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Five-dimensional rotating black hole in a uniform magnetic field: The gyromagnetic ratio
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In four-dimensional general relativity, the fact that a Killing vector in a vacuum spacetime serves as a vector
potential for a test Maxwell field provides one with an elegant way of describing the behavior of electromag-
netic fields near a rotating Kerr black hole immersed in a uniform magnetic field. We use a similar approach
to examine the case of a five-dimensional rotating black hole placed in a uniform magnetic field of configu-
ration with biazimuthal symmetry that is aligned with the angular momenta of the Myers-Perry spacetime.
Assuming that the black hole may also possess a small electric charge we construct the five-vector potential of
the electromagnetic field in the Myers-Perry metric using its three commuting Killing vector fields. We show
that, like its four-dimensional counterparts, the five-dimensional Myers-Perry black hole rotating in a uniform
magnetic field produces an inductive potential difference between the event horizon and an infinitely distant
surface. This potential difference is determined by a superposition of two independent Coulomb fields consis-
tent with the two angular momenta of the black hole and two nonvanishing components of the magnetic field.
We also show that a weakly charged rotating black hole in five dimensions possesses two independent mag-
netic dipole moments specified in terms of its electric charge, mass, and angular momentum parameters. We
prove that a five-dimensional weakly charged Myers-Perry black hole must have the value of the gyromagnetic
ratio g53.

DOI: 10.1103/PhysRevD.69.084022 PACS number~s!: 04.70.Bw, 04.50.1h
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I. INTRODUCTION

Black holes originally predicted in four-dimensional ge
eral relativity have subsequently become an inseparable
of all higher dimensional gravity theories. The fundamen
features of black holes in four dimensions, such as the e
librium and uniqueness properties, and quantum prope
following from Hawking’s effect of evaporation of micro
scopic black holes, have revealed an intimate connection
tween spacetime geometry, quantum field theory, and t
modynamics @1–4# ~see Refs.@5–7# for comprehensive
reviews!. Certainly, these properties of black holes mig
have played a crucial role in the analysis of dynamics
higher dimensional gravity theories, as well as in the co
pactification process. For instance, to test the novel pre
tions of superstring theory which, it is believed, provides
consistent quantum theory of gravity in higher dimensio
@8#, microscopic black holes may serve as good theoret
laboratories. Therefore over current years higher dimensio
black holes have been widely considered as very interes
objects to be investigated in detail. Many interesting bla
hole solutions in various higher dimensional theories can
found in @9#.

On the other hand, the interest in higher dimensio
black holes gained new impetus after the advent of bra
world gravity theories@10–13# ~see also Refs.@14,15#!. The
brane-world theories are built on the basic idea that the
ometry of our physical Universe is indeed a ‘‘thre
brane’’—a ~311!-dimensional hypersurface embedded
fundamental higher dimensional space. The size of the e
spatial dimensions may be much larger than the conventi
Planckian length (;10233 cm). Thus, in contrast to the
0556-2821/2004/69~8!/084022~10!/$22.50 69 0840
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original Kaluza-Klein scenario, in the brane-world mode
the extra dimensions are supposed to manifest themselve
physical ones. One of the dramatic consequences of th
models is that the fundamental scale of quantum gra
might become as low as the weak interaction scale~of the
order of TeV!. This, in turn, raises the problem of TeV-siz
black holes, and the exciting signature of such mini bla
holes is that they can be directly probed in cosmic ray
periments or at future high energy colliders@16,17#. It has
also been argued that one can describe these black hole
the classical solutions of higher dimensional vacuum E
stein equations provided that the radius of the event hori
is much smaller than the size scale of the extra dimensio
In light of all this, it is obvious that further knowledge of th
special properties of black hole solutions in higher dime
sional vacuum gravity is of great importance.

The first black hole solution to the higher dimension
Einstein equations is the static and hyperspherically symm
ric Schwarzschild-Tangherlini solution@18#, which has been
found a long time ago within the Kaluza-Klein program
extension of four dimensional general relativity. As in fo
dimensions, one could expect the generalization of the st
hyperspherical black hole solution to include rotational d
namics. In 1986 Myers and Perry discovered the exact s
tion of Einstein’s equations describing such rotating bla
holes @19#. It is important that the Myers-Perry solution
supposed to be the most relevant to describe the ‘‘labo
tory’’ black holes in high energy experiments@17#. In this
context some essential features of the Myers-Perry solu
in five dimensions, such as the existence of a Killing ten
and the separability of variables in the Hamilton-Jaco
equations of motion, as well as quantum radiation from
©2004 The American Physical Society22-1
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five-dimensional black hole, were explored in@20,21#.
However, the Myers-Perry solution is not unique in fi

dimensions, unlike its four-dimensional counterpart, the K
solution. Emparan and Reall@22# found a rotating black ring
solution in five dimensions with the horizon topology
S23S1, which could have the same mass and spin as
Myers-Perry solution. As for the static case, the authors
@23,24# have proved that in this case, remarkably, the uniq
ness property survives. Another essential problem is the
bility of higher dimensional rotating black hole solution
Recently, in@25# it has been argued that the Myers-Pe
solution becomes unstable for the case of an arbitrarily la
rotation parameter for a fixed mass. It is clear that, in
general case, the full analytic theory of perturbations
higher dimensional rotating black holes is needed to reso
the stabilitiy problem. In the static case the stability of high
dimensional black holes was proved in@26#.

In this paper we shall study further properties of a fiv
dimensional rotating black hole in the presence of an ex
nal magnetic field, which is supposed to be uniform at infi
ity. We shall consider the configuration of the magnetic fie
aligned with the angular momenta of the black hole. In ot
words, the magnetic field shares the biazimuthal symm
of the Myers-Perry spacetime and has only two nonvanish
components. In order to construct the corresponding solu
of the Maxwell field equations in the background of t
Myers-Perry metric, we shall appeal to the well known fa
@27# that in a vacuum spacetime one can obtain the solu
for the Maxwell test field by using only isometries of th
spacetime. Earlier, this fact was used in four-dimensio
general relativity to construct the solution for the elect
magnetic field around a Kerr black hole immersed in a u
form magnetic field@28#. In this analysis the temporal an
axial Killing vectors of the Kerr spacetime were used a
vector potential for the Maxwell test field. In particular,
has been found that the so-called Wald effect occurs;
rotation of a black hole in an asymptotically uniform ma
netic field causes an inductive potential difference betw
the event horizon and infinity, whereby the black hole m
acquire an inductive electric charge.

In four dimensions the rotation group isSO(3) and there
always exists a rotation axis consistent with only one in
pendent Casimir invariant. However, in five dimensions
rotation group isSO(4), which possesses two independe
Casimir invariants. These two Casimir invariants, in turn,
associated with two independent rotations of the system
other words, a rotating black hole in five dimensions m
have two distinct planes of rotation specified by appropri
azimuthal coordinates, rather than an axis of rotation. In
cordance with this, the stationary and asymptotically
Myers-Perry metric admits three commuting Killing vect
fields, which reflect the time-translation invariance and
azimuthal symmetry of this metric in five dimensions. W
shall use these Killing vectors to construct the five-vec
potential for a test electromagnetic field, when the Mye
Perry black hole is placed in an asymptotically uniform ma
netic field of a configuration with biazimuthal symmetry. W
shall show that a rotation in two distinct planes of a fiv
dimensional black hole immersed in a uniform magne
08402
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field produces an inductive electric field which is determin
by the superposition of two independent Coulomb parts c
sistent with the two angular momentum parameters and
nonvanishing components of the magnetic field.

We shall also examine the case when a five-dimensio
black hole may have an electric charge small enough that
spacetime is still well described by the Myers-Perry solutio
In this case the rotation of the black hole must produc
dipole magnetic field. We shall establish that the black ho
in fact, possesses two independent magnetic dipole mom
determined only by its charge, mass, and angular mom
tum.

The paper is organized as follows. In Sec. II we rec
some of the properties of the Myers-Perry metric for a fiv
dimensional black hole. We describe the Killing isometri
of the metric, its mass parameter, and specific angular
menta. We also give the precise definition of the angu
velocities for stationary observers in the Myers-Perry me
and define locally nonrotating orthonormal frames~LNRFs!
and their dual basis forms. In Sec. III we begin with a br
description of a uniform magnetic field in five dimensio
and construct the five-vector potential for the Maxwell te
field using the Killing isometries of the Myers-Perry spac
time. Here we also calculate the magnetic flux crossin
portion of the black hole horizon. The dominant orthonorm
components of electric and magnetic fields in the asympt
rest frame of a weakly charged Myers-Perry black hole,
well as its magnetic dipole moments, are calculated in S
IV. Finally, in Sec. V we prove that a five-dimension
weakly charged Myers-Perry black hole must possess
value of the gyromagnetic ratiog53.

II. FIVE-DIMENSIONAL ROTATING BLACK HOLE

A. Myers-Perry metric

The metric of a rotating black hole in five dimension
follows from the general asymptotically flat solutions to (N
11)-dimensional vacuum gravity found by Myers and Pe
@19#. In Boyer-Lindquist type coordinates it takes the sim
plest form given by

ds252dt21SS r 2

D
dr21du2D1~r 21a2!sin2 u df2

1~r 21b2!cos2 u dc2

1
m

S
~dt2a sin2 u df2b cos2 u dc!2, ~1!

where

S5r 21a2 sin2 u1b2 cos2 u,

D5~r 21a2!~r 21b2!2mr2, ~2!
2-2
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andm is a parameter related to the physical mass of the b
hole, while the parametersa andb are associated with its two
independent angular momenta. For the metric determin
we have

A2g5rS sinu cosu. ~3!

The components of the inverse metric have the follow
forms:

gtt52S 11
m

S
1

mr2

DS D , grr 5
D

r 2S
,

guu5
1

S
, gfc52

mab

DS
,

gtf52
ma~r 21b2!

DS
,

gff5
1

S F 1

sin2u
1

~r 21b2!~b22a2!2mb2

D G ,

gtc52
mb~r 21a2!

DS
,

gcc5
1

S F 1

cos2u
1

~r 21a2!~a22b2!2ma2

D G .

~4!

The event horizon of the black hole is a null surface d
termined by the equationgrr 50, which implies that

D5~r 21a2!~r 21b2!2mr250. ~5!

The largest root of this equation gives the radius of the bl
hole’s outer event horizon. We have

r h
25

1

2
~m2a22b21A~m2a22b2!224a2b2!. ~6!

Notice that the horizon exists if and only if

a21b212uabu<m, ~7!

so that the conditionm5a21b212uabu or, equivalently,
r h

25uabu defines the extremal horizon of a five-dimension
black hole.

In the absence of the black hole (m50), the metric~1!
reduces to the flat one written in oblate bipolar coordina
The latter can be readily cast in the Minkowski form usi
the transformation of coordinates@20#

x5Ar 21a2 sinu cosf̃, y5Ar 21a2 sinu sinf̃,

z5Ar 21b2 cosu cosc̃, w5Ar 21b2 cosu sinc̃,
~8!

where
08402
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f̃5f1tan21~a/r !, c̃5c1tan21~b/r !.

On the other hand, fora5b50 we have the Schwarzschild
Tangherlini static solution in spherical bipolar coordinates
is clear that, in general, the metric~1! admits two orthogonal
two-planes of rotation, thex-y plane,z5w50 and thez-w
plane,x5y50, which are specified by the azimuthal angl
f and c, respectively. These angles both range from 0
2p, while u is the angle between the two orthogonal tw
planes varies in the interval@0,p/2#. As a consequence, th
metric reveals the following obvious invariance propertie
under the simultaneous inversion of the time coordinatt
→2t and the anglesf→2f, c→2c, and under the trans
formation

a↔b, f↔c, u↔ p

2
2u. ~9!

The biazimuthal symmetry properties of the fiv
dimensional black hole metric~1! along with its stationarity
imply the existence of the three commuting Killing vector

j (t)5]/]t, j (f)5]/]f, j (c)5]/]c. ~10!

The various scalar products of these Killing vectors are
pressed through the corresponding metric components as
lows:

j (t)•j (t)5gtt5211
m

S
,

j (f)•j (f)5gff5S r 21a21
ma2

S
sin2 u D sin2 u,

j (t)•j (f)5gtf52
ma

S
sin2 u,

j (c)•j (c)5gccS r 21b21
mb2

S
cos2 u D cos2 u,

j (t)•j (c)5gtc52
mb

S
cos2 u,

j (f)•j (c)5gfc5
mab

S
sin2 u cos2 u. ~11!

The Killing vectors~10! can be used to give a physica
interpretation of the parametersm, a, andb involved in the
metric ~1!; namely, following the analysis given in@29#, one
can obtain coordinate-independent definitions for these
rameters. We have the integrals

m5
1

4p2 R j (t)
m;nd3Smn ~12!

and
2-3
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j (a)5am52
1

4p2 R j (f)
m;nd3Smn ,

j (b)5bm52
1

4p2 R j (c)
m;nd3Smn , ~13!

where the integrals are taken over the three-sphere at sp
infinity,

d3Smn5
1

3!
A2gemnabg dxa`dxb`dxg, ~14!

the semicolon denotes covariant differentiation, and we h
introduced the two specific angular momentum parame
j (a) and j (b) associated with rotations in thef andc direc-
tions, respectively. We note that with these definitions
relation between the specific angular momentum and
mass parameter looks exactly like the corresponding rela
(J5aM) of four-dimensional Kerr metric.

To show that the definitions given in Eqs.~12! and~13! do
in fact correctly describe the mass and angular momenta
rameters we can calculate the integrands in the asymp
region r→`. The dominant terms in the asymptotic expa
sion have the form

j (t)
t;r5

m

r 3
1OS 1

r 5D ,

j (f)
t;r 52

2amsin2u

r 3
1OS 1

r 5D ,

j (c)
t;r 52

2bmcos2u

r 3
1OS 1

r 5D . ~15!

The substitution of these expressions into the formulas~12!
and~13! verifies them. On the other hand, the relation of t
above parameters to the total massM and the total angula
momentaJ(a) and J(b) of the black hole can be establishe
using the formulas given in@19#. We obtain that

m5
8

3p
M , j (a)5

4

p
J(a) , j (b)5

4

p
J(b) . ~16!

These relations confirm the interpretation of the parame
m, a, andb as being related to the physical mass and an
lar momenta of the metric~1!.

B. Locally nonrotating observers

To examine further properties of the five-dimension
Myers-Perry black hole, as well as physical processes n
such a black hole, it is useful to introduce a family of loca
nonrotating observers. In the four-dimensional case a loc
nonrotating observer has a vector of velocity orthogona
the t5const surface in the Kerr geometry and its angu
08402
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momentum vanishes@30,31#. We define a locally nonrotating
observer in the Myers-Perry metric in a similar manner. L
us write

um5um~r ,u!5a~j (t)
m 1V (a)j (f)

m 1V (b)j (c)
m !, ~17!

where um is a unit vector of the five-velocity of a locally
nonrotating observer, anda is a normalization constant de
termined by the conditionu2521. The orthogonality to the
t5const surface impliesur5uu50 and

gtfut1gffuf1gfcuc50,

gtcut1gccuc1gcfuf50. ~18!

The simultaneous solution of these equations determ
um(r ,u). Thus we obtain

V (a)5
uf

ut
5

gtcgfc2gtfgcc

gffgcc2gfc
2

5
am~r 21b2!

DS1m~r 21a2!~r 21b2!
,

V (b)5
uc

ut
5

gtfgfc2gtcgff

gffgcc2gfc
2

5
bm~r 21a2!

DS1m~r 21a2!~r 21b2!
.

~19!

In the case that eitherb50 or a50, instead of the above
expressions we have either

V (a)52
gtf

gff
or V (b)52

gtc

gcc
, ~20!

which are closely reminiscent of the corresponding relat
for the Kerr black hole in four dimensions. At large distanc
from the black hole, the relations~19! can be written in the
form

V (a)5
j (a)

r 4
1OS 1

r 6D , V (b)5
j (b)

r 4
1OS 1

r 6D , ~21!

which reveals the remarkable property of the Myers-Pe
black hole, namely,the dragging of inertial framesin bothf
andc two-planes of rotation. Clearly, the effect of ‘‘bidrag
ging’’ disappears at spatial infinity. However, toward th
event horizon of the black hole it increases, tending to
constant value on the event horizon (D50). From Eqs.~19!
we obtain

V (a)h5
a

r 1
2 1a2

, V (b)h5
b

r 1
2 1b2

. ~22!

These quantities can be interpreted as angular velocitie
the black hole@19#. In order to show this, one needs to kno
the isometry properties of the horizon geometry. Followi
the Hawking approach in four-dimensional geometry of t
Kerr black hole@3#, we suppose that the isometry of th
event horizon of a five-dimensional black hole is describ
2-4
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by a Killing vector, which must be a linear combination
the three Killing vectors given in Eq.~10!. Thus, we can take
it in the form

x5j (t)1V (a)hj (f)1V (b)hj (c) . ~23!

One can easily verify that this vector becomes null at
surfaceD50, i.e., it is tangent to the null surface of th
horizon. This means that stationary observers moving in
f and c two-planes of rotation become corotating alo
with the horizon with the local angular velocities~22!. In
other words, the event horizon of the five-dimension
Myers-Perry black hole is, in fact, the Killing horizon dete
mined by the vectorx.

From what we said above about the locally nonrotat
observers, it also follows that with any such observer one
associate an orthonormal frame. The form of the me
given in ~1! enables us to choose the appropriate basis o
forms of these frames. In particular, for a locally nonrotati
observer moving in thef two-plane we can choose an o
thonormal frame~LNRF! with the following basis one-
forms:

v t̂5Ugtt2
gtc

2

gcc
2V (a)

2
gffgcc2gfc

2

gcc
U1/2

dt,

vf̂5S gffgcc2gfc
2

gcc
D 1/2

~df2V (a) dt!,

vĉ5~gcc!1/2S dc1
gtc

gcc
dt1

gfc

gcc
df D ,

v r̂5~grr !
1/2dr,

vû5~guu!1/2du, ~24!

while the dual basis is given by

et̂5Ugtt2
gtc

2

gcc
2V (a)

2
gffgcc2gfc

2

gcc
U21/2

3S ]

]t
1V (a)

]

]f
2

gtc1V (a)gfc

gcc

]

]c D ,

ef̂5S gffgcc2gfc
2

gcc
D 21/2S ]

]f
2

gfc

gcc

]

]c D ,

eĉ5
1

~gcc!1/2

]

]c
,

er̂5
1

~grr !
1/2

]

]r
,

eû5
1

~guu!1/2

]

]u
. ~25!
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We note that the corresponding basis one-forms and t
duals associated with an orthonormal frame of a locally n
rotating observer moving in thec direction are obtained
from the expressions given above simply by the transform
tion f↔c.

III. UNIFORM MAGNETIC FIELD IN THE BACKGROUND
OF A FIVE-DIMENSIONAL BLACK HOLE

A. Uniform magnetic field in a five-dimensional flat spacetime

In four-dimensional gravity the behavior of electroma
netic fields in the background of a rotating black hole d
scribed by the Kerr metric has been investigated by m
authors@28,32–34# ~see also Ref.@35# for a review!. In par-
ticular, Wald has proposed the most elegant way of desc
ing the behavior of electromagnetic fields near a rotat
black hole which is placed in an originally uniform magne
field aligned with the axis of symmetry of the black ho
@28#. The Wald approach stems from the well known fa
@27# that a Killing vector in a vacuum spacetime serves a
vector potential for a Maxwell test field in that spacetime
background. Therefore one can construct a solution for
Maxwell test field in the background of a vacuum spaceti
simply by using the isometries of this spacetime.

We shall apply this approach to examine the behavior o
Maxwell test field around a five-dimensional black hole d
scribed by the metric~1! when the black hole is immersed i
an asymptotically uniform magnetic field. We recall that,
general, the electromagnetic field in five dimensions can
described by an electric one-form field and magnetic tw
form field. In other words, four of the total ten independe
components of the electromagnetic field tensorFmn describe
the electric field, while the remaining six components cor
spond to the magnetic field. We shall consider the case
magnetic field configuration which is stationary and unifo
at infinity and possesses biazimuthal symmetry as well. T
it is clear that the corresponding electromagnetic field ten
must share all isometries of the black hole’s spacetime.
these grounds, it is also clear that there must exist only
nonvanishing components of the field tensor that describ
uniform magnetic field in our case. That is, we have

B5Fxy , H5Fzw , ~26!

where we have used the notationsB andH for the magnetic
field strengths associated with thex-y and z-w two-planes,
respectively. We note that these quantities are reminiscen
the two independent angular momenta given in Eq.~13!,
which are, in turn, the nonvanishing components of the
derlying angular momentum two-form. In this respect, t
magnetic field components in our model are aligned with
corresponding angular momenta.

In the following we shall need the expression for the co
ponents of the electromagnetic two-form fieldF written
down in bipolar coordinates. By making use of the transf
mations~8! we obtain, instead of Eq.~26!, an expression of
the form
2-5
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F5Br sinu~sinu dr`df1r cosu du`df!

1Hr cosu~cosu dr`dc2r sinu du`dc!, ~27!

which describes a uniform magnetic field of a configurat
with biazimuthal symmetry in a flat five-dimensional spac
time.

B. Five-vector potential

It is remarkable that using only the isometries of t
Myers-Perry spacetime described by the temporal Kill
vector j (t) and two azimuthal Killing vectorsj (f) and j (c)
one can construct the five-vector potential for the Maxw
test field in this spacetime. Indeed, the homogeneous M
well equations, in the Lorentz gauge

A;m
m 50, ~28!

have the form

Am;n
;n2Rm

n An50. ~29!
e

08402
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On the other hand, any Killing vectorj satisfies the equation

jm;n
;n1Rm

n jn50. ~30!

Comparing the two equations~29! and ~30! one sees tha
they are the same in a vacuum spacetime (Rm

n50). Thus,
one can use a Killing vector as a vector potential for a t
Maxwell field @27#. Following this fact, we shall seek for
five-vector potential of the form

Am5aj (t)
m 1bj (f)

m 1gj (c)
m , ~31!

wherea, b, andg are arbitrary parameters. Let us emph
size that in the general case this vector potential will a
describe a test electric field so that the black hole is charg
We assume that this electric charge is small enoughQ
!M , that the spacetime can still be adequately described
the unperturbed metric~1!.

To determine the unknown parameters in Eq.~31! first we
calculate the corresponding electromagnetic two-form fielF
in the metric~1!. We obtain
F5
2mr

S2
A dt`dr1

m sin 2u

S2
@a~b22a2!1ba~r 21a2!2gb~r 21b2!#dt`du12r sin2 u S b1

am

S2
AD dr`df

12r cos2 u Sg1
bm

S 2
AD dr`dc1sin 2u Fb~r 21a2!1

am

S2
@B2a~r 21a2!2gb~r 21b2!#Gdu`df

2sin 2u Fg~r 21b2!1
bm

S2
@B2a~r 21b2!2ba~r 21a2!#Gdu`dc, ~32!
ld
ni-

ial
of a
oti-
e
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e of
t
e
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tic
where for the sake of brevity we have used the notation

A5a2ba sin2 u2gb cos2 u ~33!

and

B5ba~r 21a21S!sin2 u1gb~r 21b21S!cos2 u.
~34!

In the asymptotic regionr→`, this expression takes th
form

F52br sinu~sinu dr`df1r cosu du`df!

12gr cosu~cosu dr`dc2r sinu du`dc!. ~35!

From a comparison of Eqs.~27! and ~35!, it follows that b
5B/2, g5H/2. The remaining parametera can be deter-
mined from examining the integrals~12! and~13! along with
the integral for the electric charge of the black hole

Q5
1

4p2 R Fmnd3Smn . ~36!
Having done this, we obtain

a52
Q

2m
1

aB

2
1

bH

2
. ~37!

Finally, the five-vector potential for the electromagnetic fie
around a rotating and weakly charged black hole in a u
form magnetic field can be written in the form

Am52
Q

2m
j (t)

m 1
B

2
~j (f)

m 1aj (t)
m !1

H

2
~j (c)

m 1bj (t)
m !.

~38!

From this expression, it follows that the five-vector potent
in the background of the Myers-Perry spacetime consists
superposition of the Coulomb-type part and the asympt
cally uniform magnetic field. It is important to note that th
Coulomb-type part, which is generated by the temporal K
ing vector, does not vanish even when the electric charg
the black hole is zero (Q50). There are two independen
contributions to the Coulomb field of the black hole. Th
physical reason underlying this phenomenon is that a r
tion of a five-dimensional black hole in a uniform magne
2-6
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field produces an inductive electric field associated with
two independentf andc two-planes of rotation of the blac
hole as well as two independent components of the elec
magnetic field tensor. It is seen that in our model the bla
hole acts like a ‘‘dynamo’’ that causes an electrostatic pot
tial difference between the event horizon of the black h
and an infinitely distant surface. Following the approach
four-dimensional case@36#, we shall define the electrostat
potential of the event horizon with respect to the Killin
vector ~23! as follows:

Fh5A•x5A01V (a)hAf1V (b)hAc . ~39!

Then, for the electrostatic potential difference between
event horizon and an infinitely distant surface, we find

DF5Fh2F`5
Q2amB2bmH

2m
. ~40!

This potential difference is exactly of the same form as i
were produced by the electric charge

Q̃5Q2amB2bmH. ~41!

It is obvious that this chargeQ̃ will be quickly neutralized
~the potential difference vanishes! due to a selective accre
tion process of charged particles, provided that the black h
is surrounded by an ionized medium.1 As a result of this the
black hole will acquire the physical electric charge

Q5amB1bmH5 j (a)B1 j (b)H. ~42!

We note that in the degenerate case whena5b and B5H
the above expression goes over into the form

Q52amB, ~43!

which is reminiscent of its counterpart for a Kerr black ho
@28#.

Accordingly, in terms of the total mass and angular m
menta of the black hole Eq.~42! can be written as

Q5
8

3p
~aMB1bmH!5

4

p
~J(a)B1J(b)H !. ~44!

Thus, a five-dimensional black hole rotating in a unifor
magnetic field of a configuration with biazimuthal symme
will be charged up to the value given by Eq.~44!.

To conclude this section we shall calculate the magn
flux crossing a portionS of the black hole event horizon
This flux is governed by the line integral on the horizon

F5E
]S

A, ~45!

1In the brane-world scenario, when charged particles can live o
on the brane, this conclusion also remains true. In the presence
plasma of charged particles located on the brane, there will b

selective accretion process reducing the chargeQ̃.
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where the potential one-formA is determined through Eq
~38! with Q50 and]S is the boundary ofS. For our pur-
pose, it is convenient to rewrite the potential in terms of t
Killing vector x defined in Eq.~23!. We obtain

A5
1

2
~aB1bH!x1Ã,

Ã5
B

2
~j (f)2aV (a)hj (f)2aV (b)hj (c)!

1
H

2
~j (c)2bV (b)hj (c)2bV (a)hj (f)!, ~46!

where we have used the same notation for Killing one-fo
fields. The first term in this expression is proportional tox
and therefore its contribution to the fluxF at the horizon
vanishes. For the rest, taking into account Eq.~22! we obtain

Ã5
1

2 S Brh
22Hab

r h
21a2

j (f)1
Hr h

22Bab

r h
21b2

j (c)D . ~47!

This expression, and hence the flux~45!, vanishes precisely
at the extremal horizon of the black hole (r h

25ab), provided
that B5H. Thus, when the magnetic field strengths asso
ated with thex2y andz2w two-planes of rotation are equa
in magnitude, the magnetic flux is expelled from a fiv
dimensional black hole as the extremality in its rotation
approached. In this case, a portion of the black hole horiz
like its four-dimensional counterpart, acts as the surface
perfectly diamagnetic object@37#.

IV. MAGNETIC DIPOLE MOMENTS

We now turn to the consideration of a five-dimension
weakly charged rotating black hole. It is clear that the ro
tion of such a black hole must produce a dipole type m
netic field around itself. Since the charged black hole is ch
acterized by two independent rotation paramete
accordingly, one may expect that it will acquire two indepe
dent magnetic dipole moments as well. We shall determ
the value of these magnetic moments.

We begin with the expression for the electromagne
two-form field

F5
Q

S2
@r dr `dt1~b22a2!sinu cosu du`dt#

2
Qa sinu

S2
@r sinu dr`df2~r 21a2!cosu du`df#

2
Qb cosu

S2
@r cosu dr`dc1~r 21b2!sinu du`dc#,

~48!

which is obtained from Eq.~32! with B50, H50. The as-
sociated potential one-form can be written as

ly
f a
a

2-7
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A52
Q

2S
~dt2a sin2 u df2b cos2 u dc!. ~49!

In obtaining this expression we have gauged the poten
~38! according to the transformation

A5Â2
Q

2m
dt ~50!

to provide its vanishing behavior at infinity. We shall al
need the contravariant components of the electromagn
field tensor, which are given by

Ftr5
Q~r 21a2!~r 21b2!

rS3
, Ftu5

Q~b22a2!sin 2u

2S3
,

Frf52
Qa~r 21b2!

rS3
, Frc52

Qb~r 21a2!

rS3
,

Fuf5
Qa cotu

S3
, Fuc52

Qb tanu

S3
. ~51!

Next, we shall define the electric field, as well as t
dipole magnetic field, in the asymptotic rest frame of t
black hole. We start with the electric one-form fieldÊ which,
in the spacetime of dimensionsD, can be defined as follows

Ê52 i j(t)
F5~21!D!~j (t)`!F !, ~52!

wherej (t)5j (t)m dxm is the timelike Killing one-form field
and the! operator denotes the Hodge dual. Substituting
~48! in Eq. ~52! we obtain the following expression for th
electric one-form field in the metric~1!:

Ê5
Q

S2
@r dr 1~b22a2!sinu cosu du#. ~53!

The orthonormal components of the electric field in t
asymptotic rest frame of the black hole are obtained by p
jecting ~53! on the basis~25!. We have

Er̂5Fr̂ t̂5
Q

r 3
1OS 1

r 5D ,

Eû5F û t̂5OS 1

r 5D ,

Ef̂5F f̂ t̂50. ~54!

We note that the dominant component of the electric field
purely radial and the associated Gaussian flux of this ra
field gives the correct value for the electric charge of
black hole.

The dipole magnetic field of the black hole is describ
by the magnetic two-form defined as
08402
al

tic

.

-
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e

B̂52 i j(t)

!F5!~j (t)`F !. ~55!

This can also be rewritten in the alternative form

B̂5
1

4
A2gemnabgj (t)

m Fna dxb`dxg. ~56!

Substituting into this expression the contravariant com
nents of the electromagnetic field tensor~51!, we obtain

B̂5
Qb sinu

S2
@r sinu dr`df2~r 21a2!cosu du`df#

1
Qa cosu

S 2
cosu@r cosu dr`dc

1~r 21b2!sinu du`dc#, ~57!

which in the asymptotic rest frame of the black hole has
following orthonormal components:

Br̂ ĉ5F ûf̂5
Fuf

r 2 sinu
5

Qa

r 4
cosu1OS 1

r 6D ,

Bûĉ5F f̂ r̂5
Ffr

r sinu
5

Qa

r 4
sinu1OS 1

r 6D ,

Bf̂ r̂5F ûĉ5
Fuc

r 2 cosu
52

Qb

r 4
sinu1OS 1

r 6D ,

Bûf̂5Fr̂ ĉ5
Frc

r cosu
52

Qb

r 4
cosu1OS 1

r 6D , ~58!

with all others vanishing. The above expressions describe
dipole magnetic field created by a five-dimensional wea
charged rotating black hole. We see that far from the bla
hole the dominating behavior of the magnetic field is det
mined only by the two independent quantities

m (a)5Qa, m (b)5Qb, ~59!

which can be thought of as the magnetic dipole moments
the black hole. We conclude that a weakly charged rotat
black hole in five dimensions possesses two independ
magnetic moments specified only in terms of the elec
charge of the black hole and its two rotation parameters.

V. GYROMAGNETIC RATIO

It is now natural to address the gyromagnetic ratio of
five-dimensional weakly charged rotating black hole we d
cussed above. We recall that one of the remarkable f
about a charged rotating black hole of four-dimensional g
eral relativity is that it can be assigned a gyromagnetic ra
g52 just like the electron in Dirac theory@38#. The param-
2-8
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eterg is defined as a constant of proportionality in the eq
tion

m5g
QJ

2M
, ~60!

whereM is the mass,J is the angular momentum, andQ is
the electric charge of the four-dimensional black hole.

Turning now to the case of a weakly charged black hole
five dimensions and comparing Eqs.~13! and ~59!, we see
that the coupling of rotation parameters of the black hole
its mass parameter to give the specific angular mome
looks exactly the same as their coupling to the electric cha
to define the magnetic dipole moments. Thus, we may w
the analogue of Eq.~60! in five dimensions as follows:

m ( i )5
Q j ( i )

m
53

QJ( i )

2M
, ~61!

where we have used the relations~16! and the subscript in-
dex i refers to either the parametera or b. From a compari-
son of this equation with the classical relation~60!, it be-
comes apparent that a five-dimensional weakly char
rotating black hole can be assigned a gyromagnetic ratig
53.

Next, following the basic arguments of@28#, we shall
prove the valueg53. For this purpose, we shall define th
twist @6# of a timelike Killing one-form fieldj (t) , which in
five dimensions is the two-form field given by

V5
1

2
!~ ĵ (t)`dĵ (t)!. ~62!

Physically, this quantity measures the failure of the timel
Killing one-form field to be hypersurface orthogonal. Eval
ating this quantity in the metric~1!, we obtain

V52
bmr

S2
sin2 u dr`df1

bm~r 21a2!

S2
sinu cosu du

`df2
amr

S2
cos2 u dr`dc

2
am~r 21b2!

S2
sinu cosu du`dc, ~63!

which implies the existence of the twist potential one-for

v5
m

2S
~b sin2 u df1a cos2 u dc!. ~64!

The components of this quantity in the asymptotic rest fra
of the black hole show that the failure of the timelike Killin
vector to be hypersurface orthogonal is completely de
mined by the specific angular momentaj (a)5am and j (b)
5bm of the black hole.

On the other hand, the magnetic two-form field~57! im-
plies the magnetic potential one-form determined through
equation
08402
-

n

o
ta
e
e

d

e

e

r-

e

B52dw, ~65!

where

w5
Q

2S
~b sin2 u df1a cos2 u dc!. ~66!

From this expression it follows that in the asymptotic re
frame of the black hole the magnetic potential one-form
termines the two magnetic dipole moments, just as the tw
one-form~64! determines the two specific angular momen
of the black hole. From Eqs.~64! and ~66! we read off the
relation

w5
Q

m
v, ~67!

which, obviously, can also be rewritten in the form of~61!.
This proves that a five-dimensional Myers-Perry black h
endowed with a small enough electric charge must hav
gyromagnetic ratio of valueg53. The same value of gyro
magnetic ratio has been found for a supersymmetric rota
black hole@39# described by the Breckenridge-Myers-Pe
Vafa ~BMPV! five-dimensional solution@40#.

VI. CONCLUSIONS

We have discussed the special properties of a fi
dimensional rotating black hole described by the Mye
Perry metric in the presence of an originally uniform ma
netic field. The configuration of the magnetic field
supposed to have biazimuthal symmetry, just like the bla
hole spacetime itself. In this case the magnetic field has o
two nonvanishing components aligned with the two angu
momenta of the black hole. We have also allowed the bl
hole to have an electric charge small enough that the sp
time can still be described by the Myers-Perry solution.

We have constructed the five-vector potential describ
the test Maxwell field in the Myers-Perry spacetime usi
the Killing isometries of this spacetime. The intriguing fe
ture of this model is the appearance of nontrivial gravitom
netic phenomena; a rotation of a five-dimensional black h
in a uniform magnetic field of given configuration produc
an inductive electrostatic potential difference between
event horizon and an infinitely distant surface. This poten
difference comes from the superposition of two independ
Coulomb fields arising due to rotations in two distinct tw
planes and two nonvanishing components of the magn
field. Of course, in the case of an ionized medium surrou
ing the black hole, the potential difference will be quick
neutralized by a selective accretion process, thereby pro
ing a mechanism for charging up the black hole.

We have also described a dipole magnetic field aroun
weakly charged rotating black hole in five dimensions a
as expected, it turned out that the black hole possesses
independent magnetic dipole moments determined only
its electric charge, mass, and angular momentum parame
In many aspects the gravitomagnetic phenomena descr
are qualitatively closely reminiscent of their counterparts
a four-dimensional Kerr black hole immersed in a unifor
2-9
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magnetic field. However, there also exist some essential
ferences. In particular, we have shown that the gyromagn
ratio for a five-dimensional weakly charged Myers-Pe
black hole isg53.

In four-dimensional gravity there exist stable circular o
bits in the equatorial plane of a Kerr black hole. Furth
more, the presence of a uniform magnetic field around
Kerr black hole has its greatest effect in enlarging the reg
of stability of the circular orbits toward the horizon@41#.
However, there are no stable circular orbits around a fi
dimensional rotating black hole, at least in the equato
planes@20#. Therefore, it would be interesting to use th
results of this paper to study the effect of an external m
ole
,

.
B

li,

n

08402
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netic field on the stability of circular motion around a fiv
dimensional Myers-Perry metric.
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