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Renormalization of the effective Lagrangian with spontaneous symmetry breaking:
The SU„2… case

Qi-Shu Yan* and Dong-Sheng Du†
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~Received 16 December 2002; revised manuscript received 1 December 2003; published 14 April 2004!

We study the renormalization of the nonlinear effectiveSU(2) Lagrangian up toO(p4) with spontaneous
symmetry breaking. The Stueckelberg transformation, the background field gauge, the Schwinger proper time
and heat kernel method, and the covariant short distance expansion technology guarantee gauge covariance and
incorporate the Ward~Slavnov-Taylor! identities in the calculations. A modified power counting rule is intro-
duced to consistently estimate and control the contributions of higher loops and higher-dimension operators.
The one-loop renormalization group equations of the effective couplings are provided and analyzed. We find
that the difference between the results obtained from the direct method and the renormalization group equation
method can be quite large when the Higgs scalar boson is far below its decoupling limit. The exact one-loop
calculation ofd1 in the renormalizableSU(2) Higgs model is provided to understand such a difference. A
better way of calculating at the one-loop level in the framework of the effective theory method is suggested.
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I. INTRODUCTION

To understand nature, the effective field theory~EFT!
method is a universal tool, both practical and powerful@1,2#.
For example, the Fermi weak interaction theory works qu
well at an energy scale far belowmW even before the stan
dard model is established. The effective Hamiltonian meth
is widely used inB physics enterprises@3#. Although the
predictivity of a general EFT is restrained due to the fact t
there are an infinite number of permitted operators in
Lagrangian, at a region with an energy lower than the ul
violet cutoff, these operators can be well organized in ter
of their importance to low energy dynamics~i.e., their di-
mension and the strength of their couplings!. For example,
among the three groups of effective operators~EO! @4#—the
relevant, marginal, and irrelevant ones—only the first t
groups dominate the dynamics of low-energy QED a
QCD. And in the Fermi theory andB physics theory, only
operators equal to and below dimension 6 are important

As one of the important applications of the EFT metho
the effective chiral theories with spontaneous symme
breaking play a very special role in describing the mic
scopic world, for example, the QCD chiral perturbation L
grangian~ChPT! @5#, which describes the interactions amo
hadrons, and the electroweak chiral Lagrangian@6#, which
describes the interactions among massive vector bosons
we know, the renormalization group equations~RGE! of an
EFT are one of its basic ingredients to describe the beha
of a given system, which, generally speaking, can efficien
sum up the logarithm corrections from the quantum fluct
tion of low energy degrees of freedom~DOFs!, eliminate or
alleviate the renormalization scale and scheme depende
and improve the perturbation method in strong coupl
cases~in QCD, for instance!. Compared with the hadroni
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ChPT, the chiral effective gauge theories~EGT! with mas-
sive vector bosons have some special features that mak
systematic renormalization difficult. To understand the fe
tures, we briefly describe some of facts about the hadro
ChPT first.

In the usual ChPT approach to the low-energy QC
where only massless Goldstone particles are included,
chiral Lagrangian is organized as an expansion in power
momentap2 ~such an effective description is good whenp
!v, since the interaction vertices are proportional to t
power of p/v, which can act as a small quantity for th
effective expansion!:

Le f f5L21L41L61•••. ~1!

Each termLn , in turn, is given by a certain number of op
eratorsOi

(n) with low-energy constantsl i
(n) that will be de-

termined by the underlying theory~known or unknown!:

Ln5(
i

l i
(n)Oi

(n) . ~2!

The general expectation of the importance of an opera
is that the lower its order, the more importance it is. The
fore, in the ChPT,L2 is the most important operator, and
determines the propagators of massless Goldstone bo
and the primary scattering interaction at tree level, which c
be expressed asc2p2/v2 @c2 is a constant ofO(1)]. At one-
loop level, the scattering amplitude will receive the radiati
corrections from the loop with two contributions from th
vertex and with internal lines of Goldstone bosons. Af
dropping the divergences of the loop integral, we obtain
finite one-loop contribution of this interaction, which can b
expressed asa@1/(4p)2#(p4/v4) (a is a constant factor de
termined by the loop andc2 is of order 1!. Such a contribu-
tion has a momentum power the same as those of opera
in L4, which can be expressed asa0(p4/v4).

In the ChPT, coincidentally,a0, as determined from low-
energy phenomenologies, such as hadronic scattering an
©2004 The American Physical Society06-1
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cay processes, is of the order 1/(4p)2 @7#. So contributions
from L4 are of the same order as those of the one-loop le
of L2, both with respect to momentum power and to t
magnitude of the effective couplings.

So, if we go further to higher order, say two-loop ord
then we should include three contributions:~1! the two-loop
contributions of pureO(p2) vertices,~2! the one-loop con-
tribution with oneO(p2) vertex and oneO(p4) vertex, and
~3! the tree-level contribution ofO(p6). The first part can be
expressed asb2@1/(4p)4#(p6/v6), the second part can b
expressed asb1@1/(4p)2#(p6/v6), and the third part can be
expressed asb0(p6/v6). The first part contains the two-loo
suppression factor 1/(4p)4, while the second part contain
only the one-loop suppression factor 1/(4p)2. But due to the
fact that b1 is determined by bothc2 and a0 with a loop
factor 1/(4p)2, not only by the momentum power but als
by the magnitude order controlled by the loop factors,
second part will share the same importance as the first p
We also expect that coincidently,b0 will have a magnitude
like 1/(4p)4. Thus we expect that such a simple pow
counting rule~SPCR! will hold for any specified higher or-
der.

But for the EFT with massive vector bosons~and nonlin-
ear interactions!, it does not seem easy to take into accou
the radiative corrections of low-energy quantum DO
~which should include both the massive vector boson and
corresponding Goldstone boson, and the momentum sh
not be a small quantity compared with the vacuum expe
tion value for the application of the theory!. The first diffi-
culty concerns the quartic divergence of the theory, which
more manifest when we represent the EGT in the unit
gauge. The propagator of massive vector bosons can be
pressed as

iDmn5 iDT
mn1 iDL

mn , ~3!

DT
mn5

1

k22mV
2 S 2gmn1

kmkn

k2 D , ~4!

DL
mn5

1

mV
2

kmkn

k2
, ~5!

whereDT and DL represent the transverse and longitudin
parts, respectively. The longitudinal part of the propaga
can bring quartic divergences and lead to the well-kno
bad ultraviolet behavior. Two direct consequences of this
ficulty are ~1! that the quartic divergences will appear
radiative corrections and~2! that low-dimension operator
can induce the infinite number of divergences of high
dimension operators, even at one-loop level. However,
renormalizable theory, the Higgs model for instance, th
two problems do not exist@8#. The quartic divergences pro
duced by the low-energy DOF just cancel exactly with tho
produced by the Higgs scalar boson, and no extra diverge
structure will appear.

Another difficulty, which is also related to the first diffi
culty, concerns the counting rule. In the gauge theories w
spontaneous symmetry breaking, the marginal interac
vertices are proportional to effective couplings~EC! @ex-
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pressed in both gauge couplings and anomalous coupl
~ACs!#, not proportional to the momentum powerp2/v2 as in
the hadronic ChPT. Then by directly evaluating the Feynm
diagrams, radiative corrections of the ACs@which are deter-
mined at matching scale by the ultraviolet dynamics and
unknown to us, and there is no definite reason to assume
they must be as small as 1/(4p)2] are 1/(4p)2, not 1/(4p)4

as expected from the SPCR in the hadronic ChPT. So
native power counting rule cannot properly be used in t
case. We know, however, in order to collect and reliab
estimate the contributions of higher orders~say, those of
higher loops and higher-dimension operators! in terms of
magnitude, a power counting rule is needed. So to fin
consistent power counting rule for this case is necessary

To establish a power-counting rule, we should know th
for the EGT with a spontaneous symmetry breaking mec
nism we have at least two ways to collect and classify
erators.

The first way is to collect operators in terms of their d
mensions~not by the momentum powerp2/v2, as in the
above case!. We can formulate the EGT in unitary gauge@9#,
then restore the low-energy DOFs with the inverse Stuec
berg transformation, while the ECs are regarded as free
rameters, of which the magnitude at the ultraviolet cutoff
determined by the underlying dynamics and the match
conditions. Then, according to the Wilsonian renormalizat
scheme, EOs can be classified into three groups: rele
operators, marginal operators, and irrelevant operators.
relevant operators have mass dimensions less than th
mension of space-time, and have ECs with positive m
power. The marginal operators have the same dimension
that of space-time, and have massless ECs. The irrele
operators have dimensions larger than the dimensions
space-time, and have couplings with negative mass po
By study the running of the ECs, we can determine the
portance of operators, which is controlled by the strength
their corresponding ECs. The couplings of the relevant
erators will be dependent on the ultraviolet cutoffL5UV in
positive powers; those of the marginal operators will be lo
rithmically dependent on the cutoffL5UV; while those of
the irrelevant operators will be dependent on the cutoffL
5UV in negative powers. If the cutoffL5UV is large
enough, the irrelevant operators will become unimporta
and the relevant and marginal operators will dominate
low-energy dynamics. Such a conclusion is based on
most general analysis of the behavior of RGEs without
suming the smallness of the ECs of irrelevant operators
shown in Refs.@4,10#. So equipped with this conclusion i
Refs.@4,10#, we can truncate the infinite operator towers p
mitted in the EGT to a specified order.

As we know, the groups of relevant and marginal ope
tors include both the renormalizable operators and ano
lous operators~AOs! up toO(p4). Meanwhile, in the genera
cases, the relative importance of an operator might be q
different and is mainly determined by the relative magnitu
of its EC. For instance, if the coupling is zero or is mu
much smaller, in principle, we can drop its contributions a
regard it as a higher-order correction. If the coupling is mu
much larger than others, then this operator should be d
6-2
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nitely important for the low-energy dynamics. We shou
then classify it as a lower-order operator to promote its re
tive importance to the rest of operators. So from our vie
point, a practical and realistic power counting rule mu
based on the actual information of the relative magnitude
the ECs.

The second way is to mimic the ChPT by classifying a
cording to the momentum power. In this way, up toO(p4),
without regarding any information on the magnitude of t
ECs, these operators are divided into two groups: the re
malizable ones are classified asp2 order and the anomalou
ones are classified asp4 order. In this way, to classify the
gauge kinetic terms asO(p2) it is somewhat ambiguous fo
the momentum power counting rule. But it is unlikely not
include the kinetic terms in thisp2 order; otherwise it is
impossible to define the propagator of vector bosons. So
dimensionless gauge couplings have to be set to have
mentum power. To classify the rest of marginal operators
the group of terms ofO(p4), such a counting rule, borrowe
from the hadronic ChPT, implicitly assumes that the stren
of their couplings should be of order 1/(4p)2, so as to guar-
antee the validity of the power counting rule.

We would like to point out that such assumptions are
strong for a general EGT. In the framework of EFT, t
magnitudes of the couplings of an operator is determine
the matching scale. There is no reason to expect that the
must be so small. The magnitude of these ACs is relate
both the actual value of the matching scale and the unde
ing dynamics, both of which are unknown to us. As matter
fact, the ACs can receive the tree-level contributions, like
the Higgs model we show in the numerical analysis, in
left-right hand model, etc. Furthermore, even determined
loop level, if the ultraviolet dynamics are of the strong co
pling case, as in the Technicolor models, these ACs can
estimated as@1/(4p)2#(gs

2/gw
2 ). If gs is much larger than

gw , the ACs might still be one or two orders larger than t
expectation of the SPCR in hadronic ChPT.

So we regard that, in order to be more realistic and
consistent with the EFT method as a general and unive
method, we should abandon the second way of the clas
cation of the operators. Before knowing the actual inform
tion about the magnitude of the ACs~equivalently, the un-
derlying theories!, we will treat all relevant and margina
AOs as operators ofO(p2) order by implicitly assuming all
these ACs are ofO(1) ~this assumption is a more gener
one, and the assumption of the second way of classifica
is only one of the specific cases!. So we modify the momen
tum power counting rule to include the ECs of all AOsdi as
momentump22, like the coefficient of the gauge kineti
terms 1/g2. And in this way, when extracting the Feynma
rules directly from the Lagrangian given in~15!, the combi-
nation of g2di in the trilinear and quartic couplings is re
garded as of the orderO(p0);O(1). Thus, this modified
power counting rule will possess the power of the SPCR,
can be applied to estimate and control the contributions
higher-loop and higher-dimension operators, just like tha
the hadronic ChPT.

With this modified power counting rule in mind~we will
address the unitarity violation problem related to this mo
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fied rule in the discussion!, below we will study the renor-
malization of the nonlinear effectiveSU(2) LagrangianLe f f

up to O(p4) and derive the one-loop RGE of its ECs. W
will also numerically study the solutions of these RGEs, a
analyze the decoupling and nondecoupling effects of
Higgs boson to those ECs in the effective Lagrangian~EL!
Le f f. We find that when the Higgs scalar is far below
decoupling limit, our results are significantly different fro
the results obtained by matching the full theory and E
directly at the one-loop level@11# ~hereby, we call this
method the direct method, in contrast with the RGE metho!.
The basic reason for this large difference is that the dir
method ignores the contribution of the possible large con
butions of the not too heavy Higgs boson, which can cons
erably affect the ECs through radiative corrections, while
RGE method has taken into account these important effe
To comprehend the underlying reason for this difference,
will provide the exact one-loop formula of the anomalo
coupling d1 in the renormalizableSU(2) theory. However,
we find that the cocktail way@which combines the RGE
running and the nondecoupling constant term, which can
easily extracted from the direct integrating-out meth
~DM!# will produce a better prediction that is closer to th
exact one-loop calculation.

This paper is organized as follows. In Sec. II, we brie
introduce the renormalizableSU(2) Higgs model, and con-
centrate on its form in unitary gauge and the quartic div
gence term. In Sec. III, the nonlinear effectiveSU(2) La-
grangian Le f f up to O(p4) introduced, and the initial
conditions of ECs is obtained by integrating out the sca
Higgs boson at the tree level. In Sec. VI, we perform t
renormalization of theLe f f up to O(p4) in the background
field gauge, and by using the Schwinger proper time and h
kernel method, derive the renormalization group equatio
so as to sum the leading logarithm contributions of radiat
corrections. Section V is devoted to study the numerical
lutions of these RGEs in the Higgs scalar decoupling a
nondecoupling limits, and to investigate the difference
these methods in the full renormalizableSU(2) theory. We
end this paper with some discussions and conclusions.

II. THE RENORMALIZABLE SU„2… HIGGS MODEL

The partition functional of the renormalizable no
AbelianSU(2) Higgs model@12# ~here we have not included
the gauge fixing term and the ghost term! can be expressed
as

Z5E DAm
a DfDf†exp~ iS@A,f,f†# !, ~6!

where the actionS is determined by the following Lagrang
ian density:

L52
1

4g2 Wmn
a Wamn1~Df!†

•~Df!1m2f†f2
l

4
~f†f!2,

~7!

and the definition of quantities in this Lagrangian is given

Wmn
a 5]mWn

a2]nWm
a 1 f abcWm

b Wn
c , ~8!
6-3
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Dmf5]mf2 iWm
a Taf, ~9!

f†5~f1* ,f2* !, ~10!

whereTa are the generators of the Lie algebra of theSU(2)
gauge group.

The spontaneous symmetry breaking is induced by
positive mass squaredm2 in the Higgs potential. The vacuum
expectation value of the Higgs field is given asu^f&u
5v/A2. And by eating the corresponding Goldstone bos
the vector bosonsW obtain their mass.

The nonlinear form of the Lagrangian given in Eq.~7! is
made by changing the variablef:

f5
1

A2
~v1r!U, U5expS 2i

jaTa

v D ,

v52Am2

l
, ~11!

where the matrix fieldU is the Goldstone boson field a
prescribed by the Goldstone theorem, and ther is a massive
scalar field. Then it reaches

L852
1

4g2 Wmn
a Wamn1

~v1r!2

4
tr@~DU !†

•~DU !#

1
1

2
]r•]r1

1

2
m2~v1r!22

l

16
~v1r!4. ~12!

The change of variables induces a determinant factor in
functional integralZ:

Z5E DWm
a DrDjbexp~ iS8@W,r,j#!

3detH S 11
1

v
r D d~x2y!J . ~13!

The determinant can be written in the exponential form, a
correspondingly the Lagrangian density is modified to

L→L82 id~0!lnH 11
1

v
rJ . ~14!

The determinant containing quartic divergences is indispe
able and crucial to cancel exactly the quartic divergen
brought into by the longitudinal part of the vector boson, a
is important in verifying the renormalizability of the Higg
model in the U gauge@8,9#.

III. THE NONLINEAR EFFECTIVE SU„2… LAGRANGIAN
L eff UP TO O„P4

…

In the nonlinear effectiveSU(2) LagrangianLe f f, only
the Goldstone and the vector bosons are included as th
fective dynamic freedom at low-energy region. The Lagra
ian Le f f that includes all permitted operators composed
these light DOFs and respects the assumed Lorentz
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gauge symmetries is still renormalizable@13#. Two facts are
important for the actual renormalization procedure:~1! The
Wilsonian renormalization method@4# and the surface theo
rem @10# reveal that in the low-energy region, only a fe
operators play an important role in determining the behav
of the dynamic system at the low-energy region. Such a
enables us to truncate the infinite divergence tower up t
specified order and to consider the renormalization of the
order by order.~2! In the dimensional regularization metho
the quartic divergences can be expressed to be proporti
to the masses in the theory, as the quadratic divergence

The general effectiveSU(2) LagrangianLe f f consistent
with Lorenz spacetime symmetry,SU(2) gauge symmetry,
and the charge, parity, and the combinedCP symmetries, can
be formulated as

Le f f5L21L41L61•••, ~15!

L252
v2

4
tr@VmVm#, ~16!

L452
1

4g2 Wmn
a Wamn2 id1tr@WmnVmVn#

1d2tr@VmVn#tr@VmVn#

1d3tr@VmVm#tr@VnVn#, ~17!

L65•••,

•••5•••, ~18!

whereL2 andL4 represent the relevant and marginal ope
tors in the Wilsonian renormalization method, respective
Here for the simplicity, below we will omit all the irrelevan
operators in our consideration, i.e., dimensional opera
higher thanO(p4). mW is the mass of vector bosons an
mW5gv/2. The operators inL2 andL4 also form the set of
complete operators up toO(p4) in the usual momentum
counting rule. And the dimension~irrelevant! operators
higher thanO(p4) order are represented by the dots a
omitted here. The auxiliary variableVm is defined as

Vm5U†DmU, DmU5]mU2 iWmU ~19!

to simplify the representation. Due to the following relatio
of the SU(2) gauge group

tr@TaTbTcTd#5
1

8
~dabdcd1daddbc2dacdbd!, ~20!

the terms, like tr@VmVnVmVn# and tr@VmVmVnVn#, can be
linearly composed by tr@VmVn#tr@VmVn# and
tr@VmVm#tr@VnVn#. Since here we do not consider the ter
that breaks the charge, or parity, or both symmetries, th
fore the operators in Eq.~17! are complete and linearly in
dependent.

The ECs ofdi form the parameter space of EFT, and th
effectively reflect the dynamics of the underlying theori
and the ways of symmetry breaking. Different underlyi
theories and ways of symmetry breaking will fall into a sp
cial point in this effective parameter space.di can also be
called the ACs if, according to the renormalizableSU(2)
6-4
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gauge theory, they reflect the deviation of the theory from
requirement of renormalizability. When the scale runs fro
the high-energy region down to the low-energy region,
will obtain a characteristic curve in this parameter spa
This curve, if we can measure from the experiments,
help us to figure out the possible underlying theories, as
will do in the Large Hadronic Collider~LHC! by measuring
ECs of vector bosons at different energy regions.

When the scalar Higgs boson is heavy and is integra
out, the Higgs model given in Eq.~7! can be effectively
described as a special parameter point of the EL given in
~15!. At the tree level, it suffices to integrate out the Hig
scalar boson by using its equation of motion, which is e
pressed in low-energy dynamic DOFs and can be formula
as

r5
v

2m0
2 ~DU !†

•~DU !1•••, ~21!

m0
25

1

2
lv2, ~22!

wherem0 is the mass of Higgs bosons. The omitted ter
contain at least four covariant partials and belong to high
order operators.

By substituting Eq.~21! into Eq. ~14! at the matching
scale~which is always taken at the scalar massm5m0), the
ECs at the tree level are determined as

d1~m0!50,d2~m0!50,

d3~m0!5
v2

8m0
2 5

1

4l
,•••. ~23!

In its decoupling limitm0→` (l→`), all these three ECs
vanish. Normally, for some theoretical reasons~say, the va-
lidity of perturbation theory!, l should not go tò , and is
usually taken asO(1), as in thestandard model. So,d3 can
be quite large compared with other ACs. For other symme
mechanisms, say Technicolor theories, due to the proper
strong couplings, these ECs might be large at the match
scale. So radiative corrections should be taken into acco
before considering the effects of higher-order operators.
low we will derive the RGEs of the ECs, in order to su
these corrections.

Generally speaking, if a particle does not participate in
process of symmetry breaking and its coupling to low-ene
DOF is not proportional to its mass, we know it will no
contribute to the ACs up to theO(p4) order and its effects on
the low-energy dynamics will be simply suppressed by
squared mass, according to the decoupling theorem@14#.

IV. THE RENORMALIZATION OF L eff

AND ITS RENORMALIZATION GROUP EQUATIONS

In the background field method~BFM! @15,16#, the num-
ber of the Feynman diagrams for the loop corrections can
greatly decreased when compared with the standard F
man diagram method. Another remarkable advantage is
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in the BFM, each step of calculation is manifestly gau
covariant with reference to the background gauge field,
the Ward identities~Slavnov-Taylor identities in non-Abelian
gauge theories!—which are important to restrain the stru
ture of divergences—have been incorporated in the calc
tion. The Schwinger proper time and heat kernel method@17#
by itself is the Feynman integral. Combining with the cov
riant short distance Taylor expansion@18,19# in coordinate
space, the divergent structures can be directly extracted
in the explicit gauge form, and the loop calculation can
simplified to a considerable degree.

A. The quadratic terms of the one-loop Lagrangian

According to the spirit of the BFM, we split the Gold
stone and vector bosons into classic and quantum parts
given below:

W→W̄1Ŵ, U→ŪÛ. ~24!

The Stueckelberg transformation@20# combines classic part
W̄ and Ū into the Stueckelberg fieldW̄S

W̄S5Ū†W̄Ū1 iŪ †]Ū, ~25!

and eliminates the background Goldstone from the EL. T
Stueckelberg field is invariant under the background ga
transformation. Such a property guarantees that the foll
ing calculation will be unchanged in the background gau
transformation. After finishing the loop calculation, by pe
forming the inverse Stueckelberg transformation~expanding
the W̄S in W̄ and Ū), the EL can be restored to the form
expressed by its low energy DOFs.

As one of the advantages of the BFM, we have the fr
dom to choose different gauges for the classic and quan
fields, and such freedom can help to further simplify t
calculation. The gauge condition for the classic fields can
derived from their classic equation of motion. For quantu
fields, we can choose the covariant gauge fixing term as

LGF52
1

2g2 @~D•Ŵ!a1cf f
abcW̄Sb

•Ŵc1 f wsj
a#2,

~26!

wherecf and f ws are determined by requiring the one-loo
Lagrangian to have the standard form given in Eq.~31!–~37!.
Then the condition reads

cf5
1

2
d1g2, f ws5vg2. ~27!

The partition functionalZ in the background field gauge ca
be expressed as

Z5exp~ iS ren@W̄S# !

5exp~ iStree@W̄S#1 idStree@W̄S#1 iS1 loop@W̄S#1••• !

5exp~ iStree@W̄S#1 idStree@W̄S# !

3E DŴmDc̄DcDj exp~ iS@Ŵ,j,c̄,c;W̄S# !, ~28!
6-5
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where the tree ELLtree is in the following form

Ltree5
v2

2
W̄S

•W̄S2
1

4g2W̄mn
SaW̄Smn,a

1d1

1

4
f abcW̄mn

SaW̄Sm,bW̄Sn,c1d2

1

4
W̄Sa

•W̄SbW̄Sa
•W̄Sb

1d3

1

4
~W̄S

•W̄S!21•••. ~29!

The corresponding counter termsdLtree are defined as

dLtree5dZv2

v2

2
W̄Sa

•W̄Sa2dZg2

1

4g2W̄mn
SaW̄Smn,a

1dZd1
d1

1

4
f abcW̄mn

SaW̄SbmW̄Scn

1dZd2
d2

1

4
W̄Sa

•W̄SbW̄Sa
•W̄Sb

1dZd3
d3

1

4
~W̄S

•W̄S!21•••, ~30!

where the renormalization constant of the Stueckelberg fi
W̄S can always be set to 1.

In the one-loop level, only the quadratic terms of quant
fields are relevant, and they can be cast into the follow
standard form:

Lquad5
1

2
Ŵm

a hWW
mn,abŴn

b1
1

2
jahj j

ab jb1 c̄ah c̄c
ab

cb

1
1

2
Ŵm

a XT m,abjb1
1

2
jaXY n,abŴn

b , ~31!

hWW
mn,ab5~D82,ab1mW

2 dab!gmn2sWW
mn,ab , ~32!

hjj
ab5hjj8

ab1Xa,acda
cb1Xab,acda

cddb
db , ~33!

hjj8
ab52~d2,ab1dabmW

2 !1s2,jj
ab 1s4,jj

ab , ~34!

h c̄c
ab

52~D82,ab1mW
2 dab!, ~35!

XT m,ab5XT ab
m,acda,cddb,db1XT ma,acda

cb1XT 01
m,ab

1XT 03Z
m,ab1]aXT 03Y

ma,ab , ~36!

XY n,ab5XY ab
n,acD8a,cdD8b,db1XY na,acD8a

cb1XY 01
n,ab

1XY 03Z
n,ab1]aXY 03Y

na,ab , ~37!

wheredm5]m2 iajW̄m,G
S , andDm8 5]m2 iaWW̄m,G

S . The di-
rection of the harpoon indicates the position of vec
bosons, and both theXT m,ab and XY n,ab are defined to act on
08500
ld

g

r

the right side. It is remarkable that for the gauge fixing ter
given in Eq.~26! Goldstone bosons have the same mass
vector bosons.

For theSU(2) EL, the related quantities are defined a

sWW
mnab52iW̄G

Smn,ab1
1

4
d1

2g4~W̄G
Sm,acW̄G

Sn,cb

2W̄G
Sac

•W̄G
Scbgmn!1 id1g2~W̄G

Smn,ab1F̄G
Smn,ab!

2d2g2~W̄Sa
•W̄Sbgmn1W̄m

ScW̄n
Scdab1W̄m

SbW̄n
Sa!

2d3g2~W̄Sc
•W̄Scgmndab12W̄m

SaW̄n
Sb!, ~38!

s2,jj
ab 52aj

2~W̄G
S
•W̄G

S !ab, ~39!

Xab,ab52S̃ab,ab, ~40!

Xa,ab5X̃a,ab2]bX̃ab,ab12S̃ab,acGj,b
cb , ~41!

s4,jj
ab 5X̃4

ab1S̃ab,ac~]bGj,a
cb 2Gj,a

cd Gj,b
db !

2X̃a,acGj,a
cb 1]bX̃ab,acGj,a

cb , ~42!

XT ab
m,ab52S̃ab

m,ab , ~43!

XT ma,ab5X̃1
ma,ab2X̃2

ma,ab2]bX̃ba8
m,abga8a

12S̃a8b
m,acGj

b,cbgaa8, ~44!

XT 01
m,ab5X̃01

m,ab , ~45!

XT 03Z
m,ab5X̃03

m,ab1S̃ab
m,ac~]aGj

b,cb2Gj
a,cdGj

b,db!

2~X̃1
ma,ac2X̃2

ma,ac!Gj,a
cb 1]bX̃ba

m,acGj
a,cb , ~46!

XT 03Y
ma,ab52X̃2

ma,ab , ~47!

XY ab
n,ab52S̃ab

n,ba , ~48!

XY na,ab5X̃2
na,ba2X̃1

na,ba2]bX̃a8b
n,bagaa812S̃a8b

n,caGW
b,cbgaa8,

~49!

XY 01
n,ab5X̃01

n,ba , ~50!

XY 03Z
n,ab5X̃03

n,ba1S̃ab
n,ca~]aGW

b,cb2GW
a,cdGW

b,db!

2~X̃2
na,ca2X̃1

na,ca!GW,a
cb 1]bX̃ab

n,caGW
a,cb , ~51!

XY 03Y
na,ab52X̃1

na,ba , ~52!

where F̄mn
Sa5 f abcW̄m

SbW̄n
Sc, W̄m,G

Sab5 i f acbW̄m
Sc, Gj,m

ab 5

2 iajW̄m,G
Sab , and GW,m

ab 52 iaWW̄m,G
Sab , with aj51/2 andaW

5(11d1g2/2) ~which can be regarded as the effecti
charge!. Theaj is determined by the mass term of Eq.~16!.
For theaW , the gauge kinetic term in the Eq.~16! and the
first AO contribute, while the rest of the AOs do not. To g
6-6
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the above form, we have normalized the vector quant
gauge field by usingŴ/g→Ŵ. When we take the limitdi

→0, thesWW
mn,ab reaches to its usual form 2iWG

mn,ab , as given
in the gauge theory without symmetry breaking mechani

As in theU(1) case, an auxiliary dimension counting ru
is introduced to extract relevant terms up toO(p4), which
reads

@W̄m
S#a5@]m#a5@Dm#a51, @v#a50. ~53!

From this rule, we know

@XT ab
m,ab#a5@XY ab

n,ab#a5@XT 01
m,ab#a5@XY 01

n,ab#a51,
~54!

@sWW
mn ab#a5@s2,jj

ab #a5@Xab,ab#a5@XT ma,ab#a5@XY na,ab#a

5@XT 03Y
ma,ab#a5@XY 03Y

na,ab#a52, ~55!

@Xa,ab#a5@XT 03Z
m,ab#a5@XY 03Z

n,ab#a53, @s4,jj
ab #a54.

~56!

We would like to mention that this auxiliary dimensio
counting rule is to extract those terms with two, three, a
four external fields. In the limit that all ACs equal zero, on
the XT 01

m,ab , XY 01
n,ab , sWW

mn ab , ands2,jj
ab do not vanish.

The quantities with tildes are determined from the follo
ing prestandard forms@16#

jahj j
ab jb52ja~d2,ab1dabmW

2 !jb1ja~s2,jj
ab 1X̃4

ab!jb

1jaX̃a,ab]ajb1]ajaX̃ab,ab]bjb, ~57!

ˆ
m
a XT m,abjb5jaXY n,abŴn

b

5]aŴm
a X̃ab

m,ab]bj1Ŵm
a X̃1

ma,ab]ajb

1]aŴm
a X̃2

ma,abjb1Ŵm
a X̃01

m,abjb1Ŵm
a X̃03

m,abjb,

~58!

and from the EL given in Eq.~15!, we get the quantities with
tildes expressed in the Stueckelberg fieldW̄S and the corre-
sponding strength:

X̃ab,ab5S̃ab,ab1Ãab,ab,

S̃ab,ab54
d2

v2 S W̄Sa
•W̄Sbgab1W̄Sa,cW̄Sb,cdab1

1

2
HW

ab,abD
14

d3

v2 ~W̄Sc
•W̄Scgabdab1HW

ab,ab!, ~59!

Ãab,ab52 i2
d1

v2W̄G
Sab,ab

12
2d32d2

v2 ~W̄Sa,aW̄Sb,b2W̄Sa,bW̄Sb,a!,

~60!
08500
m

.

d

X̃a,ab522
d1

v2 ~W̄G
Sab,adW̄b,G

S,db1W̄b,G
S,adW̄G

Sab,db!

14i
d2

v2W̄Sa,cW̄Sb,cW̄b,G
Sab14i

d3

v2W̄Sc
•W̄ScW̄G

Sa,ab ,

~61!

X̃4
ab5

d1

v2W̄G
Sab,acF̄ab,G

Scb , ~62!

X̃ab
m,ab5S̃ab

m,ab1Ãab
m,ab , ~63!

S̃ab
m,ab5 i

d1g

2v
~2W̄G

Sm,abgab2W̄a,G
Sabgb

m2W̄b,G
Sabga

m!,

~64!

Ãab
m,ab52 i

d1g

2v
~W̄a,G

Sabgb
m2W̄b,G

Sabga
m!, ~65!

X̃1
ma,ab5

d1g

v
~W̄G

S,ac
•W̄G

S,cbgma2W̄G
Sa,acW̄G

Sm,cb2 iW̄G
am,ab!

22
d2g

v
~W̄Sa

•W̄Sbgma1W̄Sa,cW̄Sm,cdab

1W̄Sm,bW̄Sa,a!22
d3g

v
~W̄Sc

•W̄Scgmadab

12W̄Sa,bW̄Sm,a!, ~66!

X̃2
ma,ab5 i

d1g

v
F̄G

Sma,ab, ~67!

X̃01
m,ab52 i

gv
2 S 11

d1g2

2 D W̄G
Sm,ab , ~68!

X̃03
m,ab5

d1g

2v
~ iW̄G

Sm,acW̄G
Sa,cdW̄a,G

Sdb1 iW̄G
Sa,acW̄G

Sm,cdW̄a,G
Sdb

1W̄a,G
SacW̄G

Sma,cb!, ~69!

The HW
ab,ab is defined as HW

ab,ab5W̄Sa,aW̄Sb,b

1W̄Sa,bW̄Sb,a, which is symmetric on its Lorentz~group!
indices.

As we have mentioned, the gauge condition for the ba
ground fields can be chosen as being determined by
equation of motion of the Stueckelberg fieldW̄S, which can
be formulated as
6-7
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]mW̄Smn,a2
d1g2

2
]mF̄Smn,a

5mW
2 W̄Sn,a2 f abcS 12

d1g2

2 D W̄m
SbW̄Smn,c

1
d1g2

2
f abcW̄m

SbF̄Smn,c2d2g2W̄Sn,bW̄Sm,aW̄m
Sb

2d3g2W̄Sn,aW̄Sm,bW̄m
Sb. ~70!

From the equation of motion given in Eq.~70!, we can get

]nWSn,a5
1

mW
2 ]nF f abcS 12

d1g2

2
D W̄m

SbW̄Smn,c

1 f abc
d1g2

2
W̄m

SbF̄Smn,c1d2g2W̄Sn,bW̄Sm,aW̄m
Sb

1d3g2W̄Sn,aW̄Sm,bW̄m
SbG . ~71!

Then we know that the (]mWSm,a)2 can only contribute to
terms at most up toO(p6). Therefore we simply se
]mWSm,a50 when considering the renormalization up
O(p4). We have also used the following relations about
Lie algebra:

f abcf cde1 f adcf ceb1 f aecf cbd50, ~72!

to simplify the above related expressions.

B. The calculation of the logarithm and traces

The quadratic terms given in the last subsection can
directly calculated by the functional integral, since the in
gral is Gaussian. Then after integrating out all quant
fields, theL1 loop reads

E
x
L1 loop5 i

1

2
@Tr ln hWW1Tr ln hj j

1Tr ln~12XY mhWW;mn
21 XT mhj j

21!#2 i Tr h c̄c ,

~73!

where the contribution of the ghost has a different sign d
to its anticommutator relation. The Tr is to sum over t
Lorentz indices,mn, group indices,ab, and the coordinate
space points, x. The operators in the term Tr ln(
2XYmhWW;mn

21 XTmhj j
21) are all defined to act on the right sid

and such a form reflects the fact that the sequence of i
grating out the quantum vector boson and Goldstone fie
will not cause any difference in physical results.

The expansion of the logarithm is simply expressed a
08500
e

e
-

e

e-
s

^xu ln~12X!uy&52^xuXuy&2
1

2
^xuXXuy&2

1

3
^xuXXXuy&

2
1

4
^xuXXXXuy&1•••, ~74!

and here theX should be understood as an operator~a ma-
trix! that acts on the quantum states of the right side.

To calculate of logarithm and traces, it is convenient
conduct the computation in Euclidean space. Below, we w
conduct our calculations in Euclidean space. We will use
Schwinger proper time and heat kernel method@17# in coor-
dinate space. In this method, the standard propagators ca
expressed as

^xuhWW;mn
21,ab uy&5E

0

` dt

~4pt!d/2
exp~2mW

2 t!

3expS 2
z2

4t DHWW
mn,ab~x,y;t!, ~75!

^xuh8j j
21,abuy&5E

0

` dt

~4pt!d/2
exp~2mW

2 t!

3expS 2
z2

4t DHjj,ab~x,y;t!, ~76!

wherez5y2x. The integral over the proper timet and the
factor exp@2z2/(4t)#/(4pt)d/2 have the effect of separatin
the quadratic divergent part of the propagator.H(x,y;t) is
analytic with reference toz and t, which means that
H(x,y;t) can be analytically expanded with reference
both z andt. Then we have

H~x,y;t!5H0~x,y!1H1~x,y!t1H2~x,y!t21•••,
~77!

whereH0(x,y), H1(x,y), and,H2(x,y) are the Seeley–De
Witt coefficients. The coefficientH0(x,y) is the pure Wilson
phase factor, which indicates the phase change of a quan
state when propagating from pointy to point x and reads

H0~x,y!5C expS 2E
y

x

G~z!•dzD , ~78!

whereG(z) is the affine connection~dependent on the grou
representation of the quantum states! defined on the coordi-
nate pointz. The coefficientC is related to the spin of the
states; for vector bosons,C5gmn ~here and belowgmn

should be understood as the metric of Euclidean space,dmn),
and for scalar bosons,C51. The second Seeley–De Wi
H1(x,y) is related to thes terms in the D’Alambert operato
D22m21s, and H1(x,y)5s. Other coefficients can be
found from many sources, say Ref.@17#.

The divergence counting rule of the integral over the c
ordinate spacex and the proper timet can be established a

@zm#d51, @t#d522. ~79!
6-8
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Using Eq.~74!, the two propagators defined in Eq.~75! and
Eq. ~76!, and the divergence and momentum counting r
given in Eq. ~53! and ~79!, up to O(p4) @omitting those
higher order divergent structures, terms inO(p6), O(p8),
and so on#, we can get the following divergent terms:

ē Tr ln hWW52E
x
H mW

2 tr@gmnsWW
mn #1

8

3 S 1

4
GW,mn

a GW
mn,aD

1
1

2
tr@sWW

mm8gm8n8sWW
n8n gmn#J , ~80!

ē Tr ln h c̄c52E
x
F2

3 S 1

4
GW,mn

a GW
mn,aD G , ~81!

ē Tr ln hjj52E
x
H 2mW

2 tr@s2,jj#2mW
2 tr@s4,jj#

1
2

3 S 1

4
Gj,mn

a Gj
mn,aD1

1

2
tr@s2,jjs2,jj#

2
1

4
mW

4 Xab,abgabdab

1
1

2
mW

2 tr@Xab,abgabs2,jj
ba #

2
1

16
mW

4 gaba8b8tr @Xab,abXa8b8,ba#J , ~82!

Tr ln~12XY mhWW;mn
21 XT mhj j

21 !52E
x

1

ē
~p4t1p3t1p2t !,

~83!

where 1/ē5(2/e2gE1 ln 4p2)/(16p2), gE is the Euler con-
stant, ande542d. TheGmn is the field strength tensor cor
responding to the affine connectionGm .

We would like to comment on the difference of right-ha
side~r.h.s.! of the Tr lnhWW and Tr lnhjj . The minus in the
Tr ln hjj is due to the different definition in the standa
08500
e
form aboutsWW

mn and sjj . We have used the dimension
regularization scheme and the modified minimal subtract
scheme to extract the divergent structures in this step.

The first three Tr lnh is obtained straightforward from
the heat kernel method, and the last Tr ln
2XYmhWW;mn

21 XTmhj j
21) is provided first by us. Thep4t repre-

sents the contributions of four propagato
tr(XY hWW

21 XT h8j j
21XY hWW

21 XT h8j j
21), which reads

p4t5
gmngm8n8

6
Fgaba8b8

4
tr@2XY ab

m XT a8b8
n XY 01

m8XT 01
n8

12XY 01
m XT ab

n XY a8b8
m8 XT 01

n81XY ab
m XT 01

n XY a8b8
m8 XT 01

n8

1XY 01
m XT ab

n XY 01
m8XT a8b8

n8 #

1mW
2 gaba8b8a9b9

4
tr@XY ab

m XT a8b8
n XY a9b9

m8 XT 01
n8

1XY ab
m XT a8b8

n XY 01
m8XT a9b9

n8 #

1mW
4 gaba8b8dgd8g8

32
tr@XY ab

m XT a8b8
n XY dg

m8XT d8g8
n8 #G . ~84!

p3t represents the contributions of three propagat
tr(XY hWW

21 XT h8j j
21Xabdadbh8j j

21), which reads

p3t52mW
4 gaba8b8dg

16
gmntr@XY ab

m XT a8b8
n Xdg#

2
mW

2

8
gaba8b8gmntr@XY 01

m XT ab
n Xa8b81XY ab

m XT 01
n Xa8b8#

2
1

4
gabgmntr@XY 01

m XT 01
n Xab#. ~85!

p2t represents the contributions of two propagato
tr(XY hWW

21 XT h8j j
21), which can be further divided into six

groups:
p2t5tAA1tAB1tAC1tBB1tBC1tCC , ~86!

tAA5
1

8
gaba8b8mW

4 gmntr@XY ab
m XT a8b8

n
#

2
mW

2 gmn

4
S gaba8b8dg

6
2

gabga8b8dg

2
2

ga8b8gabdg

2
1gabga8b8gdgD tr@XY ab

m DdDgXT a8b8
n

#

2
mW

2 gaba8b8

8
@gmntr@XY ab

m XT a8b8
n H1,jj#1gmm8gnn8tr@XY ab

m H1,WWm8n8XT a8b8
n

##,

tAB52
mW

2 ga8a9gmn

2 S gabga8b82
1

2
gaba8b8D tr@XY ab

m Db8X
T na92XY ma9Db8X

T
ab
n #, ~87!
6-9
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2tAC5
mW

2 gabgmn

2
tr@XY ab

m XT 01
n 1XY 01

m XT ab
n 1XY ab

m XT 03Z
n 1XY 03Z

m XT ab
n 2]a8X

Y
ab
m XT 03Y

na82XY 03Y
ma8]a8X

T
ab
n #

2
1

4
gabtr@gmnXY 01

m XT ab
n H1,jj1gmm8gnn8X

Y
ab
m H1,WW

mn8n8XT 01
n #

1gmnS 1

6
gaba8b82

1

4
gabga8b8D tr@XY ab

m Da8Db8X
T

01
n 1XY 01

m Da8Db8X
T

ab
n #, ~88!
a

g
th
et
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d

rt-

r
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-
and
tBB5
mW

2 gmngab

2
tr@XY maXT nb#, ~89!

tBC5
gabgaa8gmn

2
tr@XY ma8DbXT 01

n 2XY 01
m DbXT na8#,

~90!

tCC5gmntr@XY 01
m XT 01

n 1XY 01
m XT 03Z

n 1XY 03Z
m XT 01

n

2]a8X
Y

01
m XT 03Y

na82XY 03Y
ma8]a8X

T
01
n #, ~91!

where the trace is made to sum over the group indices,
the covariant differentials is defined as

XY DXT 5XY ]XT 1XY GWXT 2XY XT Gj , ~92!

XY DDXT 5XY ]]XT 1XY GWGWXT 1XY XT GjGj22XY GWXT Gj

12XY GW]XT 22XY ]XT Gj1XY ]GWXT 2XY XT ]Gj .

~93!

In the p2t terms, we have dropped those terms with gau
field strength terms, due to the reason that a term with
symmetric Lorentz indices contracting with the antisymm
ric Lorentz indices of gauge strength vanishes. The ten
gabgd andgabgdmn are symmetric on all indices and define
as

gabgd5gabggd1gaggbd1gadgbg, ~94!

gabgdmn5gabggdmn1gaggbdmn

1gadggbmn1gamgbgdn1gangbgdm. ~95!

To getp4t, p3t, andp2t, we have used the covariant sho
distance expansion technology@18,19# and the integral over
the proper time and coordinate space. The Dirichlet integ
formula has been used to perform the integral over pro
times of particles in loops

I 5E
0

1

f ~ t11t21•••1tn!t1
a121t2

a221
•••tn

an21dt1dt2•••dtn

5
G~a1!G~a2!•••G~an!

GS (
i 51

n

a i D E
0

1

f ~ t !t ((
i 51

n

a i21)dt. ~96!
08500
nd

e
e
-
rs

al
er

We would like to comment on the covariant short-distan
expansion technology: to formulate the quadratic form in
the standard form we have prescribed in Eqs.~31!–~37! can
greatly reduce the labor to extract the one loop divergen
while the form given in Ref.@19# is not easy to use. The
equivalence of these two forms can be easily proved by
ing the partial integral. As we have pointed out, the stand
form given by us has the advantage of reflecting the fact
the order of integrating out the quantum vector boson a
Goldstone fields has no any dynamic significance.

C. The renormalization group equations

Substituting Eqs.~38!–~69! into Eqs. ~80!–~91!, with
somewhat tedious algebraic manipulation, we can const
the counterterms and extract the renormalization consta1

The renormalization constants yield the following RGEs:

dg2

dt
5

g4

8p2F2
29

4
2

20d1g2

3
2

23d1
2g4

24
G , ~97!

dv
dt

5
v

16p2F3g2

2
1S 5d1

2
25d22

35d3

2 Dg41
13d1

2g6

16 G ,
~98!

dd1

dt
5

1

8p2 H 2
1

12
1S 243d1

6
2

5d2

2
15d3Dg2

2
91d1

2g4

12
2

29d1
3g6

24 J , ~99!

dd2

dt
5

1

8p2 H 2
1

12
1S 5d1

16
18d213d3Dg2

1F15d1
2

8
16d2

215d2d31d3
21d1S 45d2

2
14d3D Gg4

1F211d1
3

8
1d1

2S 53d2

4
1

21d3

4 D Gg62
43d1

4g8

24 J ,

~100!

1The MATHEMATICA package for the whole calculation in this pa
per is available by request to yanqs@ mail.ihep.ac.cn
yanqs@post.kek.jp
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dd3

dt
5

1

8p2 H 2
1

24
1S 23d1

16
2

9d2

2
24d3D g21F267d1

2

16

1
9d2

2

4
1d1S 214d22

15d3

2
D 113d2d31

25d3
2

2
Gg4

1F239d1
3

8
1d1

2S 279d2

8
2

45d3

4
D Gg62

19d1
4g8

12
J .

~101!

Concerning the RGEs given in Eqs.~97!–~101!, it is remark-
able that the direct method will only get part of the result
the RGE method, which is contributed by the Goldstone
son and indicated by the constant terms independen
di , i 51,2,3 in the r.h.s. of RGEs ofdi , i 51,2,3. The re-
maining terms of the RGEs take into account not only
effect of the Goldstone bosonj, but also that of vector
bosonsŴ and that of their mixing terms. Similar to theU(1)
case, there are no terms liked2

2, d3
2, andd2d3, which are due

to the cancellation between the vector and Goldstone bos
Another remarkable feature is that thedi always appear

with dig
2. Such a feature is understandable if we extract

Feynman rules directly from the effective Lagrangian. A
cording to our modified counting rule, termsdig

2 are of
O(1), so thepower of these terms should also be ofO(1)
and be kept in the beta functions.

In order to compare and contrast, we formulate the res
of the direct method in the RGE form, which read

dg2

dt
5

g4

8p2 F2
29

4 G , ~102!

dv
dt

5
v

16p2 F3 g2

2 G , ~103!

dd1

dt
5

1

8p2 F2
1

12G , ~104!

dd2

dt
5

1

8p2 F2
1

12G , ~105!

dd3

dt
5

1

8p2 F2
1

24G . ~106!

Under the assumption thatdi are of size 1/(4p)2, then terms
of di in the beta functions given in Eq.~101! should belong
to two-loop effects, so we can neglect them and get
~106!. The underlying reason to represent the contributio
of Higgs bosons in the RGE form might be related with t
fact that the full theory is renormalizable and the divergen
generated by the Higgs loop should be canceled out exa
by those generated by the Goldstone bosons.

To extract the divergent structures, we have used the
lowing relations of theSU(2) gauge group~the equation of
motion of W̄S, ]•W̄S50, has also been used!:
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tr@WG
SmWG

SnWm,G
S Wn,G

S #52W̄Sa
•W̄SbW̄Sa

•W̄Sb, ~107!

tr@WG
SmWm,G

S WG
SnWn,G

S #5W̄Sa
•W̄SbW̄Sa

•W̄Sb1~W̄S
•W̄S!2,

~108!

Hmn
a Hmn,a5Wmn

a Wamn22 f abcW̄mn
SaW̄Sm,bW̄Sn,c

1~W̄S
•W̄S!2

2W̄Sa
•W̄SbW̄Sa

•W̄Sb,

Fmn
SaFSmn,a52W̄Sa

•W̄SbW̄Sa
•W̄Sb1~W̄S

•W̄S!2

~109!

where the variableHmn
a is invariant when exchanging its Lor

entz indicesm and n, and is defined asHmn
a 5]mWn

Sa

1]nWm
Sa.

The term 5d3g2 in the right-hand side of the RGE ofd1 is
quite remarkable: the coefficient 5 mainly comes fro
Tr ln hWW, which contributes 8;tCC contributes22, and
Tr ln hjj contributes21. When the Higgs boson is not to
heavy@say,l is nearO(1)], thecouplingd3 (d351/l) can
reach order 0.1 or 0.01. This term can then switch the sign
d1(mW) from positive to negative. This fact will explain wh
d1(mW) changes its sign when the Higgs boson is not
heavy, as we will show below.

V. NUMERICAL ANALYSIS

We concentrate on the Higgs scalar boson effects to
ECs di , i 51,2,3. To simplify the analysis, we mimic th
standard model by choosing the mass of vector bosonmW to
be 80 GeV. The Higgs scalar boson is assumed to be hea
than the vector bosonsW. The initial condition for the cou-
pling g and the vacuum expectation valuev is fixed at the
lower boundary point,m5mW . The couplingg(mW) is cho-
sen to satisfy

ag5
g2

4p
5

1

30
, ~110!

which givesg(mW)50.65 and the vacuum expectation valu
is then fixed bymW5 1

2 gv, which givesv(mW)5247. While
the initial condition fordi , i 51,2,3 is chosen to be fixed a
the matching scale,m5m0, as given in Eq.~23!.

Below we will compare the results obtained from the d
rect method and the RGE method. In order to compare
difference with the DM~where the tree-level Higgs contri
butions are neglected!, we set the initial conditions ofdi
vanishing at the matching scale. As we know, the scalar
son effect includes both the decoupling mass squared
pressed part as shown in Eq.~23! and the nondecoupling
logarithm part. So we consider the following three cases
trace the change of roles of these two competing parts:~1!
the light scalar boson case, withm05150 GeV, where the
decoupling mass squared suppressed part dominates;~2! the
6-11
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FIG. 1. The varying ofv, d1 , d2, andd3 with the running scalet@ t5 ln(m0 /mW)#. The matching scale is the mass of Higgs scalar bos
which is taken to bem05150 GeV. The solid lines are the results of the RGE method, while the dashed ones are those of the direct
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not too heavy scalar boson case, withm05450 GeV, where
both contributions are important;~3! the very massive scala
boson case, withm05900 TeV, where the nondecouplin
logarithm part dominates.

Figure 1 is devoted to the first case, Fig. 2 to the sec
case, Fig. 3 to the third case. In all three cases, the magn
of the d2(mW) is about 1023 in both methods, and the dif
ference between these two methods is as follows:~1! in the
first case, the result of RGE method is about 400% lar
than that of the direct method;~2! in the second case 50%
smaller;~3! in the third case, there is a negligible differenc

d1(mW) can reach 1022 in the RGE method, one orde
larger than in the direct method, as in the first case when
Higgs scalar boson is quite small. Even when the Higgs
son is medium heavy, as in the second case, the resul
these two methods are also quite different. Near the dec
pling limit, the prediction of the RGE method improves th
of the direct method up to 5%–10%.

Due to its initial values at the matching scale, thed3(mW)
could have different magnitudes in these three cases, 121,
1022, and 1023, respectively. In total, the differences o
these two methods are dramatic. The figures ofd3 indicate
that the tree-level contribution is much larger than the o
loop contribution, and the difference is measured by ord
08500
d
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r

.

e
-
of
u-
t

-
s.

The difference of the running ofg can be neglected in
these two methods so we have not depicted it. The unde
ing reason is explicit, in that the contributions of the co
stants of itsb function is much larger than those of the AC

From these figures, we see the tendency that the dif
ence ofdd1 between these two methods is larger when
Higgs scalar boson is further below its decoupling limit, a
vice versa. The underlying reason for this behavior is rela
to the initial valued3 at the matching scale and the relat
terms dependent ond3 in the RGEs given in Eq.~97!–~101!.

It is constructive to compare the predictions of these t
different methods of the same theoretical framework~the di-
rect method and the renormalization group equation met
of the same framework of the effective theory! with the third
method, i.e., the perturbation calculation of the renorma
ableSU(2) Higgs model. According to our numerical anal
sis, the anomalous couplingd1 is greatly different in these
two methods, so below we will concentrate on the compa
son of the results ford1, while leaving a complete compari
son of alldi to our next work.

The one-loop effects of the Higgs boson ond1 can be
obtained by the background field method in coordinate sp
~in coordinate space, the momentum dependence is
glected, though can be restored by using the RGE meth!,
and the result is given as
d1~mW!52
1

16p2

17r 32189r 21423r 225126~r 2233r 148!r log r

72~r 21!3
, ~111!
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FIG. 2. The varying ofv, d1 , d2, andd3 with the running scalet@ t5 ln(m0 /mW)#. The matching scale is the mass of Higgs scalar bos
which is taken to bem05450 GeV. The solid lines are the results of the RGE method, while the dashed ones are those of the direct
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where the variabler is defined asmH
2 /mW

2 . In the decoupling
limit, the nondecoupling part is

d1
non~mW!5

1

16p2 F 1

12
log r 2

17

72
G , ~112!

The difference between the complete one-loop result and
nondecoupling part, i.e., the decoupling part~which vanishes
if the mass ratior approaches infinity!, is given as

dd1~mW!

52
1

16p2

223r 2162r 2391~30r 2245r 21!log r

12~r 21!3
.

~113!

Figure 4 is devoted for comparison of thed1(mW) calcu-
lated by these three methods. First, we consider the tree-
matching conditions in the Fig. 4~a!, where the constant term
217/72 in Eq.~112! and also the corresponding term in E
~111! are omitted. Then when compared with the compl
one-loop result, it is obvious that the decoupling limit~where
when only the logarithmic part is taken into account! is not
always the most important part, especially when the Hig
boson is relatively light. From the complete one-loop res
given in Eq.~111!, we find that the RGE method takes in
account not only the term of logr, but also logr/r, while the
direct method only the term logr. In the case when the
08500
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e
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Higgs boson is heavy and only the log terms play a ma
part in trilinear couplings, then both these two methods yi
almost the same prediction. In the tree-level matching c
dition, roughly speaking, the RGE method gives a better p
diction close to the exact one-loop calculation than the D
does.

In the one-loop level, the nondecoupling constant ter
217/72 is important. To see the effect of this constant te
in Fig. 4~b! for both the DM and the complete one-loo
calculation we take this constant term into account while
the RGE method we still omit it. Then from Fig. 4~b!, we
know that this constant term can considerably affect
magnitude ofd1.

If we take into account the nondecoupling constant te
217/72 in all these three methods, the corresponding cu
in Fig. 4~a! will only shift downward in parallel. However
the shapes will not change, and the prediction of the R
method will still be better than that of the DM, similar to th
tree-level case.

From the two cases we have considered, the tree-level
one-loop level matching conditions, we can conclude that
cocktail way, i.e., the nondecoupling constant term~which
can be easily extracted from the DM! plus the running RGE,
will produce a better prediction closer to the exact one-lo
calculation. We can also read from Fig. 4~a! that the effects
of higher-order operators are not of much importance in
RGE method. The RGE method can yield a good predict
for a relative light Higgs boson in a wide range. Only wh
6-13
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FIG. 3. The varying ofv, d1 , d2, andd3 with the running scalet@ t5 ln(m0 /mW)#. The matching scale is the mass of Higgs scalar bos
which is taken to bem05900 GeV. The solid lines are the results of the RGE method, while the dashed ones are those of the direct
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the Higgs boson is near 2mW or so might the deviation of the
prediction of RGE from the exact one-loop calculation b
come considerable.

To understand the reason whyd1 has changed its sign in
the lower-energy region, it is also constructive to provide
relevant Feynman diagrams. The terms proportional tod3 in
the beta function ofd1 are equivalent to the contribution o
the diagram~in unitary gauge! given in Fig. 5. While in the
underlying theory, this diagram corresponds to the two d
grams~in unitary gauge! given in Fig. 6. By contracting the
Higgs line to a point, the Feynman diagrams in Fig. 6 red
to the diagram in Fig. 5. It is remarkable that the contribut
from the vector-Higgs mixing plays the most important a
constructive part in the light Higgs boson region, as has b
shown by the dotted line in Fig. 4~a!.

VI. DISCUSSIONS AND CONCLUSIONS

In this paper, we have studied the renormalization of
nonlinear effectiveSU(2) Lagrangian with spontaneou
symmetry breaking and derived its RGEs. Compared w
theU(1) case@21#, the non-Abelian case is much more com
plicated. In theSU(2) case, the gauge coupling and the A
up to O(p4) all develop by the quantum fluctuation low
energy DOFs. We also have comparatively studied the res
of the direct method and the RGE method in the framew
of the effective field theory. From the numerical analysis,
see that the results of the two methods are very differ
when the Higgs scalar boson is far below its decoupl
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limit. The underlying reason is related to the initial value
d3 at the matching scale and to the radiative correction of
low-energy DOF~both the Goldstone and vector boson!,
which contributes to thed3 terms in Eqs.~97!–~101!. We
also provide the one-loop result in the renormalizableSU(2)
theory to comprehend the difference. In the one-loop leve
seems the combination of the DM, and the RGE method
yield a better theoretical prediction.

Normally, when the Higgs boson is very light compar
with the mass of vector bosons, the higher-dimension op
tors, for instance, those belonging to theO(p6) order, might
play some considerable parts and it might be not good to
EFT to describe the full theory, since the Wilsonian ren
malization @4# and the surface theorem given by Ref.@10#
require that the low-energy scalem IR is lower enough than
the UV cutoffmUV . But here we see, for the medium hea
Higgs boson~say, fromm05200 GeV tom05600 GeV), it
is still appropriate to use it, though the cocktail method fro
both the DM and the RGE method is recommended.

According to the SPCR, you might regard this result
not reliable, since according to the naive chiral counting ru
the radiative correction of ACs should be at theO(p6) order,
and should be comparable with two-loop corrections
O(p2) operators. It seems unlikely to change the signs ofd1.
But we would like to point out that this naive power countin
rule can only hold when the conditionmHiggs;4pv;12v is
satisfied, i.e., the tree-level contribution of the Higgs bos
is comparable to or even much smaller than the one-l
6-14
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FIG. 4. The comparison of the DM and RGE method in the effective theory and the complete one-loop computation in the renorm
SU(2) Higgs theory. The X axis is the Higgs boson mass,mH , and the unit is GeV; the Y axis isd1. The thin dashed line is the result o
DM, the thick dashed line the result of RGE, the solid line the complete one-loop computation, and the dotted line the contrib
vector-Higgs boson mixing term tod1. The difference between~a! and~b! is that the results of the DM and the exact one-loop have ta
into account the nonlogarithmic nondecoupling part217/72, while that of the RGE method has not.
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level corrections. For the medium heavy Higgs and lig
Higgs cases, this power counting rule cannot be used
reliable guide to understand the accurate calculations f
the RGE method. With the modified power counting ru
such a fact is quite easy to understand.

In the RGE method, it becomes quite transparent that
effects of heavy DOF on the low-energy dynamics are
lated to two factors:~1! the mass of the heavy particle, whic
determines the matching scalemUV , and~2! the initial values
of ACs at the matching scale determined by integrating
the heavy particle, which are related to the spin of the he
particle and the strength of its couplings to the low-ene
DOFs. If a heavy field does not participate in the process
symmetry breaking, by using the decoupling theorem@14#,
its effects can be estimated.

To establish the modified power counting rule and to
rive the RGEs, we have assumed that all ACs are ofO(1).
By assuming ACs ofO(1), the ELmight be limited in the
realistic application, due to the fact that the amplitude of
longitudinal components of vector boson~Goldstone boson!
scattering processes at higher-energy regions might vio
the unitarity condition once the momentum of the vec
boson goes a little higher than the mass of vector bos
Considering the fact that the parameter space of the effec
theories should be composed by both the ultraviolet cu
LUV and the ACs at that scale, the violation of unitarity ju
imposes a helpful correlation on the matching scale and
ACs. If the magnitude of ACs is smaller, then theLUV can

FIG. 5. The related Feynman diagram~in unitary gauge! in the
effective theory that contributes to the trilinear couplings.
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be larger, vice versa. So our assumption and the RGE me
have relatively more flexibility to match an unknown unde
lying theory frommW to 4pv than the specific case by as
suming ACs are tiny and the cutoff is at 4pv ~which might
miss some important effects of underlying theory when
cutoff is not that large, as we have shown in the Hig
model!. As are matter of fact, for the case when the ACs
large, before the unitarity condition is actually violated, ne
particles or new resonances might have been found. Th
fore, new effective theories should be formulated to inclu
new particles, and new RGEs should be derived. So ther
no necessity for us to worry about the problem of the unit
ity violation.

As we know, there are several ways for theSU(2) to
break into its subgroups;SU(2) breaks toU(1) @22#, for
instance. In this paper, we only assume that the symmetr
broken from a local one to a global one, where all comp
nents of vector boson have obtained the same mass. Fo
way of SU(2) breaking toU(1), the ELwill be more com-

FIG. 6. The related Feynman diagram~in unitary gauge! in the
renormalizable theory that contributes to the trilinear couplings
6-15
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plicated. Several patterns of symmetry breaking will be d
cussed in our next paper@23# when we consider the renor
malization of electroweak chiral Lagrangian.

Meanwhile, for the sake of simplicity, no fermion field
taken into account, which might introduce terms of anoma
Also, we have not included all of terms breaking the char
parity, and both symmetries. If included, the above proced
will be more complicated due to the properties of the co
plete antisymmetric tensoremndg. However, in principle, we
can still make the renormalization procedure order by or
even for the complexity.

The renormalization procedure in this paper can easily
extended to study the renormalization of the nonlinear sig
model withSU(Nf) symmetry@5#, which has a very impor-
tant role in describing low-energy hadronic physics. We w
apply the related conceptions and methods to the renor
ization of the electroweak chiral effective Lagrangian and
QCD chiral Lagrangian in our future work@23#.

ACKNOWLEDGMENT

One of the authors, Q. S. Yan, would like to thank P
fessor C. D. Lu¨ in the theory division of IHEP of CAS for
helpful discussions. Special thanks go to Professor Y
Kuang and Professor Q. Wang from the Physics Departm
of Tsinghua University for their kind help in ascertainin
some important points and to improve the representation
manipulate the algebraic calculation and extract theb func-
tions of RGEs, we have used theFEYNCALC @24#. The work
of Q. S. Yan is supported by the Chinese Postdoctoral
ence Foundation and the CAS K.C. Wong Postdoctoral
search Award Foundation. The work of D. S. Du is suppor
by the National Natural Science Foundation of China.

APPENDIX: THE INTEGRAL IN COORDINATE SPACE

Here we provide some necessary integrals in coordin
space. The basic formula we will use to conduct the integ
include the following ones:

E dd21V52
pd/2

G~d/2!
, ~A1!

E
0

`

dssz21exp@2z#52E
0

`

dtt2z21exp@2t2#5G~z!. ~A2!

The basic trick for the integral over coordinate space is gi
as below:

zmzn→ gmn

d
z2, ~A3!

zmznzazb→ gmnab

d~d12!
z4, ~A4!

zmznzazbzdzg→ gmnabdg

d~d12!~d14!
z6, ~A5!

•••5•••. ~A6!
08500
-

.
,

re
-

r

e
a

l
al-
e

-

P.
nt

o

i-
e-
d

te
ls

n

As shorthand, we define

Tab~z,l!5
zazb

4l2
2

gab

2l
. ~A7!

Case A, integrals with one propagator:

I 15 lim
y→x

E dl

~4pl!d/2
exp@2m2l#expF2

~y2x!2

4l GK1,

~A8!

wherez5y2x, andK1 can be regarded as the kernel of th
integral transformation. WhenK1 is known and the integra
can be performed, we have the quartic divergent integra

K15Tab~z,l!, ~A9!

I 152
gab

2

1

~4p!d/2
~m2!d/2G~2d/2!; ~A10!

the quadratic divergent integral,

K15Tab~z,l!l, ~A11!

I 152
gab

2

1

~4p!d/2
~m2!d/221G~12d/2!; ~A12!

and the logarithmic divergent integral,

K15Tab~z,l!l2, ~A13!

I 152
gab

2

1

~4p!d/2
~m2!d/222G~22d/2!. ~A14!

Case B, the integrals with two propagators:

I 25E ddz
dl1

~4pl1!d/2

dl2

~4pl2!d/2
exp@2m1

2l12m2
2l2#

3expF2z2S 1

4l1
1

1

4l2
D GK2. ~A15!

We have quartic divergent integrals,

K25Tab~z,l1!Ta8b8~z,l2!,

I 25
gaba8b8

4

1

~4p!d/2 GS 2
d

2 D E
0

1

d~12x12x2!

3~m1
2x11m2

2x2!d/2, ~A16!

the quadratic divergent integrals,

K25H zazb

4l1l2
,Tab~z,l1!,Tab~z,l1!

z2
a8z2

b8

2l2
,

Tab~z,l1!Ta8b8~z,l2!zdzg,Tab~z,l1!Ta8b8~z,l2!l1J ,

~A17!
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I 25
1

~4p!d/2
G~12d/2!E

0

1

d~12x12x2!~m1
2x11m2

2x2!d/221

3H gab

2
,2

gab

2
,
1

2
~gaba8b8x12gabga8b8!,

1

2
~gaba8b8dgx1x22gabga8b8dgx1

2ga8b8gabdgx21gabga8b8gdg!,
1

4
gaba8b8x1J , ~A18!

the logarithmic divergent integrals,

K25H 1,
zazb

2l1
,Tab~z,l1!za8zb8,

Tab~z,l1!l1 ,Tab~z,l1!l2J , ~A19!

I 25
1

~4p!d/2
G~22d/2!E

0

1

d~12x12x2!~m1
2x11m2

2x2!d/222

3H 1,gabx2 ,gabx1 ,~x2
2gaba8b82x2gabga8b8!,

2
1

2
gabx1 ,2

1

2
gabx2J . ~A20!

By interchanging symmetry between the indicesi 51 and i
52, the rest of integrals can be easily obtained and are o
ted here.

Case C, the integrals with three propagators,

I 35E ddz1ddz2)
i 51

3
dl i

~4pl i !
d/2

expF2(
i 51

3

mi
2l i G

3expF2(
i 51

3 zi
2

4l i
GK3, ~A21!

wherez352(z11z2). We have the quartic divergent inte
gral,

K35Tab~z1 ,l1!Ta8b8~z2 ,l2!Tdg~z3 ,l3!,
~A22!

I 352
gaba8b8dg

8

1

~4p!d/2
G~2d/2!

3E
0

1

dx1dx2dx3S (
i 51

3

ximi
2D d/2

dS 12(
i 51

3

xi D ,

~A23!

the quadratic divergent integral,
08500
it-

K35Tab~z1 ,l1!Ta8b8~z2 ,l2!, ~A24!

I 35
gaba8b8

4

1

~4p!d/2
G~12d/2!

3E
0

1

dx1dx2dx3S (
i 51

3

ximi
2D d/221

dS 12(
i 51

3

xi D ;

~A25!

the logarithmic divergent integral,

K35Ta8b8~z2 ,l2!, ~A26!

I 352
ga8b8

2

1

~4p!d/2
G~22d/2!

3E
0

1

dx1dx2dx3S (
i 51

3

ximi
2D d/222

dS 12(
i 51

3

xi D .

~A27!

By interchanging symmetry among the indicesi 51, i 52,
and i 53, the rest of integrals can be easily obtained and
omitted here.

Case D, the integrals with four propagators:

I 45E ddz1ddz2ddz3)
i 51

4
dl i

~4pl i !
d/2

expS 2(
i 51

4

mi
2l i D

3expS 2(
i 51

4 zi
2

4l i
K4D , ~A28!

where z452(z11z21z3). We have the quartic divergen
integral,

K45Tab~z1 ,l1!Ta8b8~z2 ,l2!Tdg~z3 ,l3!Td8g8~z4 ,l4!,

~A29!

I 45
gaba8b8dgd8g8

16

1

~4p!d/2
G~2d/2!

3E
0

1

)
i 51

4

dxiS (
i 51

4

ximi
2D d/2

dS 12(
i 51

4

xi D , ~A30!

the quadratic divergent integral,
6-17



s
ly

Q.-S. YAN AND D.-S. DU PHYSICAL REVIEW D69, 085006 ~2004!
K45Tab~z1 ,l1!Ta8b8~z2 ,l2!Tdg~z3 ,l3!, ~A31!

I 452
gaba8b8dg

8

1

~4p!d/221
G~12d/2!

3E
0

1

)
i 51

4

dxiS (
i 51

4

ximi
2D d/221

dS 12(
i 51

4

xi D , ~A32!

the logarithmic divergent integral,
od

,

08500
K45Ta8b8~z2 ,l2!Tdg~z3 ,l3!, ~A33!

I 45
ga8b8dg

4

1

~4p!d/221
G~22d/2!

3E
0

1

)
i 51

4

dxiS (
i 51

4

ximi
2D d/222

dS 12(
i 51

4

xi D . ~A34!

By using the interchange symmetry among the indicei
51, i 52, i 53, andi 54, the rest of integrals can be easi
obtained and are omitted here.
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