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Black hole fragmentation and holography

M. Cadoni*
Dipartimento di Fisica, Universita` di Cagliari, and INFN sezione di Cagliari, Cittadella Universitaria 09042 Monserrato, Italy

~Received 24 November 2003; published 23 April 2004!

We discuss the entropy change due to fragmentation for black hole solutions in various dimensions. We find
three different types of behavior. The entropy may decrease, increase, or have a mixed behavior, characterized
by the presence of a threshold mass. For two-dimensional~2D! black holes we give a complete characterization
of the entropy behavior under fragmentation, in the form of sufficient conditions imposed on the functionJ,
which defines the 2D gravitational model. We compare the behavior of the gravitational solutions with that of
free field theories ind dimensions. This excludes for a broad class of solutions, including asymptotically flat
black holes, the possibility of finding a duality between gravity and a field theory, which realizes the holo-
graphic principle. We find that the most natural candidates for holographic duals of the black hole solutions
with mixed behavior are field theories with a mass gap. We also discuss the possibility of formulating entropy
bounds that make reference only to the energy of a system.
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I. INTRODUCTION

One of the most striking novelties in the research
gravitational physics is the possibility that gravity ind di-
mensions could be described by a local field theory ind
21 dimensions@1–3#. The theoretical evidence for such
holographic description of gravity is mounting. Indicatio
that holography could be a fundamental feature of the gr
tational interaction come from different directions: strin
theory, black hole physics, cosmology@4–6# ~for a recent
review see@7#!. A particularly interesting output of thes
investigations has been the formulation of stringent ho
graphic bounds for the entropy of a system occupying
given region of space@5,8#.

An explicit realization of the holographic principle ha
been found only in particular cases, essentially for anti–
Sitter ~AdS! ~and de Sitter! gravity and the so-called anti–d
Sitter conformal field theory~AdS-CFT! correspondence
@1–3#. A general way to explicitly realize the holograph
principle for generic gravitational systems, in particular,
gravity in asymptotically flat spacetimes, is still lacking.
particular, it is not clear if the realizations of the holograph
principle always take the form of a correspondence betw
d-dimensional gravity and a field theory ind21 dimensions,
or if there could be some alternative, still unknown, realiz
tion of it. If the holographic principle has to be considered
genuine feature of every quantum theory of gravity, o
could explain our lack of understanding of the holograp
principle as a lack in understanding quantum gravity. Ho
ever, there are strong indications that holography is a fea
of gravity that already appears, and therefore should be
plained, at the semiclassical level. The Bekenstein-Hawk
area law for the black hole entropy is the most striking e
ample of holographic behavior of a gravitational system t
has to be explained already at the semiclassical level.

An alternative strategy one can use in this context is
explore the similarities and the differences between gra
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and local field theories in order to check at a fundamen
level the possibility of finding correspondences between
two classes of theories. This approach can be very powe
One nice example, discussed in almost every introduct
paper on the holographic principle, is the scaling behavio
the entropy as a function of the volume of the system fo
local field theory compared to that of a black hole. For
local field theory the entropy is an extensive quantity;
scales as the volume of the space. On the other hand
entropy of a black hole scales as the area of the horizon. T
simple fact enables one to conclude that the correspond
between gravity and field theory, if it exists, must beholo-
graphic.

In this paper we will focus on another aspect of the re
tionship between gravity and local field theory, namely,
the dependence of the entropy for composite systems on
energy. Working in the microcanonical ensemble t
entropy-energy relation for a free field theory ind dimen-
sions is given by

S}E(d21)/d, ~1!

which considering two arbitrary excitations with energ
E1 ,E2 satisfies the inequality

S~E11E2!,S~E1!1S~E2!. ~2!

Conversely, asymptotically flat black holes of mass
M1 ,M2 in d>4 dimensions satisfy

S~M11M2!.S~M1!1S~M2!, ~3!

i.e., fragmentation of a black hole of massM11M2 into two
smaller black holes of massesM1 andM2 is entropically not
preferred. Assuming the existence of a gravity–field the
correspondence, one has to identify the black hole ma
M1 ,M2 as excitationsE1 ,E2 of the field theory. It follows
that Eq. ~2! contradicts Eq.~3! and consequently that th
assumed correspondence of gravity and field theory can
be true. Also, skipping this problem, i.e., assuming the ex
tence of black hole solutions satisfying inequality~2! rather
©2004 The American Physical Society21-1
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than ~3!, one is faced by another problem. At first sight E
~2! seems incompatible with every entropy bound becaus
black hole could always increase its entropy by fragment
into smaller black holes.

It is important to notice that the relations~2! and~3! have
a different physical meaning when applied to a field the
or to a black hole. For a black hole these inequalities g
information about the process of fragmentation of a bla
hole. Conversely, for a field theory the inequalities do n
describe the separation of the system into parts; they h
nothing to do with fragmentation. In particular, any interpr
tation of Eq.~2! as describing the fragmentation of a gas
free particles~for instance, in the form of a process of diffu
sion! is misleading. For a field theory Eq.~2! tells us simply
that the entropy associated with a thermal excitation of
ergy E11E2 is less than the sum of the entropies associa
with two single excitations of energyE1 andE2. If we have
a duality relating a gravitational theory with a field theo
satisfying Eq.~2!, we expect that in the field theory excita
tions will exist that are in correspondence with the sin
black hole state and with the composite state. Moreo
these field theory excitations must satisfy Eq.~2!.

In this paper we will analyze in detail for various class
of black holes in various dimensions the validity of the re
tion ~3!. We will show that Eq.~3! holds true only for as-
ymptotically flat black holes. Black holes with differen
asymptotic behavior~for instance, AdS black holes! may sat-
isfy Eq. ~2!. For the two-dimensional~2D! case we will be
able to give a complete characterization of the entropy
composite black holes in terms of the asymptotic behavio
the solution. We will also show the existence of black ho
solutions with mixed behavior, i.e., solutions satisfying eith
Eq. ~2! or Eq. ~3! when the massesM1 andM2 are above or
below some critical valueM̃0. We will argue that this mixed
behavior has a natural counterpart in a field theory with
mass gap. Finally, we also discuss the compatibility of E
~2! with entropy bounds.

II. ASYMPTOTICALLY FLAT BLACK HOLES

Let us first consider thed-dimensional Schwarzschild
black hole (d>4)

ds252S 12
kdGM

r d23 D dt21S 12
kdGM

r d23 D 21

dr21r 2dVd22
2 ,

~4!

whereM is the mass andkd516p/(d22)Vd22 , Vd22 be-
ing the volume of the unitSd22 transverse sphere. The blac
hole entropy is given by the area law

S5
A

4G
5

Vd22

4
~kdLpM !(d22)/(d23), ~5!

whereLp5G1/(d22) is the Planck length.
In order to discuss the inequality~3! on physical grounds

we will make the following assumptions:~1! The theory ad-
mits, at least in some approximation, multi-black-hole so
tions and~2! the gravitational potential energy of the mult
08402
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black-hole configuration can be neglected with respect to
black hole masses. Assumption~1! is necessary in order to
give to a multi-black-hole configuration a precise meanin
whereas assumption~2! assures us that the multi-black-ho
configuration can be treated as a composite system with
binding energy, whose mass and entropy are simply the s
of those of the elementary constituents.

Assumption ~2! is rather restrictive. It can be applie
without problems only to gravitational systems that allow f
‘‘asymptotically free’’ states, i.e., multi-black-hole solution
whose binding energy goes to zero when the constituents
pulled apart. This is the case of asymptotically flat geo
etries whose Newtonian potential, behaving asymptotica
as 1/r , allows for composite states of zero binding ener
When the gravitational potential does not vanish asympt
cally, we cannot define asymptotically free states and in g
eral the binding energy cannot be neglected. This is, for
stance, the case of asymptotically AdS solutions, which w
be discussed in the next section.

If the binding energy of the two-black-hole state cann
be neglected the right hand sides of Eqs.~2! and ~3! do not
give the correct entropy of the composite state. In princip
one could try to compute the binding energy of the state.
gravitational systems not allowing for asymptotically fre
states, this is a very hard task unless one knows the e
solution describing the composite state. For this reason, in
the situations in which assumption~2! do not apply, we will
make no attempt to evaluate the gravitational potential
ergy of the multi-black-hole configuration. Although in the
situations Eqs.~2!, ~3! cannot be used to compare the e
tropy of the single black hole state with the composite o
they can still be very useful to extract information abo
dualities between the gravitational system and the fi
theory. Obviously, now the two excitations of energyE1 ,E2
of the field theory are not in correspondence with the bou
state of two black holes but with some other state of
gravitational theory.

Using Eq.~5! one easily finds that Eq.~3! is satisfied. As
expected, for Schwarzschild black holes the entropy is ma
mized by the single black hole configuration with massM1
1M2. The same holds true for asymptotically flat charg
black holes. Considering, for instance, the four-dimensio
Reissner-Nordstrom solution, one finds for the entropy

S5~MLp1AM2Lp
22Q2!2, ~6!

whereQ is the electric charge of the black hole. Again, fro
Eq. ~6! it follows that S(M11M2).S(M1)1S(M2). There
is one simple argument that can be used to argue tha
equality ~3! holds in general for asymptotically flat blac
holes, at least whenMLp is much bigger than the~eventually
present! black hole charges. The area law givesS
}(r 1 /Lp)d22, wherer 1 is the horizon radius. For asymp
totically flat black holes and whenMLp@Qi , whereQi are
the charges associated with the black hole, the gravitatio
potential is dominated by the Newtonian term so that
have r 1}Lp

(d22)/(d23)M1/(d23). It follows that S
}(LpM )(d22)/(d23).
1-2
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III. AdS BLACK HOLES

The argument presented at the end of the previous sec
does not apply to nonasymptotically flat black holes. For
black holes a general discussion will be presented in the
section. Here we will discuss only the most interesting ca
namely, asymptotically AdS black holes. The entropy-m
relation for thed-dimensional Schwarzschild–anti–de Sitt
black hole (d>4),

ds252S 11l2r 22
kdGM

r d23 D dt2

1S 11l2r 22
kdGM

r d23 D 21

dr21r 2dVd22
2 , ~7!

is rather complicated. However, a simple formula can
found for black holes withMLp

d22ld23@1. In this latter
case we have

S}S M

Lpl2D (d22)/(d21)

. ~8!

Differently from the asymptotically flat case, we see th
now inequality~2! is satisfied. This fact is perfectly consis
tent with the existence of an AdS-CFT correspondence
tween d-dimensional AdS gravity and (d21)-dimensional
conformal field theory. Thed-dimensional black hole entrop
~8! reproduces correctly, after theE5M identification, the
entropy~1! for a free field theory ind21 dimensions.

For the AdS black hole~7! the gravitational potential en
ergy behaves asymptotically asr 2. This implies that the
theory does not allow for the asymptotically free states
scribed in the previous section. Our assumption~2! does not
apply to this case and the binding energy of the compo
state cannot be neglected. This means that, although Eq~2!
is satisfied, fragmentation of the AdS black hole is not n
essarily entropically preferred. Hence, the validity of Eq.~2!
is not in contradiction with the known classical stability
the AdS black hole~7!. The entropy-temperature relation~8!
together with Eq.~2! give us an indication of the existence
an AdS–field theory duality but at the same time tell us t
the gravitational counterpart of the free field excitations c
not be the bound state of two AdS black holes.

Let us now discuss in some detail the three-dimensio
~3D! case, the Banados-Teitelboim-Zanelli~BTZ! black hole
@9#. This case is very instructive not only because it is p
sible to solve exactly the inequality~2! but also because i
clarifies the role played by the black hole ground state in
considerations. The BTZ black hole solution with zero ang
lar momentum is

ds252~l2r 228GM!dt21~l2r 228GM!21dr21r 2df2,
~9!

where the black hole massM is defined with reference to th
M50 black hole ground state ds252l2r 2dt2

1l22r 22dr21r 2df2. The entropy is given by S
52pr 1/4G5(p/l)A2M /G so that Eq.~2! is satisfied for
08402
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every value of the massM. On the other hand, if the blac
hole mass is defined with reference to the full, geodetica
complete AdS spacetime ds252(11l2r 2)dt21(1
1l2r 2)21dr21r 2df2, the mass spectrum looks rather d
ferent. TheM50 ground state is separated from the contin
ous part of the spectrum withM>1/8G by a mass gap. Fo
M>1/8G the entropy is given byS5(p/2lG)A8GM21.

At first sight it may seem rather strange that the therm
dynamical features of the BTZ black hole depend so c
cially on the choice of the zero mass solution. This behav
can be explained by noticing that the zero mass state of
BTZ solution~9! is separated from the full AdS spacetime b
a tower of states describing naked conical singulariti
These states are not physically allowed so that a mass
separating the full AdS spacetime from the continuous p
of the spectrum, is produced. It is the presence of this m
gap that makes the choice of the zero mass solution so
cial for the thermodynamical behavior of the BTZ blac
hole.

Taking for simplicityM15M25M , we see that Eq.~2! is
satisfied only for M>3/16G, whereas for 1/8G<M
<3/16G we haveS(M11M2)>S(M1)1S(M2). We will
come back to this point in Sec. V, where we will argue th
this behavior is typical for a spectrum with a mass gap.

IV. TWO-DIMENSIONAL BLACK HOLES

In d>3 spacetime dimensions it is very difficult to fo
mulate general criteria that enable us to decide if a black h
satisfies either Eq.~2! or Eq.~3!. These criteria can be foun
for 2D black holes. The 2D case is interesting for seve
reasons. Two-dimensional gravity supports a realization
the AdS-CFT correspondence@10#. In two spacetime dimen-
sions we can formulate entropy bounds@11#. Moreover, 2D
black holes can be used to describe black holes in hig
dimensions. Two-dimensional black holes arise as an ef
tive description of the near-horizon, near-extremal behav
of d-dimensional charged black holes and branes. Ev
d-dimensional spherically symmetric solution can be d
scribed, after dimensional reduction, by a 2D dilaton grav
model.

The generic 2D dilaton gravity model~for a recent review,
see@12#! can be completely characterized by a dilaton pot
tial V(F), the action for the model being given byA
5(1/2)*d2xA2g@FR1l2V(F)#. The general 2D black
hole solution takes the form

ds252S J~F!2
2M

l Ddt21S J~F!2
2M

l D 21

dr2, F5lr ,

~10!

whereJ(F)5*V(F) and M is the black hole mass. To b
sure that Eq.~10! describes a black hole we will takeM
>0, F.0, andJ(F).0 a strictly increasing function ofF
@we will therefore haveJ(`)5`]. The temperature and en
tropy associated with the black hole are given by

S52pFh , T5
l

4p
V~Fh!, ~11!
1-3
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whereFh5J21(M ) is the value of the dilaton at the blac
hole horizon.

Using Eq.~10! one easily finds

S52pJ21~M !. ~12!

One can now find sufficient conditions to be imposed on
function J(F) such that Eq.~2! is satisfied; M1 ,M2. Let
us first show that if both conditions~the prime denotes the
derivative with respect toM )

~J21!9~M !,0, ; M , ~13!

J21~M50!50 ~14!

are satisfied then

J21~M11M2!,J21~M1!1J21~M2!, ~15!

which, owing to Eq.~12!, implies that the inequality~2! for
the entropy is also satisfied. The convexity condition~13!

implies for every positive M̂ ,M1 (J21)8(M̂1M1)
,(J21)8(M̂ ), from which it follows that J21(M̂1M1

1M2)1J21(M̂ ),J21(M̂1M1)1J21(M̂1M2). Evaluat-
ing the previous inequality atM̂50 and using condition~14!
one easily recovers Eq.~15!.

Analogously, we can show that if conditions

~J21!9~M !.0, ; M , ~16!

J21~M50!50 ~17!

hold then the inequality~3! is satisfied for everyM1 ,M2. If
(J21)950, identically, then the black hole solution of th
model will satisfyS(M11M2)5S(M1)1S(M2). If ( J21)9
changes sign, we cannot make any definite statement a
inequalities~2! and ~3!.

Any function J21(M ) which is everywhere convex~con-
cave! and strictly growing must diverge forM→` more
slowly ~faster! thanJ215M . It follows that J(F) must di-
verge forF→` faster~more slowly! than J5F. We have
reached an important result: for models satisfying the
quired criteria about the derivatives ofJ21 and J(0)50,
fragmentation of 2D black holes can be entropically p
ferred or not depending on the asymptotic behavior of
functionJ. The black hole solutions of the 2D dilaton gravi
model characterized by a functionJ, which asymptotically
diverges faster~more slowly! than F, will satisfy Eq. ~2!
@Eq. ~3!#.

When J21(0)Þ0 but condition~13! still holds we will
have a mixed behavior. The black hole will satisfy Eq.~2! for
M.M̃0 and Eq.~3! for M,M̃0, whereM̃0 is some thresh-
old mass. Let us first notice that only the caseJ21(0)5F0
,0 has physical relevance. SinceJ21 is a strictly growing
function,F0.0 impliesJ21(M0)50 with M0 negative, i.e.,
the presence of negative masses in the spectrum. Conve
F0,0 implies

J21~M0!50, ~18!
08402
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with M0 positive, i.e., the black hole spectrum is limite
from below by the extremal, nonvanishing value of the ma
M0. In general, the extremal massM0 is simply related to
the threshold massM̃0. Using Eqs.~12! and ~18! one easily
realizes that the entropy of the extremal state is ze
S(M0)50. Depending on the behavior of the dilaton pote
tial at M0 we can have two cases.~1! J21(M0)50 and
V(M0)50. The extremal state has zero entropy and fr
Eq. ~11! also zero temperature.~2! J21(M0)50 and
V(M0)Þ0. The extremal state has zero entropy but non
nishing temperature. In the next section we shall see tha
both cases this behavior can be explained by the presen
a mass gap.

Let us now give some examples to illustrate our gene
results. The simplest model satisfying both conditions~13!,
~14! is the Jackiw-Teitelboim model,V52F. We have
J21(M )5A2M /l, which satisfies both (J21)9,0 and
J21(0)50. For the entropy we getS}AM , from which Eq.
~2! follows for every value of the mass. A more gener
model is given by@13#

V5~h11!Fh, h.21. ~19!

For h.0 the model satisfies the conditions~13! and ~14!.
The black hole entropy is given by

S}~M /l!1/(h11), ~20!

which as expected satisfies Eq.~2!. This class of models
contains, as particular cases, 2D gravity models arising as
near-horizon limit of dilatonic zero-branes@14#, black three-
branes@15#, and heterotic string black holes@16#. It is inter-
esting to note that the entropy-energy relation~20! becomes
that of a free field theory given by Eq.~1! identifying h
51/(d21). This fact gives a hint about the possibility o
finding a correspondence between these 2D dilaton gra
models and a free field theory.

For 21,h,0 the model satisfies the conditions~16! and
~17!. The black hole entropy now satisfies Eq.~3!. An im-
portant particular case is given byh521/2, which describes
the spherical dimensional reduction of the Schwarzsch
black hole. Forh50 we have the Callan-Giddings-Harvey
Strominger model@17#. Eq.~19! gives (J21)950 identically.
The entropy depends linearly on the mass, so that, as
pected,S(M11M2)5S(M1)1S(M2).

As an example of a model satisfying condition~13! but
not ~14! let us first consider the exponential potentialV
5b exp(bF), with b.0. The black hole horizon is locate
at lr 5F5J21(M )5(1/b)ln(2M/l). J21 diverges asymp-
totically more slowly thanM but we haveJ21(0)Þ0. We
therefore expect the presence of a threshold massM̃0 sepa-
rating the two regions of the spectrum where Eq.~2! @Eq.
~3!# holds.

The black hole mass has an extremal valueM>M0
5l/2. However,J21(M0)50 andV(M0)Þ0. The entropy
and temperature of the black hole are

S5
2p

b
ln

2M

l
, T5

b

2p
M . ~21!
1-4
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The ground state has zero entropy but finite tempera
T(M0)5(b/4p)l. Using Eq.~21! and taking for simplicity
M15M25M , one can easily find that the inequality~2! is
satisfied only forM.M̃05l, whereas forl/2,M,l Eq.
~3! holds. Black hole fragmentation becomes entropica
preferred forM bigger than the threshold massM̃0. Notice
that the threshold massM̃0, although of the same order, doe
not coincide with the extremal massM0, we have M̃0
52M0.

As a second example of models withJ21(0)Þ0 let us
considerJ(F)5F211. This is the 2D analogue of the 3D
BTZ black hole discussed at the end of the previous sect
In this case also the black hole mass has an extremal v
M05l/2. However, nowS}T}A(2M /l)21, so that the
extremal state has zero entropy and temperature,S(M0)
5T(M0)50. The threshold mass at which black hole fra
mentation becomes entropically preferred is given byM̃0
5(3/2)M05(3/4)l.

Until now we have considered a system in which the to
energy is constant, i.e., fragmentation of a black hole of m
M into two smaller black holes of massesM11M25M . Let
us now consider systems at constant volume. We will sh
that the energy is minimized when the conditions that ma
mize the entropy are satisfied.

We have to consider the black hole massM as a function
of its radiusR and solve the inequality

M ~R11R2!.M ~R1!1M ~R2!. ~22!

Using Eq.~10! one findsM (R)5(l/2)J(Fh)5(l/2)J(R).
Equation ~22! becomes J(R11R2).J(R1)1J(R2). Be-
cause (J21)9,0 andJ21(0)50 imply, respectively,J9.0
and J(0)50, it follows that conditions~13!, ~14! for the
function (J21) are equivalent to conditions~16!, ~17! for the
function J. As a consequence, whenever conditions~13! and
~14! are satisfied, we have not onlyS(M11M2),S(M1)
1S(M2) but alsoM (R11R2).M (R1)1M (R2). The pro-
cess of fragmentation of a black hole maximizes the entr
if the total mass is constant and minimizes the mass if
total volume is constant. Conversely, if conditions~16! and
~17! hold we haveS(M11M2).S(M1)1S(M2) but also
M (R11R2),M (R1)1M (R2). The configuration with
maximal entropy and minimal mass is now given by t
single black hole.

V. MASS GAP

It is evident that in what concerns the entropy of comp
ite solutions 2D dilaton gravity models satisfying the con
tions ~13! and~14! of the previous section are very similar
free field theories. The mass of the gravitational solution
naturally identified with the energy of the excitation in th
field theory. The same is true for genericd-dimensional AdS
solutions when the mass of the gravitational solution is m
bigger thenLp

d22ld23. We can ask ourselves if the 2D dila
ton gravity models satisfying condition~13! but not~14! also
have a field theory counterpart. More generally, one wo
like to find field theoretical counterparts ofd-dimensional
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black hole solutions whose spectrum exhibits extremalM
Þ0 solutions. The most natural candidates are field theo
with mass gaps. This is rather obvious for the 2D dilat
gravity models discussed at the end of Sec. IV~for instance,
the model with an exponential dilaton potential!, which are
characterized by a ground state of massM0 with zero en-
tropy and nonvanishing temperature. The only way to hav
nondegenerate ground state at finite temperature is the p
ence of a mass gap in the spectrum. The energy gapM0 must
be of the order of the temperature. In fact, for the model w
exponential potential discussed in Sec. IV we haveEgap
5M0}T(M0)}l.

The relationship between black hole solutions and fi
theories with mass gaps seems to be more general. Cr
for the existence of this correspondence are both
asymptotic behavior of the metric and the presence of
extremal solution withM0Þ0. To illustrate this correspon
dence, let us consider a generic field theory whose spect
has a mass gap of energyE0 separating theE50 state from
the continuous part of the spectrumE>E0. We will also
assume that forE@E0 the spectrum is that of a generic fre
field theory and that the entropy of theE5E0 state vanishes
For E@E0 the entropy-energy relation will be given by Eq
~1! which satisfiesS(E11E2),S(E1)1S(E2). On the other
hand, for E'E0, we haveS5S(E2E0) with S(E0)50.
Thus, the inequalityS(E11E22E0).S(E12E0)1S(E2
2E0) will be satisfied at least forE15E25E0. Because for
E@E0 the opposite inequality holds, this implies the ex
tence of a threshold energyẼ0 separating the two regimes, i
complete analogy with what happens for black hole so
tions. This behavior is rather intuitive. For small excitatio
nearE0 the single state of energyE5E11E2 has more de-
generacy than the two states of energiesE1 andE2 because
the states below the gap do not contribute. For excitation
energyE@E0 the contribution of the gap is irrelevant, an
the entropy is dominated by the contribution coming fro
the continuous part of the spectrum.

VI. ENTROPY BOUNDS

The holographic principle in its usual formulation puts
upper bound to the entropy, and hence to the amoun
information, which can be stored in a givenregion of space
S<A/4G, whereA is the area of the surface enclosing t
region. At fixed volume the entropy cannot increase by sp
ting a system into parts, i.e.,S(V11V2)>S(V1)1S(V2).
This inequality is satisfied not only for extensive system
when the entropy scales as the volume of the system,
also when the entropy scales as the area of the surface
closing the system. A holographic bound cannot be viola
by fragmentation. Hence the holographic principle is co
patible with both Eqs.~2! and ~3!. This is true for the holo-
graphic bound but it is not necessarily true for entro
bounds of different types, which can make reference not o
to the volume of the system~or the area enclosing it! but also
to its energy. For instance, the Bekenstein boundS<2pER
@18# refers not only to the linear sizeR but also to the energy
E of the system.

In principle, one could also try to formulate entrop
1-5
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bounds that make reference to nothing but the energy of
system. This could be done following the same line of r
soning one uses to formulate the Bekenstein-Hawk
bound. In this latter case one takes a system in agiven region
of space and finds that its entropy is bounded by the are
the surface enclosing the region. In more detail, when
pumps energy into the system keeping its spatial exten
constant, the entropy increases until the energy equals
mass pertaining to a black hole fitting in the region. A bla
hole forms and the boundS<A/4G is saturated.

Instead, one could take a system with a constantamount
of energy Mand look for a bound on the associated entro
Spreading the system over regions of space with e
decreasing volumes, the entropy will increase until the c
responding Schwarzschild radius is reached. A black h
forms and an entropy boundS<pGM2 is found. The prob-
lem is that this bound cannot be universal. Although
Schwarzschild black hole cannot increase its entropy by fr
menting, we have seen that there exist many black hole
lutions that can increase their entropy through fragmentat
For this simple reason an entropy bound that refers only
the energy of the system cannot be universal.

VII. CONCLUSIONS

In this paper we have discussed the holographic princ
and entropy bounds for composite gravitational systems.
have shown that with respect to fragmentation black h
solutions exhibit three different types of behavior. The e
tropy may decrease, increase, or have a mixed behavio
the last case there will exist a threshold mass separating
regime where fragmentation is entropically preferred fro
the regime where it is not. Moreover, for 2D black holes
have been able to find a complete characterization of
entropy behavior, in the form of sufficient conditions im
posed on the functionJ, which defines the 2D gravitationa
model.

Most of our results rely heavily on the validity of th
assumption~2! of Sec. II, which enables us to neglect th
binding energy in composite black hole states. This assu
tion is restrictive and does not apply to a number of ca
. B
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~for instance, asymptotically AdS black holes!. In this situa-
tion we cannot use our results to describe fragmentation
cesses. Nonetheless, the discussion of Eqs.~2! and ~3! still
gives us information about possible gravity–field theory d
alities.

Our results have a strong impact on the way one
realize the holographic principle. In fact, only for gravi
theories satisfying relation~2! can one hope to find a realiza
tion of the holographic principle in terms of a correspo
dence of gravity and field theory. For gravity theories sa
fying Eq. ~3! this correspondence cannot be realized a
gravity–field theory duality and must necessarily have
alternative, still unknown, form. Because asymptotically fl
black holes, and in particular the Schwarzschild black ho
belong to this latter case we can exclude the existence
correspondence between asymptotically flat black holes
a field theory.

On the other hand, we have seen that the class of gra
theories satisfying Eq.~2! is, at least in the 2D case, rathe
broad. It contains not only AdS gravity, for which th
gravity–field theory duality is well established, but also oth
models, for instance, those with an exponential dilaton
tential. The possibility of finding a gravity–field theory du
ality for these theories is an open question, which deser
further investigation.

Another point of interest is the existence of black ho
with mixed behavior, i.e., exhibiting a transition from a r
gime where Eq.~2! holds to a regime where instead Eq.~3! is
satisfied. We have argued that the most natural candidate
holographic duals of these black holes are field theories w
a mass gap. Finally, our results seem to exclude the poss
ity of formulating an entropy bound only in terms of th
energy of a system: the existence of black holes satisfy
Eq. ~2! will always allow the system to violate the bound b
black hole fragmentation.
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