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Five-dimensional rotating black hole in a uniform magnetic field: The gyromagnetic ratio

A. N. Aliev
Feza Gusey Institute, P. K. 6 éngelky, 81220 Istanbul, Turkey

Valeri P. Frolov
Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton, Canada T6G 2J1
(Received 15 January 2004; published 23 April 2004

In four-dimensional general relativity, the fact that a Killing vector in a vacuum spacetime serves as a vector
potential for a test Maxwell field provides one with an elegant way of describing the behavior of electromag-
netic fields near a rotating Kerr black hole immersed in a uniform magnetic field. We use a similar approach
to examine the case of a five-dimensional rotating black hole placed in a uniform magnetic field of configu-
ration with biazimuthal symmetry that is aligned with the angular momenta of the Myers-Perry spacetime.
Assuming that the black hole may also possess a small electric charge we construct the five-vector potential of
the electromagnetic field in the Myers-Perry metric using its three commuting Killing vector fields. We show
that, like its four-dimensional counterparts, the five-dimensional Myers-Perry black hole rotating in a uniform
magnetic field produces an inductive potential difference between the event horizon and an infinitely distant
surface. This potential difference is determined by a superposition of two independent Coulomb fields consis-
tent with the two angular momenta of the black hole and two nonvanishing components of the magnetic field.
We also show that a weakly charged rotating black hole in five dimensions possesses two independent mag-
netic dipole moments specified in terms of its electric charge, mass, and angular momentum parameters. We
prove that a five-dimensional weakly charged Myers-Perry black hole must have the value of the gyromagnetic
ratiog=3.
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[. INTRODUCTION original Kaluza-Klein scenario, in the brane-world models
the extra dimensions are supposed to manifest themselves as
Black holes originally predicted in four-dimensional gen- physical ones. One of the dramatic consequences of these
eral relativity have subsequently become an inseparable pamodels is that the fundamental scale of quantum gravity
of all higher dimensional gravity theories. The fundamentalmight become as low as the weak interaction sc¢afethe
features of black holes in four dimensions, such as the equirder of Te\j. This, in turn, raises the problem of TeV-size
librium and uniqueness properties, and quantum propertigslack holes, and the exciting signature of such mini black
following from Hawking's effect of evaporation of micro- holes is that they can be directly probed in cosmic ray ex-
scopic black holes, have revealed an intimate connection bgeriments or at future high energy colliddis5,17. It has
tween spacetime geometry, quantum field theory, and therlso been argued that one can describe these black holes by
modynamics[1-4] (see Refs.[5—7] for comprehensive the classical solutions of higher dimensional vacuum Ein-
reviews. Certainly, these properties of black holes mightstein equations provided that the radius of the event horizon
have played a crucial role in the analysis of dynamics ofis much smaller than the size scale of the extra dimensions.
higher dimensional gravity theories, as well as in the com4n light of all this, it is obvious that further knowledge of the
pactification process. For instance, to test the novel predicspecial properties of black hole solutions in higher dimen-
tions of superstring theory which, it is believed, provides asional vacuum gravity is of great importance.
consistent quantum theory of gravity in higher dimensions The first black hole solution to the higher dimensional
[8], microscopic black holes may serve as good theoreticatinstein equations is the static and hyperspherically symmet-
laboratories. Therefore over current years higher dimensionalc Schwarzschild-Tangherlini solutidi.8], which has been
black holes have been widely considered as very interestinfpund a long time ago within the Kaluza-Klein program of
objects to be investigated in detail. Many interesting blackextension of four dimensional general relativity. As in four
hole solutions in various higher dimensional theories can belimensions, one could expect the generalization of the static
found in[9]. hyperspherical black hole solution to include rotational dy-
On the other hand, the interest in higher dimensionahamics. In 1986 Myers and Perry discovered the exact solu-
black holes gained new impetus after the advent of branetion of Einstein’s equations describing such rotating black
world gravity theorie§10-13 (see also Refd14,15). The  holes[19]. It is important that the Myers-Perry solution is
brane-world theories are built on the basic idea that the gesupposed to be the most relevant to describe the “labora-
ometry of our physical Universe is indeed a “three-tory” black holes in high energy experimenf$7]. In this
brane”’—a (3+1)-dimensional hypersurface embedded incontext some essential features of the Myers-Perry solution
fundamental higher dimensional space. The size of the extria five dimensions, such as the existence of a Killing tensor
spatial dimensions may be much larger than the conventionaind the separability of variables in the Hamilton-Jacobi
Planckian length £107 33 cm). Thus, in contrast to the equations of motion, as well as quantum radiation from a
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five-dimensional black hole, were explored[2D,21]. field produces an inductive electric field which is determined
However, the Myers-Perry solution is not unique in five by the superposition of two independent Coulomb parts con-
dimensions, unlike its four-dimensional counterpart, the Kersistent with the two angular momentum parameters and two
solution. Emparan and Re4R2] found a rotating black ring nonvanishing components of the magnetic field.
solution in five dimensions with the horizon topology of We shall also examine the case when a five-dimensional
S?x S, which could have the same mass and spin as thblack hole may have an electric charge small enough that the
Myers-Perry solution. As for the static case, the authors oSpacetime is still well described by the Myers-Perry solution.
[23,24] have proved that in this case, remarkably, the uniquetn this case the rotation of the black hole must produce a
ness property survives. Another essential problem is the statipole magnetic field. We shall establish that the black hole,
bility of higher dimensional rotating black hole solutions. in fact, possesses two independent magnetic dipole moments
Recently, in[25] it has been argued that the Myers-Perry determined only by its charge, mass, and angular momen-
solution becomes unstable for the case of an arbitrarily largeym.
rotation parameter for a fixed mass. It is clear that, in the The paper is organized as follows. In Sec. Il we recall

general case, the full analytic theory of perturbations ofsome of the properties of the Myers-Perry metric for a five-
higher dimensional rotating black holes is needed to resolvgimensional black hole. We describe the Killing isometries

the stabilitiy problem. In the static case the stability of higherys the metric. its mass parameter, and specific angular mo-
dimensional black holes was proved[i26]. ’ '

. . . menta. We also give the precise definition of the angular
In this paper we shall study further properties of a five- g P g

. . X _ velocities for stationary observers in the Myers-Perry metric
dimensional rotating black hole in the presence of an exter-

o o : .~ and define locally nonrotating orthonormal fram&slRFs)

nal magnetic field, which is supposed to be uniform at infin- . . S .
ity. We shall consider the configuration of the magnetic fieldand the'.r dual baS|s_ forms. In Sep. l.” we be.gln V\."th a pnef
aligned with the angular momenta of the black hole. In othetdescrlptlon of a un!form magnetic f|_eld in five dimensions
words, the magnetic field shares the biazimuthal symmetr .nd construct thg_flvg—vector.potentlal for the Maxwell test
of the Myers-Perry spacetime and has only two nonvanishin§€!d using the Killing isometries of the Myers-Perry space-
components. In order to construct the corresponding solutiofMe: Here we also calculate the magnetic flux crossing a
of the Maxwell field equations in the background of the Portion of the black hple horizon. The QOmlqant orthonormgl
[27] that in a vacuum spacetime one can obtain the solutiofiest frame of a weakly charged Myers-Perry black hole, as
for the Maxwell test field by using only isometries of that Well as its magnetic dipole moments, are calculated in Sec.
spacetime. Earlier, this fact was used in four-dimensionalV. Finally, in Sec. V we prove that a five-dimensional
general relativity to construct the solution for the electro-weakly charged Myers-Perry black hole must possess the
magnetic field around a Kerr black hole immersed in a uni-value of the gyromagnetic ratig=3.
form magnetic field 28]. In this analysis the temporal and
axial Killing vectors of the Kerr spacetime were used as a
vector potential for the Maxwell test field. In particular, it Il. FIVE-DIMENSIONAL ROTATING BLACK HOLE
has been found that the so-called Wald effect occurs; the
rotation of a black hole in an asymptotically uniform mag-
netic field causes an inductive potential difference between The metric of a rotating black hole in five dimensions
the event horizon and infinity, whereby the black hole mayfollows from the general asymptotically flat solutions 8 (
acquire an inductive electric charge. +1)-dimensional vacuum gravity found by Myers and Perry

In four dimensions the rotation group $(3) and there [19]. In Boyer-Lindquist type coordinates it takes the sim-
always exists a rotation axis consistent with only one indeplest form given by
pendent Casimir invariant. However, in five dimensions the

A. Myers-Perry metric

rotation group isSO(4), which possesses two independent 4= —d2+3 fdr2+d02 1 (r2+ a2)sir? 0 dg?
Casimir invariants. These two Casimir invariants, in turn, are A

associated with two independent rotations of the system. In ) )

other words, a rotating black hole in five dimensions may +(r?+b?)cos o dy

have two distinct planes of rotation specified by appropriate m

azimuthal coordinates, rather than an axis of rotation. In ac- + g(dt—asin2 6do—bcog 0dy)?, @)

cordance with this, the stationary and asymptotically flat

Myers-Perry metric admits three commuting Killing vector

fields, which reflect the time-translation invariance and bi-

azimuthal symmetry of this metric in five dimensions. We Where

shall use these Killing vectors to construct the five-vector

potential for a test electromagnetic field, when the Myers- s o )

Perry black hole is placed in an asymptotically uniform mag- X =r?+a’sir’ g+b? cos 0,

netic field of a configuration with biazimuthal symmetry. We

shall show that a rotation in two distinct planes of a five-

dimensional black hole immersed in a uniform magnetic A=(r?+a?)(r?+b?—mr?, 2)
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andmis a parameter related to the physical mass of the black b=¢+tan Yalr), P=y+tan X(b/r).

hole, while the parameteesandb are associated with its two

independent angular momenta. For the metric determinanyy, the other hand, faa=b=0 we have the Schwarzschild-

we have Tangherlini static solution in spherical bipolar coordinates. It

) is clear that, in general, the metfit) admits two orthogonal

V=g=rX sing coss. () two-planes of rotation, the-y plane,z=w=0 and thez-w

plane,x=y=0, which are specified by the azimuthal angles

¢ and ¢, respectively. These angles both range from 0 to

2, while 6 is the angle between the two orthogonal two-

The components of the inverse metric have the following
forms:

mr2 A planes varies in the interv@D,7/2]. As a consequence, the
gt=—|1+<+-—|, 9"'=—1, metric reveals the following obvious invariance properties:
3 A% r’s, under the simultaneous inversion of the time coordirtate
— —t and the angle®— — ¢, »— — ¢, and under the trans-
oL gy_ _ mab formation
9= 9 AS
a
o MaAr?+D) ach, ¢y, fogb ®
’ AT . | |
The biazimuthal symmetry properties of the five-
1] 1 (r2+b?)(b%—a%) —mb? dimensional black hole metric) along with its stationarity
¢¢:§ 2 + A , imply the existence of the three commuting Killing vectors
sinco
mb(r2+a2) §(t)=r9/(9t, §(¢):(9/(7¢, §(¢)=(9/r9¢ (10)
-~ "7
9 A, ' The various scalar products of these Killing vectors are ex-
pressed through the corresponding metric components as fol-
1] 1 (r2+a?)(a?—b?)—ma? lows:
2 +
2| cogo A m
(4) f(t)'f(t):gtt:_l"‘g,

The event horizon of the black hole is a null surface de-
termined by the equatiog' =0, which implies that
HORION

2
r’+a%+ ?sin2 6) Sir? 6,
A=(r’+a?(r?+b%—mr?=0. (5)

The largest root of this equation gives the radius of the black

ma
hole’s outer event horizon. We have €0 @)= =~ ?smz 0.

1
2_ T 2 W2 2 2\2_ Aa2n2 mb?
rh_z(m a’—b?+\(m—a’—b?)?—4a%h?). (6) g(w).g(lﬂ):g¢¢(r2+b2+—co§ 0)0052 6,

2

Notice that the horizon exists if and only if mb
& ==~ TCOS2 0,

a’+Db?+2|abl<m, 7
so that the conditiorm=a?+b?+2|ab| or, equivalently, mab
r2=|ab| defines the extremal horizon of a five-dimensional §(¢)‘§(¢)=9¢¢=T5m2 6 cos 6. (11
black hole.
In the absence of the black holen¢0), the metric(1) The Killing vectors(10) can be used to give a physical

reduces to the flat one written in oblate bipolar Coordi”atesinterpretation of the parametems, a, andb involved in the
The latter can be readily cast in the Minkowski form using metric (1); namely, following the analysis given [29], one

the transformation of coordinat¢20] can obtain coordinate-independent definitions for these pa-

~ ~ rameters. We have the integrals
x=Vr?+a’singcosp, y=r?+a?sinésing, g
~ ~ 1 .
z=1r2+b?cosfcosy, w=r2+b?cosdsing, M= 4 35 Efyd2 (12)
(8 77
where and
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1 momentum vanishg$0,31]. We define a locally nonrotating
j@=am=—-— 3€ g@;dﬁlzw, observer in the Myers-Perry metric in a similar manner. Let
Am us write
b § .y 13 UF=uk(r,0)=a(éfy + Qaéln t Qnély). A7
Jp=bm==""3 (A

where u* is a unit vector of the five-velocity of a locally
nonrotatmg observer amj is a normalization constant de-

infinity, t=const surface |mpI|es’—u”—0 and

1 ty b4 =0
081~ 5V Gy OXNDEND, (19 Gigtl T Gag 7T Gouli"=5

the semicolon denotes covarlant differentiation, and we have

j (2 andjp, associated with rotations in the and ¢ direc-  U“(r.6). Thus we obtain

tions, respectively. We note that with these definitions the by
relation between the specific angular momentum and thrp U¢ _ 91940 GteYyy _ am(r<+b%)

@~ - J
mass parameter Ic_>oks exactly like the eorrespondmg relatio ut 9s090s— g<2¢>¢ A3 +m(r2+a?)(r2+b?)
(J=aM) of four-dimensional Kerr metric.

To show that the definitions given in Eq42) and(13) do

. . v _ 2 2
in fact correctly describe the mass and angular momenta pag, _ Y~ _ 91094y~ 9t8ss _ bm(r+a%) _
rameters we can calculate the integrands in the asymptotic Ot 9pe9yy— gfbw AS +m(r2+a?)(r2+b?
regionr —o. The dominant terms in the asymptotic expan-
sion have the form (19
1 In the case that eithdr=0 ora=0, instead of the above
EB=— + (9 expressions we have either
Ot Gty
2amsirte [ 1 Qa==g, o Cw=—y 20
tr __ "~ — Lol = [ b
(#) r3 8/’

which are closely reminiscent of the corresponding relation

for the Kerr black hole in four dimensions. At large distances
tr _ 2bmcos'6 1 from the black hole, the relationd9) can be written in the
=——+0| —|. (15
() r3 r5 form
The substitution of these expressions into the form(l2s i) J(b)

Q@="3+0 +0

and(13) verifies them. On the other hand, the relation of the ) o Q= ) Y

above parameters to the total madsand the total angular
momental,) andJy, of the black hole can be established

X ) i ; which reveals the remarkable property of the Myers-Perry
using the formulas given ifil9]. We obtain that

black hole, namelythe dragging of inertial frames both ¢

3 4 4 and ¢ two-planes of rotation. Clearly, the effect of “bidrag-

m=o-M, jo=—dw, In=—Im- (16) ging dlseppears at spatial |nf|n_|ty. However, tovyard th_e
37 ™ ™ event horizon of the black hole it increases, tending to its

constant value on the event horizah£0). From Eqgs(19)
These relations confirm the interpretation of the parameterge obtain

m, a, andb as being related to the physical mass and angu-

lar momenta of the metri¢l). a

Q=
@) r’ +a?

Qpyn= (22

2 2"
B. Locally nonrotating observers reth
To examine further properties of the five-dimensionalThese quantities can be interpreted as angular velocities of
Myers-Perry black hole, as well as physical processes neahe black hold19]. In order to show this, one needs to know
such a black hole, it is useful to introduce a family of locally the isometry properties of the horizon geometry. Following
nonrotating observers. In the four-dimensional case a locallyhe Hawking approach in four-dimensional geometry of the
nonrotating observer has a vector of velocity orthogonal taKerr black hole[3], we suppose that the isometry of the
the t=const surface in the Kerr geometry and its angularevent horizon of a five-dimensional black hole is described
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by a Killing vector, which must be a linear combination of = We note that the corresponding basis one-forms and their
the three Killing vectors given in Eq10). Thus, we can take duals associated with an orthonormal frame of a locally non-
it in the form rotating observer moving in the direction are obtained
from the expressions given above simply by the transforma-
X= &0 T Q@ynée) T Qwmnéy) - (23)  tion ¢ .

One can easily verify that this vector becomes null at the
surfaceA=Q, ie. itis tangent to the null surface_ of_the IIl. UNIEFORM MAGNETIC FIELD IN THE BACKGROUND
horizon. This means that stat!onary observers moving in the OF A FIVE-DIMENSIONAL BLACK HOLE
¢ and ¢ two-planes of rotation become corotating along
with the horizon with the local angular velociti€22). In
other words, the event horizon of the five-dimensional
Myers-Perry black hole is, in fact, the Killing horizon deter-  In four-dimensional gravity the behavior of electromag-
mined by the vectoy. netic fields in the background of a rotating black hole de-
From what we said above about the locally nonrotatingscribed by the Kerr metric has been investigated by many
observers, it also follows that with any such observer one caguthors[28,32-34 (see also Ref.35] for a review. In par-
associate an orthonormal frame. The form of the metridicular, Wald has proposed the most elegant way of describ-
given in (1) enables us to choose the appropriate basis onddd the behavior of electromagnetic fields near a rotating
forms of these frames. In particular, for a locally nonrotatingblack hole which is placed in an originally uniform magnetic
observer moving in thep two-plane we can choose an or- field aligned with the axis of symmetry of the black hole
thonormal frame(LNRF) with the following basis one- [28]. The Wald approach stems from the well known fact

A. Uniform magnetic field in a five-dimensional flat spacetime

forms: [27] that a Killing vector in a vacuum spacetime serves as a
vector potential for a Maxwell test field in that spacetime’s
2 2 |12 i
. Oy 9669y~ 9%y background. Therefore one can construct a solution for the
® =0~ Guu (a)g—W dt, Maxwell test field in the background of a vacuum spacetime
i

simply by using the isometries of this spacetime.
21 We shall apply this approach to examine the behavior of a
w?ﬁ:(gwgw 9¢¢/> (dp— Q) d), Maxwell test field around a five-dimensional black hole de-
Iyy scribed by the metri€l) when the black hole is immersed in
an asymptotically uniform magnetic field. We recall that, in
general, the electromagnetic field in five dimensions can be
' described by an electric one-form field and magnetic two-
form field. In other words, four of the total ten independent
sz(grr)l/zdr, compone_nts_of the e_Iectromagngti_c fiel_d tensqy, describe
the electric field, while the remaining six components corre-
spond to the magnetic field. We shall consider the case of a
magnetic field configuration which is stationary and uniform
at infinity and possesses biazimuthal symmetry as well. Then
it is clear that the corresponding electromagnetic field tensor
12 must share all isometries of the black hole’s spacetime. On
these grounds, it is also clear that there must exist only two

; 9ty . Yoy
w’=(g, )1’2(d¢+ —~dt+=""d¢
" py  Gyy

0= (g49)2d0, (24)

while the dual basis is given by

2 2
9ty o Y9e9us™ Yoy

Ot — 9uu (a)

i =

Yy nonvanishing components of the field tensor that describe a
uniform magnetic field in our case. That is, we have
I Gt a9y 9
[ - B )
144 B=Fy,, H=F,,, (26)
2 \—-12
€;= (M) (i ey i) where we have used the notatidBsindH for the magnetic
Yy I Gyy Y field strengths associated with tley and z-w two-planes,
respectively. We note that these quantities are reminiscent of
1 d the two independent angular momenta given in Edf),
&= (g )1/207_,/,’ which are, in turn, the nonvanishing components of the un-
44 derlying angular momentum two-form. In this respect, the
magnetic field components in our model are aligned with the
&= 1 4 corresponding angular momenta.
(g2 01’ In the following we shall need the expression for the com-
ponents of the electromagnetic two-form fiekd written
1 9 down in bipolar coordinates. By making use of the transfor-
e)=—:—. (25 mations(8) we obtain, instead of Eq26), an expression of
(9pp)H? 90 the form
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F=Brsiné(sinddr/\d¢+r cosd do/\d¢) On the other hand, any Killing vectdrsatisfies the equation
+Hr cosé(cosddr/A\dy—r sinodo/N\dy), (27) &MY +REEV=0. (30

which describes a uniform magnetic field of a configurationComparing the two equation®9) and (30) one sees that
with biazimuthal symmetry in a flat five-dimensional space-they are the same in a vacuum spacetirRé (0). Thus,

time. one can use a Killing vector as a vector potential for a test
Maxwell field [27]. Following this fact, we shall seek for a
B. Five-vector potential five-vector potential of the form
It is remarkable that using only the isometries of the
g ony At=agf+ BEL, T vEL, (3D)

Myers-Perry spacetime described by the temporal Killing

vector &) and two azimuthal Killing vectorg(,) and£)  \herew, 8, andy are arbitrary parameters. Let us empha-
one can construct the five-vector potential for the Maxwellgize that in the general case this vector potential will also

test field in this spacetime. Indeed, the homogeneous MaxXjegcripe a test electric field so that the black hole is charged.
well equations, in the Lorentz gauge We assume that this electric charge is small enough,

A% =0 (28) <M, that the spacetime can still be adequately described by
Lol the unperturbed metricl).
have the form To determine the unknown parameters in E3{) first we
calculate the corresponding electromagnetic two-form feld
ARV —RM, AY=0. (29 in the metric(1). We obtain

msin

26
52 [a(b?—a?)+ Ba(r?+a?) — yb(r?+b?)]dt/\d o+ 2r sir? 6

2mr
F=—AdtA\dr+
22

am
B+ Sz A dr/Adé

bm ] am
+2rcog 0| y+ ;A dr/A\dy+sin 26| B(r2+a?)+ ;[B— a(r’+a? —yb(r?+b?]|deNd¢
) bm
—sin 26| y(r?+b?)+ ;[B— a(r?+b?% —pa(r’+a?)]|do/\dy, (32
|
where for the sake of brevity we have used the notation Having done this, we obtain
A=a— Basir? 6— ybcog 0 (33 Q aB bH
“omt2 v 37
and
y ) — Finally, the five-vector potential for the electromagnetic field
B=Ba(r?+a®+3)sin® 6+ yb(r*+b*+3)cos 6. around a rotating and weakly charged black hole in a uni-
(34 form magnetic field can be written in the form
In the asymptotic regiom —«, this expression takes the Q B H
form A”:_ﬁ ot E(gf‘¢)+a§ﬁ))+ E(f&ﬁbgﬁ))'

F=2prsind(sinddr/A\d¢+r cosd do/Ndg) (38)
+2yr cosf(cosfdr/A\dy—r singdoAdy). (35  From this expression, it follows that the five-vector potential
in the background of the Myers-Perry spacetime consists of a
superposition of the Coulomb-type part and the asymptoti-
cally uniform magnetic field. It is important to note that the
Coulomb-type part, which is generated by the temporal Kill-
ing vector, does not vanish even when the electric charge of
the black hole is zero@=0). There are two independent
1 contributions to the Coulomb field of the black hole. The
Q=— ® F#d% . (36) physical reason underlying this phenomenon is that a rota-
41? . tion of a five-dimensional black hole in a uniform magnetic

From a comparison of Eq$27) and (35), it follows that 8
=B/2, y=H/2. The remaining parameter can be deter-
mined from examining the integral¢2) and(13) along with
the integral for the electric charge of the black hole
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field produces an inductive electric field associated with thavhere the potential one-forrA is determined through Eg.
two independent and two-planes of rotation of the black (38) with Q=0 andéZ is the boundary oE. For our pur-
hole as well as two independent components of the electrgpose, it is convenient to rewrite the potential in terms of the
magnetic field tensor. It is seen that in our model the blackilling vector y defined in Eq.(23). We obtain

hole acts like a “dynamo” that causes an electrostatic poten-
tial difference between the event horizon of the black hole
and an infinitely distant surface. Following the approach in
four-dimensional casg36], we shall define the electrostatic
potential of the event horizon with respect to the Killing ~
VeCtOf(23) as follows: A= E(g(d,)—aQ(a)h§(¢)—aQ(b)h§(¢))

1 -
A=5(aB+bH)x+A,

(I)h:A'X:AO—'_Q(a)hAqﬁ—’_Q(b)hAxp' (39) H
. . + 5 (E) = DL wyné ) —bLayné(g)), (46)
Then, for the electrostatic potential difference between the 2°°W I (@n%(9)

event horizon and an infinitely distant surface, we find ) o
where we have used the same notation for Killing one-form

Q—amB-bmH fields. The first term in this expression is proportionalyto
- Y5 - (40) and therefore its contribution to the fluX at the horizon
vanishes. For the rest, taking into account &) we obtain

This potential difference is exactly of the same form as if it

were produced by the electric charge 5.1 Bry—Hab N Hri—Bab
2\ r2+a2 " r24p2

AD=0,— P, = o

|- @D
O=Q—-amB-bmH. (41)
) ] ] - ) ) This expression, and hence the fl#6), vanishes precisely
Itis obvu_)us t_hat this charg@ will be quickly ne_utrallzed at the extremal horizon of the black holg € ab), provided
(the potential difference vanishedue to a selective accre- h5tg=H. Thus, when the magnetic field strengths associ-
tion process of charged particles, provided that the black holgieq with thex—y andz—w two-planes of rotation are equal
is surroundeql by an ionized me_didrAs a r_esult of this the ;, magnitude, the magnetic flux is expelled from a five-
black hole will acquire the physical electric charge dimensional black hole as the extremality in its rotation is
_ _i . approached. In this case, a portion of the black hole horizon,
Q=amBtbmH=jB+juH. 42 ke its four-dimensional counterpart, acts as the surface of a

We note that in the degenerate case wherb andB=H  Perfectly diamagnetic obje¢87].

the above expression goes over into the form
IV. MAGNETIC DIPOLE MOMENTS

=2amB, 43 . . . . .
Q “3) We now turn to the consideration of a five-dimensional

which is reminiscent of its counterpart for a Kerr black hole Weakly charged rotating black hole. It is clear that the rota-

[28]. tion of such a black hole must produce a dipole type mag-
menta of the black hole E¢42) can be written as acterized by two independent rotation parameters;

accordingly, one may expect that it will acquire two indepen-
8 4 dent magnetic dipole moments as well. We shall determine

Q= g(aM B+ bmH)Z;(J(a)B+J(b)H)- (44 the value of these magnetic moments.
We begin with the expression for the electromagnetic

Thus, a five-dimensional black hole rotating in a uniform two-form field
magnetic field of a configuration with biazimuthal symmetry
will be charged up to the value given by Eg4). ~Q > o
To conclude this section we shall calculate the magneticF_ §[r dr/\dt+(b®—a%)sind cos¢ do/\dt]
flux crossing a portior®, of the black hole event horizon.

This flux is governed by the line integral on the horizon Qasiné
- T[r sinddrAd¢—(r?+a?)cosfdo/\d¢]

f=f A, (45)
9z Qbcosé Lo
- T[r cosfdr/A\dy+ (re+b%)sinodoNdy],
!n the brane-world scenario, when charged particles can live only (48
on the brane, this conclusion also remains true. In the presence of a
plasma of charged particles located on the brane, there will be which is obtained from Eq(32) with B=0, H=0. The as-
selective accretion process reducing the ch&ge sociated potential one-form can be written as
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A= dt—asir §dg—bcod ody). (49 B=—lz, "F="(Ew/\F). (55)

_Q
23,
o _ . _This can also be rewritten in the alternative form

In obtaining this expression we have gauged the potential

(38) according to the transformation

Q
ﬁdt

1
B=Z\/—gewaﬁygﬁ)F”“dxﬁ/\dXV. (56)
A=A— (50)

Substituting into this expression the contravariant compo-
to provide its vanishing behavior at infinity. We shall also nents of the electromagnetic field ten<6), we obtain

need the contravariant components of the electromagnetic i
field tensor, which are given by Qbsiné

22

[rsingdr/\d¢—(r’+a?)cosgdo/\de¢]

_ Q(r*+a®)(r*+b? Q(b%—a?)sin 26

F Fll=—————— acosé
rs? 233 +QE—Zcose[r cosfdr/A\dy
2 2 2 2
pro_ QATHDY o, QbrTHaY +(r?+b?)sing de/\dy], (57
rs? rs?3
which in the asymptotic rest frame of the black hole has the
. Qacotd o Qbtand - following orthonormal components:
33 33 ... Fg Qa 1
_ o Biy=Fos=—F—_ —=—,C0s0+0O| —/,

Next, we shall define the electric field, as well as the resing r r
dipole magnetic field, in the asymptotic rest frame of the
black hole. We start with the electric one-form fiédwvhich, B  Fg Qa . 1
in the spacetime of dimensiofis can be defined as follows: Boi=For=rging "~ r—43|n0+(9 6/

E=—i, F=(—1)P*(&n/\*F), 52
ey F= (=D (E/A\'F) (52 T )
_ o . _ By=Fyy=———=——sino+0| —|,
where &)= £y, dx* is the timelike Killing one-form field r2 cosé r4 r
and thex operator denotes the Hodge dual. Substituting Eq.
(48) in Eqg. (52 we obtain the following expression for the Fry Qb 1
lectri -f field in th i€L): co == A -
electric one-form field in the metri(l) Bya=Fry v o cosf+0O k (58
E= ;[r dr+(b?—a?)sinf cosgda]. (53 with all others vanishing. The above expressions describe the

dipole magnetic field created by a five-dimensional weakly
charged rotating black hole. We see that far from the black

The orthonormal components of the electric field in thepqe'the dominating behavior of the magnetic field is deter-
asymptotic rest frame of the black hole are obtained by prog,ined only by the two independent quantities

jecting (53) on the basig25). We have

9 , 1 =08, wrp=Qb, (59
Ei= ”_r_3jL 5/ which can be thought of as the magnetic dipole moments of
the black hole. We conclude that a weakly charged rotating
1 black hole in five dimensions possesses two independent
Ee—FbE:O( _)’ magnetic moments specified only in terms of the electric
ro charge of the black hole and its two rotation parameters.
E3=F3i=0. (54) V. GYROMAGNETIC RATIO

We note that the dominant component of the electric field is It is now natural to address the gyromagnetic ratio of the
purely radial and the associated Gaussian flux of this radidive-dimensional weakly charged rotating black hole we dis-
field gives the correct value for the electric charge of thecussed above. We recall that one of the remarkable facts

black hole. about a charged rotating black hole of four-dimensional gen-
The dipole magnetic field of the black hole is describederal relativity is that it can be assigned a gyromagnetic ratio
by the magnetic two-form defined as g=2 just like the electron in Dirac theof\88]. The param-
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eterg is defined as a constant of proportionality in the equa- B=—do, (65)
tion
where
SX (60)
M~=057
2M cp=%(bsin2 0dd+acod odi). (66)

whereM is the mass,)) is the angular momentum, ar@ is

the electric charge of the four-dimensional black hole. From this expression it follows that in the asymptotic rest
Turning now to the case of a weakly charged black hole irframe of the black hole the magnetic potential one-form de-

five dimensions and comparing Eq4.3) and (59), we see termines the two magnetic dipole moments, just as the twist

that the coupling of rotation parameters of the black hole toone-form(64) determines the two specific angular momenta

its mass parameter to give the specific angular momentaf the black hole. From Eqg64) and (66) we read off the

looks exactly the same as their coupling to the electric chargeelation

to define the magnetic dipole moments. Thus, we may write

the analogue of Eq60) in five dimensions as follows: p=w, 67)
_Qiwm _ Qi
KO~ m =3 oM’ (61)  which, obviously, can also be rewritten in the form (6fl).

This proves that a five-dimensional Myers-Perry black hole
where we have used the relatiofi) and the subscript in- endowed with a small enough electric charge must have a
dexi refers to either the parametaror b. From a compari- gyromagnetic ratio of valug=3. The same value of gyro-
son of this equation with the classical relatio®0), it be-  magnetic ratio has been found for a supersymmetric rotating
comes apparent that a five-dimensional weakly chargetilack hole[39] described by the Breckenridge-Myers-Peet-
rotating black hole can be assigned a gyromagnetic gtio Vafa (BMPV) five-dimensional solutiofi40].
=3.

Next, following the basic arguments ¢28], we shall VI. CONCLUSIONS
prove the valugg=3. For this purpose, we shall define the ) ) ) )
twist [6] of a timelike Killing one-form fieldé,, which in ~ We have discussed the special properties of a five-
five dimensions is the two-form field given by dimensional rotating black hole described by the Myers-

Perry metric in the presence of an originally uniform mag-

1 . . netic field. The configuration of the magnetic field is
Q=3 "(¢u/\d&y)- (62)  supposed to have biazimuthal symmetry, just like the black
hole spacetime itself. In this case the magnetic field has only

Physically, this quantity measures the failure of the timeliketwo nonvanishing components aligned with the two angular
Killing one-form field to be hypersurface orthogonal. Evalu- momenta of the black hole. We have also allowed the black

ating this quantity in the metri¢l), we obtain hole to have an electric charge small enough that the space-
time can still be described by the Myers-Perry solution.
bmr bm(r2+a?) We have constructed the five-vector potential describing
O=- gsm2 odrA\d¢+ —22 sin@cosfde the test Maxwell field in the Myers-Perry spacetime using

the Killing isometries of this spacetime. The intriguing fea-
ture of this model is the appearance of nontrivial gravitomag-
amr X . . . .

Adgp— —2co§ gdr/A\dy netic phenomena; a rotation of a flve-dlm_ensm_nal black hole
in a uniform magnetic field of given configuration produces
an inductive electrostatic potential difference between the

am(r’+b? event horizon and an infinitely distant surface. This potential

— —————sinf#cosHdo/\dy, (63 ) L .

32 difference comes from the superposition of two independent

Coulomb fields arising due to rotations in two distinct two-

which implies the existence of the twist potential one-form planes and two nonvanishing components of the magnetic
field. Of course, in the case of an ionized medium surround-
ing the black hole, the potential difference will be quickly
neutralized by a selective accretion process, thereby provid-
ing a mechanism for charging up the black hole.
The components of this quantity in the asymptotic rest frame We have also described a dipole magnetic field around a
of the black hole show that the failure of the timelike Killing weakly charged rotating black hole in five dimensions and,
vector to be hypersurface orthogonal is completely deteras expected, it turned out that the black hole possesses two
mined by the specific angular momenjtg,=am and j independent magnetic dipole moments determined only by

w=%(bsin2 6d¢p+acos 0dy). (64)

=bm of the black hole. its electric charge, mass, and angular momentum parameters.
On the other hand, the magnetic two-form fi€k¥) im-  In many aspects the gravitomagnetic phenomena described

plies the magnetic potential one-form determined through thare qualitatively closely reminiscent of their counterparts for

equation a four-dimensional Kerr black hole immersed in a uniform
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magnetic field. However, there also exist some essential difretic field on the stability of circular motion around a five-
ferences. In particular, we have shown that the gyromagnetidimensional Myers-Perry metric.
ratio for a five-dimensional weakly charged Myers-Perry
black hole isg= 3.
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