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Spherically symmetric dissipative anisotropic fluids: A general study
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The full set of equations governing the evolution of self-gravitating spherically symmetric dissipative fluids
with anisotropic stresses is deployed and used to carry out a general study on the behavior of such systems, in
the context of general relativity. Emphasis is given to the link between the Weyl tensor, the shear tensor, the
anisotropy of the pressure, and the density inhomogeneity. In particular we provide the general, necessary, and
sufficient condition for the vanishing of the spatial gradients of energy density, which in turn suggests a
possible definition of a gravitational arrow of time. Some solutions are also exhibited to illustrate the discus-
sion.
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[. INTRODUCTION usually assumed that deviations from spherical symmetry are
likely to be incidental rather than basic features of the pro-
This work is devoted to the study of dissipative, locally cess involvedsee, however, the discussion [ih0]). Thus,
anisotropic, spherically symmetric self-gravitating fluids, since the seminal paper by Oppenheimer and SnjtHr
with particular emphasis on a set of physical and geometricahost of the work dedicated to the problem of general rela-
variables which appear to play a fundamental role in theivistic gravitational collapse deal with spherically symmet-
evolution of such systems. These variables are the Weyl temic fluid distribution. Accordingly we shall consider spheri-
sor, the shear tensor, the local anisotropy of the pressure, ardlly symmetric fluid distributions.
the density inhomogeneity. Also, the fluid distribution under consideration will be
The Weyl tensof1] or some functions of if2] have been assumed to be dissipative. Indeed, dissipation due to the
proposed to provide a gravitational arrow of time, the ratio-emission of massless particlgshotons and/or neutrinps a
nale behind this idea being that tidal forces tend to make theharacteristic process in the evolution of massive stars. In
gravitating fluid more inhomogeneous as the evolution profact, it seems that the only plausible mechanism to carry
ceeds, thereby indicating the sense of time. However, somaway the bulk of the binding energy of the collapsing star,
works have thrown doubt on this propo$8l. Further evi- leading to a neutron star or black hole, is neutrino emission
dence about the relevance of the Weyl tensor in the evolutiofd2]. Consequently, in this paper, the matter distribution

of self-gravitating systems may be found[#. forming the self-gravitating object will be described as a dis-
The role of density inhomogeneities in the collapse ofsipative fluid.
dust[5] and in particular in the formation of naked singulari-  In the diffusion approximation, it is assumed that the en-

ties[6] has been extensively discussed in the literature.  ergy flux of radiation(as that of thermal conductipiis pro-

On the other hand, the assumption of local anisotropy oportional to the gradient of temperature. This assumption is
pressure, which seems to be very sensible to describe thie general very sensible, since the mean free path of particles
matter distribution under a variety of circumstances, hasesponsible for the propagation of energy in stellar interiors
been proven to be very useful in the study of relativisticis in general very small as compared with the typical length
compact objectg¢see[7] and references thergin of the object. Thus, for a main sequence star such as the Sun,

A clue pointing to the relevance of the above-mentionedthe mean free path of photons at the center, is of the order of
three factors in the fate of spherical collapse is also provide@ cm. Also, the mean free path of trapped neutrinos in com-
by the expression of the active gravitational mass in terms opact cores of densities about'#@ cm ® becomes smaller
those factor$8]. than the size of the stellar cof&3,14].

Finally, the relevance of the shear tensor in the evolution Furthermore, the observational data collected from super-
of self-gravitating systems has been brought out by manyiova 1987A indicate that the regime of radiation transport
authors(see[9] and references thergin prevailing during the emission process is closer to the diffu-

Now, in the study of self-gravitating compact objects it is sion approximation than to the streaming out lifdis].

However, in many other circumstances, the mean free
path of particles transporting energy may be large enough so
*Postal address: Apartado 80793, Caracas 1080A, Venezuelas to justify the free streaming approximation. Therefore we

Email address: laherrera@telcel.net.ve shall include simultaneously both limiting cases of radiative
"Email address: chmm@usal.es transport(diffusion and streaming oytallowing for describ-
*Email address: nos@chpf.br; santos@ccr.jussieu.fr ing a wide range of situations.
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It is also worth mentioning that although the most com- In order to give physical significance to tfé compo-
mon method of solving Einstein’s equations is to use comovnents we apply the Bondi approafts].
ing coordinatege.g.,[16]), we shall use noncomoving coor- Thus, following Bondi, let us introduce purely locally
dinates, which implies that the velocity of any fluid elementMinkowski coordinates £,x,y,z)
(defined with respect to a conveniently chosen set of observ- 2 2 .
er9 has to be considered as a relevant physical varfdife dr=e”“dt, dx=e““dr, dy=rdf, dz=rsinfde.

The paper is organized as follows: In the next section Wel'hen, denoting the Minkowski components of the energy

|_ntrodu_ce the notation and write all reI_evant equations. Sect'ensor by an overbar, we have
tion Il is devoted to the analysis of different special cases.

i i i ion. TO_ 10  Tl_1  T2_t2  T3_ 13
Finally the results are discussed in the last section TO=T9, Ti=Ti T3=T3, T3=T3,
Il. BASIC EQUATIONS ?01: e—(y+>\)/2-|—01.

In this section we shall deploy the relevant equations for\ex we suppose that when viewed by an observer moving
describing a dissipative self-gravitating locally anisotropic q|ative to these coordinates with proper veloaityin the

fluid. In spite of the fact that not all these equations are g direction, the physical content of space consists of an

independenitfor example, the field equations and the CONSerynisotropic fluid of energy density, radial pressureP, ,

vation equationgBianchi identitieg] we shall present them tangential pressur®, , radial heat fluxg, and unpolarized

all, since depending on the problem under consideration, it, jiation of energy density traveling in the radial direction.
may be more advantageous using one set instead of the Oth%us, when viewed by this moving observer the covariant

tensor in Minkowski coordinates is
A. Einstein equations

We consider spherically symmetric distributions of col- pte —q-e 0 0

lapsing fluid, which for sake of completeness we assume to —gq-€¢ P+e 0 O
be locally anisotropic, undergoing dissipation in the form of 0 0 P, 0
heat flow and/or free streaming radiation, bounded by a
spherical surfac&.. 0 0 0 P,
The line element is given in Schwarzschild-like coordi- Then a Lorentz transformation readily shows that
nates by
0 =0 p+P.w® 2wq +e(1+w)

ds?=e’dt?—erdr2—r?(d#?+sirf6 d¢?), 1 =T0=
( ¢, L e e R Er U
where v(t,r) and \(t,r) are functions of their arguments.
We number the coordinateg®=t, x'=r, x?=0, x°=¢. P,+pw? 20wq e(l+o)
. . . . . Ti=Ti=— _ _
The metric(1) has to satisfy the Einstein field equations T T 02 1—? 1—w '
Gl=8nT,, @ ®
2_13_T2_T3_ _
which in our case reafll 8] To=T3=To=Ts==P,, ©
1 1 N o (p+ Pr)we(VJr)\)/Z qe()\+v)/2
_ 0_ -\ - T :e(V+)\)/2T — _ 1+ 2
87Ty= r—2+e 2 T) 3 01 o1 1—o? 1_ o2 (1+ %)
(021 +
.1 1 v _ & et w) (10
_87TT1:——2+67)\ —2+— , (4) l-w
r r r
Note that the coordinate velocity in thé,i(,6,¢) system,
e v . dr/dt, is related tow by
—87T3=—87mTo=— —[2h+A(A—7)]
4 dr /
w=—et 12 (12)

-\

e
+T(2v"+v'2—)\’v'+2

V’—)\'> dt
' Feeding back Eqs.7)—(10) into Egs. (3)—(6), we get field
(5) equations in the form

+Pw? 2 1+
N prPro” 209 e )
_877T10:_?, (6) 1— w? 1— w? l-w

where overdots and primes stand for partial differentiation - i _
with respect ta andr, respectively. 8
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Pr+pw2+ 200 €(1tw)

1-w? 1-w? l1-w
I A 1+ ’ 13
T 8n|r2 257 (13

-V

1 o
Pl=—g[ 2R A=)

VI_)\I
2V + v 2=\ +2 . (19
r
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e hr=1-— (22)

[Pr]s=[als, (23

where, from now on, subscriftt indicates that the quantity

is evaluated on the boundary surfake and Eq.(23) ex-

presses the discontinuity of the radial pressure in the pres-

ence of heat flow, which is a well-known res{&0].
Equations(21), (22), and(23) are the necessary and suf-

ficient conditions for a smooth matching of the two metrics

(1) and(18) on 3.

e 2¢(1+ w) B. Conservation laws(T, ,=0)

+P we()\+v)/2 e()\+V)/2
(p r) " q . (1+w2)+

1-w? l-w l1-w The energy-momentum tens@—(10) may be written as
A TE=putu,— Ph*+TI#+q(sfu,+s,u4),  (24)
= — —, (15) v v v
8r
with
The four-velocity vector is defined as
hf'= 6" —u*u,,
( e V2 we M2 )
ua: 1 5010 1 (16)
(1— )12 (1— 2)12 H“IH(S"S N Eh“)
14 14 3 14 1
from which we can calculate the four acceleratiaf
=u;Uu” to obtain . B,+2P,
P: —1
D) oo’ v’ 3
way=—ageh 2= — ( + =
1-w?|\1-0? 2 ;zp-l—e,
+eh 2 w_)'\+ © 17 P,=P +e
2 1-w?) | r o
For the exterior of the fluid distribution, the spacetime is that q9=ate,
of Vaidya, given by -
H: Pf - PL
2M (U) 2 2 2 H 2
ds?=(1— = du“+2dudR—R(d# +S|n20d¢ ), ands* is defined as
18
( ) u we” vl2 e77\/2
whereu is a coordinate related to the retarded time, such that - (1- w?)¥2' (1— w2)1/2’0'0 ' (29
u=const is(asymptotically a null cone open to the future
andR is a null coordinate §rr=0). with the properties*u,=0, s*s,=— 1, andg*=qs".
The two coordinate systems,(, 6, ¢) and U,R, 0, ¢) are We may write, for the shear tensor
related at the boundary surface and outside it by
r 1 ( + ! h ) 26
u=t—r—2Minl=——1/, (19) Tap=5 7| SaSpT ZNay (26)
2M
with
R=r. (20
. 1 . 200
In order to match smoothly the two metrics above on the o= — e 2| )+
boundary surface=ry(t), we require the continuity of the (1—w?)Y? 1- w?
first and second fundamental forms across that surface, yield-
i i 20’ 2w
ing (see[19] for detailg +e‘“2( v’ + - T) @7
oM l-w
ex=1-—, (21 ) ]
Ry Then fromT’V‘;M=0, using Eq.(24), we find
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p.U+(p+P)6+q%=11,50°F+qa’s, (28)

and
(p+ P)a,+hi(@;,u"ss+Usg, u"— P g+ 115,) + 070505

4 _
+ 3 0q9s,=0 (29

or, contracting Eq(29) with s%,
~ ~ u o~ 4 . -
Py, s+ (P, — PL)S;#—(p-I— P )a,s"+ 3 69+q.,u
-qs*s’s,,=0.
C. Ricci identities
Ricci identities for the vectou, read
Ugipv ™ Uarwip= RigUp (30

or using

1
Ua;,B:aauB'f'O'aB'f' §6ha5, (31)

we have
1
2 Rapulp = Bastullp) F 3alpi) T Tatpin 300N g1

+ 3 ON o g ] - (32
1. Raychaudhuri equation

Contracting Eq(32) with u? and then the indicea and
n, we find the Raychaudhuri equation for the evolution of
the expansion:

6 -~
0. U+ 3 + 0,0 —al, = — U UPRE= —4m(p+3P),

(33
where

1

a'algoﬂﬁ=—crz.

2. Constraint equation

If in Eq. (32) we contract firstx and u and then contract

with h®# we obtain the constraint equation expressing a

direct relation between expansion shearo®? and the heat
flux q:

2 ~
Rguph“"g:hg<oﬁ“—§0;'g +o“ﬁa3=81-rqs“. (39
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3. Propagation equation of the shear

Contracting Eq(32) with uﬁh‘;hfj we have

u,uPR? 5 hsht=hsht(a,.,— 0,,.5u")—a,a,
. 0 0. ,u”
—uih, Uvﬁ+§hvﬁ _Th)”"

(39

On the other hand, we know that the Riemann tensor may be
expressed through the Weyl tensof,;,, the Ricci tensor
R.s, and the scalar curvatuf® as

P
afu

1 0 1 0 1 p
Raﬁﬁﬂ-l- Raﬂéﬁ_ERMgaB

1
RO pu=Chput 5REun™ 5 -

1
- ER( 5%901;1_901352)' (36)

Contracting Eq.(36) with upuﬁh‘;h‘; and using Einstein
equation(2), we find

R? . u

4ar ~ A
bpulp P =E,, +47TL,, + —=h,,(p+3P),

(37)
where E,, denotes the “electric” part of the Weyl tensor
defined by Eq(42) below.

From Egs.(35) and(37), taking into account Eq.33), it
follows that

E,,+4wll,,=hihi(a,,— OappUP)—a,a,— (rfa'yﬁ

2

3

1

3

—o?

6 h

b0, =| a%— e (39

D. Evolution equations for the Weyl tensor

According to Kundt and Tnmper[21], the Bianchi iden-
tities

RMVKﬁ;)\+RMV)\K;5+ R}LV&)\;KZO (39)
may be written as
N 1
C,LLVK;)\:RK[M;V]_ ggK[MR,V] . (40)

Then taking into account Einstein equatiof®y, Eq. (40)
reads

)\ =
MVK;N

87
C SWTK[M;V]_?QK[MTW] . (41)

In the spherically symmetric case the “magnetic” part of
the Weyl tensor vanished(,;=0); then, we have
YERS

C,LLVK)\: (g,uvaﬁgk)\yé_ E,uvaﬁek)\yﬁ)uau (42)
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With 0,,05= 9,098~ 95900+ €uvap IS the Levi-Civita
symbol multiplied byy—g andE??, the “electric” part of
Weyl tensor may be written as

1
with
£l e’ )\+7.\().\—V) e N vy v'2—\'v
T4 2 | 4\’ 2
v =\ 2(1—-¢€Y) A
r > (44)
Contracting Eq(42) with u” we obtain
UVC,qu)\:E,uku)\_E,u,)\ukl (45)

from where it follows that

u'C,, o\ +ULCh, = 0E, +UE, ..~ U EL—uE} .
(46)
Also, from Egs.(31) and(42), we obtain
ULC, e=U,U,05.E%—agu,Ef—h, o*PE g
a a 0
0Bt 0B~ §E;u<- (47
Replacing Eq(47) into Eq. (46), it results that
UVC,WK)\;AZ?EM+ UYE, 0 UenEL—UEL
—u,u,05E%+agu,ES+h, oPE,,
— 0, B0 EL. (48
Contracting Eq(48) with hi;h; we have
NEREIC 1y 2 = By g EN+UE o S
a Bu MVKN T 3 apB U,B;)\ a u pr;vita'lp
+h,go""E,— 0 Eg— 0 pEy. (49

On the other hand,

hANEU'T = —U"P, N+ UPTL, . NN S+ a5+ g,

h4hEU'T ., = (p+ P)

0 14 0 14
(TQ‘B"' §haﬁ _HBV O-a+ §ha

+ 0, hhs,
KV 1 v B
h'ZhBU gK[MT,v]:Eu (p;v_sp;u)haﬂ- (50)

Feeding back Eqg49) and(50) into Eqg. (41) we find
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0Ea5+(u”EM;V—47ru”HMK;,,+47TE1K;M)h{:h’[§

4 ~ A 6
+—UVp;,,haB+EO'aB=—47T(p+P) Oupt §ha,3

3
~ ~ , 0
Next, contracting Eq(48) with u® we have
u u’C, k\=—E)\—a'E,\— o ElU,,. (52)

The following expressions can also be easily calculated:
uu" Ty, =u’p. u,+ (p+P)a,—ak(qu, +11 )
+u'd,;,,

0
k k k
a‘u,+o,+ §h#),

ukuVTkv;p.:p;,u_zqk

1 1~
gk[MT;V]uVuk=—ETyvhfﬁ—E(p—SP)yyh;. (53)

Finally, feeding back Eqs(52) and (53) into Eg. (41) and
contracting withh’, we have

N o N = K o K am _~ D v
EM;)\ha'i‘a En= _81TqK o,t §ha + ?(2p+3p);yha
—4xn(p+P)a,+4mwarIl,,
—47'ru”a#;,,hf:. (54)
E. Weyl tensor, mass function, and anisotropy
For the line elementl) we have
2m
Ros=1-e*=—, (55)
where the mass functiom(r,t) is defined as
r
m:4wf r2Todr. (56)
0

Then from Eqs(36), (43) and Einstein equation®) it fol-
lows that

3m ~ ~
— =4mp+A4m(P,—P)+E,
r

(57)

which in tensorial form reads

3m ~ 1
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F. Summary P o* #o ast o2
Equations(28), (29), (33), (34), (38), (52), (55), and (58) Etdnll=—-al-a’~ 2=+ -—+75. (7D
are
~ o~ ~ By -~ 3m o - 127st.
p.U*+(pt+P)o+q’,=1l,z0"+qa’s,, (59 4P+ — 6+§ +(E—4nll+4mp)*=— —a,
r
(p+P)a,+h2(q. u"ss+0sg u"—P +114 )+ 0,505" (72)
4 _ ~ t 3st ~ O
+§0qsazo' (60) (E+4mp—A4wIl) :T(4WH—E)+4ﬂTq §+0 ,
(73
6? -~ A
e;au“+§+oaﬁa“5—a;"a=—upuﬁRg=—4w(p+3P), 3m _ _
61) —5 =4mp+am(P —Po+E, (74)

with fT=f s f*=f ,u® anda®=as®, and where the ex-

afy g
+o*Pag=8mqs®, (62 pansion is given by

2
Rju,h*f= hﬁ( o= 30"

E,, +47ll,,=hihi(a,,,~ 0..5u°) —a,a,~oho, oyt o o] 54 200
2 1 1 Nz 2(1_w2)l/2 1_&)2
-=00,—=|a%—=c?|h,,, (63
37 317 6 7 2w’ 4w
+ei)\/2 v’ + > + T (75)
OF o+ (U'E e, — 47U+ 4770, ) NS 1-w
Ar . 0 Then from Eqs(27) and (75) it follows at once that
+?va;,,haﬂ+E0'aB=—47T(p+ P)| oupt §ha/3) .
o 3ws
0 §+ 0= r . (76)

Ill. SPECIAL CASES

0 4T “
ot §h2) +3(2p+3P),h, We shall now apply Eqs(67)—(74) to analyze different
particular cases.

E).\h4+a E,,=—870q,

- 477(5 + Is)aa—i- Aa”ll,,
A. Geodesic fluids

_ VA ®
ATU G (65) If the fluid is geodesic, nondissipative, and locally isotro-

am 1 pic, then for bounded configurations, it follows at once from
_ (=~ - Eqg. (68) and the vanishing of the pressure at the boundary
E 471l 5= 4 S.,Sgt shys|. (66 . . e
ap” T ap ( r3 Wp)( @B’ 3 “B) (66) that it should be dust. In this case the vanishing of the Weyl
tensor implies the shear-free condition as follows from Eqg.
In each of Egs.(59)—(66) there is only one scalar- (72). On the other hand, the shear-free condition implies the
independent component; thus, contracting vathwe may  conformally flat condition as follows from Eq71). Thus in

write the equivalent set this special case both conditions are equivalent. For nongeo-
desic fluids this equivalence is not generally tiisee be-
~ o~ o~ 2 o ~ 2s'_ low).
p*+(ptPo=3| 0+ ]I1-q' —29a———q, (67)
B. Locally isotropic perfect fluids
1
Pl+(p+Ppa+ ZTSH: %a_a* — 4?06 (68) Let us now consider locally isotropic and nondissipative

fluids (Il=q=€=0) and find the relations linking the Weyl
tensor, the shear, and the local density inhomogeneity. Al-

0> o’ 2as' ~ o= though almost all results in this case are known, we think
* 2 — ’
Crate T al-a’- =~ A4m(p+3P)+8ll, that it is worthwhile to present them in order to illustrate the
(69 general method that will be used later to study more compli-
cated situations.
(0' T 3ost ~ From Egq. (73), we obtain, after some rearrangements
7 0 == 5 t12ma, 70 (with T=3=0),
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[rPE]"+r34mpT=0. (77) dr
3 3 —\)/2,2
[r (E—477H)]'+a[r (E—47Il)] +8nllwel” N2

Next, it is convenient to write Eq72), with the help of Egs.

(11)1 (67)1 (74)1 and(76)| as — —2770'r3(p+ Pr) /1_w2e1//2. (84)
dr implying thereby that the convective derivative o?(E
314 e3F7 — 3 [a _ 2.2
[rE]+ dt[r El'=—2mor(p+P)V1- 0™, —4711) is controlled not only by, but also byll.

(78) If E=4xll, then the following link between the shear
and the anisotropy results:
implying that the vanishing of the Weyl tensor results in the
vanishing of spatial gradients of the energy density and shear 4lwe M= —or\1-w?(p+P,). (89
tensor.

Let us now assumg’ =0 then, we obtain, from Ed77), If the fluid is shear free an&=4Il, then it is either

static or locally isotropic. Of course in this last case the fluid
[r3E]T=0, (79 is also conformally flat.

implying, since the Weyl tensor should be regular inside the ~ D. Locally isotropic dissipative fluids in the quasistatic

fluid distribution, E=0. ThusE=0 andp'=0 are equiva- evolution
Ient, and either one of them ImplleF 0. Thesg results were We shall now relax the condition of nondissipation by
already known(see[22] and references thergin allowing q#0 (for simplicity we pute=0), but assuming

Next, if =0, it follows from Eq.(70) that that the evolution is slow, which means that=w=G=X\

0T=0 80 = »=0 andq~O(w) (see[19]). Then, from Eqs(76) and
' (73), we obtain(in the quasistatic approximatipn
Observe that from the above it follows, using Eg9), 3Ee M2
that if the fluid is conformally flat and satisfies a barotropic E'e M2t =—4xp’, (86)
equation of state of the forr®,=P,(p), then the fluid is r
geodesic §*=0). N , taking into account that in the quasistatic approximation
Also, assuming the shear-free condition alowe=Q) it
follows from Eq.(78) that the convective derivative &r3 pl=p'e M (87
vanishes, which in turn means that such a quantity remains
constant for any fluid element along the fluid lines. we have
3E
C. Locally anisotropic nondissipative fluids E'+ -~ = —4mp’. (88)
We shall now relax the condition of local isotropy of the _ _
pressure and shall assurhie#0. Then from Eqs(76) and Next, it follows from Eq.(72), with the help of Eq(67),
(73), it follows that 3E
—— V2 ’ —\/2 -\ _ — N2t
[r3(E_47TH)]T+r34’7TpT:0, (81) Ee +E'we + we r dre q

implying that the vanishing oE—4=II results in the van-
ishing of the spatial gradients of the energy density.

On the other hand, if we assume the vanishing ‘ofthen )
assuming that all physical variables are regular within thedl, equivalently,
fluid distribution it follows at once that

1
+47qu_)‘/2(F—v’)=—2'n'0'(p+ P, (89

e)\/Z

3E\* —(q/
E—4xI1=0. (82) s fET=ata

1) 1
v — F) - Ee)‘/zo(p-l- P.). (90)

ThusE—4#I1=0 andp'=0 are equivalent, but neither one  From Eq.(89) it follows at once that conformally flat and
of them implieso=0. p'=0 are equivalent conditions, which is also true in the
Therefore if we assume the spacetime to be conformallyperfect (nondissipating fluid, in the quasistatic approxima-

flat (E=0), then the local anisotropy produces inhomogenetion.

ity in the energy density according to the equation Also, from Eq.(89) or (90) it follows thatE=0 does not
imply the shear-free condition. Indeed, assumiag O in
(r3)t=r3p". (83)  Eq.(90) we have

Next, it follows from Eq.(72), with the help of Egs(11),
(67), (74), and(76), that

1 1
v'——) = SeM2a(p+Py), (91)

q'+q| v+
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yielding

N2+ v
q=re"’f T o(p+Pdr+8(1)|. (92

PHYSICAL REVIEW D 69, 084026 (2004

From Eq.(27), conditiono=0 can be rewritten as

If we further impose the shear-free condition, then one obywhich after integration becomes

tains, from Eq.(92),
q=rp(t)e ", (93

leading to a condition on the temperature, which may be

obtained using the Landau-Eckart equation
q,= KhZ(T,,,—TaV) (94)

or

—\/2

Tv'
g=—«ke T'+T>. (95)
Using EQ.(95) in Eq. (93) we obtain

T=e—V’2{C(t)— @J’rre("”)’zdr} (96)
kK Jo

The two functionspB(t) and C(t) are simply related to the
total luminosity of the sphere and the central temperature,
through EqQs.(93) and (96), respectively. A simple model

satisfyingeE= o =0 will be next presented.

E. Conformally flat, shear-free sphere, dissipating in the
quasistatic regime(with €=0)

From Eq.(5) andE=0 we have

e 1
SWPL:T V' =N'——|+ (97

Then substracting Eq4) from Eq. (97) and considerindl
=0, we obtain

e M=r?c;+1, (98)

wherec,(t) is an arbitrary function of time. Substituting Eq.

(98) into Eq. (3) yields
8mp=—3cC;. (99

Consideringe=0 with Eq. (98) we obtain

Vit = =0, (100
2 r(r?c;+1)
which has the solution
e"?=(r%c;+1)Y%c,+cj, (102

wherec,(t) andcs(t) are arbitrary functions off.
Substituting Eqs(98) and (101) into Eq. (4) we obtain

(102

8mP,=c[1+2c,e” *T172],

wev/Z ’ )'\e)\IZ
ro] - 2r (103
0= cym L eM2|pe 112 (104
4 2C1 7
wherec,(t) is an arbitrary function of.
From Egs.(98), (99), (101), (102 we have
8m(p+P,)w=—(2c,c4—CieMrcse™ . (105

Now substituting Eqs(98), (101), (105 into Eg. (6) we
obtain

87(=(2C,C4C,+C1Co)re " (106)

Next, using Egs(21) and (22) in Egs.(98) and (101) we
obtain

2M
C1=—— (107
rs
and
2M
C3= 1- _(1_ Cz). (108)
s

Also, from the junction conditior{23) and from Eq.(104)
evaluated at the boundary surface, it follows that

. s
Cl( 1+ 2C2) = (2C1C3C4+ Clcz)m (109)
and
. 2M wz 2M
c,=2c,\/1- —| cs— —\/1- —]. (110
s rs rs

Solving algebraically the systertl08—(110 for c,, c3,

and c,, we can express these functions in terms of

M, rs, ws, andM.
We shall further specify our model by assuming

=1, (111)
c3=0, (112
implying
2Mr?
e r=e’'=1— (113
r$

Using Egs.(107), (111, (112, and (113 in Egs. (99 and
(102 we obtain

084026-8
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6M
8mp=—87P,=—.
r3

Then using Eqgs(111) and(112) in Eqg. (106) we obtain

(114

8mq=rc.e "’

(115

which is our equatior(93) with ¢,/8m= B(t). By virtue of
Egs. (107 and(109), the expression fogq becomes

6Mr (1—2M/ry)

8mq=— (116

4 (1-2Mrrd)

Next, using Eqs(107), (109, (113 in Eq. (96), we obtain

1 3 2M
T= Te— 1-—
Vi-2Mmr?/rd 16m«ry rs

2Mr?
Xlog| 1— , (117
rs
with T, denoting the temperature at=0, and, from Eg.
(1049,
r 1-2M/rs |3 1-2M/ry
0w=— —| =| 1—- —— | Twy
rs V1-2Mmr#r3|2 1-2Mr?/rd
(118

PHYSICAL REVIEW D 69, 084026 (2004

(notice that our signature is 2), and therefore the syzygy
[see Eq(37) in [23]] reduces to the identity ©0.

Then, we obtain from Eq€76) and (73), after some re-
arrangements,

[r}E-4nll-4mqe)] +ré4mp'=—4n(quw)r3
(119

or, equivalently

., (120

g
[r3(E—47-rH)]T+477r37)T=477r3a(E+ 0

and ifa=0, we recover Eq(81).
Also, from Eq.(72), with the help of Eq(67) we get

dr
[r3E-4xIl)]+ a[r3(E—4ﬂ-H)]'+877Hwe(vf>\)/2r2

1
~[S ~
+47r3\1— w?e"? q(——Za) -q'
r

=— 2770r3(f>+|5r) V1-w?e’?,

(121)

which yields Eq.(84) in the nondissipative case.

From Eq.(120) it is clear that the appearance of inhomo-
geneities in the energy density is controlled by the Weyl
tensor, the anisotropy of the pressure, and the dissipation. If
we express the heat flux through the temperature, the relax-
ation time, and the heat conduction coefficient, by means of
some transport equatide.g.,[24]), then the aforementioned

Thus our model represents a conformally flat sphere oparameters may be related to the creation of such density
fluid evolving slowly and shear free, with homogeneous eninhomogeneities.

ergy density and pressure, satisfying the “inflationary” equa-

tion of statep+ P,=0, with an inward <0) heat flux.

F. General case

First of all, it should be noticed that in the presence of
both anisotropic pressure and dissipation ®y warped
product spacetimesvhich include the spherically symmetric

Indeed, assuming, for example, the transport equation
[25]

Tu“

1
B(aV)* 4 qlhe= hi? — — —kT?
h?(9")* +q*=kh*"(T ,—Ta,) 2KT T2

a*,
“ 122

casg there exist some restrictions on physical variables, prowhere 7, x, and T denote the relaxation time, the thermal
vided by the syzygy23]. However, in our case, as follows conductivity, and the temperature, respectively, we obtain,

from the definitions in Sec. IIB we havig’q,|=(s,q")>

putting for simplicity e=0 and using Eq(68),

o
A Pl+(p+P)at —|=+0 |II|—«(TT+Ta)
3w\ 2
= 123
q 1 ™ Kk* 2T* (123
14| = (20-50)+ —— —— —
2|3 T K T

Then replacing Eq(123) into Eq. (120 (with e=0) we obtain an expression which brings out the role of thermodynamic
variables in the appearance of density inhomogeneities: namely,
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2 o
LT P:+(p+Pr)a+£ STe|n —k(TT+Ta)
3 T Kl 3
r(E—=4xI)]|'+4nmrp'=4mar°| —+ 6 124
[PE=dniD]+dmrtp =4mr 5 1 * Kt 2T (124
1+ =|=(20-50)+ — — —— —
2|3 T K T

A similar conclusion applies to the shear of the fluid, as

With the sole purpose of bringing out the role of dissipation in the formation of density inhomogeneities, let us present a

simple and highly idealized model.

G. Dissipative model withE—4#II=0

Since we want to exhibit the role of dissipation in the
formation of inhomogeneities, we shall assuiBe- 4711
=0; then, from Egs(55) and(58), it follows that

8-
N=1——pr2

E—4#I1=0 AT e
mll= ﬁm—?pr e 3

(129
From Egs.(72), (120), and(76) we obtain
Rt (126
and
3str2(q+P,w)+ (pré)* =0; (127

then, combining the Einstein equatioffs?) and (13) with
Eq. (129), it follows that

8m(p+p'r+3P))r

v'= (128
-5
3| 1——0pr
3 p
We shall further assume the equation of state
~ 1.
Pr=3p: (129
then, replacing Eq(129) into Eq. (128 we obtain
8m. 2
1= 3psrs
e’'= . (130
1_ 8_7T~r2
3 p
(131

and

follows from (EQ1).

8m_ )
1— —psr
3 psls

PN

]

(132

w=

(rp’+4p)

8m_ )
1— —0psr
3 psls

In the particular casp=p(t) (butp’#0), these last equa-
tions reduce to

w= - (133
2p| 1— —psr2
P( 3 Ps. 2)
and
-~ 1.
q= §pre(“”)’z. (134

From junction conditions it is very simple to express
andp, and thereof all physical and metric variables in terms
of the total masaM, the velocity of the surfacews, the
radiusrs , and the luminosity of the sphere. Equatid31)
shows how dissipation produces density inhomogeneity. It is
worth noticing that both kinds of dissipative processes (
andqg) may produce such an inhomogeneity.

IV. CONCLUSIONS

The study of general relativistic gravitational collapse,
which has attracted the attention of researchers since the
seminal paper by Oppenheimer and Snydel], is mainly
motivated by the fact that the gravitational collapse of mas-
sive stars represents one of the few observable phenomena
where general relativity is expected to play a relevant role.
Ever since that work, much has been written by researchers
trying to provide models of evolving gravitating spheres.
However, this endeavor proved to be difficult and uncertain.
Different kinds of advantages and obstacles appear, depend-
ing on the approach adopted for the modeling.

Here, we have established a set of equations governing
the structure and evolution of self-gravitating spherically
symmetric dissipative anisotropic fluids. For reasons ex-
plained in the Introduction, emphasis has been put on the
role played by the Weyl tensor, the anisotropy of the pres-

084026-10
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sure, dissipation, density inhomogeneity, and the shear terscribed by means of thermodynamical variablésa trans-
sor. port equation is assumgdas indicated in Eq(124).

The particular simple relation between the Weyl tensor This situation is illustrated in the example provided in the
and density inhomogeneity, for perfect fluitso valid for  last section, where density inhomogeneity is produced by
locally isotropic, dissipative fluids in the quasistatic regime dissipative processes alone. Thus, if following Penrose we
is at the origin of the Penrose’s proposal to provide a graviadopt the point of view that self-gravitating systems evolve
tational arrow of time. However, the fact that such a relation-in the sense of increasing of density inhomogeneity, then the
ship is no longer valid in the presence of the local anisotropyabsolute value of the quantity abo@ some function of jt
of the pressure and/or dissipative processes explains its faibhould increase, providing an alternative definition for an
ure in scenarios where the above-mentioned factors ararrow of time.
present.

From Eq.(120) it is apparent that the production of den-
sity inhomogeneities is related to a quantity involving all

those factorg[r3(E—4wI)]T—47r3q(c/2+ 6)). Alterna- J.M. and J.0. acknowledge financial assistance under
tively, the appearance of such inhomogeneities may be degrant BFM2003-02121IM.C.T. Spain.
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