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A supersymmetric string model in the=11 superspace maximally extended by antisymmetric tensor
bosonic coordinateX (52932 js proposed. It possesses 8Gymmetries and 32 target space supersymmetries.
The usual preserved supersymmeteysymmetry correspondence suggests that it describes the excitations of
a Bogomol'nyi-Prasad-Sommerfie(@PS state preserving all but two supersymmetries. The model can also
be formulated in any ("("*1/2IM syperspacen=32 corresponding t® = 11. It may also be treated as a
“higher-spin generalization” of the usual Green-Schwarz superstring. Although the global symmetry of the
model is a generalization of the super-Poinagmeup3 (" D/2IW 5 Sy n) | it may be formulated in terms of
constrainedOSp(2n|1) orthosymplectic supertwistors. We work out this supertwistor realization and its
Hamiltonian dynamics. We also give the supersymmetticane generalization of the model. In particular, the
3.(52832) sypersymmetric membrane model describes excitations39fBPS state, as thE (%2832 supersym-
metric string does, while the supersymmetric 3-brane and 5-brane correspond, respecté;?elyncﬂ@é1 BPS

states.
DOI: 10.1103/PhysRevD.69.085007 PACS nuniger11.30.Pb, 11.10.Kk, 11.25w, 12.60.Jv
I. MODELS IN NON-STANDARD SUPERSPACES: nates x*y*’y#1--#5 o (yHV= —yVMEy[/“’]' yH1---Hs
PARTICLES, STRINGS, BPS PREONS AND HIGHER :y[”l---/‘sl) which may be collected in a symmetric spin
SPIN THEORIES tensorX“3=Xﬁ“,
In the early period of supers_tring theory, when it was aﬂzixﬂ aB_ YT B | yhi---HsaB ’
found that allD=10 supergravities appear as low energy 327 4 2132 w51 32 By Mg
limits of superstring models, a question arose: what is the (h)

origin of maximally extended =11 supergravity? Its rela-

tion with the supermembrarjé] was established by studying SO that the coordinates &f*242) are

the supermembrane action in a supergravity background; u

however, a straightforward quantization of the supermem- 27'=(X®,6%), X=XP*  a,p=12,...,32. (2)
brane was fraught with difficulties. An indication was found ] ]

[2] that the quantum state spectrum of the supermembrane is Because of the special properties of the eleven-
continuous, a problem now sorted out by treat[i@j the ~dimensional gamma matrices, the mode[5f may also be
supermembrane as an object composed of DO-branes in tf@stricted to the superspacB&9%2) [ (x#,y~, 6%), with 66
framework of the matrix model approabl. Another aspect Posonic coordinatdsand 3 (46432 [ (x# y#1---#5,6%), with

Of the same prob'em was that the membrane was Shown 14:52 bOSOﬂiC COOI’dina'[¢§ For the Sake Of definiteneSS, we
develop stringlike instabilitie$2]. The Green-Schwarz su- Shall call heremaximal superspace® those with bosonic
perstring is free from these problems, but it isDa=10  coordinates of symmetric “spin-tensorial” type, liRg52432)
theory. Thus, it was tempting to search for possible new clasand its counterparts (n(n+7im,

sical D=11 superstring models hoping that, after quantiza-

. . . . . j— E_ a [¢3 ap (23

tion, their low energy limit would beD =11 supergravity. E(Wnﬂ)m”n)—{z =(X,0%)}, X*F=xPe,

Such a search requires, clearly, going beyond the standard

superspace framework: in moving frdin=10 toD =11 one a@,B=1.2,...n, (3

has to add also extra bosonic degrees of freedom, thus arriv-
ing to anenlarged D=11 superspace rather than to the stanWheren=2'. This name distinguishes tig(""* 2V gy-
dard one. perspaces from other, not maximaliy the bosonic sector
extended superspaces ikB(®932) and 346232 \yhose
A. Curtright supersymmetric string model boso_nip coqrd_inates may be_qlescribed by a spin teX&6r
in the enlarged D=11 superspaces, (52432 only if it satisfies some conditions.

A first example of a supersymmetric string action in an
enlargedD =11 superspace was found jB]. The model, IAll these superspaces(528432) 3,(46232) gnd's,(6632) considered
possessing 32 supersymmetries and«l6ymmetries, was as supergroup manifolds, may be seen as central extensions of an
constructed in the enlarged supersp&déza”). This con-  Abelian 32 dimensional fermionic group by tensorf@q. (1)]
tains 32 fermionic coordinateg8* and 528 bosonic coordi- bosonic group$6].
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The3,(52832) syperspace has a special interest because it thetical basic constituents of M theory. These are BfRS
the supergroup manifold associated with the maximal preons|\), which are characterized by the relation
=11 supersymmetry algebf@—9] R

PapgIN)=NaNg[\), (6)
{QuQpf=Pup. Pap=Ppa: [Qu:Ppy]=0. where\ , is abosonic “spinor” [actually, aGL(n,RR) vector;
see footnote 10 and below E®4)].4

The stateg\) preserve all supersymmetriésit onei.e.,
they arev=31/32 states. To make this transparent one can

Pap=PulhptZu Uhp+Z,, U0y " use theGL(32R) automorphism symmetrj27,28 of the

(5) algebra(4) to write the spinomn , that characterizes the BPS
preon statg\) in the “preferred frame”\ ,=(1,0, ... ,0),

called M-theory superalgebra or M algetyed.? This algebra  where Eqs(6) and (4) imply
encodes full information about the nonperturbative R A
Bogomol'nyi-Prasad-SommerfieldPS states of the hypo- (Q2)2I\)=0, ..., (Qs?\)=0. (7)
thetical underlying M theory: as was shown[itl], the ad- N _ - o _
ditional bosonic generatorg,,=—Z Z Z For Hermitian operators in a positive definite Hilbert space

v~ Elpv] Ky Mg .
AT of the M algebra4) are related to the topologi- Egs.(7) imply

cal charges of the supermembrane and the super-M5-Brane. (Q)IN)=0, ..., (Qz)|\)=0, (8)

These “one-brane” BPS states can be associated with solito-

nic solutiong 16,17 of the “usual” D= 11 supergravity18]  which means that a BPS preon preserves all but one space-

or with fundamental M-theory objects described by theirtime supersymmetries.

worldvolume actiong1,19|. BPS stategk) preservingk=1 supersymmetries can be
Note that although the M algebid) leads naturally to a treated as composites of a numbgr82—k of BPS preons

D=11 interpretation when the splitting) is used, it also [21] (in the same way as e.g., hadrons are composed of

allows for aD=10 type IIB treatment when one considers quarks. Indeed, for such a statk) one can always find a set

a,B,y=12,...32, (4)

the =1, ...,32index as a double one=al, wheree  Of 32—k bosonic spinora\;, (r=1, ... k) such that
labels the components of =10 Majorana-Wey!l spinor, #y=30-K

a=1,.. 16 andl is an internal index_] =1,2. Then one |5a3|k>: 2 )\L)\rﬁ|k>i (9)
uses the direct product of X616 (Majorana-Weyl ten- r=

i i i icesr?- (or of
dimensional sigma rr:Jatncesr,alB (or o,”) and real <2 the single preon statd.) corresponds tok)=|31).

matriceS5lJ’TllJ’iT|2J'73_ to write aD =10 type IIB counter- In this perspective, all the one-brane solutions of 11-
part of Eq.(5) [9,20]. Similarly, aD =10 type llA treatment  gimensional supergravity, which preserve 16 out of 32 super-
is also possible as th2 =10 gamma matrices coincide with symmetries, correspond to composites of 16 BPS preons.
the D=11 ones. As a result, the information about nonperyltiorane solutions usually preserfewerthan 16 super-
turbative BPS states of the=10 superstring theorie8n-  symmetries ¢<1/2) and thus correspond to composites of
cluding Dirichlet superbrangsan also be extracted from the morethan 16 preons. There also exigtwave solutions with
algebra(4). Moreover, it encodes as well all the duality re- “supernumerary supersymmetrief29—31, i.e. with 16<k
lations between differenD=10 and D=11 superbranes. —32 The known solutions preservink= 18,20,22,24,26
These facts add further reasons to ¢d)lthe M-theory su-  gnd 28 supersymmetries can be considered as composites of
peralgebre 9]. #,=14,12,10,8,6 and 4 BPS preons respectively. Initially, it
seemed that solutions preserving all supersymmetries but
B. Maximal 3 (52832 superspace, BPS preons and other BPS  0ne, i.e. describing the excitations of a BPS preon, could not
states with supernumerary supersymmetries exist in the framework of the standard brakesadzeused to
solve the usual 11-dimensional supergrayit$] equations.

Interestingly enough, an algebraic classification of aIIA more general study in the context of standare 11 su-

BPS states may be achieved by introduci@d] the hypo-

“Note that the expressiop,z=\,\z for the eigenvalue of the
generalized momentum operatey,; may be looked at as a gener-

alization (see[22)]) of the Penrose representatipRz=Aa\g Of a
D=4 lightlike vector(see[23]). Interestingly enough, its generali-
zations for tensorial charge€(,,=\I",,,\ in D=8=0+8 and
Z,,=\',,\ in D=4=1+3) were considered, in a completely
- different context, irf24] and[25]. Recently, the originaD =4 Pen-
(Zop™* €0, .. 02" ") which is usually identified with the yose twistor formalism has found an interesting application in the
Horava-Witten hyperplang13] (for the Kaluza-Klein monopole analysis of perturbative scattering amplitudes in Yang-Mills theory
and the M9-brane only bosonic actions are knd#,15)). [26] which refers toa string in D=4 twistor space CP.

2See[6,10] and references therein for further generalizations of
the M-theory superalgebra and for their structure.

3This result was extended if12] by showing that these
generators also contain a contribution from the topological charge
of the eleven-dimensional Kaluza-Klein monopole

Z"1--7) and of the M9-brane

oC
(ZO/.Ll.../.L4 EO,u,l...p,4V1...V6
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pergravity has showf32,33 that the existence of such so- 3 AU32) - ZM= (x4 9%), =01, .. .,10, (12
lutions is not ruled out. However, and independently of

whether the BPS preons can be associated with solutions @ the “standard”D =11 superspace. Actually, one has to
standard supergravity or whether there is a kindB&S  face this problem in any approach dealing with enlarged su-
preon conspiracyreventing the existence of one BPS preonperspaces[6,21,22,34,38—44 Thus, one has to find a
in standard D=11 spacetime or superspace, BPS preons dmechanism that either suppresses the additiomih respect
provide an algebraic classification of the M-theory BPSto the usual spacetime/supersp@@‘“)) degrees of free-
states[21]. Also, dynamical models with the properties of dom or provides a physical interpretation for them. In this
BPS preons are known in th& "+ gyperspace respectS ("D - despite having a maximal bosonic
[22,34). In this perspective such a BPS preon conspiracy, if itpart, has some advantages with respect to non-maximally
exists, would rather indicate the necessity of a wider geometextended superspacésee below(3)). Indeed, the bosonic
ric framework for a suitable description of M theory, such assector of the maximal superspa3,

extended superspaces and supertwistors. If, on the contrary, n(n+1)

solitonic solutions with the properties of BPS preons were S(—5—10) . xaB—xBa @,f=12,...n, (13)
actually found, the extended superspaces would still provide

a useful tool for a description of M-theotyOne is led to  \as proposed fon=4 [45] as a basis for the construction of
expect that the additional tensorial coordinates of these siy—4 nigher—spin theorie$38,39,48. Moreover, it was

perspaces carry a counterpart of the information which, inshown in[40] that the quantization of a simple superparticle
the framework of standar®=10,11 supergravity, is en- model[22] in 3 "+ D/2IIN for n=2 48,16 results in a wave
coded in the antisymmetric tensor gauge fields entering thgnction describing a tower of massless fields of all possible
supergravity multipletscf. [6]). This point of view may be  gpins(helicities. Such an infinite tower of higher spin fields
also supported by the observation that in the standard topQglows for a nontrivial interaction in AdS spacetimes
logical charge treatment of the tensorial generators of the Mz 47.7
algebra[11], these topological charges are associated just Tg give an idea of the relation between higher spin theo-
with these gauge fields. _ ries and maximally extended superspaces, let us consider the
The general results about the treatment of tensorial centrlee bosonic massless higher-spin equations propos&gjn
charges as topological charges of the corresponding branggy n=4). These can be collected as the following set of

are certainly relevant in the more general case equations for a scalar functidnon 3, n(n+1)/21[0)
{Qa rQﬁ}: Paﬂ ’ [Qa ) Pﬂy] = 01 (10) &a[ﬁay] 5b(x) = 01 (14)
_ aﬁ . .
Pug=Ppar @.fy=12,...10, (11) where d,5=0d/dX*F. Equation (14) states thatd,gzd,; is

fully symmetric on a non-trivial solution. In the generalized

. . . . momentum representation Ed.4) reads
with n=2' for any integed. The simplest representations of P 44

the algebra(10) can be constructed on the maximal super- _

Spaceg([n(ril)%]ln), Eq. (3). P KqpK,1sD(K)=0. (15
TheGL(n,R) symmetry of(10) becomes broken down to This implies thatb(k) has support on the(n+1)/2—n(n
Spin(t,D—t)CGL(n,R) when a(Eq. (5)-like) decomposi- —1)/2=n-dimensional surface in momentum space

tion is introduced using @Xn realization of the gamma— 3 In(n+1/21I0) (actyally, in3 ("M + D210\ £01) on which the

matrices of a{,D—t) spacetime witlt timelike dimensions  rank of the matrixk,s is equal to unity[39]. This is the

(t is not obliged to be one, s¢85,36)). On the other side, surface defined bit, 3=\ Az (Or —\,\ ) characterized by

the GL(n,R) symmetry is a subgroup &p(2n), whichis a  the n components of,. In a “GL(n,R)-preferred” frame

characteristic symmetry of higher spin theories. (an analogue of the standard frame for lightlike ordinary mo-
mentum, A ,=(1,0,...,0) and theurface is theGL(n,R)

C. Models in maximal superspaces and higher spin theories ~ Orbit of the pointk, ;= ,184:. Thus, Eq.(15) may also be

_ ) written as
The main problem of the approach [if] is how to treat
the large number of additional bosonic degrees of freédom (K,z3— N \g)b=0, (16)
in the cosel) 3028331132 (3 (d6332)y (1132) ap Tattp
3,(6832)3 (1132)) - where which is equivalent to writing Eq(14) in the form

SThere are also related reasons to consider more general super’/A relation between the generalizet=4 superparticle wave
spaces, as the ensuifiglds-extended superspace democrasyo-  functions[40] and Vasiliev's “unfolded” equations for higher spin
ciated with extended superspa¢és fields was noted ifi38]. This was elaborated in detail 48], where

6See[37] for a later related search based on an attempt to replacthe quantization of an AdS superspace generalization ofithé
the k-symmetry requirement by a dynamically generated projectiormodel of[22] was also carried ousee alsd49] for a related study
constraint on the spinor coordinate functions. This approach alsof higher spin theories in the maximal generalized AdSper-
suffers from the problem of additional bosonic degrees of freedomspace.
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(1945~ Nohp)b=0. (17 symmetries of our model exceeds half of the number of su-
persymmetries #>3), while the x symmetries of the

Equations(16) and (17) may be considered as the general-Green-Schwarz superstring ar# for all D=3,4,6,10 cases.
ized momentumK,,5) and coordinateX“#) representations  The pointlike model§22,40 in maximal superspace are
of the definition(6) of a BPS preorj21]. The solutions of  enlarged superspace generalizations of the Ferber-Shirafuji
Egs. (16), (17) are the momentum and coordinate “wave [51] approach to the Brink-Schwarz superparticle. The ten-
functions” corresponding to a BPS preon statg, b(X)  gjonless supersymmetric string models in the maximal
=(X|\), b(k)=(k|\). These equations also appear as a res (n(+ 11210 s perspace@4,44 can be treated as generali-
sult of the quantizationi40] of the superparticle model in sations of theD = 4 nuII—supérstring moddb2]. In the same

8
[22]. . . sense out (" + 172N sypersymmetric string model can be
Thus, in contrast with other extended superspaces, thle ked lizati h nal
models in the maximal superspacs®™* /2N can be re.  100Ke at as a generalization to the maximal superspaces
(In(n+1)/2lIM of the Lorentz-harmonic formulation of the

garded as higher spin generalizations of the models in star:

dard superspacg(®In 9 =4 Green-Schwarz superstring [i63].**

In Sec. IV we carry out a Hamiltonian analysis of the
3 In(+1)72IM model and describe its gauge symmetries, in-
cluding the fi—2) « symmetries and their “superpartners,”

In Sec. Il we present another action for a supersymmetrighe (n—1)(n—2)/2 bosonic gaugé symmetries. We also
string in X %24%2)_ I distinction to the model ifi5], it does  giscuss there the number of degrees of freedom of our
not useD=11 gamma matrices, but instead includes tWomqodel. In Sec. V we show that its action may be formulated
auxiliary bosonic spinor variables,, and\,, .**As a con-  in terms of a pair of constraine®@Sp(2n|1) supertwistors
sequence, the resulting(""* /2" supersymmetric string (see[22]) which are invariant under botk andb symme-
action(although it does not include a Wess-Zumino term liketies. Note that one of the constraints imposed on the su-

that of [5]) possesses 30 local fermionicsymmetries and — heqyistors breaks th© SH2n|1) invariance down to the

F\L(())vgj;g z?egﬁfsnedeegb%t\)/j;ct model for a state composed femidirect producE([n(n+l)/2]|n)$SIxn) of the symplectic

. group Sp(n)CSp(2n) and the supergroup associated with
The model can be written as U e for  he algebra4), also denoted ("("*+ 12N since this super-
arbitrary evenn (althoughn=2' is preferable for a spinor : ' . o
interpretation of thew, 8 indices. It possessesn—2) space is the associated supergroup manifold; we may look at

(In(n+1)/2]|n) izati -

symmetriegSec. lll). Forn=2, our model describes a string > L X)SFE(DTQ) as a generalization of the super
in theD =3, N=1 standard superspace; however, this string”0incaregroup 2> S(t,D—t). The OSp2n|1) su-
does not possess amysymmetry fi—2=0) and, then, the P€rgroup has been considered as a generalization of the su-
ground state of this string model is not a staB®9 state, Perconformal grour8,21,22,27,45,54 (see [21,27,54 for
as such a property is guaranteed by the preservation of € relevance o0Sp(64|1) in M theory. This generalized
non-zero number of supersymmetries. superconformal group symmetry is present in massless par-

For n=4 our model possessé&s-0 x symmetries, 2 for ticlelike models[22,40 and in the tensionless superstring
n=4 (D=4), 6 forn=8 (D=6), 14 forn=16 (D=10)  [34]; however, it is broken down 8 ("0 + D25 S(n) in
and 30 forn=32 (D=11), and hence describes excitationsOU" tensionful supersymmetric string modélppendix A).
of a two preons BPS state. Moreover, only for4 is the This is natural: the conformal symmetry is broken in the
number ofx symmetries the same as that of the=4 (N massive superpartic[®5] and in the Nambu-Goto string and

=1) Green-Schwarz superstring. Fioe 8 the number ofc Green-Schwarz superstring models, while it remains the
symmetry of the massless particle and the Brink-Schwarz

superparticle, as well as of the tensionless branes and super-

8in [3850 Eq. (17) was written as [d,z—(d/du”) branes 56]. I . i .
(9 auP) (X, ) =0, which is an equivalent “momentum” rep- The Hamiltonian analysis of the supertwistor formulation

resentation obtained by a Fourier transformation with respect t4S Performed in Secs. VI and VII. The generalization of the

\,: see[48]. model to the supep-brane case is given in Sec. VIII, and
9Although the idea of higher spin fields has been discussed atonclusions are given in Sec. IX.

present foD <7 only, the results of40] can be regarded as a first

step toward itsD=10 generalization. Understanding tiie=11

case is a problem for future study. UTheD =4 version of our supersymmetric string3i194) differs
Oactually, the model possess&q(32) symmetry in addition to  from the Lorentz harmonic formulatiof63] of the D=4, N=1

the SO(1,10) one, so thak may be considered as symplectic Green-Schwarz superstring, by skipping the Wess-Zumino term of

vectors(called “s-vectors” in[38,39) rather than Lorentz spinors. the latter and by substitutingl“#=dX*#—id 66" for y;FI1*

We, however, keep the “spinors” name for them, keeping in mind := yzﬁ(dx“—id 0y*60) in the kinetic term of the action if63]. The

the possibility of spacetime treatment, although this is not straightfirst of the above steps clearly breaks the tweymmetries of the

forward and requires additional stu¢see Sec. | C and al§@6] for D=4, N=1 Green-Schwarz superstring, while the second step,

a very recent spacetime treatment o€ &® sigma model i.e., of a which extends the bosonic body of the standard supersp4td

string theory in twistor space, through its relation to Yang-Mills [ x*— (x*,y*"); X“ﬁ:xf‘y;‘:ﬁ-ky””yzf] to get 3194 restores

amplitudes. them.

D. A new supersymmetric string model in% 52432 Outlook
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Il. ANEW SUPERSYMMETRIC STRING ACTION The action(18) is invariant under the supersymmetry
IN THE MAXIMALLY ENLARGED SUPERSPACE transformations

n(n+1)/2

A supersymmetric string it { 1IN is described by

aB_i pla_P) a_ _«a
worldsheet functionsX*A(&), 6%(¢), where é=(r,0) are OXT=10€, 6.07=¢", (23
the worldsheetW? coordinates. We propose the following .
action: SN, =0, Se°7=0, (24)
S= ij [et* AT\, as well as under rigisp(n) “rotations” acting on thea, 8
a’ Jwe a™p indices.
o L Note also that, although formally the actiqh8) pos-
aBy +y + ++
—e AN —eTTAe ], (18)  sesses a manife€L(n,R) invariance, the constrain@0)
where breaks it down toSp(n)CGL(n,R). Under the action of
Sp(n), the Grassmann coordinate functiof#$(¢) and the
(&) =dX*B(&)—id 62 9P) (&) auxiliary fields\ , (¢) are transformed as symplectic vectors
andX*A(¢) as a symmetric symplectic tensor. Nevertheless,
=drl'[fﬁ+ daHﬁﬁ; (199 we keep for them the “spinor” and “spin-tensor” terminol-
ogy, having in mind their transformation properties under the
a,f=1,...n, m=01, &"=(r0), subgroupSpin(t,D—t)CSp(n), which would appear in a
“standard” (t,D —t) spacetime treatment.
and[1/a']=ML "%, [TI1*f]=L, [e*"]=L(c=1). The two The aboves (" +172IN sypersymmetric string model
auxiliary worldvolume fields, the bosonic spinors may also be described by an action written in termglief
N, (€),\] (&), aredimensionlesand constrained by mensionful unconstrained  spinors A (&), [A,]
— (ML *l) 1/2’
C“ﬁ)\;)\;zl; (20
e=*(§=déMe, " (¢§)=dre, "(¢)+doe, " (§) are two szf [e" TAIIPA A, —e" "ALI"PA A
auxiliary worldvolume one-forms. The one-fornes = are w2
aSSl_J_med to be linearly _ind_ependent and, hence, define an —a’e**/\e"(C“BA;A[;)Z]. (25)
auxiliary worldsheet zweibein
e2= (e el)=d&eme? (¢) Indeed, one can see that the acti@b) possesses two inde-
’ m pendent scaling gauge symmetries defined by the transforma-
tion rules

1 1
= E(e**+e”),§(e**—e") . (21
et (&) —e? et t(g), A (—e MDA (9

The C*? in Eq. (20) is an invertible constant antisymmetric (26)
matrix
and
C*=—CP*,  dC*=0, (22
—— 2 —-—— + — +
which can be used to raise and lower the spinor indiess e (H—eFe (8, AL(H—e FOAL().
the charge conjugation matrix in Minkowski spacetimes (27)

The invertibility of the matrixC“? requiresn to be even; this

is not really a limitation since, after all, we are interested inThis allows one to obtail€“#A , A ; =1/’ as a gauge fix-

n=2' to allow for a spinor treatment of the, 3 indices. ing condition. Then the gauge fixed version of the act@®)
For n=32 the presence o€*# hampers a possibl® coincides with Eq.(18) up to the trivial redefinitionA,

=10, type IIB treatment of our model. This would require a=(a’) Y2\ . The gaugeC*’A ;A ,=1/a’ [equivalent to

CYBI= _cPal constructed from the 2616 Majorana- Ed. (20)] is preserved by a one-parametric combination of

Weyl sigma matrices and ax22 matrix in a Lorentz cova- EQS- (26) and (27) with «=—p, which is exactly the

riant manner, and there is not a6 charge conjugation SO(1,1) gauge symmetriworldvolume Lorentz symmetyy

matrix in theD =10 Majorana-Weyl representation. As a re- f the action(18),

sult we shall refer to oun=32 model as aupersymmetric

string in the enlarged B 11 superspacé. (52832) which im- e (9 —e2Wer(g), N (H—e (9.

plies the decomposition of E@5). Nevertheless, tha=32 (28

case also admits@= 10, type IlA treatment, which uses the

sameC*? as theD=11 case, and in which the decomposi- The tension parametéf=1/a’ enters in the last“cos-

tion (5) is replaced by itdD =10, IIA counterpart obtained mological”) term of the action(25 only. Setting in ita’

from Eq. (5) by separating the eleventh value of the vector=0 one finds that the model is non-trivial only fer "

index. xe”~ and AT=xA~ in which case one arrives at the
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tensionless supgr-brane action of Ref. [34], S e h e
=[d%p" "MI A A, . As we are not interested in this 6S= szd(e Nohg—€ TN gL
case, we ser’ =1 below since thex’ factors can be easily
restored by dimensional considerations. ) it o — soBy —

The most interesting feature of the modéB), (25) is —2|fw2e ANAO“N, 567N 5
that, being formulated in the maximal(""+1/2IM gyper-
space withn fermionic coordinates, it possessas—<2) «
symmetries; we will prove this in the next section. For a
supersymmetric extended object in standard superspace, the
x symmetry of its worldvolume action determines the num-
berk of supersymmetries which are preserved by the ground
state(which is av=k/n BPS state made out of #n—k
preons if at least one supersymmelt 1, is preserved In
the present case, we may expect that the ground state of our
model should preserven(-2) out of n supersymmetries, i.e.
is a (h—2)/n BPS state (EZZ,% BPS state for thed  WhereiJ1®=56X"#—i5¢(*¢” and the last term
=11 maximal superspacs(>2432)

For n=2, X* provides a representation of the 5,S= +J 2et +/\Ha5)\l;5)\;
3-dimensional Minkowski space coordinates;Ao & x» w?
(a,8=1,2; ©=0,1,2). Thus then=2 model(18) describes
a string in theD = 3 standard ®312) superspace. However, in —f PI-BRVAN | SO (30)
the light of the above discussion, it does not possessxany w?

symmetry and, hence, its ground state is not a BPS stalg, o s the variations of the bosonic spinars(¢)
since it does not preserve any supersymmetry. '

L : : - One easily finds that the equations of motion for the

The situation becomes different starting with the=4 ; . . o N
model (8), which possesses twe symmetges, the same boso_nlc coord|.r!ate fu.nct|ons§S/6X .é (= 85/i,11°) =0
number as the Green-Schwarz superstring in the standafgstrict the auxiliary spinors and auxiliary one-forms,
D=4 superspace. F@ =6, n=8 the number ok symme-
tries of our model exceedw2 and thus the model describes
the excitations of BPS states with “supernumerary” su
symmetrieg29], a 22 BPS state in thd =11 3(528%) gy
perspace.

The number obosonicdegrees of freedorthe number e AN N g —e” T AdON N5 =0, (32)
of bosonic chiral fieldsof our model is 4—6 (Sec. V. It
is not as large as it might look at first sight due to the “mo- which, due to the linear independence of the spir)q*jsand
mentum space dimensional reduction mechanispd0] )~ imply
which occurs due to the presence of auxiliary spinor vari- “
ables entering the generalized Cartan-Penrose relfign e**Aden, =0, e"/\dga)\;zo_ (33
(72)] generated by our model. However, it is larger than that
of the (D=3,4,6,10) Green-Schwarz superstrifwghich has The equations for the one-forme**(&) express them
D [2n=4(D—2)] bosonic[fermionic] configuration space through the worldsheet covariant bosonic fo(@®) of the
real degrees of freedom, which reduceDie-2 [2(D—2)] X {(*12IM gyperspace and the spinarg (&),
after taking into account reparametrization invarianee (

+2if e " AdoN, 56PN}

w2

+f (IT*PA N —e" )N\ se ™
w2

- fwz(naﬁx;xl;—e**)Aae*w 5.8, (29

de” " A Az —e A \5)=0. (31)

Pe The equations for the fermionic coordinate functions,
6S/66%=0, read

symmetry, thus resulting in 2D —2) bosonic and 2D e =TI\ N g, (34
—2) fermionic phase space degrees of freedom. This, in the o
light of the above mentioned relation of the models in maxi- e T =II"’ A \g. (35

mal superspaces with higher spin theories, allows us to con- - . o
sider our model as a higher spin generalization of the Greenlhis reflects the auxiliary nature @& = and implies that
Schwarz superstring, containing additional information abouEds: (31) and (33) actually restrici1*# andd¢*,

the nonperturbative states of string/ M-theory.

Sy =y —y Ty + PR Ut e
The number offermionic degrees of freedom of our d(II7"N ) Mg N N g —II7"N ) A5 A A g) =0, (36)
model is 2 for anyn, less than that of th&®=4,6,10 (N 26y 1y + -
=2) Green-Schwarz superstring. [I7°N N5 ANdO“N =0, (37
IIl. PROPERTIES OF THE 3 (n(n+172lIn) [N N5 /\d6*N ;=0. (39

SUPERSYMMETRIC STRING MODEL
Moreover, looking at Eqs(34), (35 one can easily see
the necessity of the constraint20) on the bosonic spinor
Consider the variation of the actiofi8). Allowing for  variables. Indeed, if one ignored these constraints and varied
integration by parts one finds the action with respect to unconstraingg , one would ar-

A. Equations of motion
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rive, from Eq. (30), at e"*AIl*AA,=0 and e
/\H“ﬁ)\ =0. By Eq.(34) [or Eq.(35)] th|s would imply, in
partlcular et t/N\e”
tion of independence of the one-forrmé * ande™ ~ and,
actually, reducing the present model tp& 1 version of the
tensionlesgp-brane mode[34].

As \, are restricted by the constrai{&0), this constraint

PHYSICAL REVIEW D69, 085007 (2004

Now we can easily write the complete set of equations of
motion which include, in addition to Eq$31), (33), (34),

~=0, contradicting the original assump- (35), the set of equations fok, , which follows from

has to be taken into account in the variational problem. In-

stead of applying the Lagrange multiplier technique, one

may restrict the variations to those that preserve(E0, i.e.
such that
C* N N5 +C*\, 6N 5 =0. (39

One can solve Eq39) by introducing a set afi— 2 auxiliary
spinorsu'a “orthogonal” to the A\ * (cf. [52,57),

C*uN5=0, 1=1,...n-2, (40)
and normalized by
c*fuLup=Ccl, cY=-c’, (41)

where C" is an antisymmetric constant invertible+2)
X (n—2) matrix.
The n spinors

Iy, =1,

n—2, (42

provide a basis that can be used to decompose an arbitrary

spinor worldvolume functioricf. [58]), and in particular the
variations SN ", S\~
guence of Eq(39) is that the sum of the coefficient far" in

the decomposition 0\ and that ofA ~ in the decomposi-

tion of S\~ vanish. In other words, the general solution of

Eqg. (39) reads
ONF=w(ONI+QTT(HN, +Q, (6)U!, (43)

ON,=—w(ON,+Q" (HNI+Q, (o)u],

o=

(44)

where Q" (8), Q*=(8) and w(5) are arbitrary variational
parameters.
Substituting Eqs(43), (44) into Eq. (30), one finds

5xsz_f (26" TAITPN N, +2e7 “AITPA N ) (D)
W2
+J 2" TAIIPA N, Q7 (5)
w2

w2

+ AL, Q1 ()

+ 2e++/\1'[“ﬁ)\5u Q,(6)

fwzze"/\naﬁx LQf(6). (45)

8Slw(8)=0, 80+ (8)=0, 5510, (8)=0,
0SIQ ™7 (6)=0, andsS/Q, (8)=0, namely

e AN +e AT\, =0,  (46)

e" PAIL*PA g\, =0, (47)

AP, =0, (48)

CRAVAN | RO WATIE ) (49)

“/\H“ﬁ)\ﬁu =0. (50

Due to the linear independence ef "=déMe,. (&) and

e =d¢Me, (&), Egs.(47), (48) imply
II*A\ g\, =0. (51)
Decomposing the bosonic invariant one-fornhl «#

=d¢MI%% in the (“unholonomic”) basis provided bg™**,

M*f=e* 1% +e  "TI* | (52)
%% =V, . X¥—iv.. 0P, (53)

whereV.... is defined by
d=e**V..=e""V,, +e "V__, (54)

. Then one finds that the only conse- gne finds that Eqs(49) and (50) restrict only the left and

right chiral derivatives ¥, . ,V__) of the bosonic coordi-
nate functionX®f(&), respectively,

%\ gul,=(V__X*—iV__6*6P)\ ;u,=0, (55

PN jul=(V,  X*P=iV, 60PN [u,=0.
(56)
In the same manner, Eq&83) can be written as
V__6*\_,=0, V., 0°\)=0. (57)

The analysis of the above set of equations in the maximal
superspace, the search for solutions and their reinterpretation
in standard>-dimensional spacetim@ossibly along the line

of the fields-extended superspace democrady pfor of the
“two-time physics” [36]) is a problem for future study.

B. Gauge symmetries

The expressiori29), with (45), for the general variation
of the 3 ("("+1)/2N) sypersymmetric string actiofl8) shows
that the model possessassupersymmetries anch{2) «
symmetries of the form

8,0%(&)=C*Puy(&)k(8),

8 X P(£)=16,0"(&)0P(¢),

(58)

(59
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S M, (=0, &e,7(6€=0, (60)

with (n—2) fermionic gauge parameters,(£) (30 for

PHYSICAL REVIEW D 69, 085007 (2004

et =e?@(dr+do), e =e?Odr—do), (64)

= e:+:e:+:e¢’(§), e;_:—e;_:_e'/’(f)_ (65)

3.(52832)y | the framework of the second Noether theorem

this k symmetry is reflected by the fact that only 2 of the

fermionic equationg32) are independent. We stress that the€s

(n—2) GL(n,R) vector fieldsu!, defined by Eq.(40) are
auxiliary. They allow us to write explicitly the general solu-
tion of the equations

8.0° (6N, (£)=0, (61)

which define implicitly thex-symmetry transformatiof68).
Note that the dynamical system issymmetric despite the

This indicates that it makes sense to consider the fields
~*(7,0) as nonsingular (& *=+e %® in the confor-
mal gaugg a fact used in the Hamiltonian analysis below.
There is a correspondenp®0,61] between thec symme-
try of the worldvolume action and the supersymmetry pre-
served by a BPS stat@.g. by a solitonic solution of the
supergravity equations of motinnThus, the actior{18) de-
fines a dynamical model for the excitations of a BPS state
preservingall but two supersymmetries. Such a BPS state
can be treated as a composite of two BPS preons-@2
—30). This will become especially transparent after the

fact that it does not contain a Wess-Zumino term. This propHamiltonian analysis of the next section.
erty seems to be specific to models defined on maximal su-

perspaces.

Our model also possesséén—1)(n—2) b symmetries,
which are the bosonic “superpartners” of the fermionic
symmetries, defined by

5pX*P=byy(&)uu,

8p0°=0, SN =0, & =0, (62)

whereb;;(£) is symmetric and,J=1,... n—2. They are
reflected by the f—1)(n—2)/2 Noether identities stating
that the contractions of the bosonic equati¢8%) with the
u®'u?? bilinears of the (—2) auxiliary bosonic spinors
u*! (=C*Puj,) vanish'?

The remaining gauge symmetries of the actid@8) are
the SO(1,1) worldsheet Lorentz invariance

SX*F=0,

660°=0,

N, =*w(d\,, e T=+2w(se ", (63
which is reflected by the fact that Eg6) is satisfied iden-
tically when Egs.(34), (35 are taken into account, and the

symmetry under worldvolume general coordinate transfor-

mations.

As customary in string models, the general coordinate in-

variance and th&((1,1) gauge symmetry allow one to fix
locally the conformal gauge where,2(¢)=e?® 62 or,
equivalently

2In the masslesy M(n+1

p-brane models the symmetry[22,40,34 (cf. [59]) is n(n—1)/2

)/2I)) superparticle and tensionless super-

IV. HAMILTONIAN MECHANICS

The gauge symmetry structure has already been shown in
the Lagrangian framework. However, our dynamical system
clearly possesses additional, second class, constidigts
one of which is conditio20). In this section we carry out
the Hamiltonian analysis of ot ("("* 12" sypersymmet-
ric string model. In particular, this will allow us to find the
number of field theoretical degrees of freedom and to estab-
lish the relation of our model to the notion of BPS preons
[21].

The Lagrangian densit{ for the action(18),

S= fwszda'E, (66)
is given by
L=(e; "TgF—e, TN Ny

_(e;_Hgﬁ—e;—Hfﬁ))\;)\E

—(e; e, —e;Te.), (67)
where

MeP=9 X% ~ig,016P,

2=, X*F—i3,6\ 9P (69)

are the worldsheet components of the one-f¢i9).
The momentaP ,, canonically conjugate to the configu-
ration space variables
ZM=2ZM(1,0):=(X?, 0%\ ,e;

e,;7) (69

parametric. This comes from the fact that such models contain gre defined as usual:

single bosonic spinax , and the nontriviab-symmetry variation is
the general solution of the spinorial equatiégX*®\ ,=0. In our
tensionful 3"+ 1/2")  sypersymmetric string model with two
bosonic  spinors \Z(&), the (—1)(n—2)/2 parametric
b-symmetry transformation§Eq. (62)] are the solutions of two
equationssyX*A\F =0 and §,X“A\, =0.

Pr=(Pag,ma,PEN PL, PT.)= (70)

a9, ZM)

The canonical equat graded Poisson brackets,
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[Z2M0),Pp(a)},= = (= DMMP (), 2M o)}, . =TI N;—e) "

o

= af _; (BN TN F — T+ ~
are defined by = (9, XP=id,0 0P )\ Np—e, " ~0. (80)
Slightly more complicated calculations with the total’

Ny o1 AN N o
[27( )’PM(U)}p"( 1) opmdo—a’), 7D show that we also have the secondary constraint

where (1)V=(-1)%9" and the degree dey( DO=T12N N,
=deg(z”) is 0 for the bosonic fieldsZV=X**\7 e, * b e e
[or for the “bosonic indices” N=(af),(a*),(+ *),m], = (9 XP=19,6"07 )\ N5 ~0 (81

and 1 for the fermionic field€"V= 6* (or for the “fermionic

indices” N'= & and =+ which we will meet below in the [details about its derivation can be found below E@p)].

The appearance of this secondary constraint may be under-

supertwistor formulation of the model ; .
: . . ; - stood as well by comparing with the results of the Lagrang-
Since the actioril18) is clearly of first order type, it is not ian approach: ii/ i jus?t theg component of the differerg]]tial 9

surprising that the expression of every momentum results i brm equation(51).

a primary[62] constraint. Explicitly, The secondary constraint80) imply that the canonical

Pap= Paﬁ+e;+)\;)\[}—e;’)\;)\g~0, 72 HamiltonianHy, Eq. (78), vanishes on the surface of con-

straints(80),
D= o+10PP,5~0, (73 Ho~0, (82
peM~p, (74)  a characteristic property of theories with general coordinate
B invariance. Hence the total Hamiltonian reduces to a linear
P7_~0 (75) combination of the constraint§2)—(76), (80), (81),

H=—e;"®  +e; O__+1O0O 4 *bp 42D,
P1.~0, (76)
HIZPN 4 L5 =PI +h* P + LN (83)
where onlyD,, is fermionic. Condition(20),
wherel @ LeB ¢go |~ L= h*= LM and e, " are
N::C“ﬁ)\g)\g —-1~0, (77 Lagrangian multipliers whose form should be fixed from the
preservation of all the primary and secondary constraints un-
imposed on the bosonic spinors from the beginning, is also der = evolution.
primary constraint and has to be treated on the same footing Note that the constraintg6) are trivially first class, since

as Eqs(72—(76). their Poisson brackets with all the other constraints, includ-
The canonicalHamiltonian densityH,, ing Egs.(80) and (81), vanish. This allows us to state that
e; (&) are not dynamical fields but rather Lagrange multi-

Ho=9,Z2MPy—L, (78)  pliers (as the time component of electromagnetic potential

A, in electrodynamics Nevertheless, the appearance of
calculated on the primary constrair{#&2)—(76) hypersurface these Lagrange multipliers from the components of the
reads zweibeine,,~ put a “topological” restriction on a possible
gauge fixing; in particular the gauge ~ =0 is not allowed.
Indeed, the nondegeneracy of the zweibein, assumed from
tte T —elteln). (79) the beginning, reads

T o

Ho=e, TIPNIN;—e] TTIZPN N,
+(e

The evolution of any functionaf(Z,P,) is defined by de[eﬁ](z)]zE(e;‘ef—ef’eg‘)aﬁo. (84)
9. f=[f,Jdo’H "] involving the total Hamiltonian/do ', 2

where the Hamiltonian densitit ' is the sum ofHo in EQ. 5t due to this restriction, studying thereservation of the
(79) and the terms given by integrals of the primary €on-primary constraints, one finds the secondary conste8itt
straints (72—(76) multiplied by arbitrary functions If by checking the(primary and secondaryconstraints
(Lagrange multipliers[62]. Then one has to check that the preservation under evolution one finds that some Lagrang-
primary constraints are preserved under the evolutiongy myitipliers remain unfixed, then they corresponditst
d,Pap=0, €tc. At this stage additional, secondary CON-¢jass constraint§62] which generate gauge symmetries of
straints may be obtained. This is the case for our system. o system through the Poisson brackets. In other words,

Indeed, since the constraini§6) have zero Poisson gjnce'the canonical Hamiltonian vanishes in the weak sense,
brackets with any other primary constraint, their time evolu-ihe tota| Hamiltonian is a linear combination of all first class
tion is just determined by the canonical Hamiltoniafy, constraintd62].

9;PL.=[PL.,JdoHe],. Then one easily sees that |fgome of the equations resulting from thesvolution of
d,P% .~0 produces a pair of secondary constraints, the constraintgor their linear combinationsdo not restrict
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the Lagrangian multiplier, but imply the vanishing of a com- above statement about the appearance of the secondary con-
bination of the canonical variables, they correspond to nevstraint(81) can be checked by studying Eq85)—(91) with
secondary constraints, which have to be added with newW®=0. In this case the contraction of Eq87) with
Lagrange multipliers to obtain a new total Hamiltonian. In(—\ ) and of Eq.(88) with X\ results, respectively, in the
this case the check that all the constraints are preserved ugquations e NI N —e, ANTLA =0 and

der 7 evolution has to be repeated. el "ATII A" —e/ *ATLA"=~0. Due to the nondegeneracy

T

This does not happen for our dynamical system: a furthep the zweibein, Eq(84), the solution to these two equations
check of the constraint preservation does not result in the s trivial, i.e. it impliesA "LA"~0 and\*II,A~~0, the

appearance of new constraints. Indeed, it leads to the followzst of which is just the secondary constraiat).

ing set of equations for the Lagrange multipliers: To solve this system of equations for the Lagrange multi-
o o pliers and thus to describe explicitly the first class con-
do(e; Nghg—el TN N HIONON ) —2e, "N 1) straints, we can use the auxiliary spinor fieldg ¢) defined

as in Eqs(40), (41). The general solution of Eq§35)—(94)
obtained in such a framework can be found in Appendix B
[Egs.(B1)—(B7)]. Schematically, it reads

+2e, Nl gt LT TN N —LT AN 5=~0, (85)

N [2ief T (9,00 ) =il O, 001 )+2ie T (N )]

—\r[2ie (9,60 )+il O, 007) L=bu®uf+el T(...)+e. (...), (96)
+2ie, “(&\1)]=0, (86)
++ e
—2e; TN —1OMI2AN S +2e, L\ €= ru'+ L(ﬂoﬁ)\‘))\”——ei,(ﬁ,,m\*)x‘“,
—L(MCeA) ;~0, (87 ©7
2e] TTIZPN ; —1OMIPN | —2e, " L*AN "=\ +ef (.. )+e, (...), (98)
—LMCeA)\ ;~0, (89)
Io=—0ON +e " (...)+e; 7 (...), (99)
e, —L*\ \;=0, (89
L**=g,e; " +2e; " 0®+e* +e :
e/ T—L*\ \;~0, (90 ‘ () ( )(100)
ITC*Pr; -1, C*\}~0, 91
oT pem P OV L= s detet)=—2(e; "e; " —ere; ),
o _ L (101
gL PANGN 5+ 21 (ENT) (9,00 7) + 21 TTI, A" = L™~ =0,
(92
10=0. (102
gL PANGN 5+ 21 (ENT) (9,00 F) + 21 TTIANF =LF =0,
(93 In this solution the parameters
IgL PN N HT(ENT)(9,O0N7) =T (EN7)(9,6NT) -
bosonic: bV=b",0@,e>*, h**, (103
+IH I A"+ T A" =0, (99
where the weak equality sign is used to stress that one may fermionic:  «, (104

use the constraints in solving the above system of equations.
For brevity, in Egs.(85—(94) and below we often omit . - . .
spinor indices in the contractions are indefinite. They correspond to the first class constraints

(0,60°)=0,6°N5, (ENT)=E&PNg, PY:=P guubl~0, (105

+ +_1x17eBy = N E oty aBy *
IS, I=10L . 98 pip yelg (106

Note that Eqs(85)—(91) come from the requirement of

preservation of the primary constraints, while that for thes(®:=)\!ps™ — )\~ peM et *p7  —2e ~"P7_~0,
secondary constraints leads to Ed92)—(94). Thus the (107
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a)++‘:(D+++30P$+_2920)Pi+_2e;7-/v

—[r‘m—lﬁr — [N TN = (NTIL AN NP (NI NN TNTP] | Py,
- +a 1 -—0*++ ++O—— + - ap +y — + -
— o (GO D) — e, T T e T, TG, 0N 3 0N HTIZA (G M N g — NG OpNp)]
A PN\ Fpa)
@ @ _ ~ 1 QO ~ype)
x( = o v ko TN PY, (108

O__=0__—9,P7_+200p7_—2e/ "N

2
a + ay — —ay — - ay —
NN A= —[NJTIZN A= (NI NN TN A+ (VT A N T NPT Py

+
eO’

1 + - 1 -—0++ ++O - 4 + - +y — + -
_T(&oa)\ )()\ aDa)+ZT[_eo Qo— — €, Qo’ T1950N" 950N _Hgﬁ(ao’)\a)\ﬁ_)\aao’)\ﬁ)]

AP\ ipe®)
x( - —— |+ (I QNP (109

eO’ e(T (o
T
and symmetry (28). Finally, the constraintsb. ., Egs. (108,
P ~0 (110 (109, generate worldvolume reparametrizations. They pro-

= vide a counterpart of the Virasoro constraints characteristic
of the Green-Schwarz superstring action. Thus, as could be
In Egs. (108),(109 [cf. Eqs.(43)] expected, oul (""+D72IIN synersymmetric string is a two-
Qiti=aNtCNY, Q) =a,A"CNT, (11D dimensional conformal field theory. _
As was noted above, the presence of the first class con-
1 straints (110 indicates the pure gauge nature of the fields
QETO)’ZE(%)\+C)\__)\+C¢90)\_)- (112 e. " (&); the freedom of the gauge fixing is, nevertheless,
restricted by the “topological” condition$34).
Note that thex-symmetry andb-symmetry generators,

and the relation
Egs. (106) and (105), are theu,, and u,u} components of

S,P~NIN"B-N NTE-U ulBC,,, (113  Ed.(73) and Eq.(72), respectively, while all other first class
¢ “ ¢ constraints can be defined without any reference to auxiliary
N“Bi=CPaNE | ulBi=Chay! (114) variables.

The use of the auxiliary spinouﬂa(g) to define the first
is used to remove the auxiliary variable§ in all places cla_ss constraints requires_ some discussion. Clearl}/, any
where it is possible. Note that E6L13) is a consequence of SPinor can be decomposed in the baéi, but the use ofi,
the constraint77) and of the definition of theu', spinors, 10 define constraints requires us, to be rigorous, to consider
Eqgs. (40),(41) (see further discussion on the usef/ari- them as(auxiliary) dynamical variables, to introduce mo-
ables below. Thus we are allowed to use them in the solu-Menta, and to take into account any additional constraints for

tion of the equation for the Lagrange multipliers and, then, inf"€M. including Eqs(41) and the vanishing of the momenta
the definition of the first class constraints, as the product ofonjugate ta, (cf. [53]). An alternative is to consider these
any two constraints is a first class one since its PoissoAuxiliary spinors as defined by Eq&t0), (41) and by the
brackets with any other constraint vanishes weakly. gauge symmetries of thesg constraints, i.e. to treat them as
Using the Poisson brackefl), the first class constraints Some implicit functions ok, (cf. [63]). Such a description
generate gauge symmetries. In our dynamical system the fegan be obtained rigorously by the successive gauge fixings of
mionic first class constraintd06) are the generators of the all the additional gauge symmetries that act onlyujnand
(n—2)-parametrick symmetry(58)—(60). The P in Eq. by introducing Dirac brackets accounting for all the second
(105 are thel(n—1)(n—2) generators of the symmetry class constraints for the' variables. Nevertheless, with
(62). The constrainG(®) (107) generates th8O(1,1) gauge some precautions, the above simpler alternative can be used
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from the beginning. In this case, one has to keep in mind, in TABLE I. Supersymmetric string model degrees of freedom.
particular, that thei','s do not commute witlP*™ . Indeed,

as conditiong40) have to be treated in a strong sense, one P n No. of bosonic  No. of fermionic BPS
has to assume [Pﬁ()‘)(a),ulg(a’)]pwi)\EC‘”u'yé(a DOFs=4n—-6 DOFs=2 states
—o'). However, one notices that this does not change the 3 2 2 2 No
result of the analysis of the number of first and second class , 4 10 2 1/2
constraints among Eq$72)—(77), (80), (81), which do not 8 26 2 6/8
mvol_vg uy(g). The reason is that. one only use$(§) as 10 16 58 > 14/16
multipliers needed to extract the first and second class con-q4 32 122 5 30/32

straints from the mixed one&’2), (73). Thus, the Poisson
brackets of the projected constrain®,zu®'u®’, D u® -
with other constraintse.g., [P ,gu*'uf?, .. .]p) and the of our 3, (n(n+)/2in) supersymmetric string model. The dy-
projected Poisson brackets of the original constrajgs, ~ hamical system described by the actid) possesses(n

D, with the same onege.g., u¥uP[P,g, ...1p) are —1)(n—2)+5 bosonic first class constrainf&gs. (105),
equivalent in the sense that a non-zero differencd10?, (108, (109 and (110] out of a total number of
([Paﬁu“'u/”, - .]P_uaIuBJ[PaB’ ...7p) will be propor- sn(n+1)+2n+8 coqstramts[Eqs. (72), (71_1), (75), (76),
tional to P, or D, and, hence, will vanish weakly. This (77), (80) and(81)]. This leaves A+ 2 bosonic second class
observation allows us to use the baig) to solve the equa- constraints. Since the phase space d|m§n3|on cj(v)lrrespondlng
tions (85)—(91), that is to say, to decompose the constraintd©®  the — worldvolume  bosonic  fields 27(r,0)
(72—(77), (80), (81) into first and second class ones, without = (X**\\; &, = ,e; ) is 2[n(n+ 1)/2+2n+4], the action
introducing momenta for the! (£) and without studying the (18) tumns out to have (A—6) bosonic degrees of freedom.
constraints restricting these variables. Likewise, the —2) fermionic first class constraints

The remaining constraints are second class. In particulafl06 and the 2 fermionic second class constraints, Egs.
these are the* components of the fermionic constraints (119, reduce the original 2 phase space fermionic degrees
(73 of freedom of the actioril8) down to 2.

Thus our supersymmetric string model %f
DE=D N =m N\ +ie, " aﬁ)\gmo (115 superspace carries ii4-6) bosonic and 2 fermionic world-
volume field theoretical degrees of freedom. Treating the

[n(n+1)/2]|n)

with Poisson brackets numbern as the number of components of an irreducible
. spinor representation of thB-dimensional Lorentz group
{D"(0), D" (a")}p=+2ie, " 8(a—0"), SO(1,D—1), one finds the results in Table I, where DOF
indicates degrees of freedom. Thus, the number of bosonic
{D (o), D" (d')}p~—2ie, 8(o—0d’), degrees of freedom of ouk (""+1/2IN sypersymmetric
string model exceeds that of the Green-Schwarz superstring
{D"(0),D"(d")}p=0 (116 [where it exists, A—6>2(D—2)], while the number of

N . . fermionic dimensions, 2, is smaller than that of the Green-
[recall that, having in mind the possibility of fixing the con- Schwarz superstring fdd = 6,10.

formal gauge(64), we assume nondegeneracy &f (o), The additional bosonic degrees of freedom might be
i.e. that the expression€]~ (o) is well defined. The selec- treated as higher spin degrees of freedom and/or as corre-
tion of the basic second class constraints and the simplificasponding to the additional “brane” central charges in the
tion of their Poisson bracket algebra is a technically involvedmaximal supersymmetry algebtd). The smaller number of
problem. physical fermionic degrees of freedom just reflects the pres-
In the next section we show that the dynamical degrees oénce of supernumerary symmetries[(n—2)>n/2 for n
freedom of our supersymmetric string ¥{(""* D2V may  ~ 41 in our 3368) and 3(5%832) sypersymmetric string
be presented in a more economic way in terms of constraineghodels. Ours, (n(n+1)/2]n) superstring model describes, as
OSF(2n|l) SUpertWiStorS. The Hamiltonian mechanics aISOargued’ the excitations of a BPS state preser\kﬁg(n
simplifies in this symplectic supertwistor formulation. In par- — 2y supersymmetrieg 2 BPS state for the supersymmet-
ticular, all the first class constraints can be extracted withougjc string in the enlarge® =11 superspacE(52332)).
using the auxiliary fieldsu],. The reason is that the su- A search for solitonic solutions of the usugl=11 and
pertwistor variables are invariant under bathandb sym-  D=10 type Il supergravities with such properties is being
metry. Thus, moving to the twistor form of our action meanscarried out at presen82,33,617. If successful, it would be
rewriting it in terms of trivially x- andb-invariant quantities, interesting to study how the additional bosonic degrees of
effectively removing all variables that transform nontrivially freedom of our model are mapped into the moduli of these
under these gauge symmetries. Since the descriptior of solutions, presumably related to the gauge fields of the su-
andb symmetries is the one requiring the introduction of thepergravity multiplet(cf. [6]). Nevertheless, if it were shown
u! (&) fields, it is natural that these are not needed in thahat such solutions do not appear in the standardll su-
supertwistor Hamiltonian approach. pergravity, this could indicate that M theory does require an
This consideration already allows us to calculate the numextension of the usual superspace for its adequate descrip-
ber of the(field theoretical worldshegtdegrees of freedom tion.
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To conclude this section we comment on the BPS preon
interpretation of our model. In accordance wit], it can S:f 2[e++/\dY_EanY_H
be treated as a composite of #n—k=2 BPS preons. To W
support this conclusion one can have a look at the constraint —e "AdY QYT -ettAeTT]; (122
(72). As we have shown, it is a mixture of first and second
class constraints. However, performing a “conversion” of Y Qs Y =0, (123
the second class constrairf84] to obtain first class con-
straints(in a way similar to the one carried out for a pointlike Y E*CypY =1, (124

model in[40]), one arrives at the first class constraint

where the nondegenerate matrix Qsp
— _ — _ (_ 1\deg(xx)deg(+II) ; i i
Pap= Paﬁ+9;+?\;?\l§ —e;_)\;)\gmo, (117) (—1) Qs is the orthosymplectic metric,
5 0 5.2 0
where the , are r.ela.ted, but not just gqual, X, . In the Qyp={ — 65" 0 0%}, (125
guantum theory this first class constraint can be imposed on )
guantum states giving rise to a relation similar to [E9). 0 0 i
with #,=2.

preserved byD Sp(2n|1). The degenerate mats ; in Eq.

(124) has the form
V. ORTHOSYMPLECTIC TWISTOR FORM

OF THE 3,(n(n+1)/2]in) 0 0 O
SUPERSYMMETRIC STRING ACTION Csp= 0 Cc8 0 (126)
A further analysis of the Hamiltonian mechanics of our O O O
3 N+ 1)72lIM - sypersymmetric string model would become
quite involved. Instead, we present in this section a morevith C*# defined in Eq(22).
economic description. One can also find the orthosymplectic twistor form for the
The action(18) can be rewritten ¢’ =1) in the form action (118 with unconstrained spinors. It reads
S= f 2[e+ +/\(dM—a)\;_M—ad)\;_id77— 7]—) S= sz[e++/\(dM 7(1/\;_./\/1 7adA;_idX7X7)
W
—e__/\(d,u”)\:[—,uwd)\;’—id 77+ 77+) _e**/\(dM +aAZ_M +adA::_ idX+X+)
—et*Ne ], (118 —e++/\e77(C“BA;AlE)2], (127
where

where the bosonig™* and the fermionicy™ are defined by

i

L N N MEe=XBAL—=0"0PN;, x =0PA;. (129
pEIXENG =000 T =0 (119 F2 P b
Equation(128) differs from Eq.(119) only by replacement of
Equations(119) are reminiscent of the Ferber generalizationthe constrained dimensionleas” by the unconstrained di-
[51] of the Penrose correspondence relatja] (see also mensionful A=. But, as a result, the©Sp(2n[1) super-
[21,22)). The two sets of A+ 1 variables belonging to the twistors
same real one-dimension@Majorana-Weyl spinor repre- s P
sentation of the worldsheet Lorentz gro8®(1,1), Yoo =(MTSAL X7 (129

(whons )Yt (N> o)=Y E, (120 are restricted by only one condition similar to E@23),
Y QY T=0. (130

can be treated as the components of @8 2n|1) su-
pertwistors,Y ** and Y ~*. However, Eqs(119 considered The action in terms ol ** includes the degenerate matrix

together imply the following constraint: Csni, and reads
)\;#7(1_)\;#+a_i7’777+:0_ (121) S:f 2[e++/\dY_EQEHY_H—e__/\dY+EQEHY+H
W
One has to consider as well the “kinematic” constrai2®), —et +/\e"(Y+ECan_n)2]- (131
which breaksGL(n,R) down toSp(n). In terms of the su-
pertwistorsY=*> the action(18) and the constraint§121), The global symmetry of ouk ("M D72l sypersymmet-
(20) can be written as follows: ric string is transparent now. The orthosymplectic supertwist-
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ors Y** are both in the fundamental representation of the 4, —[—e'ta, Yy 0. Y "te o,y 0. Y™
OSp(2n|1) supergroup. The constrairts23) [or (130)] are 0 T I T s
alsoOSp(2n|1) invariant. However, conditiofl24) [or the +(efte, T —elTe: ). (140
last term in the actiori131)] breaks theDSp(2n|1) invari-

ance down to the semidirect prod "™+ DM Spn)  The preservation of the primary constraints undesvolu-
of Sp(n)CSp(2n) and the maximal superspace grouption (see Sec. IYleads to the secondary constraints

3 ((n+1)72lIM (see Appendix A

Summarizing, our3 ("M D2IM gynersymmetric string (I>++=(9(,Y7292HY7H—e;_~0, (141)
model breaks th© Sp(2n|1) symmetry down to a generali-
zation 3, ("(" 12N % S 1) of the Poincaresupergroup. In (b,,:a(,YQQE“Ym—e;*%O, (142

contrast, both the pointlike model [22] and the tensionless
superbrane model ¢84] possess fulDSp(2n|1) symmetry. 0 by o+ “n
This is in agreement with treatin@Sp(2n|1) as a general- PO=g,Y Q.Y =Y Q.Y ~0.

ized superconformal group, as the standard conformal and (143
superconformal symmetry is broken in any model with mass,

tension or another dimensionful parameter. Again (see Sec. IY the canonical Hamiltonian vanishes

on the surface of constraint441), (142, and thus ther

VI. HAMILTONIAN ANALYSIS IN THE  OSp(2n|1) evolution is defined by the Hamiltonian dendigf. Eq.(83)]

SUPERTWISTOR FORMULATION Hi=—erd,, +e- & _+1OpO+ L *p_

The Hamiltonian analysis simplifies in the supertwistor LLO LM AL LEEPT L hEEpT
formulation (122) of the action(18). This is due to the fact LU LN LE P +h=7PL, (144
that moving from(18) to (122 reduces essentially the num- 54 the canonical Poisson brackets
ber of fields involved in the model.

The Lagrangian of the actiof122) reads [PiA(g'),YtE(a'/)}PZ —5?5(0—0’), (145
—(ettg Y T—ettay o y ! Y
L=(e;7d,Y "—e, 0¥ [e;"(0),PLu(0)],=8(0—0"), (146
- +s o 43 +11
—(e; a,Y —e, Y HQ Y S50 )BT (o] = 8 , 14
4 ++ ) (132 [e; ~(0),Pi.(o )]P_ (0=0a"). (147
—(e; e, —e; e ), 1

_ _ _ Then ther-preservation requirement of the primary and
and involves the 2(2+1+2)=4n+6 configuration space secondary constraints results in the following system of

worldvolume fields equations for the Lagrange multipliers:
=Y =Y E . + +
ZM=ZM(1,0)=(Y “,e; " ,e; 7). (133 e e;—a v aae;—_L——Y+2+ 1(0) o
The calculation of their canonical momenta e, 7 2e, e, 7
g1O_LO o .
Pu=(P Pl P, )=——r 134 +— Y - Y (CQ), (149
PP P oo (13 2e, 2e, "
provides the following set of primary constraints: L oelt I IS T N (O s
P =P Fei 0_Y'~0 (139 S e 2e, " e
s t2+ o s ~U, [od T T
g 1010 L™
P7.~0, 136 _ e - o >
- (136 oY oY (CQ) . (149
P .~0. (137 . ; . ;
+ - - +
. ) L Q.Y ~L Q_Y (150
Conditions (123, (124) should also be taken into account 2 2
after all the Poisson brackets are calculated and, hence, are iy 0 s I
also primary constraints, L C,,Y =L C, Y, (159
MWD T - _
Us=Y Qs Y1T~0, (139 Lo, Y "~e (152
Ne=Y**CspY "-1~0. (139
! L0, v " ~elt, (153

The canonicalHamiltonian densityH, corresponding to
the action(122) reads and
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L= ~a,L QY =L a4,y ", (154
L**~a,L 0, Y "L _a,y", (159
; (G,L7 0, Y -LQ 4,Y )~0, (150

where (CQ)HE:CHAQAE and anz—ﬂm is the inverse
of the orthosymplectic metri¢125),

0 —85" 0
o 0"=4, Q'={sf 0 0}. (157
0 0 i

. _ a
Equations(148—(153) come from the preservation of the
primary constraints, while Eq$154)—(156) from the preser-
vation of the secondary constraints. Again, as in Sec. IV, one

can follow the appearance of the secondary constfasi)
by considering Eqs(148—(153) with 1(9=0.
Denoting

1 _ —
AE‘J’O):E((?UY+ECEHY H_YQCZH&"Y H)’ (158

++ +3 +1I
AsT=a,Y CY (159
I -3 —1I
A, =3d,Y C_ Y, (160
© ARG A
S 2e e (16D
1(AT A
=2l e T ) (162

one can write the general solution of E¢48)—(153) in the
form

e

T

L~ 0@y (5, Y - ALY T _eftBOY

e

+el (Y ca)H)+el F(BOY - (Y c),
(163

++
T

++
o

—e, (Y'CQ))—e; (BOY —(Y*CQ)"),

-3

L '~ =Y "+ T_(g,Y +AOY Tt BOY'

(164
L(o)zz(e;—e;+_e:+e;—)B(0)’ (165
L===g,e; " F2e; "AD=x2e, " 0®, (169

PHYSICAL REVIEW D69, 085007 (2004

LW=—4deted)=—2(e, el"—elte, ),

o T

(167)

1(0=0. (168

Note that Eqs(167),(168 have the same form as E4&6),
(B7) (Appendix B for the Lagrange multipliers in the origi-
nal formulation, and Eq4166) are similar to Eqs(B5).

The above solution contains the indefinite worldsheet

+

field parameterd™ = (&), 0@ (&) ande> ~ (&) which corre-

T

spond to the five first class constraints which generate the
gauge symmetries of the symplectic twistor formulation of
our 3 (n(+1)72lIn snersymmetric string model. They are

PL.~0 (169
nd

G(O)::YQPQ—Y*E?{; 2e; "P7,—2e, P7_=~0,

(170

D, =0, +3,P7, +2A0P7, +2e; "BOY
—2e. N+F, P.s, (171

d__=0__—g,P7_+2A0P7_+2e! BOY
26t NH T Ply, (172

where
Fir=—BOY “+(y cQ), 173
Fili=— e%[agYHAfBNE

+BOe. Y -l (YTCQ)], (174

FE o,y Ay g0ty

(o8

+el (Y ca), (175

F o =—BOY +(y*ca) (176
Using Poisson brackets, the constraid70 generates the
S(O(1,1) worldsheet Lorentz gauge symmetry, E¢E71)
and (172 are the reparametrizatiofVirasorg generators,
and the symmetry generated by E(&59) indicates the pure
gauge nature of the; (&) fields[again, subject to the non-
degeneracy conditiori84) that restricts the gauge choice
freedom for them

Note that both thd-symmetry and thec-symmetry gen-
erators, Egs(105 and(106), are not present in the symplec-
tic supertwistor formulation. Actually, the number of vari-
ables in this formulation minus the constraint among them,
Eq. (123, is (4n+6)—1 and equal to the number of vari-
ables in the previous formulatigm(n+1)/2+n+2n+4],

085007-15



BANDOS et al. PHYSICAL REVIEW D 69, 085007 (2004

minus the number ob- and x-symmetry generator§(n [PY (0),...]1 =[P’ (0),...]
—1)(n—2)/2+(n—2)]. This clearly indicates that the tran- ° F
sition to the supertwistor form of the action corresponds to s
an implicit gauge fixing of these symmetries and the removal -—Y (0')[77+2(0), .. .}P.
of the additional variables, since the remaining supertwistor 2e,
ones are invariant under bothand x symmetry*> (185
Other constraints are second class. Indeed, e.g. the algebra
of the constraint.. s, Eq. (135, However, P%. (o) still commute among themselves,
[PL.(0),PL.(c")],=0=[PT . (0),PZ_(c")],.
When the constraint€l35) are taken as strong equations,
the first class constraintd70—(172) simplify to

[P ()P, (¢} ,=2e,°Q &c—0a'), (177

[P [(0),P (")} ,=—26,7Q b—0'), (178
GO:=2ef*P7, —2e, P’ _~0, (186
[P, (0),P_ (c")},=0, (179 _
(D++’=q)+++f7(rpi++2AE;0)Pi+
clearly indicates their second class nature. As such, one can

introduce the graded Dirator starred[62]) brackets that +2e, BOu—-2e," N, (187
allow one to put them strongly equal to zero. For any arbi- 5
trary two (bosonic or fermionig functionalsf and g of the d__=b__—9,P7_+ 2AETO)P‘I 3

canonical variable§133), (134) they are defined by
[f(01).9(02)}

+2e!"BOY—2e1 " N, (1898

and the remaining second class constraints can be taken in

1 the form
(02,0002}, 5| do| ——Tf(e0.P ()}
1).9(02)}, 5 e, (o) e K©.zg"*P7 +e "P”_ ~0, (189
115
XQ [P (0),9(02)}, N=Y"*CyyY -1~0, (190
1 U=Y QY =0, (192
————[f(0).P_ ()}, Q" [P (09(02)},]. =
€, (o) 0 +3 ~1 +3 ~10
=5,y "Q_ Y =Y "Q_4,Y =0
(180) (192

Using these and reducing further the number of phase spag§ne has to take into account that, under the Dirac brackets,
degrees of freedom by setting =0 strongly, the su- ps  anqy*2 do not commute

pertwistor becomes a self-conjugate variable,

o =3/ 1 -2 ’
[P7 ()Y X0 ==Y (o) 8(c—0"),

—0"5(c—0"). (18 2e,
2e, (193

Y (0).Y (o) =7

For the “components” of the supertwistor, E.81) implies 1 .
[Pi_w),v*z(o')];zfv (0)8(a—a").

(o8

Ps(o—o'), (182 (194

A, (0),u"B(a")] =F———
[N (o) u™P(a")]] +26;+
Then one easily checks that, under Dirac brackgt8) gen-
. R i erates thes((1,1) transformations of the supertwistors,
(@) n* (0= F = 8o =a"). o . . 05
o GO, Y™ ("] =FY (0)é(o—0"). (19
(183 [G™(0o) (o], (o) 6( )

On the other hand, one finds that the second class constraint

i + ++ T L .
The Dirac brackets foe;~, e;~ and P% . coincide with U interchanges tha** and Y= supertwistors,

the Poisson brackets, while f&7 . one finds

1
[Pi+(0'), . .]D:[P3—_+(O'), . ']P [Z/[(O.),Y+E(O_/)]D:2e__Y 2(0_)5(0__0_1),

o

1
_ 2eTY (0')[73_2(0'), .. .}P,
7 This invariance was known for the massless superparticle and
(184) the tensionless superstring cases; see[82y34,40,6% cf. [59].
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TABLE Il. Matrix of Dirac brackets of Eqs(189—(192).

[ l=h = (@O0 +  Ue) KO(o') Mo
+SKO (oY)

(PO +SKOY (o) 0 — 8y 0 0

U(o) 8 0 0 0

KO(o) 0 0 0 Soor

Mo) 0 0 — 8y 0

Y (o) s(o—a'). (196

[Uo),Y ()] =

++
o

It is interesting to note that in the original supertwistor for-
mulation of theD =4, N=1 superparticl¢51] there exists a
counterpart of thé/ constraint; however, there it is the first
class constraint generating the interhl1) symmetry**

PHYSICAL REVIEW D69, 085007 (2004

VII. HAMILTONIAN ANALYSIS IN TERMS
OF “UNNORMALIZED” Y ** SUPERTWISTORS

As shown in Sec. V, the actiofi22) may be considered
as a gauge fixed form of the actigb31) written in terms of
supertwistorg(129) restricted by only one Lagrangian con-
straint (130). The second constrairifi24), the “normaliza-
tion” condition that distinguishes among the"* and Y **
supertwistors, may be obtained by gauge fixing the direct
product of the two scaling gauge symmetri@é) and (27)
down to theS(O(1,1) worldsheet Lorentz symmet(28) of
the action(122). As a result, one may expect that the Hamil-
tonian structure of the modé€131) will differ from the one
of the model(122) by the absence of one second class con-
straint (190) and the presence of one additional first class
constraint replacing189).

This is indeed the case. An analysis similar to the one
carried in Sec. VI allows one to find the following set of

primary,

The Dirac brackets of the above second class constraints

(189—(192 can be found in Appendix B, Eqé810)—(B14).

They are characterized by the matrix shown in Table II,

where S(o) =3[A] " (0)le. T (o) +A, “(0)le, (o)] [Eq.
(162] and 6,,,=68(o—0'). This table indicates that the
K(©) constraint is canonically conjugate A6 while the sec-
ond class constrainb(®+ SK(© is conjugate td/. One may
easily pass to thédoubly starredl Dirac brackets with re-

spect to the above mentioned four second class constraints.

However, the new Dirac brackets for the supertwistor vari-

ables would have a very complicated form, so that it looks

more practical either to apply the formalism usitgingly
starred Dirac bracket§Eq. (180)] and simple first and sec-
ond class constraints, Eq4.86)—(188 and(189-(192), or
to search for a conversidi64] of the remaining second class

constraints into first class ones. Note that a phenomenon

similar to conversion occurs when one moves from #4382

to the dynamical system with unnormalized twistors de-

scribed by the actiof131). We discuss this in more detail in
the next section.

As the simplest application of the above Hamiltonian

analysis let us calculate the number of field theoretical de-

grees of freedom of the dynamical systéh22). In this su-
pertwistor formulation one finds from Eq&L33) and (120

(4n+4) bosonic and 2 fermionic configuration space vari-

ables, which corresponds to a phase space witm2(4)

and 4 fermionic “dimensions.” The system has 5 bosonicthat restrict the phase space variables

first class constraints, EqEL69—(172), out of a total num-
ber of 4n+9 bosonic constrain{ghe bosonic components of
Egs. (135 and (136), (137), (141)—(143)]. Thus, in agree-
ment with Sec. IV, one finds that tRg"("* V721N gypersym-
metric string described by the actiqi22 possesses

—6 bosonic degrees of freedom. Likewise, the 2 fermionic

constraints of the actiofthe fermionic components of Eq.
(135)] reduce to 2 the fermionic degrees of freedom.

Y4see[66] for a detailed study of the Hamiltonian mechanics in
the twistorlike formulation of theD =4 superparticle, where the
possibility of constraint class transmutation was noted.

P =P, Fe; 70 Y =0, (197

PI ., ~0, (198

P7.~0, (199

U=Y Qs Y =Y QY =0, (200

and secondary constraints,

®,, =9,Y QY —e, (Y'CY)?~0, (200
d__=9,YTQY —e/ T (YTCY)2~0,

(202

®O=p YTQOY =Y "Qs,Y =0, (203

EM=ZM(r,0)=(Y " el* el%), (204

Br— (P PL. Pl ) — =
=3 9(9,ZM)
(209

The set(197)—(203) contains 6 first class constrainteer-
sus five first class constrain(&69—(172) in the (122 sys-
tem], namely
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P7.~0, (206) - 2e, BO
(I)++=(D+++WU~O, (216
2ef P, Y FP_y~0, (207 ( )
. ~ 2e; "B
2e, P7_—-Y**P,s~0, (208 O _=®__+—"—U~0, (217
= (Y*CY™)?
d = 2e, B U3 PY which clearly corresponds to the set of constraifit86)—
T A (Y+tCY)? o+ (188 of the “normalized” supertwistor description with the
addition of the constrain{189), which is now “converted”
B into a first class one due to disappearance of the normaliza-
T Yroyo)? 2Y_27’+2+(Y+CY_)Y_CQ7’+ tion constraint(190).
(Y"CY™) The remaining two bosonic constraints, EG00) and
-~ R (203, are second class. Their Dirac bracket
- 9, Y P s+ ———YIP , _ ,
o T (Ytey )2 > [U(0), @O (") ]p=(YTCY)?5(0—0")
2 2 sto—o)
A (vt v+ ~ o— 0
e, (Y'CY)Y'CQP_|~0, (209 26 " 2e -
~(Y'CY )28(o— 0o’ 218
) o ( Po(o—o') (218
b__=0__+ (Y*CY*)ZLH 9P - is nonvanishing due to the linear independence of¥he
ande2 supertwistorg129 (coming from the linear inde-
BO s oo pendence of theirA] and A, components, A C*A
B (Y*CY*)ZY Pos+(YTCY )Y CQP- #0). For a further simplification of the Hamiltonian formal-
ism it might be convenient to make a conversion of this pair
1 et tB0) of second class constraints into first class by adding a pair of
=GPy Y Py canonically conjugate variablesg(¢) and P(@(¢),
€y (Y'CY™) ([q(e),PD(c")]p=8(c—0c")) to our phase space.
The above Hamiltonian formalism and its further devel-
el (Y TCY ) (Y COP,)|~0 (210~ opment can be applied to quantize Ran 12N gyper-
7 " ' symmetric string model. This should produce a quantum
higher spin generalization of the Green-Schwarz superstring
where[cf. Eq. (161)] for n=4,8,16 and, fom=32, an exactly solvable quantum
description of a conformal field theory carrying, somehow,
1[a,YTCYH(YTCY™) 4,Y CY (Y*CY") information about the nonperturbative brane BPS states of M
BO=2| -2 + -2 theory.
2 e, e,
IY 00 Y VIIl. SUPERSYMMETRIC
_ %) (211) p-BRANES IN MAXIMAL SUPERSPACE 3, (n(n+1y2lim)
e, €,

The model may be generalized to describe higher-

Using Dirac brackets to account for the second class co c_il(r[rl((anrlsllgnlglanl) extended objectsupersymmetrig-branes in

ints(1 h f. Eq.(1
straints(197), wherefcf. Eq. (181)] The expression of the supersymmetpibrane action in

terms of dimensionful unconstrained bosonic spinors reads
QZH(S(U_U,), [cf. Eq. (25)]

[Y (o), Y (o)} =5 ——
2e

o

(212) Sp: pr+legpAnaﬁ(A;pﬁsAZ)

the first class constraints simplify to
—(- a’)pf e P de( CPALAS), (219
Wp+1

PL.~0, (213
P7 . ~0, (214 wherea=0,1,...p, r=1,...n(p), a=1,...n,
1
P?_~0, (215 eg\pE aeabl - .bpebl/\ .. ./\ebp, (220
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ande”\P*1) js theWP*! volume element

1
(p+1)! PP

e/\(p+1)E ebl/\ .. ./\ebl”l.
+1

(221
In Eq. (219, the (p+ 1) e?=d£&Med (€) are auxiliary world-

volume vielbein fields&™= (7,0, ... ,oP) are the world-
volume WP*? Jocal coordinates and\' (&) is a set ofn

PHYSICAL REVIEW D69, 085007 (2004

8,:09= K (EUT(€), U (EAL(§)=0,

J=1,...[n=n(p)], r=1,...n(p).
(229

The « symmetry(223), (225 implies the preservation of all
but n(p) supersymmetries by the corresponding=[n
—n(p)]/n BPS state.

=n(p) unconstrained auxiliary real bosonic fields with a_ For instance, fop=2, n=32, Spin(1,2)~SL(2,}) and

“spacetime” spinorial[actually, anSp(n) vector] index «
=1,...n. The numben(p) of real spinor fields\" (¢) as
well as the meaning of the symmetric real matrigés de-
pend on the worldvolume dimensiod=p+1. For d

n=2. The action219 then describes excitations of a mem-
brane BPS state preserving all but 2 supersymmetri€$, a

BPS state. Fop=5 andn=8 the action(219 with n=32
describes &2 supersymmetric 5-brane model Ei52832),

=2,3,4(mod 8, where a Majorana spinor representation ex-Both the supermembrar@2-brang and the super-5-brane
ists, thep?, areSpin(1,p) gamma matrices multiplied by the (M5-brang are known in the standar®=11 superspace,
charge conjugation matrix or sigma matrices, provided theyvhere they correspond t§ BPS states. It is tempting to
are symmetric. If not, it is always possible to find a realSPeculate that the “usual” M2- and M5-superbranes are re-

symmetric matrix by doubling the indexr =rl (1=1,2), as

in the case ofl=6 symplectic Majorana spinors. For dimen-

sions with only Dirac spinorglike d=5) A p/sAj should
be understood a& ,y*A g+ A zy*A,,, etc. For simplicity we
present Eq(219 and other formulas of this section for “Ma-
jorana dimensionst with symmetricCy matrices; the gen-

eralization to the other cases is straightforward, although ongg gejt-

should be careful determining the valuergfp) for a given

d=p+1. Forp=1, where the irreducible Majorana-Weyl

lated to the generalized(®2432) supersymmetric 2-brane and
5-brane described by the actigp22) for p=2 and 5. For
instance, they might be related to some particular solutions
to the equations of motion of the correspondigand 53
~.(52832) models preserving 16 supersymmetries and/or with
the result of a dimensional reduction of them. For he5
case a question of special interest would be the role of the
dual worldvolume gauge field in tH(52432 super-
space descriptiofsee[6] for a related discussion

For p=3 andn=4 we have a% BPS state, a BPS

seinor is one dimensiongBpin(1,1) is Abeliar}, one needs 3 prane Neither the Green-Schwarz superstring nor the
A, to be in a reducible Majorana representation in thesuper-3-brane exist in the standdde= 11 superspace, but a

worldsheet spinor index i.e. A", = (A ,A); otherwise the

super-D3-brane does exist in tBe= 10 type |IB superspace,

second term in Eq219) would be zero and the action would as the superstring does. As we have already noted, although

become that of a tensionle&s[N("+ 12N sypersymmetric
string. Then, the actiof219) reduces td25) using(21).

The fermionic variationd; of the action (219, &S,,
comes only from the variation di“#. Let us simplify it by
taking 8;X*#=i8;6“0” [cf. below Eq. (29)], so that
i5,11*#=0 ands;11%=—2id 6(“567). AsTI** enters in the
?cgon (219 only through its contraction withh;,y{sA we
in

5S,=—2i prﬂeﬁp/\dﬁ“A[lp?SA;éaﬁ. (222

Thus onlyn(p) fermionic variationséﬁﬁAz out of then
variations86” are effectively involved ing;S, .

This reflects the presence fi—n(p)] « symmetries in

3.(52832) gls0 allows a treatment as an enlarged type 1B su-
perspacd9,20], the 3 (52432 supersymmetrip-brane action
(219 explicitly involves the 3% 32 matrix C*? which can-

not be constructed out of type IIB matrices inSa(1,9)
Lorentz covariant manner. The same problem appears with
the 3 (52832 sypersymmetric 9-brane described by fhe9
version of the3 (52432) model (219) with n= 16, which cor-
responds to s BPS state; its possible relation to the space-
time filling type 11B super-D9-brane in the usul=10 su-
perspace is also quite unclear.

IX. CONCLUSIONS AND OUTLOOK

We have presented a supersymmetric string model in the
“maximal” superspaces, ("M D21 with additional tenso-

the dynamical system described by the supersymmetritial central charge coordinatéfor n>2). The model pos-

p-brane action219. They are defined by

5. X*P=is.0P, 5.e*=0, (223
and by the following condition o, 6%:
5.0°A" =0, r=1,...n(p). (224

This can be solved, using the auxiliary spinor field®’
(Wwhere nowd=1, ... [n—n(p)]) orthogonal toA!,, as

sesses rigid supersymmetries anal—2 local fermionick
symmetries. This implies that it provides the worldsheet ac-
tion for the excitations of a BPS state preservimg—@)
supersymmetries. In particular, for=32 our model de-
scribes a supersymmetric string with 30 symmetries in
3.(52832) \which corresponds to a BPS state preserving 30 out
of 32 supersymmetries. This model can be treated as a com-
posite of two BPS preong1] and is the seconéafter the
D=11 Curtright model[5]) tensionful extended object
model in3,(52832),
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In contrast with the Curtright mod¢b], our supersym- If, in contrast, these solutions do not exist, this could indi-
metric string action in the enlarge® =11 superspace cate, because of the special role of BPS preons in the alge-
3(52832) qges not involve any gamma matrices, but insteaddraic classification of the M-theory BPS staf@q], the ne-
makes use of two constrained bosonic spinor variablds, cessity of a wider geometric framework for a description of
and\_, , corresponding to the two BPS preons from whichM theory. In this case the proposaﬁln(nﬂ)/z]ln) supersym-
the superstring BPS state is composed. As a result, our mod@&€tric string model could provide a part of such an extended
preserves thé&p(32) subgroup of theSL(32,R) automor- framework, unifying M theory and higher spin theory ideas.
phism symmetry of th&® =11 M algebra.

Our 3 (n(n+1)72In synersymmetric string model can be
treated as a higher spin generalization of the classical Green- Two papers[68,69 have recently appeared. Reference
Schwarz superstring. At the same time, the additiona[68] considers a spontaneous breaking of D&p1]32)
bosonic tensorial coordinate fields of the=32 case might symmetry of the tensionless (""" Y/2IM" sypersymmetric
contain information about topological charges corresponding-brane model§44,34], and proposes an open tensionless
to the higher branes of the superstring or M thel@y]. 3 (In(+1)2IM - gypersymmetric string action with an addi-

The 3 (n(+1)72lIM model may also be formulated in terms tional boundary ternfor topological term; cf[38]). These
of a pair of constrained worldvolumé®Sp2n|1) su- topological terms can be treated as describing superparticles
pertwistors. The transition to the supertwistor formulation isattached to the endpoints of a tensionE§8("* 172" string
similar to that for the massless superparticle and the tensiorisimilar to quarks attached at the ends of a bosonic string or
less 3 (N +1)2IM gypersymmetriq-branes[22,34). In our  DO-branes at the ends of an open superstring; 7€, 71)).
case, however, the supertwistors are restricted by a constraint Reference69] develops a formalism which looks prom-
that breaks the generalized superconfor@8&l64|1) sym- ising for studying the relation of the BPS preon conjecture
metry down to a generalization of the super-Poingmaup, and the present approach with solitonic solutions of the stan-
3 (528325 5 (32). Such a breaking is characteristic of ten-dard D=11 supergravity. The authors ¢89] deal with
sionful models. We note that this constrain@Sp(2n|1) bosonic Killing spinorse®', but some of their observations
supertwistor framework might also be useful for massivemay be applied to the bosonic spinars(\!,) characterizing
higher spin theories. the BPS preofs). The Killing spinors will be orthogonal to

We have developed the Hamiltonian formalism, both inx, (') and thus might be identified with the auxiliag?'
the original and in the symplectic supertwistor representavariables of this papeisee[67]).
tion, and found that, while the Hamiltonian analysis in the
original formulation requires the use of the additional auxil- ACKNOWLEDGMENTS

iary spinor variablesu'a [I=1,...,(h—2)] orthogonal to _ _
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We have also presented a generalization of our
3 (I +1)72IM - sypersymmetric string model for supersym-
metric p-branes in3 "+ 1%2IM  They correspond to BPS

states preserving all but(p) [see below Eq(219)] super-

symmetries, composites of(p) BPS preons [n(2) The  (2+1)x(2n+1)  supermatrices Gx'"
~2,7(3)=4,7(5)=8]. In particular, thes, (52832) super- eO0Sp2n|1) preserve the graded-antisymmetric matrix

= — (— 1)d%e9E)deg(T) “ ; i
symmetric membranep(=2) also corresponds to ¥ BPS Qs (=1 Qs , “orthosymplectic metric,

State. 3! ' _ 1ydeg(T)[deg(IT’)+1] _
BPS states preserving 30 out of 32 supersymmetries have g™ Qe G (1) Qsn, (A1)

not been found yet among the solitonic solutions of thethe canonical form of which is given by E@ZS) The grad-
“‘usual” D=11 andD =10 dimensional supergravities, and ing is defined by

the existence of such solutions is being discussed at present

[32,33. If found, it would be interesting to study a possible — 1 for 2=1,....2,

relation of the additional tensorial bosonic coordinate func- (=1 "1 -1 for S=2n+1

tions in our theory with such hypothetical solitonic solutions. ’

In particular, an interesting question is to see how the Wessand coincides with degf3) for Y= [see below Eq(71)].
Zumino term of the superbrane in the usual superspace iBhe fundamental representation ©fSp(2n|1) acts on su-
reproduced from a purely kinetic-like term in the actid®). pertwistors

Note added

APPENDIX A: BREAKING OF THE GENERALIZED
SUPERCONFORMAL GROUP OSp(2n|1) DOWN
TO THE GENERALIZATION X {n(+D72lImgsp(n)

OF THE SUPER-POINCARE GROUP
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YE3=(u%N,,7), (A2) Su=puPSs + N yAP +iey,
with evenu® \,, and oddz. Near the unity, ON,=—S.,PNg,  Onp=e\,. (A9)
Gl~a M+ 5.1, (A3)  These can be reProduced from the following transformations
of the 3 ("M 172IIM coordinates:
where EY is an element of thesp(2n|1) superalgebra. It
has the form SX P = AP+ glaeh)+2X(alrg IB),
G, Kup la 80%= e+ OPA " (A10)
Ell={ A% —Gy* ey, (Ad)  using the generalizatiof22] of the Penrose correspondence
ief  —ifz O relation[23,51] given in Eq.(119),

where the evemxn matrix G,? is arbitrary and the even
nxn K,z=Kpg, and A“*=AP* matrices are symmetric.

They define agl(n) and two sp(n) subalgebras of
osp(2n|1), The transformation§A10) of the 3, ("(+ 172N yariables are

a straightforward generalization of the super-Poindeags-
G, Pegl(n), A*¥esp(n), Kqgesp(n). (A5)  formations of the standard superspace coordinates. This jus-
tifies calling the resulting supergrop("("* D/2IM 2 S n)
Exploiting the analogy with the matrix representation of g generalization of the super-Poincgmup.
the standard 4-dimensional conformal algedué2,2N) and Going back taosp(2n|1), let us note that the generalized
the 4-dimensional super-Poincaatgebra, one can look at special superconformal transformation6,£,) act on the
the gl(n) boxesG as a generalization of thepin(1,D—1) supertwistor components by
and dilatation algebrasL(’+ 6,°D), at the elementA*?
esp(n) as a generalization of the translation one, and at Su*=0, N, =uPKp,~inl,, n=uPls.
K.gesp(n) as a generalization of the special conformal (Al12)
transformations. Equatio(A4) also contains two fermionic
parameterse® and {,, which can be identified as those of
the of “usual” and special conformal supersymmetries. A
specific check is provided by then=2 case, where
SL(2,R)=Spin(1,2), the symmetric spin tensor provides an SX*B=j g(axﬁ)ygy_(XKx)aB,
equivalent representation for&0(1,2) vector, and the su-
perconformal group i©Sp(2|1).

[
pe=X"PN g~ Eaaaﬁxﬁ, 7=6°\,. (A11)

Using Eg.(A11) one may find from(A12) the generalized
special superconformal transformations of F&(n+1)/2lin
coordinates

i
If we now demand in addition that the degenerate matrix 80“=X"FLp— 5(00) 0% = (OKX)%.
Csn [Eq. (126)] is preserved, (A13)
Gs> Cyip G (—1)deatlded@N+ = - (AB) Note that Eq.(A10) follows as well from a nonlinear

realization of the generalized super-Poincagroup
we see that this is satisfied by thep(2n|1) elements of the 3"+ D2IM S n) on theS (NN +1/2IN coset, i.e. from
form the left action ofG<''(S,A,e)~ 6:1+ 3 (S,A,€) (A7) on
KX, 0)~ 85"+ Ks (X, 6) with

s 0 0
2.0={ A% -0 e} = T(SAe), (A7) ?w 0 ‘1
i ef 0 0 KX, 0)={ X** 0 6%}, (A14)
ik 0 0

whereS, fesp(n),
Indeed, the infinitesimal form of
Sh= C“VSyﬁz sPe, (A8)
G:N(SA oKX, 0)=K:"(X",0)G5"(A,0,0)
i.e. by those of Eq(A4) with K,z=0, {,=0 andG,* (A15)
=S,fesp(n). Thus the condition(A6) not only reduces
GL(n) symmetry down toSp(n), but also breaks the gen- "eads
eralized special conformal transformations and the supercon- = —
formal supersymmetry. K(0X,560)==(0A,€)+ Z(0A,)K(X,0)
The right action ofGs''(S,A, €) [Egs.(A3), (A7)] on the +[E(S,0,0),K(X,6)] (A16)
supertwistor(A2), sY*=Y"Z >, defines the generalized
super-Poincardransformation of the supertwistor compo- and reproduces the generalized super-Pointamsforma-
nents, tions (A10).
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APPENDIX B: SOME TECHNICAL DETAILS

General solution of Eqgs.(85)—(94) for the Lagrange multipliers
[Egs. (96)-(102)]

++
eT
Lef=puufl+ ——{ef "N~ oN A2\ TN TP

++ Zo
o

—NHO AN EONTA (NI N )N TN TA]L

e
+——{e, NTNTA_2IN TV N A

o

—(NTII AN @A (NI AN TN ATL,

(B1)
o e,
E= iU+ —— (9,00 N =~ (9,00 )N,
g g (Bz)

e e
=0+ S - 00N
[0 g ag

X[—e, Qi —el O, +id,ONT9,0N
PN N g =Ny N g) N,

++
+———Je, Q" +eltQ, "
2e e

o o

13,00 9, ON +IIEP (I NN g =N doh )N,

(B3)
++ -
e e
- 0 — T - 0 - T
I == 0O\, + = (9N, + QN )+ ——
(S 2 o [
X[—e, Q" —e! QT +id, 0N 9,0\
—TIEB(IN NG = NN 5)ING
e:+ “COQ Tt ret Q"
2e++e++[eo' o €5 o
10,00 9, ON FITEP(INING = NS d,N5) NS
(B4)
L=*=0,e; “+2e; "0+ 2e; 0, ®5)
LMW=—4dete?)=—2(e; e "—e Te, ), (B6)
10=0, (B7)
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where, Q= and Q© are defined in Eqs(111), (112,
namely

QO =d,ATCNT, Q. =9, CAT (BY)
1

Q== (I NTCNT=NTCI,N 7). (B9)
o 2

Dirac brackets of the second class constraint§189—(192)

1

[O(0)U(0)],=~5

Y () Qs Y (o)

e, (o)

. 3.Y () QsnY (o)
e, (o)
1((%(0) d_ (o) )
= +2
e, (o) e, (o)

X&o—o')~—686(c—0'),

)5(0’-0")

2
(B10)

1

[@O(0) Mo")], =~ 5

3,Y (o) CynY (o)

e++(0')

g

. 9,Y *(0)CspY (o)

e, (o)

) S(o—0o')

1

2

A, " (o)

e, (o)

A, (o)

e, (o)

) S(o—o'),
(B11)

[KO(a),Ua)], =Y () QsnY (o) 80— 0")

=US(oc—0c')=0, (B12)

[KO(0),Ma")] =Y *(0)CsnY " (0)8(0—0")

=(N+1D)d(c—0ad')=~8(c—0c'),
(B13)
[K“”(a),<I><°><cr'>][,=%[agv+2<ommv-ﬂ(a)

=Y () Qsnd, Y (0)]

X&(o—0a')

1
= §¢(0)5(0—0’)~O. (B14)
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