6.20

€4(X) == 8,0%(&)| gae)=0
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on the parameter of the local supersymmetry. This restrictiofently, Eqgs.(5.21), (5.22] with Eq. (5.15, come in the form
appears only on the string world sheet and expresses thad current prepotentialés.8), (5.7), or their derivatives. This

pullback €*(x) of the supersymmetry parameter®(x) IS true as well for their consequences like E@s23), (5.24),

) (5.28.
through a world sheet parametef,(¢) contractedion both Both current prepotential.8) and (5.7) contain the su-

indices with the expression &'~ Vidlen@ Men(X)oa®.  perspace delta function
The latter is the =0 “value” of the Green-Schwarz R R .
k-symmetry “projector” and makes only one parameter in- 8(Z2-2)=68*x—x)(6—6)* (6.21)

cluded in«; (§) being involvedeffectivelyin the expression. integrated ovgNVz with the corresponding measure. In the

2 . .
Thus on the world sheat/ of a (dynamica) string the rgauge(6.5), 9%(£)=0, the delta function becomes propor-

four parameters of local supersymmetry of the free super? . .
gravity are reduced by the condition of the invariance of theional to the highest degree of the Grassmann coordifiate

gauge fixed interacting actio(6.16), to the two effective
parameters of thec-symmetry-like transformations, while

out of W? these four parameters?(x),e“(x), remain unre-  As a result, in this gauge both superstring current prepoten-

stricted. This can be characterized by stating the preservatiagnls are proportional to the fourth degree of the Grassmann
of the 1/2 of the local supersymmetry of the free supergravitycoordinate:

by the gauge fixed interacting actig6.16).

97=0: 6%2-2)="x—X) 6" 6.22

KBoc g,  WABx g%, (6.23

D. Equations of motion following from the gauge-fixed action  Then a covariant derivative of any of the current prepoten-

An important observation is that the gauge fixed versiorfials is proportional tos*:
of the superstring actio6.15 involves only thephysical B_ .3 AB_ 13
bosonic fieldsof the supergravity and tensor multiplet, the DcKa 67, D W™ 6% (6.24
graviton e (x), the antisymmetric tensdB,,,(x), and the  The action of two derivatives which isot reducible to one
scalarg(x). Neither auxiliary fields nor fermions appear in derivative, D2 5= DaDg+ (— 1)*BDADg but not [ Dy, Dg}
the string actior{6.15. As a result, both the equations for the —  T.CD-+R D2 —p D but i
auxiliary fields and for the fermions of the interacting system AB TC T TTAB eg. op=DPa  Dgl, ut-no
(6.16 will keep formally the same form as in the absence of{D,,Dj} = 2i U‘ZBDa) may result in expressions proportional
superstring. In particular, this means thathe gauge (6.5), to 62,
(6.6) neither the Rarita-Schwinger equations nor the equa-
tions for the fermionic field of the tensor multiplet will in- DEpK5x 62, DepWABx 62, (6.29
clude a source term from the superstritathough they will
be written with covariant derivatives for the spin connectionsetC-:
satisfying the sourceful Einstein equations with an input
from the superstring energy-momentum temsor

This is a manifestation of a counterpart of the super—Higgsomy the action of four derivatives may produce «e§°
effect in dynamical supergravity interacting with a super-jinntj e., terms which have a nonvanishifg 0 value:
string or superbrane object, which we will address in a sepa-

DEpeK3x(0)t, DEpWABx(0)L. (6.206

rate pape(see[38] for'a' spacetimg counterpart qf the Higgs DéDEFKSOC 6°, DéDEFWABoc 6°. (6.27)
effect in general relativity interacting with material particles,
strings andp-branes. This implies, in particular, that the current potentiall5

Similar properties have already been found in the dynamiis proportional to the second power of the superspace Grass-
cal D=4, N=1 supergravity interacting with a massless su-mann coordinate:
perparticle[17]. The present consideration generalizes it for )
the case of dynamical supergravity interacting with a sim- Ta* 0" (6.28
plest supersymmetric extended object. Then

Below we present a simple check of the gauge equiva-
lence described above at the level of equations of motion. DpT 2 6%, (6.29
Namely, we will show that the dynamical equations for fer-
mions, which follow from the superfield equatiofis.11), and only the second derivative of the current potential may
(5.12, (5.13, (5.16, are indeed sourceless in the gaugeproduce a term with a nonvanishing leading component
(6.5), (6.6). (#-independent part

E. Superfield equations and the equations for physical fields Décj&“ 0°. (6.30

In the *fermionic unitary” gauge The spacetime fermionic equations of motion of the inter-

The superstring contributions to all the superfield equaacting system may be obtained as leadifg=0) compo-
tions of motion, Eqs(5.16), (5.17, and(5.13 [or, equiva- nents of Egs(5.23 and (5.16). Ignoring the inputs with a
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smaller number of derivatives applied to the current potenHence, in the gaugé.5) the superstring input on the RHS of

tial, one can write the leading components of E523 as the Kalb-Ramond gauge field equation for the supergravity—
tensor-multiplet—superstring interacting system is nonvan-

(\Ifz— Ei(¢))l9:0xDBja| o’ (6.3)) ishing and, moreover, coincides with the input of the bosonic

string.

where Z°(®) denotes the tensor multiplet contribution to ~ Thus we have checked that the spacetime equations of

the gravitino equation, which is given by the first term on themotion for the fermionic fields which follow from the com-

RHS of Eq.(5.23. Then Eq.(6.29 implies that the RHS of plete superfield action(5.1) of the supergravity—tensor-

Eq. (6.32 vanishes in the gaugés.5—i.e., that in this Mmultiplet—superstring interacting system become sourceless

gauge, Eq(6.32, reads in the gaugeg(6.5). This is true both for the gravitino equa-
tions and for the fermionic field of the tensor multiplet. At
\P3|H:0=53(¢)|H:0 (6.32 the same time, the corresponding bosonic equations are

clearly sourceful in any gauge. This is a characteristic prop-

and does not contain an explicit input from the superstring.erty of the equations which follow from the gauge fixed ac-
In the same manner one finds that the dynamical equatiotion (6.16).
for the fermionic component of the tensor multiplet, given by ~ We should note that the gauge-fixed fermionic equations

the leading component of E¢.16), are not completely decoupled from the superstring. They are
L L written in terms of the spacetime covariant derivatives with
sDD[e” ®2D aeq)/2]|o—o: —DDD, K2 o (composefispin connections satisfying the Einstein equation

L with a source. The same is true for the equations derived
- %(g[a}b])aﬁ[pppﬁwab]|9=0 directly from the gauge fixed actioi.16).

+4iop,DDWPH| - (6.33
F. Possible application of the gauge equivalence

implies, in the light of Eq.(6.26), that the superstring-

produced RHS of this equation vanishes in the gai6g®: Note that the gauge-fixed descripti@®16) of the super-
field interacting systent6.16) is complete in the following
sDDle” %D e®?]| =0 (6.34  sense. Along the line d#0] one may check that the gauge-
o o= 0 .

fixed action(6.10), (6.12 reproduces the gauge-fixed version

As far as the bosonic superfield equations are concerne§! @l the dynamical equations which might be derived from
they preserve the nontrivial input from the superstring sourcd'€ complete superfield action, including fieemionic equa-
in the gauge(6.5). Indeed, the leading components of Eqs.t'ons for the bosonic stringThis is the man|festat|(_)n of the
(5.24), (5.28 contain the second derivatives of the currentPurely gaugelor Goldstong nature of the superstring coor-
potential and fourth derivatives of the current prepotentialsdinate functionsZ™(¢) (not to be confused with the super-
which remain nonvanishing in accordance with E@30 coordinateZM; see[32,39 for further discussion
and (6.26). A counterpart of the gauge-fixed actit 16 can be writ-

The explicit form of the Einstein equation can be derivedten in any dimension, for any supergravity interacting with
in a way close to the one used [ih7] for the supergravity- any superbrane. Hence, using the above-described gauge
superparticle interacting systefalthough the presence of equivalence one may already proceed with studyingDhe
both Nambu-Goto and Wess-Zumino terms in the superstring=11 supergravity interacting with super-M2-branes and
action, as well as of the tensor multiplet in the action of thesuper-M5-branes, as well as tBe=10 type Il supergravity
interacting system, makes the Einstein equation of thénteracting with supeBp-branes(in spite of the fact thed
supergravity—tensor-multiplet—superstring system a bit more=10,11 superfield supergravity actions are not knpwn
complicatedl. As far as the Kalb-Ramon field equations are
concerned, taking into account Eq$.23—(6.27) and the
conditions of the Wess-Zumino gau@&6), (6.7) [which im-
plies, in particular, D,DDDP(6)*x 55+ ()] one finds
that, in the gaug€6.5), the leading component of the super-
field equation(5.28 becomes

VII. CONCLUSIONS

In this paper we studied the full superfield Lagrangian
description of theD =4 interacting system of dynamical su-
pergravity and a superstring described by the s$#mSgg
1 +Srm+ Sestr Of the superfield supergravity actid® g [22],
SD°H -0=1g® dl2pedy L (6.35  the Green-Schwarz superstring actfy, [23], and a super-

field action for the dynamical tensor multipl8,, [24].
The superfield theoretical syste8+ Sgg+ Sy was ar-
gued to be related to the low-energy limit bf=4 compac-
10 1 tification _of the heterotic superstrirjg._S,ZFﬂ(see alsd28))
Wba::_j ZePAEASH (X —X). (6.39  and considered if27,29. So our main interest here has been
2 )w2e to analyze the influence of the superstring actg, on the

where
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dynamics of the interacting system—namely, in thenew solitonic solutions of higher-dimensional supergravity
superstring-produced source terms both in the superfield aridcluding the ones with nonvanishing fermionic fields.
component form of the equations. An analysis of the superfield equations with sources ob-
We have obtained the complete set of superfield equatiori@ined in this paper, as well as an investigation of be
with sources provided by the superstring. In the supergravity= 10,11 supergravity-superbrane interacting systems with the
sector we found that the scalar superfield equation remaingse of the gauge equivalence of their complete superfield
the same as for free supergravity, while the vector superfieldescription, with the description by the sum of spacetime
equation is modified both by the interaction with the tensof{component action for supergravity and the action for
multiplet and by the sourceurrent potentialcoming from  bosonic brane, will be the subject of future work.
the superstring. The current potential is constructed from the
two types of currenprepotentialscoming from the variation ACKNOWLEDGMENTS
of the Nambu-Goto and Wess-Zumino terms of the super- .
string action, respectively. The superfield equations for the 1he authors are grateful to Jose de Azcaraga, D. So-
tensor multiplet are also modified by inputs from the above-rOk'_n’ J. .Luk|ersk|, and E. qunov for useful conversations
mentioned current prepotentials. The equations of motion foflUring different stages of this work and to S.J. Gates, P.
the superstring variables are the same as inbtiekground Pasti, M. 'I_'onln, and W. Siegel for comments. This work has
of supergravity interacting with dilaton and super-2-form su-2€€n partially supported by the research grant BFM2002-
perfields. 03681 from the Spanish Ministerio de Ciencia y Tecnosiog!
These superfield equations appeared to be quite complnd from EU FEDER funds, by the grant N 383 of the Ukrai-
cated, which might indicate that their higher-dimensiopal Nian State Fund for Fundamental Research and by the IN-

—10,11 generalizations, even if they exist, will be quite dif- 1S Research Project N 2000-254.

ficult to deal with. We have considered as well an exit from

this problem_ APPENDIX A: SUPERSTRING « SYMMETRY IN FLAT
By analyzing the gauge symmetries and taking into ac- SUPERSPACE

cofunt the pr(;]pert_ies oLthe Wﬁss-ZuEwinohga(mu?] and In flat superspacene may consider a vanishing dilaton
references thereinve have shown that there exists a Com'superfield,d)(Z):O [although this is not obligatory iD

plete gauge-equivalent description of the “superfield” inter- —4, N=1 superspace, wherd(z) is described by a sepa-

acting systemS=Ssg+Srm+ Ssstr, given by the sumS 0 o itiplet; see Sec] and use the standard expression for
=Sy Stimt Spstr Of the spacetimeomponenaction for su- the supervielbein:

pergravity S¢q (without auxiliary field$, the component ac-

tion for the tensor multiple$,,,,, and the action for Aosonic flat superspace:
string Sgi; (which appears as the purely bosonic “limit” of
the superstring actio . We checked this gauge equiva- _ iypa, 8 paipa 8 oo
perstring actiofiss) gauge eq Ef=dX“8%—id 090" 6" +i6%0°. d6%,  (AL)

lence by studying the properties of the gauge-fixed version of
the equations of motion derived from the complete superfield

action. Despite the quite complicated form of the superfield Ea:daﬁ5i3a§daa’
generalizations of the Einstein and Rarita-Schwinger equa- _ .
tions, as well as of the Kalb-Ramond equations and the equa- E*= deﬁﬁbazda”‘, (A2)

tions for the fermionic fields of the tensor multiplet, it turned 5
out to be quite easy to show that in the above-mentionehere a=1,2,3,4 shall be treated as a Majorana spinor in-
“fermionic unitary gauge” all the fermionic equations are dex, a¢=a: #P= géz(gﬁﬁﬂ) (i.e., 6P=0°58,+0,5°%).
sourcelesgalthough they include the covariant derivatives The “vacuum value” of the 2-fornB, has to be chosen as
with the spin connections obeying the sourceful Einstein
equation$ while the bosonic equations, including the Ein- flat superspace, ®(Z)=0:
stein and Kalb-Ramond field equations, acquired a source
from the superstring. i _ —

This extends the supergravity—massless-superparticle re- B,=— def‘ﬁ‘;/\[dé’aoaaaé’”— 040 34,d0%]. (A3)
sults of [17] to the case of dynamical interacting systems

including supergravity and an extended supersymmetric ob_—E &
ject and strongly supports that the above-mentioned gaugeghen the pullbacts,= ¢*(By) of the 2-formB,, Eq. (A3),

equivalence is not an artifact of the simpler massless supe r8d4uc6es thesstzndard form (;f_the V\/tgss-zimmo terrlrtl O]f the
particle case, but rather is a general property of the abovez — reen-Schwarz superstring acti8]. As a result o

mentioned interacting systems. As the component actions fdfs pLesence;, tt:(e action poslséegsef a Iocaic fermlpnlc slymme-
supergravity are known in all dimensions, includiriy try, the seminak symmetry{12,23. Its transformation rules

=10,11(the most interesting from an M-theoretic perspec-Can be formulated as follows:
tive), our results allow one to obtain and to study the com-
plete set of equations for dynamical supergravity interacting
with dynamical supep-brane, at least in its gauge-fixed ver- R L

sion. This promises to be a useful tool in a future search for i B0, (*E2—E?)=0. (A4)

i E2:=5,7ZME2 (Z)=0,
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Indeed, as (E2—E?) =d&"(8™+ \/[geng ™ E2, and, in flat
superspace;? has the form of Eq(A1), the solution of Egs.
(A4) with respect tos, X* and 6,6 gives theD =4 version

of the Green-Schwarz expression for the superstirgym-

metry [23]:

flat superspace, ®(Z)=0:
5 XH=18.6%", 9" +c.c.,
8,07 =K (87~ gl eng M ERTS",
5,09=(8,0%*.

(A5)

APPENDIX B: SOME USEFUL FORMULAS

PHYSICAL REVIEW D69, 085009 (2004

1 T P
7S5 5 f 2 D(e®% Eq) — 7€M Ep/\ EbVa<I>} i 5E®

—i| e®%ENoaEftcc— | e®%E,
w2 8 w2

NEPY Di E“+ c.c.—f JiszHs, (B3)
W

where we denot&ACI)lzzi(g)::VAd) and ignore the boundary
contribution [yi_ e[ 2% Epi sEP—i 55B,] (which al-
ways vanishes for the case of a closed superstring with
dW?=(). The consideration of the flat superspésee Ap-
pendix A suggests thak symmetry occurs in the action
(2.3) when also the constrain{2.36), (2.37) are imposed on
the field strengthH;=dB, of the 2-superformB,, Eg.
(2.10.

(B3) The admissible variation of the 2-forBy, subject to

(B1) In our notation the Riemannian curvature 2-form of the superspace constrairigs38) is defined by Eq(4.2) with

the minimalD =4, N=1 supergravity is given by

1 ~
R*=dw*—w*?\w, = ZRab( Ta0p) P

1 — T
= - 3EN\ER-gE\El0 A DIR

i ~
- EEC/\EV(U-Co-d)y(BD“)Gd

i _ 1
— g EN\EPoe, W+ SEYNE Ry, (B1)
R*#=(R*)*. (B2)

(B2) After the minimalD=4, N=1 supergravity con-

straints(2.29, (2.30 are taken into account, one finds, for

the variation of the superstring action,

Dap(0)=0, b,p(8)=0, b;p(8)=0, (B4)
bsn(8)= 05 DD~ R) 5vP
i - y P/2 g ga
- E(ﬂaba‘f' O'bO'a)'B Vye 6H?9, (BS)
bjo(8)=— oppp( DD—R) 617
i ~ v v a®2 o ya
+§(77ab5+0aa'b) 5V,e7 oH?, (B6)

i~ R _

Dan(6) = — Z(o[aabl)ﬁaDg(DD— R)ov*
i _ N

- Z(O’[an])aBDﬁ(DD_ R) ov®

1 - — i
+ Eeq”zaff[pﬁ D] 6Hy— Eeabccheq”zﬁHd.

(B7)
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