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DÄ4 supergravity dynamically coupled to superstring in a superfield Lagrangian approach
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We elaborate a full superfield description of the interacting system of dynamicalD54, N51 supergravity
and a dynamical superstring. As far as a minimal formulation of simple supergravity is used, such a system
should contain as well the tensor~real linear! multiplet which describes the dilaton and the two-superform
gauge field whose pullback provides the Wess-Zumino term for the superstring. The superfield action is given
by the sum of the Wess-Zumino action forD54, N51 superfield supergravity, the superfield action for the
tensor multiplet in curved superspace, and the Green-Schwarz superstring action. The latter includes the
coupling to the tensor multiplet both in the Nambu-Goto and in the Wess-Zumino terms. We derive superfield
equations of motion including, besides the superfield supergravity equations with the source, the source-full
superfield equations for the linear multiplet. The superstring equations keep the same form as for the super-
string in supergravity and 2-superform background. The analysis of gauge symmetries shows that the superfield
description of the interacting system is gauge equivalent to the dynamical system described by the sum of the
spacetime, component action for supergravity interacting with the tensor multiplet, and of the purely bosonic
string action.
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I. INTRODUCTION

Recently, there has been renewed interest in the super
description of supergravity@1–4#. It is motivated, in particu-
lar, by the search for a superfield formulation of 1
dimensional supergravity incorporating superstring corr
tions ~see@5–7# for early studies and@8,9# for discussions!.
Supergravity was known to appear at the pointlike limit
the superstring which corresponds to thea8→0 limit—i.e.,
to zeroth order in the decomposition in the Regge slope
rametera8. Already at first order ina8, the string correc-
tions modify the supergravity equations of motion. On t
other hand, the known superfield formulations ofD510 su-
pergravity provide its on-shell description; it is given by t
on-shellconstraints on superspace torsion, which imply
dynamical equations for the physical fields. These are
the equations which correspond to thea8→0 limit of the
superstring. Thus the incorporation ofa8 corrections re-
quires modification of the standard superspace constrain
search for a possibility to replace the on-shell constraints
a set of off-shell constraints or, at least, by a set of ‘‘on a
shell’’ constraints @1# including some parameters whic
specify the right-hand side of the supergravity equations
which can be chosen to describe the superstring correct
to such equations.

Basically the same problem appears when one sear
for a superfield description of a superbrane interacting w
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higher-dimensional supergravity. The superbrane is defi
as a brane moving in superspace. It is well known@10,11#
that the requirement of a smooth flat superspace limit for
superbrane in curved superspace~which implies that the su-
perbrane action in a curved superspace background sh
possess the same number of gauge symmetries, inclu
fermionick symmetries@12#! results in the standard on-she
supergravity constraints. However, as said above, such
straints imply ‘‘free’’ supergravity equations of motion with
out any superbrane source. On the other hand, as is c
from the purely bosonic limit~gravity interacting with a
bosonic brane!, the brane should provide a source in t
Einstein equation.1 So one could get the~mistaken! impres-
sion that supersymmetry forbids interaction with an extend
object, at least at the classical level. Certainly this is not
case. The resolution of such a paradox and the search
consistent~quasi!classical description of thesupergravity-
superbraneinteracting systems is of interest in its own,

1Note that a similar problem appeared for the heterotic superst
@13# in D510, N51 supergravity andE8^ E8 @or SO~32!# super
Yang-Mills ~SUGRA-SYM! background@7#. Namely, the require-
ment of k symmetry of the classical heterotic superstring mo
results in constraints which describe decoupled SUGRA and S
systems, while the Green-Schwarz anomaly cancellation me
nism required their nontrivial interaction. This problem had mo
vated the study@7# of ~one-loop! quantum anomalies in thek sym-
metry transformations. As was shown in@7#, such anomalies occur
but may be absorbed by consistent quantum corrections to the
sical ~tree-level! expressions for superspace torsion and curvatu
The new~one-loop! torsion constraints lead to the desired coupl
equations for the SUGRA-SYM system.
©2004 The American Physical Society09-1
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well as in relation with its possible applications to the stu
of quantum gauge theories in the language of class
supergravity-superbrane models along the line of the A
conformal field theory~CFT! correspondence@14–16#.

The study of the complete Lagrangian superfield desc
tion of the supergravity-superbrane interacting system, w
it is possible, e.g., inD54, N51 curved superspace, migh
provide new insights into the search for a modification
higher-dimensional (D510, 11! supergravity constraints in
such a way that they would produce dynamical equati
with sources, including singular sources from superbra
and nonsingular sources describing the stringy correction

Such a study has been carried out in@17# for the interact-
ing system of dynamicalD54, N51 supergravity and a
massless superparticle source. Here we elaborate the s
field description of the next more complex system wh
includes, besides dynamicalD54, N51 supergravity, the
dynamical superstring. It has some specific features in c
parison with the system already studied in@17#. First, the
source is provided by a supersymmetricextendedobject.
Second, as far as the minimal formulation ofD54, N51
supergravity is considered, one finds~see@18#! that the Wess-
Zumino term of the superstring describes a coupling to
additional, dynamical tensor~or real linear! multiplet @19,20#
which can be used to formulate the nontrivial 2-superfo
gauge theory in superspace@21#. Moreover, superstringk
symmetry requires the identification of the tensor multip
with a dilaton superfield and its coupling to the kinet
Nambu-Goto term of the superstring action. Thus the su
field action for the interacting system which we will study
this paper includes, in addition to the Wess-Zumino act
for supergravity@22# and theD54, N51 Green-Schwarz
superstring action@23#, also a superfield action@24# for the
tensor multiplet @19# in a curved superspace of minim
supergravity.2 It has the form~see the main text for the no
tation!

S5E d8Z sdet~EM
A!S 11s

F

2
eF/2D 1

1

2pa8
Ssstr ,

~1.1!

Ssstr5
1

2EW2
d2jeF̂/2Audet~Êm

a Ên
bhab!u2E

W2
B̂2 , ~1.2!

2The sum of the superfield minimal supergravity action and
superfield tensor multiplet action was motivated by being a lo
energy limit of a D54, N51 compactification of the heteroti
string @18,25#. Nevertheless, this limit, as well as itsN.1 gener-
alizations, which was intensive studied in the 1980s and 1990s@26–
29#, is not a subject of the present paper. We rather consider
D54 supergravity-superstring interacting system as a relativ
simple model for a more complicatedD510,11 supergravity-
superbrane systems~see@41#!. An interesting alternative possibility
is to consider the new minimal formulation of superfield supergr
ity @30#, where the supergravityauxiliary fields are provided by a
tensor multiplet, interacting with the Green-Schwarz superstr
This, however, is beyond the score of the present paper.
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where s is the coupling constant for the tensor multiple
1/2pa8 is the superstring tension, which we set equal
unity in the main text of the present article,jm5(t,s) are

local coordinates of the string world sheetW 2, Êm
a

ª]mẐM(j)EM
A
„Ẑ(j)…, the supervielbein EM

A(Z) and
2-superform B2ª

1
2 dZM`dZNBNM(Z) are subject to the

constraints given in Sec. II, and, finally, the superfieldeF/2

satisfies the defining constraints of a tensor multiplet
curved superspace,

~DD2R̄!eF/250, ~D̄D̄2R!eF/250. ~1.3!

One of the main results of this paper is the complete se
superfield equations of motion for the interacting dynami
system~1.1!, including the superfield supergravity equatio
and the dynamical equations for the tensor multiplet~1.3!
with the superstring source.3 Although the original hope was
that these might provide some insight in a search for sou
full superfield equations for more complicated interacti
systems inD510,11 superspaces, one might find the o
tained superfield equations quite complicated and ra
showing difficulties which should appear in the constructi
of their higher-dimensional generalizations. However, as
hope, these superfield equations, supplemented by a pr
supersymmetric ansatz, can be used to search for supe
solutions of the superfield supergravity equations;4 this might
open completely new possibilities.

On the other hand, as far as the multidimensional gen
alization of the supergravity-superbrane interacting system
concerned, we also discuss a more pragmatic approac
their investigation, using theD54, N51 system as a sim
plified model. A recent study of supergravity-superbrane
teractions indicates the gauge equivalence of the super
description of the dynamical supergravity interacting with
superbrane source with a simpler system which is descr
by the sum of a standard~component! supergravity action
and of the action of a purely bosonic brane~a purely bosonic
limit of the associated superbrane!. Although the proof of
such a gauge equivalence@17,32# is quite general and doe
not need a detailed superfield supergravity formulation~still
hypothetical and, probably, even not existing for theD
510,11 cases!, one may find it necessary to check it expli
itly by comparing the equations of motion derived from t
gauge-fixed action with the gauge-fixed version of the d
namical equations derived from the complete superfield
tion, at least for the cases when the latter exists. The ga
equivalence and completeness of the gauge-fixed descrip
shown by general arguments in@17,32#, implies that these
two set of equations should coincide. Until now this h

a
-

he
ly

-

.

3Note that superfield equations of motion for the field theoreti
part of our interacting system—i.e., following from the actionS
5*d8Z sdet(EM

A)@11s(F/2)eF/2#, but without theSsstr term—
were considered in@27,29#.

4Note that a toy model of the superfield interacting system—
coupled system ofD52 supergravity and a superparticle—wa
studied in@31#. We thank W. Kummer and A. Nurmagambetov fo
pointing out this reference.
9-2
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D54 SUPERGRAVITY DYNAMICALLY COUPLED TO . . . PHYSICAL REVIEW D69, 085009 ~2004!
been checked by a straightforward study of theD54
supergravity-superparticle interacting system@17#. In this pa-
per we show the coincidence of the two sets of equations
theD54, N51 supergravity-superstring and thus check
gauge equivalence for the dynamical system including
extended object. This should convince one that the abo
mentioned gauge equivalence is not an artifact of the sys
including material superparticles in addition to dynamic
supergravity, but rather a general property of t
supergravity-superbrane interacting system.

Notice that the above-discussed gauge-equivalent des
tion of the supergravity-superbrane system promises to
useful to search for new solitonic solutions of superfield
pergravity, with nontrivial fermionic fields.~Very few such
solutions are known; an example is thepp-wave solution of
@33#.!

This paper is organized as follows. In Sec. II we revie
the properties of the Green-Schwarz superstring in cur
D54, N51 superspace, Eq.~1.2!, which are necessary fo
the study of the interacting system. The superstring ac
~1.2! involves, in addition to~the pullbacks of! the superviel-
bein, the scalar superfieldF and the 2-superformB2, neither
of which is involved in the superfield description of minim
D54, N51 superfield supergravity. In Sec. II A we sho
~in a way close to@18#! that the requirement of preservatio
of the superstringk symmetry in the minimal curvedD
54, N51 superspace results in constraints for the fi
strengthsH35dB2 and find that these constraints expressH3
in terms of the dilaton superfieldF. Furthermore, a study o
the Bianchi identitiesdH3[0 in a way close to the one o
Refs. @18,21# ~Sec. II B! concludes that the superfieldeF/2

obeys the defining constraints of the tensor multiplet, E
~1.3!.

Section III collects the necessary information about
superfield supergravity action@22,37# and its variation
@17,22#. Section IV describes admissible variations of t
tensor multiplet~the dilaton superfieldF) and of theB2
superform. In Sec. V we present the complete superfield
tion for thesupergravity–tensor-multiplet–superstringinter-
acting system and derive the superfield equations of mo
by its variation~Secs. V A, V B, V C!. ~Superfield equations
which follow from the sum of the superfield action of th
minimal supergravity and the tensor multiplet, without i
cluding the superstring action, were considered in@27,29# in
connection with theD54, N51 limit and compactification
of the heterotic superstring.! The superfield generalization
of the Einstein and Rarita-Schwinger equationswith sources
are presented in Sec. V D and those of the Kalb-Ram
equations for tensor gauge fields in Sec. V E.

Then, in Sec. VI A, by studying the gauge symmetries a
using known results about fixing the Wess-Zumino gau
~see@17# and references therein! we show that the superfiel
description of the supergravity–tensor-multiplet–superstr
interacting system is gauge equivalent to a supergrav
tensor-multiplet–bosonic string dynamical system descri
by the sum of thecomponent~spacetime! action for super-
gravity interacting with tensor multiplet@24# and the action
for the purely bosonic string, the purely bosonic limit of th
Green-Schwarz superstring. In Sec. VI B we check t
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gauge equivalence at the level of equations of motion
proving that the dynamical equations of motion which follo
from the complete superfield description, when considere

the special ‘‘fermionic unitary gauge’’ @ ẐM(j)
ª„x̂m(j),û ǎ(j)…5„x̂m(j),0…# have the same properties a
the equations derived from the gauge-fixed action~the action
in the ‘‘fermionic unitary gauge’’!. Namely, we show that al
dynamical equations for fermions become sourceless in
gauge. Our conclusions are collected in Sec. VII.

The flat superspace limit of the superstring action is
viewed in Appendix A. Appendix B collects some usef
formulas.

II. GREEN-SCHWARZ SUPERSTRING IN A DÄ4, NÄ1
SUPERGRAVITY BACKGROUND

The Green-Schwarz superstring spans a two-dimensi
world sheetW 2 in superspaceS (4u4):

W 2 , S (4u4), ZM5ẐM~jm!. ~2.1!

In Eqs. ~2.1! ZM5(xm,uǎ) are coordinates ofD54, N51
superspace (m50,1,2,3, ǎ51,2,3,4), jm5(t,s) are local

world sheet coordinates (m50,1), and ẐM(j)
5„x̂m(j),û ă(j)… are supercoordinate functionsthat define

the surfaceW 2 in S (4u4). One can also say thatẐM(j) are
defined by the map

f̂:W2→S (4u4), jm°ẐM~j!5„x̂m~j!,û ă~j !…, ~2.2!

of the coordinate chartW2 into S (4u4).
The D54, N51 version of the Green-Schwarz supe

string action reads

Ssstr5E
W2

L̂25E
W2

F1

4
eF̂/2* Êa`Êbhab2B̂2G

[E d2jAdetugu2E
W2

B̂2 , ~2.3!

g5det~gmn!, gmn5Êm
a Êna . ~2.4!

It involves the pullbacks of the forms on superspace toW 2,

Êa[f̂* ~Ea!5dẐM~j!EM
a~ Ẑ![djmÊm

a ,

Êm
a
ª]mẐMEM

a
„Ẑ~j!…, ~2.5!

for the bosonic supervielbein formEa on S (4u4),

EA[~Ea,Ea!5~Ea,Ea,Ēȧ!, ~2.6!

Ea5dZMEM
a ~Z!, ~2.7!

Ea 5dZMEM
a

~Z! ↔ H Ea5dZMEM
a ~Z!,

Ēȧ5dZMĒM
ȧ ~Z!.

~2.8!
9-3
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In Eqs. ~2.6!–~2.8!, a50,1,2,3 is a tangent space vector i
dex, a51,2,3,4 is a Majorana spinor index, anda51,2, ȧ
51,2 are Weyl spinor indices.

The action~2.3! involves also the pullbackF̂[f̂* (F)

5F(Ẑ) of a dilaton superfieldF(Z) and the pullback

B̂2[f̂* ~B2!5B2„Ẑ~j!…

5
1

2
ÊB`ÊABAB„Ẑ~j!…

[
1

2
djm`djnB̂nm~j!,

B̂nm~j!ª]mẐM]nẐNBNM~ Ẑ!, ~2.9!

of a two-form onS (4u4),

B25
1

2
EB`EABAB~Z!. ~2.10!

The world sheet Hodge star operator *,

* Êa5djnAuguenkg
kmÊm

a

⇒ * Êa`Êb5d2jAugugmnÊm
a Ên

b , ~2.11!

can be defined using the induced world sheet metric~2.4!.
Then

1

4
* Êa`Êa5

1

2
d2jAugu, ~2.12!

d~* Êa`Êa!52* Êa`dÊa. ~2.13!

Substituting Eq.~2.12! into Eq. ~2.3! one arrives at the more
familiar form of the Green-Schwarz superstring action~1.2!.

The Green-Schwarz superstring action in flat supersp
and itsk symmetry are discussed in Appendix A.

A. Superstring k symmetry and superspace constraints for
supergravity and the tensor multiplet

When the Green-Schwarz superstring is considered
curved superspace—i.e., in the presence of super
supergravity—the natural self-consistency condition is
existence of a smooth flat superspace limit. This implies
particular, that the number of local symmetries of the act
in a superfield supergravity backgroundshould be the same
as in the case of flat superspace~see Appendix A!. This
means, again in particular, thatk symmetry should be
present in the superstring model in a supergravity ba
ground.

However, it is well known thatk symmetry occurs only
when the background satisfies certain constraints@10,11#.
This occurs also with theD54, N51 Green-Schwarz su
perstring @18# ~see also@25,27,28#!. For the sake of com-
pleteness and to establish the notation used in next sec
we present here some details of the constraint derivation

The variation of the Green-Schwarz superstring act
~2.3! in a general curved superspace looks like
08500
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dSsstr5E
W2

F1

2
eF̂/2* Êa`dÊa1

1

8
eF̂/2* Êa`ÊadF2dB̂2G .

~2.14!

As the only dynamical variables in a curved supersp

backgroundare the supercoordinate functionsẐM(j), one
only considers, in this case,

d ẐSsstr5E
W2

F1

2
eF̂/2* Êa`d ẐÊa

1
1

8
eF̂/2* Êa`Êad ẐF2d ẐB̂2G , ~2.15!

and the variationsd Ẑ of the pullbacks of differential forms
are given by Lie derivatives,

d ẐÊa[d ẐEa~ Ẑ!ªEa~ Ẑ1dẐ!2Ea~ Ẑ!

5 i dẐ~dÊa!1d~ i dẐÊa!

5 i dẐT̂a1D~ i dẐÊa!1Êbi dẐwb
a, ~2.16!

d ẐB̂25 i dẐĤ31didẐB̂2 , H3ªdB2 , ~2.17!

where

i dẐEa~ Ẑ!ªdẐMEM
a ~ Ẑ!, ~2.18!

i dẐwab
ªdẐMwM

ab~ Ẑ!, ~2.19!

i dẐT̂a
ªÊCi dẐÊBTBC

a~ Ẑ!, etc., ~2.20!

the torsionTa and the covariant exterior derivativeD are
defined below @Eqs. ~2.21!–~2.23!# and wab5dZMwM

ab

52wba is the spin connection.
Now it is clear thatk symmetry is not present in a gener

curved superspace. As we are interested in the supers
interaction with supergravity, we have to impose first t
constraints on the torsion of curved superspace,

Ta
ªDEa5dEa2Eb`wb

a

[
1

2
EB`ECTCB

a, ~2.21!

Ta
ªDEa5dEa2Eb`wb

a

[
1

2
EB`ECTCB

a , ~2.22!

Tȧ
ªDĒȧ5dĒȧ2Ēḃ`wḃ

ȧ

[
1

2
EB`ECTCB

ȧ , ~2.23!

and on the Riemann curvature 2-form
9-4
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Rab
ªdwab2wac`wc

b[
1

2
EC`EDRDC

ab. ~2.24!

Notice that

Rab5
1

2
Rab~sas̃b!ab2

1

2
Rȧḃ~ s̃asb!ȧḃ ~2.25!

and it is convenient to formulate constraints in terms of

Rab
ª

1

4
Rab~sas̃b!ab5dwab2wag`wg

b, ~2.26!

andRȧḃ52 1
4 Rab(s̃asb) ȧḃ5(Rab)* .

The minimal off-shell formulation ofD54, N51 super-
gravity is described by the set of constraints~see@34# and
references therein!

Taḃ
a522isaḃ

a ,

Tab
A505Tȧḃ

A, Taḃ
ġ50, Tab

c50, ~2.27!

Raḃ
ab50. ~2.28!

These constraints and their consequences~derived from
the Bianchi identities! can be collected in the following ex
pressions for the torsion 2-forms@22,34#,

Ta522isaȧ
a

Ea`Ēȧ1
1

16
Eb`Ec«a

bcdG
d, ~2.29!

Ta5
i

8
Ec`Eb~scs̃d!b

aGd2
i

8
Ec`ĒḃeabscbḃR

1
1

2
Ec`EbTbc

a, ~2.30!

Tȧ5
i

8
Ec`EbeȧḃscbḃR̄2

i

8
Ec`Ēḃ~ s̃dsc!

ȧ
ḃGd

1
1

2
Ec`EbTbc

ȧ, ~2.31!

and in the expression for the superspace Riemann curva
2-form ~2.26! which can be found in Appendix B.

The right-hand sides~RHS! of Eqs.~2.29!, ~2.30! @and Eq.

~B1!# include the so-called ‘‘main superfields’’R, R̄5R* ,
Ga5(Ga)* and the symmetric spin tensorWabg5W(abg)

5(W̄ȧḃġ)* , which obey~also as a result of Bianchi ident
ties!

DaR̄50, D̄ȧR50, ~2.32!

D̄ȧWabg50, DaW̄ȧḃġ50, ~2.33!

D̄ȧGaȧ5DaR, DaGaȧ5D̄ȧR, ~2.34!
08500
re

DgWabg5D̄ġD(aGb)ġ,

D̄ġW̄ȧḃġ5DgD̄(ȧuGguḃ). ~2.35!

Here and below the brackets~square brackets! denote sym-
metrization ~antisymmetrization! with unit weight—e.g.,
D(aGb)ġ

ª

1
2 (DaGbġ1DbGaġ).

After the minimal D54, N51 supergravity constraints
~2.29!, ~2.30! are taken into account, one finds thatk sym-
metry occurs in the action~2.3! when also the constraints

Habg50, Habġ50, and c.c.,

Habc50, H ȧḃc50, ~2.36!

Haȧa52 ieF̂/2saaȧ ~2.37!

are imposed on the field strengthH35dB2 of the
2-superformB2 ~2.10!.

B. Gauge superform and tensor multiplet

The study of the Bianchi identitiesdH3[0 in the super-
space restricted by the supergravity constraints~2.29!, ~2.30!,
~2.31! shows that the field strengthH3 is completely deter-
mined by the constraints~2.36!, ~2.37!. It is expressed in
terms of the dilaton superfieldF(Z) and the main superfield
of the minimal supergravity by

H3[dB252 iEa`Ea`EȧsaaȧeF/2

1
1

8
Ea`Eb`Ea~s [as̃b] !a

beF/2¹bF1c.c.

1
1

3!
Ea`Eb`EcHcba , ~2.38!

Habc5
5

32
eF/2eabcdG

d1
1

8
eabcds̃

dȧa@Da ,D̄ȧ#eF/2.

~2.39!

Thus the 2-form field strength is expressed, essentia
through one real dilaton superfieldF(Z).

Moreover, the same study of Bianchi identities brings a
the equations which, on first sight, seem to be relations
tween the dilaton superfield and the chiral main superfield
minimal supergravity:

R̄5e2F/2D¹eF/2, R5e2F/2D̄¹̄eF/2. ~2.40!

However, one notes that Eqs.~2.40! can be written as

~DD2R̄!eF/250, ~D̄D̄2R!eF/250, ~2.41!
9-5
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and they just imply that theD54, N51 dilaton superfield
describes the real linear multiplet.5

The fact that a 2-form inD54, N51 superspace is de
scribed by a real linear multiplet~tensor multiplet! is known
from the study in@21#.

Thus we conclude that the complete superfield action
theD54, N51 interacting system including the superstri
should involve, in addition to the superstring action~2.3! and
the Wess-Zumino action for theminimal supergravity mul-
tiplet, *d8ZE @see Eq.~3.1! below# also an action for the
tensor multiplet, described by the real superfieldeF/2 which
obeys the constraints~2.41!. The kinetic term of the latter
action should involve, in particular, the kinetic term for th
two-index antisymmetric tensor gauge field~or Kalb-
Ramond field@35#, first introduced inD54 under the name
notoph@36#! which interacts naturally with a string. Such
kinetic term can be written as@24#

E d8ZE
F

2
eF/2. ~2.42!

Note that the first proposal for the tensor multiplet acti
was different,*d8ZEeF[*d8ZE(eF/2)2 ~see@21# and refer-
ences therein!. The tensor multiplet with the action~2.42!
was referred to as the ‘‘improved tensor multiplet’’@24#. Its
distinguishing property is invariance under the Weyl tra
formations acting also on the dilaton superfield,Ea→eLEa,
Ea →eL/2Ea, F(z) →F(Z)24L, when L is given by a
sum of chiral and antichiral superfields,L5 i (f2f̄), Daf̄

505D̄ȧf. The fact that the superstring action~2.3! also
possesses such a symmetry makes the improved tensor
tiplet action preferable for a description of the tens
multiplet-superstring interacting system.

Actually in the study ofD54, N51 limit and compacti-
fication of the heterotic string@18,25–29# it was argued that
such a limit rather provided the minimal supergravity
tensor-multiplet action@18,25#. We are not addressing thi
problem here but rather considering theD54, N51 inter-
acting system~including theD54, N51 superstring! as a
relatively simple model for the~quasi!classical description o
a more complicated, higher-dimensional (D510,11)
supergravity-superbrane interacting system@in particular, the
D510, N51 supergravity–super Yang-Mills–heteroti
string interacting system described by a hypothetical su
field action also including, in addition to the supergravity a
the super-YM parts, the heterotic string action@13#, as well
as the D510 type-II-supergravity–super-Dp-brane andD
511 supergravity–super-Mp-brane systems#. As such, an in-
teresting alternative possibility is to consider the so-cal
new minimalformulation of simple supergravity@30#, where
theauxiliary fields can be collected into a real linear multi
let. Here we will not consider this possibility, but proce

5One should keep in mind that (DD2R̄) is a chiral projector—

i.e., thatDa(DD2R̄)U[0 for any superfieldU5U(Z).
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with the description of superstring interacting with dynam
cal real linear multiplet and minimalN51 supergravity.6

C. Superstring k symmetry in the supergravity and tensor
multiplet background

With the constraints~2.29!, ~2.30!, ~2.31!, and ~2.38!
variation of the superstring action~2.3! @see Eq.~B3! in Ap-
pendix B# becomes

d ẐSsstr52
1

2EW2
FD~eF̂/2

* Êa!2
1

4
eF̂/2

* Êb`Êb¹̂aF̂G i dẐEa

1 i E
W2

eF̂/2~Êa2* Êa!`saaȧEC ȧi dẐEa1c.c.

1
i

8EW2
eF̂/2~Êb2* Êb!`Êb¹̂aF̂ i dẐEa1c.c.

~2.43!

Equation~2.43! makes evident the presence of the local f
mionic k symmetry defined by Eq.~A4!, but now with
curved space supervielbein:

i kÊa50, i kÊasaaȧ~* Êa2Êa!50. ~2.44!

The solution of Eqs.~2.44! @cf. Eq.~A5! and above# provides
us with an explicit form of thek-symmetry transformations

dkẐM~j!5k̄ ȧ
n
~dn

m2Auguenkg
km!Êm

a s̃a
ȧaEa

M~ Ẑ!1c.c.,
~2.45!

wheregnm(j) is the matrix inverse to the induced metric:

gmn~j!5Em
a ~ Ẑ!Em

b ~ Ẑ!hab

5]mẐM~j!]nẐN~j!ENa~ Ẑ!EM
a ~ Ẑ!. ~2.46!

The standard flat superspace Green-Schwarzk-symmetry
transformations@Eqs. ~A5! in Appendix A# can be derived
from Eq.~2.45! by substitution of the flat superspace expre

sions for the~inverse! supervielbein coefficientsEa
M(Ẑ) and

for EM
a (Ẑ) in Eq. ~2.46!.

6In the framework of the conformal tensor calculus, to arrive
the componentform of the action of the new minimal~off-shell!
supergravity one starts from the improved tensor multiplet action

flat superspace,*d8ZL ln L with DDL505D̄D̄L, performs the
Grassmann integration in it, then one introduces the coupling to
conformal supergravity and makes a gauge choice for
special superconformal transformation. As a result, one arr

at the action@30# *d4x@eR1emnrsc̄mg5gnDrcs1Amemnrs]nBrs

1
1
2 (emnrs]nBrs)2#, which includes both the antisymmetric tens

Bmn and the vector gauge fieldAm asauxiliary fields~see@24#!. In
contrast, in our case the interacting action~1.1!! involves the im-
proved tensor multiplet action coupled to minimal supergravity
superfield formulation,*d8ZEL ln L with ln L5F/2. In this case
the antisymmetric tensor fieldBmn is dynamical and its equations o
motion contain a source from the superstring.
9-6
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III. DÄ4, NÄ1 SUPERFIELD SUPERGRAVITY ACTION

The action ofD54, N51 supergravity is given by the
invariant supervolume ofD54, N51 superspace@22#:

SSG5E d4xd̃4u sdet~EM
A ![E d8ZE, ~3.1!

whereEªsdet(EM
A ) is Berezinian~superdeterminant! of the

supervielbeinEM
A (Z), Eq. ~2.7!, andEM

A (Z) are assumed to
be subject to the constraints~2.27!, ~2.28!.

A. Admissible variations of supervielbein

As the supervielbein is considered to be restricted by
constraints, its variation cannot be treated as independ7

To find its admissible variations one can, following@22#,
denote the general variation of the supervielbein and s
connections by

dEM
A ~Z!5EM

B K B
A~d!, dwM

ab~Z!5EM
C uC

ab~d!, ~3.2!

and obtain the equations to be satisfied byK B
A(d), uC

ab(d)
from the requirement that the constraints~2.27!, ~2.28! be
preserved under Eq.~3.2!.

Quite complicated but straightforward calculations res
in the following expression@17# for admissible variations o
the supervielbein:

dEa5Ea
„L~d!1L̄~d!…2

1

4
Ebs̃b

ȧa@Da ,D̄ȧ#dHa

1 iEaD adHa2 iĒ ȧD̄ȧdHa, ~3.3!

dEa5EaJa
a~d!1EaL~d!1

1

8
ĒȧRsa ȧ

adHa.

~3.4!

In Eqs.~3.3!, ~3.4!, L(d), L̄(d) are given by

L~d!5
1

24
s̃a

ȧa@Da ,D̄ȧ#dHa1
i

4
D adHa1

1

24
GadHa

12~DD2R̄!dU2~D̄D̄2R!dŪ, ~3.5!

L~d!1L̄~d!5
1

12
s̃a

ȧa@Da ,D̄ȧ#dHa1
1

12
GadHa

1~DD2R̄!dU1~D̄D̄2R!dŪ; ~3.6!

the explicit expression forJa
a(d) in Eq. ~3.4! as well as the

expression for the basic variations of the spin connect
uC

ab(d) in Eq. ~3.2!, will not be needed below~they can be
found in @17#!.

7Note that with an independent variation of the supervielbein,
action~3.1! would lead to the equation stating the vanishing of t
superdeterminantE, which contradicts the original assumptio
about its nondegeneracy.
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Note that the variations representing the manifest ga
symmetries of supergravity are factored out from the ab
expressions. These are the superspace local Lorentz tran
mations and the variational version of the superspace gen
coordinate transformations~see@22#!.

For the free supergravity action~3.1! the nontrivial dy-
namical equations of motion should follow from the vari
tions ~3.3!, ~3.4! with ~3.5!, ~3.6! only. The variation of the
superdeterminantE5sdet(EM

A ) under Eqs.~3.3!, ~3.4! has
the form ~see@22#!

dE5EF2
1

12
s̃a

ȧa@Da ,D̄ȧ#dHa1
1

6
GadHa

12~D̄D̄2R!dŪ12~DD2R̄!dUG . ~3.7!

In the light of the identity

E d8ZED AjA~21!A5E d8ZE~D AjA1jBTBA
A!~21!A

[0, ~3.8!

all the terms with derivatives can be omitted in Eq.~3.7!
when one considers the variation of the action~3.1!. @The
first equation in Eqs.~3.8! uses the minimal supergravit
constraints which implyTBA

A(21)A50.# Hence,

dSSG5E d8ZdE5E d8ZEF1

6
GadHa22RdŪ22R̄dUG

~3.9!

and one arrives at the following superfield equations of m
tion for ‘‘free,’’ simple D54, N51 supergravity:

dSSG

dHa
50 ⇒ Ga50, ~3.10!

dSSG

dŪ
50 ⇒ R50, ~3.11!

dSSG

dU 50 ⇒ R̄50. ~3.12!

IV. TENSOR MULTIPLET IN CURVED SUPERSPACE

A. ‘‘Improved’’ action for the tensor multiplet

As was argued in Sec. II D~see also@18,25,27#!, the most
suitable action for the description of a tensor multiplet int
acting with a superstring is provided by the Weyl invaria
de Wit–Roček action@24#, Eq. ~2.42!,

SF5sE d8ZE
F

2
eF/2,

~DD2R̄!eF/250, ~D̄D̄2R!eF/250. ~4.1!

e
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The variation of such an action with respect to the superfi
F constrained by Eq.~2.41! and with respect to the supe
gravity multiplet is technically quite involved. However, th
following observation helps. The 2-form satisfying the co
straints~2.38! is expressed essentially in terms of the ten
multiplet superfieldeF/2. Thus the problem of varying the
real linear multiplet is equivalent to the problem of findin
admissible variations of the 2-formB2 satisfying the con-
straints~2.38!. Such a task appears to be more algorithm
Moreover, for the variation of the interacting action we wi
anyway, need the form of the admissible variations ofB2
superform, as its pullback defines the Wess-Zumino term
the Green-Schwarz superstring~2.3!.

B. Varying the tensor multiplet: Admissible variations
of the 2-form gauge superfield

Clearly the constraints~2.38! make it impossible to con
sider the variations of the 2-formB2 as independent. On
rather has to define~cf. Sec. III A!

dB25
1

2
EA`EBbBA~d! ~4.2!

and find the expressions forbBA(d)52(21)BAbAB(d) from
the conditions of conservation of the constraints~2.38!. Fac-
toring out the gauge transformationsdgaugeB25da1, one
finds, after tedious calculations,

bab~d!50, baḃ~d!50, bȧḃ~d!50, ~4.3!

bbb~d!5sbbḃ~DD2R̄!dn̄ḃ1O~dHa!, ~4.4!

bḃb~d!52sbbḃ~D̄D̄2R!dnb1O~dHa!, ~4.5!

bab~d!52
i

4
~ s̃ [asb] !

ḃ
ȧD̄ḃ~DD2R̄!dn̄ȧ

2
i

4
~s [as̃b] !a

bDb~D̄D̄2R!dna1O~dHa!,

~4.6!

whereO(dHa) denotes terms containing thedHa variation
@see Appendix B, Eqs.~B4!–~B7! for the complete expres
sions#.

As the components of the superfield strength of
2-form B2 are expressed through the dilaton superfield
should not be a surprise that the preservation of the c
straints ~2.38! defines as well the variation of the dilato
superfield,

deF/25
i

2
D̄ȧ~DD2R̄!dn̄ȧ2

i

2
Da~D̄D̄2R!dna

2
1

4
s̃a

ḃb@Db ,D̄ḃ#eF/2dHa22eF/2@L~d!1L̄~d!#,

~4.7!

where@L(d)1L̄(d)# is defined in Eq.~3.6!.
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V. INTERACTING ACTION AND SUPERFIELD
EQUATIONS OF MOTION

Now that we have found all the necessary basic va
tions, we may turn to varying the coupled action

S5E d8Z sdet~EM
A!S 11s

F

2
eF/2D1Ssstr , ~5.1!

Ssstr5E
W2

F1

4
* Êa`ÊaeF̂/22B̂2G , ~5.2!

to derive the equations of motion.

A. Superstring equations

Clearly, the superstring equations of motion for the int
acting system keep the same form as the superstring e
tions in the superspace background of the superfield su
gravity and tensor multiplet:

~* Êa2Êa!`S saaȧEC ȧ2
i

8
Êb~sas̃b!a

b¹̂bF̂ D50,

and c.c., ~5.3!

D~eF̂/2
* Êa!1Êc`ÊbĤabc2

1

2
* Êb`Êb¹̂aeF̂/21Êc

`Êa~s [as̃b] !a
b¹̂beF̂/222iÊa`EC ȧsaaȧeF̂/250.

~5.4!

B. Superfield equations for tensor multiplet

The equations of motion for the tensor multiplet appear
a result of thedna anddn̄ȧ variations of the dilaton super
field, Eq. ~4.7!, and the 2-superformB2, Eqs. ~4.3!–~4.6!.
They are

s~D̄D̄2R!~e2F/2D aeF/2!

52~D̄D̄2R!DaKa
a14isbaḃ~D̄D̄2R!Wbḃ

2
1

2
~s [as̃b] !a

b~D̄D̄2R!D bWab, ~5.5!

s~DD2R̄!~e2F/2D̄ȧeF/2!

52~DD2R̄!D̄ȧKa
a14isbbȧ~DD2R̄!Wbb

1
1

2
~ s̃ [asb] !

ḃ
ȧ~DD2R̄!D̄ḃWab, ~5.6!

where
9-8
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WBA
ª

1

2EW2

1

Ê
ÊB`ÊAd8~Z2Ẑ! ~5.7!

are current prepotentials which appear naturally in any va
tion of the Wess-Zumino term of the superstring action.
the same manner, any variation of the Nambu-Goto term
the superstring action will be expressed through the cur
prepotential

Ka
B
ª

1

4EW2

eF̂/2

Ê
* Êa`ÊBd8~Z2Ẑ! ~5.8!

~cf. with the superparticle current prepotentials in@17#!.

C. Superfield supergravity equations

Now let us turn to the supergravity equations for t
coupled system, which appear as a result of thedH a, dU,

dŪ variations~see Sec. III for free supergravity!.
The first observation is that, in accordance with Eqs.~4.7!

and ~3.3!, the variation of the Nambu-Goto terms of the s
perstring action with respect to supergravity superfields d

not contain an input fromL(d), L̄(d), defined in Eqs.~3.5!,
~3.6!:

dUSsstr5E
W2

F1

2
* Êa`dUÊaeF̂/21

1

4
* Êa`ÊadUeF̂/2G

5
1

2EW2* Êa`ÊaeF̂/2~DD2R̄!dU

2
1

4EW2
* Êa`ÊaeF̂/22~DD2R̄!dU50. ~5.9!

Clearly, no such inputs come from the variations of the pu
backB̂2 of the 2-formB2, as Eqs.~4.3!–~4.6! does not con-

tain L(d), L̄(d) at all. As the chiral variations (DD
2R̄)dU and c.c. are involved in the variations of the sup

vielbein only inside theL(d), L̄(d) combinations, this

means that the equationsdS/dU50 anddS/dŪ50 do not
possess an input from the superbrane source~as was also the
case with the supergravity-superparticle system; see@17#!.
These equations can acquire an input from the action of
real linear multiplet, which, in general, has the for
s*d8ZE f(F/2) with an arbitrary functionf. However, one
can check that an input in thedU variation of the improved

kinetic term,s*d8ZEF
2 eF/2, also vanishes

dUE d8ZEF
2 eF/250. ~5.10!

Thus for the coupled action~5.1! one finds that the chira
superfield equationdS/dU50 remains the same as in th
case of ‘‘free’’ supergravity:

dS

dU50 ⇒ R̄50, ~5.11!
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dS

dŪ
50 ⇒ R50. ~5.12!

Thus, in this case, as in the case of supergravity-mass
superparticle@17#, only the vector superfield supergravit
equationdS/dHa50 acquires a source term from the supe
string. However, in the coupled system under considerat
these equations are more complicated due to the supergr
interaction with the tensor multiplet:

dS

dHa 50 ⇒Ga~12seF/2!

5Ja1sS 513
F

2 D s̃a
ḃb@Db ,D̄ḃ#eF/2

13ss̃a
ḃbe2F/2D beF/2D̄ḃeF/2. ~5.13!

The superstring current potential

Ja526
dSsstr

dHa
~5.14!

entering the RHS of Eq.~5.13!, can be expressed throug
two typesof current prepotentials, Eqs.~5.8! and ~5.7!, as
follows

2
1

6
Ja52iDbKa

b22i D̄ḃKa
ḃ2s̃b

ḃb@Db ,D̄ḃ#Ka
b

2
1

4
Kb

bs̃a
ḃb@Db ,D̄ḃ#eF/2

1 iWba~hbad1sbs̃a!a
b¹beF/2

2 iWbȧ~hbad1s̃asb!ḃ
ȧ¹̄ḃ eF/2

1
1

2
s̃bḃb@Db ,D̄ḃ#~eF/2Wab!

1
i

2
eabcdW

bc¹deF/2. ~5.15!

The first line of the RHS of Eq.~5.15! has exactly the same
form as the expression for the current through the super
ticle current potential in the supergravity-superpartic
coupled system@17#; the second line contains the traceKb

b

of the bosonic current potential~5.8! which vanishes in the
superparticle case but is nonzero for the superstring; the
maining part of the RHS of Eq.~5.15! contains the curren
prepotentials~5.7! which come from the variation of the su
perstring Wess-Zumino term.

Note that on the shell of Eqs.~5.11!, ~5.12!, R505R̄, the
equations for the tensor multiplet~5.5!, ~5.6! simplify to

D̄D̄Fse2F/2D aeF/21DaKa
a24isbaḃWbḃ

1
1

2
~s [as̃b] !a

bD bWabG50, ~5.16!
9-9
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DD@se2F/2D̄ȧeF/21D̄ȧKa
a24isbbȧWbb

2 1
2 ~ s̃ [asb] !

ḃ
ȧD̄ḃWab] 50. ~5.17!

D. Superfield generalization of the Einstein
and Rarita-Schwinger equations with sources

In the minimal~off-shell! supergravity the superfield gen
eralization of the Ricci tensor and of the Rarita-Schwing
spin tensor are expressed through the vector and chiral s
superfields as follows@see Appendix B, Eq.~B1!, as well as
@34,17# and references therein#:

Rbc
ac5

1

32
~DbD̄(ȧuGauḃ)2D̄ḃD(bGa)ȧ!saȧ

a
sbbḃ

2
3

64
~D̄D̄R̄1DDR24RR̄!db

a , ~5.18!

Cȧ
a
ªeabcdTbc

asdaȧ5
i

8
s̃aḃbD̄(ḃuGbuȧ)1

3i

8
sbȧ

a D bR.

~5.19!

On the mass shell of the interacting system, taking i
account the superfield equations of motion~5.12!, ~5.11!, one
finds that the scalar curvature vanishes,

Rab
ab50, ~5.20!

and the Ricci tensor~5.18! and the Rarita-Schwinger spi
tensor~5.19! simplify. Then, to obtain the superfield gene
alization of the Einstein and Rarita-Schwinger equations
the interacting system one substitutes in Eqs.~5.18!, ~5.19!

with R505R̄ the formal solution

Ga5
1

12seF/2
Ja1Ga~F! ~5.21!

of the superfield equation~5.13!. In Eq. ~5.21!, Ga(F) de-
notes the on-shell ‘‘value’’ of theGa superfield in the system
of supergravity interacting with a dynamical tensor multipl
i.e., in the absence of the superstring,

Ga~F!ªs

513
F

2

12seF/2
s̃a

ḃb@Db ,D̄ḃ#eF/2

1
3s

12seF/2
s̃a

ḃbe2F/2D beF/2D̄ḃeF/2. ~5.22!

Thus the superfield generalizations of the Rari
Schwinger and Einstein equations in the supergravi
tensor-multiplet–superstring interacting system read
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Cȧ
a
ªeabcdTbc

asdaȧ5
i

8
s̃aḃbD̄(ḃuGbuȧ)~F!

1
i

8
s̃aḃbD̄(ḃu„Jbuȧ) /~12seF/2!… ~5.23!

and

Rbc
ac5

1

32F ~DbD̄(ȧuG auḃ)~F!2D̄ḃD(bG a)ȧ~F!#saȧ
a

sbbḃ

1
1

32
$D bD̄(ȧu@J auḃ)/~12seF/2!#

2D̄ḃD(b@J a)ȧ/~12seF/2!#%saȧ
a

sbbḃ . ~5.24!

The spacetime Einstein and Rarita-Schwinger equati
can be obtained as the leading (u50) components of the
superfield equations~5.24!, ~5.23! in the Wess-Zumino gauge
~see @17,22,34#, and references therein and also Sec. V
below!. One should note that

Tab
auu5052ea

meb
nD[mcn]

a ~x!2
i

4
~c [asb] !ḃGaḃUu50

2
i

4
~ s̃ [ac̄b] !

aRU
u50

~5.25!

differs from the standard definition of the gravitino fie
strength,D[mcn]

a (x)5] [mcn]
a (x)2c [n

b (x)wm]b
auu50, by the

leading components of the main superfieldsGauu50 and
Ruu50 only. In our case on the mass shellRuu5050 @see Eq.
~5.12!# and theGa superfield is determined by Eqs.~5.21!,
~5.22!. Thus

Tab
auu5052ea

meb
nD[mcn]

a ~x!2
i

4
~c [asb] !ḃG aḃ~F!Uu50

2
i

4~12sef(x)/2!
~c [asb] !ḃJ aḃ~F!U

u50

,

~5.26!

wheref(x)5Fuu50.

E. Superfield generalization of the Kalb-Ramond gauge field
equations with source for the interacting system

Taking the vector covariant derivative of the express
~2.39! for Habc , one finds the off-shell expression for th
LHS of the 2-superform gauge field equation:
9-10
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D cHabc5
1

32
~s [as̃b] !

abD(aD̄D̄Db)e
F/21c.c.

2
1

2
@Da ,Db#eF/21

1

2
G[aDb]e

F/21
1

2
HabcG

c

1
5

32
eabcdD c~eF/2Gd!

2
i

64
~s [as̃b] !

abWabgD geF/21c.c. ~5.27!

To arrive from Eq.~5.27! at the~superfield generalization! of
the antisymmetric tensor gauge field equations~Kalb-
Ramond equations!, we shall substitute the expression f

D(aD̄D̄Db)e
F/2 which follows from acting by the spinor co

variant derivativeDb on the superfield equations of motio
~5.16! for the tensor multiplet and, then, substitute Eq.~5.21!
for Ga. The equations thus obtained have quite a com
cated form. Writing explicitly only the terms with the max
mal number of the spinor covariant derivatives acting on
current prepotentials~see below for a special role of suc
terms! one gets

sD cHabc52
1

32
e2F/2~s [as̃b] !

abD(aD̄D̄Db)Ka
a1

1
i

8
e2F/2~s [as̃b]sc!aȧD aD̄D̄Wȧc

2
1

64
e2F/2~s [as̃b]s [cs̃d] !a

bDbD̄D̄D aWcd

1c.c.1•••. ~5.28!

A further study of the complete form of the superfield equ
tions for the tensor multiplet and for the Kalb-Ramon gau
field entering that multiplet will be the subject of a separ
paper.

Below we will show that the knowledge of the gener
form of the tensor multiplet superfield equations with t
source, Eq.~5.16!, and of its relation to the gauge field equ
tion @through Eq.~5.28!# already allow one to make interes
ing conclusions that provide a shortcut in the study of
interacting system.

VI. GAUGE-EQUIVALENT DESCRIPTION
OF THE SUPERFIELD INTERACTING SYSTEM

A. Superdiffeomorphism symmetry gauge fixing

The interacting action~5.1! is manifestly invariant unde
the local Lorentz symmetry and under superdiffeomorphis

Z8M5ZM1bM~Z!: H x8m 5xm1bm~x,u!,

u8ă 5uă1«ă~x,u!,
~6.1!
08500
i-

e

-
e
e

l

e

s

E8A ~Z8!5EA~Z!, F8~Z8!5F~Z!,

w8ab ~Z8!5wab~Z!, etc., ~6.2!

which act on the superstring variables, coordinate functi

ẐM5ẐM(j)[„x̂m(j),û ă(j)…, by the pullback of the trans
formations~6.1!:

Ẑ8M 5ẐM1bM~ Ẑ!:H x̂8m ~j!5 x̂m1bm~ x̂,û !,

û8ă ~j !5 û ă1«ă~ x̂,û !.
~6.3!

The action~5.1! is also invariant under the world sheet re
arametrizations and under thek symmetry~2.45!, which act
on the coordinate functions only.

Thus, omitting the world volume reparametrization f
simplicity, the complete variation of the superstring coor
nate function under the local symmetries of the interact
action ~5.1! is given by

dẐM~j!5bM
„Ẑ~j!…1dkẐM~j!, ~6.4!

wheredkẐM(j) is defined in Eq.~2.45!.
Now we observe@17,32# that the superdiffeomorphism

symmetry can be used to fix the ‘‘fermionic unitary gauge

û ǎ~j !50 ⇔ ẐM~j!5„x̂m~j!,0…. ~6.5!

Moreover, in the same manner as in@17# one can show tha
this gauge can be fixed simultaneously with the Wess-Zum
gauge for supergravity~see@17,37# and references therein!,

uăEă
a
~x,u!50, uă

„Eă
b
~x,u!2dă

b
…50, ~6.6!

uăwă
ab

~x,u!50,

where, in particular@22,34#,

Em
a u

u50
}em

a ~x!, Em
a u

u50
}cm

a , ~6.7!

Eb̆
a u

u50
50, Eb̆

a
u
u50

5d
b̆

a
, ~6.8!

wm
abu

u50
}vm

ab~x!. ~6.9!

This can be understood by observing that, although b
gauges, Eqs.~6.6! and ~6.5!, are fixed with the use of the
same superdiffeomorphism symmetry with the parame
bM(Z)5bM(x,u), the transformation rules of the supergra
ity superfields involve only derivatives ofbM(x,u) ~charac-
teristic property of the gauge field transformations!, while

the transformation rules of the coordinate functionsẐM(j),

Eq. ~6.4!, contain the additive contribution ofbM
„Ẑ(j)…

5bM
„x̂(j),û(j)… ~characteristic property of the Goldston

field transformations, but for Goldstone fields defined on
surface in superspace, see Sec. VII B of@17# and @32,38#!.
9-11
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B. Gauge-fixed action

Let us discuss what happens with the interacting ac
~5.1!, ~5.2! in the gauge~6.5!, ~6.6!. After integration over
the Grassmann coordinates, the Wess-Zumino supergra
action ~3.1! becomes the standard supergravity action w
the minimal set of auxiliary fields@39#,

SSG5E d4xd̃4u sdet~EM
A !}Ssg

5E d4x~eR1emnrsc̄mg5gnDrcs!

1O„ga~x!,r ~x!, r̄ ~x!…, ~6.10!

where R5Rmn
ab(x)ea

m(x)eb
n(x) is the scalar curvature o

spacetime,e5det(em
a ), and O„ga(x),r (x), r̄ (x)… denotes

terms with auxiliary fields,

Gau
u50

}ga~x!, Ru
u50

}r ~x!, R̄u
u50

} r̄ ~x!, ~6.11!

which are not essential for the consideration below. The
proved tensor multiplet action~2.42! also entering Eq.~5.1!,
becomes, schematically~see@24#!,

STM5sE d8ZE
F~Z!

2
eF(Z)/2}Stm

5E d4xeF1

2
ef(x)/2gmnDmfDnf1

1

3!
HmnrHmnr

1 ief/2~D axasaȧ
a

x̄ ȧ1c.c.!1•••G , ~6.12!

where Dm denotes the spacetime covariant derivatives
the component fields of the tensor multiplet are defined

Fu
u50

}f~x!, D aeF/2u
u50

}xa~x!, ~6.13!

and @cf. Eq. ~2.38!#

@Da ,D̄ȧ#eF/2u
u50

}saaȧem
a ~x!emnrsHnrs , ~6.14!

Hmnr(x)53] [mBnr] (x). In Eq. ~6.12! we have written ex-
plicitly only the kinetic terms; the remaining ones may
extracted from the formulas in@24# and are not essential fo
what follows.

Finally, the superstring action~5.2! in the gauge~6.5! re-
duces to thebosonic string action

Ssstru û50}Sbstr5E
W2

F1

4
* êa`êaef̂/22B2~ x̂!G

5E
W2

F1

2
d2jAudet~ êm

a êan!uef( x̂)/22B2~ x̂!G ,
~6.15!

where
08500
n

ity
h

-

d

B2~ x̂!5
1

2
dx̂m`dx̂nBmn~ x̂!5d2j]tx̂

m]sx̂nBmn~ x̂!.

Thus the complete gauge-fixed action for the interact
system reads

SintGF5Ssg~e,c,ga ,r , r̄ !1Stm~f,x,B;e,c,ga!

1Sbstr~ x̂;e,B!, ~6.16!

with Ssg , Stm , andSbstr defined in Eqs.~6.10!, ~6.12!, and
~6.15!, respectively.

C. Supersymmetry of the gauge-fixed action

Note that, although the gauge-fixed action~6.16! includes
the action for the purely bosonic string~6.15!, it possesses
1/2 of the local supersymmetry characteristic for the sup
gravity action. Actually, the direct proof of this fact can b
found in @40#. Here we will show this in a different way
which is based on the observation that the symmetries of
gauge-fixed action~6.16! can be identified as a subset of th
symmetries of the complete~superfield! action ~5.1! which
preserve the gauge~6.5! and the Wess-Zumino gauge~see
@17# for the supergravity-superparticle interacting system!.

First, note that in the Wess-Zumino gauge~6.6! the index
of the superspace Grassmann coordinate is identified
the Lorentz group spinor index. Indeed, due to the sec
equation in Eqs.~6.6!,

ub[~ub,ū ḃ!ªuăEă

b
~Z!5uădă

b
. ~6.17!

Clearly, the same is true for the superstring spinorial Gra
mann coordinate functions. Their transformation rules can
read off Eq.~6.4!,

dûa~j!5bM~ x̂,û !EM
a ~ x̂,û !1dkûa~j!, ~6.18!

wheredkûa(j) reads@see Eqs.~2.45! and ~6.17!#

dkûa~j!5k̄ ȧ
n
~dn

m2Auguenkg
km!Êm

a ~ x̂,û !s̃a
ȧa ,

dkuC ȧ~j !5„dkûa~j!…* . ~6.19!

Clearly, the superdiffeomorphism parameterbM(x,u) in Eq.
~6.18! is to be restricted by the conditions of the preservat
of the Wess-Zumino gauge. However~see @17,22,37# and
references therein! the parameterea(x)5bM(x,0)EM

a (x,0)
remains unrestricted and is identified with the paramete
the local supersymmetry of the component~spacetime! for-
mulation of supergravity.

Now, the preservation of the gauge~6.5!, ûa(j)50, im-
poses the conditiondûa(j)u ûa(j)5050—i.e.,

ea~ x̂!52dkûa~j!u ûa(j)50

52k̄ ȧ
n
~j!~dn

m2Auguenkg
km!êm

a ~ x̂!s̃a
ȧa , ~6.20!
9-12
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on the parameter of the local supersymmetry. This restric
appears only on the string world sheet and expresses
pullback ea( x̂) of the supersymmetry parameterea(x)
through a world sheet parameterk̄ ȧ

n(j) contracted~on both

indices! with the expression (dn
m2Auguenkg

km)êm
a ( x̂)s̃a

ȧa .

The latter is the û50 ‘‘value’’ of the Green-Schwarz
k-symmetry ‘‘projector’’ and makes only one parameter
cluded ink̄ ȧ

n(j) being involvedeffectivelyin the expression.
Thus on the world sheetW2 of a ~dynamical! string the

four parameters of local supersymmetry of the free sup
gravity are reduced by the condition of the invariance of
gauge fixed interacting action~6.16!, to the two effective
parameters of thek-symmetry-like transformations, while
out of W2 these four parameters,ea(x),ē ȧ(x), remain unre-
stricted. This can be characterized by stating the preserva
of the 1/2 of the local supersymmetry of the free supergra
by the gauge fixed interacting action~6.16!.

D. Equations of motion following from the gauge-fixed action

An important observation is that the gauge fixed vers
of the superstring action~6.15! involves only thephysical
bosonic fieldsof the supergravity and tensor multiplet, th
graviton em

a (x), the antisymmetric tensorBmn(x), and the
scalarf(x). Neither auxiliary fields nor fermions appear
the string action~6.15!. As a result, both the equations for th
auxiliary fields and for the fermions of the interacting syste
~6.16! will keep formally the same form as in the absence
superstring. In particular, this means thatin the gauge (6.5),
(6.6) neither the Rarita-Schwinger equations nor the eq
tions for the fermionic field of the tensor multiplet will in
clude a source term from the superstring~although they will
be written with covariant derivatives for the spin connectio
satisfying the sourceful Einstein equations with an inp
from the superstring energy-momentum tensor!.

This is a manifestation of a counterpart of the super-Hig
effect in dynamical supergravity interacting with a sup
string or superbrane object, which we will address in a se
rate paper~see@38# for a spacetime counterpart of the Higg
effect in general relativity interacting with material particle
strings andp-branes!.

Similar properties have already been found in the dyna
cal D54, N51 supergravity interacting with a massless s
perparticle@17#. The present consideration generalizes it
the case of dynamical supergravity interacting with a s
plest supersymmetric extended object.

Below we present a simple check of the gauge equ
lence described above at the level of equations of mot
Namely, we will show that the dynamical equations for fe
mions, which follow from the superfield equations~5.11!,
~5.12!, ~5.13!, ~5.16!, are indeed sourceless in the gau
~6.5!, ~6.6!.

E. Superfield equations and the equations for physical fields
in the ‘‘fermionic unitary’’ gauge

The superstring contributions to all the superfield eq
tions of motion, Eqs.~5.16!, ~5.17!, and ~5.13! @or, equiva-
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lently, Eqs.~5.21!, ~5.22!# with Eq. ~5.15!, come in the form
of current prepotentials~5.8!, ~5.7!, or their derivatives. This
is true as well for their consequences like Eqs.~5.23!, ~5.24!,
~5.28!.

Both current prepotentials~5.8! and ~5.7! contain the su-
perspace delta function

d8~Z2Ẑ!5d4~x2 x̂!~u2 û !4 ~6.21!

integrated overW2 with the corresponding measure. In th
gauge~6.5!, û ǎ(j)50, the delta function becomes propo
tional to the highest degree of the Grassmann coordinateu:

û ǎ50: d8~Z2Ẑ!5d4~x2 x̂!u4. ~6.22!

As a result, in this gauge both superstring current prepo
tials are proportional to the fourth degree of the Grassm
coordinate:

Ka
B}u4, WAB}u4. ~6.23!

Then a covariant derivative of any of the current prepot
tials is proportional tou3:

DCKa
B}u3, D CWAB}u3. ~6.24!

The action of two derivatives which isnot reducible to one
derivative, D AB

2 5DADB1(21)ABDADB but not @DA ,DB%

52TAB
CDC1RAB ~e.g., D aḃ

2
[@Da ,D̄ḃ#, but not

$Da ,D̄ḃ%52isaḃ
a Da) may result in expressions proportion

to u2,

D CD
2 Ka

B}u2, DCDWAB}u2, ~6.25!

etc.,

D CDE
3 Ka

B}~u!1, D CDE
3 WAB}~u!1. ~6.26!

Only the action of four derivatives may produce a}u0

input—i.e., terms which have a nonvanishingu50 value:

D CDEF
4 Ka

B}u0, D CDEF
4 WAB}u0. ~6.27!

This implies, in particular, that the current potential~5.15!
is proportional to the second power of the superspace Gr
mann coordinate:

J a}u2. ~6.28!

Then

DAJ a}u1, ~6.29!

and only the second derivative of the current potential m
produce a term with a nonvanishing leading compon
(u-independent part!:

D BC
2 J a}u 0. ~6.30!

The spacetime fermionic equations of motion of the int
acting system may be obtained as leading (u50) compo-
nents of Eqs.~5.23! and ~5.16!. Ignoring the inputs with a
9-13
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smaller number of derivatives applied to the current pot
tial, one can write the leading components of Eq.~5.23! as

„Cȧ
a
2Jȧ

a
~F!…u

u50
}DBJau

u50
, ~6.31!

where Jȧ
a(F) denotes the tensor multiplet contribution

the gravitino equation, which is given by the first term on t
RHS of Eq.~5.23!. Then Eq.~6.29! implies that the RHS of
Eq. ~6.32! vanishes in the gauge~6.5!—i.e., that in this
gauge, Eq.~6.32!, reads

Cȧ
a u

u50
5Jȧ

a
~F!u

u50
~6.32!

and does not contain an explicit input from the superstrin
In the same manner one finds that the dynamical equa

for the fermionic component of the tensor multiplet, given
the leading component of Eq.~5.16!,

sD̄D̄@e2F/2D aeF/2#u
u50

52D̄D̄DaKa
au

u50

2 1
2 ~s [as̃b] !a

b@D̄D̄D bWab#uu50

14isbaḃD̄D̄Wbḃu
u50

, ~6.33!

implies, in the light of Eq.~6.26!, that the superstring
produced RHS of this equation vanishes in the gauge~6.5!:

sD̄D̄@e2F/2D aeF/2#u
u50

50. ~6.34!

As far as the bosonic superfield equations are concer
they preserve the nontrivial input from the superstring sou
in the gauge~6.5!. Indeed, the leading components of Eq
~5.24!, ~5.28! contain the second derivatives of the curre
potential and fourth derivatives of the current prepotentia
which remain nonvanishing in accordance with Eqs.~6.30!
and ~6.26!.

The explicit form of the Einstein equation can be deriv
in a way close to the one used in@17# for the supergravity-
superparticle interacting system~although the presence o
both Nambu-Goto and Wess-Zumino terms in the superst
action, as well as of the tensor multiplet in the action of t
interacting system, makes the Einstein equation of
supergravity–tensor-multiplet–superstring system a bit m
complicated!. As far as the Kalb-Ramon field equations a
concerned, taking into account Eqs.~6.23!–~6.27! and the
conditions of the Wess-Zumino gauge~6.6!, ~6.7! @which im-

plies, in particular,DaD̄D̄D b(u)4}da
b1O(u)] one finds

that, in the gauge~6.5!, the leading component of the supe
field equation~5.28! becomes

sD cHabcuu505
1

16
e2f/2wcd1•••, ~6.35!

where

wba
ª

1

2EW2

1

ê
êb`êad4~x2 x̂!. ~6.36!
08500
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Hence, in the gauge~6.5! the superstring input on the RHS o
the Kalb-Ramond gauge field equation for the supergravi
tensor-multiplet–superstring interacting system is nonv
ishing and, moreover, coincides with the input of the boso
string.

Thus we have checked that the spacetime equation
motion for the fermionic fields which follow from the com
plete superfield action~5.1! of the supergravity–tensor
multiplet–superstring interacting system become source
in the gauge~6.5!. This is true both for the gravitino equa
tions and for the fermionic field of the tensor multiplet. A
the same time, the corresponding bosonic equations
clearly sourceful in any gauge. This is a characteristic pr
erty of the equations which follow from the gauge fixed a
tion ~6.16!.

We should note that the gauge-fixed fermionic equatio
are not completely decoupled from the superstring. They
written in terms of the spacetime covariant derivatives w
~composed! spin connections satisfying the Einstein equati
with a source. The same is true for the equations deri
directly from the gauge fixed action~6.16!.

F. Possible application of the gauge equivalence

Note that the gauge-fixed description~6.16! of the super-
field interacting system~6.16! is complete in the following
sense. Along the line of@40# one may check that the gauge
fixed action~6.10!, ~6.12! reproduces the gauge-fixed versio
of all the dynamical equations which might be derived fro
the complete superfield action, including thefermionic equa-
tions for the bosonic string. This is the manifestation of the
purely gauge~or Goldstone! nature of the superstring coor

dinate functionsẐM(j) ~not to be confused with the supe
coordinatesZM; see@32,38# for further discussion!.

A counterpart of the gauge-fixed action~6.16! can be writ-
ten in any dimension, for any supergravity interacting w
any superbrane. Hence, using the above-described g
equivalence one may already proceed with studying theD
511 supergravity interacting with super-M2-branes a
super-M5-branes, as well as theD510 type II supergravity
interacting with super-Dp-branes~in spite of the fact theD
510,11 superfield supergravity actions are not known!.

VII. CONCLUSIONS

In this paper we studied the full superfield Lagrangi
description of theD54 interacting system of dynamical su
pergravity and a superstring described by the sumS5SSG
1STM1Ssstr of the superfield supergravity actionSSG @22#,
the Green-Schwarz superstring actionSstr @23#, and a super-
field action for the dynamical tensor multipletSTM @24#.

The superfield theoretical systemS5SSG1STM was ar-
gued to be related to the low-energy limit ofD54 compac-
tification of the heterotic superstring@18,25#~see also@28#!
and considered in@27,29#. So our main interest here has be
to analyze the influence of the superstring actionSsstr on the
9-14
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dynamics of the interacting system—namely, in t
superstring-produced source terms both in the superfield
component form of the equations.

We have obtained the complete set of superfield equat
with sources provided by the superstring. In the supergra
sector we found that the scalar superfield equation rem
the same as for free supergravity, while the vector superfi
equation is modified both by the interaction with the ten
multiplet and by the source~current potential! coming from
the superstring. The current potential is constructed from
two types of currentprepotentialscoming from the variation
of the Nambu-Goto and Wess-Zumino terms of the sup
string action, respectively. The superfield equations for
tensor multiplet are also modified by inputs from the abo
mentioned current prepotentials. The equations of motion
the superstring variables are the same as in thebackground
of supergravity interacting with dilaton and super-2-form s
perfields.

These superfield equations appeared to be quite com
cated, which might indicate that their higher-dimensionalD
510,11 generalizations, even if they exist, will be quite d
ficult to deal with. We have considered as well an exit fro
this problem.

By analyzing the gauge symmetries and taking into
count the properties of the Wess-Zumino gauge~see@17# and
references therein! we have shown that there exists a co
plete gauge-equivalent description of the ‘‘superfield’’ inte
acting system,S5SSG1STM1Ssstr , given by the sumS
5Ssg1Stm1Sbstr of the spacetimecomponentaction for su-
pergravitySsg ~without auxiliary fields!, the component ac
tion for the tensor multipletStm , and the action for abosonic
string Sstr ~which appears as the purely bosonic ‘‘limit’’ o
the superstring actionSsstr). We checked this gauge equiva
lence by studying the properties of the gauge-fixed versio
the equations of motion derived from the complete superfi
action. Despite the quite complicated form of the superfi
generalizations of the Einstein and Rarita-Schwinger eq
tions, as well as of the Kalb-Ramond equations and the eq
tions for the fermionic fields of the tensor multiplet, it turne
out to be quite easy to show that in the above-mentio
‘‘fermionic unitary gauge’’ all the fermionic equations ar
sourceless~although they include the covariant derivativ
with the spin connections obeying the sourceful Einst
equations! while the bosonic equations, including the Ei
stein and Kalb-Ramond field equations, acquired a sou
from the superstring.

This extends the supergravity–massless-superparticle
sults of @17# to the case of dynamical interacting system
including supergravity and an extended supersymmetric
ject and strongly supports that the above-mentioned ga
equivalence is not an artifact of the simpler massless su
particle case, but rather is a general property of the abo
mentioned interacting systems. As the component actions
supergravity are known in all dimensions, includingD
510,11 ~the most interesting from an M-theoretic perspe
tive!, our results allow one to obtain and to study the co
plete set of equations for dynamical supergravity interact
with dynamical super-p-brane, at least in its gauge-fixed ve
sion. This promises to be a useful tool in a future search
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new solitonic solutions of higher-dimensional supergrav
including the ones with nonvanishing fermionic fields.

An analysis of the superfield equations with sources
tained in this paper, as well as an investigation of theD
510,11 supergravity-superbrane interacting systems with
use of the gauge equivalence of their complete superfi
description, with the description by the sum of spaceti
~component! action for supergravity and the action fo
bosonic brane, will be the subject of future work.
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APPENDIX A: SUPERSTRING k SYMMETRY IN FLAT
SUPERSPACE

In flat superspaceone may consider a vanishing dilato
superfield,F(Z)50 @although this is not obligatory inD
54, N51 superspace, whereF(z) is described by a sepa
rate multiplet; see Sec. I# and use the standard expression
the supervielbein:

flat superspace:

Ea5dXmdm
a 2 iduasaȧ

a
ū ȧ1 iuasaȧ

a
dū ȧ, ~A1!

Ea5dub̌db̌
a[dua,

Ēȧ5dub̌db̌
ȧ[dū ȧ, ~A2!

where ǎ51,2,3,4 shall be treated as a Majorana spinor
dex, ǎ5a; ub̌5ub5(ub,ū ḃ) ~i.e., ub̌[uadb̌

a1 ū ȧdb̌ȧ).
The ‘‘vacuum value’’ of the 2-formB2 has to be chosen as

flat superspace, F~Z!50:

B252
i

2
dXmdm

a `@duasaaȧū ȧ2uasaaȧdū ȧ#. ~A3!

Then the pullbackB̂25f* (B2) of the 2-formB2, Eq. ~A3!,
produces the standard form of the Wess-Zumino term of
D54 Green-Schwarz superstring action@23#. As a result of
its presence, the action possesses a local fermionic sym
try, the seminalk symmetry@12,23#. Its transformation rules
can be formulated as follows:

i kÊa
ªdkẐMEM

a ~ Ẑ!50,

i kÊasaaȧ~* Êa2Êa!50. ~A4!
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Indeed, as (*Êa2Êa)5djn(dn
m1Auguenkg

km)Êm
a and, in flat

superspace,Ea has the form of Eq.~A1!, the solution of Eqs.
~A4! with respect todkXm anddkua gives theD54 version
of the Green-Schwarz expression for the superstringk sym-
metry @23#:

flat superspace, F~Z!50:

dkX̂m5 idkuasaȧ
a

ū ȧ1c.c.,

dkûa5k̄ ȧ
n
~dn

m2Auguenkg
km!Êm

a s̃a
ȧa ,

dkuC ȧ5~dkûa!* . ~A5!

APPENDIX B: SOME USEFUL FORMULAS

~B1! In our notation the Riemannian curvature 2-form
the minimalD54, N51 supergravity is given by

Rab[dwab2wag`wg
b[

1

4
Rab~sas̃b!ab

52
1

2
Ea`EbR̄2

i

8
Ec`E(as̃c

ġb)D̄ġR̄

2
i

8
Ec`Eg~scs̃d!g

(bD a)Gd

2
i

8
Ec`ĒḃscgḃWabg1

1

2
Ed`EcRcd

ab, ~B1!

Rȧḃ5~Rab!* . ~B2!

~B2! After the minimal D54, N51 supergravity con-
straints~2.29!, ~2.30! are taken into account, one finds, f
the variation of the superstring action,
r-
le

gy
r-
P

08500
d ẐSsstr52
1

2EW2
FD~eF̂/2

* Êa!2
1

4
eF̂/2

* Êb`Êb¹̂aF̂G i dẐEa

2 i E
W2

eF̂/2
* Êa`saaȧEC ȧ1c.c.2

i

8EW2
eF̂/2

* Êb

`Êb¹̂aF̂ i dẐEa1c.c.2E
W2

i dẐH3 , ~B3!

where we denote¹AFuZ5Ẑ(j)ª¹̂AF̂ and ignore the boundary
contribution *W15]W2@ 1

2 eF̂/2
* Êbi dẐÊb2 i dẐB̂2# ~which al-

ways vanishes for the case of a closed superstring w
]W25B). The consideration of the flat superspace~see Ap-
pendix A! suggests thatk symmetry occurs in the action
~2.3! when also the constraints~2.36!, ~2.37! are imposed on
the field strengthH35dB2 of the 2-superformB2, Eq.
~2.10!.

~B3! The admissible variation of the 2-formB2 subject to
the superspace constraints~2.38! is defined by Eq.~4.2! with

bab~d!50, baḃ~d!50, bȧḃ~d!50, ~B4!

bbb~d!5sbbḃ~DD2R̄!dn̄ḃ

2
i

2
~habd1sbs̃a!b

g¹geF/2dHa, ~B5!

bḃb~d!52sbbḃ~D̄D̄2R!dnb

1
i

2
~habd1s̃asb!ġ

ḃ¹̄ġeF/2dHa, ~B6!

bab~d!52
i

4
~ s̃ [asb] !

ḃ
ȧD̄ḃ~DD2R̄!dn̄ȧ

2
i

4
~s [as̃b] !a

bDb~D̄D̄2R!dna

1
1

2
eF/2s̃ [a

ḃb@Db ,D̄ḃ#dHb]2
i

2
eabcdD ceF/2dHd.

~B7!
tum
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