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Supersymmetric string model with 30k symmetries in an extendedDÄ11 superspace
and 30

32 BPS states
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A supersymmetric string model in theD511 superspace maximally extended by antisymmetric tensor
bosonic coordinatesS (528u32) is proposed. It possesses 30k symmetries and 32 target space supersymmetries.
The usual preserved supersymmetry–k-symmetry correspondence suggests that it describes the excitations of
a Bogomol’nyi-Prasad-Sommerfield~BPS! state preserving all but two supersymmetries. The model can also
be formulated in anyS „[n(n11)/2]un… superspace,n532 corresponding toD511. It may also be treated as a
‘‘higher-spin generalization’’ of the usual Green-Schwarz superstring. Although the global symmetry of the
model is a generalization of the super-Poincare´ groupS „[n(n11)/2]un…3.Sp(n), it may be formulated in terms of
constrainedOSp(2nu1) orthosymplectic supertwistors. We work out this supertwistor realization and its
Hamiltonian dynamics. We also give the supersymmetricp-brane generalization of the model. In particular, the
S (528u32) supersymmetric membrane model describes excitations of a30

32 BPS state, as theS (528u32) supersym-
metric string does, while the supersymmetric 3-brane and 5-brane correspond, respectively, to28

32 and 24
32 BPS

states.

DOI: 10.1103/PhysRevD.69.085007 PACS number~s!: 11.30.Pb, 11.10.Kk, 11.25.2w, 12.60.Jv
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I. MODELS IN NON-STANDARD SUPERSPACES:
PARTICLES, STRINGS, BPS PREONS AND HIGHER

SPIN THEORIES

In the early period of superstring theory, when it w
found that allD510 supergravities appear as low ener
limits of superstring models, a question arose: what is
origin of maximally extendedD511 supergravity? Its rela
tion with the supermembrane@1# was established by studyin
the supermembrane action in a supergravity backgrou
however, a straightforward quantization of the superme
brane was fraught with difficulties. An indication was foun
@2# that the quantum state spectrum of the supermembra
continuous, a problem now sorted out by treating@3# the
supermembrane as an object composed of D0-branes in
framework of the matrix model approach@4#. Another aspect
of the same problem was that the membrane was show
develop stringlike instabilities@2#. The Green-Schwarz su
perstring is free from these problems, but it is aD510
theory. Thus, it was tempting to search for possible new c
sical D511 superstring models hoping that, after quanti
tion, their low energy limit would beD511 supergravity.
Such a search requires, clearly, going beyond the stan
superspace framework: in moving fromD510 toD511 one
has to add also extra bosonic degrees of freedom, thus a
ing to anenlarged D511 superspace rather than to the sta
dard one.

A. Curtright supersymmetric string model
in the enlarged DÄ11 superspaceS „528z32…

A first example of a supersymmetric string action in
enlargedD511 superspace was found in@5#. The model,
possessing 32 supersymmetries and 16k symmetries, was
constructed in the enlarged superspaceS (528u32). This con-
tains 32 fermionic coordinatesua and 528 bosonic coordi
0556-2821/2004/69~8!/085007~24!/$22.50 69 0850
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nates xm,ymn,ym1 . . . m5 (ymn52ynm[y[mn] , ym1 . . . m5

5y[m1 . . . m5] ) which may be collected in a symmetric sp
tensorXab5Xba,

Xab5
1

32
xmGm

ab2
1

2! 32
ymnGmn

ab1
1

5! 32
ym1 . . . m5Gm1 . . . m5

ab ,

~1!

so that the coordinates ofS (528u32) are

Z M5~Xab,ua!, Xab5Xba, a,b51,2, . . .,32. ~2!

Because of the special properties of the elev
dimensional gamma matrices, the model of@5# may also be
restricted to the superspacesS (66u32) @(xm,ymn,ua), with 66
bosonic coordinates# and S (462u32) @(xm,ym1 . . . m5,ua), with
462 bosonic coordinates#.1 For the sake of definiteness, w
shall call heremaximal superspacesto those with bosonic
coordinates of symmetric ‘‘spin-tensorial’’ type, likeS (528u32)

and its counterpartsS „[n(n11)/2]un…,

S „[n(n11)/2]un…5$Z S5~Xab,ua!%, Xab5Xba,

a,b51,2, . . .n, ~3!

wheren52l . This name distinguishes theS „[n(n11)/2]un… su-
perspaces from other, not maximally~in the bosonic sector!
extended superspaces likeS (66u32) and S (462u32) whose
bosonic coordinates may be described by a spin tensorXab

only if it satisfies some conditions.

1All these superspacesS (528u32), S (462u32) andS (66u32), considered
as supergroup manifolds, may be seen as central extensions
Abelian 32 dimensional fermionic group by tensorial@Eq. ~1!#
bosonic groups@6#.
©2004 The American Physical Society07-1
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TheS (528u32) superspace has a special interest because
the supergroup manifold associated with the maximalD
511 supersymmetry algebra@7–9#

$Qa ,Qb%5Pab , Pab5Pba , @Qa ,Pbg#50,

a,b,g51,2, . . .,32, ~4!

Pab5PmGab
m 1ZmnGab

mn1Zm1 . . . m5
Gab

m1 . . . m5 ,
~5!

called M-theory superalgebra or M algebra@9#.2 This algebra
encodes full information about the nonperturbati
Bogomol’nyi-Prasad-Sommerfield~BPS! states of the hypo-
thetical underlying M theory: as was shown in@11#, the ad-
ditional bosonic generatorsZmn52Znm5Z[mn] , Zm1 . . . m5

5Z[m1 . . . m5] of the M algebra~4! are related to the topologi
cal charges of the supermembrane and the super-M5-bra3

These ‘‘one-brane’’ BPS states can be associated with so
nic solutions@16,17# of the ‘‘usual’’ D511 supergravity@18#
or with fundamental M-theory objects described by th
worldvolume actions@1,19#.

Note that although the M algebra~4! leads naturally to a
D511 interpretation when the splitting~5! is used, it also
allows for aD510 type IIB treatment when one conside
the a51, . . . ,32 index as a double onea5ǎI , where ǎ
labels the components of aD510 Majorana-Weyl spinor,
ǎ51, . . .,16, andI is an internal index,I 51,2. Then one
uses the direct product of 16316 ~Majorana-Weyl! ten-

dimensional sigma matrices,sǎb̌
m

~or s̃m
ǎb̌) and real 232

matricesd IJ,t1
IJ ,i t2

IJ ,t3
IJ to write aD510 type IIB counter-

part of Eq.~5! @9,20#. Similarly, aD510 type IIA treatment
is also possible as theD510 gamma matrices coincide wit
the D511 ones. As a result, the information about nonp
turbative BPS states of theD510 superstring theories~in-
cluding Dirichlet superbranes! can also be extracted from th
algebra~4!. Moreover, it encodes as well all the duality r
lations between differentD510 and D511 superbranes
These facts add further reasons to call~4! the M-theory su-
peralgebra@9#.

B. Maximal S „528z32… superspace, BPS preons and other BPS
states with supernumerary supersymmetries

Interestingly enough, an algebraic classification of
BPS states may be achieved by introducing@21# the hypo-

2See@6,10# and references therein for further generalizations
the M-theory superalgebra and for their structure.

3This result was extended in@12# by showing that these
generators also contain a contribution from the topological cha
of the eleven-dimensional Kaluza-Klein monopo

(Z0m1 . . . m4
}e0m1 . . . m4n1 . . . n6

Z̃n1 . . . n6) and of the M9-brane

(Z0m}e0mn1 . . . n9
Z̃n1 . . . n9) which is usually identified with the

Hořava-Witten hyperplane@13# ~for the Kaluza-Klein monopole
and the M9-brane only bosonic actions are known@14,15#!.
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thetical basic constituents of M theory. These are theBPS
preonsul&, which are characterized by the relation

P̂abul&5lalbul&, ~6!

wherela is abosonic ‘‘spinor’’ @actually, aGL(n,R) vector;
see footnote 10 and below Eq.~24!#.4

The statesul& preserve all supersymmetriesbut onei.e.,
they aren531/32 states. To make this transparent one
use theGL(32,R) automorphism symmetry@27,28# of the
algebra~4! to write the spinorla that characterizes the BP
preon stateul& in the ‘‘preferred frame’’la5(1,0, . . . ,0),
where Eqs.~6! and ~4! imply

~Q̂2!2ul&50, . . . , ~Q̂32!
2ul&50. ~7!

For Hermitian operators in a positive definite Hilbert spa
Eqs.~7! imply

~Q̂2!ul&50, . . . , ~Q̂32!ul&50, ~8!

which means that a BPS preon preserves all but one sp
time supersymmetries.

BPS statesuk& preservingk>1 supersymmetries can b
treated as composites of a number #p5322k of BPS preons
@21# ~in the same way as e.g., hadrons are composed
quarks!. Indeed, for such a stateuk& one can always find a se
of 322k bosonic spinorsla

r (r 51, . . . ,k) such that

P̂abuk&5 (
r 51

#p5322k

la
r lb

r uk&; ~9!

the single preon stateul& corresponds touk&[u31&.
In this perspective, all the one-brane solutions of 1

dimensional supergravity, which preserve 16 out of 32 sup
symmetries, correspond to composites of 16 BPS pre
Multibrane solutions usually preservefewer than 16 super-
symmetries (n,1/2) and thus correspond to composites
morethan 16 preons. There also existpp-wave solutions with
‘‘supernumerary supersymmetries’’@29–31#, i.e. with 16,k
,32. The known solutions preservingk518,20,22,24,26
and 28 supersymmetries can be considered as composit
#p514,12,10,8,6 and 4 BPS preons respectively. Initially
seemed that solutions preserving all supersymmetries
one, i.e. describing the excitations of a BPS preon, could
exist in the framework of the standard braneAnsätzeused to
solve the usual 11-dimensional supergravity@18# equations.
A more general study in the context of standardD511 su-

f

es

4Note that the expressionpab5lalb for the eigenvalue of the
generalized momentum operatorPab may be looked at as a gene

alization ~see@22#! of the Penrose representationpAḂ5lAl̄ Ḃ of a
D54 lightlike vector~see@23#!. Interestingly enough, its general
zations for tensorial charges (Zmnr5lGmnrl in D585018 and
Zmn5lGmnl in D545113) were considered, in a completel
different context, in@24# and@25#. Recently, the originalD54 Pen-
rose twistor formalism has found an interesting application in
analysis of perturbative scattering amplitudes in Yang-Mills the
@26# which refers toa string in D54 twistor space CP3.
7-2
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pergravity has shown@32,33# that the existence of such so
lutions is not ruled out. However, and independently
whether the BPS preons can be associated with solution
standard supergravity or whether there is a kind ofBPS
preon conspiracypreventing the existence of one BPS pre
in standard D511 spacetime or superspace, BPS preons
provide an algebraic classification of the M-theory BP
states@21#. Also, dynamical models with the properties
BPS preons are known in theS „[n(n11)/2]un… superspace
@22,34#. In this perspective such a BPS preon conspiracy,
exists, would rather indicate the necessity of a wider geom
ric framework for a suitable description of M theory, such
extended superspaces and supertwistors. If, on the con
solitonic solutions with the properties of BPS preons w
actually found, the extended superspaces would still prov
a useful tool for a description of M-theory.5 One is led to
expect that the additional tensorial coordinates of these
perspaces carry a counterpart of the information which
the framework of standardD510,11 supergravity, is en
coded in the antisymmetric tensor gauge fields entering
supergravity multiplets~cf. @6#!. This point of view may be
also supported by the observation that in the standard to
logical charge treatment of the tensorial generators of the
algebra@11#, these topological charges are associated
with these gauge fields.

The general results about the treatment of tensorial cen
charges as topological charges of the corresponding br
are certainly relevant in the more general case

$Qa ,Qb%5Pab , @Qa ,Pbg#50, ~10!

Pab5Pba , a,b,g51,2, . . . ,n, ~11!

with n52l for any integerl. The simplest representations
the algebra~10! can be constructed on the maximal sup
spaceS „[n(n11)/2]un…, Eq. ~3!.

TheGL(n,R) symmetry of~10! becomes broken down t
Spin(t,D2t),GL(n,R) when a~Eq. ~5!-like! decomposi-
tion is introduced using an3n realization of the gamma–
matrices of a (t,D2t) spacetime witht timelike dimensions
(t is not obliged to be one, see@35,36#!. On the other side
theGL(n,R) symmetry is a subgroup ofSp(2n), which is a
characteristic symmetry of higher spin theories.

C. Models in maximal superspaces and higher spin theories

The main problem of the approach in@5# is how to treat
the large number of additional bosonic degrees of freed6

in the coset~s! S (528u32)/S (11u32) (S (462u32)/S (11u32),
S (66u32)/S (11u32)), where

5There are also related reasons to consider more general s
spaces, as the ensuingfields-extended superspace democracyasso-
ciated with extended superspaces@6#.

6See@37# for a later related search based on an attempt to rep
thek-symmetry requirement by a dynamically generated projec
constraint on the spinor coordinate functions. This approach
suffers from the problem of additional bosonic degrees of freed
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S (11u32) : ZM5~xm,ua!, m50,1, . . .,10, ~12!

is the ‘‘standard’’D511 superspace. Actually, one has
face this problem in any approach dealing with enlarged
perspaces@6,21,22,34,38–44#. Thus, one has to find a
mechanism that either suppresses the additional~with respect
to the usual spacetime/superspaceS (Dun)) degrees of free-
dom or provides a physical interpretation for them. In th
respectS „[n(n11)/2]un…, despite having a maximal boson
part, has some advantages with respect to non-maxim
extended superspaces~see below~3!!. Indeed, the bosonic
sector of the maximal superspace~3!,

S (
n(n11)

2
u0) : Xab5Xba, a,b51,2, . . . ,n, ~13!

was proposed forn54 @45# as a basis for the construction o
D54 higher–spin theories@38,39,46#. Moreover, it was
shown in@40# that the quantization of a simple superpartic
model@22# in S „[n(n11)/2]un… for n52,4,8,16 results in a wave
function describing a tower of massless fields of all possi
spins~helicities!. Such an infinite tower of higher spin field
allows for a nontrivial interaction in AdS spacetime
@46,47#.7

To give an idea of the relation between higher spin th
ries and maximally extended superspaces, let us conside
free bosonic massless higher-spin equations proposed in@38#
~for n54). These can be collected as the following set
equations for a scalar functionb on S „[n(n11)/2]u0…

]a[b]g]db~X!50, ~14!

where ]ab5]/]Xab. Equation ~14! states that]ab]gd is
fully symmetric on a non-trivial solution. In the generalize
momentum representation Eq.~14! reads

ka[bkg]db~k!50. ~15!

This implies thatb(k) has support on then(n11)/22n(n
21)/25n-dimensional surface in momentum spa
S „[n(n11)/2]u0… ~actually, inS „[n(n11)/2]u0…\$0%) on which the
rank of the matrixkgd is equal to unity@39#. This is the
surface defined bykab5lalb ~or 2lalb) characterized by
the n components ofla . In a ‘‘GL(n,R)-preferred’’ frame
~an analogue of the standard frame for lightlike ordinary m
mentum!, la5(1,0, . . . ,0) and thesurface is theGL(n,R)
orbit of the pointkab5da1db1. Thus, Eq.~15! may also be
written as

~kab2lalb!b50, ~16!

which is equivalent to writing Eq.~14! in the form

er-

ce
n
o
.

7A relation between the generalizedn54 superparticle wave
functions@40# and Vasiliev’s ‘‘unfolded’’ equations for higher spin
fields was noted in@38#. This was elaborated in detail in@48#, where
the quantization of an AdS superspace generalization of then54
model of@22# was also carried out~see also@49# for a related study
of higher spin theories in the maximal generalized AdS4 super-
space!.
7-3
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~ i ]ab2lalb!b50. ~17!

Equations~16! and ~17! may be considered as the gener
ized momentum (kab) and coordinate (Xab) representations
of the definition~6! of a BPS preon@21#. The solutions of
Eqs. ~16!, ~17! are the momentum and coordinate ‘‘wav
functions’’ corresponding to a BPS preon stateul&, b(X)
5^Xul&, b(k)5^kul&. These equations also appear as a
sult of the quantization@40# of the superparticle model in
@22#.8

Thus, in contrast with other extended superspaces,
models in the maximal superspacesS „[n(n11)/2]un… can be re-
garded as higher spin generalizations of the models in s
dard superspaceS (Dun).9

D. A new supersymmetric string model inS „528z32…: Outlook

In Sec. II we present another action for a supersymme
string in S (528u32). In distinction to the model in@5#, it does
not useD511 gamma matrices, but instead includes t
auxiliary bosonic spinor variables,la

1 andla
2 .10 As a con-

sequence, the resultingS „[n(n11)/2]un… supersymmetric string
action~although it does not include a Wess-Zumino term li
that of @5#! possesses 30 local fermionick symmetries and
provides an extended object model for a state compose
two BPS preons~see above!.

The model can be written as well inS „[n(n11)/2]un… for
arbitrary evenn ~althoughn52l is preferable for a spino
interpretation of thea,b indices!. It possesses (n22) k
symmetries~Sec. III!. Forn52, our model describes a strin
in theD53, N51 standard superspace; however, this str
does not possess anyk symmetry (n2250) and, then, the
ground state of this string model is not a stable~BPS! state,
as such a property is guaranteed by the preservation
non-zero number of supersymmetries.

For n>4 our model possessesk.0 k symmetries, 2 for
n54 (D54), 6 for n58 (D56), 14 for n516 (D510)
and 30 forn532 (D511), and hence describes excitatio
of a two preons BPS state. Moreover, only forn54 is the
number ofk symmetries the same as that of theD54 (N
51) Green-Schwarz superstring. Forn>8 the number ofk

8In @38,50# Eq. ~17! was written as @]ab2(]/]ma)
3(]/]mb)#b(X,m)50, which is an equivalent ‘‘momentum’’ rep
resentation obtained by a Fourier transformation with respec
la ; see@48#.

9Although the idea of higher spin fields has been discusse
present forD<7 only, the results of@40# can be regarded as a firs
step toward itsD510 generalization. Understanding theD511
case is a problem for future study.

10Actually, the model possessesSp(32) symmetry in addition to
the SO(1,10) one, so thatla

6 may be considered as symplect
vectors~called ‘‘s-vectors’’ in @38,39#! rather than Lorentz spinors
We, however, keep the ‘‘spinors’’ name for them, keeping in mi
the possibility of spacetime treatment, although this is not straig
forward and requires additional study~see Sec. I C and also@26# for
a very recent spacetime treatment of aCP3 sigma model i.e., of a
string theory in twistor space, through its relation to Yang-Mi
amplitudes!.
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symmetries of our model exceeds half of the number of
persymmetries (n. 1

2 ), while the k symmetries of the
Green-Schwarz superstring aren/2 for all D53,4,6,10 cases

The pointlike models@22,40# in maximal superspace ar
enlarged superspace generalizations of the Ferber-Shir
@51# approach to the Brink-Schwarz superparticle. The t
sionless supersymmetric string models in the maxim
S „[n(n11)/2]un… superspaces@34,44# can be treated as genera
zations of theD54 null-superstring model@52#. In the same
sense ourS „[n(n11)/2]un… supersymmetric string model can b
looked at as a generalization to the maximal superspa
S „[n(n11)/2]un… of the Lorentz-harmonic formulation of th
D54 Green-Schwarz superstring in@53#.11

In Sec. IV we carry out a Hamiltonian analysis of th
S „[n(n11)/2]un… model and describe its gauge symmetries,
cluding the (n22) k symmetries and their ‘‘superpartners
the (n21)(n22)/2 bosonic gaugeb symmetries. We also
discuss there the number of degrees of freedom of
model. In Sec. V we show that its action may be formula
in terms of a pair of constrainedOSp(2nu1) supertwistors
~see@22#! which are invariant under bothk and b symme-
tries. Note that one of the constraints imposed on the
pertwistors breaks theOSp(2nu1) invariance down to the
semidirect productS „[n(n11)/2]un…3.Sp(n) of the symplectic
group Sp(n),Sp(2n) and the supergroup associated w
the algebra~4!, also denotedS „[n(n11)/2]un… since this super-
space is the associated supergroup manifold; we may loo
S „[n(n11)/2]un…3.Sp(n) as a generalization of the supe
Poincare´ group S (Dun)3.SO(t,D2t). The OSp(2nu1) su-
pergroup has been considered as a generalization of the
perconformal group@8,21,22,27,45,54# ~see @21,27,54# for
the relevance ofOSp(64u1) in M theory!. This generalized
superconformal group symmetry is present in massless
ticlelike models@22,40# and in the tensionless superstrin
@34#; however, it is broken down toS „[n(n11)/2]un…3.Sp(n) in
our tensionful supersymmetric string model~Appendix A!.
This is natural: the conformal symmetry is broken in t
massive superparticle@55# and in the Nambu-Goto string an
Green-Schwarz superstring models, while it remains
symmetry of the massless particle and the Brink-Schw
superparticle, as well as of the tensionless branes and su
branes@56#.

The Hamiltonian analysis of the supertwistor formulati
is performed in Secs. VI and VII. The generalization of t
model to the super-p-brane case is given in Sec. VIII, an
conclusions are given in Sec. IX.

to

at

t-

11TheD54 version of our supersymmetric string inS (10u4) differs
from the Lorentz harmonic formulation@53# of the D54, N51
Green-Schwarz superstring, by skipping the Wess-Zumino term
the latter and by substitutingPab5dXab2 idu (aub) for gm

abPm

ªgm
ab(dxm2 idugmu) in the kinetic term of the action in@53#. The

first of the above steps clearly breaks the twok symmetries of the
D54, N51 Green-Schwarz superstring, while the second s
which extends the bosonic body of the standard superspaceS (4u4)

@xm→(xm,ymn); Xab5xmgm
ab1ymngmn

ab] to get S (10u4), restores
them.
7-4
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II. A NEW SUPERSYMMETRIC STRING ACTION
IN THE MAXIMALLY ENLARGED SUPERSPACE

A supersymmetric string inS „[n(n11)/2]un… is described by
worldsheet functionsXab(j), ua(j), where j5(t,s) are
the worldsheetW2 coordinates. We propose the followin
action:

S5
1

a8
E

W2
@e11`Pabla

2lb
2

2e22`Pabla
1lb

12e11`e22#, ~18!

where

Pab~j!5dXab~j!2 idu (aub)~j!

5dtPt
ab1dsPs

ab ; ~19!

a,b51, . . . ,n, m50,1, jm5~t,s!,

and @1/a8#5ML21, @Pab#5L, @e66#5L(c51). The two
auxiliary worldvolume fields, the bosonic spinors
la

2(j),la
1(j), aredimensionlessand constrained by

Cabla
1lb

251; ~20!

e66(j)5djmem
66(j)5dtet

66(j)1dses
66(j) are two

auxiliary worldvolume one-forms. The one-formse66 are
assumed to be linearly independent and, hence, defin
auxiliary worldsheet zweibein

ea5~e0,e1!5djmem
a ~j!

5S 1

2
~e111e22!,

1

2
~e112e22! D . ~21!

The Cab in Eq. ~20! is an invertible constant antisymmetr
matrix

Cab52Cba, dCab50, ~22!

which can be used to raise and lower the spinor indices~as
the charge conjugation matrix in Minkowski spacetime!.
The invertibility of the matrixCab requiresn to be even; this
is not really a limitation since, after all, we are interested
n52l to allow for a spinor treatment of thea,b indices.

For n532 the presence ofCab hampers a possibleD
510, type IIB treatment of our model. This would require
CǎI b̌J52Cb̌JǎI constructed from the 16316 Majorana-
Weyl sigma matrices and a 232 matrix in a Lorentz cova-
riant manner, and there is not a 16316 charge conjugation
matrix in theD510 Majorana-Weyl representation. As a r
sult we shall refer to ourn532 model as asupersymmetric
string in the enlarged D511 superspaceS (528u32), which im-
plies the decomposition of Eq.~5!. Nevertheless, then532
case also admits aD510, type IIA treatment, which uses th
sameCab as theD511 case, and in which the decompos
tion ~5! is replaced by itsD510, IIA counterpart obtained
from Eq. ~5! by separating the eleventh value of the vec
index.
08500
an

r

The action ~18! is invariant under the supersymmet
transformations

deX
ab5 iu (aeb), deu

a5ea, ~23!

dela
650, dee

6650, ~24!

as well as under rigidSp(n) ‘‘rotations’’ acting on thea,b
indices.

Note also that, although formally the action~18! pos-
sesses a manifestGL(n,R) invariance, the constraint~20!
breaks it down toSp(n),GL(n,R). Under the action of
Sp(n), the Grassmann coordinate functionsua(j) and the
auxiliary fieldsla

6(j) are transformed as symplectic vecto
andXab(j) as a symmetric symplectic tensor. Neverthele
we keep for them the ‘‘spinor’’ and ‘‘spin-tensor’’ terminol
ogy, having in mind their transformation properties under
subgroupSpin(t,D2t),Sp(n), which would appear in a
‘‘standard’’ (t,D2t) spacetime treatment.

The aboveS „[n(n11)/2]un… supersymmetric string mode
may also be described by an action written in terms ofdi-
mensionful unconstrained spinors La

6(j), @La
6#

5(ML21)1/2,

S5E
W2

@e11`PabLa
2Lb

22e22`PabLa
1Lb

1

2a8e11`e22~CabLa
1Lb

2!2#. ~25!

Indeed, one can see that the action~25! possesses two inde
pendent scaling gauge symmetries defined by the transfo
tion rules

e11~j!→e2a(j)e11~j!, La
2~j!→e2a(j)La

2~j!
~26!

and

e22~j!→e2b(j)e22~j!, La
1~j!→e2b(j)La

1~j!.
~27!

This allows one to obtainCabLa
1Lb

251/a8 as a gauge fix-
ing condition. Then the gauge fixed version of the action~25!
coincides with Eq.~18! up to the trivial redefinitionLa

6

5(a8)21/2la
6 . The gaugeCabLa

1Lb
251/a8 @equivalent to

Eq. ~20!# is preserved by a one-parametric combination
Eqs. ~26! and ~27! with a52b, which is exactly the
SO(1,1) gauge symmetry~worldvolume Lorentz symmetry!
of the action~18!,

e66~j!→e62a(j)e66~j!, la
6~j!→e6a(j)la

6~j!.
~28!

The tension parameterT51/a8 enters in the last~‘‘cos-
mological’’! term of the action~25! only. Setting in ita8
50 one finds that the model is non-trivial only fore11

}e22 and L1}L2 in which case one arrives at th
7-5
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tensionless super-p-brane action of Ref. @34#, S
5*d2jr11mPm

abLa
2Lb

2 . As we are not interested in thi
case, we seta851 below since thea8 factors can be easily
restored by dimensional considerations.

The most interesting feature of the model~18!, ~25! is
that, being formulated in the maximalS „[n(n11)/2]un… super-
space withn fermionic coordinates, it possesses (n22) k
symmetries; we will prove this in the next section. For
supersymmetric extended object in standard superspace
k symmetry of its worldvolume action determines the nu
berk of supersymmetries which are preserved by the gro
state~which is an5k/n BPS state made out of #p5n2k
preons if at least one supersymmetry,k>1, is preserved!. In
the present case, we may expect that the ground state o
model should preserve (n22) out ofn supersymmetries, i.e
is a (n22)/n BPS state (#p52, 30

32 BPS state for theD
511 maximal superspaceS (528u32)).

For n52, Xab provides a representation of th
3-dimensional Minkowski space coordinates,Xab}gm

abxm

(a,b51,2; m50,1,2). Thus then52 model~18! describes
a string in theD53 standardS (3u2) superspace. However, i
the light of the above discussion, it does not possess ank
symmetry and, hence, its ground state is not a BPS s
since it does not preserve any supersymmetry.

The situation becomes different starting with then54
model ~8!, which possesses twok symmetries, the sam
number as the Green-Schwarz superstring in the stan
D54 superspace. ForD>6, n>8 the number ofk symme-
tries of our model exceedsn/2 and thus the model describe
the excitations of BPS states with ‘‘supernumerary’’ sup
symmetries@29#, a 30

32 BPS state in theD511 S (528u32) su-
perspace.

The number ofbosonicdegrees of freedom~the number
of bosonic chiral fields! of our model is 4n26 ~Sec. IV!. It
is not as large as it might look at first sight due to the ‘‘m
mentum space dimensional reduction mechanism’’@40#
which occurs due to the presence of auxiliary spinor va
ables entering the generalized Cartan-Penrose relation@Eq.
~72!# generated by our model. However, it is larger than t
of the (D53,4,6,10) Green-Schwarz superstring~which has
D @2n54(D22)# bosonic@fermionic# configuration space
real degrees of freedom, which reduce toD22 @2(D22)#
after taking into account reparametrization invariancek
symmetry!, thus resulting in 2(D22) bosonic and 2(D
22) fermionic phase space degrees of freedom. This, in
light of the above mentioned relation of the models in ma
mal superspaces with higher spin theories, allows us to c
sider our model as a higher spin generalization of the Gre
Schwarz superstring, containing additional information ab
the nonperturbative states of string/ M-theory.

The number of fermionic degrees of freedom of ou
model is 2 for anyn, less than that of theD54,6,10 (N
52) Green-Schwarz superstring.

III. PROPERTIES OF THE S „†n„n¿1…Õ2‡zn…

SUPERSYMMETRIC STRING MODEL

A. Equations of motion

Consider the variation of the action~18!. Allowing for
integration by parts one finds
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dS5E
W2

d~e22la
1lb

12e11la
2lb

2!i dPab

22i E
W2

e11`duala
2dublb

2

12i E
W2

e22`duala
1dublb

1

1E
W2

~Pabla
1lb

12e11!`de22

2E
W2

~Pabla
2lb

22e22!`de111dlS, ~29!

wherei dPab[dXab2 idu (aub) and the last term

dlS51E
W2

2e11`Pablb
2dla

2

2E
W2

2e22`Pablb
1dla

1 , ~30!

collects the variations of the bosonic spinorsla
6(j).

One easily finds that the equations of motion for t
bosonic coordinate functions,dS/dXab (5dS/ i dPab)50
restrict the auxiliary spinors and auxiliary one-forms,

d~e22la
1lb

12e11la
2lb

2!50. ~31!

The equations for the fermionic coordinate function
dS/dua50, read

e11`duala
2lb

22e22`duala
1lb

150, ~32!

which, due to the linear independence of the spinorsla
1 and

la
2 , imply

e11`duala
250, e22`duala

150. ~33!

The equations for the one-formse66(j) express them
through the worldsheet covariant bosonic form~19! of the
S „[n(n11)/2]un… superspace and the spinorsla

6(j),

e115Pabla
1lb

1 , ~34!

e225Pabla
2lb

2 . ~35!

This reflects the auxiliary nature ofe66 and implies that
Eqs.~31! and ~33! actually restrictPab anddua,

d~Pgdlg
2ld

2la
1lb

12Pgdlg
1ld

1la
2lb

2!50, ~36!

Pgdlg
1ld

1`duala
250, ~37!

Pgdlg
2ld

2`duala
150. ~38!

Moreover, looking at Eqs.~34!, ~35! one can easily see
the necessity of the constraints~20! on the bosonic spinor
variables. Indeed, if one ignored these constraints and va
the action with respect to unconstrainedla

6 , one would ar-
7-6
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rive, from Eq. ~30!, at e11`Pablb
250 and e22

`Pablb
150. By Eq.~34! @or Eq.~35!# this would imply, in

particular,e11`e2250, contradicting the original assump
tion of independence of the one-formse11 and e22 and,
actually, reducing the present model to ap51 version of the
tensionlessp-brane model@34#.

As la
6 are restricted by the constraint~20!, this constraint

has to be taken into account in the variational problem.
stead of applying the Lagrange multiplier technique, o
may restrict the variations to those that preserve Eq.~20!, i.e.
such that

Cabdla
1lb

21Cabla
1dlb

250. ~39!

One can solve Eq.~39! by introducing a set ofn22 auxiliary
spinorsua

I ‘‘orthogonal’’ to the l6 ~cf. @52,57#!,

Cabua
I lb

650, I 51, . . . ,n22, ~40!

and normalized by

Cabua
I ub

J 5CIJ, CIJ52CJI, ~41!

where CIJ is an antisymmetric constant invertible (n22)
3(n22) matrix.

The n spinors

$la
1 ,la

2 ,ua
I %, I 51, . . . ,n22, ~42!

provide a basis that can be used to decompose an arbi
spinor worldvolume function~cf. @58#!, and in particular the
variationsdl1, dl2. Then one finds that the only cons
quence of Eq.~39! is that the sum of the coefficient forl1 in
the decomposition ofdl1 and that ofl2 in the decomposi-
tion of dl2 vanish. In other words, the general solution
Eq. ~39! reads

dla
15v~d!la

11V11~d!la
21V I

1~d!ua
I , ~43!

dla
252v~d!la

21V22~d!la
11V I

2~d!ua
I , ~44!

whereV I
6(d), V66(d) and v(d) are arbitrary variationa

parameters.
Substituting Eqs.~43!, ~44! into Eq. ~30!, one finds

dlS52E
W2

~2e11`Pablb
2la

212e22`Pablb
1la

1!v~d!

1E
W2

2e11`Pablb
2la

1V22~d!

1E
W2

2e22`Pablb
1la

2V11~d!

1E
W2

2e11`Pablb
2ua

I V I
2~d!

2E
W2

2e22`Pablb
1ua

I V I
1~d!. ~45!
08500
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Now we can easily write the complete set of equations
motion which include, in addition to Eqs.~31!, ~33!, ~34!,
~35!, the set of equations forla

6 , which follows from
dS/v(d)50, dS/V11(d)50, dS/V I

1(d)50,
dS/V22(d)50, anddS/V I

2(d)50, namely

e11`Pablb
2la

21e22`Pablb
1la

150, ~46!

e11`Pablb
2la

150, ~47!

e22`Pablb
1la

250, ~48!

e11`Pablb
2ua

I 50, ~49!

e22`Pablb
1ua

I 50. ~50!

Due to the linear independence ofe115djmem
11(j) and

e225djmem
22(j), Eqs.~47!, ~48! imply

Pablb
2la

150. ~51!

Decomposing the bosonic invariant one-formPab

5djmPm
ab in the ~‘‘unholonomic’’! basis provided bye66,

Pab5e11P11
ab 1e22P22

ab , ~52!

P66
ab 5¹66Xab2 i¹66u (aub), ~53!

where¹66 is defined by

d[e66¹665e11¹111e22¹22 , ~54!

one finds that Eqs.~49! and ~50! restrict only the left and
right chiral derivatives (¹11 ,¹22) of the bosonic coordi-
nate functionXab(j), respectively,

P22
ab lb

2ua
I [~¹22Xab2 i¹22u (aub)!lb

2ua
I 50, ~55!

P11
ab lb

1ua
I [~¹11Xab2 i¹11u (aub)!lb

1ua
I 50.

~56!

In the same manner, Eqs.~33! can be written as

¹22uala
250, ¹11uala

150. ~57!

The analysis of the above set of equations in the maxi
superspace, the search for solutions and their reinterpreta
in standardD-dimensional spacetime~possibly along the line
of the fields-extended superspace democracy of@6#, or of the
‘‘two-time physics’’ @36#! is a problem for future study.

B. Gauge symmetries

The expression~29!, with ~45!, for the general variation
of the S (n(n11)/2un) supersymmetric string action~18! shows
that the model possessesn supersymmetries and (n22) k
symmetries of the form

dkua~j!5Cabub
I ~j!k I~j!, ~58!

dkXab~j!5 idku (a~j!ub)~j!, ~59!
7-7
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dkla
6~j!50, dkem

66~j!50, ~60!

with (n22) fermionic gauge parametersk I(j) ~30 for
S (528u32)). In the framework of the second Noether theore
this k symmetry is reflected by the fact that only 2 of then
fermionic equations~32! are independent. We stress that t
(n22) GL(n,R) vector fieldsua

I defined by Eq.~40! are
auxiliary. They allow us to write explicitly the general solu
tion of the equations

dkua~j!la
6~j!50, ~61!

which define implicitly thek-symmetry transformation~58!.
Note that the dynamical system isk symmetric despite the
fact that it does not contain a Wess-Zumino term. This pr
erty seems to be specific to models defined on maximal
perspaces.

Our model also possesses1
2 (n21)(n22) b symmetries,

which are the bosonic ‘‘superpartners’’ of the fermionick
symmetries, defined by

dbXab5bIJ~j!uaIubJ,

dbua50, dbla
650, dbe6650, ~62!

wherebIJ(j) is symmetric andI ,J51, . . . ,n22. They are
reflected by the (n21)(n22)/2 Noether identities stating
that the contractions of the bosonic equations~31! with the
uaIubJ bilinears of the (n22) auxiliary bosonic spinors
uaI (5Cabub

I ) vanish.12

The remaining gauge symmetries of the action~18! are
the SO(1,1) worldsheet Lorentz invariance

dXab50, dua50,

dla
656v~d!la

6 , de66562v~d!e66, ~63!

which is reflected by the fact that Eq.~46! is satisfied iden-
tically when Eqs.~34!, ~35! are taken into account, and th
symmetry under worldvolume general coordinate trans
mations.

As customary in string models, the general coordinate
variance and theSO(1,1) gauge symmetry allow one to fi
locally the conformal gauge whereem

a(j)5ef(j)dm
a or,

equivalently

12In the masslessS „n(n11)/2un… superparticle and tensionless supe
p-brane models theb symmetry@22,40,34# ~cf. @59#! is n(n21)/2
parametric. This comes from the fact that such models conta
single bosonic spinorla and the nontrivialb-symmetry variation is
the general solution of the spinorial equationdbXabla50. In our
tensionful S (n(n11)/2un) supersymmetric string model with tw
bosonic spinors la

6(j), the (n21)(n22)/2 parametric
b-symmetry transformations@Eq. ~62!# are the solutions of two
equationsdbXabla

150 anddbXabla
250.
08500
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e115ef(j)~dt1ds!, e225ef(j)~dt2ds!, ~64!

⇔ es
115et

115ef(j), es
2252et

2252ef(j). ~65!

This indicates that it makes sense to consider the fie
es

66(t,s) as nonsingular (1/es
6656e2f(j) in the confor-

mal gauge!, a fact used in the Hamiltonian analysis below
There is a correspondence@60,61# between thek symme-

try of the worldvolume action and the supersymmetry p
served by a BPS state~e.g. by a solitonic solution of the
supergravity equations of motion!. Thus, the action~18! de-
fines a dynamical model for the excitations of a BPS st
preservingall but two supersymmetries. Such a BPS sta
can be treated as a composite of two BPS preons (#p532
230). This will become especially transparent after t
Hamiltonian analysis of the next section.

IV. HAMILTONIAN MECHANICS

The gauge symmetry structure has already been show
the Lagrangian framework. However, our dynamical syst
clearly possesses additional, second class, constraints@62#,
one of which is condition~20!. In this section we carry ou
the Hamiltonian analysis of ourS „[n(n11)/2]un… supersymmet-
ric string model. In particular, this will allow us to find th
number of field theoretical degrees of freedom and to es
lish the relation of our model to the notion of BPS preo
@21#.

The Lagrangian densityL for the action~18!,

S5E
W2

dtdsL, ~66!

is given by

L5~et
11Ps

ab2es
11Pt

ab!la
2lb

2

2~et
22Ps

ab2es
22Pt

ab!la
1lb

1

2~et
11es

222es
11et

22!, ~67!

where

Pt
ab5]tX

ab2 i ]tu
(aub),

Ps
ab5]sXab2 i ]su (aub) ~68!

are the worldsheet components of the one-form~19!.
The momentaPM canonically conjugate to the configu

ration space variables

Z M[Z M~t,s!ª~Xab,ua,la
6 ,et

66 ,es
66! ~69!

are defined as usual:

PM5~Pab ,pa ,P6
a(l) ,P66

t ,P66
s !5

]L
]~]tZ M!

. ~70!

The canonical equalt graded Poisson brackets,

a

7-8
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@Z N~s!,PM~s8!%
P
52~21!NM@PM~s8!,Z N~s!%

P
,

are defined by

@Z N~s8!,PM~s!%
P
ª~21!NdM

N d~s2s8!, ~71!

where (21)N[(21)deg(N) and the degree deg(N)
[deg(Z N) is 0 for the bosonic fields,Z N5Xab,la

6 ,em
66

@or for the ‘‘bosonic indices’’N5(ab),(a6),(66),m],
and 1 for the fermionic fieldsZ N5ua ~or for the ‘‘fermionic
indices’’ N5a andN56 which we will meet below in the
supertwistor formulation of the model!.

Since the action~18! is clearly of first order type, it is no
surprising that the expression of every momentum result
a primary@62# constraint. Explicitly,

Pab5Pab1es
11la

2lb
22es

22la
1lb

1'0, ~72!

Da5pa1 iubPab'0, ~73!

P6
a(l)'0, ~74!

P66
s '0, ~75!

P66
t '0, ~76!

where onlyDa is fermionic. Condition~20!,

NªCabla
1lb

221'0, ~77!

imposed on the bosonic spinors from the beginning, is als
primary constraint and has to be treated on the same foo
as Eqs.~72!–~76!.

The canonicalHamiltonian densityH0,

H05]tZ MPM2L, ~78!

calculated on the primary constraints~72!–~76! hypersurface
reads

H05et
22Ps

abla
1lb

12et
11Ps

abla
2lb

2

1~et
11es

222es
11et

22!. ~79!

The evolution of any functionalf (Z M,PN) is defined by
]t f 5@ f ,*dsH 8#

P
involving the total Hamiltonian,*dsH 8,

where the Hamiltonian densityH 8 is the sum ofH0 in Eq.
~79! and the terms given by integrals of the primary co
straints ~72!–~76! multiplied by arbitrary functions
~Lagrange multipliers! @62#. Then one has to check that th
primary constraints are preserved under the evolut
]tPab'0, etc. At this stage additional, secondary co
straints may be obtained. This is the case for our system

Indeed, since the constraints~76! have zero Poisson
brackets with any other primary constraint, their time evo
tion is just determined by the canonical HamiltonianH0 ,
]tP 66

t 5@P 66
t ,*dsH0#

P
. Then one easily sees tha

]tP 66
t '0 produces a pair of secondary constraints,
08500
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F66ªPs
abla

7lb
72es

77

5~]sXab2 i ]su (aub)!la
7lb

72es
77'0. ~80!

Slightly more complicated calculations with the totalH 8
show that we also have the secondary constraint

F (0)
ªPs

abla
1lb

2

5~]sXab2 i ]su (aub)!la
1lb

2'0 ~81!

@details about its derivation can be found below Eq.~95!#.
The appearance of this secondary constraint may be un
stood as well by comparing with the results of the Lagran
ian approach: it is just thes component of the differentia
form equation~51!.

The secondary constraints~80! imply that the canonical
HamiltonianH0, Eq. ~78!, vanishes on the surface of con
straints~80!,

H0'0, ~82!

a characteristic property of theories with general coordin
invariance. Hence the total Hamiltonian reduces to a lin
combination of the constraints~72!–~76!, ~80!, ~81!,

H52et
11F111et

22F221 l (0)F (0)1LabPab1jaDa

1 l a
6P6

a(l)1L66P66
s 1h66P66

t 1L (n)N ~83!

where l (0), Lab, ja, l a
6 , L66, h66, L (n) and 6et

66 are
Lagrangian multipliers whose form should be fixed from t
preservation of all the primary and secondary constraints
der t evolution.

Note that the constraints~76! are trivially first class, since
their Poisson brackets with all the other constraints, incl
ing Eqs.~80! and ~81!, vanish. This allows us to state tha
et

66(j) are not dynamical fields but rather Lagrange mu
pliers ~as the time component of electromagnetic poten
A0 in electrodynamics!. Nevertheless, the appearance
these Lagrange multipliers from thet components of the
zweibeinem

66 put a ‘‘topological’’ restriction on a possible
gauge fixing; in particular the gaugeet

6650 is not allowed.
Indeed, the nondegeneracy of the zweibein, assumed f
the beginning, reads

det@em
a ~z!#[

1

2
~et

22es
112et

11es
22!Þ0. ~84!

Just due to this restriction, studying thet preservation of the
primary constraints, one finds the secondary constraint~81!.

If by checking the~primary and secondary! constraints
preservation undert evolution one finds that some Lagran
ian multipliers remain unfixed, then they correspond tofirst
class constraints@62# which generate gauge symmetries
the system through the Poisson brackets. In other wo
since the canonical Hamiltonian vanishes in the weak se
the total Hamiltonian is a linear combination of all first cla
constraints@62#.

If some of the equations resulting from thet evolution of
the constraints~or their linear combinations! do not restrict
7-9
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the Lagrangian multiplier, but imply the vanishing of a com
bination of the canonical variables, they correspond to n
secondary constraints, which have to be added with n
Lagrange multipliers to obtain a new total Hamiltonian.
this case the check that all the constraints are preserved
der t evolution has to be repeated.

This does not happen for our dynamical system: a furt
check of the constraintt preservation does not result in th
appearance of new constraints. Indeed, it leads to the foll
ing set of equations for the Lagrange multipliers:

]s~et
22la

1lb
12et

11la
2lb

21 l (0)l (a
1 lb)

2 !22es
22l (a

1 l b)
1

12es
11l (a

2 l b)
2 1L11la

2lb
22L22la

1lb
1'0, ~85!

la
2@2iet

11~]sul2!2 i l (0)~]sul1!12ies
11~jl2!#

2la
1@2iet

22~]sul1!1 i l (0)~]sul2!

12ies
22~jl1!#'0, ~86!

22et
22Ps

ablb
12 l (0)Ps

ablb
212es

22Lablb
1

2L (n)Cablb
2'0, ~87!

2et
11Ps

ablb
22 l (0)Ps

ablb
122es

11Lablb
2

2L (n)Cablb
1'0, ~88!

et
222Labla

2lb
2'0, ~89!

et
112Labla

1lb
1'0, ~90!

l a
1Cablb

22 l a
2Cablb

1'0, ~91!

]sLabla
2lb

212i ~jl2!~]sul2!12l 2Psl22L22'0,
~92!

]sLabla
1lb

112i ~jl1!~]sul1!12l 1Psl12L11'0,
~93!

]sLabla
1lb

21 i ~jl1!~]sul2!2 i ~jl2!~]sul1!

1 l 1Psl21 l 2Psl1'0, ~94!

where the weak equality sign is used to stress that one
use the constraints in solving the above system of equati
For brevity, in Eqs.~85!–~94! and below we often omit
spinor indices in the contractions

~]sul6![]sublb
6 , ~jl6![jblb

6 ,

l 6Psl6[ l a
6Ps

ablb
6 , l 6Ll6[ l a

6Ls
ablb

6 . ~95!

Note that Eqs.~85!–~91! come from the requirement oft
preservation of the primary constraints, while that for t
secondary constraints leads to Eqs.~92!–~94!. Thus the
08500
w
w

n-

r

-

ay
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above statement about the appearance of the secondary
straint~81! can be checked by studying Eqs.~85!–~91! with
l (0)50. In this case the contraction of Eq.~87! with
(2la

2) and of Eq.~88! with la
1 results, respectively, in the

equations et
22l1Psl22es

22l1Ll2'0 and
et

11l1Psl22es
11l1Ll2'0. Due to the nondegenerac

of the zweibein, Eq.~84!, the solution to these two equation
is trivial, i.e. it implies l1Ll2'0 and l1Psl2'0, the
last of which is just the secondary constraint~81!.

To solve this system of equations for the Lagrange mu
pliers and thus to describe explicitly the first class co
straints, we can use the auxiliary spinor fieldsua

I (j) defined
as in Eqs.~40!, ~41!. The general solution of Eqs.~85!–~94!
obtained in such a framework can be found in Appendix
@Eqs.~B1!–~B7!#. Schematically, it reads

Lab5bIJuaIubJ1et
11~ . . . !1et

22~ . . . !, ~96!

ja5k Iu
aI1

et
11

es
11

~]sul2!l1a2
et

22

es
22

~]sul1!l2a,

~97!

l a
15v (0)la

11et
11~ . . . !1et

22~ . . . !, ~98!

l a
252v (0)la

21et
11~ . . . !1et

22~ . . . !, ~99!

L665]set
6662es

66v (0)1et
11~ . . . !1et

22~ . . . !,
~100!

L (n)524 det~em
a ![22~et

22es
112et

11es
22!,

~101!

l (0)50. ~102!

In this solution the parameters

bosonic: bIJ5bJI,v (0),et
66 , h66, ~103!

fermionic: k I , ~104!

are indefinite. They correspond to the first class constrai

P IJ
ªP abuaIubJ'0, ~105!

D I
ªD auaI'0, ~106!

G(0)
ªla

1P1
a(l)2la

2P2
a(l)12es

11P11
s 22es

22P22
s '0,

~107!
7-10
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F̃11ªF111]sP11
s 22Vs

(0)P11
s 22es

22N

2Fl2al2b1
2

es
11

@lg
2Ps

gal1b2~l2Psl1!l2al1b1~l2Psl2!l1al1b#GPab

2
1

es
11

~]sul2!~l1aDa!2
1

2es
11

@es
22Vs

111es
11Vs

221 i ]sul1]sul21Ps
ab~]sla

1lb
22la

1]slb
2!#

3S la
2P1

a(l)

es
22

1
la

1P2
a(l)

es
11 D 2

1

es
11

~]sla
21Vs

(0)la
2!P2

a(l) , ~108!

F̃22ªF222]sP22
s 12Vs

(0)P22
s 22es

11N

1Fl1al1b2
2

es
22

@lg
1Ps

gal2b2~l1Psl1!l2al2b1~l1Psl2!l1al2b#GPab

2
1

es
22

~]sul1!~l2aDa!1
1

2es
22

@2es
22Vs

112es
11Vs

221 i ]sul1]sul22Ps
ab~]sla

1lb
22la

1]slb
2!#

3S la
2P1

a(l)

es
22

1
la

1P2
a(l)

es
11 D 1

1

es
22

~]sla
11Vs

(0)la
1!P1

a(l) , ~109!
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P66
t '0. ~110!

In Eqs.~108!,~109! @cf. Eqs.~43!#

Vs
11

ª]sl1Cl1, Vs
22

ª]sl2Cl2, ~111!

Vs
(0)
ª

1

2
~]sl1Cl22l1C]sl2!. ~112!

and the relation

da
b'la

1l2b2la
2l1b2ua

I uJbCIJ , ~113!

l6b
ªCbala

6 , uIb
ªCbaua

I , ~114!

is used to remove the auxiliary variablesua
I in all places

where it is possible. Note that Eq.~113! is a consequence o
the constraint~77! and of the definition of theua

I spinors,
Eqs. ~40!,~41! ~see further discussion on the use ofu vari-
ables below!. Thus we are allowed to use them in the so
tion of the equation for the Lagrange multipliers and, then
the definition of the first class constraints, as the produc
any two constraints is a first class one since its Pois
brackets with any other constraint vanishes weakly.

Using the Poisson brackets~71!, the first class constraint
generate gauge symmetries. In our dynamical system the
mionic first class constraints~106! are the generators of th
(n22)-parametrick symmetry ~58!–~60!. The P IJ in Eq.
~105! are the1

2 (n21)(n22) generators of theb symmetry
~62!. The constraintG(0) ~107! generates theSO(1,1) gauge
08500
-
n
f
n

er-

symmetry ~28!. Finally, the constraintsF̃66 , Eqs. ~108!,
~109!, generate worldvolume reparametrizations. They p
vide a counterpart of the Virasoro constraints characteri
of the Green-Schwarz superstring action. Thus, as could
expected, ourS „[n(n11)/2]un… supersymmetric string is a two
dimensional conformal field theory.

As was noted above, the presence of the first class c
straints ~110! indicates the pure gauge nature of the fie
et

66(j); the freedom of the gauge fixing is, neverthele
restricted by the ‘‘topological’’ conditions~84!.

Note that thek-symmetry andb-symmetry generators
Eqs. ~106! and ~105!, are theua

I and ua
I ub

J components of
Eq. ~73! and Eq.~72!, respectively, while all other first clas
constraints can be defined without any reference to auxil
variables.

The use of the auxiliary spinorsua
I (j) to define the first

class constraints requires some discussion. Clearly,
spinor can be decomposed in the basis~42!, but the use ofua

I

to define constraints requires us, to be rigorous, to cons
them as~auxiliary! dynamical variables, to introduce mo
menta, and to take into account any additional constraints
them, including Eqs.~41! and the vanishing of the moment
conjugate toua

I ~cf. @53#!. An alternative is to consider thes
auxiliary spinors as defined by Eqs.~40!, ~41! and by the
gauge symmetries of these constraints, i.e. to treat them
some implicit functions ofla

6 ~cf. @63#!. Such a description
can be obtained rigorously by the successive gauge fixing
all the additional gauge symmetries that act only onua

I and
by introducing Dirac brackets accounting for all the seco
class constraints for theua

I variables. Nevertheless, wit
some precautions, the above simpler alternative can be
7-11
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from the beginning. In this case, one has to keep in mind
particular, that theua

I ’s do not commute withP6
a(l) . Indeed,

as conditions~40! have to be treated in a strong sense, o
has to assume @P6

a(l)(s),ub
I (s8)#P'6lb

6Cagug
I d(s

2s8). However, one notices that this does not change
result of the analysis of the number of first and second c
constraints among Eqs.~72!–~77!, ~80!, ~81!, which do not
involve ug

I (j). The reason is that one only usesug
I (j) as

multipliers needed to extract the first and second class c
straints from the mixed ones~72!, ~73!. Thus, the Poisson
brackets of the projected constraintsP abuaIubJ, D auaI

with other constraints~e.g., @P abuaIubJ, . . . #P) and the
projected Poisson brackets of the original constraintsPab ,
Da with the same ones~e.g., uaIubJ@Pab , . . . #P) are
equivalent in the sense that a non-zero differen
(@P abuaIubJ, . . . #P2uaIubJ@Pab , . . . #P) will be propor-
tional to Pab or Da and, hence, will vanish weakly. Thi
observation allows us to use the basis~42! to solve the equa-
tions ~85!–~91!, that is to say, to decompose the constrai
~72!–~77!, ~80!, ~81! into first and second class ones, witho
introducing momenta for theug

I (j) and without studying the
constraints restricting these variables.

The remaining constraints are second class. In particu
these are thel6 components of the fermionic constrain
~73!,

D 65D ala65pala61 ies
66ublb

7'0 ~115!

with Poisson brackets

$D 1~s!,D 1~s8!%P'12ies
11d~s2s8!,

$D 2~s!,D 2~s8!%P'22ies
22d~s2s8!,

$D 1~s!,D 2~s8!%P'0 ~116!

@recall that, having in mind the possibility of fixing the con
formal gauge~64!, we assume nondegeneracy ofes

66(s),
i.e. that the expression 1/es

66(s) is well defined#. The selec-
tion of the basic second class constraints and the simplifi
tion of their Poisson bracket algebra is a technically involv
problem.

In the next section we show that the dynamical degree
freedom of our supersymmetric string inS „[n(n11)/2]un… may
be presented in a more economic way in terms of constra
OSp(2nu1) supertwistors. The Hamiltonian mechanics a
simplifies in this symplectic supertwistor formulation. In pa
ticular, all the first class constraints can be extracted with
using the auxiliary fieldsua

I . The reason is that the su
pertwistor variables are invariant under bothk and b sym-
metry. Thus, moving to the twistor form of our action mea
rewriting it in terms of triviallyk- andb-invariant quantities,
effectively removing all variables that transform nontrivial
under these gauge symmetries. Since the descriptionk
andb symmetries is the one requiring the introduction of t
ua

I (j) fields, it is natural that these are not needed in
supertwistor Hamiltonian approach.

This consideration already allows us to calculate the nu
ber of the~field theoretical worldsheet! degrees of freedom
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of our S (n(n11)/2un) supersymmetric string model. The dy
namical system described by the action~18! possesses12 (n
21)(n22)15 bosonic first class constraints@Eqs. ~105!,
~107!, ~108!, ~109! and ~110!# out of a total number of
1
2 n(n11)12n18 constraints@Eqs. ~72!, ~74!, ~75!, ~76!,
~77!, ~80! and~81!#. This leaves 4n12 bosonic second clas
constraints. Since the phase space dimension correspon
to the worldvolume bosonic fields Z M(t,s)
5(Xab,la

6 ,es
66 ,et

66) is 2@n(n11)/212n14#, the action
~18! turns out to have (4n26) bosonic degrees of freedom

Likewise, the (n22) fermionic first class constraint
~106! and the 2 fermionic second class constraints, E
~115!, reduce the original 2n phase space fermionic degre
of freedom of the action~18! down to 2.

Thus our supersymmetric string model inS „[n(n11)/2]un…

superspace carries (4n26) bosonic and 2 fermionic world
volume field theoretical degrees of freedom. Treating
numbern as the number of components of an irreducib
spinor representation of theD-dimensional Lorentz group
SO(1,D21), one finds the results in Table I, where DO
indicates degrees of freedom. Thus, the number of bos
degrees of freedom of ourS „[n(n11)/2]un… supersymmetric
string model exceeds that of the Green-Schwarz supers
@where it exists, 4n26.2(D22)], while the number of
fermionic dimensions, 2, is smaller than that of the Gre
Schwarz superstring forD56,10.

The additional bosonic degrees of freedom might
treated as higher spin degrees of freedom and/or as co
sponding to the additional ‘‘brane’’ central charges in t
maximal supersymmetry algebra~4!. The smaller number of
physical fermionic degrees of freedom just reflects the pr
ence of supernumeraryk symmetries@(n22).n/2 for n
.4] in our S (36u8), and S (528u32), supersymmetric string
models. OurS „[n(n11)/2]un… superstring model describes, a
argued, the excitations of a BPS state preservingk5(n
22) supersymmetries~a 30

32 BPS state for the supersymme
ric string in the enlargedD511 superspaceS (528u32)).

A search for solitonic solutions of the usualD511 and
D510 type II supergravities with such properties is bei
carried out at present@32,33,67#. If successful, it would be
interesting to study how the additional bosonic degrees
freedom of our model are mapped into the moduli of the
solutions, presumably related to the gauge fields of the
pergravity multiplet~cf. @6#!. Nevertheless, if it were shown
that such solutions do not appear in the standardD511 su-
pergravity, this could indicate that M theory does require
extension of the usual superspace for its adequate des
tion.

TABLE I. Supersymmetric string model degrees of freedom.

D n No. of bosonic No. of fermionic BPS
DOFs54n26 DOFs52 states

3 2 2 2 No
4 4 10 2 1/2
6 8 26 2 6/8
10 16 58 2 14/16
11 32 122 2 30/32
7-12
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To conclude this section we comment on the BPS pr
interpretation of our model. In accordance with@21#, it can
be treated as a composite of #p5n2k52 BPS preons. To
support this conclusion one can have a look at the constr
~72!. As we have shown, it is a mixture of first and seco
class constraints. However, performing a ‘‘conversion’’
the second class constraints@64# to obtain first class con
straints~in a way similar to the one carried out for a pointlik
model in @40#!, one arrives at the first class constraint

Pab5Pab1es
11l̃a

2l̃b
22es

22l̃a
1l̃b

1'0, ~117!

where thel̃a
6 are related, but not just equal, tola

6 . In the
quantum theory this first class constraint can be imposed
quantum states giving rise to a relation similar to Eq.~9!
with #p52.

V. ORTHOSYMPLECTIC TWISTOR FORM
OF THE S „†n„n¿1…Õ2‡zn…

SUPERSYMMETRIC STRING ACTION

A further analysis of the Hamiltonian mechanics of o
S „[n(n11)/2]un… supersymmetric string model would becom
quite involved. Instead, we present in this section a m
economic description.

The action~18! can be rewritten (a851) in the form

S5E
W2

@e11`~dm2ala
22m2adla

22 idh2h2!

2e22`~dm1ala
12m1adla

12 idh1h1!

2e11`e22#, ~118!

where the bosonicm6a and the fermionich6 are defined by

m6a5Xablb
62

i

2
uaublb

6 , h65ublb
6 . ~119!

Equations~119! are reminiscent of the Ferber generalizati
@51# of the Penrose correspondence relation@23# ~see also
@21,22#!. The two sets of 2n11 variables belonging to the
same real one-dimensional~Majorana-Weyl spinor! repre-
sentation of the worldsheet Lorentz groupSO(1,1),

~m1a,la
1 ,h1!ªY1S, ~m2a,la

2 ,h2!ªY2S, ~120!

can be treated as the components of twoOSp(2nu1) su-
pertwistors,Y1S andY2S. However, Eqs.~119! considered
together imply the following constraint:

la
1m2a2la

2m1a2 ih2h150. ~121!

One has to consider as well the ‘‘kinematic’’ constraint~20!,
which breaksGL(n,R) down toSp(n). In terms of the su-
pertwistorsY6S the action~18! and the constraints~121!,
~20! can be written as follows:
08500
n

int

n

e

S5E
W2

@e11`dY2SVSPY2P

2e22`dY1SVSPY1P2e11`e22#; ~122!

Y1SVSPY2P50, ~123!

Y1SCSPY2P51, ~124!

where the nondegenerate matrix VSP

52(21)deg(6S)deg(6P)VPS is the orthosymplectic metric,

VSP5H 0 da
b 0

2db
a 0 0

0 0 2 i
J , ~125!

preserved byOSp(2nu1). The degenerate matrixCSP in Eq.
~124! has the form

CSP5H 0 0 0

0 Cab 0

0 0 0
J ~126!

with Cab defined in Eq.~22!.
One can also find the orthosymplectic twistor form for t

action ~118! with unconstrained spinors. It reads

S5E
W2

@e11`~dM 2aLa
22M 2adLa

22 idx2x2!

2e22`~dM 1aLa
12M 1adLa

12 idx1x1!

2e11`e22~CabLa
1Lb

2!2#, ~127!

where

M 6a5XabLb
62

i

2
uaubLb

6 , x65ubLb
6 . ~128!

Equation~128! differs from Eq.~119! only by replacement of
the constrained dimensionlessl6 by the unconstrained di
mensionful L6. But, as a result, theOSp(2nu1) super-
twistors

Y6S
ª~M 6a,La

6 ,x6! ~129!

are restricted by only one condition similar to Eq.~123!,

Y1SVSPY2P50. ~130!

The action in terms ofY6S includes the degenerate matr
CSP , and reads

S5E
W2

@e11`dY2SVSPY2P2e22`dY1SVSPY1P

2e11`e22~Y1SCSPY2P!2#. ~131!

The global symmetry of ourS „[n(n11)/2]un… supersymmet-
ric string is transparent now. The orthosymplectic supertw
7-13
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ors Y6S are both in the fundamental representation of
OSp(2nu1) supergroup. The constraints~123! @or ~130!# are
alsoOSp(2nu1) invariant. However, condition~124! @or the
last term in the action~131!# breaks theOSp(2nu1) invari-
ance down to the semidirect productS „[n(n11)/2]un…3.Sp(n)
of Sp(n),Sp(2n) and the maximal superspace gro
S „[n(n11)/2]un… ~see Appendix A!.

Summarizing, ourS „[n(n11)/2]un… supersymmetric string
model breaks theOSp(2nu1) symmetry down to a general
zationS „[n(n11)/2]un…3.Sp(n) of the Poincare´ supergroup. In
contrast, both the pointlike model in@22# and the tensionles
superbrane model of@34# possess fullOSp(2nu1) symmetry.
This is in agreement with treatingOSp(2nu1) as a general-
ized superconformal group, as the standard conformal
superconformal symmetry is broken in any model with ma
tension or another dimensionful parameter.

VI. HAMILTONIAN ANALYSIS IN THE OSp„2nz1…
SUPERTWISTOR FORMULATION

The Hamiltonian analysis simplifies in the supertwis
formulation ~122! of the action~18!. This is due to the fact
that moving from~18! to ~122! reduces essentially the num
ber of fields involved in the model.

The Lagrangian of the action~122! reads

L5~et
11]sY

2S
2es

11]tY
2S

!V
SP

Y
2P

2~et
22]sY

1S
2es

22]tY
1S

!V
SP

Y
1P

2~et
11es

222es
11et

22!, ~132!

and involves the 2(2n1112)54n16 configuration space
worldvolume fields

Z̃M̃[Z̃M̃~t,s!5~Y
6S

,et
66 ,es

66!. ~133!

The calculation of their canonical momenta

P̃M̃5~P
6S

,P66
t ,P66

s !5
]L

]~]tZ̃M̃!
~134!

provides the following set of primary constraints:

P
6S

5P
6S

7es
77V

SP
Y

6P
'0, ~135!

P66
s '0, ~136!

P66
t '0. ~137!

Conditions ~123!, ~124! should also be taken into accou
after all the Poisson brackets are calculated and, hence
also primary constraints,

UªY1SVSPY2P'0, ~138!

NªY1SCSPY2P21'0. ~139!

The canonicalHamiltonian densityH0 corresponding to
the action~122! reads
08500
e

nd
s,

r

are

H05@2et
11]sY

2S
V

SP
Y

2P
1et

22]sY
1S

V
SP

Y
1P

1~et
11es

222es
11et

22!#. ~140!

The preservation of the primary constraints undert evolu-
tion ~see Sec. IV! leads to the secondary constraints

F115]sY
2S

V
SP

Y
2P

2es
22'0, ~141!

F225]sY
1S

V
SP

Y
1P

2es
11'0, ~142!

F (0)5]sY
1S

V
SP

Y
2P

2Y
1S

V
SP

]sY
2P

'0.
~143!

Again ~see Sec. IV! the canonical Hamiltonian vanishe
on the surface of constraints~141!, ~142!, and thus thet
evolution is defined by the Hamiltonian density@cf. Eq.~83!#

H 852et
11F111et

22F221 l (0)F (0)1L6SP6S

1L (0)U1L (n)N1L66P66
s 1h66P66

t ~144!

and the canonical Poisson brackets

@P
6L

~s!,Y
6S

~s8!%
P
52d

L

S
d~s2s8!, ~145!

@es
66~s!,P66

s ~s8!#
P
5d~s2s8!, ~146!

@et
66~s!,P66

t ~s8!#
P
5d~s2s8!. ~147!

Then thet-preservation requirement of the primary an
secondary constraints results in the following system
equations for the Lagrange multipliers:

L
1S

'
et

22

es
22

]sY
1S

1
]set

222L22

2es
22

Y
1S

1
l (0)

es
22

]sY
2S

1
]sl (0)2L (0)

2es
22

Y
2S

2
L (n)

2es
22

Y
2P

~CV!
P

S
, ~148!

L
2S

'
et

11

es
11

]sY
2S

1
]set

112L11

2es
11

Y
2S

2
l (0)

es
11

]sY
1S

2
]sl (0)1L (0)

2es
11

Y
1S

2
L (n)

2es
11

Y
1P

~CV!
P

S
, ~149!

L
1S

V
SP

Y
2P

'L
2S

V
SP

Y
1P

, ~150!

L
1S

C
SP

Y
2P

'L
2S

C
SP

Y
1P

, ~151!

L
2S

V
SP

Y
2P

'et
22 , ~152!

L
1S

V
SP

Y
1P

'et
11 , ~153!

and
7-14
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L22']sL
2S

V
SP

Y
2P

2L
2S

V
SP

]sY
2P

, ~154!

L11']sL
1S

V
SP

Y
1P

2L
1S

V
SP

]sY
1P

, ~155!

(
6

~]sL
6S

V
SP

Y
7S

2L
6S

V
SP

]sY
7S

!'0, ~156!

where (CV)
P

S
ªC

PL
V

LS
and V

SP
52V

SP
is the inverse

of the orthosymplectic metric~125!,

V
SL

V
LP

5d
S

P
, V

SP
5H 0 2db

a 0

da
b 0 0

0 0 i
J . ~157!

Equations~148!–~153! come from the preservation of th
primary constraints, while Eqs.~154!–~156! from the preser-
vation of the secondary constraints. Again, as in Sec. IV,
can follow the appearance of the secondary constraint~143!
by considering Eqs.~148!–~153! with l (0)50.

Denoting

As
(0)5

1

2
~]sY

1S
C

SP
Y

2P
2Y

1S
C

SP
]sY

2P
!, ~158!

As
115]sY

1S
C

SP
Y

1P
, ~159!

As
225]sY

2S
C

SP
Y

2P
, ~160!

B(0)5S2
]sY1V]sY2

2es
11es

22
, ~161!

S5
1

2 S As
11

es
11

1
As

22

es
22 D , ~162!

one can write the general solution of Eqs.~148!–~153! in the
form

L
1S

'v (0)Y
1S

1
et

22

es
22

~]sY
1S

2As
(0)Y

1S
2es

11B(0)Y
2S

1es
11~Y2CV!

S
!1et

11~B(0)Y
2S

2~Y2CV!
S
!,

~163!

L
2S

'2v (0)Y
2S

1
et

11

es
11

~]sY
2S

1As
(0)Y

2S
1es

22B(0)Y
1S

2es
22~Y1CV!

S
!2et

22~B(0)Y
1S

2~Y1CV!
S
!,

~164!

L (0)52~et
22es

112et
11es

22!B(0), ~165!

L665]set
6672et

66As
(0)62es

66v (0), ~166!
08500
e

L (n)524 det~em
a ![22~et

22es
112et

11es
22!,

~167!

l (0)50. ~168!

Note that Eqs.~167!,~168! have the same form as Eqs.~B6!,
~B7! ~Appendix B! for the Lagrange multipliers in the origi
nal formulation, and Eqs.~166! are similar to Eqs.~B5!.

The above solution contains the indefinite worldsh
field parametersh66(j), v (0)(j) andet

66(j) which corre-
spond to the five first class constraints which generate
gauge symmetries of the symplectic twistor formulation
our S „[n(n11)/2]un… supersymmetric string model. They are

P66
t '0 ~169!

and

G(0)
ªY

1SP
1S

2Y
2SP

2S
12es

11P11
s 22es

22P22
s '0,

~170!

F̃11ªF111]sP11
s 12As

(0)P11
s 12es

22B(0)U
22es

22N1F11

6S P6S , ~171!

F̃22ªF222]sP22
s 12As

(0)P22
s 12es

11B(0)U
22es

11N1F22

6S P6S , ~172!

where

F11

1S
52B(0)Y

2S
1~Y2CV!

S
, ~173!

F11

2S
52

1

es
11

@]sY
2S

1As
(0)Y

2S

1B(0)es
22Y

1S
2es

22~Y1CV!
S
#, ~174!

F22

1S
5

1

es
22

@]sY
1S

2As
(0)Y

1S
2B(0)es

11Y
2S

1es
11~Y2CV!

S
#, ~175!

F22

2S
52B(0)Y

1S
1~Y1CV!

S
. ~176!

Using Poisson brackets, the constraint~170! generates the
SO(1,1) worldsheet Lorentz gauge symmetry, Eqs.~171!
and ~172! are the reparametrization~Virasoro! generators,
and the symmetry generated by Eqs.~169! indicates the pure
gauge nature of theet

66(j) fields @again, subject to the non
degeneracy condition~84! that restricts the gauge choic
freedom for them#.

Note that both theb-symmetry and thek-symmetry gen-
erators, Eqs.~105! and~106!, are not present in the symplec
tic supertwistor formulation. Actually, the number of var
ables in this formulation minus the constraint among the
Eq. ~123!, is (4n16)21 and equal to the number of var
ables in the previous formulation@n(n11)/21n12n14#,
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minus the number ofb- and k-symmetry generators@(n
21)(n22)/21(n22)#. This clearly indicates that the tran
sition to the supertwistor form of the action corresponds
an implicit gauge fixing of these symmetries and the remo
of the additional variables, since the remaining supertwis
ones are invariant under bothb andk symmetry.13

Other constraints are second class. Indeed, e.g. the alg
of the constraintsP6S , Eq. ~135!,

@P
1S

~s!,P
1L

~s8!%
P
52es

22V
LS

d~s2s8!, ~177!

@P
2S

~s!,P
2L

~s8!%
P
522es

11V
LS

d~s2s8!, ~178!

@P
1S

~s!,P
2L

~s8!%
P
50, ~179!

clearly indicates their second class nature. As such, one
introduce the graded Dirac~or starred@62#! brackets that
allow one to put them strongly equal to zero. For any ar
trary two ~bosonic or fermionic! functionalsf and g of the
canonical variables~133!, ~134! they are defined by

@ f ~s1!,g~s2!%
D

5@ f ~s1!,g~s2!%
P
2

1

2E dsS 1

es
22~s!

@ f ~s1!,P
1S

~s!%
P

3V
PS

@P
1P

~s!,g~s2!%
P

2
1

es
11~s!

@ f ~s1!,P
2S

~s!%
P
V

PS
@P

2P
~s!,g~s2!%

PD .

~180!

Using these and reducing further the number of phase s
degrees of freedom by settingP

6S
50 strongly, the su-

pertwistor becomes a self-conjugate variable,

@Y
6S

~s!,Y
6P

~s8!%
D
57

1

2es
77

V
SP

d~s2s8!. ~181!

For the ‘‘components’’ of the supertwistor, Eq.~181! implies

@la
6~s!,m6b~s8!#

D
57

1

2es
77

da
bd~s2s8!, ~182!

$h6~s!h6~s8!%
D
57

i

2es
77

d~s2s8!.

~183!

The Dirac brackets fores
66 , et

66 and P66
t coincide with

the Poisson brackets, while forP66
s one finds

@P11
s ~s!, . . . #

D
5@P11

s ~s!, . . . #
P

2
1

2es
11

Y
2S

~s!@P
2S

~s!, . . . %
P
,

~184!
08500
o
l
r

bra

an

i-

ce

@P22
s ~s!, . . . #

D
5@P22

s ~s!, . . . #
P

2
1

2es
22

Y
1S

~s!@P
1S

~s!, . . . %
P
.

~185!

However, P66
s (s) still commute among themselves

@P66
s (s),P66

s (s8)#
D
505@P11

s (s),P22
s (s8)#

D
.

When the constraints~135! are taken as strong equation
the first class constraints~170!–~172! simplify to

G(0)
ª2es

11P11
s 22es

22P22
s '0, ~186!

F̃11ªF111]sP11
s 12As

(0)P11
s

12es
22B(0)U22es

22N, ~187!

F̃22ªF222]sP22
s 12As

(0)P22
s

12es
11B(0)U22es

11N, ~188!

and the remaining second class constraints can be take
the form

K (0)
ªes

11P11
s 1es

22P22
s '0, ~189!

N5Y1SCSPY2P21'0, ~190!

U5Y1SVSPY2P'0, ~191!

F (0)5]sY
1S

V
SP

Y
2P

2Y
1S

V
SP

]sY
2P

'0.
~192!

One has to take into account that, under the Dirac brack
P66

s andY7S do not commute,

@P11
s ~s!,Y2S~s8!#

D
5

1

2es
11

Y
2S

~s!d~s2s8!,

~193!

@P22
s ~s!,Y1S~s8!#

D
5

1

2es
22

Y
1S

~s!d~s2s8!.

~194!

Then one easily checks that, under Dirac brackets,G(0) gen-
erates theSO(1,1) transformations of the supertwistors,

@G(0)~s!,Y6S~s8!#
D
57Y

6S
~s!d~s2s8!. ~195!

On the other hand, one finds that the second class const
U interchanges theY1S andY2S supertwistors,

@U~s!,Y1S~s8!#
D
5

1

2es
22

Y
2S

~s!d~s2s8!,

13This invariance was known for the massless superparticle
the tensionless superstring cases; see e.g.@22,34,40,65#; cf. @59#.
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@U~s!,Y2S~s8!#
D
5

1

2es
11

Y
1S

~s!d~s2s8!. ~196!

It is interesting to note that in the original supertwistor fo
mulation of theD54, N51 superparticle@51# there exists a
counterpart of theU constraint; however, there it is the firs
class constraint generating the internalU(1) symmetry.14

The Dirac brackets of the above second class constra
~189!–~192! can be found in Appendix B, Eqs.~B10!–~B14!.
They are characterized by the matrix shown in Table
whereS(s)5 1

2 @As
11(s)/es

11(s)1As
22(s)/es

22(s)# @Eq.
~162!# and dss8[d(s2s8). This table indicates that th
K (0) constraint is canonically conjugate toN while the sec-
ond class constraintF (0)1SK (0) is conjugate toU. One may
easily pass to the~doubly starred! Dirac brackets with re-
spect to the above mentioned four second class constra
However, the new Dirac brackets for the supertwistor va
ables would have a very complicated form, so that it loo
more practical either to apply the formalism using~singly
starred! Dirac brackets@Eq. ~180!# and simple first and sec
ond class constraints, Eqs.~186!–~188! and ~189!–~192!, or
to search for a conversion@64# of the remaining second clas
constraints into first class ones. Note that a phenome
similar to conversion occurs when one moves from Eq.~122!
to the dynamical system with unnormalized twistors d
scribed by the action~131!. We discuss this in more detail i
the next section.

As the simplest application of the above Hamiltoni
analysis let us calculate the number of field theoretical
grees of freedom of the dynamical system~122!. In this su-
pertwistor formulation one finds from Eqs.~133! and ~120!
(4n14) bosonic and 2 fermionic configuration space va
ables, which corresponds to a phase space with 2(4n14)
and 4 fermionic ‘‘dimensions.’’ The system has 5 boson
first class constraints, Eqs.~169!–~172!, out of a total num-
ber of 4n19 bosonic constraints@the bosonic components o
Eqs. ~135! and ~136!, ~137!, ~141!–~143!#. Thus, in agree-
ment with Sec. IV, one finds that theS „[n(n11)/2]un… supersym-
metric string described by the action~122! possesses 4n
26 bosonic degrees of freedom. Likewise, the 2 fermio
constraints of the action@the fermionic components of Eq
~135!# reduce to 2 the fermionic degrees of freedom.

14See@66# for a detailed study of the Hamiltonian mechanics
the twistorlike formulation of theD54 superparticle, where the
possibility of constraint class transmutation was noted.

TABLE II. Matrix of Dirac brackets of Eqs.~189!–~192!.

@ . . . ↓, . . .→%
D
' (F (0)(s8)1 U(s8) K (0)(s8) N(s8)

1SK (0)(s8))

(F (0)1SK (0))(s) 0 2dss8 0 0
U(s) dss8 0 0 0
K (0)(s) 0 0 0 dss8
N(s) 0 0 2dss8 0
08500
ts

,

ts.
i-
s

on

-

-

-

c

VII. HAMILTONIAN ANALYSIS IN TERMS
OF ‘‘UNNORMALIZED’’ YÁS SUPERTWISTORS

As shown in Sec. V, the action~122! may be considered
as a gauge fixed form of the action~131! written in terms of
supertwistors~129! restricted by only one Lagrangian con
straint ~130!. The second constraint~124!, the ‘‘normaliza-
tion’’ condition that distinguishes among theY6S andY6S

supertwistors, may be obtained by gauge fixing the dir
product of the two scaling gauge symmetries~26! and ~27!
down to theSO(1,1) worldsheet Lorentz symmetry~28! of
the action~122!. As a result, one may expect that the Ham
tonian structure of the model~131! will differ from the one
of the model~122! by the absence of one second class c
straint ~190! and the presence of one additional first cla
constraint replacing~189!.

This is indeed the case. An analysis similar to the o
carried in Sec. VI allows one to find the following set o
primary,

P
6S

5P
6S

7es
77V

SP
Y

6P
'0, ~197!

P66
s '0, ~198!

P66
t '0, ~199!

UªY1SVSPY2P[Y1VY2'0, ~200!

and secondary constraints,

F115]sY2VY22es
22~Y1CY2!2'0, ~201!

F225]sY1VY12es
11~Y1CY2!2'0,

~202!

F (0)5]sY1VY22Y1V]sY2'0, ~203!

that restrict the phase space variables

Z̃M̃[Z̃M̃~t,s!5~Y
6S

,et
66 ,es

66!, ~204!

P̃M̃5~P
6S

,P66
t ,P66

s !5
]L

]~]tZ̃M̃!
.

~205!

The set~197!–~203! contains 6 first class constraints@ver-
sus five first class constraints~169!–~172! in the ~122! sys-
tem#, namely
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P66
t '0, ~206!

2es
11P11

s 2Y2SP2S'0, ~207!

2es
22P22

s 2Y1SP1S'0, ~208!

F̃115F111
2es

22B (0)

~Y1CY2!2
U2]sP11

s

2
B (0)

~Y1CY2!2
Y2SP1S1~Y1CY2!Y2CVP1

2
1

es
11 F ]sY2SP2S1

es
22B (0)

~Y1CY2!2
Y1SP2S

2es
22~Y1CY2!Y1CVP2G'0, ~209!

F̃225F221
2es

11B (0)

~Y1CY2!2
U1]sP22

s

2
B (0)

~Y1CY2!2
Y1SP2S1~Y1CY2!Y1CVP2

1
1

es
22 F ]sY1SP1S2

es
11B (0)

~Y1CY2!2
Y2SP1S

1es
11~Y1CY2!~Y2CVP1!G'0, ~210!

where@cf. Eq. ~161!#

B (0)5
1

2 S ]sY1CY1~Y1CY2!

es
11

1
]sY2CY2~Y1CY2!

es
22

2
]sY1V]sY2

es
11es

22 D . ~211!

Using Dirac brackets to account for the second class c
straints~197!, where@cf. Eq. ~181!#

@Y
6S

~s!,Y
6P

~s8!%
D
57

1

2es
77

V
SP

d~s2s8!,

~212!

the first class constraints simplify to

P66
t '0, ~213!

P11
s '0, ~214!

P22
s '0, ~215!
08500
n-

F̃115F111
2es

22B (0)

~Y1CY2!2
U'0, ~216!

F̃225F221
2es

11B (0)

~Y1CY2!2
U'0, ~217!

which clearly corresponds to the set of constraints~186!–
~188! of the ‘‘normalized’’ supertwistor description with th
addition of the constraint~189!, which is now ‘‘converted’’
into a first class one due to disappearance of the norma
tion constraint~190!.

The remaining two bosonic constraints, Eqs.~200! and
~203!, are second class. Their Dirac bracket

@U~s!,F (0)~s8!#D5~Y1CY2!2d~s2s8!

1S F11

2es
11

1
F22

2es
22D d~s2s8!

'~Y1CY2!2d~s2s8! ~218!

is nonvanishing due to the linear independence of theY
1S

and Y
2S

supertwistors~129! ~coming from the linear inde-
pendence of theirLa

1 and La
2 components,La

1CabLa
2

Þ0). For a further simplification of the Hamiltonian forma
ism it might be convenient to make a conversion of this p
of second class constraints into first class by adding a pa
canonically conjugate variables,q(j) and P(q)(j),
(@q(s),P(q)(s8)#P5d(s2s8)) to our phase space.

The above Hamiltonian formalism and its further dev
opment can be applied to quantize theS „[n(n11)/2]un… super-
symmetric string model. This should produce a quant
higher spin generalization of the Green-Schwarz superst
for n54,8,16 and, forn532, an exactly solvable quantum
description of a conformal field theory carrying, someho
information about the nonperturbative brane BPS states o
theory.

VIII. SUPERSYMMETRIC
p-BRANES IN MAXIMAL SUPERSPACE S „†n„n¿1…Õ2‡zn…

The model may be generalized to describe high
dimensional extended objects~supersymmetricp-branes! in
S „[n(n11)/2]un….

The expression of the supersymmetricp-brane action in
terms of dimensionful unconstrained bosonic spinors re
@cf. Eq. ~25!#

Sp5E
Wp11

ea
`p`Pab~La

r r rs
a Lb

s !

2~2a8!pE
Wp11

e`(p11)det~CabLa
r Lb

s !, ~219!

wherea50,1, . . . ,p, r 51, . . . ,ñ(p), a51, . . . ,n,

ea
`p[

1

p!
eab1 . . . bp

eb1` . . . `ebp, ~220!
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ande`(p11) is theWp11 volume element

e`(p11)[
1

~p11!!
eb1 . . . bp11

eb1` . . . `ebp11.

~221!

In Eq. ~219!, the (p11) ea5djmem
a (j) are auxiliary world-

volume vielbein fields,jm5(t,s1, . . . ,sp) are the world-
volume Wp11 local coordinates andLa

r (j) is a set of ñ

5ñ(p) unconstrained auxiliary real bosonic fields with
‘‘spacetime’’ spinorial@actually, anSp(n) vector# index a

51, . . . ,n. The numberñ(p) of real spinor fieldsLa
r (j) as

well as the meaning of the symmetric real matricesr rs
a de-

pend on the worldvolume dimensiond5p11. For d
52,3,4 ~mod 8!, where a Majorana spinor representation e
ists, ther rs

a areSpin(1,p) gamma matrices multiplied by th
charge conjugation matrix or sigma matrices, provided th
are symmetric. If not, it is always possible to find a re
symmetric matrix by doubling the indexr, ř 5rI (I 51,2), as
in the case ofd56 symplectic Majorana spinors. For dime
sions with only Dirac spinors~like d55) La

r r rs
a Lb

s should

be understood asL̄agaLb1L̄bgaLa , etc. For simplicity we
present Eq.~219! and other formulas of this section for ‘‘Ma
jorana dimensions’’d with symmetricCg matrices; the gen-
eralization to the other cases is straightforward, although
should be careful determining the value ofñ(p) for a given
d5p11. For p51, where the irreducible Majorana-Wey
spinor is one dimensional@Spin(1,1) is Abelian#, one needs
La

r to be in a reducible Majorana representation in
worldsheet spinor indexr, i.e.La

r 5(La
1 ,La

2); otherwise the
second term in Eq.~219! would be zero and the action woul
become that of a tensionlessS „[n(n11)/2]un… supersymmetric
string. Then, the action~219! reduces to~25! using ~21!.

The fermionic variationd f of the action ~219!, d fSp ,
comes only from the variation ofPab. Let us simplify it by
taking d fX

ab5 id fu
(aub) @cf. below Eq. ~29!#, so that

i d f
Pab50 andd fP

ab522idu (adub). As Pab enters in the

action ~219! only through its contraction withLa
r g rs

a Lb
s we

find

d fSp522i E
Wp11

ea
`p`duaLa

r r rs
a Lb

s dub. ~222!

Thus only ñ(p) fermionic variationsdubLb
s out of the n

variationsdub are effectively involved ind fSp .
This reflects the presence of@n2ñ(p)# k symmetries in

the dynamical system described by the supersymme
p-brane action~219!. They are defined by

dkXab5 idku (aub), dkea50, ~223!

and by the following condition ondkua:

dkuaLa
r 50, r 51, . . . ,ñ~p!. ~224!

This can be solved, using the auxiliary spinor fieldsuaJ

~where nowJ51, . . . ,@n2ñ(p)#) orthogonal toLa
r , as
08500
-

y
l

e

e

ic

dkua5k
J
~j!uaJ~j!, uaJ~j!La

r ~j!50,

J51, . . . ,@n2ñ~p!#, r 51, . . . ,ñ~p!.
~225!

The k symmetry~223!, ~225! implies the preservation of al
but ñ(p) supersymmetries by the correspondingn5@n

2ñ(p)#/n BPS state.
For instance, forp52, n532, Spin(1,2)'SL(2,R) and

ñ52. The action~219! then describes excitations of a mem
brane BPS state preserving all but 2 supersymmetries,30

32

BPS state. Forp55 andñ58 the action~219! with n532
describes a24

32 supersymmetric 5-brane model inS (528u32).
Both the supermembrane~M2-brane! and the super-5-bran
~M5-brane! are known in the standardD511 superspace
where they correspond to16

32 BPS states. It is tempting to
speculate that the ‘‘usual’’ M2- and M5-superbranes are
lated to the generalizedS (528u32) supersymmetric 2-brane an
5-brane described by the action~222! for p52 and 5. For
instance, they might be related to some particular soluti
to the equations of motion of the corresponding30

32 and 24
32

S (528u32) models preserving 16 supersymmetries and/or w
the result of a dimensional reduction of them. For thep55
case a question of special interest would be the role of
M5 self-dual worldvolume gauge field in theS (528u32) super-
space description~see@6# for a related discussion!.

For p53 and ñ54 we have a28
32 BPS state, a BPS

3-brane. Neither the Green-Schwarz superstring nor
super-3-brane exist in the standardD511 superspace, but
super-D3-brane does exist in theD510 type IIB superspace
as the superstring does. As we have already noted, altho
S (528u32) also allows a treatment as an enlarged type IIB
perspace@9,20#, the S (528u32) supersymmetricp-brane action
~219! explicitly involves the 32332 matrixCab which can-
not be constructed out of type IIB matrices in aSO(1,9)
Lorentz covariant manner. The same problem appears
the S (528u32) supersymmetric 9-brane described by thep59
version of theS (528u32) model ~219! with ñ516, which cor-
responds to a16

32 BPS state; its possible relation to the spac
time filling type IIB super-D9-brane in the usualD510 su-
perspace is also quite unclear.

IX. CONCLUSIONS AND OUTLOOK

We have presented a supersymmetric string model in
‘‘maximal’’ superspaceS „[n(n11)/2]un… with additional tenso-
rial central charge coordinates~for n.2). The model pos-
sessesn rigid supersymmetries andn22 local fermionick
symmetries. This implies that it provides the worldsheet
tion for the excitations of a BPS state preserving (n22)
supersymmetries. In particular, forn532 our model de-
scribes a supersymmetric string with 30k symmetries in
S (528u32), which corresponds to a BPS state preserving 30
of 32 supersymmetries. This model can be treated as a c
posite of two BPS preons@21# and is the second~after the
D511 Curtright model @5#! tensionful extended objec
model inS (528u32).
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In contrast with the Curtright model@5#, our supersym-
metric string action in the enlargedD511 superspace
S (528u32) does not involve any gamma matrices, but inste
makes use of two constrained bosonic spinor variables,la

1

and la
2 , corresponding to the two BPS preons from whi

the superstring BPS state is composed. As a result, our m
preserves theSp(32) subgroup of theGL(32,R) automor-
phism symmetry of theD511 M algebra.

Our S „[n(n11)/2]un… supersymmetric string model can b
treated as a higher spin generalization of the classical Gr
Schwarz superstring. At the same time, the additio
bosonic tensorial coordinate fields of then532 case might
contain information about topological charges correspond
to the higher branes of the superstring or M theory@67#.

TheS „[n(n11)/2]un… model may also be formulated in term
of a pair of constrained worldvolumeOSp(2nu1) su-
pertwistors. The transition to the supertwistor formulation
similar to that for the massless superparticle and the tens
less S „[n(n11)/2]un… supersymmetricp-branes@22,34#. In our
case, however, the supertwistors are restricted by a const
that breaks the generalized superconformalOSp(64u1) sym-
metry down to a generalization of the super-Poincare´ group,
S (528u32)3.Sp(32). Such a breaking is characteristic of te
sionful models. We note that this constrainedOSp(2nu1)
supertwistor framework might also be useful for mass
higher spin theories.

We have developed the Hamiltonian formalism, both
the original and in the symplectic supertwistor represen
tion, and found that, while the Hamiltonian analysis in t
original formulation requires the use of the additional aux
iary spinor variablesua

I @ I 51, . . . ,(n22)# orthogonal to
la

6 , the symplectic supertwistor Hamiltonian mechanics c
be discussed in terms of the original phase space varia
Moreover, under Dirac brackets, supertwistors become s
conjugate variables and the symplectic structure of the ph
space simplifies considerably. A natural application of
Hamiltonian approach developed here is the Becchi-Ro
Stora-Tyutin ~BRST! quantization of theS „[n(n11)/2]un… su-
perstring model, which might provide a ‘‘higher spin’’ coun
terpart of the usual string field theory.

We have also presented a generalization of
S „[n(n11)/2]un… supersymmetric string model for supersym
metric p-branes inS „[n(n11)/2]un…. They correspond to BPS
states preserving all butñ(p) @see below Eq.~219!# super-
symmetries, composites ofñ(p) BPS preons @ ñ(2)
52, ñ(3)54, ñ(5)58#. In particular, theS (528u32) super-
symmetric membrane (p52) also corresponds to a30

32 BPS
state.

BPS states preserving 30 out of 32 supersymmetries h
not been found yet among the solitonic solutions of
‘‘usual’’ D511 andD510 dimensional supergravities, an
the existence of such solutions is being discussed at pre
@32,33#. If found, it would be interesting to study a possib
relation of the additional tensorial bosonic coordinate fu
tions in our theory with such hypothetical solitonic solution
In particular, an interesting question is to see how the We
Zumino term of the superbrane in the usual superspac
reproduced from a purely kinetic-like term in the action~18!.
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If, in contrast, these solutions do not exist, this could in
cate, because of the special role of BPS preons in the a
braic classification of the M-theory BPS states@21#, the ne-
cessity of a wider geometric framework for a description
M theory. In this case the proposedS „[n(n11)/2]un… supersym-
metric string model could provide a part of such an extend
framework, unifying M theory and higher spin theory idea

Note added

Two papers@68,69# have recently appeared. Referen
@68# considers a spontaneous breaking of theOSp(1u32)
symmetry of the tensionlessS „[n(n11)/2]un… supersymmetric
p-brane models@44,34#, and proposes an open tensionle
S „[n(n11)/2]un… supersymmetric string action with an add
tional boundary term~or topological term; cf.@38#!. These
topological terms can be treated as describing superpart
attached to the endpoints of a tensionlessS „[n(n11)/2]un… string
~similar to quarks attached at the ends of a bosonic string
D0-branes at the ends of an open superstring; cf.@70,71#!.

Reference@69# develops a formalism which looks prom
ising for studying the relation of the BPS preon conjectu
and the present approach with solitonic solutions of the s
dard D511 supergravity. The authors of@69# deal with
bosonic Killing spinorseaI , but some of their observation
may be applied to the bosonic spinorsla (la

r ) characterizing
the BPS preon~s!. The Killing spinors will be orthogonal to
la (la

r ) and thus might be identified with the auxiliaryuaI

variables of this paper~see@67#!.
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APPENDIX A: BREAKING OF THE GENERALIZED
SUPERCONFORMAL GROUP OSp„2nz1… DOWN
TO THE GENERALIZATION S „†n„n¿1…Õ2‡zn…Ã¤Sp„n…

OF THE SUPER-POINCARÉ GROUP

The (2n11)3(2n11) supermatrices G S
P

POSp(2nu1) preserve the graded-antisymmetric mat
VSP52(21)deg(S)deg(P)VPS , ‘‘orthosymplectic metric,’’

G S
S8VS8P8G P

P8~21!deg(P)[deg(P8)11]5VSP , ~A1!

the canonical form of which is given by Eq.~125!. The grad-
ing is defined by

~21!deg(S)5H 1 for S51, . . . ,2n,

21 for S52n11,

and coincides with deg(6S) for Y6S @see below Eq.~71!#.
The fundamental representation ofOSp(2nu1) acts on su-
pertwistors
7-20
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YS5~ma,la ,h!, ~A2!

with evenma,la and oddh. Near the unity,

G S
P;dS

P1JS
P, ~A3!

whereJS
P is an element of theosp(2nu1) superalgebra. It

has the form

JS
P5H Ga

b Kab za

Aab 2Gb
a ea

i eb 2 i zb 0
J , ~A4!

where the evenn3n matrix Ga
b is arbitrary and the even

n3n Kab5Kba and Aab5Aba matrices are symmetric
They define a gl(n) and two sp(n) subalgebras of
osp(2nu1),

Ga
bPgl~n!, AabPsp~n!, KabPsp~n!. ~A5!

Exploiting the analogy with the matrix representation
the standard 4-dimensional conformal algebrasu(2,2uN) and
the 4-dimensional super-Poincare´ algebra, one can look a
the gl(n) boxesG as a generalization of thespin(1,D21)
and dilatation algebras (La

b1da
bD), at the elementsAab

Psp(n) as a generalization of the translation one, and
KabPsp(n) as a generalization of the special conform
transformations. Equation~A4! also contains two fermionic
parameters,ea and za , which can be identified as those o
the of ‘‘usual’’ and special conformal supersymmetries.
specific check is provided by then52 case, where
SL(2,R)5Spin(1,2), the symmetric spin tensor provides
equivalent representation for aSO(1,2) vector, and the su
perconformal group isOSp(2u1).

If we now demand in addition that the degenerate ma
CSP @Eq. ~126!# is preserved,

G S
S8CS8P8G P

P8~21!deg(P)[deg(P8)11]5CSP , ~A6!

we see that this is satisfied by theosp(2nu1) elements of the
form

JS
P5H Sa

b 0 0

Aab 2Sb
a ea

i eb 0 0
J [JS

P~S,A,e!, ~A7!

whereSa
bPsp(n),

Sab[CagSg
b5Sba, ~A8!

i.e. by those of Eq.~A4! with Kab50, za50 and Ga
b

5Sa
bPsp(n). Thus the condition~A6! not only reduces

GL(n) symmetry down toSp(n), but also breaks the gen
eralized special conformal transformations and the super
formal supersymmetry.

The right action ofG S
P(S,A,e) @Eqs.~A3!, ~A7!# on the

supertwistor~A2!, dYS5YPJP
S, defines the generalize

super-Poincare´ transformation of the supertwistor comp
nents,
08500
f

t
l

x

n-

dma5mbSb
a1lbAba1 i eah,

dla52Sa
blb , dh5eala . ~A9!

These can be reproduced from the following transformati
of the S „[n(n11)/2]un… coordinates:

dXab5Aab1 iu (aeb)12X(augSg
ub),

dua5ea1ubAb
a ~A10!

using the generalization@22# of the Penrose corresponden
relation @23,51# given in Eq.~119!,

ma5Xablb2
i

2
uaublb , h5uala . ~A11!

The transformations~A10! of theS „[n(n11)/2]un… variables are
a straightforward generalization of the super-Poincare´ trans-
formations of the standard superspace coordinates. This
tifies calling the resulting supergroupS „[n(n11)/2]un…3.Sp(n)
a generalization of the super-Poincare´ group.

Going back toosp(2nu1), let us note that the generalize
special superconformal transformations (Kab ,za) act on the
supertwistor components by

dma50, dla5mbKba2 ihza , dh5mbzb .
~A12!

Using Eq.~A11! one may find from~A12! the generalized
special superconformal transformations of theS „[n(n11)/2]un…

coordinates

dXab5 iu (aXb)gzg2~XKX!ab,

dua5Xabzb2
i

2
~uz!ua2~uKX!a.

~A13!

Note that Eq.~A10! follows as well from a nonlinear
realization of the generalized super-Poincare´ group
S „[n(n11)/2]un…3.Sp(n) on theS „[n(n11)/2]un… coset, i.e. from
the left action ofG S

P(S,A,e);dS
P1SS

P(S,A,e) ~A7! on
K S

P(X,u);dS
P1KS

P(X,u) with

KS
P~X,u!5H 0 0 0

Xab 0 ua

iub 0 0
J . ~A14!

Indeed, the infinitesimal form of

G S
P~S,A,e!K S

P~X,u!5K S
P~X8,u8!G S

P~A,0,0!
~A15!

reads

K~dX,du!5J~0,A,e!1J~0,A,e!K~X,u!

1@J~S,0,0!,K~X,u!# ~A16!

and reproduces the generalized super-Poincare´ transforma-
tions ~A10!.
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APPENDIX B: SOME TECHNICAL DETAILS

General solution of Eqs.„85…–„94… for the Lagrange multipliers
†Eqs. „96…–„102…‡

Lab5bIJuaIubJ1
et

11

es
11

$es
11l2al2b12@lg

2Ps
g(al1b)

2~l2Psl1!l2(al1b)1~l2Psl2!l1(al1b)#%

1
et

22

es
22

$es
22l1al1b22@lg

1Ps
g(al2b)

2~l1Psl1!l2(al2b)1~l1Psl2!l1(al2b)#%,

~B1!

ja5k Iu
aI1

et
11

es
11

~]sul2!l1a2
et

22

es
22

~]sul1!l2a,

~B2!

l a
15v (0)la

11
et

22

es
22

~]sla
12Vs

(0)la
1!1

et
22

2es
22es

22

3@2es
22Vs

112es
11Vs

221 i ]sul1]sul2

2Ps
ab~]sla

1lb
22la

1]slb
2!#la

2

1
et

11

2es
11es

22
@es

22Vs
111es

11Vs
22

1 i ]sul1]sul21Ps
ab~]sla

1lb
22la

1]slb
2!#la

2 ,

~B3!

l a
252v (0)la

21
et

11

es
11

~]sla
21Vs

(0)la
2!1

et
22

2es
11es

22

3@2es
22Vs

112es
11Vs

221 i ]sul1]sul2

2Ps
ab~]sla

1lb
22la

1]slb
2!#la

1

1
et

11

2es
11es

11
@es

22Vs
111es

11Vs
22

1 i ]sul1]sul21Ps
ab~]sla

1lb
22la

1]slb
2!#la

1 ,

~B4!

L665]set
6612et

66Vs
(0)62es

66v (0), ~B5!

L (n)524 det~em
a ![22~et

22es
112et

11es
22!, ~B6!

l (0)50, ~B7!
08500
where, Vs
66 and Vs

(0) are defined in Eqs.~111!, ~112!,
namely

Vs
11

ª]sl1Cl1, Vs
22

ª]sl2Cl2 ~B8!

Vs
(0)
ª

1

2
~]sl1Cl22l1C]sl2!. ~B9!

Dirac brackets of the second class constraints„189…–„192…

@F (0)~s!,U~s8!#
D
52

1

2 S ]sY1S~s!VSPY1P~s!

es
11~s!

1
]sY2S~s!VSPY2P~s!

es
22~s!

D d~s2s8!

52
1

2 S F11~s!

es
11~s!

1
F22~s!

es
22~s!

12D
3d~s2s8!'2d~s2s8!, ~B10!

@F (0)~s!,N~s8!#
D
52

1

2 S ]sY1S~s!CSPY1P~s!

es
11~s!

1
]sY2S~s!CSPY2P~s!

es
22~s!

D d~s2s8!

52
1

2 S As
11~s!

es
11~s!

1
As

22~s!

es
22~s!

D d~s2s8!,

~B11!

@K (0)~s!,U~s8!#
D
5Y1S~s!VSPY2P~s!d~s2s8!

5Ud~s2s8!'0, ~B12!

@K (0)~s!,N~s8!#
D
5Y1S~s!CSPY2P~s!d~s2s8!

5~N11!d~s2s8!'d~s2s8!,
~B13!

@K (0)~s!,F (0)~s8!#
D
5

1

2
@]sY1S~s!VSPY2P~s!

2Y1S~s!VSP]sY2P~s!#

3d~s2s8!

5
1

2
F (0)d~s2s8!'0. ~B14!
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