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We study the renormalization of the nonlinear effect®d(2) Lagrangian up t@®(p*) with spontaneous
symmetry breaking. The Stueckelberg transformation, the background field gauge, the Schwinger proper time
and heat kernel method, and the covariant short distance expansion technology guarantee gauge covariance and
incorporate the WardSlavnov-Tayloy identities in the calculations. A modified power counting rule is intro-
duced to consistently estimate and control the contributions of higher loops and higher-dimension operators.
The one-loop renormalization group equations of the effective couplings are provided and analyzed. We find
that the difference between the results obtained from the direct method and the renormalization group equation
method can be quite large when the Higgs scalar boson is far below its decoupling limit. The exact one-loop
calculation ofd; in the renormalizablé&SU(2) Higgs model is provided to understand such a difference. A
better way of calculating at the one-loop level in the framework of the effective theory method is suggested.
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[. INTRODUCTION ChPT, the chiral effective gauge theoridsGT) with mas-
sive vector bosons have some special features that make the
To understand nature, the effective field thedBFT) systematic renormalization difficult. To understand the fea-

method is a universal tool, both practical and powefyp].  tures, we briefly describe some of facts about the hadronic
For example, the Fermi weak interaction theory works quiteChPT first.
well at an energy scale far belom,, even before the stan- [N the usual ChPT approach to the low-energy QCD
dard model is established. The effective Hamiltonian methodvhere only massless Goldstone particles are included, the
is widely used inB physics enterprisef3]. Although the chiral Lagrangian is organized as an expansion in powers of

predictivity of a general EFT is restrained due to the fact tha{nomentapz (such an effective description is good when
there are an infinite number of permitted operators in its<v. since the |nt'eract|on vertices are proportlpnal to the
Lagrangian, at a region with an energy lower than the ultraPOWEr of p/v, W_h'Ch can act as a small quantity for the
violet cutoff, these operators can be well organized in term?ﬁemve expansion
of thglr importance to low energy dynamlése., their di- LeMf=L,+ Lyt Lg+---. 1)
mension and the strength of their couplingSor example,
among the three groups of effective operat@®) [4]—the  Each termL,,, in turn, is given by a certain number of op-
relevant, marginal, and irrelevant ones—only the first tWOeratorsOi(“) with low-energy Constanﬂﬁ(n) that will be de-
groups dominate the dynamics of low-energy QED andermined by the underlying theoknown or unknowir
QCD. And in the Fermi theory anB physics theory, only
operators equal to and below dimension 6 are important. L _2 ORI
As one of the important applications of the EFT method, nT& oM
the effective chiral theories with spontaneous symmetry
breaking play a very special role in describing the micro- The general expectation of the importance of an operator
scopic world, for example, the QCD chiral perturbation La-is that the lower its order, the more importance it is. There-
grangian(ChPT) [5], which describes the interactions amongfore, in the ChPTL, is the most important operator, and it
hadrons, and the electroweak chiral Lagrandi@h which  determines the propagators of massless Goldstone bosons
describes the interactions among massive vector bosons. A&#nd the primary scattering interaction at tree level, which can
we know, the renormalization group equatidiRGE) of an  be expressed asp?/v? [c, is a constant 0D(1)]. At one-
EFT are one of its basic ingredients to describe the behavidoop level, the scattering amplitude will receive the radiative
of a given system, which, generally speaking, can efficientlycorrections from the loop with two contributions from this
sum up the logarithm corrections from the quantum fluctuavertex and with internal lines of Goldstone bosons. After
tion of low energy degrees of freedof@OF9), eliminate or  dropping the divergences of the loop integral, we obtain the
alleviate the renormalization scale and scheme dependencédiite one-loop contribution of this interaction, which can be
and improve the perturbation method in strong couplingexpressed aa[1/(4m)?](p*v?*) (a is a constant factor de-
cases(in QCD, for instanck Compared with the hadronic termined by the loop and, is of order 2. Such a contribu-
tion has a momentum power the same as those of operators
in L4, which can be expressed ag(p*/v?).
*Email address: yangs@mail.ihep.ac.cn In the ChPT, coincidentallyy,, as determined from low-
"Email address: duds@mail.ihnep.ac.cn energy phenomenologies, such as hadronic scattering and de-
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cay processes, is of the order 1#¥ [7]. So contributions pressed in both gauge couplings and anomalous couplings
from L, are of the same order as those of the one-loop levelACs)], not proportional to the momentum powgt/v? as in
of L,, both with respect to momentum power and to thethe hadronic ChPT. Then by directly evaluating the Feynman
magnitude of the effective couplings. diagrams, radiative corrections of the A{¥ghich are deter-

So, if we go further to higher order, say two-loop order, mined at matching scale by the ultraviolet dynamics and is
then we should include three contributioii$) the two-loop  unknown to us, and there is no definite reason to assume that
contributions of pured(p?) vertices,(2) the one-loop con- they must be as small as 14%°] are 1/(4m)?, not 1/(4m)*
tribution with oneO(p?) vertex and one(p?) vertex, and  as expected from the SPCR in the hadronic ChPT. So the
(3) the tree-level contribution dP(p®). The first part can be native power counting rule cannot properly be used in this
expressed ag,[ 1/(4m)*](p%/v°®), the second part can be case. We know, however, in order to collect and reliably
expressed ag;[ 1/(4m)?](p®v°®), and the third part can be estimate the contributions of higher ordeisay, those of
expressed ago(p®v°). The first part contains the two-loop higher loops and higher-dimension operatoirs terms of
suppression factor 1/(#)*, while the second part contains magnitude, a power counting rule is needed. So to find a
only the one-loop suppression factor 14%¥. But due to the  consistent power counting rule for this case is necessary.
fact that B, is determined by botlt, and «y with a loop To establish a power-counting rule, we should know that
factor 1/(4m)?, not only by the momentum power but also for the EGT with a spontaneous symmetry breaking mecha-
by the magnitude order controlled by the loop factors, thenism we have at least two ways to collect and classify op-
second part will share the same importance as the first parérators.

We also expect that coincidentlg, will have a magnitude The first way is to collect operators in terms of their di-
like 1/(4m)* Thus we expect that such a simple powermensions(not by the momentum powep?/v?, as in the
counting rule(SPCR will hold for any specified higher or- above case We can formulate the EGT in unitary gauid,

der. then restore the low-energy DOFs with the inverse Stueckel-

But for the EFT with massive vector bosotnd nonlin-  berg transformation, while the ECs are regarded as free pa-
ear interactions it does not seem easy to take into accountrameters, of which the magnitude at the ultraviolet cutoff is
the radiative corrections of low-energy quantum DOFsdetermined by the underlying dynamics and the matching
(which should include both the massive vector boson and itsonditions. Then, according to the Wilsonian renormalization
corresponding Goldstone boson, and the momentum shouktheme, EOs can be classified into three groups: relevant
not be a small quantity compared with the vacuum expectasperators, marginal operators, and irrelevant operators. The
tion value for the application of the thegryThe first diffi-  relevant operators have mass dimensions less than the di-
culty concerns the quartic divergence of the theory, which isnension of space-time, and have ECs with positive mass
more manifest when we represent the EGT in the unitarypower. The marginal operators have the same dimensions of
gauge. The propagator of massive vector bosons can be ethat of space-time, and have massless ECs. The irrelevant
pressed as operators have dimensions larger than the dimensions of

PAMY = ARV ALY 3) space-time, and h_ave couplings with negative mass power.
T Lo By study the running of the ECs, we can determine the im-
) portance of operators, which is controlled by the strength of

(4)  their corresponding ECs. The couplings of the relevant op-
erators will be dependent on the ultraviolet cutafE UV in
positive powers; those of the marginal operators will be loga-

av L KEK rithmically dependent on the cutoff = UV; while those of

L= 2 2 (5 the irrelevant operators will be dependent on the cutoff

my Kk
v =UV in negative powers. If the cutof\ =UV is large

whereA; and A, represent the transverse and longitudinalenough, the irrelevant operators will become unimportant,
parts, respectively. The longitudinal part of the propagatoand the relevant and marginal operators will dominate the
can bring quartic divergences and lead to the well-knowrow-energy dynamics. Such a conclusion is based on the
bad ultraviolet behavior. Two direct consequences of this difmost general analysis of the behavior of RGEs without as-
ficulty are (1) that the quartic divergences will appear in suming the smallness of the ECs of irrelevant operators, as
radiative corrections an¢?) that low-dimension operators shown in Refs[4,10. So equipped with this conclusion in
can induce the infinite number of divergences of higher-Refs.[4,10], we can truncate the infinite operator towers per-
dimension operators, even at one-loop level. However, in anitted in the EGT to a specified order.

renormalizable theory, the Higgs model for instance, these As we know, the groups of relevant and marginal opera-

two problems do not exigi8]. The quartic divergences pro- tors include both the renormalizable operators and anoma-

duced by the low-energy DOF just cancel exactly with thosdous operator$AOs) up toO(p*). Meanwhile, in the general
produced by the Higgs scalar boson, and no extra divergenamses, the relative importance of an operator might be quite
structure will appear. different and is mainly determined by the relative magnitude
Another difficulty, which is also related to the first diffi- of its EC. For instance, if the coupling is zero or is much
culty, concerns the counting rule. In the gauge theories withmuch smaller, in principle, we can drop its contributions and
spontaneous symmetry breaking, the marginal interactionegard it as a higher-order correction. If the coupling is much
vertices are proportional to effective coupling€C) [ex-  much larger than others, then this operator should be defi-
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nitely important for the low-energy dynamics. We shouldfied rule in the discussignbelow we will study the renor-
then classify it as a lower-order operator to promote its relamalization of the nonlinear effectiv@U(2) Lagrangiari®'f

tive importance to the rest of operators. So from our view-up to O(p*) and derive the one-loop RGE of its ECs. We
point, a practical and realistic power counting rule mustwill also numerically study the solutions of these RGEs, and
based on the actual information of the relative magnitude ofhalyze the decoupling and nondecoupling effects of the
the ECs. Higgs boson to those ECs in the effective Lagrandigh)

The second way is to mimic the ChPT by classifying ac-L®"". We find that when the Higgs scalar is far below its
cording to the momentum power. In this way, upQgp?), decoupling limit, our results are significantly different from
without regarding any information on the magnitude of thethe results obtained by matching the full theory and EFT
ECs, these operators are divided into two groups: the renoflirectly at the one-loop leve[1l] (hereby, we call this
malizable ones are classified p& order and the anomalous Method the direct method, in contrast with the RGE method
ones are classified gs* order. In this way, to classify the The basic reason for this large difference is that the direct
gauge kinetic terms a®(p?) it is somewhat ambiguous for mephod ignores the contrlbutlo_n of the possub_le large cont'rl—
the momentum power counting rule. But it is unlikely not to butions of the not too heavy Higgs boson, which can consid-
include the kinetic terms in thip? order; otherwise it is erably affect the ECs thr(_)ugh radiative corre_ctions, while the
impossible to define the propagator of vector bosons. So thBGE method has taken into account these important effects.
dimensionless gauge couplings have to be set to have chQ comp_rehend the underlying reason for this difference, we
mentum power. To classify the rest of marginal operators irill provide the exact one-loop formula of the anomalous
the group of terms 0®(p*), such a counting rule, borrowed €ouplingd; in the renormalizabl&sU(2) theory. However,
from the hadronic ChPT, implicitly assumes that the strengttyve find that the cocktail waywhich combines the RGE
of their couplings should be of order 1432, so as to guar- "unning and the nondecoupllng constant term, which can be
antee the validity of the power counting rule. easily e'xtracted from the dlre(;t integrating-out method

We would like to point out that such assumptions are todPM)] will produce a b_etter prediction that is closer to the
strong for a general EGT. In the framework of EFT, the€Xact one-loop calculation. _
magnitudes of the couplings of an operator is determined at This paper is organized as follows. In Sec. Il, we briefly
the matching scale. There is no reason to expect that the Acgtroduce the renormalizab®U(2) Higgs model, and con-
must be so small. The magnitude of these ACs is related tgentrate on its form in unitary gauge and the quartic diver-
both the actual value of the matching scale and the underlydence term. In Sec. lll, the nonlinear effecti®J(2) La-
ing dynamics, both of which are unknown to us. As matter ofdrangian L*'" up to O(p*) introduced, and the initial
fact, the ACs can receive the tree-level contributions, like inconditions of ECs is obtained by integrating out the scalar
the Higgs model we show in the numerical analysis, in théliggs boson at the tree level. In Sec. VI, we perform the
left-right hand model, etc. Furthermore, even determined aenormalization of the®'" up to O(p*) in the background
loop level, if the ultraviolet dynamics are of the strong cou-field gauge, and by using the Schwinger proper time and heat
pling case, as in the Technicolor models, these ACs can bkernel method, derive the renormalization group equations,
estimated ag1/(4m)2](g%/g2). If gs is much larger than SO as to sum the_leadmg logarithm contributions of rqd|at|ve
9w, the ACs might still be one or two orders larger than thecorrections. Section V is devoteq to study the numeflcal So-
expectation of the SPCR in hadronic ChPT. lutions of these_R_GEs in the _nggs_ scalar dec_oupllng and

So we regard that, in order to be more realistic and pdondecoupling !|m|ts, and to |nve§t|gate the difference of
consistent with the EFT method as a general and univers&l€se methods in the full renormalizal$&)(2) theory. We
method, we should abandon the second way of the classifRnd this paper with some discussions and conclusions.
cation of the operators. Before knowing the actual informa-
tion about the magnitude of the AGequivalently, the un-
derlying theories we will treat all relevant and marginal ~ The partition functional of the renormalizable non-
AOs as operators dd(p?) order by implicitly assuming all ~ AbelianSU(2) Higgs mode[12] (here we have not included
these ACs are 0O(1) (this assumption is a more general the gauge fixing term and the ghost téroan be expressed
one, and the assumption of the second way of classificatiogs
is only one of the specific cage$o we modify the momen-
tum power counting rule to include the ECs of all A@sas Z:f DARDS DA exp(iS[A, b, b']) 6)
momentump 2, like the coefficient of the gauge kinetic # e '
terms 1¢2. And in this way, when extracting the Feynman
rules directly from the Lagrangian given {@5), the combi-
nation of g2d; in the trilinear and quartic couplings is re-
garded as of the orde®(p°®)~O(1). Thus, this modified 1 N
power counting rule will possess the power of the SPCR, andC=— —ZWiVWa”V+ (D) (D) +u2p T dp— —(pTp)?,
can be applied to estimate and control the contributions of 49 4

Il. THE RENORMALIZABLE SU(2) HIGGS MODEL

where the actiors is determined by the following Lagrang-
ian density:

higher-loop and higher-dimension operators, just like that in (@)

the hadronic ChPT. and the definition of quantities in this Lagrangian is given as
With this modified power counting rule in min@ve will . . & cabonb

address the unitarity violation problem related to this modi- W2, =30, W5— 3, W3 + FEW WS, ®
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D,¢=0,p—iW2T2p, (99  gauge symmetries is still renormalizalples]. Two facts are
a . a important for the actual renormalization procedui®: The
dT=(% %) (10) Wilsonian renormalization methdd] and the surface theo-

rem [10] reveal that in the low-energy region, only a few

whereT? are the generators of the Lie algebra of Sig(2)  Operators play an important role in determining the behavior
gauge group. of the dynamic system at the low-energy region. Such a fact

The spontaneous symmetry breaking is induced by thgnables us to truncate the infinite divergence tower up to a

- : : ; specified order and to consider the renormalization of the EL
gisgﬁztﬂiss\,:ﬂ;arz?ztwethﬁi:é%giiggeg'ﬂ}\zne ;Z;l;r m order by order(2) In the dimensional regularization method,

~ . ) the quartic divergences can be expressed to be proportional
=v/y2. And by eating the corresponding Goldstone bosony, the masses in the theory, as the quadratic divergences.
the vector boson%V obtain their mass.

: L , The general effectivésU(2) LagrangianL®'f consistent
The nonlinear form of the Lagrangian given in E@) is  \ith Lorenz spacetime symmetr§U(2) gauge symmetry,

made by changing the variabig: and the charge, parity, and the combir@®lsymmetries, can
be formulated as
1 _aTe
¢>=E(v+p)u, U=exp 2i , Leott=Lo+ Lo+ Lo+ - -, (15
v2
2 Lo=— —t]V V], (16)
v=2~/, (11) 4=
» 1
where the matrix fieldU is the Goldstone boson field as 54:_Tgfwivwaﬂv_idltr[wwvﬂvv]
prescribed by the Goldstone theorem, andghs a massive
scalar field. Then it reaches +dotr[V,V, U VAVT]
£r=— e wenry o)t bu)'. (DU gtV VULV, VY, (17)
1 1 A o= (18)
—_ . —,,2 2_ 4 y
+2¢9p &p+2,u, (v+p) 16(v-i-p) . (12

where £, and L, represent the relevant and marginal opera-

The change of variables induces a determinant factor in thErs in the Wilsonian renormalization method, respectively.
functional integralz: Here for the simplicity, below we will omit all the irrelevant

operators in our consideration, i.e., dimensional operators

1+ !
oP

higher thanO(p*). my, is the mass of vector bosons and

ZZJ DW;, DpDEPexpliS'[W, p, £]) my=gv/2. The operators i, and £, also form the set of

complete operators up t®(p*) in the usual momentum

counting rule. And the dimensiorirrelevan} operators
xdet{ 5(x—y)]. (13 higher thanO(p?) order are represented by the dots and

omitted here. The auxiliary variabM, is defined as

The determinant can be written in the exponential form, and .
correspondingly the Lagrangian density iFs) modified to VM:UTDMU’ D,U=d,U-1W,U (19

to simplify the representation. Due to the following relations
_ (14) of the SU(2) gauge group

1
L—L'=i50)In} 1+ ~p

1
The determinant containing quartic divergences is indispens- {TeTETeT = §(5ab56d+ e s%ceb), (20
able and crucial to cancel exactly the quartic divergences
brought into by the longitudinal part of the vector boson, andthe terms, like {V,V,V#V"] and tfV, V#V, V"], can be
is important in verifying the renormalizability of the Higgs linearly ~ composed by  fV,V, Jt[V*V*]  and
model in the U gaugés,9]. [V, V#Jtr[V,V”]. Since here we do not consider the term
that breaks the charge, or parity, or both symmetries, there-

IIl. THE NONLINEAR EFFECTIVE  SU(2) LAGRANGIAN fore the operators in Eq17) are complete and linearly in-

(F% The ECs ofd; form the parameter space of EFT, and they

In the nonlinear effectivesU(2) LagrangianL®’’, only  effectively reflect the dynamics of the underlying theories
the Goldstone and the vector bosons are included as the ednd the ways of symmetry breaking. Different underlying
fective dynamic freedom at low-energy region. The Lagrangtheories and ways of symmetry breaking will fall into a spe-
ian L®'f that includes all permitted operators composed bycial point in this effective parameter spack.can also be
these light DOFs and respects the assumed Lorentz arwhlled the ACs if, according to the renormalizat3é)(2)
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gauge theory, they reflect the deviation of the theory from then the BFM, each step of calculation is manifestly gauge

requirement of renormalizability. When the scale runs fromcovariant with reference to the background gauge field, and

the high-energy region down to the low-energy region, wethe Ward identitiegSlavnov-Taylor identities in non-Abelian

will obtain a characteristic curve in this parameter spacegauge theorigs—which are important to restrain the struc-

This curve, if we can measure from the experiments, carnure of divergences—have been incorporated in the calcula-

help us to figure out the possible underlying theories, as wéon. The Schwinger proper time and heat kernel mefiad

will do in the Large Hadronic Collide(LHC) by measuring by itself is the Feynman integral. Combining with the cova-

ECs of vector bosons at different energy regions. riant short distance Taylor expansiph8,19 in coordinate
When the scalar Higgs boson is heavy and is integratedpace, the divergent structures can be directly extracted out

out, the Higgs model given in Ed7) can be effectively in the explicit gauge form, and the loop calculation can be

described as a special parameter point of the EL given in Ecsimplified to a considerable degree.

(15). At the tree level, it suffices to integrate out the Higgs

scalar boson by using its equation of motion, which is ex- A. The quadratic terms of the one-loop Lagrangian

pressed in low-energy dynamic DOFs and can be formulated According to the spirit of the BFM, we split the Gold-

as stone and vector bosons into classic and quantum parts, as
v given below:
p=5—(DU)"-(DU)+- -, (21) — —
2mg W—W+W, U—UO. (24)
, 1 T_he Sttfckelberg transformati¢0] Eombines classic parts
mp=5Av%, (22 W andU into the Stueckelberg fieldvS
wherem, is the mass of Higgs bosons. The omitted terms we=UTwu +iuTau, (29

contain at least four covariant partials and belong to higher
order operators.

By substituting Eqg.(21) into Eg. (14) at the matching
scale(which is always taken at the scalar mass mg), the
ECs at the tree level are determined as

and eliminates the background Goldstone from the EL. The
Stueckelberg field is invariant under the background gauge
transformation. Such a property guarantees that the follow-
ing calculation will be unchanged in the background gauge
transformation. After finishing the loop calculation, by per-

dy(Mg)=0,d,(Mg) =0, forml_nsg'thcynversg Stueckelberg transformatierpanding
the W> in W and U), the EL can be restored to the form
v2 1 expressed by its low energy DOFs.
ds(mg) = s AN (23 As one of the advantages of the BFM, we have the free-
0

dom to choose different gauges for the classic and quantum
fields, and such freedom can help to further simplify the
calculation. The gauge condition for the classic fields can be
derived from their classic equation of motion. For quantum
fields, we can choose the covariant gauge fixing term as

In its decoupling limitmy—o (A —), all these three ECs
vanish. Normally, for some theoretical reasdsay, the va-
lidity of perturbation theory; A should not go toe, and is
usually taken a®©(1), as in thestandard model. Sal; can
be quite large compared with other ACs. For other symmetry R o
mechanisms, say Technicolor theories, due to the property of ~ Lor=— 5 2[(D-W)*+ cFAPOWSP Wt £ £3]2,
strong couplings, these ECs might be large at the matching 9 (26)
scale. So radiative corrections should be taken into account
before considering the effects of higher-order operators. Bewherec; and f,,¢ are determined by requiring the one-loop
low we will derive the RGEs of the ECs, in order to sum Lagrangian to have the standard form given in 84)—(37).
these corrections. Then the condition reads

Generally speaking, if a particle does not participate in the
process of symmetry breaking and its coupling to low-energy
DOF is not proportional to its rzlass, we know it will not
contribute to the ACs up to the order and its effects on i, . . '
the low-energy dynamFi)cs will (t[))e)simply suppressed by itSThe partition functionaZ in the background field gauge can
squared mass, according to the decoupling thedteth be expressed as

_Ed 2 f — 2
Cf_2 lg ’ ws_vg . (27)

Z=exp(iS"MTWS))
IV. THE RENORMALIZATION OF  L®f o - B
AND ITS RENORMALIZATION GROUP EQUATIONS — eXi Siyed WO +i 886 WOT+ S 100 [ WS]+ - - )

In the background field metho@FM) [15,16, the num- = eXPi Syreel WS+ 8Sired WS])
ber of the Feynman diagrams for the loop corrections can be
greatly decreased when compared with the standard Feyn- A= R e
man diagram method. Another remarkable advantage is that, X | DW, DeDeDE explisIW, &,¢,c W), (28)
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where the tree ElL; is in the following form

vl 1_ .
—WS' WS_ _WSaWS,uV,a

Liree= 2 4g2 uv

1 - i
+dlZfab(,\N/SIst,u,bst,C+ dzZWsa_ WSbvaa_ WSb

1_
+d3£—1(w3-w5)2+.--. (29)

The corresponding counter termig,, . are defined as

2
v __ _ 1 o
OLyree= 02,2 EwSal wSa— 5292 4—92Wi3Ws#u,a

1 ey —
+ 5Zd dl_fabC\NSastMWsCV
174 K
i
+ 5zd2dZZWSa- wshysa. wsb

1
+ 5Zd3d3Z(WS-WS)2+ e (30)

PHYSICAL REVIEW D69, 085006 (2004

the right side. It is remarkable that for the gauge fixing terms
given in Eq.(26) Goldstone bosons have the same mass as
vector bosons.

For theSU(2) EL, the related quantities are defined as

— 1 . —
0_(.;\/1(;’\:1/[): 2in,uV,ab+ Zdig4(wgu,acwgv,cb

_Wéac. Wgcbg,uv) +id 192(Wéﬂv,ab+ Eg,uv,ab)

— P (WO WS+ WWSo™ + WEWS?)

— d3g2(WSS. WSgH 520+ 2WSAWSH), (38)

oy e W @
xaﬁ'ab: _'éaﬁ,ab, (40)
ya@ab—Yaab_ 0',6')"(a3,ab+ z'éaﬁ'acl"gbﬁ , (41

=S TS, T

where the renormalization constant of the Stueckelberg field Xu«ab= Xy« 20— Kgeab— 81 Sga’«

WS can always be set to 1.

In the one-loop level, only the quadratic terms of quantum

fields are relevant, and they can be cast into the following

standard form:

N —_ab
Lauad= 3 WO Wo+ 5 £208%£°+ 0 e

2 M
1. A
+ SWXHPE04 5 g2 Wy, (3D
O = (D224 mg,6%) g = ofifis®. (32
O30=0},20+X®acdS + X *AacdSid g, (33
O420= — (0230 + 6°°m{) + 032, + 052, (34)
O2= — (D'22%+ mZ,6%), (35

)Z,u,ab: )ZZ’Bacda’Cddﬁ’db‘F )Z;La,aCd(;b+ )‘(giab

+ X"+ 0. XKo" (36)
v v,ab_ v, ,cd db_ wva, b, ywv,ab
Xva _ngCD/ac DIB +xvaaCD/(; +X61a

+ XG0+ 2. X6520, (37)

whered,=d,—ia,W; o, andD/,=d,—iayW; 5. The di-

— XA P + g XA (42

)Zz,ﬂab: _~S,Zbab, (43)
,ab

+ 2845 TE g, (44)

X1t =Xei™, (45)

)Zgéézlbzs'(gs,ab_i_“é,;gw( O»’al—*g,cb_ F?,Cdrg,db)

_ (S‘(Ta,ac_s‘(ga,aC)FgPa+ aﬁ')'(g,aaclﬂg,cb, (46)

)Zg;(,ab: _"X;zux,ab' (47)
X4gb=—Suba, (48)
)Zva,ab:')‘{lz)a,ba_’)"(i}a,ba_ &B'X;,,t?gaa'+2§Z,IC;F€\}Cbgaa',
(49

XKoo =Xg®, (50

)Zgé%b:’)‘(g,sba_f_’ézga(&al—‘gv,cb_ F\a/zv,cdl—wgv,db)
—(Xp =X R+ PXLGTH®,  (B1)
)ZséyY,ab: _')"(Ia,ba, (52)

\\/Sab__:cachy/Sc
Woig=ifacowee,

where F32=fabansowse, re =
—ia W%, andI'{y, = —iawW5%0, with a,=1/2 anday,
=(1+d;g%2) (which can be regarded as the effective
charge. Thea, is determined by the mass term of E¢6).

rection of the harpoon indicates the position of vectorpor thea,,, the gauge kinetic term in the E(L6) and the
bosons, and both th¥*2" and X*:2 are defined to act on first AO contribute, while the rest of the AOs do not. To get
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the above form, we have normalized the vector quantum _
gauge field by usingV/g—W. When we take the limitl;

—0, thealiii2P reaches to its usual form /42" as given
in the gauge theory without symmetry breaking mechanism.
As intheU(1) case, an auxiliary dimension counting rule

is introduced to extract relevant terms up@gp*), which

d,
Xa ,ab_ 2 (WSaB adWS db+ WS adwga,B,db)

+4i d WSa CWs,B CWsab+ 4| d WSC WS(\/\/S& ab

reads (61)
[W5la=[0,]a=[D,]a=1,[v].=0. (53 d
- X4 WSa,B acEi/c}bG, (62)
From this rule, we know ’
X,u, ab XV ab ;L,ab _ )Zv,ab =1,
[ ]a [ ]a [ 01 ]a [ 01 ]a (54) XM ab__ SlLab_FﬁA‘Z'bab, (63)
[otin " la=[ 030 la=[ XBaP] = [ X1eab] = [ X 2P] .
= 1
= [Xb5™"1a=[X55"1a=2, (55 S =i, (W gas— WoRHS - WETHD).
(64)
[X*2 = [Xb2 la=[X62"1a=3, [052]a=4
(56)
. . . - . . mab_ dlg \w/Sab \A/Saby i
We would like to mention that this auxiliary dimension Aaﬁ —_'E(Wa Gg W GO4), (65)
counting rule is to extract those terms with two, three, and
four external fields. In the limit that all ACs equal zero, only
the X&42°, X52°, o, anda3?, do not vanish. dig —. . — I ._
The quantities with tildes are determined from the follow- X4 ’ab:T(Wgac'WéCbg’m_Wg AW —iWg0)

ing prestandard formgl6]

~ dzg \\/Sa \N/Sby e 1 \A/Sa,C\pA/Su,C sab
§aD§b§§b=—§a(d2'ab+ 5ab )§b+ ga(o_z§§ Xib)gb _ZT(W -W gM +W W€ 58

Y a,ab b Y @3,ab b
+ fax a ﬁag + ﬂafax a (9/35 y (57) +WS,u,bWSa,a) _ ZdLg(WSC V_\/SCgﬂagab
1%

Wz)‘{y,,abgb: gaiv,abwg

o o +2V_VSa,bWSp.,a), (66)
= 9“WaXL2PIP £+ Wa X420, £°
Aaypna,abeb | \aaym.abeb | \aayw.abgb
+ 9, WEXE*APED+ WE XE A0+ WA X577, ,),(W'ab_idlgESW'ab 67
2 - G ’
(58 v

and from the EL given in Eq15), we get the quantities with

tildes expressed in the Stueckelberg fi#if and the corre- b_ . gv d,g? —c b
sponding strength: Xi* —iS = wg-e?, (68)

y(aﬁ,ab:"éaﬁ,ab_i_ "Aaﬁ,ab

d l X,u ab dlg(lwsﬂ acWSa chSdb+ IWSC! acWS,u chSdb
"S'aﬁ,ab:4v_§ wsa. stgaB+WSa,cWSﬁ,06ab+ EH\z;zvﬁ,ab 2v
d +WEEWE ), (69)
43 (WSS WS 204 H20), (59
The HP® is  defined as HGPaP=wS*awssb
Aaﬁ,ab:_izd_;v_véaﬁ,ab +WSabwSEa which is symmetric on its Lorentégroup
v indices.
2d.—d As we have mentioned, the gauge condition for the back-
+2 32 2 (WSaySB.b_ S byySs.ay ground fields can be chosen as being determined by the

equation of motion of the Stueckelberg fiald®, which can
(60) be formulated as
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_ dg®> —
Suv,a__ _ 2 Suv,
7, WSk~ — =g, Fouva

_m2 WSv,a_fabc 1— d192 WSWS,U,V,C
=my _2 "

T S
+ > fabo\/vibFS/Lv,C_ngZWSv,bWs,u,anSLb

_ dngV_\/SV,aWS,U,,bWISLb. (70)

From the equation of motion given in E(Z0), we can get

2
J WSV,a:io') fabc( 1— dlg
v 2 Yv 2

WS WS,LL v,C
miy "

dig®_ .
b Sb=Suv, 2\A/Sv,b\pA/Su, Sb
+f2 CTWMbF 4 dyg WS PWE AW

T dngWSv,aWS,u.,bV_vib ‘ (71)

Then we know that thed, W3?)? can only contribute to
terms at most up toO(p®). Therefore we simply set
aMWS“'azo when considering the renormalization up to
O(p*). We have also used the following relations about th

Lie algebra:
fabCfcde+fadCfceb+faeCfcbd=O (72)

to simplify the above related expressions.

B. The calculation of the logarithm and traces

PHYSICAL REVIEW D69, 085006 (2004
1 1
(XIIn(1=X)ly)==(xIX]y) = 5 (xIXXly) = 5 (X[ XXX]y)

~ 20Dy 74

and here theX should be understood as an operdma-
trix) that acts on the quantum states of the right side.

To calculate of logarithm and traces, it is convenient to
conduct the computation in Euclidean space. Below, we will
conduct our calculations in Euclidean space. We will use the
Schwinger proper time and heat kernel methbd| in coor-
dinate space. In this method, the standard propagators can be
expressed as

B o dr
(XD ly) = fo (47T—T)d,zexl0( —mg7)

22
xex;{ — 4—7) HERab(x,y;7), (75

= dr
r—1ab — —m2
(X0 ¢ |Y>—JO (4WT)d/29XF( My 7)

2
X exr{ — E) Heean(Xy;7),  (76)

E‘Wherez=y—x. The integral over the proper timeand the
factor exfp—2/(40)]/(4=n%? have the effect of separating
the quadratic divergent part of the propagatd(x,y;7) is
analytic with reference toz and r, which means that
H(x,y;7) can be analytically expanded with reference to
bothz and . Then we have

H(X,y; ) =Ho(X,y) + Hi(X,y) T+ Hy(x,y) 72+ - - -,
(77

The quadratic terms given in the last subsection can be&hereHy(x,y), Hi(x,y), and,H,(x,y) are the Seeley—De
directly calculated by the functional integral, since the inte-witt coefficients. The coefficierttio(x,y) is the pure Wilson
gral is Gaussian. Then after integrating out all quantunphase factor, which indicates the phase change of a quantum

fields, thel, |0, reads
1
fﬁl |oop=|§[TrIn Owwt TrinO,
X

+Trin(1—XFOwy ., XP0; H1-1 Tr0g,
(73

state when propagating from poipto pointx and reads

Ho(x,y)=Cexp(—fyxl’(z).dz>, (78)

wherel'(z) is the affine connectiofdependent on the group
representation of the quantum statdefined on the coordi-
nate pointz. The coefficientC is related to the spin of the
states; for vector bosong=g*” (here and belowg*”

where the contribution of the ghost has a different sign dugpoyid be understood as the metric of Euclidean spatc®,

to its anticommutator relation. The Tr is to sum over thegng for scalar boson€=1. The second Seeley—De Wit
Lorentz indicesuv, group indicesab, and the coordinate 1y (y vy is related to ther terms in the D’Alambert operator
space points,x. The operators in the term Trin(l p2_ 24, and H,(x,y)=0. Other coefficients can be
—X“Oin, X0 ) are all defined to act on the right side, found from many sources, say RéL7].

and such a form reflects the fact that the sequence of inte- The divergence counting rule of the integral over the co-
grating out the quantum vector boson and Goldstone fieldsrdinate space& and the proper time can be established as

will not cause any difference in physical results.

The expansion of the logarithm is simply expressed as

[z*]q=1, [7]e=—2. (79
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Using Eq.(74), the two propagators defined in E§5) and

PHYSICAL REVIEW D69, 085006 (2004

form abouto{yy, and o,.. We have used the dimensional

Eqg. (76), and the divergence and momentum counting ruleregularization scheme and the modified minimal subtraction

given in Eq. (53 and (79), up to O(p* [omitting those
higher order divergent structures, terms@{p®), O(p®),
and so off, we can get the following divergent terms:

_ 81
eTrin Uww= — fx( m\z,vtr[gwo-{,‘v”\,\,] + § ZF\&/IV,MVI‘%V@)

1 ,
- Etr[ow\‘,\,gwy,o\’j\,mw]] , (80)

: (81)

_ 21
eTrin Daz — fx[g(zr\e}\/#’“”l—‘&v’}’a)

eTrin0 = — JX[ = Mt 0 ] — M 07 ]

2 1 a v,a 1
+3(gT8TE g tlo2ge0zed

1
_ Zm\ﬁ}vxaﬂ,abgaﬁéab

1
+ Em\z,\,tr[xaﬁ'abgaﬁogf‘fg]

1 ! ! ’ ’
mcvgaﬁa B tr[xaﬁ,abxa B ,ba]

16 , (82

1
=(p4t+p3t+p2t),

(83

Trin(1—X*Oyy,,, XFO 5 = — f

X€

where 1£=(2/e— ye+In 472)/(1672), v is the Euler con-
stant, ande=4—d. Thel,, is the field strength tensor cor-

responding to the affine connectidn, .

scheme to extract the divergent structures in this step.

The first three Trlid is obtained straightforward from
the heat kernel method, and the last Trin(1
— XDy, XMz ) is provided first by us. The4t repre-
sents the  contributions of four  propagators
tr(XOwyXO' 7 ;XOwwXD' £ 1), which reads

gMVg;L’V’ gaﬁalﬁl
6 4

pat= [ 2XELXY, 5 X6y Xey

’

rﬁr

+2XBXE g XL, Kb XEXEXE, L Kby
+XEX0 X6 X 1]

! ’
Xguﬁ//xgl

2 gaﬁalﬁlaﬂﬁﬂ _ i
M v

+my, 7 [ XGsX o 7
- i - 7 "V’
+X'Zﬁxa’ﬁ’xglxa”ﬁ”]
4gaﬁa,B,5’y§,7,

My WX XE XS (84)

p3t represents the contributions of three propagators
tr(XOwwXO' 7 $X,.pd*dP0’ 7 1), which reads

. gaﬁa’ﬁ'ﬁ‘y R _
p3t=— My =0, XKL 4 X5, ]

2
mW 7Y - = N -
— g 9 P QL TXEX Xt g+ XigX 1K e ]

1 .
- Zgaﬁgwtr[xglxglxaﬁ]. (85

We would like to comment on the difference of right-hand P2t represents the contributions of two propagators
side(r.h.s) of the TrInC,yand TrInCl. The minus in the tr(XDQV%NXD’gg), which can be further divided into six
Trin, is due to the different definition in the standard groups:

pZt:tAA+tAB+tAC+tBB+tBC+tCCl

1 1l - <y
tan= gg“ﬁ“ A g XX )]

- m\ZNg,U,V gaBa’B'57 - gaﬁga'ﬁ'ﬁy_ ga’ﬁ'gaﬁéy
4 6 2 2

migg#e#’

(86)

+geBg®' B go7 tr[)?{jBD,;D j;,ﬁ,]

- 8 [guvtr[XgﬂX;’B’Hl,ff]+g/,c,u’gvv’tr[>zl;ﬁHl,WW/*L,vl)zz/ﬁ/]]!

1 aﬁa/ﬁ/ v Sva AMD(” S
~59 X% 5D e X7 = X14"D g, X2 o1,

87
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— m\zNgaBglu’V vaJ o vua vaJ
ZtAC—Tt[X BX01+X +X BXO3Z+XO3ZXQB d ,xaﬂx — Xbav Iar Xop]
ga tr[g;LVX01X BH1§§+ gM;L’gVV’XaBH{LL\];V\III\/XSL—I
1 apa’ B’ aBna’ B’
+glw —g — —g g tr[X"BD DB,X01+X01D DB,X sl (88
|
m\ZAIgWgaB We would like to comment on the covariant short-distance

tgg= Ttr[X’“"X"B], (89 expansion technology: to formulate the quadratic form into
the standard form we have prescribed in E§4)—(37) can
aB greatly reduce the labor to extract the one loop divergences,
tBC:MUD@w’ me XE DBX 1, while the form given in Ref[19] is not easy to use. The
2 equivalence of these two forms can be easily proved by us-
(90) ing the partial integral. As we have pointed out, the standard
form given by us has the advantage of reflecting the fact that
tee= 9t XX+ Xb:X o2+ Kbz X1 the order of integrating out the quantum vector boson and
Goldstone fields has no any dynamic significance.

Do X X550 = Kby 9 Xl (92)
where the trace is made to sum over the group indices, and C. The renormalization group equations
the covariant differentials is defined as Substituting Eqs.(38—(69) into Egs. (80)—(91), with
f e e oL somewhat tedious algebraic manipulation, we can construct
XDX=XdX+XIwX—= XX, (92 the counterterms and extract the renormalization constants.

R S, o o The renormalization constants yield the following RGEs:
XDDX=XddX+ XI'W['wX+ XX L' ;= 2XT' XTI,

el dg® g‘[ 29 20d,9° 23dig’
+ 22X WX —2XIXT g+ Xl X — XXl ¢. = - =~ ) 9
W ¢ " ¢ dt 874 4 3 24 o7
(93
In the p2t terms, we have dropped those terms with gauge dv_ v 3_92+ Sdy o, 3%s) 13d7g°
field strength terms, due to the reason that a term with the dt 1672 2 2 2 2 g 16 |

symmetric Lorentz indices contracting with the antisymmet- (99
ric Lorentz indices of gauge strength vanishes. The tensors

aBys aByduv i indi i
gs andg are symmetric on all indices and defined %: i B i+ —43d, B S—dz+5d ,
dt 8m2| 12| 6 2 %9
aByé_ naf y§+ avy, B5+ ad, ﬁyi 94
9 9*"9”"+ 979"+ g*’g (94 oy’ 2’ 0
gaﬁyﬁ,um:ga,Bgy(‘)‘,u,V_i_gaygB&MV 12 24 '
adyYBuY 4 qamrgBYov L qavyByou
+geogTr+ggtT g, (99) dl, 1 [ 1 (5d o a

To getp4t, p3t, andp2t, we have used the covariant short-  dt  8w2| 16 2+3ds|0°
distance expansion technolofi8,19 and the integral over 542
the proper time and coordinate space. The Dirichlet integral + 14692 2+5d,d5+ d3+d 5, +4d3) }g
formula has been used to perform the integral over proper 8
times of particles in loops

P P —11d§ /53, 21ds|] . 43dig®

1 + +dj + - ,
a;—1l ap,—1 ap—1 8 4 4 24
=] f(ty+ty+ - Httyt 152 Tt dtydt,- - - dt,
0 (100
I'(ay)l'(ay)---T'(a -~
= n ) jo f(t)t(; i~ 1dt. (96) 1The maTHEMATICA package for the whole calculation in this pa-
F(E ai) per is available by request to yangs@ mail.ihep.ac.cn and
i=1 yangs@post.kek.jp
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dd; 1 1 [—3dy 9d, , [—67d] T WEWEWS WS o]=2WS2 WShWSa WsP, (107)
E_ﬁ[_iﬁ 16 2 %9
o2 15d, 2542 U W WS GWEWS o= WS2 WSAWS2 WPt (WS. W9)2,
| —14dy —— |+ 13dydy+ —— g (108
+ —39d] +d2 — 79, _450‘3) 6 19d‘1198] HE HAm A=W Waky — Zfabcw;stiv_vsﬂ’bv_vsy'c
8 8 4 )° 12 + (WS- WS)2
(101 WS WShyysa. sb

Concerning the RGEs given in Eq8.7)—(101), it is remark-
able that the direct method will only get part of the result of FSapSura— _\\Sa. \\ShpSa \wSby (WS WS)2
the RGE method, which is contributed by the Goldstone bo- my (109

son and indicated by the constant terms independent of
d;, i=1,2,3 in the r.h.s. of RGEs df;, i=1,2,3. The re-
maining terms of the RGEs take into account not only th
effect of the Goldstone boso&, but also that of vector

bosons¥V and that of their mixing terms. Similar to thé(1)
case, there are no terms lidg, d3, andd,d;, which are due
to the cancellation between the vector and Goldstone boso

Another remarkable feature is that ttie always appear Trin g contributes— 1. When the Higgs boson is not too

with d;g2. Such a feature is understandable if we extract theﬁeavy[say X is nearO(1)], the couplingds (ds=1/\) can
y ’ 3 3

Feynman rules directly from the effective Lagrangian, AC'reach order 0.1 or 0.01. This term can then switch the sign of

cording to our modified counting rule, terntsg? are of o : . . .
O(1), so thepower of these terms should also be@f1) dy(my,) from posn_lve t(.) negative. This fact will explam why
d;(my,) changes its sign when the Higgs boson is not too

and be kept in the beta functions. heavy. as we will show below
In order to compare and contrast, we formulate the results Y. '

of the direct method in the RGE form, which read

ewhere the variableifw is invariant when exchanging its Lor-
entz indicesu and », and is defined aH?, =4, W?
+d,W52.
The term l3g2 in the right-hand side of the RGE df is
uite remarkable: the coefficient 5 mainly comes from
i In Oy, Which contributes 8t contributes—2, and

V. NUMERICAL ANALYSIS

dg® g*[ 29 _
rTa W[_ Z}’ (102 We cqncentrate on 'Fhe nggs scalar Igoson eff.ec'gs to the
ECsd;, i=1,2,3. To simplify the analysis, we mimic the
5 standard model by choosing the mass of vector basgrio
d_U: v 3_9} (103 be 80 GeV. The Higgs scalar boson is assumed to be heavier
dt  167%| 2 |’ than the vector boson&. The initial condition for the cou-
pling g and the vacuum expectation valueis fixed at the
dd, 1 [ 1] lower boundary pointw=m,. The couplingg(my) is cho-
a9t 82 13 (104 sen to satisfy
2
dd, 1 [ 1] ag=f—=;—0, (110
s 12 (109 "
dd 10 17 which givesg(my,) =0.65 and the vacuum expectation value
. |- =] (106) is then fixed bymy,=3gv, which givesv (my) =247. While
dt 877 24 the initial condition ford;, i=1,2,3 is chosen to be fixed at
) ) the matching scaleu=m,, as given in Eq(23).
Under the assumption thelt are of size 1/(4r)?, then terms Below we will compare the results obtained from the di-

of d; in the beta functions given in E¢101) should belong rect method and the RGE method. In order to compare the

to two-loop effects, so we can neglect them and get Edgifference with the DM(where the tree-level Higgs contri-

(106). The underlying reason to represent the contributiongtions are neglectedwe set the initial conditions ofl;

of Higgs bosons in the RGE form might be related with theyanishing at the matching scale. As we know, the scalar bo-

fact that the full theory is renormalizable and the divergencegon effect includes both the decoup“ng mass Squared sup-

generated by the HIggS IOOp should be canceled out eXaCtlyressed part as shown in EQS) and the nondecoupling

by those generated by the Goldstone bosons. logarithm part. So we consider the following three cases to
To extract the diVergent structures, we have used the fol'n'ace the Change of roles of these two Competing palbs:

lowing relations of theSU(2) gauge grougithe equation of  the Jight scalar boson case, with,=150 GeV, where the

motion of WS, 9-WS=0, has also been used decoupling mass squared suppressed part domin@ete
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(c) (d)
FIG. 1. The varying ob, d;, d,, andd; with the running scal¢{t=In(my/m,)]. The matching scale is the mass of Higgs scalar boson,

which is taken to beny=150 GeV. The solid lines are the results of the RGE method, while the dashed ones are those of the direct method.

not too heavy scalar boson case, with=450 GeV, where The difference of the running aj can be neglected in
both contributions are importar(3) the very massive scalar these two methods so we have not depicted it. The underly-

boson case, withm,=900 TeV, where the nondecoupling iNg reason is explicit, in that the contributions of the con-
logarithm part dominates. stants of its8 function is much larger than those of the ACs.

Figure 1 is devoted to the first case, Fig. 2 to the second From these figures, we see the tendency that the differ-
case, Fig. 3 to the third case. In all three cases, the magnituddic® 0fdd, between these two methods is larger when the
of the d,(m,,) is about 102 in both methods, and the dif- Iggs scalar boson is further below its decoupling limit, and

ference between these two methods is as follaiisin the vice versa. The underlying reason for this behavior is related

first case, the result of RGE method is about 400% Iarge%o the initial valued; at the matching scale and the related

than that of the direct method2) in the second case 50% erms dependent auty in the RGEs given in EG97)—~(101).

ller-(3) in the third there i liible diff It is constructive to compare the predictions of these two
smaller;(3) in the thir Ca;?’ €re 1S a negigible diMerence. yitterent methods of the same theoretical framewohle di-
d;(my,) can reach 10° in the RGE method, one order

: ) ; X rect method and the renormalization group equation method
larger than in the direct method, as in the first case when thgs ihe same framework of the effective thepwyith the third

Higgs scalar boson is quite small. Even when the Higgs bomethod, i.e., the perturbation calculation of the renormaliz-
son is medium heavy, as in the second case, the results ghleSU(2) Higgs model. According to our numerical analy-
these two methods are also quite different. Near the decowis, the anomalous couplingy is greatly different in these
pling limit, the prediction of the RGE method improves that two methods, so below we will concentrate on the compari-
of the direct method up to 5%—10%. son of the results fod,, while leaving a complete compari-
Due to its initial values at the matching scale, thémy,) son of alld; to our next work.
could have different magnitudes in these three casest,10 The one-loop effects of the Higgs boson dp can be
1072, and 103, respectively. In total, the differences of obtained by the background field method in coordinate space
these two methods are dramatic. The figureslpindicate  (in coordinate space, the momentum dependence is ne-
that the tree-level contribution is much larger than the oneglected, though can be restored by using the RGE method
loop contribution, and the difference is measured by ordersand the result is given as

|
g 1 17r®-189%+423 —251-6(r*— 33 +48)r logr
M) == 752 72r—1)°

: (111
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FIG. 2. The varying ob, d;, d,, andd; with the running scal¢{t=In(my/m,)]. The matching scale is the mass of Higgs scalar boson,
which is taken to beny=450 GeV. The solid lines are the results of the RGE method, while the dashed ones are those of the direct method.

where the variable is defined asn3/mg,. In the decoupling  Higgs boson is heavy and only the log terms play a major
limit, the nondecoupling part is part in trilinear couplings, then both these two methods yield
almost the same prediction. In the tree-level matching con-
dition, roughly speaking, the RGE method gives a better pre-
diction close to the exact one-loop calculation than the DM
does.
The difference between the complete one-loop result and the In the one-loop level, the nondecoupling constant term
nondecoupling part, i.e., the decoupling p@avhich vanishes —17/72 is important. To see the effect of this constant term,
if the mass ratia approaches infinity is given as in Fig. 4(b) for both the DM and the complete one-loop
calculation we take this constant term into account while for

1
1672

d1°"(my) = logr——- (112

—lo ,
12 72

1 17}

ody(my) the RGE method we still omit it. Then from Fig(k}, we
1 —23%+62r —39+ (30— 45— 1)logr know_that this constant term can considerably affect the
=— ] magnitude ofd.
1677 12(r—1)3 If we take into account the nondecoupling constant term

—17/72 in all these three methods, the corresponding curves
in Fig. 4@ will only shift downward in parallel. However,
Figure 4 is devoted for comparison of tdg(my,) calcu-  the shapes will not change, and the prediction of the RGE
lated by these three methods. First, we consider the tree-levBlethod will still be better than that of the DM, similar to the
matching conditions in the Fig(d), where the constant term tree-level case.
—17/72 in Eq.(112) and also the corresponding term in Eq.  From the two cases we have considered, the tree-level and
(111) are omitted. Then when compared with the completeone-loop level matching conditions, we can conclude that the
one-loop result, it is obvious that the decoupling ligwhere  cocktail way, i.e., the nondecoupling constant temvhich
when only the logarithmic part is taken into accouistnot  can be easily extracted from the Dilus the running RGE,
always the most important part, especially when the Higgswill produce a better prediction closer to the exact one-loop
boson is relatively light. From the complete one-loop resultcalculation. We can also read from Figa#that the effects
given in Eq.(111), we find that the RGE method takes into of higher-order operators are not of much importance in the
account not only the term of lag but also log/r, while the  RGE method. The RGE method can yield a good prediction
direct method only the term lag In the case when the for a relative light Higgs boson in a wide range. Only when

(113
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dl
v

249.5 0.0025

249 0.002 p

0.0015
248.5

0.001

0.0005

247.5 7

dz a3

0.0025 F
~
0.01
~

0.002 F
3.008

0.0015
0.006

0.001
0.004

0.0005 9.002

FIG. 3. The varying ob, d;, d,, andds with the running scal¢[t=In(m,/m,)]. The matching scale is the mass of Higgs scalar boson,
which is taken to beny=900 GeV. The solid lines are the results of the RGE method, while the dashed ones are those of the direct method.

the Higgs boson is neam®,, or so might the deviation of the limit. The underlying reason is related to the initial value of

prediction of RGE from the exact one-loop calculation be-d; at the matching scale and to the radiative correction of all

come considerable. low-energy DOF(both the Goldstone and vector bospns
To understand the reason whly has changed its sign in which contributes to thel; terms in Egs.(97)—(101). We

the lower-energy region, it is also constructive to provide they|sg provide the one-loop result in the renormalizablé2)

relevant Feynman diagrams. The terms proportionalt®h  theory to comprehend the difference. In the one-loop level, it

the beta function ofl; are equivalent to the contribution of seems the combination of the DM, and the RGE method can

the diagram(in unitary gaugggiven in Fig. 5. While in the  yie|q 4 better theoretical prediction.

underlying theory, this diagram corresponds to the two dia- Normally, when the Higgs boson is very light compared

grams(in unitary gaugggiven in Fig. 6. By contracting the i the mass of vector bosons, the higher-dimension opera-
Higgs line to a point, the Feynman diagrams in Fig. 6 reduceforsy for instance, those belonging to 0¢p®) order, might

??ot,?]etﬁ éaséirgr'_n'_:i:'g' sSr.T:iE(Iii ren?:rlgatkr)llée xggmﬁchggﬁugggplay some considerable parts and it might be not good to use
99 g play P ﬁFT to describe the full theory, since the Wilsonian renor-

constructive part in the light Higgs boson region, as has beemalization [4] and the surface theorem given by REEO]

shown by the dotted line in Fig.(&. require that the low-energy scalgg is lower enough than
the UV cutoff uyy . But here we see, for the medium heavy
Higgs boson(say, frommy=200 GeV tom,=600 GeV), it

In this paper, we have studied the renormalization of thés still appropriate to use it, though the cocktail method from
nonlinear effectiveSU(2) Lagrangian with spontaneous both the DM and the RGE method is recommended.
symmetry breaking and derived its RGEs. Compared with According to the SPCR, you might regard this result as
theU(1) casg?21], the non-Abelian case is much more com- not reliable, since according to the naive chiral counting rule,
plicated. In theSU(2) case, the gauge coupling and the ACsthe radiative correction of ACs should be at Bép®) order,
up to O(p*) all develop by the quantum fluctuation low- and should be comparable with two-loop corrections of
energy DOFs. We also have comparatively studied the resul®(p?) operators. It seems unlikely to change the signg,of
of the direct method and the RGE method in the frameworkBut we would like to point out that this naive power counting
of the effective field theory. From the numerical analysis, werule can only hold when the conditiongggs~4mv~12 is
see that the results of the two methods are very differensatisfied, i.e., the tree-level contribution of the Higgs boson
when the Higgs scalar boson is far below its decouplings comparable to or even much smaller than the one-loop

VI. DISCUSSIONS AND CONCLUSIONS
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0.002 |
0.002

-0.002 -0.0021

-0.004 -0.004

~0.006 | -0.006

-0.008 . -0.008

—0.0L} . -0.01}

@ . (b)

FIG. 4. The comparison of the DM and RGE method in the effective theory and the complete one-loop computation in the renormalizable
SU(2) Higgs theory. The X axis is the Higgs boson masg,, and the unit is GeV, the Y axis ©&;. The thin dashed line is the result of
DM, the thick dashed line the result of RGE, the solid line the complete one-loop computation, and the dotted line the contribution of
vector-Higgs boson mixing term t,. The difference betweefa) and (b) is that the results of the DM and the exact one-loop have taken
into account the nonlogarithmic nondecoupling pat7/72, while that of the RGE method has not.

level corrections. For the medium heavy Higgs and lightbe larger, vice versa. So our assumption and the RGE method
Higgs cases, this power counting rule cannot be used as laave relatively more flexibility to match an unknown under-
reliable guide to understand the accurate calculations frorntying theory frommy, to 47v than the specific case by as-
the RGE method. With the modified power counting rule,suming ACs are tiny and the cutoff is atr4 (which might
such a fact is quite easy to understand. miss some important effects of underlying theory when the

In the RGE method, it becomes quite transparent that theutoff is not that large, as we have shown in the Higgs
effects of heavy DOF on the low-energy dynamics are remode). As are matter of fact, for the case when the ACs are
lated to two factors(1) the mass of the heavy particle, which large, before the unitarity condition is actually violated, new
determines the matching scalg,, , and(2) the initial values  particles or new resonances might have been found. There-
of ACs at the matching scale determined by integrating oufore, new effective theories should be formulated to include
the heavy particle, which are related to the spin of the heavypew particles, and new RGEs should be derived. So there is
particle and the strength of its couplings to the low-energyno necessity for us to worry about the problem of the unitar-
DOFs. If a heavy field does not participate in the process oity violation.

symmetry breaking, by using the decoupling theordr, As we know, there are several ways for tB&J(2) to
its effects can be estimated. break into its subgroupssSU(2) breaks toU(1) [22], for

To establish the modified power counting rule and to de-nstance. In this paper, we only assume that the symmetry is
rive the RGEs, we have assumed that all ACs ar©(¢f). broken from a local one to a global one, where all compo-

By assuming ACs oD(1), the ELmight be limited in the nents of vector boson have obtained the same mass. For the
realistic application, due to the fact that the amplitude of theway of SU(2) breaking toU(1), the ELwill be more com-
longitudinal components of vector bos¢@oldstone boson
scattering processes at higher-energy regions might violate
the unitarity condition once the momentum of the vector
boson goes a little higher than the mass of vector bosons.
Considering the fact that the parameter space of the effective
theories should be composed by both the ultraviolet cutoff
Ayy and the ACs at that scale, the violation of unitarity just
imposes a helpful correlation on the matching scale and the
ACs. If the magnitude of ACs is smaller, then the), can

Q (17 d292) d3.q2) T

FIG. 5. The related Feynman diagrdin unitary gauggin the FIG. 6. The related Feynman diagrdin unitary gauggin the
effective theory that contributes to the trilinear couplings. renormalizable theory that contributes to the trilinear couplings.
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plicated. Several patterns of symmetry breaking will be dis-As shorthand, we define

cussed in our next pap¢23] when we consider the renor-

malization of electroweak chiral Lagrangian. B 22 g*f
Meanwhile, for the sake of simplicity, no fermion field is Tz, M= A2 TN

taken into account, which might introduce terms of anomaly.

Also, we have not included all of terms breaking the chargeCase A, integrals with one propagator:

parity, and both symmetries. If included, the above procedure

will be more complicated due to the properties of the com- i ”mf

y—X

(A7)

d\ (y—x)?
WGXF{ - mz)\]exp{ - an

1
plete antisymmetric tensa*”?”. However, in principle, we K%,
can still make the renormalization procedure order by order (A8)
even for the complexity.

The renormalization procedure in this paper can easily bgherez=y—x, andK? can be regarded as the kernel of this
extended to study the renormalization of the nonlinear sigmtegral transformation. Whel? is known and the integral
model withSU(N;) symmetry[5], which has a very impor- can be performed, we have the quartic divergent integral,
tant role in describing low-energy hadronic physics. We will

apply the related conceptions and methods to the renormal- K1=T*¥(z,\), (A9)
ization of the electroweak chiral effective Lagrangian and the 5
CD chiral Lagrangian in our future wofl23]. “ 1
° grand (k3] e - L (M) (—d2); (A10)
2 (47T)d/2
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APPENDIX: THE INTEGRAL IN COORDINATE SPACE Case B, the integrals with two propagators:

Here we provide some necessary integrals in coordinate ) g dn, dx, 5 )
space. The basic formula we will use to conduct the integrals | =f z AN G2 (2 a2 SXAL — M — Mo, ]
include the following ones: (47h1)™" (47N )

1 1
dr2 2 2
d-10y_o " xexp{—z (—+—> K<. (A15)
j de *Q Z—F(d/2)’ (Al) 4N, 4N,
We have quartic divergent integrals,
-1 S 2z—-1 _t27— )
J'o ds¢ eXF[ Z] ZJO dtt EXF[ t ] I'(2). (AZ) KZZTQ'B(Z,)\l)Ta B (Zv)\z)v
The basic trick for the integral over coordinate space is given z_gaﬁ‘*"g' 1 d|
as below: =72 (477)372F 21/, S(1=X1=X%;)
w 2 2, \dr2
- gd 2. (A3) X (mXy+m5X,) e, (Al16)
the quadratic divergent integrals,
uvaf Y]
#7'7% 7P — 7 (A4) z°78 75 25
d d+2 ! 2_ af afB Te Te
( ) K 4)\1)\2,1' (Z,N1), T*P(Z,\1) N,
s g.uvaﬁﬁy .
M5V 50 Y ot Il
A e I (A9 TN T (20022 TN DT # (Z M)\ |

cee=a, (AB) (A17)
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1 1
I2=(4W—)d/21“(1—d/2) fo 8(1—Xq—Xp)(M3x, + max,) 4271

ap
X[Q_

g 1 aa” a a//
> ,—Tz(gﬁ Fixy—g*fge P,

1 ! ! ’ ’
5 (g P P 7% X, =g P B 07X,

! ! ! ! 1 ’ ’
_ga B gaB57X2+gaﬁga B gﬁy)'zgaﬁa B X1t (A18)
the logarithmic divergent integrals,
z%zP
2_ a a' B’
K (12)\ T*B(z,N)z% 2#,
TQB(Z!)\l))\lvTQﬁ(ZI)\l))\Z]1 (Alg)

1 1
I2=WF(2—d/2) fo 8(1—X1—X)(Max; + m3x,) 4272
a

X[1’gaBX2vgaﬁxlv(ngaﬁa,ﬁ,_ngaﬁga,ﬁ,),

1

1
- Egaﬁxl,— Eg"‘ﬁxz] ) (A20)

By interchanging symmetry between the indi¢esl andi

PHYSICAL REVIEW D69, 085006 (2004

K3=T(zy N\ )T # (25,15), (A24)
gaﬁa’ﬁ 1
3:
I T (am )dlzl“(l dr2)
N 3 d/2-1 3
xj XmdXZdX3(Z ximiz) 6(1—2 xi);
0 i=1 =1
(A25)
the logarithmic divergent integral,
K3=T#(z,,\,), (A26)
ga!B! 1
3 _ =2
I 2 (am )d/ZF(Z dr2)
1 3 d/i2—2 3
xj dxldXZdX:g(E ximiz) 5(1—2 xi).
0 =1 i=1
(A27)

By interchanging symmetry among the indidesl, i=2,

andi =3, the rest of integrals can be easily obtained and are

omitted here.
Case D, the integrals with four propagators:

=2, the rest of integrals can be easily obtained and are omit-

ted here.
Case C, the integrals with three propagators,
3 3
d\;
|3=f diz,d%z S —— - > mi\
ZH (477_)\ )d/2 ZL | I

(A21)

3
Z
XeX[{ Z 4—

4
|4:f ddzlddZde23H = )d/2 [{ _|:21 m,zh,)

422
i 4

>< N
exp( 214)\K)

(A28)

where z,= —(z,+2,+23). We have the quartic divergent

where z;= —(z,+2,). We have the quartic divergent inte- integral,

gral,

K3=T(zy A)) TP (25, N2) T?"(25,\3),

(A22)
gaﬁa’B’fSV
[ e
1 3 d/r2 3
Xf dxldxzdx3(_2 ximiz) 5(1—2 xi),
0 i=1 =1
(A23)

the quadratic divergent integral,

K4=TeF(z,, Na) T2 (24,\0),

(A29)

AT (25,0 0) T2(2s,

|4:gaﬁa’ﬁ'575'y' 1
16 (47T)d/2

T'(—d/2)

L4 4 di2 4
xf I1 dxi(z ximiz> 5(1—2 xi), (A30)
0i=1 i=1 i=1

the quadratic divergent integral,
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K4=T (2 A)T'# (2, A9) T(25,)), (A31) KA=TP (2 N ) T(25.03), (A33)
y ga’ﬁ”b‘y 1

apa’B'oy  q 4= —T'(2-d/2)

=2 8 g1 (1—d72) 4 @me
(4m) L4 4 di2—2 4
L4 4 di2—1 4 xf 1T dx»(E x-m-z) 5(1—2 X-)- (A34)
x| 11 dxi(z ximiz) 5(1—2 Xi)! (A32) of=1 A= T =
0i=1 =1 =1

By using the interchange symmetry among the indices
=1,i=2,i=3, andi=4, the rest of integrals can be easily

the logarithmic divergent integral, obtained and are omitted here.
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