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Spherically symmetric dissipative anisotropic fluids: A general study
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4Laboratório Nacional de Computac¸ão Cientı́fica, 25651-070 Petro´polis-RJ, Brazil
5Centro Brasileiro de Pesquisas Fı´sicas, 22290-180 Rio de Janeiro-RJ, Brazil

~Received 8 December 2003; published 29 April 2004!

The full set of equations governing the evolution of self-gravitating spherically symmetric dissipative fluids
with anisotropic stresses is deployed and used to carry out a general study on the behavior of such systems, in
the context of general relativity. Emphasis is given to the link between the Weyl tensor, the shear tensor, the
anisotropy of the pressure, and the density inhomogeneity. In particular we provide the general, necessary, and
sufficient condition for the vanishing of the spatial gradients of energy density, which in turn suggests a
possible definition of a gravitational arrow of time. Some solutions are also exhibited to illustrate the discus-
sion.
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I. INTRODUCTION

This work is devoted to the study of dissipative, loca
anisotropic, spherically symmetric self-gravitating fluid
with particular emphasis on a set of physical and geometr
variables which appear to play a fundamental role in
evolution of such systems. These variables are the Weyl
sor, the shear tensor, the local anisotropy of the pressure
the density inhomogeneity.

The Weyl tensor@1# or some functions of it@2# have been
proposed to provide a gravitational arrow of time, the rat
nale behind this idea being that tidal forces tend to make
gravitating fluid more inhomogeneous as the evolution p
ceeds, thereby indicating the sense of time. However, s
works have thrown doubt on this proposal@3#. Further evi-
dence about the relevance of the Weyl tensor in the evolu
of self-gravitating systems may be found in@4#.

The role of density inhomogeneities in the collapse
dust@5# and in particular in the formation of naked singula
ties @6# has been extensively discussed in the literature.

On the other hand, the assumption of local anisotropy
pressure, which seems to be very sensible to describe
matter distribution under a variety of circumstances, h
been proven to be very useful in the study of relativis
compact objects~see@7# and references therein!.

A clue pointing to the relevance of the above-mention
three factors in the fate of spherical collapse is also provi
by the expression of the active gravitational mass in term
those factors@8#.

Finally, the relevance of the shear tensor in the evolut
of self-gravitating systems has been brought out by m
authors~see@9# and references therein!.

Now, in the study of self-gravitating compact objects it
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usually assumed that deviations from spherical symmetry
likely to be incidental rather than basic features of the p
cess involved~see, however, the discussion in@10#!. Thus,
since the seminal paper by Oppenheimer and Snyder@11#,
most of the work dedicated to the problem of general re
tivistic gravitational collapse deal with spherically symme
ric fluid distribution. Accordingly we shall consider spher
cally symmetric fluid distributions.

Also, the fluid distribution under consideration will b
assumed to be dissipative. Indeed, dissipation due to
emission of massless particles~photons and/or neutrinos! is a
characteristic process in the evolution of massive stars
fact, it seems that the only plausible mechanism to ca
away the bulk of the binding energy of the collapsing st
leading to a neutron star or black hole, is neutrino emiss
@12#. Consequently, in this paper, the matter distributi
forming the self-gravitating object will be described as a d
sipative fluid.

In the diffusion approximation, it is assumed that the e
ergy flux of radiation~as that of thermal conduction! is pro-
portional to the gradient of temperature. This assumption
in general very sensible, since the mean free path of parti
responsible for the propagation of energy in stellar interi
is in general very small as compared with the typical len
of the object. Thus, for a main sequence star such as the
the mean free path of photons at the center, is of the orde
2 cm. Also, the mean free path of trapped neutrinos in co
pact cores of densities about 1012 g cm23 becomes smaller
than the size of the stellar core@13,14#.

Furthermore, the observational data collected from sup
nova 1987A indicate that the regime of radiation transp
prevailing during the emission process is closer to the dif
sion approximation than to the streaming out limit@15#.

However, in many other circumstances, the mean f
path of particles transporting energy may be large enoug
as to justify the free streaming approximation. Therefore
shall include simultaneously both limiting cases of radiat
transport~diffusion and streaming out!, allowing for describ-
ing a wide range of situations.

la.
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It is also worth mentioning that although the most co
mon method of solving Einstein’s equations is to use com
ing coordinates~e.g.,@16#!, we shall use noncomoving coo
dinates, which implies that the velocity of any fluid eleme
~defined with respect to a conveniently chosen set of obs
ers! has to be considered as a relevant physical variable@17#.

The paper is organized as follows: In the next section
introduce the notation and write all relevant equations. S
tion III is devoted to the analysis of different special cas
Finally the results are discussed in the last section.

II. BASIC EQUATIONS

In this section we shall deploy the relevant equations
describing a dissipative self-gravitating locally anisotrop
fluid. In spite of the fact that not all these equations a
independent@for example, the field equations and the cons
vation equations~Bianchi identities!# we shall present them
all, since depending on the problem under consideration
may be more advantageous using one set instead of the o

A. Einstein equations

We consider spherically symmetric distributions of co
lapsing fluid, which for sake of completeness we assum
be locally anisotropic, undergoing dissipation in the form
heat flow and/or free streaming radiation, bounded by
spherical surfaceS.

The line element is given in Schwarzschild-like coord
nates by

ds25endt22eldr22r 2~du21sin2u df2!, ~1!

where n(t,r ) and l(t,r ) are functions of their arguments
We number the coordinates:x05t, x15r , x25u, x35f.

The metric~1! has to satisfy the Einstein field equation

Gm
n 58pTm

n , ~2!

which in our case read@18#

28pT0
052

1

r 2 1e2lS 1

r 2 2
l8

r
D , ~3!

28pT1
152

1

r 2 1e2lS 1

r 2 1
n8

r
D , ~4!

28pT2
2528pT3

352
e2n

4
@2l̈1l̇~ l̇2 ṅ !#

1
e2l

4 S 2n91n822l8n812
n82l8

r D ,

~5!

28pT1052
l̇

r
, ~6!

where overdots and primes stand for partial differentiat
with respect tot and r, respectively.
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In order to give physical significance to theTn
m compo-

nents we apply the Bondi approach@18#.
Thus, following Bondi, let us introduce purely locall

Minkowski coordinates (t,x,y,z)

dt5en/2dt, dx5el/2dr, dy5rdu, dz5r sinu df.

Then, denoting the Minkowski components of the ene
tensor by an overbar, we have

T̄0
05T0

0 , T̄1
15T1

1 , T̄2
25T2

2 , T̄3
35T3

3 ,

T̄015e2(n1l)/2T01.

Next, we suppose that when viewed by an observer mov
relative to these coordinates with proper velocityv in the
radial direction, the physical content of space consists of
anisotropic fluid of energy densityr, radial pressurePr ,
tangential pressureP' , radial heat fluxq, and unpolarized
radiation of energy densitye traveling in the radial direction.
Thus, when viewed by this moving observer the covari
tensor in Minkowski coordinates is

S r1e 2q2e 0 0

2q2e Pr1e 0 0

0 0 P' 0

0 0 0 P'

D .

Then a Lorentz transformation readily shows that

T0
05T̄0

05
r1Prv

2

12v2
1

2vq

12v2
1

e~11v!

12v
, ~7!

T1
15T̄1

152
Pr1rv2

12v2
2

2vq

12v2
2

e~11v!

12v
,

~8!

T2
25T3

35T̄2
25T̄3

352P' , ~9!

T015e(n1l)/2T̄0152
~r1Pr !ve(n1l)/2

12v2
2

qe(l1n)/2

12v2
~11v2!

2
e(l1n)/2e~11v!

12v
. ~10!

Note that the coordinate velocity in the (t,r ,u,f) system,
dr/dt, is related tov by

v5
dr

dt
e(l2n)/2. ~11!

Feeding back Eqs.~7!–~10! into Eqs.~3!–~6!, we get field
equations in the form

r1Prv
2

12v2
1

2vq

12v2
1

e~11v!

12v

52
1

8p H 2
1

r 2
1e2lS 1

r 2
2

l8

r D J , ~12!
6-2
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Pr1rv2

12v2
1

2vq

12v2
1

e~11v!

12v

52
1

8p H 1

r 2
2e2lS 1

r 2
1

n8

r D J , ~13!

P'52
1

8p H e2n

4
@2l̈1l̇~ l̇2 ṅ !#

2
e2l

4 S 2n91n822l8n812
n82l8

r D J , ~14!

~r1Pr !ve(l1n)/2

12v2
1

qe(l1n)/2

12v2
~11v2!1

e(l1n)/2e~11v!

12v

52
l̇

8pr
. ~15!

The four-velocity vector is defined as

ua5S e2n/2

~12v2!1/2
,

ve2l/2

~12v2!1/2
,0,0D , ~16!

from which we can calculate the four accelerationaa

5u;b
a ub to obtain

va152a0e(l2n)/252
v

12v2 F S vv8

12v2
1

n8

2 D
1e(l2n)/2S vl̇

2
1

v̇

12v2D G . ~17!

For the exterior of the fluid distribution, the spacetime is th
of Vaidya, given by

ds25S 12
2M ~u!

R Ddu212dudR2R2~du21sin2u df2!,

~18!

whereu is a coordinate related to the retarded time, such
u5const is~asymptotically! a null cone open to the futur
andR is a null coordinate (gRR50).

The two coordinate systems (t,r ,u,f) and (u,R,u,f) are
related at the boundary surface and outside it by

u5t2r 22M lnS r

2M
21D , ~19!

R5r . ~20!

In order to match smoothly the two metrics above on
boundary surfacer 5r S(t), we require the continuity of the
first and second fundamental forms across that surface, y
ing ~see@19# for details!

enS512
2M

RS
, ~21!
08402
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e2lS512
2M

RS
, ~22!

@Pr #S5@q#S , ~23!

where, from now on, subscriptS indicates that the quantity
is evaluated on the boundary surfaceS, and Eq.~23! ex-
presses the discontinuity of the radial pressure in the p
ence of heat flow, which is a well-known result@20#.

Equations~21!, ~22!, and~23! are the necessary and su
ficient conditions for a smooth matching of the two metri
~1! and ~18! on S.

B. Conservation laws„Tn;µ
µ Ä0…

The energy-momentum tensor~7!–~10! may be written as

Tn
m5 r̃umun2 P̂hn

m1Pn
m1q̃~smun1snum!, ~24!

with

hn
m5dn

m2umun ,

Pn
m5PS smsn1

1

3
hn

mD ,

P̂5
P̃r12P'

3
,

r̃5r1e,

P̃r5Pr1e,

q̃5q1e,

P5 P̃r2P'

andsm is defined as

sm5S ve2n/2

~12v2!1/2
,

e2l/2

~12v2!1/2
,0,0D , ~25!

with the propertiessmum50, smsm521, andq̃m5q̃sm.
We may write, for the shear tensor

sab5
1

2
sS sasb1

1

3
habD , ~26!

with

s52
1

~12v2!1/2Fe2n/2S l̇1
2vv̇

12v2D
1e2l/2S vn81

2v8

12v2
2

2v

r D G . ~27!

Then fromTn;m
m 50, using Eq.~24!, we find
6-3
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r̃ ;aua1~ r̃1 P̂!u1q̃;a
a 5Pabsab1q̃ansn ~28!

and

~ r̃1 P̂!aa1ha
b~ q̃;nunsb1q̃sb;nun2 P̂,b1Pb;m

m !1sabq̃sb

1
4

3
uq̃sa50 ~29!

or, contracting Eq.~29! with sa,

P̃r ;msm1~ P̃r2P'!s;m
m 2~ r̃1P'!amsm1

4

3
uq̃1q̃;nun

2q̃smsnsmn50.

C. Ricci identities

Ricci identities for the vectorua read

ua;b;n2ua;n;b5Rabn
m um , ~30!

or using

ua;b5aaub1sab1
1

3
uhab , ~31!

we have

1

2
Rabm

r ur5aa;[mub]1aau[b;m]1sa[b;m]1
1

3
u ,[mhb]a

1
1

3
uha[b;m] . ~32!

1. Raychaudhuri equation

Contracting Eq.~32! with ub and then the indicesa and
m, we find the Raychaudhuri equation for the evolution
the expansion:

u ;aua1
u2

3
1sabsab2a;a

a 52urubRb
r 524p~r̃13P̂!,

~33!

where

sabsab5
1

6
s2.

2. Constraint equation

If in Eq. ~32! we contract firsta andm and then contrac
with hab, we obtain the constraint equation expressing
direct relation between expansionu, shearsab and the heat
flux q:

Rb
r urhab5hb

aS s ;m
bm2

2

3
u ;bD1sabab58pq̃sa. ~34!
08402
f
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3. Propagation equation of the shear

Contracting Eq.~32! with ubhg
ahn

m we have

urubRabm
r hg

ahn
m5hg

ahn
m~aa;m2sam;bub!2agan

2u;m
b hn

mS sgb1
u

3
hgbD2

u ;aua

3
hgn .

~35!

On the other hand, we know that the Riemann tensor may
expressed through the Weyl tensorCabm

r , the Ricci tensor
Rab , and the scalar curvatureR, as

Rabm
r 5Cabm

r 1
1

2
Rb

r gam2
1

2
Rabdm

r 1
1

2
Ramdb

r 2
1

2
Rm

r gab

2
1

6
R~db

r gam2gabdm
r !. ~36!

Contracting Eq.~36! with urubhg
ahn

m and using Einstein
equation~2!, we find

Rabm
r urubhg

ahn
m5Egn14pPgn1

4p

3
hgn~ r̃13P̂!,

~37!

where Egn denotes the ‘‘electric’’ part of the Weyl tenso
defined by Eq.~42! below.

From Eqs.~35! and ~37!, taking into account Eq.~33!, it
follows that

Egn14pPgn5hg
ahn

m~aa;m2sam;bub!2agan2sn
bsgb

2
2

3
usgn2

1

3 S a;a
a 2

1

6
s2Dhgn . ~38!

D. Evolution equations for the Weyl tensor

According to Kundt and Tru¨mper @21#, the Bianchi iden-
tities

Rmnkd;l1Rmnlk;d1Rmndl;k50 ~39!

may be written as

Cmnk;l
l 5Rk[m;n]2

1

6
gk[mR,n] . ~40!

Then taking into account Einstein equations~2!, Eq. ~40!
reads

Cmnk;l
l 58pTk[m;n]2

8p

3
gk[mT,n] . ~41!

In the spherically symmetric case the ‘‘magnetic’’ part
the Weyl tensor vanishes (Hab50); then, we have

Cmnkl5~gmnabgklgd2emnabeklgd!uaugEbd, ~42!
6-4
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with gmnab5gmagnb2gmbgna , emnab is the Levi-Cività

symbol multiplied byA2g andEbg, the ‘‘electric’’ part of
Weyl tensor may be written as

Eab5ES sasb1
1

3
habD , ~43!

with

E5
e2n

4
S l̈1

l̇~ l̇2 ṅ !

2
D 2

e2l

4 S n91
n822l8n8

2

2
n82l8

r
1

2~12el!

r 2 D . ~44!

Contracting Eq.~42! with un we obtain

unCmnkl5Emkul2Emluk , ~45!

from where it follows that

unCmnk;l
l 1u;l

n Cmnk
l 5uEmk1uaEmk;a2uk;lEm

l 2ukEm;l
l .

~46!

Also, from Eqs.~31! and ~42!, we obtain

u;l
n Cmnk

l5umuksdbEdb2abumEk
b2hmksabEab

1skaEm
a1smaEk

a2
u

3
Emk . ~47!

Replacing Eq.~47! into Eq. ~46!, it results that

unCmnk;l
l 5

4u

3
Emk1uaEmk;a2uk;lEm

l 2ukEm;l
l

2umuksdbEdb1abumEk
b1hmksabEab

2skaEm
a2smaEk

a . ~48!

Contracting Eq.~48! with ha
mhb

k we have

ha
mhb

kunCmnk;l
l 5

4u

3
Eab2ub;lEa

l1unEmk;nha
mhb

k

1habsknEkn2skaEb
k2skbEa

k . ~49!

On the other hand,

ha
mhb

kunTkm;n52unP̂;nhab1unPkm;nha
mhb

k1q̃aab1q̃baa ,

ha
mhb

kunTkn;m5~ r̃1 P̂!S sab1
u

3
habD2PbnS sa

n 1
u

3
ha

n D
1q̃k;mha

mhb
k ,

ha
mhb

kungk[mT,n]5
1

2
un~ r̃ ;n23P̂;n!hab . ~50!

Feeding back Eqs.~49! and ~50! into Eq. ~41! we find
08402
uEab1~unEmk;n24punPmk;n14pq̃k;m!ha
mhb

k

1
4p

3
unr̃ ;nhab1Esab524p~r̃1 P̂!S sab1

u

3
habD

14p~ q̃aab1q̃baa!14pPnbS sa
n 1

u

3
ha

n D . ~51!

Next, contracting Eq.~48! with uk we have

ukunCmnk;l
l 52Em;l

l 2alEml2sl
nEn

lum . ~52!

The following expressions can also be easily calculated:

ukunTkm;n5unr̃ ;num1~ r̃1 P̂!am2ak~ q̃kum1Pmk!

1unq̃m;n ,

ukunTkn;m5 r̃ ;m22q̃kS akum1sm
k 1

u

3
hm

k D ,

gk[mT;n]u
nuk52

1

2
T,nhm

n 52
1

2
~ r̃23P̃! ,nhm

n . ~53!

Finally, feeding back Eqs.~52! and ~53! into Eq. ~41! and
contracting withha

m we have

Em;l
l ha

m1alEal528pq̃kS sa
k1

u

3
ha

k D1
4p

3
~2r̃13P̂! ;nha

n

24p~r̃1 P̂!aa14pakPak

24punq̃m;nha
m . ~54!

E. Weyl tensor, mass function, and anisotropy

For the line element~1! we have

R232
3 512e2l5

2m

r
, ~55!

where the mass functionm(r ,t) is defined as

m54pE
0

r

r 2T0
0dr. ~56!

Then from Eqs.~36!, ~43! and Einstein equations~2! it fol-
lows that

3m

r 3
54pr̃14p~P'2 P̃r !1E, ~57!

which in tensorial form reads

Eab24pPab5S 3m

r 3
24pr̃ D S sasb1

1

3
habD . ~58!
6-5
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F. Summary

Equations~28!, ~29!, ~33!, ~34!, ~38!, ~52!, ~55!, and~58!
are

r̃ ;aua1~ r̃1 P̂!u1q̃;a
a 5Pabsab1q̃ansn , ~59!

~ r̃1 P̂!aa1ha
b~ q̃;nunsb1q̃sb;nun2 P̂,b1Pb;m

m !1sabq̃sb

1
4

3
uq̃sa50, ~60!

u ;aua1
u2

3
1sabsab2a;a

a 52urubRb
r 524p~r̃13P̂!,

~61!

Rb
r urhab5hb

aS s ;m
bm2

2

3
u ;bD1sabab58pq̃sa, ~62!

Egn14pPgn5hg
ahn

m~aa;m2sam;bub!2agan2sn
bsgb

2
2

3
usgn2

1

3 S a;a
a 2

1

6
s2Dhgn , ~63!

uEab1~unEmk;n24punPmk;n14pq̃k;m!ha
mhb

k

1
4p

3
unr̃ ;nhab1Esab524p~r̃1 P̂!S sab1

u

3
habD

14p~ q̃aab1q̃baa!14pPnbS sa
n 1

u

3
ha

n D , ~64!

Em;l
l ha

m1alEal528pq̃kS sa
k1

u

3
ha

k D1
4p

3
~2r̃13P̂! ;nha

n

24p~r̃1 P̂!aa14pakPak

24punq̃m;nha
m , ~65!

Eab24pPab5S 3m

r 3
24pr̃ D S sasb1

1

3
habD . ~66!

In each of Eqs.~59!–~66! there is only one scalar
independent component; thus, contracting withsa we may
write the equivalent set

r̃* 1~ r̃1 P̃r !u5
2

3 S u1
s

2 DP2q̃†22q̃a2
2s1

r
q̃, ~67!

P̃r
†1~ r̃1 P̃r !a1

2s1

r
P5

s

3
q̃2q̃* 2

4u

3
q̃, ~68!

u* 1
u2

3
1

s2

6
2a†2a22

2as1

r
524p~r̃13P̃r !18pP,

~69!

S s

2
1u D †

52
3ss1

2r
112pq̃, ~70!
08402
E14pP52a†2a22
s*

2
2

us

3
1

as1

r
1

s2

12
, ~71!

S 4p P̃r1
3m

r 3 D S u1
s

2 D1~E24pP14pr̃!* 52
12ps1

r
q̃,

~72!

~E14pr̃24pP!†5
3s1

r
~4pP2E!14pq̃S s

2
1u D ,

~73!

3m

r 3
54pr̃14p~P'2 P̃r !1E, ~74!

with f †5 f ,asa, f * 5 f ,aua, andaa5asa, and where the ex-
pansion is given by

u5u;m
m 5

1

2~12v2!1/2Fe2n/2S l̇1
2vv̇

12v2D
1e2l/2S vn81

2v8

12v2
1

4v

r D G . ~75!

Then from Eqs.~27! and ~75! it follows at once that

s

2
1u5

3vs1

r
. ~76!

III. SPECIAL CASES

We shall now apply Eqs.~67!–~74! to analyze different
particular cases.

A. Geodesic fluids

If the fluid is geodesic, nondissipative, and locally isotr
pic, then for bounded configurations, it follows at once fro
Eq. ~68! and the vanishing of the pressure at the bound
that it should be dust. In this case the vanishing of the W
tensor implies the shear-free condition as follows from E
~72!. On the other hand, the shear-free condition implies
conformally flat condition as follows from Eq.~71!. Thus in
this special case both conditions are equivalent. For nong
desic fluids this equivalence is not generally true~see be-
low!.

B. Locally isotropic perfect fluids

Let us now consider locally isotropic and nondissipati
fluids (P5q5e50) and find the relations linking the Wey
tensor, the shear, and the local density inhomogeneity.
though almost all results in this case are known, we th
that it is worthwhile to present them in order to illustrate t
general method that will be used later to study more com
cated situations.

From Eq. ~73!, we obtain, after some rearrangemen
~with P5q̃50),
6-6
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@r 3E#†1r 34pr†50. ~77!

Next, it is convenient to write Eq.~72!, with the help of Eqs.
~11!, ~67!, ~74!, and~76!, as

@r 3E# .1
dr

dt
@r 3E#8522psr 3~r1Pr !A12v2en/2,

~78!

implying that the vanishing of the Weyl tensor results in t
vanishing of spatial gradients of the energy density and sh
tensor.

Let us now assumer†50; then, we obtain, from Eq.~77!,

@r 3E#†50, ~79!

implying, since the Weyl tensor should be regular inside
fluid distribution, E50. ThusE50 andr†50 are equiva-
lent, and either one of them impliess50. These results were
already known~see@22# and references therein!.

Next, if s50, it follows from Eq.~70! that

u†50. ~80!

Observe that from the above it follows, using Eq.~29!,
that if the fluid is conformally flat and satisfies a barotrop
equation of state of the formPr5Pr(r), then the fluid is
geodesic (aa50).

Also, assuming the shear-free condition alone (s50) it
follows from Eq. ~78! that the convective derivative ofEr3

vanishes, which in turn means that such a quantity rem
constant for any fluid element along the fluid lines.

C. Locally anisotropic nondissipative fluids

We shall now relax the condition of local isotropy of th
pressure and shall assumePÞ0. Then from Eqs.~76! and
~73!, it follows that

@r 3~E24pP!#†1r 34pr†50, ~81!

implying that the vanishing ofE24pP results in the van-
ishing of the spatial gradients of the energy density.

On the other hand, if we assume the vanishing ofr†, then
assuming that all physical variables are regular within
fluid distribution it follows at once that

E24pP50. ~82!

ThusE24pP50 andr†50 are equivalent, but neither on
of them impliess50.

Therefore if we assume the spacetime to be conform
flat (E50), then the local anisotropy produces inhomoge
ity in the energy density according to the equation

~r 3P!†5r 3r†. ~83!

Next, it follows from Eq.~72!, with the help of Eqs.~11!,
~67!, ~74!, and~76!, that
08402
ar

e

ns
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@r 3~E24pP!# .1
dr

dt
@r 3~E24pP!#818pPve(n2l)/2r 2

522psr 3~r1Pr !A12v2en/2. ~84!

implying thereby that the convective derivative ofr 3(E
24pP) is controlled not only bys, but also byP.

If E54pP, then the following link between the shea
and the anisotropy results:

4Pve2l/252srA12v2~r1Pr !. ~85!

If the fluid is shear free andE54pP, then it is either
static or locally isotropic. Of course in this last case the flu
is also conformally flat.

D. Locally isotropic dissipative fluids in the quasistatic
evolution

We shall now relax the condition of nondissipation b
allowing qÞ0 ~for simplicity we pute50), but assuming
that the evolution is slow, which means thatv25v̇5q85l̈

5 n̈50 andq'O(v) ~see@19#!. Then, from Eqs.~76! and
~73!, we obtain~in the quasistatic approximation!

E8e2l/21
3Ee2l/2

r
524pr†, ~86!

taking into account that in the quasistatic approximation

r†5r8e2l/2, ~87!

we have

E81
3E

r
524pr8. ~88!

Next, it follows from Eq.~72!, with the help of Eq.~67!,

Ėe2n/21E8ve2l/21ve2l/2
3E

r
24pe2l/2q8

14pqe2l/2S 1

r
2n8D522ps~r1Pr ! ~89!

or, equivalently,

el/2

4pr 3
~r 3E!* 5q81qS n82

1

r D2
1

2
el/2s~r1Pr !. ~90!

From Eq.~88! it follows at once that conformally flat and
r850 are equivalent conditions, which is also true in t
perfect ~nondissipating! fluid, in the quasistatic approxima
tion.

Also, from Eq.~89! or ~90! it follows that E50 does not
imply the shear-free condition. Indeed, assumingE50 in
Eq. ~90! we have

q81qS n82
1

r D5
1

2
el/2s~r1Pr !, ~91!
6-7
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yielding

q5re2nF E el/21n

2r
s~r1Pr !dr1b~ t !G . ~92!

If we further impose the shear-free condition, then one
tains, from Eq.~92!,

q5rb~ t !e2n, ~93!

leading to a condition on the temperature, which may
obtained using the Landau-Eckart equation

qm5khm
n ~T,n2Tan! ~94!

or

q52ke2l/2S T81
Tn8

2 D . ~95!

Using Eq.~95! in Eq. ~93! we obtain

T5e2n/2FC~ t !2
b~ t !

k E
0

r

re(l2n)/2drG . ~96!

The two functionsb(t) and C(t) are simply related to the
total luminosity of the sphere and the central temperatu
through Eqs.~93! and ~96!, respectively. A simple mode
satisfyingE5s50 will be next presented.

E. Conformally flat, shear-free sphere, dissipating in the
quasistatic regime„with eÄ0…

From Eq.~5! andE50 we have

8pP'5
e2l

r S n82l82
1

r D1
1

r 2
. ~97!

Then substracting Eq.~4! from Eq. ~97! and consideringP
50, we obtain

e2l5r 2c111, ~98!

wherec1(t) is an arbitrary function of time. Substituting Eq
~98! into Eq. ~3! yields

8pr523c1 . ~99!

ConsideringE50 with Eq. ~98! we obtain

n91
n82

2
2

n8

r ~r 2c111!
50, ~100!

which has the solution

en/25~r 2c111!1/2c21c3 , ~101!

wherec2(t) andc3(t) are arbitrary functions oft.
Substituting Eqs.~98! and ~101! into Eq. ~4! we obtain

8pPr5c1@112c2e2(l1n)/2#. ~102!
08402
-

e

e,

From Eq.~27!, conditions50 can be rewritten as

S ven/2

r D 8
52

l̇el/2

2r
, ~103!

which after integration becomes

v5S c42
ċ1

2c1
el/2D re2n/2, ~104!

wherec4(t) is an arbitrary function oft.
From Eqs.~98!, ~99!, ~101!, ~102! we have

8p~r1Pr !v52~2c1c42 ċ1el/2!rc3e2n. ~105!

Now substituting Eqs.~98!, ~101!, ~105! into Eq. ~6! we
obtain

8pq5~2c1c3c41 ċ1c2!re2n. ~106!

Next, using Eqs.~21! and ~22! in Eqs. ~98! and ~101! we
obtain

c152
2M

r S
3

~107!

and

c35A12
2M

r S

~12c2!. ~108!

Also, from the junction condition~23! and from Eq.~104!
evaluated at the boundary surface, it follows that

c1~112c2!5~2c1c3c41 ċ1c2!
r S

~122M /r S!
~109!

and

ċ152c1A12
2M

r S
S c42

vS

r S

A12
2M

r S
D . ~110!

Solving algebraically the system~108!–~110! for c2 , c3 ,
and c4 , we can express these functions in terms
M , r S , vS , andṀ .

We shall further specify our model by assuming

c251, ~111!

c350, ~112!

implying

e2l5en512
2Mr 2

r S
3

. ~113!

Using Eqs.~107!, ~111!, ~112!, and ~113! in Eqs. ~99! and
~102! we obtain
6-8



o
en
a

o

c
ro
s

y

o-
eyl
n. If
lax-
of

sity

tion

al
in,

SPHERICALLY SYMMETRIC DISSIPATIVE . . . PHYSICAL REVIEW D 69, 084026 ~2004!
8pr528pPr5
6M

r S
3

. ~114!

Then using Eqs.~111! and ~112! in Eq. ~106! we obtain

8pq5rċ1e2n, ~115!

which is our equation~93! with ċ1/8p5b(t). By virtue of
Eqs.~107! and ~109!, the expression forq becomes

8pq52
6Mr

r S
4

~122M /r S!

~122Mr 2/r S
3 !

. ~116!

Next, using Eqs.~107!, ~109!, ~113! in Eq. ~96!, we obtain

T5
1

A122Mr 2/r S
3 FTc2

3

16pkr S
S 12

2M

r S
D

3 logS 12
2Mr 2

r S
3 D G , ~117!

with Tc denoting the temperature atr 50, and, from Eq.
~104!,

v5
r

r S
A 122M /r S

122Mr 2/r S
3F 3

2
S 12A 122M /r S

122Mr 2/r S
3 D 1vSG .

~118!

Thus our model represents a conformally flat sphere
fluid evolving slowly and shear free, with homogeneous
ergy density and pressure, satisfying the ‘‘inflationary’’ equ
tion of stater1Pr50, with an inward (q,0) heat flux.

F. General case

First of all, it should be noticed that in the presence
both anisotropic pressure and dissipation forB1 warped
product spacetimes~which include the spherically symmetri
case! there exist some restrictions on physical variables, p
vided by the syzygy@23#. However, in our case, as follow
from the definitions in Sec. II B we haveuq̃nq̃nu5(snq̃n)2
08402
f
-
-

f

-

~notice that our signature is22), and therefore the syzyg
@see Eq.~37! in @23## reduces to the identity 050.

Then, we obtain from Eqs.~76! and ~73!, after some re-
arrangements,

@r 3~E24pP24pq̃v!#†1r 34pr̃†524p~ q̃v!†r 3

~119!

or, equivalently

@r 3~E24pP!#†14pr 3r̃†54pr 3q̃S s

2
1u D , ~120!

and if q̃50, we recover Eq.~81!.
Also, from Eq.~72!, with the help of Eq.~67! we get

@r 3~E24pP!# .1
dr

dt
@r 3~E24pP!#818pPve(n2l)/2r 2

14pr 3A12v2en/2F q̃S s1

r
22aD 2q̃†G

522psr 3~ r̃1 P̃r !A12v2en/2, ~121!

which yields Eq.~84! in the nondissipative case.
From Eq.~120! it is clear that the appearance of inhom

geneities in the energy density is controlled by the W
tensor, the anisotropy of the pressure, and the dissipatio
we express the heat flux through the temperature, the re
ation time, and the heat conduction coefficient, by means
some transport equation~e.g.,@24#!, then the aforementioned
parameters may be related to the creation of such den
inhomogeneities.

Indeed, assuming, for example, the transport equa
@25#

thn
m~qn!* 1qm5khmn~T,n2Tan!2

1

2
kT2S tua

kT2D
;a

qm,

~122!

where t, k, and T denote the relaxation time, the therm
conductivity, and the temperature, respectively, we obta
putting for simplicitye50 and using Eq.~68!,
mic
q5

tF Pr
†1~r1Pr !a1

2

3v
S s

2
1Q DPG2k~T†1Ta!

11
t

2
F1

3
~2s25Q!1

t*

t
2

k*

k
2

2T*

T
G . ~123!

Then replacing Eq.~123! into Eq. ~120! ~with e50) we obtain an expression which brings out the role of thermodyna
variables in the appearance of density inhomogeneities: namely,
6-9



esent a

HERRERAet al. PHYSICAL REVIEW D 69, 084026 ~2004!
@r 3~E24pP!#†14pr 3r̃†54pr 3S s

2
1u D tF Pr

†1~r1Pr !a1
2

3v
S s

2
1Q DPG2k~T†1Ta!

11
t

2
F1

3
~2s25Q!1

t*

t
2

k*

k
2

2T*

T
G . ~124!

A similar conclusion applies to the shear of the fluid, as follows from Eq.~121!.
With the sole purpose of bringing out the role of dissipation in the formation of density inhomogeneities, let us pr

simple and highly idealized model.
e

-

s

It is
(
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end-
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G. Dissipative model withEÀ4pPÄ0

Since we want to exhibit the role of dissipation in th
formation of inhomogeneities, we shall assumeE24pP
50; then, from Eqs.~55! and ~58!, it follows that

E24pP50⇔m5
4p

3
r̃r 3⇔e2l512

8p

3
r̃r 2.

~125!

From Eqs.~72!, ~120!, and~76! we obtain

r̃†5q̃
3vs1

r
~126!

and

3s1r 2~ q̃1 P̃rv!1~ r̃r 3!* 50; ~127!

then, combining the Einstein equations~12! and ~13! with
Eq. ~125!, it follows that

n85
8p~r̃1 r̃8r 13P̃r !r

3S 12
8p

3
r̃r 2D . ~128!

We shall further assume the equation of state

P̃r5
1

3
r̃; ~129!

then, replacing Eq.~129! into Eq. ~128! we obtain

en5

S 12
8p

3
r̃Sr S

2 D 2

12
8p

3
r̃r 2

. ~130!

Next, using~127! and ~126! it follows that:

r̃†5
3vq̃

r
A12

8p

3
r̃r 2

12v2
~131!

and
08402
v5

2r8 r 6A~r8 r !22r r̃8~r r̃814r̃ !S 12
8p

3
r̃Sr S

2 D 2

~r r̃814r̃ !S 12
8p

3
r̃Sr S

2 D .

~132!

In the particular caser̃5 r̃(t) ~but r̃†Þ0), these last equa
tions reduce to

v5
2r8 r

2r̃S 12
8p

3
r̃Sr S

2 D ~133!

and

q̃5
1

3
r8 re(l2n)/2. ~134!

From junction conditions it is very simple to expressr̃
andr8 , and thereof all physical and metric variables in term
of the total massM, the velocity of the surfacevS , the
radiusr S , and the luminosity of the sphere. Equation~131!
shows how dissipation produces density inhomogeneity.
worth noticing that both kinds of dissipative processese
andq) may produce such an inhomogeneity.

IV. CONCLUSIONS

The study of general relativistic gravitational collaps
which has attracted the attention of researchers since
seminal paper by Oppenheimer and Snyder@11#, is mainly
motivated by the fact that the gravitational collapse of m
sive stars represents one of the few observable phenom
where general relativity is expected to play a relevant ro
Ever since that work, much has been written by research
trying to provide models of evolving gravitating sphere
However, this endeavor proved to be difficult and uncerta
Different kinds of advantages and obstacles appear, dep
ing on the approach adopted for the modeling.

Here, we have established a set of equations govern
the structure and evolution of self-gravitating spherica
symmetric dissipative anisotropic fluids. For reasons
plained in the Introduction, emphasis has been put on
role played by the Weyl tensor, the anisotropy of the pr
6-10
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sure, dissipation, density inhomogeneity, and the shear
sor.

The particular simple relation between the Weyl ten
and density inhomogeneity, for perfect fluids~also valid for
locally isotropic, dissipative fluids in the quasistatic regim!,
is at the origin of the Penrose’s proposal to provide a gra
tational arrow of time. However, the fact that such a relatio
ship is no longer valid in the presence of the local anisotro
of the pressure and/or dissipative processes explains its
ure in scenarios where the above-mentioned factors
present.

From Eq.~120! it is apparent that the production of de
sity inhomogeneities is related to a quantity involving
those factors„@r 3(E24pP)#†24pr 3q̃(s/21u)…. Alterna-
tively, the appearance of such inhomogeneities may be
r-

i.
m

an

08402
n-

r
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re
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scribed by means of thermodynamical variables~if a trans-
port equation is assumed!, as indicated in Eq.~124!.

This situation is illustrated in the example provided in t
last section, where density inhomogeneity is produced
dissipative processes alone. Thus, if following Penrose
adopt the point of view that self-gravitating systems evo
in the sense of increasing of density inhomogeneity, then
absolute value of the quantity above~or some function of it!
should increase, providing an alternative definition for
arrow of time.
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