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Low multipole contributions to the gravitational self-force
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We calculate the unregularized monopole and dipole contributions to the self-force acting on a particle of
small mass in a circular orbit around a Schwarzschild black hole. From a self-force point of view, these
nonradiating modes are as important as the radiating modes withl>2. In fact, we demonstrate how the dipole
self-force contributes to the dynamics even at the Newtonian level. The self-acceleration of a particle is an
inherently gauge-dependent concept, but the Lorenz gauge is often preferred because of its hyperbolic wave
operator. Our results are in the Lorenz gauge and are also obtained in closed form, except for the even-parity
dipole case where we formulate and implement a numerical approach.
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I. INTRODUCTION

The capture of solar-mass compact objects by mas
black holes residing in galactic centers has been identifie
one of the most promising sources of gravitational waves
the Laser Interferometer Space Antenna@1#. The need for
accurate templates for signal detection and source identi
tion is currently motivating an intense effort from man
workers to determine the motion of a relativistic two-bo
system in the small mass-ratio limit, without relying o
slow-motion or weak-field approximations; for a review, s
Ref. @2#. The work presented in this paper is part of th
larger effort.

A. Gravitational self-force and the MiSaTaQuWa equations
of motion

Consider a small body of massm in orbit around a much
larger black hole of massM. In the test-mass limit (m→0)
the motion of the small body is known to follow a geodes
in the spacetime geometry of the large black hole@3–7#. But
as the mass of the smaller object is allowed to increa
deviations from geodesic motion become noticeable; th
are associated with important physical effects such as ra
tion reaction and finite-mass~conservative! corrections to the
orbital motion. In a sense, the motion is now geodesic in
perturbed spacetime that contains both the black hole and
orbiting body. If gab denotes the unperturbed metric of th
central black hole, and ifhab denotes the perturbation pro
duced by the orbiting body, then the motion is formally ge
desic in the perturbed metricgab1hab . When viewed from
the background spacetime, the motion appears to be acc
ated, and the agent that produces the acceleration is a g
tational self-force acting on the particle.

To turn these considerations into concrete equations
motion, it is desirable to formulate an approximation
which the details of the small body’s internal structure ha
a negligible influence on the body’s orbital motion. In th
approximation the body is modeled as a point particle p
sessing mass but no higher multipole moments, and its
0556-2821/2004/69~8!/084019~18!/$22.50 69 0840
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tion is fully described in terms of a world lineg. But to
formulate equations of motion for this world line becom
problematic, as the fieldhab produced by a point particle
necessarily diverges at the position of the particle. T
means that an affine connection cannot be defined on
world line, and that the statement ‘‘the particle follows
geodesic of the perturbed spacetime’’ does not make im
diate sense.

The task of regularizinghab near the world line and for-
mulating meaningful equations of motion for the point pa
ticle was undertaken by Mino, Sasaki, and Tanaka@8#, and
also by Quinn and Wald@9#. An interesting reformulation of
this work was recently given by Detweiler and Whiting@10#,
who showed that the perturbation can be uniquely deco
posed into a symmetric-singular fieldhab

S , and a regular-
radiative fieldhab

R ; the full ~retarded! perturbation is then
hab5hab

S 1hab
R . Detweiler and Whiting were able to estab

lish that whilehab
S reproduces the singularity structure of th

metric perturbation, it exerts no force on the point partic
the gravitational self-force is then produced entirely byhab

R ,
which is a homogeneous, regular, smooth field in a neighb
hood of the world line.

The MiSaTaQuWa equations of motion@8,9#, in the
Detweiler-Whiting formulation @10#, take the following
form. Letzm(t) be parametric relations that describe the p
ticle’s world lineg, with t denoting proper time in the back
ground spacetime of the central black hole. Letum

5dzm/dt be the particle’s four-velocity, normalized with re
spect to the unperturbed metric:gmnumun521. Let D/dt
denote covariant differentiation along the world line, defin
with respect to a connection compatible withgab . Then the
particle’s equations of motion are

Dum

dt
5am@hR#

[2
1

2
~gmn1umun!~2hnl;r

R 2hlr;n
R !ulur, ~1.1!
©2004 The American Physical Society19-1
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where a semicolon indicates covariant differentiation w
respect to the background connection. The right-hand sid
Eq. ~1.1! is the gravitational self-acceleration of the poi
particle; multiplying bym would give the gravitational self
force. Equation~1.1! is equivalent to the statement that th
particle moves on a geodesic in a spacetime with me
gab1hab

R , but the description of the world line refers to th
background spacetime. The right-hand side of Eq.~1.1! is of
order m, and the gravitational self-acceleration is therefo
O(m); it vanishes in the test-mass limit and the motion b
comes geodesic~in the background spacetime!.

The decomposition ofhab into singular ‘‘S’’ and radiative
‘‘R’’ fields relies on a specific choice of gauge for the metr
perturbation, which must satisfy the Lorenz gauge condit

¹bS hab2
1

2
gabggdhgdD50. ~1.2!

This choice ensures thathab satisfies a~hyperbolic! wave
equation and that the correct, retarded solution can be id
tified. The singularity structure of the perturbation near
world line can then be determined by a local analysis~see,
for example, Ref.@2#!, andhab

S is constructed without ambi
guity so that it exerts no force on the particle. The regu
field hab

R is then the difference between the retarded solut
and the locally constructed singular field; this satisfies a
mogeneous version of the wave equation satisfied by the
metric perturbation, and the metricgab1hab

R is a solution to
the linearized Einstein field equations in vacuum.

The Lorenz gauge therefore presents itself as a prefe
gauge for this problem, and it has been shown that in the
post-Newtonian approximation, Eq.~1.1! agrees with the
standard Einstein-Infeld-Hoffmann equations of motion in
common domain of validity@11#. But it is important to note
that the equations of motion of Eq.~1.1! are not gauge in-
variant @12#: different gauge choices will lead to differen
results.

B. Self-acceleration by mode sums

A concrete evaluation of Eq.~1.1! is challenging and in-
volves a large number of steps; for this discussion we c
sider the case of a particle orbiting a Kerr black hole. T
first sequence of steps are concerned with the computatio
the metric perturbationhab produced by a point particle
moving on a specified geodesic of the Kerr spacetime
method for doing this was elaborated by Lousto and Whit
@13# and Ori @14#, building on the pioneering work of Teu
kolsky @15#, Chrzanowski@16#, and Wald@17#. The proce-
dure consists of~i! solving the Teukolsky equation for one o
the Newman-Penrose quantitiesc0 andc4 ~complex compo-
nents of the Weyl tensor! produced by the point particle;~ii !
obtaining fromc0 or c4 a related~Hertz! potential C by
integrating an ordinary differential equation;~iii ! applying to
C a number of differential operators to obtain the met
perturbation in a radiation gauge that differs from the Lore
gauge; and~iv! performing a gauge transformation from th
radiation gauge to the Lorenz gauge.
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It is well known that the Teukolsky equation can be sep
rated whenc0 or c4 is expressed as a multipole expansio
summing over modes with~spheroidal-harmonic! indices l
andm. In fact, the procedure outlined above relies heavily
this mode decomposition, and the metric perturbation
turned at the end of the procedure is also expressed as a
over modeshab

l . ~For eachl, m ranges from2 l to l, and
summation ofm over this range is henceforth understood!
From these, mode contributions to the self-acceleration
be computed:am@hl # is obtained from Eq.~1.1! by substitut-
ing hab

l in place ofhab
R . These mode contributions do no

diverge on the world line, butam@hl # is discontinuous at the
radial position of the orbit. The sum over modes, on the ot
hand, does not converge, because the ‘‘bare’’ accelera
~constructed from the retarded fieldhab) is formally infinite.

The next sequence of steps is concerned with the regu
ization of eacham@hl # by removing the contribution from
hab

S @18–23#. The singular field can be constructed locally
a neighborhood of the particle, and then decomposed
modes of multipole orderl. This gives rise to modesam@hl

S#
for the singular part of the self-acceleration; these are a
finite and discontinuous, and their sum overl also diverges.
But the true modesam@hl

R#5am@hl #2am@hl
S# of the self-

acceleration are continuous at the radial position of the or
and their sum does converge to the particle’s acceleration~It
should be noted that obtaining a mode decomposition of
singular field involves providing an extension ofhab

S on a
sphere of constant radial coordinate, and then integra
over the angular coordinates. The arbitrariness of the ex
sion introduces ambiguities in eacham@hl

S#, but the ambigu-
ity disappears after summing overl.!

The gravitational self-acceleration is thus obtained by fi
computingam@hl # from the metric perturbation derived from
c0 or c4, then computing the countertermsam@hl

S# by mode
decomposing the singular field, and finally summing over
am@hl

R#5am@hl #2am@hl
S#. This procedure is lengthy and in

volved, and thus far it has not been brought to completi
except for the special case of a particle falling radially
ward a nonrotating black hole@24#. In this regard it should
be noted that replacing the central Kerr black hole by
Schwarzschild black hole simplifies the task considerably
particular, because there exists a practical and w
developed formalism to describe the metric perturbations
a Schwarzschild spacetime@25–29#, there is no necessity to
rely on the Teukolsky formalism and the complicated reco
struction of the metric variables.

C. Low multipoles—this work

The procedure described above is not complete. The
son is that the metric perturbationshab

l that can be recovered
from c0 or c4 do not by themselves sum up to the comple
gravitational perturbation produced by the moving partic
Missing are the perturbations derived from the oth
Newman-Penrose quantities:c1 , c2, andc3. While c1 and
c3 can always be set to zero by an appropriate choice of
tetrad,c2 contains such important physical information
the shifts in mass and angular-momentum parameters
9-2
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duced by the particle@30#. Because the mode decompositio
of c0 and c4 start atl 52, we might colloquially say tha
what is missing from the above procedure are the ‘‘l 50 and
l 51’’ components of the metric perturbations. It is not cu
rently known how the procedure can be completed so a
incorporateall componentsof the metric perturbations.

In this paper we consider the contribution of these l
multipoles (l 50 and l 51) to the gravitational self-
acceleration. To make progress we shall take the cen
black hole to be nonrotating, and the metric of the ba
ground spacetime to be a Schwarzschild solution. This s
plification allows us to use the robust formalism of gravi
tional perturbations of the Schwarzschild spacetime@25–29#,
and more importantly, to define precisely what is meant
the ‘‘l 50 andl 51’’ modes of the perturbation field. In thi
context the associations between thel 50 mode and a shift
of mass parameter, the odd-parityl 51 mode and a shift of
angular-momentum parameter, and the reduction of the e
parity l 51 mode to a gauge transformation, were first est
lished by Zerilli @26#. These associations are central to o
discussion, and we believe that the results derived here
have a direct counterpart in the case of a Kerr black h
The missing metric perturbations of the Kerr spacetime w
be equivalent to ourl 50 andl 51 perturbation modes in th
limit where the black-hole angular momentum goes to ze

To keep our discussion concrete and the mathema
complexities to a minimum, we calculate thel 50 andl 51
perturbation modes for the specific case of a particle mov
on a circular orbit of radiusR and angular velocityV
5AM /R3. While finding solutions to the relevant perturb
tion equations can be a simple task when adopting a sim
choice of gauge~as we shall see!, we insist here, for reason
that were listed before, that thel 50 and l 51 perturbation
modes should be calculated in the Lorenz gauge. This c
plicates the structure of the perturbation equations, and fi
ing solutions is more challenging. We nevertheless are a
to find exact analytical solutions for the casesl 50 and l
51 ~odd parity!. For even-parityl 51, however, we have to
rely on numerical methods for exact results, and a po
Newtonian approximation for analytical results.

In the remaining sections of the paper we calculate
contributions

am@hl 50#, am@hl 51;odd parity#, am@hl 51;even parity#

to the ‘‘bare’’ self-acceleration of a particle moving on
circular orbit around a Schwarzschild black hole. Our e
pressions are finite but discontinuous at the radial positio
the particle: the answers obtained when approachingr 5R
from the interior (r ,R), and those obtained from exterio
(r .R), do not match. We find in all cases that the contrib
tion to the bare acceleration is purely radial:am@hl #
5ar@hl #d r

m for all three modes considered here. Moreover
all cases the self-acceleration is conservative and does
contribute to the radiation reaction.

To keep the notation simple we shall set

a@ l 50#[ar@hl 50#,
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a@ l 51;odd#[ar@hl 51;odd parity#, ~1.3!

a@ l 51;even#[ar@hl 51;even parity#.

We display our results fora@ l #(R) in two figures. In Fig. 1
we show the results as calculated from the orbit’s inter
(r→R2) and in Fig. 2 we show our results as calculat
from the orbit’s exterior (r→R1). These results do not hav
an immediate physical meaning. To produce meaning t
must be included with higher-multipole contributions in
sum over all modes. Because there exists no procedur
uniquely remove the ‘‘S part’’ of thel 50 and l 51 pertur-

FIG. 1. Internal values ofa@ l #(R), rescaled by a common facto
of 3m/R2. For R@M we have the following asymptotic behavior
a,@ l 50#;3(m/R2)(M /R), a,@ l 51;odd#;24(m/R2)(M /R),
and a,@ l 51;even#;3(m/R2). An exact expression fora,@ l 50#
appears in Eq.~3.15! below. An exact expression fora,@ l
51;odd# appears in Eq.~4.2!. The values fora,@ l 51;even# are
obtained from Eq.~5.55! and the results listed in Table I.

FIG. 2. External values ofa@ l #(R), rescaled by a common fac
tor of m/R2. For R@M we have the following asymptotic behav
iors: a.@ l 50#;2m/R2, a,@ l 51;odd#;2(m/R2)(M /R), and
a,@ l 51;even#;23b(m/R2)(M /R), whereb.2 is numerically
estimated at the end of Sec. V. An exact expression fora.@ l 50#
appears in Eq.~3.16! below. An exact expression fora.@ l
51;odd# appears in Eq.~4.3!. The values fora.@ l 51;even# are
obtained from Eq.~5.55! and the results listed in Table I.
9-3



bu

n
st-
-

-
d
os
th

Fo
ns
n
a

et

v
u
th
int
r

o

ul
ro

cu
b
t

ul
th

l
th
h
rs
pe
th
re

w

o

ing

d by
e-
in

all

n,
ita-
of
tial

al-
ss
ime,

e
xact

lf-
stic
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bation modes~as was mentioned previously!, we are not able
here to produce expressions for the low-multipole contri
tions to the regularized self-acceleration.

Using purely analytical methods, Nakano, Sago a
Sasaki @31# calculated the self-acceleration to first po
Newtonian~1PN! order for circular orbits of the Schwarzs
child geometry. For the even and odd parityl 51 modes,
their results for the contribution to the ‘‘bare’’ self
acceleration agree with ours at the 1PN level, as expecte
appears that an extension of their methods to higher p
Newtonian orders might be substantially complicated by
difficulty caused by the even-parityl 51 perturbations, the
case for which we have to rely on numerical methods.
the l 50 mode our results for the ‘‘bare’’ self-acceleratio
disagree with theirs at 1PN. We believe that the discrepa
is caused by the implementation of boundary conditions
the event horizon, and we discuss this matter in some d
in the Appendix.

D. Organization of this paper

In Sec. II we set the stage with a discussion of the gra
tational self-force in Newtonian theory. This simple analog
to the relativistic problem sheds considerable light on
meaning of the self-acceleration and its decomposition
singular ‘‘S’’ and regular ‘‘R’’ fields. We show in particula
that in Newtonian theory, thel 51 contribution to the self-
acceleration is responsible for an important finite-mass c
rection to the particle’s angular velocity. We take this as
clear suggestion that in the relativistic problem, the low m
tipole contributions to the gravitational self-acceleration p
duce important physical effects.

In Sec. III we compute, in the Lorenz gauge, thel 50
gravitational perturbations produced by a particle in a cir
lar orbit around a Schwarzschild black hole. These pertur
tions are associated with the change of mass parameter
occurs atr 5R. We then calculatea@ l 50#, the correspond-
ing contribution to the self-acceleration.

In Sec. IV we do the same for thel 51, odd-parity per-
turbations. These are associated with the change of ang
momentum parameter that occurs across the orbit, and
give rise to the contributiona@ l 51;odd# to the self-
acceleration.

In Sec. V we consider thel 51, even-parity gravitationa
perturbations, which are associated with the motion of
central black hole around the system’s center of mass. T
calculation is considerably more involved than the othe
because here the source of the perturbations is time de
dent. Solving the vectorial wave equation that converts
perturbations from the Zerilli gauge to the Lorenz gauge
quires numerical techniques, except whenR@M and we can
rely on approximate analytical methods. In this section
obtain exact numerical results fora@ l 51;even#, as well as
approximate analytical results forR@M .

In Sec. VI we discuss our results and offer a number
concluding remarks.

II. NEWTONIAN SELF-ACCELERATION

In this section we consider a Newtonian system involv
a large massM and a much smaller massm. The position of
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the small mass relative to the center of mass is describe
the vectorR(t), while the position of the larger mass is d
scribed byr(t). Taking the center of mass to be at the orig
of the coordinate system, we have

mR1Mr50. ~2.1!

We denote the position vector of an arbitrary field point byx,
and r[uxu is its distance from the center of mass. We sh
also useR[uRu andr[uru.

A. Test-mass description

We begin with a test-mass description of the situatio
according to which the smaller mass moves in the grav
tional field of the larger mass which is placed at the origin
the coordinate system. The background Newtonian poten
is

F0~x!52
M

r
~2.2!

and the background gravitational field is

g052“F052
M

r 3
x. ~2.3!

In this description, the smaller massm moves according to
d2R/dt25g0(x5R). If the motion is circular, thenm pos-
sesses a uniform angular velocity given by

V0
25

M

R3
, ~2.4!

whereR is the orbital radius. These results are in close an
ogy with a relativistic description in which the smaller ma
is taken to move on a geodesic of the background spacet
in a test-mass approximation.

B. Beyond the test-mass description: singular ‘‘S’’ and regular
‘‘R’’ perturbations of the Newtonian potential

We next improve our description by incorporating th
gravitational effects produced by the smaller mass. The e
Newtonian potential is

F~x!52
M

ux2ru
2

m

ux2Ru
, ~2.5!

and for m!M this can be expressed asF(x)5F0(x)
1dF(x), with a perturbation given by

dF~x!52
M

ux2ru
1

M

r
2

m

ux2Ru
. ~2.6!

This gives rise to a field perturbationdg that exerts a force
on the smaller mass. This is the particle’s ‘‘bare’’ se
acceleration, and the correspondence with the relativi
problem is clear.
9-4
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An examination of Eq.~2.6! reveals that the last term o
the right-hand side diverges at the position of the sma
mass. But since the gravitational field produced by this te
is isotropic aroundR(t), we know that this field will exert no
force on the particle. We conclude that the last term can
identified with the singular ‘‘S’’ part of the perturbation,

FS~x!52
m

ux2Ru
, ~2.7!

and that the remainder makes up the regular ‘‘R’’ field,

FR~x!52
M

ux2ru
1

M

r
. ~2.8!

The full perturbation is then given bydF(x)5FS(x)
1FR(x), and only the ‘‘R potential’’ affects the motion o
the smaller mass. Once more the correspondence with
relativistic problem is clear.

It is easy to check that to first order inm/M , Eq. ~2.8!
simplifies to

FR~x!5m
R•x

r 3
; ~2.9!

this simplification occurs because thanks to Eq.~2.1!, r is
formally of orderm/M!1. The regular ‘‘R’’ part of the field
perturbation is then

gR~x!5m
3~R•x!x2r 2R

r 5
, ~2.10!

and evaluating this at the particle’s position yields a corr
tion to the background fieldg0(x5R)52MR/R3 given by
gR(x5R)52mR/R3; the force still points in the radial direc
tion but the active mass has been shifted fromM to M
22m. For circular motion the angular velocity becomes

V25
M22m

R3
. ~2.11!

This can be cast in a more recognizable form if we expr
the angular velocity in terms of the total separations[R
1r5(11m/M )R between the two masses. To first order
m/M we obtainV25(M1m)/s3, which is just the usua
form of Kepler’s third law. The regular part of the field pe
turbation is therefore responsible for the finite-mass corr
tion to the angular velocity.

C. Multipole decomposition of the perturbations

We now examine the low-multipole content ofdF(x),
FS(x), andFR(x). It is evident from Eq.~2.9! that FR(x)
possesses a pure dipolar form, and its multipole decomp
tion, therefore, involves a single term atl 51. As we have
seen, this dipole potential is responsible for an import
finite-mass correction to the orbital frequency. We take t
as a clear indication that in the relativistic context, thel 51
contribution to the metric perturbations produces import
08401
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physical effects that should not be ignored. Since there is
analogue in Newtonian theory to the odd parity metric p
turbations, this statement might be restricted to thel 51,
even parity perturbations of the Schwarzschild spacetime

While FR(x) possesses only a dipole component, t
same is not true ofFS(x) anddF(x). Their monopole com-
ponents are given by

FS
l 50~x!5dF l 50~x!5H 2m/R, r ,R,

2m/r , r .R,
~2.12!

and this gives rise to a monopole field perturbation

dgl 505H 0, r ,R,

2mx/r 3, r .R.
~2.13!

This is discontinuous atx5R: the field is zero when the limit
is taken from the inside, and equal to2mR/R3 when taken
from the outside. The jump in the monopole field perturb
tion is given by

@dgl 50#[dgl 50~x5R!uoutside2dgl 50~x5R!u inside

52
m

R3
R. ~2.14!

These results, which could be described as the Newton
bare self-acceleration forl 50, will be recovered as limits of
our exact relativistic expressions in Sec. III.

The dipole component of the singular potential is calc
lated to be

FS
l 51~x!5H 2m~R•x!/R3, r ,R,

2m~R•x!/r 3, r .R,
~2.15!

and adding this to Eq.~2.9! we find

dF l 51~x!5m~R•x!S 1

r 3
2

1

R3D ~r ,R! ~2.16!

anddF l 51(x)50 for r .R. This gives rise to the field per
turbation

dgl 515mF3~R•x!x2r 2R

r 5
1

R

R3G ~r ,R! ~2.17!

anddgl 5150 for r .R. The dipole field also is discontinu
ous at x5R: it is zero when the limit is taken from the
outside, and equal to 3mR/R3 when taken from the inside
Its jump, defined as in Eq.~2.14!, is given by

@dgl 50#52
3m

R3
R. ~2.18!

These results, which could be described as the Newton
bare self-acceleration forl 51, will also be recovered as lim
its of our exact relativistic expressions in Sec. V.
9-5
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III. MONOPOLE GRAVITATIONAL PERTURBATIONS

Our task in this section is to calculate thel 50 metric
perturbations of the Schwarzschild spacetime produced
particle of massm in circular orbit at a radiusR. We shall
also calculate the associated contribution to the s
acceleration,a@ l 50# as defined by Eq.~1.3!. We need the
perturbations in the Lorenz gauge, and our strategy will b
obtain them first in the simpler Zerilli gauge, and then lo
for a transformation to the Lorenz gauge.

A. Perturbations in the Zerilli gauge

The monopole perturbations produced by a point part
in arbitrary motion around a Schwarzschild black hole w
first computed by Zerilli@26#. With his specific choice of
gauge for circular motion, the metric perturbations are

htt
Z52mẼS 1

r
2

f

R22M DQ~r 2R! ~3.1!

and

hrr
Z 5

2mẼ

r f 2
Q~r 2R!, ~3.2!

where f 5122M /r , Ẽ5(122M /R)(123M /R)21/2 is the
particle’s energy per unit rest mass, andQ(r 2R) is the
Heaviside step function. It is easy to check that forr .R,
gab1hab

Z is another Schwarzschild metric with mass para

eter M1mẼ. The perturbation therefore describes the s
den shift in mass parameter that occurs atr 5R.

B. Transformation to the Lorenz gauge

The metric perturbation of Eqs.~3.1! and ~3.2! does not
satisfy the Lorenz gauge condition of Eq.~1.2!. We therefore
seek a vector fieldja that generates a transformation fro
the Zerilli gauge to the Lorenz gauge. This vector must p
sess only anl 50 component, and so it must be of the for
ja5@0,j(r ),0,0#. As the perturbation is static, there is n
need to include a component in the time direction~this point
is elaborated in the Appendix!, nor a time dependence in th
radial component.

To find this vector we express the Lorenz-gauge me
perturbations in the standard Regge-Wheeler@25# form

htt5 f H0~r !,

hrr 5H2~r !/ f , ~3.3!

hAB5r 2VABK~r !,

where the upper-case latin indices run over the angular
ordinatesu andf, andVAB5diag(1,sin2u) is the metric of
the unit two-sphere. We have sethtr5H1(r )50 on the
grounds that the perturbation must be static. A similar no
tion can be used to express the Zerilli-gauge perturbatio
08401
a

f-

to

e
e

-

-

-

c
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-
s,

and we haveKZ50 while H0
Z and H2

Z are nonzero. The
gauge transformation is given byhab5hab

Z 22j (a;b) and
this translates to

H05H0
Z1

2M

r 2
j,

H25H2
Z22 f j82

2M

r 2
j, ~3.4!

K52
2 f

r
j,

where a prime indicates differentiation with respect tor. The
new perturbation will satisfy the Lorenz gauge condition

f ~H081H2822K8!1
2M

r 2
H01

2~2r 23M !

r 2
H22

4 f

r
K50.

~3.5!

Using Eqs.~3.1!, ~3.2!, and ~3.4!, this becomes an ordinar
differential equation forj(r ):

f j91
2

r
j82

2 f

r 2
j

5
mẼ

R22M
d~r 2R!1

2mẼ

r 2f

R23M

R22M
Q~r 2R!.

~3.6!

Our task is now to find a solution to this equation.
The functionj(r ) can be expressed as a superposition

interior and exterior solutions,

j~r !5j,~r !Q~R2r !1j.~r !Q~r 2R!. ~3.7!

The interior solutionj,(r ) satisfies the homogeneous ve
sion of Eq.~3.6!, while the exterior solutionj.(r ) satisfies
Eq. ~3.6! with d(r 2R) set equal to zero andQ(r 2R) set
equal to 1. The solutions must comply with the jump con
tions

@j#50, @j8#5
mẼR

~R22M !2
, ~3.8!

where @j#[j.(r 5R)2j,(r 5R) and a similar definition
holds for @j8#. Equations~3.8! and ~3.4! imply that in the
Lorenz gauge, the metric perturbations are continuousr
5R: @H0#5@H2#5@K#50.

The interior solution is a linear superposition of the tw
independent solutionsj15@r (r 22M )#21 and j25r 2/(r
22M ). Regularity at the event horizon requires thatj be
well behaved in the limitr→2M . We must therefore choos

j,~r !5a
r 212Mr 14M2

r
, ~3.9!
9-6
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wherea is a constant that will be determined by the jum
conditions. The exterior solution is a linear superposition
j1 , j2, and the particular solutionjp52mẼ(R23M )(R
22M )21G(r ), where

G~r !52$@9Mr ~r 22M !#21@3r 3ln~122M /r !23Mr 2

212M2r 144M3224M3ln@r /~2M !21#%. ~3.10!

Becausej1;1/r 2, j2;r , and G;1 when r→`, proper
asymptotic behavior requires that we discardj2 from the
exterior solution. We then have

j.~r !5b
M3

r ~r 22M !
2mẼ

R23M

R22M
G~r !, ~3.11!

whereb is a constant that will be determined by the jum
conditions.

The gauge vector is now fully determined: The inter
solution is given by Eq.~3.9! and the exterior solution by Eq
~3.11! with the functionG(r ) displayed in Eq.~3.10!. The
complete gauge vector field is then constructed as in
~3.7!, and the constantsa andb are determined by the jum
conditions of Eq.~3.8!. This is sufficient information to cal-
culate the Lorenz-gauge metric perturbations with the help
Eqs. ~3.3! and ~3.4!. Because the resulting expressions a
moderately lengthy, we shall not display these results h
but proceed instead with the calculation of the se
acceleration.

Before moving on we wish to call attention to the fact th
in the foregoing manipulations, the requirements of static
regularity at the event horizon, and regularity at infinity ha
allowed us to construct aunique solutionto the perturbation
equations in the Lorenz gauge. This conclusion is elabora
in the Appendix.

C. Monopole contribution to the self-acceleration

The self-acceleration produced by thel 50 perturbations
can be expressed as a sum of two terms,

a@ l 50#5a@ l 50;Zerilli#1a@ l 50;gauge#, ~3.12!

wherea@ l 50;Zerilli# is the radial component of the acce
eration vector constructed as in Eq.~1.1! but by replacing
hab

R with hab
Z , while a@ l 50;gauge# is constructed from

hab
gauge522j (a;b) . The calculation involves the particle’s ve

locity vector um5(123M /R)21/2@1,0,0,V#, and at the end
hab;g must be evaluated at the position of the particler
5R, u5p/2, andf5Vt), either from the orbit’s interior
(r ,R) or from its exterior (r .R). This leads to two differ-
ent values for the acceleration,a, and a. , respectively.
Such a discontinuity was encountered before in a Newton
context—refer back to Eq.~2.13!.

The external value of the Zerilli acceleration is given b

a.@ l 50;Zerilli#52
mẼ

R~R23M !
, ~3.13!
08401
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while the internal value is zero:a,@ l 50;Zerilli#50. The
gauge acceleration, on the other hand, is found to be

a@ l 50;gauge#52
3M ~R22M !2

R4~R23M !
j~R!,

and by virtue of Eq.~3.8!, the internal and external value
are equal. The gauge vector can most simply be evalu
from the orbit’s interior, and Eq.~3.9! gives j(R)5a(R2

12MR14M2)/R. But the jump conditions implya

5 1
3 (mẼ/M )@(R23M )ln(122M/R)2M#/(R22M), and alto-

gether we obtain

a@ l 50;gauge#5mẼ
~R22M !~R212MR14M2!

R5

3F M

R23M
2 lnS 12

2M

R D G . ~3.14!

From Eqs.~3.12!–~3.14! we arrive at our final results. The
internal value for thel 50 self-acceleration is

a,@ l 50#5mẼ
~R22M !~R212MR14M2!

R5

3F M

R23M
2 lnS 12

2M

R D G , ~3.15!

while the external value is

a.@ l 50#52mẼ
R42MR318M4

R5~R23M !

2mẼ
~R22M !~R212MR14M2!

R5

3 lnS 12
2M

R D . ~3.16!

When R@M these expressions simplify toa,@ l 50#
;3mM/R3 anda.@ l 50#;2m/R21mM/(2R3); the inter-
nal value is smaller than the external value by a factor
order M /R!1. These limiting expressions are compatib
with the Newtonian results displayed in Eq.~2.13!. They
differ, however, from the results of Nakano, Sago, and Sas
@31#, which are displayed in their Eq.~E19!—our expres-
sions are smaller than theirs by a term 4mM/R3. This dis-
crepancy is explained in the Appendix. Equations~3.15! and
~3.16! were used to generate the curves shown in Figs. 1
2.

IV. DIPOLE, ODD-PARITY GRAVITATIONAL
PERTURBATIONS

In this section we calculate thel 51, odd-parity metric
perturbations of the Schwarzschild spacetime produced b
particle of massm in circular orbit at a radiusR. From these
we shall derive their contribution to the self-acceleratio
a@ l 51;odd# as defined by Eq.~1.3!. Here we shall find that
9-7
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the expressions provided by Zerilli already satisfy the Lore
gauge condition.

The dipole, odd-parity perturbations produced by a po
particle in arbitrary motion around a Schwarzschild bla
hole were first computed by Zerilli@26# and shown to be
intimately related to the shift in angular-momentum para
eter that occurs at the orbit. After specializing to circu
motion in the equatorial plane, his results read

htf522mL̃ sin2u3H r 2/R3, r ,R,

1/r , r .R,
~4.1!

whereL̃5@MR/(123M /R)#1/2 is the particle’s angular mo
mentum per unit rest mass. Forr ,R, the metricgab1hab
differs fromgab only by a gauge transformation—it is also
Schwarzschild metric with mass parameterM. For r .R,
gab1hab is a Kerr metric linearized with respect to th
angular-momentum parametera[(m/M )L̃. The perturba-
tion therefore describes the sudden shift in angular mom
tum that occurs atr 5R.

It is easy to check that the perturbation of Eq.~4.1! satis-
fies the Lorenz gauge condition of Eq.~1.2!. It is also easy to
show that a~time-independent! gauge transformation within
the class of Lorenz gauges would produce a patholog
behavior of the perturbation at the event horizon. Equat
~4.1! therefore gives us a unique solution to the perturbat
equations in the Lorenz gauge.

A straightforward calculation then reveals that the inter
value of the l 51, odd-parity contribution to the self
acceleration is

a,@ l 51;odd#52
4mM

R3

122M /R

~123M /R!3/2
, ~4.2!

while the external value is

a.@ l 51;odd#5
2mM

R3

122M /R

~123M /R!3/2
. ~4.3!

These results have no analogue in Newtonian theory. Eq
tions ~4.2! and~4.3! were used to generate the curves sho
in Figs. 1 and 2.

V. DIPOLE, EVEN-PARITY GRAVITATIONAL
PERTURBATIONS

Our task in this section is to calculate thel 51, even-
parity metric perturbations of the Schwarzschild spacet
produced by a particle of massm in circular orbit at a radius
R. We shall also calculate the associated contribution to
self-acceleration,a@ l 51;even# as defined by Eq.~1.3!. Once
more we need the perturbations in the Lorenz gauge, an
in Sec. III our strategy will be to obtain them first in th
simpler Zerilli gauge, and then look for a transformation
the Lorenz gauge. The solution to the wave equation satis
by the gauge vector field will be obtained numerically a
provided in tabulated form. It will also be obtained analy
cally in a post-Newtonian expansion in powers ofM /R.
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A. Perturbations in the Zerilli gauge

The dipole, even-parity perturbations produced by a po
particle in arbitrary motion around a Schwarzschild bla
hole were first computed by Zerilli@26# in a simple choice of
gauge. After specializing to circular motion, his results b
come

htt
Z52mẼ

R22M

r ~r 22M !
~12r 3V2/M !sinu

3cos~f2Vt !Q~r 2R!, ~5.1!

htr
Z 526mẼV~R22M !

r

~r 22M !2
sinu

3sin~f2Vt !Q~r 2R!, ~5.2!

hrr
Z 56mẼ~R22M !

r

~r 22M !3
sinu

3cos~f2Vt !Q~r 2R!, ~5.3!

where V5AM /R3 is the particle’s angular velocity andẼ
5(122M /R)(123M /R)21/2 is its energy per unit mass
Here we see that the perturbations are time dependent,
this complicates considerably the task of finding the trans
mation to the Lorenz gauge. Equation~5.1! reveals that the
Zerilli gauge is not asymptotically flat, sincehtt

Z grows lin-
early with r as r→`. This indicates the fact that the metr
gab1hab

Z is expressed in a noninertial coordinate syst
anchored to the black hole instead of the system’s cente
mass. This statement will be elaborated below.

B. Perturbations in a singular gauge

The metric perturbations of Eqs.~5.1!–~5.3! do not satisfy
the Lorenz gauge condition of Eq.~1.2!. To transform to the
Lorenz gauge we proceed in two steps. We shall first tra
form to a gauge in which the perturbation is zero eve
where, except atr 5R where it is singular. We shall then g
from this singular gauge to the Lorenz gauge.

It is well known from Zerilli’s work @26# that in vacuum,
a dipole, even-parity perturbation can be completely
moved by a gauge transformation. Such a perturbat
therefore, represents a coordinate transformation; and a
have already suggested, forr .R the metricgab1hab

Z is just
a Schwarzschild solution expressed in a noninertial coo
nate system. The perturbations of Eqs.~5.1!–~5.3!, however,
are not pure gauge because of the presence of the par
They can be removed in the vacuum region outside or
5R, but the gauge transformation leaves something beh
at r 5R. The result of this transformation ishab

s , the metric
perturbation in what we shall call thesingular gauge.

The gauge transformation that removes a dipole, ev
parity perturbation in vacuum was constructed by Zer
@26#. It is generated by a vector field«a, so thathab

s 5hab
Z

22« (a;b) . For circular motion this is given by
9-8
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« t5
mẼ

M
V~R22M !

r 2

r 22M
sinu sin~f2Vt !Q~r 2R!,

~5.4!

« r52
mẼ

M
~R22M !

r 2

~r 22M !2
sinu cos~f2Vt !

3Q~r 2R!, ~5.5!

«u52
mẼ

M
~R22M !

r 2

r 22M
cosu cos~f2Vt !Q~r 2R!,

~5.6!

«f5
mẼ

M
~R22M !

r 2

r 22M
sinu sin~f2Vt !Q~r 2R!.

~5.7!

The new metric perturbation is then

htr
s 52

mẼ

M
VR2sinu sin~f2Vt !d~r 2R!, ~5.8!

hrr
s 52

mẼ

M

R2

R22M
sinu cos~f2Vt !d~r 2R!,

~5.9!

hru
s 5

mẼ

M
R2cosu cos~f2Vt !d~r 2R!,

~5.10!

hrf
s 52

mẼ

M
R2sinu sin~f2Vt !d~r 2R!,

~5.11!

and we see that in the singular gauge, the metric perturba
is proportional tod(r 2R), which is produced by differen
tiation of the step function in«a . The gauge transformatio
therefore makes the perturbation zero everywhere in
vacuum region outside~and inside! r 5R, but it contributes a
singular term at the orbit. This illustrates the fact that t
presence of matter prevents the Zerilli-gauge metric per
bation from being pure gauge.

C. Interpretation of the gauge transformation

The preceding discussion on coordinate systems can
clarified if we examine the asymptotic behavior of the gau
vector field in the limitr→`. In this limit we can seek a
Newtonian interpretation of the results, and we shall see
in the original Zerilli gauge, the perturbed metric is that o
moving black hole. The following is patterned after a simi
discussion produced by Zerilli@26#.

The vector«a becomes asymptotically equal toba in the
limit r→`, where

bt52
mẼ

M
~R22M !

]

]t
r sinu cos~f2Vt !,
08401
on
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e
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at

r

br52
mẼ

M
~R22M !sinu cos~f2Vt !,

bu52
mẼ

M
~R22M !

1

r
cosu cos~f2Vt !,

bf5
mẼ

M
~R22M !

1

r sinu
sin~f2Vt !.

If we introduce asymptotic Cartesian coordinatesx
5r sinu cosf, y5r sinu sinf, andz5r cosu, we have

bt52
mẼ

M
~R22M !

]

]t
~x cosVt1y sinVt !,

bx52
mẼ

M
~R22M !cosVt,

by52
mẼ

M
~R22M !sinVt,

bz50.

To give a Newtonian interpretation to these results, lex
be the Zerilli coordinates of an arbitrary field point, l
R(t)[(R22M )(cosVt,sinVt,0) be the position vector o
the orbiting particle, and express the preceding equation

b~ t !52
mẼ

M
R~ t !, bt5x•ḃ~ t !,

where an overdot indicates differentiation with respect tot.
The coordinate transformation generated byba is then

xnew5x1b~ t !, tnew5t1x•ḃ~ t !.

We can now explain that this transformation represent
translation from a noninertial reference frame attached to
black hole to an inertial frame attached to the center of ma
Please refer back to Sec. II for a definition of the notati
employed here.

In the center-of-mass frame, the particle moves on a
jectory Rcm(t), and the black hole moves on a trajecto
rcm(t). In the black-hole frame we haveRbh(t)[R(t) and
rbh(t)[0. The center-of-mass condition is (mẼ)Rcm

1Mrcm50, so we havercm52(mẼ/M )Rcm. We also have
R5Rcm2rcm5(11mẼ/M )Rcm, so that Rcm5R
1O(m/M ) andrcm52(mẼ/M )R1O(m2/M2), or

rcm~ t !5b~ t !1O~m2/M2!.

The vectorb(t) is therefore the position of the black ho
relative to the center of mass, and the coordinate transfor
tion is truly a translation from the moving frame of the bla
hole to the fixed reference frame of the center of mass.
9-9
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D. Transformation to the Lorenz gauge

We now return to the task of transforming the metric p
turbation from the singular gauge of Eqs.~5.8!–~5.11! to the
Lorenz gauge. The gauge transformation is generated
vector fieldja, such that

hab5hab
s 22j (a;b) ~5.12!

is the Lorenz-gauge metric perturbation. For this to com
with Eq. ~1.2!, the vector field must satisfy the inhomog
neous wave equation

hja5Sa, ~5.13!

whereh5¹b¹b is the wave operator and

Sa5¹bS hs
ab2

1

2
gabggdhgd

s D ~5.14!

is the source term. This is given explicitly by

St5
mẼ

M

VR

R22M
@~3R22M !d~r 2R!

1R~R22M !d8~r 2R!#sinu sin~f2Vt !, ~5.15!

Sr5
mẼ

M

1

R
@~2R25M !d~r 2R!

1R~R22M !d8~r 2R!#sinu cos~f2Vt !, ~5.16!

Su5
mẼ

M

1

R2
@~3R28M !d~r 2R!

1R~R22M !d8~r 2R!#cosu cos~f2Vt !, ~5.17!

Sf52
mẼ

M

1

R2sin2u
@~3R28M !d~r 2R!

1R~R22M !d8~r 2R!#sinu sin~f2Vt !. ~5.18!

To arrive at these results we have invoked the distributio
identity g(r )d8(r 2R)5g(R)d8(r 2R)2g8(R)d(r 2R),
whereg(r ) is any test function andg8(r ) its derivative with
respect tor.

To solve Eq.~5.13! we decompose the vectorja in even-
parity spherical harmonics of degreel 51. The form of the
source term indicates that only terms withm561 are
needed, and we let

ja~ t,r ,uA!5(
6

ja
6~ t,r !Y6~uA!, ~5.19!

jA~ t,r ,uA!5(
6

j6~ t,r !]AY6~uA!. ~5.20!

Here, the lower-case latin indexa refers to thet and r com-
ponents of the vector field, while the upper-case indexA
08401
-

a

y

al

refers to the angular components; we have setuA5(u,f)
andY6(uA)[Yl 51

m561(uA)57A3/(8p) sinue6if.
The vectorSa can be decomposed in a similar way, and

simplify the form of the reduced wave equation we defi
the functionsA6(r ), B6(r ), andC6(r ) by the relations

j t
6~ t,r !52

1

2
A8p

3

mẼ

M
iVR

A6~r !

r
e7 iVt, ~5.21!

j r
6~ t,r !57

1

2
A8p

3

mẼ

M

B6~r !

r 22M
e7 iVt,

~5.22!

j6~ t,r !57
1

2
A8p

3

mẼ

M
C6~r !e7 iVt.

~5.23!

With these definitions Eq.~5.13! becomes the following se
of ordinary differential equations:

d2A6

dr2
1F V2r 2

~r 22M !2
2

2

r ~r 22M !GA62
2M /R

~r 22M !2
B6

5
2R2

R22M
d~r 2R!1R2d8~r 2R!, ~5.24!

d2B6

dr2
1F V2r 2

~r 22M !2
2

4~r 2M !

r 2~r 22M !
GB61

2V2MR

~r 22M !2
A6

1
4

r 2
C65

R~R2M !

R22M
d~r 2R!1R2d8~r 2R!, ~5.25!

d2C6

dr2
1

2M

r ~r 22M !

dC6

dr
1F V2r 2

~r 22M !2
2

2

r ~r 22M !GC6

1
2

r ~r 22M !
B65Rd~r 2R!1R2d8~r 2R!. ~5.26!

The steps required to obtain the Lorenz-gauge metric per
bation are therefore these: First, solve Eqs.~5.24!–~5.26! for
the functionsA6(r ), B6(r ), andC6(r ); second, insert the
solutions into Eqs.~5.21!–~5.23!, and these into Eqs.~5.19!
and ~5.20!, to construct the gauge vector fieldja ; third,
computehab using Eq.~5.12!.

E. Jump conditions and asymptotic behavior

The solutions to Eqs.~5.24!–~5.26! can be expressed as

A6~r !5A,
6~r !Q~R2r !1A.

6~r !Q~r 2R!, ~5.27!

B6~r !5B,
6~r !Q~R2r !1B.

6~r !Q~r 2R!, ~5.28!

C6~r !5C,
6~r !Q~R2r !1C.

6~r !Q~r 2R!, ~5.29!
9-10
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where the interior and exterior solutions satisfy the cor
sponding homogeneous equations. To account for the so
terms, these functions must comply with the jump conditio

@A6#5@B6#5@C6#5R2 ~5.30!

and

FdA6

dr G5
2R2

R22M
, ~5.31!

FdB6

dr G5
R~R2M !

R22M
, ~5.32!

FdC6

dr G5
R~R24M !

R22M
, ~5.33!

where @c#[c.(r 5R)2c,(r 5R) for any function c of
the radial coordinate.

Near the event horizon the interior functions can be
panded as

A,
6~r !5e7 iVr* (

n50

`

an~r 22M !n, ~5.34!

B,
6~r !5e7 iVr* (

n50

`

bn~r 22M !n, ~5.35!

C,
6~r !5e7 iVr* (

n50

`

cn~r 22M !n. ~5.36!

These forms ensure that the vectorja satisfies ingoing-wave
boundary conditions at the horizon, a necessary conditio
obtain a retarded solutionto Eq. ~5.13!. Substitution into
Eqs. ~5.24!–~5.26! provides recurrence relations consisti
of three coupled expressions for thean , bn , andcn :

@2Mn~n21!74iVM2~2n21!#an24M2R21bn

52@n~n23!72iVM ~4n25!#an2172iV~22n!an22

12MR21bn21 , ~5.37!

8V2M3Ran1@4M2n~n21!78iVM3~2n21!#bn

528V2M2Ran2122V2MRan22

2@4M ~n223n11!78iVM2~3n24!#bn21

2@n225n1272iVM ~6n213!#bn22

72iV~32n!bn2324cn22 , ~5.38!

2nM~n74iVM !cn

522bn212@n~n23!78iVM ~n21!#cn21

72iV~n22!cn22 . ~5.39!
08401
-
rce
s

-
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For n,0, an , bn , and cn are zero. Forn50 and 1, Eqs.
~5.37!–~5.39! allow a0 , a1, andc0 to be chosen freely. Othe
early coefficients in the sequences are

b056 iVRa0 , ~5.40!

b152
Ra0

2M2
7 iVRa1 , ~5.41!

c15
c07 iVRa1

M ~174iVM !
. ~5.42!

Similarly, for large r the exterior functions can be ex
panded as

A.
6~r !5e6 iVr* (

n50

`

ânr 2n, ~5.43!

B.
6~r !5e6 iVr* (

n50

`

b̂nr 2n, ~5.44!

C.
6~r !5e6 iVr* (

n50

`

ĉnr 2n. ~5.45!

These forms ensure that the vectorja satisfies outgoing-
wave boundary conditions at infinity, another necessary c
dition to obtain aretarded solutionto Eq.~5.13!. Substitution
into Eqs.~5.24!–~5.26! provides recurrence relations consis
ing of three coupled expressions for theân , b̂n , and ĉn :

62iVnân5@~n22!~n11!62iVM ~2n23!#ân21

24M ~n223n11!ân22

14M2~n22!~n23!ân2322MR21b̂n21 ,

~5.46!

62iVnb̂n52V2RMân21

1@n22n2462iVM ~2n23!#b̂n21

24M ~n223n21!b̂n22

14M2~n225n14!b̂n2314ĉn21

216Mĉn22116M2ĉm23 , ~5.47!

and

62iVnĉn52b̂n211~n22!~n11!ĉn21

22Mn~n22!ĉn22 . ~5.48!

For n,0, ân , b̂n , andĉn are zero. Equations~5.46!–~5.48!
allow â0 , b̂0, and ĉ0 to be chosen freely. Other early coe
ficients in the sequences are given by

6 iVâ152~16 iVM !â02Mb̂0 /R, ~5.49!

6 iVb̂152MV2Râ02~26 iVM !b012c0 ,
~5.50!
6 iV ĉ15b02c0 . ~5.51!
9-11
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The set of homogeneous solutions to Eqs.~5.24!–~5.26!,
inside and outside the orbit, forms a six-dimensional lin
vector space. The six amplitudes

a0 , a1 , c0 , â0 , b̂0 , ĉ0

determine one complete homogeneous solution and ma
considered to be the ‘‘components’’ of any member of t
vector space. The six amplitudes that generate the partic
solution which satisfies the matching conditions of E
~5.30!–~5.33! therefore identify the member of the vect
space that corresponds to the desired gauge transforma

F. Numerical integration of the ABC equations

The numerical integration of the homogeneous versi
of Eqs.~5.24!–~5.26! is performed by first choosing startin
pointsr min andr max which are close enough to their limitin
values 2M and infinity, respectively, that the expansions a
recursion relations~5.34!–~5.39! and ~5.43!–~5.48! provide
appropriate initial conditions forA, B, and C at machine
accuracy with a reasonable number of terms in the sums~no
more than 30 in our case!. Also, the starting points are cho
sen to be sufficiently close toR that the resulting integration
to R takes only a few seconds of machine time. Satisfy
these two requirements simultaneously, both inside and
side the orbit, is not difficult in practice.

The integration routine requires six input parameters,
complex amplitudesa0 , a1 , c0 , â0 , b̂0, andĉ0. These must
be chosen so that the six jump conditions~5.30!–~5.33! are
enforced. We have six algebraic equations for six unknow
We pick a set of six linearly independent ‘‘basis solutions
each of which having only one of thea0 . . . ĉ0 equal to 1, all
other amplitudes being zero. After integrating the basis so
tions to R we collect the values ofA, B, C, dA/dr, dB/dr
anddC/dr, all evaluated atR, in a matrix

M5S 2A1, 2A2, 2A3, A1. A2. A3.

2B1, 2B2, 2B3, B1. B2. B3.

2C1, 2C2, 2C3, C1. C2. C3.

2A1,8 2A2,8 2A3,8 A1.8 A2.8 A3.8

2B1,8 2B2,8 2B3,8 B1.8 B2.8 B3.8

2C1,8 2C2,8 2C3,8 C1.8 C2.8 C3.8

D ,

where we use an obvious notation; for example,A1,8 is the
value of dA/dr at r 5R for the first of the internal basis
solutions. The required amplitudes of the six basis soluti
form the unknown column vectorx, and the column vectorj
contains the values of the discontinuities obtained from
jump conditions~5.30!–~5.33!. After integrating the six basis
solutions, we are left to solve the system of linear equati

Mx5 j ~5.52!

for the desired amplitudesx of our basis solutions; these the
combine to give us the desired solution of Eqs.~5.24!–~5.26!
with appropriate boundary conditions.
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In our numerical work we use double-precision arithme
and have adopted two different ODE integration routin
from Chapter 16 ofNumerical Recipes@32#, the Runge-Kutta
and the Burlish-Stoer algorithms. Each of these routines c
tains an accuracy parameter. A comparison of the numer
results over a range of values of this parameter allows u
be certain that all digits quoted in Table I are significant. W
tested the consistency of the integrations versus the ex
sions by numerically integrating over a wide range inr
where the expansions give accurate values forA, B and C.
The consistency of the expansion routines with the integ
tion routines is strong evidence that coding errors have b
eliminated. Furthermore, we have written two independ
codes, one per author, and all results were obtained inde
dently before they were compared with each other. T
agreement was well within the numerical errors of each co
Our final results forA,

1(R), B,
1(R) andC,

1(R) are listed in
Table I for selected values ofR. Results forA,

2(R), B,
2(R)

andC,
2(R) are obtained by complex conjugation. Results

A.
6(R), B.

6(R) andC.
6(R) are obtained from the jump con

ditions of Eq.~5.30!.

G. Calculation of the self-acceleration

Substitution of Eqs.~5.27!–~5.29! into Eqs.~5.21!–~5.23!,
these into Eqs.~5.19!, ~5.20!, and finally, these into Eq
~5.12!, yields

hab5hab
s 2~@ja#r ,b1r ,a@jb#!d~r 2R!

2~ja;b
, 1jb;a

, !Q~R2r !2~ja;b
. 1jb;a

. !Q~r 2R!

in an obvious notation; for exampleja
, is the internal (r

,R) solution to Eq.~5.13!, constructed fromA,(r ), B,(r ),
andC,(r ). The first three terms on the right-hand side a
pear to be singular, but it is easy to check that by virtue
Eqs. ~5.8!–~5.11! and ~5.30!, the factors multiplyingd(r
2R) are all zero. We therefore have

hab52~ja;b
, 1jb;a

, !Q~R2r !2~ja;b
. 1jb;a

. !Q~r 2R!.
~5.53!

The jump conditions~5.31!–~5.33! also enforce

@ja;b1jb;a#50,

and we see that in the Lorenz gauge, the metric perturba
is continuous atr 5R. Equation~5.53! also reveals that the
internal (r ,R) and external (r .R) forms of hab are ob-
tained by a pure gauge transformation. The internal and
ternal transformations, however, are distinct, and the per
bation is not globally pure gauge.

Differentiation ofhab gives

hab;g52@ja;b1jb;a#r ,gd~r 2R!

2~ja;bg
, 1jb;ag

, !Q~R2r !

2~ja;bg
. 1jb;ag

. !Q~r 2R!.

Once more the singular terms vanish and we end up with
nonsingular~but discontinuous! tensor
9-12
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TABLE I. Computed values for the internal functionsA,
1(R), B,

1(R) andC,
1(R). The external values

are obtained by applying the jump conditions: Re@A.
1#5Re@A,

1#1R2 and the imaginary parts are identic
~similar statements hold forB andC). The functionsA2(R), B2(R), andC2(R) are obtained by complex
conjugation. All digits provided are significant. Note that we have setM[1 in our computations.

R Re@A,
1# Im@A,

1# Re@B,
1# Im@B,

1# R Re@C,
1# Im@C,

1#

6 239.427067 20.68518043 228.037347 3.1558616 226.185013 3.8814154
7 252.930571 20.68313011 238.997736 3.6225886 237.151392 4.3105572
8 268.389381 20.66104724 251.991922 4.0456669 250.152019 4.6962809
9 285.826868 20.63522323 267.000673 4.4373057 265.166204 5.0547070

10 2105.25284 20.61006840 284.015966 4.8042522 282.185790 5.3926745
11 2126.67197 20.58677222 2103.03408 5.1508692 2101.20722 5.7139596
12 2150.08673 20.56553614 2124.05317 5.4802524 2122.22887 6.0210382
13 2175.49853 20.54624909 2147.07229 5.7947312 2145.24995 6.3157134
14 2202.90822 20.52871248 2172.09095 6.0961288 2170.27013 6.5993856
15 2232.31636 20.51271828 2199.10891 6.3859127 2197.28925 6.8731864
16 2263.72332 20.49807505 2228.12606 6.6652898 2226.30729 7.1380554
17 2297.12936 20.48461496 2259.14236 6.9352693 2257.32427 7.3947870
18 2332.53466 20.47219375 2292.15781 7.1967063 2290.34024 7.6440626
19 2369.93935 20.46068823 2327.17244 7.4503337 2325.35525 7.8864727
20 2409.34355 20.44999342 2364.18629 7.6967858 2362.36939 8.1225343
25 2636.35940 20.40594758 2579.24539 8.8386535 2577.42896 9.2219041
30 2913.37000 20.37286764 2844.29131 9.8621836 2842.47459 10.213754
35 21240.3777 20.34683600 21159.3279 10.797069 21157.5106 11.123814
40 21617.3835 20.32564845 21524.3578 11.662460 21522.5399 11.969054
45 22044.3881 20.30796022 21939.3826 12.471537 21937.5641 12.761341
50 22521.3918 20.29289834 22404.4036 13.233822 22402.5846 13.509349
55 23048.3949 20.27986801 22919.4216 13.956447 22917.6021 14.219636
60 23625.3975 20.26844793 23484.4373 14.644917 23482.6173 14.897304
65 24252.3997 20.25833015 24099.4510 15.303582 24097.6306 15.546405
70 24929.4016 20.24928356 24764.4632 15.935949 24762.6423 16.170225
75 25656.4033 20.24113082 25479.4740 16.544892 25477.6528 16.771470
80 26433.4048 20.23373328 26244.4838 17.132801 26242.6622 17.352398
85 27260.4061 20.22698069 27059.4926 17.701689 27057.6707 17.914916
90 28137.4073 20.22078417 27924.5006 18.253269 27922.6784 18.460652
95 29064.4083 20.21507114 28839.5079 18.789014 28837.6855 18.991011

100 210041.409 20.20978162 29804.5146 19.310200 29802.6919 19.507212
he

ly

ts

gs.
ults

n

q.

lu-
hab;g52~ja;bg
, 1jb;ag

, !Q~R2r !

2~ja;bg
. 1jb;ag

. !Q~r 2R!. ~5.54!

This can now be substituted into Eq.~1.1! to obtain thel
51, even-parity contribution to the self-acceleration; t
calculation also involves the particle’s velocity vector,um

5(123M /R)21/2@1,0,0,V#. In the notation of Eq.~1.3!, we
have

a@ l 51;even#523mẼ
R22M

R4~R23M !
Re@B1~R!#,

~5.55!

which must be evaluated on either side ofr 5R. To arrive at
Eq. ~5.55! we have used the property thatB2(R) is the com-
plex conjugate of B1(R), so that B1(R)1B2(R)
52 Re@B1(R)#. That the acceleration vector depends on
08401
on the radial component ofja is a consequence of the fac
that the acceleration is pure gauge~in the sense given above!
and that the motion is circular. The curves displayed in Fi
1 and 2 were obtained by substituting the numerical res
of Table I into Eq.~5.55!.

The l 51, even-parity contribution to the self-acceleratio
takes different values depending on whetherB1(R) is evalu-
ated from inside or outside the orbit. By virtue of Eq.~5.30!,
its jump across the orbit is given by

@a@ l 51;even##523mẼ
R22M

R2~R23M !
. ~5.56!

When R@M , this agrees with the Newtonian result of E
~2.18!.

H. Self-acceleration in the post-Newtonian limit

While we have not been able to find exact analytic so
tions to Eqs.~5.24!–~5.26!, it is possible to make some
9-13
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S. DETWEILER AND E. POISSON PHYSICAL REVIEW D69, 084019 ~2004!
progress by linearizing the equations with respect toM. So-
lutions to these equations are then post-Newtonian appr
mations to the exact, numerically obtained solutions.
now set out to obtain these approximations, and to comp
them with the numerical results.

After linearization—recall thatV25M /R3 is linear in
M—the homogeneous equations become

d2A

dr2
1S V22

2

r 2
2

4M

r 3 D A2
2M /R

r 2
B50, ~5.57!

d2B

dr2
1S V22

4

r 2
2

4M

r 3 D B1
4

r 2
C50, ~5.58!

and

d2C

dr2
1

2M

r 2

dC

dr
1S V22

2

r 2
2

4M

r 3 D C1S 2

r 2
1

4M

r 3 D B50,

~5.59!

where we have omitted the6 labels for ease of notation. Th
jump conditions reduce to@A#5@B#5@C#5R2 and

FdA

dr G52RS 11
2M

R D ,

FdB

dr G5RS 11
M

R D ,

FdC

dr G5RS 12
2M

R D . ~5.60!

We notice that the equations forB andC decouple from the
equation forA. In the sequel we will construct solutions t
theB andC equations, and leaveA(r ) undetermined; for the
purposes of calculating the self-acceleration, onlyB(r ) is
required. Our solutions will satisfy outgoing-wave bounda
conditions atr→`, so that in the following,B(r )[B1(r )
andC(r )[C1(r ).

To decouple theB andC equations we introduce the ne
dependent variablesc25@B2(12M /r )C#/R2 and c1

5@ 1
3 B1 2

3 (12M /r )C#/R2, such that

B5R2S c11
2

3
c2D ~5.61!

and

C5R2S 11
M

r D S c12
1

3
c2D .

~5.62!

Away from r 5R, these functions satisfy the differentia
equations

c29 1S 12
6

z2
2

6v3

z3 D c250 ~5.63!
08401
i-
e
re

and

c19 1c150, ~5.64!

where we have introduced the rescaled independent vari
z5Vr and the small quantityv35MV5(M /R)3/2; a prime
indicates differentiation with respect toz. In terms of the new
variables, the jump conditions become

@c2#5v2, @c28 #53v ~5.65!

and

@c1#512
2

3
v2, @c18 #5

1

v
~12v2!; ~5.66!

matching is carried out atz5v.
To find solutions to Eq.~5.63! we use the fact thatv is

small and write

c25c01v3c11O~v6!. ~5.67!

Substitution into Eq.~5.63! yields an equation forc0,

c091S 12
6

z2D c050, ~5.68!

and another equation forc1,

c191S 12
6

z2D c15
6

z3
c0 . ~5.69!

We first solve these equations in the domainz,v. Among
all possible solutions to Eq.~5.63!, we choose one which
does not diverge in the limitz→0. While this condition
seems appropriate for our purposes, it is important to un
stand that we cannot fully justify it here: this choice must
introduced as an additional assumption. The reason is as
lows: Linearization of the equations with respect toM im-
plies that Eqs.~5.63! and ~5.64! apply only in the domainr
@M , or z@v3, and this restriction prevents us from impo
ing a proper ingoing-wave condition at the horizonr
52M , or z52v3). We must therefore identify a suitabl
replacement for this boundary condition, in the form of
asymptotic condition holding whenz is restricted byv3!z
!v. Previous experience@33,34# with solving the Regge-
Wheeler equation@25# in the low-frequency limit (MV
5v3!1) suggests that an appropriate substitution is a re
larity condition in the formal limitz→0. This is the choice
we make here, without confirmation that this conclusion a
plies to the system~5.24!–~5.26!.

A regular solution to Eq.~5.68! is c0(z)5z j2(z), or

c0
,~z!5S 3

z2
21D sinz2

3

z
cosz, ~5.70!

where j 2(z) is a spherical Bessel function. Substituting E
~5.70! into Eq. ~5.69! and integrating returns a linear supe
position ofz j2(z), zn2(z), andcp(z), a particular solution
9-14
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LOW MULTIPOLE CONTRIBUTIONS TO THE . . . PHYSICAL REVIEW D 69, 084019 ~2004!
to the differential equation. The term involvingz j2(z) can be
discarded, as it simply renormalizes the zeroth-order solu
of Eq. ~5.70!. The coefficient in front ofzn2(z) must then be
chosen so as to yield a regular solution. This gives

c1
,~z!52

3

2 S 1

z
2

2

z3D sinz1
1

2 S 12
6

z2D cosz,

~5.71!

and the complete interior solution to Eq.~5.63! is

c2
,~z!5a@c0

,1v3c1
,1O~v6!#. ~5.72!

The amplitudea will be determined by matching.
We next turn to the domainz.v and construct an exterio

solution to Eq.~5.63!; this will be required to satisfy an
outgoing-wave condition asz→`. The procedure is largely
the same as for the interior solution, but is simplified by t
fact that the outer boundary is part of the domainz@v3. An
outgoing-wave solution to Eq. ~5.68! is c0(z)5
2 izh2

(1)(z), or

c0
.~z!5S 11

3i

z
2

3

z2D eiz. ~5.73!

Substituting this into Eq.~5.69! and integrating returns a
linear superposition ofzh2

(1)(z), zh2
(2)(z), andcp(z), a par-

ticular solution to the differential equation. As before t
term involving zh2

(1)(z) can be discarded, and the term i
volving zh2

(2)(z) must also be eliminated because it rep
sents an incoming wave. We are left with the particular
lution,

c1
.~z!5

3i

2 S 1

z2
1

2i

z3D eiz. ~5.74!

The complete exterior solution to Eq.~5.63! is then

c2
.~z!5b@c0

.1v3c1
.1O~v6!#, ~5.75!

and the amplitudeb will be determined by matching.
The constantsa and b are determined by inserting Eq

~5.72! and~5.75! into the jump conditions of Eq.~5.65!. The
results are moderately complicated, and we shall not disp
them here. The expressions, however, simplify once we t
into account the fact thatv is small. At the matching poin
we find

c2
,~v !52v21O~v4!, c2

.~v !5O~v4!. ~5.76!

In the interior domain (z,v) we can take advantage of th
fact thatz is formally of orderv to derive

c2
,~z!52~z/v !3v21O~v4!. ~5.77!

We now proceed with finding interior and exterior sol
tions to Eq.~5.64!. This is a much simpler task, but as w
shall see, our solutions will not be fully determined. For
interior solution we write
08401
n

e

-
-

y
ke

c1
,~z!5a~sinz2bv3cosz!, ~5.78!

wherea andb are constants; the scaling of the cosine te
with v3 is introduced for convenience, in anticipation of lat
results. We note that this solution is regular in the form
limit z→0, in agreement with the discussion given pre
ously, and that it involves two undetermined constants.
an exterior solution we choose

c1
.~z!5geiz, ~5.79!

whereg is another constant. Substitution of Eqs.~5.78! and
~5.79! into the jump conditions of Eq.~5.66! allows us to
determinea and g, but b is left over as a free paramete
Once more the resulting expressions are too complicate
be displayed, but they simplify forv!1. At the matching
point we find

c1
,~v !5211S b1

2

3D v21O~ iv3,v4!,

c1
.~v !5bv21O~ iv3,v4!, ~5.80!

and in the interior domain we have

c1
,~z!52~z/v !1Fb1

1

2
~z/v !1

1

6
~z/v !3Gv21O~ iv3,v4!.

~5.81!

Substitution of Eqs.~5.76! and~5.80! into Eqs.~5.61! and
~5.62! yields

B,~R!5C,~R!52R2F12b
M

R
1O~ iM V,M2/R2!G ,

~5.82!

as well asB.(R)5C.(R)5bMR1•••. According to these
results, Eq.~5.55! becomes

a,@ l 51;even#.
3mẼ

R2 F12~b21!
M

R G ~5.83!

and

a.@ l 51;even#.2
3mẼ

R2

bM

R
. ~5.84!

This is compatible with the Newtonian results presented
Eq. ~2.17!.

Substitution of Eqs.~5.77! and~5.81! into Eqs.~5.61! and
~5.62! gives us expressions for the interior functions:

B,~r !52R2H ~r /R!2Fb1
1

2
~r /R!2

1

2
~r /R!3G M

R

1O~ iM V,M2/R2!J ~5.85!

and
9-15
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S. DETWEILER AND E. POISSON PHYSICAL REVIEW D69, 084019 ~2004!
C,~r !52R2H ~r /R!2Fb211
1

2
~r /R!1

1

2
~r /R!3G M

R

1O~ iM V,M2/R2!J . ~5.86!

These solutions are parametrized byb, which cannot be de-
termined here because of our lack of control over the beh
ior of the solutions nearr 52M .

We can, however, estimate the value ofb by fitting Eq.
~5.82! to our numerical results. We proceed as follows. Fir
we fit the expression 12bM /R1bB8 (M /R)2 to our numeri-
cal values for B,(R)/(2R2) in the interval 20<R/M
<100; this yieldsb51.993660.0006 andbB854.0760.02.
Second, we fit the expression 12bM /R1bC8 (M /R)2 to our
numerical values forC,(R)/(2R2) restricted to the same
interval; this yields b51.993660.0006 and bC8 52.26
60.02. Third, we fit the expressionb1bB9 (M /R) to our
numerical values forB.(R)/(MR); this yields b51.9951
60.0004 andbB9524.1260.02. Finally, we fit the expres
sion b1bC9 (M /R) to our numerical values fo
C.(R)/(MR); this yields b51.995260.0004 andbC9 5
22.3160.02. We notice an excellent consistency among
estimates ofb, and we conclude that according to our n
merical results,

b51.99460.001.

It is probable that the actual value isb52, and that the
slight discrepancy results from a failure to include additio
terms in the expansions in powers ofM /R. The two-
parameter fits presented here were obtained with a nonli
least-squares Marquardt-Levenberg algorithm, as im
mented in the softwareGNUPLOT.

The quality of the fits can be judged by comparing t
numerically obtained functionsB,(r ) and C,(r ) with the
post-Newtonian approximations of Eqs.~5.85! and~5.86!, in
which we substituteb52. We present this comparison i
Fig. 3 for R525M . We see that the analytic expressions a
very accurate for all values ofr ,R except nearr 52M .

VI. DISCUSSION

Using the tensor harmonic decomposition of Regge
Wheeler@25#, Zerilli @26# and many others have studied th
metric perturbations resulting from the geodesic motion o
small mass in the background geometry of a Schwarzsc
black hole. Most of the attention was devoted to the radiat
modes, those withl>2, and their analysis typically involve
numerical work.

Much less attention has been garnered by the nonra
ing, l 50 and l 51 modes. In fact, the vacuuml 51 even-
parity metric perturbations were shown to bejust gaugeby
Zerilli. This mode contains no gravitational radiation, and
usually ignored in analyses involving gravitational perturb
tions of black holes. Nonetheless, this very mode plays
important role in self-force calculations: only the dipo
mode has a Newtonian-order contribution to the self-for
08401
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as we have shown in Sec. II. The dipole metric perturbati
cannot be ignored.

Zerilli found analytic expressions for thel 50 and l 51
metric perturbations in a convenient gauge. The Lore
gauge, however, with its hyperbolic wave operator, is p
ferred for self-force calculations. We, as well as Nakan
Sago, and Sasaki@31#, have found analytic expressions fo
the l 50 and odd-parityl 51 cases. Our analysis of the eve
parity l 51 case is mostly numerical, but our procedure
robust and easy to implement.

While the Lorenz-gauge treatment of these nonradiat
modes is now in hand, this analysis is but a small part o
complete computation of the regularized self-acceleration
program that was outlined in Sec. I. And the ultimate goal
incorporating the equations of motion, with their correctio
of order m/M , into a wave-generation formalism to obta
accurate gravitational-wave templates, remains elusive.

For example, the conservative forces discussed in this
per affect the trajectory of the small mass at orderm/M . But
the description of this effect inherently depends upon
choice of gauge. While the actual observation of
gravitational-wave signal at a large distance from the sys
is a gauge-independent measurement, the details of the
version from the self-force, as measured in the Lore
gauge, to them/M corrections to the wave forms, which ar
gauge invariant, are not yet known.
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APPENDIX: MONOPOLE GAUGE TRANSFORMATION
WITHIN THE LORENZ GAUGE

In Sec. III we calculated the self-acceleration from t
monopole metric perturbation in the Lorenz gauge a
claimed that this result was unique. Nevertheless, our res
differ from the post-Newtonian results of Nakano, Sago, a
Sasaki~NSS! @31#, who also work in the Lorenz gauge. I
this appendix we outline a possible cause for the discrepa

Both groups begin with differing solutions in the Zeril
gauge and then find differing gauge transformations to
Lorenz gauge, with resulting metric perturbations that yi
differing accelerations. We ask: do our results differ fro
NSS by a gauge transformation from one Lorenz ga
~ours! to another Lorenz gauge~theirs!? An affirmative an-
swer would invalidate our statement that our choice of L
renz gauge is unique. We shall instead argue that while
results are indeed related by a gauge transformation,
transformation takes our Lorenz gauge into another Lor
gauge that fails to be regular on the event horizon. We
therefore correct in stating that our gauge choice is uniq
because the gauge employed by NSS, while appropriate
post-Newtonian treatment, does not have a proper relativ
generalization.

Before we investigate this matter, we note that our expr
sion for the metric perturbation in the Zerilli gauge has

htt
Z5

2mẼ

r S 12
r 22M

R22M DQ~r 2R!, ~A1!

which is zero inside the orbit; this property simplifies o
implementation of the boundary conditions at the horiz
Nakano, Sago, and Sasaki, their Eq.~E5!, have instead

htt
NSS5

2mẼ

r F r 22M

R22M
Q~R2r !1Q~r 2R!G , ~A2!

which inside the orbit is very similar to the Newtonian res
of Eq. ~2.12!. The difference

htt
NSS2htt

Z5
2mẼ

r

r 22M

R22M
~A3!
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is a gauge transformation generated byja5@at,0,0,0# with
a5mẼ/(R22M ), so that

22j t;t5htt
NSS2htt

Z5
2mẼ

r

r 22M

R22M
. ~A4!

All other components ofj (a;b) are zero.
Now we seek an answer to our earlier questions. We

sume that thel 50 metric perturbation has already been o
tained in one Lorenz gauge~ours, the results appearing i
Sec. III!, and we ask whether it is possible to take it
another Lorenz gauge~which we imagine to be a relativistic
generalization of the choice made by NSS!. We consider the
most generall 50 gauge vector

j a5@at, j ~r !,0,0# ~A5!

that keeps the metric perturbation static, wherea is now an
arbitrary constant. The gauge transformation generated
this vector produces a shift in the metric perturbation giv
by Dhab522 j (a;b) . For the shifted perturbation to satisf
the Lorenz gauge condition, the gauge vector must sat
the wave equationh j a50. This gives

j 91
2

r
j 82

2

r 2
j 5

2aM

r 2f
, ~A6!

wheref 5122M /r . The general solution to this wave equ
tion is

j 5c1r 1c2

M3

r 2
1

a

9r 2
@3r 3ln~122M /r !23Mr 2212M2r

144M3224M3ln~r /2M21!#, ~A7!

wherec1 andc2 are arbitrary, dimensionless constants. N
tice that the complicated function within the square brack
is closely related to the functionG(r ) defined in Eq.~3.10!,
namely@ #529Mr 2f G(r ). The resulting non-zero shifts in
the metric perturbation are

Dhtt52a f 1
2M

r 2
j ~r !,

Dhrr 52
2

f

d j~r !

dr
1

2M

r 2f 2
j ~r !,

Dhuu5sin2uDhff522r j ~r !. ~A8!

We must now find constantsc1 , c2, and a which yield a
regular metric perturbation everywhere, including on t
event horizon and at infinity.

Behavior at the event horizon is easily examined
Eddington-Finkelstein coordinates

V5t1r 12M ln~r /2M21!, R5r . ~A9!
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The coordinatesV andR are well defined everywhere in th
vicinity of the future horizon, which is located atR52M .
One component ofj a in Eddington-Finkelstein coordinates

j V5 j t1 j r / f

5a@V2R22M ln~R/2M21!#1 j ~R!. ~A10!

With a substitution from Eq.~A7! it is seen that regularity o
j V at the future horizon requires that

2c11
1

4
c21

2

9
a50, ~A11!

and with this same conditionj R5O( f ). We still need to
check the regularity ofDhab in Eddington-Finkelstein coor
dinates,

DhVV5Dhtt ,

DhVR5Dhtt / f ,

DhRR5Dhtt / f 21Dhrr .
~A12!

With the choice of constants in Eq.~A11!, we see that

Dhtt5a f @11 ln~r /2M21!#1O~ f 2!, ~A13!

and

Dhtt / f 21Dhrr 52a1O~ f !. ~A14!
e

s.

08401
ThusDhVV andDhRR are regular on the future horizon, bu
DhVR is singular ifa is not zero. Further analysis shows th
a choice of constants which does not satisfy Eq.~A11! only
makes the shifts more singular. Examination of behavior
the past horizon leads to the same conclusion. The only c
dition on the constants that makesDhab a regular tensor
field on the horizon isa50 andc152c2/8; but Dhab is
then ill behaved asr→`. We conclude that there is n
monopole gauge transformation that simultaneously p
serves the Lorenz gauge condition and behaves properl
the event horizon and at infinity. This confirms that our cla
was true: our choice of Lorenz gauge is indeed unique.

Nonetheless, if we setc150 and make a gauge transfo
mation with Eq.~A5!, we find that the resulting change in th
self-acceleration is completely due, at first post-Newton
order, to j t5at; the contribution fromj r5 j (r ) appears at
higher post-Newtonian order. With the value ofa set to
mẼ/(R22M ), the first post-Newtonian contribution to th
self-acceleration is24mM/R3, and it completely accounts
for the difference between our results and those of Naka
Sago, and Sasaki@31#, who present first post-Newtonian re
sults in their Eq.~E19!. From the discussion provided abov
we conclude that our results are related by a gauge trans
mation, but that this transformation takes our Lorenz gau
into a Lorenz gauge that fails to be regular on the ev
horizon. In other words, the Lorenz gauge employed by N
kano, Sago, and Sasaki, while appropriate for their po
Newtonian treatment, does not have a proper relativistic g
eralization.
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