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Black hole fragmentation and holography
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We discuss the entropy change due to fragmentation for black hole solutions in various dimensions. We find
three different types of behavior. The entropy may decrease, increase, or have a mixed behavior, characterized
by the presence of a threshold mass. For two-dimensi@malblack holes we give a complete characterization
of the entropy behavior under fragmentation, in the form of sufficient conditions imposed on the fukhction
which defines the 2D gravitational model. We compare the behavior of the gravitational solutions with that of
free field theories ird dimensions. This excludes for a broad class of solutions, including asymptotically flat
black holes, the possibility of finding a duality between gravity and a field theory, which realizes the holo-
graphic principle. We find that the most natural candidates for holographic duals of the black hole solutions
with mixed behavior are field theories with a mass gap. We also discuss the possibility of formulating entropy
bounds that make reference only to the energy of a system.
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[. INTRODUCTION and local field theories in order to check at a fundamental
level the possibility of finding correspondences between the
One of the most striking novelties in the research ontwo classes of theories. This approach can be very powerful.
gravitational physics is the possibility that gravity éhdi- ~ One nice example, discussed in almost every introductory
mensions could be described by a local field theorydin paper on the holographic principle, is the scaling behavior of
—1 dimensiong1-3]. The theoretical evidence for such a the entropy as a function of the volume of the system for a
holographic description of gravity is mounting. Indications local field theory compared to that of a black hole. For a
that holography could be a fundamental feature of the gravilocal field theory the entropy is an extensive quantity; it
tational interaction come from different directions: string scales as the volume of the space. On the other hand, the
theory, black hole physics, cosmolod§—6] (for a recent entropy of a black hole scales as the area of the horizon. This
review see[7]). A particularly interesting output of these Simple fact enables one to conclude that the correspondence
investigations has been the formulation of stringent holo-between gravity and field theory, if it exists, must helo-
graphic bounds for the entropy of a system occupying @raphic
given region of spacgs,8]. In this paper we will focus on another aspect of the rela-
An explicit realization of the holographic principle has tionship between gravity and local field theory, namely, on
been found only in particular cases, essentially for anti-déhe dependence of the entropy for composite systems on the
Sitter (AdS) (and de Sittergravity and the so-called anti—-de €nergy. Working in the microcanonical ensemble the
Sitter conformal field theory(AdS-CFT) correspondence €ntropy-energy relation for a free field theory andimen-
[1-3]. A general way to explicitly realize the holographic Sions is given by
principle for generic gravitational systems, in particular, for
gravity in asymptotically flat spacetimes, is still lacking. In
particular, it is not clear if the realizations of the holographic
principle always take the form of a correspondence betwee
d-dimensional gravity and a field theory @+ 1 dimensions,
or if there could be some alternative, still unknown, realiza-
tion of it. If the holographic principle has to be considered a S(E1+E)<S(E)+S(Eyp). @
genuine feature of every quantum theory of gravity, oneconversely, asymptotically flat black holes of masses
could explain our lack of understanding of the holographicy;, M, in d=4 dimensions satisfy
principle as a lack in understanding quantum gravity. How-
ever, there are strong indications that holography is a feature S(M;+Mj,)>S(M;)+S(M,), ©)
of gravity that already appears, and therefore should be ex-
plained, at the semiclassical level. The Bekenstein-Hawkingje., fragmentation of a black hole of mags + M, into two
area law for the black hole entropy is the most striking ex-smaller black holes of massk, andM, is entropically not
ample of holographic behavior of a gravitational system thapreferred. Assuming the existence of a gravity—field theory
has to be explained already at the semiclassical level. correspondence, one has to identify the black hole masses
An alternative strategy one can use in this context is tdM;,M, as excitations€,,E, of the field theory. It follows
explore the similarities and the differences between gravityhat Eq.(2) contradicts Eq.3) and consequently that the
assumed correspondence of gravity and field theory cannot
be true. Also, skipping this problem, i.e., assuming the exis-
*Electronic address: mariano.cadoni@ca.infn.it tence of black hole solutions satisfying inequali®y rather

SxEE-1/d 1)

hich considering two arbitrary excitations with energy
1,E, satisfies the inequality
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than (3), one is faced by another problem. At first sight Eq. black-hole configuration can be neglected with respect to the
(2) seems incompatible with every entropy bound because hlack hole masses. Assumptioh) is necessary in order to
black hole could always increase its entropy by fragmentingyive to a multi-black-hole configuration a precise meaning,
into smaller black holes. whereas assumptiof2) assures us that the multi-black-hole

It is important to notice that the relatio2) and(3) have  configuration can be treated as a composite system with zero
a different physical meaning when applied to a field theorybinding energy, whose mass and entropy are simply the sums
or to a black hole. For a black hole these inequalities giveof those of the elementary constituents.
information about the process of fragmentation of a black Assumption(2) is rather restrictive. It can be applied
hole. Conversely, for a field theory the inequalities do notwithout problems only to gravitational systems that allow for
describe the separation of the system into parts; they haveasymptotically free” states, i.e., multi-black-hole solutions
nothing to do with fragmentation. In particular, any interpre-whose binding energy goes to zero when the constituents are
tation of Eq.(2) as describing the fragmentation of a gas ofpulled apart. This is the case of asymptotically flat geom-
free particlegfor instance, in the form of a process of diffu- etries whose Newtonian potential, behaving asymptotically
sion) is misleading. For a field theory E@) tells us simply  as 1f, allows for composite states of zero binding energy.
that the entropy associated with a thermal excitation of enWhen the gravitational potential does not vanish asymptoti-
ergy E; + E, is less than the sum of the entropies associatedally, we cannot define asymptotically free states and in gen-
with two single excitations of enerdy; andE,. If we have eral the binding energy cannot be neglected. This is, for in-
a duality relating a gravitational theory with a field theory stance, the case of asymptotically AdS solutions, which will
satisfying Eq.(2), we expect that in the field theory excita- be discussed in the next section.
tions will exist that are in correspondence with the single If the binding energy of the two-black-hole state cannot
black hole state and with the composite state. Moreovelbe neglected the right hand sides of E(.and (3) do not
these field theory excitations must satisfy E2). give the correct entropy of the composite state. In principle,

In this paper we will analyze in detail for various classesone could try to compute the binding energy of the state. For
of black holes in various dimensions the validity of the rela-gravitational systems not allowing for asymptotically free
tion (3). We will show that Eq.(3) holds true only for as- states, this is a very hard task unless one knows the exact
ymptotically flat black holes. Black holes with different solution describing the composite state. For this reason, in all
asymptotic behavio(for instance, AdS black holgsnay sat-  the situations in which assumpti@f) do not apply, we will
isfy Eq. (2). For the two-dimensional2D) case we will be make no attempt to evaluate the gravitational potential en-
able to give a complete characterization of the entropy forergy of the multi-black-hole configuration. Although in these
composite black holes in terms of the asymptotic behavior ofituations Eqs(2), (3) cannot be used to compare the en-
the solution. We will also show the existence of black holetropy of the single black hole state with the composite one,
solutions with mixed behavior, i.e., solutions satisfying eitherthey can still be very useful to extract information about
Eq. (2) or Eq.(3) when the massdgl; andM, are above or dualities between the gravitational system and the field

below some critical valud,. We will argue that this mixed ~theory. Obviously, now the two excitations of enefgy,E,
behavior has a natural counterpart in a field theory with 0f the field theory are not in correspondence with the bound
mass gap. Finally, we also discuss the compatibility of Eqstate of two black holes but with some other state of the

(2) with entropy bounds. gravitational theory. o
Using Eq.(5) one easily finds that Eq3) is satisfied. As

expected, for Schwarzschild black holes the entropy is maxi-
mized by the single black hole configuration with masés

Let us first consider thed-dimensional Schwarzschild +M,. The same holds true for asymptotically flat charged
black hole @=4) black holes. Considering, for instance, the four-dimensional
Reissner-Nordstrom solution, one finds for the entropy

S=(ML,+\MZL2-Q?)2, )

1. ASYMPTOTICALLY FLAT BLACK HOLES

kGM
rd*3

-1
keGM
rdH ) dr?+r2dQ3 ,,

(4)

whereM is the mass an#ly=167/(d—2)Q4_,, Q4_, be-  whereQ s the electric charge of the black hole. Again, from
ing the volume of the unis’~? transverse sphere. The black EQ. (6) it follows that S(M;+M;)>S(M;) +S(M,). There
hole entropy is given by the area law is one simple argument that can be used to argue that in-
equality (3) holds in general for asymptotically flat black
holes, at least whel L, is much bigger than theeventually
present black hole charges. The area law gives
fx(r+/Lp)d*2, wherer , is the horizon radius. For asymp-
WhereLp=G1/(d‘2) is the Planck length. totically flat black holes and wheM L ,>Q;, whereQ; are

In order to discuss the inequalig) on physical grounds, the charges associated with the black hole, the gravitational
we will make the following assumptiongl) The theory ad- potential is dominated by the Newtonian term so that we
mits, at least in some approximation, multi-black-hole solu-have r+ocL;)d_2)’(d_3)M1’(d‘3). It follows that S
tions and(2) the gravitational potential energy of the multi- o (L,M)(@~2/(@3),

ds’=—|1-

dﬁ+(1—

A Q4 V-
S:E:T(depM)(d 2)/(d 3), (5)
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ll. AdS BLACK HOLES every value of the magsl. On the other hand, if the black

. . hole mass is defined with reference to the full, geodetically

The argument presented at the end of the previous section | AdS . A= — (14 \2r2)dt2+ (1

does not apply to nonasymptotically flat black holes. For ZDcorr;pze'Eel o gpacetlme =~ (AT dE .
X Nr9) " Hdre+rd¢”, the mass spectrum looks rather dif-

black holes a general discussion will be presented in the ne _ : X
section. Here we will discuss only the most interesting case)ferem' TheM =0 ground state is separated from the continu-

. s part of the spectrum withl =1/8G by a mass gap. For
namely, asymptotically AdS black holes. The entropy-mas{/lu o B — T
relation for thed-dimensional Schwarzschild—anti—de Sitter 21/8. G th_e entropy is given b= (m/2\G) y8GM—1.

black hole (1=4), At first sight it may seem rather strange that the thermo-

dynamical features of the BTZ black hole depend so cru-

k,GM cially on the choice of the zero mass solution. This behavior

1+ N2%r2— s )dtZ can be explained by noticing that the zero mass state of the
r BTZ solution(9) is separated from the full AdS spacetime by

ds=—

1 a tower of states describing naked conical singularities.
122 kyGM dr2+r2d02 (77 These states are not physically allowed so that a mass gap,
d-3 d-2: separating the full AdS spacetime from the continuous part
of the spectrum, is produced. It is the presence of this mass
is rather complicated. However, a simple formula can begap that makes the choice of the zero mass solution so cru-
found for black holes withM Lg‘z)\d‘3>1, In this latter cial for the thermodynamical behavior of the BTZ black
case we have hole.
Taking for simplicityM;=M,=M, we see that Eq2) is
satisfied only for M=3/16G, whereas for 1/86<M
(8)  <3/16G we haveS(M;+My)=S(M;)+S(M,). We will
come back to this point in Sec. V, where we will argue that
this behavior is typical for a spectrum with a mass gap.

+

M| @2

2
Lo

S

Differently from the asymptotically flat case, we see that
now inequality(2) is satisfied. This fact is perfectly consis-
tent with the existence of an AdS-CFT correspondence be- IV. TWO-DIMENSIONAL BLACK HOLES
tween d-dimensional AdS gravity andd(-1)-dimensional
conformal field theory. Thed-dimensional black hole entropy
(8) reproduces correctly, after tHe=M identification, the
entropy(1) for a free field theory ird—1 dimensions.

For the AdS black hol€7) the gravitational potential en-
ergy behaves asymptotically ag. This implies that the
theory does not allow for the asymptotically free states degjons we can formulate entropy bourld4]. Moreover, 2D
scribed in the previous section. Our assumplndoes Not ek holes can be used to describe black holes in higher
apply to this case and the binding energy of the composit@imensions. Two-dimensional black holes arise as an effec-
state cannot be neglected. This means that, although2Eq. e gescription of the near-horizon, near-extremal behavior
is satisfied, fragmentation of the AdS black hole is not necu¢ 4 gimensional charged black holes and branes. Every
essarily entropically preferred. Hence, the validity of ). 4 gimensional spherically symmetric solution can be de-

is not in contradiction with the known classical stability of scribed, after dimensional reduction, by a 2D dilaton gravity
the AdS black hold€7). The entropy-temperature relatio®) model.

together with Eq(2) give us an indication of the existence of 11,4 generic 2D dilaton gravity modébr a recent review,

an AdS—field theory duality but at the same time tell us thakeer12)) can be completely characterized by a dilaton poten-
the gravitational counterpart of the free field excitations cany; V(®), the action for the model being given b

not be the bound state of two AdS black holes. _ 2 2

Let us now discuss in some detail the three—dimensioano(liliz)flgtiér@[eiI?hj;)}o\r/r(n@)]' The general 2D black
(3D) case, the Banados-Teitelboim-ZanéBiTZ) black hole
[9]. This case is very instructive not only because it is pos- oM
sible to solve exactly the inequali{2) but also because it ds?’= —(J((I))— T)dt2+
clarifies the role played by the black hole ground state in our
considerations. The BTZ black hole solution with zero angu-

lar momentum is whereJ(®)=[V(P) andM is the black hole mass. To be
202 2 2,2 “14,2 24 42 sure that Eq.(10) describes a black hole we will takié
ds’=—(\°r*~8GM)dt*+ (A°r*—8GM) dr?+r dd’@ =0, >0, andJ(P)>0 a strictly increasing function b
[we will therefore havel(«)=c<]. The temperature and en-
where the black hole ma#4 is defined with reference to the tropy associated with the black hole are given by
M=0 black hole ground state ds’=—\?r?dt?
+X"?r 2dr?+r?d¢?. The entropy is given byS
=271 14G=(m/\)2M/G so that Eq.(2) is satisfied for

In d=3 spacetime dimensions it is very difficult to for-
mulate general criteria that enable us to decide if a black hole
satisfies either Eq2) or Eq.(3). These criteria can be found
for 2D black holes. The 2D case is interesting for several
reasons. Two-dimensional gravity supports a realization of
the AdS-CFT correspondeng#0]. In two spacetime dimen-

2M)l )
J(@)—T drs, ®=Nr,
(10)

A
SZZW(I)h, T= EV(CDh), (11)
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where®,=J"1(M) is the value of the dilaton at the black with M, positivg i.e., the black hole spectrum is limited
hole horizon. from below by the extremal, nonvanishing value of the mass
Using Eq.(10) one easily finds My. In general, the extremal masé, is simply related to

the threshold masMl,. Using Eqs.(12) and(18) one easily
realizes that the entropy of the extremal state is zero,
S(My)=0. Depending on the behavior of the dilaton poten-
ial at M, we can have two case$l) J }(My)=0 and
V(Mgy)=0. The extremal state has zero entropy and from
Eq. (11) also zero temperature(2) J }(My)=0 and
V(Mg)#0. The extremal state has zero entropy but nonva-
(IH"(M)<0, V M, (13) nishing temperature. In the next section we shall see that in
both cases this behavior can be explained by the presence of
J_l(M =0)=0 (14) a mass gap. _ _
Let us now give some examples to illustrate our general
are satisfied then results. The simplest model satisfying both conditioh3),
(14) is the Jackiw-Teitelboim modely=2d. We have
I M +M)<I Y M) +I"YM,), (15 I Y{M)=2M/\, which satisfies both X !)”<0 and
J~1(0)=0. For the entropy we g /M, from which Eq.
which, owing to Eq.(12), implies that the inequality2) for  (2) follows for every value of the mass. A more general
the entropy is also satisfied. The convexity conditi@3)  model is given by[13]
implies for every positve M,M; (371 (M+M,)
<(37YH’(M), from which it follows thatJ *(M+M,

+Mz)+3_1('\7|)<~]_1('\7|+M1)+J_1(M+M2)- Evaluat-  For h>0 the model satisfies the conditiofs3) and (14).
ing the previous inequality &#l =0 and using conditiofl4)  The black hole entropy is given by
one easily recovers Eq15).

S=27J"Y(M). (12

One can now find sufficient conditions to be imposed on th
function J(®) such that Eq(2) is satisfiedV M;,M,. Let
us first show that if both conditionghe prime denotes the
derivative with respect td/1)

V=(h+1)®" h>-1. (19

Analogously, we can show that if conditions Sec(M/\) VD), (20
(J"H"(M)>0, V M, (16)  Wwhich as expected satisfies E(). This class of models
contains, as particular cases, 2D gravity models arising as the
J {M=0)=0 (1 near-horizon limit of dilatonic zero-bran¢$4], black three-

braneq 15], and heterotic string black hol¢&6]. It is inter-

hold then the inequality3) is satisfied for everyvi,,M,. If ~ €sting to note that the entropy-energy relat{@d) becomes
(3J-Y”=0, identically, then the black hole solution of the that of a free field theory given by Eql) identifying h

model will satisfyS(M;+M,)=S(M;)+S(M,). If (3-1)”  =1/(d—1). This fact gives a hint about the possibility of
changes sign, we cannot make any definite statement abolif?ding a correspondence between these 2D dilaton gravity
inequalities(2) and (3). models and a free field theory.

Any functionJ~ (M) which is everywhere convefcon- For —1<h<0 the model satisfies the conditiofis) and
cave and strictly growing must diverge fol—x more  (17). The black hole entropy now satisfies Eg). An im-
slowly (faste) thanJ~*=M. It follows thatJ(®) must di-  Portant particular case is given by= —1/2, which describes

verge for®—c faster(more slowly thanJ=®. We have the spherical dimensional reduction of the Schwarzschild

reached an important result: for models satisfying the reblack hole. Foh=0 we have the Callan-Giddings-Harvey-
quired criteria about the derivatives df * and J(0)=0,  Strominger mode]17]. Eq.(19) gives 0~ *)"=0 identically.
fragmentation of 2D black holes can be entropically pre-The entropy depends linearly on the mass, so that, as ex-
ferred or not depending on the asymptotic behavior of théPected,S(M;+Mj)=S(M;) +S(M).
functionJ. The black hole solutions of the 2D dilaton gravity ~ AS an example of a model satisfying conditi¢tB) but
model characterized by a functiah which asymptotically not (14) let us first consider the exponential potentil
diverges fastefmore slowly than @, will satisfy Eq.(2) =B exp(B®), with 5>0. The black hole horizon is located
[Eq. (3)]. at A\r=d=J3"Y(M)=(1/8)In(2M/\). I~ diverges asymp-
When J~1(0)#0 but condition(13) still holds we will  totically more slowly thanM but we haveJ‘l(O)jﬁO- We
have a mixed behavior. The black hole will satisfy E2).for ~ therefore expect the presence of a threshold nvagSepa-
M>M, and Eq.(3) for M<M,, whereM, is some thresh- rating the two regions of the spectrum where &2). [Eq.
old mass. Let us first notice that only the case'(0)=®, (3] holds.
<0 has physical relevance. Sinde’ is a strictly growing The black hole mass has an extremal vaMe=M,
function,®,>0 impliesd~1(M) =0 with M, negativei.e., =M\2. HoweverJ”*(Mg)=0 andV(Mq)#0. The entropy
the presence of negative masses in the spectrum. Converseld temperature of the black hole are

d,<0 impli
oo e S= 27Tl M T= i M 21
I {Mg)=0, (18) =g TeM (21)
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The ground state has zero entropy but finite temperaturblack hole solutions whose spectrum exhibits extreial
T(Mp)=(B/4m)\. Using Eq.(21) and taking for simplicity =~ # 0 solutions. The most natural candidates are field theories
M;:=M,=M, one can easily find that the inequalifg) is  with mass gaps. This is rather obvious for the 2D dilaton

satisfied only forM>M,=X\, whereas fon/2<M<\ Eq.  9ravity models discussed at the end of Sec(ft¥ instance,
(3) holds. Black hole fragmentation becomes entropicallythe model with an exponential dilaton potenkiakhich are
preferred forM bigger than the threshold mass,. Notice characterized by a ground state of madg with zero en-

~ tropy and nonvanishing temperature. The only way to have a
that the threshold masa,, although of the same order,~does nondegenerate ground state at finite temperature is the pres-

not coincide with the extremal mas¥l,, we haveM,  ence of a mass gap in the spectrum. The energyjgmust
=2Mo. be of the order of the temperature. In fact, for the model with

As a second example of models wifi1(0)#0 let us  exponential potential discussed in Sec. IV we hag,,
considerJ(®)=®2+1. This is the 2D analogue of the 3D =MxT(Mg)=A\.

BTZ black hole discussed at the end of the previous section. The relationship between black hole solutions and field
In this case also the black hole mass has an extremal valyfieories with mass gaps seems to be more general. Crucial
Mo=\/2. However, nowS=Tx(2M/\)—1, so that the for the existence of this correspondence are both the
extremal state has zero entropy and temperat8(®),)  asymptotic behavior of the metric and the presence of an
=T(Mg)=0. The threshold mass at which black hole frag-extremal solution withVy+0. To illustrate this correspon-
mentation becomes entropically preferred is givenMy  dence, let us consider a generic field theory whose spectrum
=(3/2)My=(3/4)\. has a mass gap of ener§y separating th&=0 state from
Until now we have considered a system in which the totatthe continuous part of the spectruB®=E,. We will also
energy is constant, i.e., fragmentation of a black hole of masgssume that foE>E, the spectrum is that of a generic free
M into two smaller black holes of masskl+M,=M. Let field theory and that the entropy of tle= E, state vanishes.
us now consider systems at constant volume. We will showror E>E, the entropy-energy relation will be given by Eq.
that the energy is minimized when the conditions that maxi{1) which satisfiesS(E, + E,) <S(E;) + S(E,). On the other

mize the entropy are satisfied. hand, forE~E,, we haveS=S(E—E,) with S(E,)=0.
We have to consider the black hole m&dsas a function Thus, the inequalityS(E;+E,—Eg)>S(E;—Eg) + S(E»
of its radiusR and solve the inequality —Eg) will be satisfied at least foE,=E,=E,. Because for
E>E, the opposite inequality holds, this implies the exis-
M(R;+R2)>M(Ry) +M(Ry). (22)  tence of a threshold enery, separating the two regimes, in

) ] complete analogy with what happens for black hole solu-
Using Eq.(10) one findsM(R)=(\/2)J(Py)=(N/2)I(R).  tions. This behavior is rather intuitive. For small excitations
Equation (22) becomesJ(R;+Rp)>J(Ry) +J(Rp). Be-  pearE, the single state of energg=E,+E, has more de-
cause {~)"<0 andJ"*(0)=0 imply, respectively)”>0  generacy than the two states of enerdigsand E, because
and J(0)=0, it follows that conditions(13), (14) for the  {ne states below the gap do not contribute. For excitations of
function (3™ *) are equivalent to condition@6), (17) for the  energyEsE, the contribution of the gap is irrelevant, and
functionJ. As a consequence, whenever conditioh3) and  the entropy is dominated by the contribution coming from

(14) are satisfied, we have not onf§y(M;+M3)<S(M;)  the continuous part of the spectrum.
+S(M,) but alsoM(R;+R,)>M(R;) +M(R,). The pro-

cess of fragmentation of a black hole maximizes the entropy VI. ENTROPY BOUNDS
if the total mass is constant and minimizes the mass if the '
total volume is constant. Conversely, if conditiofi®) and The holographic principle in its usual formulation puts an

(17 hold we haveS(M;+M,)>S(M,)+S(M,) but also  upper bound to the entropy, and hence to the amount of
M(R;+Ry)<M(R;)+M(R,). The configuration with information, which can be stored in a givesgion of space
maximal entropy and minimal mass is now given by theS<A/4G, whereA is the area of the surface enclosing the
single black hole. region. At fixed volume the entropy cannot increase by split-
ting a system into parts, i.eS(V;+Vy)=S(V,)+S(V,).
V. MASS GAP This inequality is satisfied not only for extensive systems,
when the entropy scales as the volume of the system, but
It is evident that in what concerns the entropy of compos-also when the entropy scales as the area of the surface en-
ite solutions 2D dilaton gravity models satisfying the condi-closing the system. A holographic bound cannot be violated
tions (13) and(14) of the previous section are very similar to by fragmentation. Hence the holographic principle is com-
free field theories. The mass of the gravitational solutions ipatible with both Egs(2) and(3). This is true for the holo-
naturally identified with the energy of the excitation in the graphic bound but it is not necessarily true for entropy
field theory. The same is true for genedaimensional AdS  bounds of different types, which can make reference not only
solutions when the mass of the gravitational solution is mucho the volume of the systelor the area enclosing)ibut also
bigger theri_g‘z)\d‘s. We can ask ourselves if the 2D dila- to its energy. For instance, the Bekenstein bo8st2 7ER
ton gravity models satisfying conditidqii3) but not(14) also  [18] refers not only to the linear siZ@ but also to the energy
have a field theory counterpart. More generally, one woulcE of the system.
like to find field theoretical counterparts dfdimensional In principle, one could also try to formulate entropy
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bounds that make reference to nothing but the energy of théfor instance, asymptotically AdS black holefn this situa-
system. This could be done following the same line of reation we cannot use our results to describe fragmentation pro-
soning one uses to formulate the Bekenstein-Hawkingesses. Nonetheless, the discussion of Ezjsand (3) still
bound. In this latter case one takes a systemdivan region  gives us information about possible gravity—field theory du-
of space and finds that its entropy is bounded by the area diities.
the surface enclosing the region. In more detail, when one Our results have a strong impact on the way one can
pumps energy into the system keeping its spatial extensiorealize the holographic principle. In fact, only for gravity
constant, the entropy increases until the energy equals thtbeories satisfying relatio(2) can one hope to find a realiza-
mass pertaining to a black hole fitting in the region. A blacktion of the holographic principle in terms of a correspon-
hole forms and the boun8<A/4G is saturated. dence of gravity and field theory. For gravity theories satis-
Instead, one could take a system with a consgambunt  fying Eq. (3) this correspondence cannot be realized as a
of energy Mand look for a bound on the associated entropygravity—field theory duality and must necessarily have an
Spreading the system over regions of space with everlternative, still unknown, form. Because asymptotically flat
decreasing volumes, the entropy will increase until the corblack holes, and in particular the Schwarzschild black hole,
responding Schwarzschild radius is reached. A black holéelong to this latter case we can exclude the existence of a
forms and an entropy bour 7GM? is found. The prob- correspondence between asymptotically flat black holes and
lem is that this bound cannot be universal. Although thea field theory.
Schwarzschild black hole cannot increase its entropy by frag- On the other hand, we have seen that the class of gravity
menting, we have seen that there exist many black hole sdheories satisfying Eq.2) is, at least in the 2D case, rather
lutions that can increase their entropy through fragmentatiorbroad. It contains not only AdS gravity, for which the
For this simple reason an entropy bound that refers only tgravity—field theory duality is well established, but also other

the energy of the system cannot be universal. models, for instance, those with an exponential dilaton po-
tential. The possibility of finding a gravity—field theory du-
VII. CONCLUSIONS ality for these theories is an open question, which deserves

further investigation.

In this paper we have discussed the holographic principle - Another point of interest is the existence of black holes
and entropy bounds for composite gravitational systems. Wgith mixed behavior, i.e., exhibiting a transition from a re-
have shown that with respect to fragmentation black holgjime where Eq(2) holds to a regime where instead Eg) is
solutions exhibit three different types of behavior. The en-satisfied. We have argued that the most natural candidates for
tropy may decrease, increase, or have a mixed behavior. Iig|ographic duals of these black holes are field theories with
the last case there will exist a threshold mass separating thgmass gap. Finally, our results seem to exclude the possibil-
regime_where fragmentation is entropically preferred fromity of formulating an entropy bound only in terms of the
the regime where it is not. Moreover, for 2D black holes Weenergy of a system: the existence of black holes satisfying

have been able to find a complete characterization of thgq (2) will always allow the system to violate the bound by
entropy behavior, in the form of sufficient conditions im- pjack hole fragmentation.

posed on the functiod, which defines the 2D gravitational
model.
Most of our results rely heavily on the validity of the ACKNOWLEDGMENT
assumption(2) of Sec. I, which enables us to neglect the
binding energy in composite black hole states. This assump- We thank S. Mignemi for discussions and valuable com-
tion is restrictive and does not apply to a number of casements.
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