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Low multipole contributions to the gravitational self-force
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We calculate the unregularized monopole and dipole contributions to the self-force acting on a particle of
small mass in a circular orbit around a Schwarzschild black hole. From a self-force point of view, these
nonradiating modes are as important as the radiating moded ®2h In fact, we demonstrate how the dipole
self-force contributes to the dynamics even at the Newtonian level. The self-acceleration of a particle is an
inherently gauge-dependent concept, but the Lorenz gauge is often preferred because of its hyperbolic wave
operator. Our results are in the Lorenz gauge and are also obtained in closed form, except for the even-parity
dipole case where we formulate and implement a numerical approach.
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[. INTRODUCTION tion is fully described in terms of a world ling. But to
formulate equations of motion for this world line becomes
The capture of solar-mass compact objects by massivgroblematic, as the fieldh,; produced by a point particle
black holes residing in galactic centers has been identified asecessarily diverges at the position of the particle. This
one of the most promising sources of gravitational waves fofmeans that an affine connection cannot be defined on the
the Laser Interferometer Space Anterfiid The need for \orld line, and that the statement “the particle follows a

accurate templates for signal detection and source identificgrepdesic of the perturbed spacetime” does not make imme-
tion is currently motivating an intense effort from many yiate sense.

workers to determine the motion of a relativistic two-body  The task of re
system in the small mass-ratio limit, without relying on
slow-motion or weak-field approximations; for a review, see
Ref. [2]. The work presented in this paper is part of this
larger effort.

gularizindp,, s near the world line and for-
mulating meaningful equations of motion for the point par-
ticle was undertaken by Mino, Sasaki, and Tanp&h and
also by Quinn and Walf®]. An interesting reformulation of
this work was recently given by Detweiler and Whitif],

who showed that the perturbation can be uniquely decom-
A. Gravitational self-force and the MiSaTaQuWa equations posed into a symmetric-singular fiehﬁﬁ, and a regular-

of motion radiative field hsﬁ; the full (retarded perturbation is then
. . . —_hS R i s
Consider a small body of massin orbit around a much hap=hgs+h,s. Detweiler and Whiting were able to estab-
larger black hole of masl. In the test-mass limiti—0) lish that whileh ; reproduces the singularity structure of the

the motion of the small body is known to follow a geodesic metric perturbation, it exerts no force on the point particle;
in the spacetime geometry of the large black {@le7]. But  the gravitational self-force is then produced entirelyhty; ,
as the mass of the smaller object is allowed to increasewhich is a homogeneous, regular, smooth field in a neighbor-
deviations from geodesic motion become noticeable; thesgood of the world line.
are associated with important physical effects such as radia- The MiSaTaQuwa equations of motiof8,9], in the
tion reaction and finite-magsonservativecorrections to the Detweiler-Whiting formulation [10], take the following
orbital motion. In a sense, the motion is now geodesic in th,m | et7#(7) be parametric relations that describe the par-
per_tl_ered spacetime that contains both the black hc_)Ie and tl’ff'cle’s world line y, with 7 denoting proper time in the back-
orbiting body. Ifg,z den_otes the unperturbed metr-lc of the ground spacetime of the central black hole. Let
central black hole, and ifi,; denotes the perturbation pro- — d7%/dr be th icle’s f loci lized with
duced by the orbiting body, then the motion is formally geo- _ 2/dr be the particle's our-ve ocity, normalized with re-

' spect to the unperturbed metrig, ,u“u”’=—1. LetD/dr

?he: Ig etgkg]r%upr?c;usj:)t;idetrinnfggt:ﬁ% n:] gﬁ o rﬁg%g;ﬁ":g%gg?c cldlenote covariant differentiation along the world line, defined
! ith respect to a connection compatible wgh; . Then the

ated, and the agent that produces the acceleration is a grawért'cle’s cquations of motion are
tational self-force acting on the particle. parti quati :
To turn these considerations into concrete equations of

motion, it is desirable to formulate an approximation in u

— R
which the details of the small body’s internal structure have dr =af[h7]
a negligible influence on the body’s orbital motion. In this .
approximation the body is modeled as a point particle pos- e PR R _hR A p
sessing mass but no higher multipole moments, and its mo- B 2(9 U (2, U, (1Y)
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where a semicolon indicates covariant differentiation with It is well known that the Teukolsky equation can be sepa-
respect to the background connection. The right-hand side atted wheny, or ¢, is expressed as a multipole expansion,
Eq. (1.1) is the gravitational self-acceleration of the point summing over modes witlispheroidal-harmonjcindices|
particle; multiplying bym would give the gravitational self- andm. In fact, the procedure outlined above relies heavily on
force. Equation(1.1) is equivalent to the statement that the this mode decomposition, and the metric perturbation re-
particle moves on a geodesic in a spacetime with metrigyrned at the end of the procedure is also expressed as a sum

Jupt hzﬁ, but the description of the world line refers to the 5yer modesh! 5. (For eachl, m ranges from—1 to I, and

background spacetime. The right-hand side of @dl) is of = gymmation ofm over this range is henceforth understgod.

orderm, and the gravitational self-acceleration is thereforez,, 0 these mode contributions to the self-acceleration can
o(m); it vanlshe_s in the test-mass limit a_nd the motion be-be computeda®[h, ] is obtained from Eq(1.1) by substitut-
comes geodesi(n the background spacetije ing h! . in place ofh?,. These mode contributions do not
The decomposition dfi, ; into singular “S” and radiative 'd Nap 1IN P ap: o .
af diverge on the world line, bua#[ h,] is discontinuous at the

“R” fields relies on a specific choice of gauge for the metric = " . .
perturbation, which must satisfy the Lorenz gauge conditiofradial position of the orbit. The sum over modes, on the oth_er
hand, does not converge, because the “bare” acceleration
(constructed from the retarded fietg ) is formally infinite.
Vg| hoP— lg“ﬁgy‘shw =0. (1.2) The next sequence of steps is concerned with the regular-
2 ization of eacha”[h,] by removing the contribution from
hiﬁ [18—23. The singular field can be constructed locally in
This choice ensures thédt,; satisfies a(hyperboli) wave  a neighborhood of the particle, and then decomposed into
equation and that the correct, retarded solution can be idemodes of multipole ordelr This gives rise to mod%“[hf]
tified. The singularity structure of the perturbation near thefor the singular part of the self-acceleration; these are also
world line can then be determined by a local analysiee, finite and discontinuous, and their sum oVexiso diverges.
for example, Ref{2]), andhiﬁ is constructed without ambi- But the true modes*[hl]=a*[h,]—a*[h7] of the self-
guity so that it exerts no force on the particle. The regularacceleration are continuous at the radial position of the orbit,
field hEB is then the difference between the retarded solutiorand their sum does converge to the particle’s acceleration.
and the locally constructed singular field; this satisfies a hoshould be noted that obtaining a mode decomposition of the
mogeneous version of the wave equation satisfied by the fullingular field involves providing an extension biﬂ on a
metric perturbation, and the metigg, 5+ hEB is a solutionto  sphere of constant radial coordinate, and then integrating
the linearized Einstein field equations in vacuum. over the angular coordinates. The arbitrariness of the exten-
The Lorenz gauge therefore presents itself as a preferreslon introduces ambiguities in eaeH[hls], but the ambigu-
gauge for this problem, and it has been shown that in the firdty disappears after summing oviey
post-Newtonian approximation, Eql.1) agrees with the The gravitational self-acceleration is thus obtained by first
standard Einstein-Infeld-Hoffmann equations of motion in acomputinga®[ h,] from the metric perturbation derived from
common domain of validity11]. But it is important to note o Of i, then computing the countertermg[h,s] by mode
that the equations of motion of E¢L.1) are not gauge in- decomposing the singular field, and finally summing over all
variant [12]: different gauge choices will lead to different a“[hR]=a*[h,]—a*[hS]. This procedure is lengthy and in-
results. volved, and thus far it has not been brought to completion,
except for the special case of a particle falling radially to-
B. Self-acceleration by mode sums ward a nonrotating black holg4]. In this regard it should
) ) ) ) be noted that replacing the central Kerr black hole by a
A concrete evaluation of Eq1.1) is challenging and in-  gchwarzschild black hole simplifies the task considerably. In
volves a large number of steps; for this discussion we conparicylar, because there exists a practical and well-
sider the case of a particle orbiting a Kerr black hole. Theyeyeloped formalism to describe the metric perturbations of
first sequence of steps are concerned with the computation of schwarzschild spacetini@5—29, there is no necessity to

the metric perturbatiorn,; produced by a point particle |y on the Teukolsky formalism and the complicated recon-
moving on a specified geodesic of the Kerr spacetime. A ction of the metric variables.

method for doing this was elaborated by Lousto and Whiting
[13] and Ori[14], building on the pioneering work of Teu-
kolsky [15], Chrzanowski[16], and Wald[17]. The proce-
dure consists ofi) solving the Teukolsky equation for one of ~ The procedure described above is not complete. The rea-
the Newman-Penrose quantitigs and i, (complex compo- ~ son is that the metric perturbatioh, that can be recovered
nents of the Weyl tenspproduced by the point particléii)  from ¢, or ¢, do not by themselves sum up to the complete
obtaining from g or ¢, a related(Hertz) potential " by  gravitational perturbation produced by the moving particle.
integrating an ordinary differential equatiaiij) applying to ~ Missing are the perturbations derived from the other
¥ a number of differential operators to obtain the metricNewman-Penrose quantitieg;, ,, andys. While ¢, and
perturbation in a radiation gauge that differs from the Lorenzj; can always be set to zero by an appropriate choice of null
gauge; andiv) performing a gauge transformation from the tetrad, ¢, contains such important physical information as
radiation gauge to the Lorenz gauge. the shifts in mass and angular-momentum parameters pro-

C. Low multipoles—this work
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duced by the particlE30]. Because the mode decompositions
of ¢ and ¢, start atl=2, we might colloquially say that

rs
i

what is missing from the above procedure are the 0 and 08 al-0]
I=1" components of the metric perturbations. It is not cur- o o] wn

rently known how the procedure can be completed so as t¢¢ os
incorporateall component®f the metric perturbations.

In this paper we consider the contribution of these low
multipoles (=0 and I=1) to the gravitational self-
acceleration. To make progress we shall take the centr
black hole to be nonrotating, and the metric of the back-*
ground spacetime to be a Schwarzschild solution. This sim- e
plification allows us to use the robust formalism of gravita- oz} #
tional perturbations of the Schwarzschild spacetig®&-29,
and more importantly, to define precisely what is meant by 5o 4 5 &5 5w
the “I=0 andl=1" modes of the perturbation field. In this RM
context the associations between thed mode and a shift FIG. 1. Internal values cd[|](R), rescaled by a common factor

of mass parameter, the odd-parity 1 mode an.d a shift of of 3m/R?. ForR>M we have the following asymptotic behaviors:
angular-momentum parameter, and the reduction of the even- [1=0]~3(m/R?)(M/R), a_[I=1;0dd~ — 4(m/R?)(M/R),

parity| =1 mode to a gauge transformation, were first estabanga_[1=1:everi~3(m/R?). An exact expression faa_[|=0]
lished by Zerilli [26] These associations are central to OUrappears in Eqg.(3.15 below. An exact expression foa_[I
discussion, and we believe that the results derived here wikk1:0dd| appears in Eq(4.2). The values fora_[|=1;ever] are
have a direct counterpart in the case of a Kerr black holepbtained from Eq(5.55 and the results listed in Table I.

The missing metric perturbations of the Kerr spacetime will

raf

0.4

02

rescaled internal accele

be equivalent to our=0 andl =1 perturbation modes in the a[l=1;0dd=a"Th;_1.odd parity (1.3
limit where the black-hole angular momentum goes to zero. '
To keep our discussion concrete and the mathematical a[l=1;ever=a"ln_1.even parit)-

complexities to a minimum, we calculate thre 0 andl =1
perturbation modes for the specific case of a particle movingVe display our results foa[l](R) in two figures. In Fig. 1
on a circular orbit of radiusR and angular velocity) ~ we show the results as calculated from the orbit's interior
=M/R3. While finding solutions to the relevant perturba- (r—R™) and in Fig. 2 we show our results as calculated
tion equations can be a simple task when adopting a simplgom the orbit's exterior (—R™). These results do not have
choice of gaugéas we shall seewe insist here, for reasons an immediate physical meaning. To produce meaning they
that were listed before, that tHe=0 andl=1 perturbation must be included with higher-multipole contributions in a
modes should be calculated in the Lorenz gauge. This consum over all modes. Because there exists no procedure to
plicates the structure of the perturbation equations, and findiniquely remove the “S part” of thé=0 andl=1 pertur-
ing solutions is more challenging. We nevertheless are able
to find exact analytical solutions for the cadesO and| ook
=1 (odd parity. For even-parity =1, however, we have to . e
rely on numerical methods for exact results, and a post- **[% all=1;even] ammm ]
Newtonian approximation for analytical results. 02 |-,
In the remaining sections of the paper we calculate theg .
contributions

a'u[hl :0]1 aﬂ[hl =1;o0dd parit)]r a'u[hl =1;even paritg

e L
.
s

0.2 i

0.4 ot

e,

rescaled external accelel
£y

0.6

"1

to the “bare” self-acceleration of a particle moving on a
circular orbit around a Schwarzschild black hole. Our ex-
pressions are finite but discontinuous at the radial position of
the particle: the answers obtained when approachidr
from the interior ¢(<R), and those obtained from exterior 0 w0 w0 L L
(r>R), do not match. We find in all cases that the contribu-

tion to the bare acceleration is purely radia@*[h;] FIG. 2. External values dd[1](R), rescaled by a common fac-
=a'Th,]8" for all three modes considered here. Moreover, intor of M/R*. For R>M we have the following asymptotic behav-
all cases the self-acceleration is conservative and does nirs: a-[1=0]~-m/R? a_[I=1;0dd~2(m/R?)(M/R), and
contribute to the radiation reaction. a-[l=1;everi~—35(m/R?*)(M/R), where 3=2 is numerically

To keep the notation simple we shall set estimated at the end of Sec. V. An exact expressiorafdi =0]
appears in Eqg.(3.16 below. An exact expression foa.[l

=1;o0dd appears in Eq(4.3). The values fora.[I=1;even are
a[l=0]=a"Th,_q], obtained from Eq(5.59 and the results listed in Table I.

T

08§
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bation modegas was mentioned previouglyve are not able the small mass relative to the center of mass is described by
here to produce expressions for the low-multipole contributhe vectorR(t), while the position of the larger mass is de-
tions to the regularized self-acceleration. scribed byp(t). Taking the center of mass to be at the origin

Using purely analytical methods, Nakano, Sago anchf the coordinate system, we have
Sasaki[31] calculated the self-acceleration to first post-

Newtonian(1PN) order for circular orbits of the Schwarzs- mR+ M p=0. (2.1
child geometry. For the even and odd parity 1 modes,
their results for the contribution to the “bare” self- We denote the position vector of an arbitrary field pointby

acceleration agree with ours at the 1PN level, as expected. ndr=|x| is its distance from the center of mass. We shall
appears that an extension of their methods to higher poskiso user=|R| and p=|p).

Newtonian orders might be substantially complicated by the
difficulty caused by the even-parity=1 perturbations, the

case for which we have to rely on numerical methods. For
the =0 mode our results for the “bare” self-accelerations We begin with a test-mass description of the situation,
disagree with theirs at 1PN. We believe that the discrepancgiccording to which the smaller mass moves in the gravita-
is caused by the implementation of boundary conditions ational field of the larger mass which is placed at the origin of
the event horizon, and we discuss this matter in some detajhe coordinate system. The background Newtonian potential

A. Test-mass description

in the Appendix. is
D. Organization of this paper M
. . . . Dy(X)=—— (2.2
In Sec. Il we set the stage with a discussion of the gravi- r

tational self-force in Newtonian theory. This simple analogue
to the relativistic problem sheds considerable light on theand the background gravitational field is

meaning of the self-acceleration and its decomposition into

singular “S” and regular “R” fields. We show in particular

that in Newtonian theory, the=1 contribution to the self- Go=—VPo=— r_3x' 2.3
acceleration is responsible for an important finite-mass cor-
rection to the particle’s angular velocity. We take this as 3
clear suggestion that in the relativistic problem, the low mul
tipole contributions to the gravitational self-acceleration pro
duce important physical effects.

In Sec. lll we compute, in the Lorenz gauge, the0
gravitational perturbations produced by a particle in a circu- 02=— (2.9
lar orbit around a Schwarzschild black hole. These perturba- R®
tions are associated with the change of mass parameter that
occurs arr =R. We then calculat@[| =0], the correspond- whereR is the orbital radius. These results are in close anal-
ing contribution to the self-acceleration. ogy with a relativistic description in which the smaller mass

In Sec. IV we do the same for tHe=1, odd-parity per- is taken to move on a geodesic of the background spacetime,
turbations. These are associated with the change of anguldh a test-mass approximation.
momentum parameter that occurs across the orbit, and they
give rise to the contributiona[l=1;o0dd to the self- B. Beyond the test-mass description: singular “S” and regular
acceleration. “R” perturbations of the Newtonian potential

In Sec. V we consider the=1, even-parity gravitational
perturbations, which are associated with the motion of the
central black hole around the system’s center of mass. Thi
calculation is considerably more involved than the others,
because here the source of the perturbations is time depen- M m
dent. Solving the vectorial wave equation that converts the dPX)=—7——— 7=,
perturbations from the Zerilli gauge to the Lorenz gauge re- x=pl [x=R|
quires numerlcal techn|que§, except wiien M apd wecan .o for m<M this can be expressed aB(x)=Po(X)
rely on approximate analytical methods. In this section we . . .

. i } + 6P (x), with a perturbation given by
obtain exact numerical results fafl=1;even, as well as
approximate analytical results f&=M. M M

In Sec. VI we discuss our results and offer a number of O (x)=

concluding remarks.

n this description, the smaller mass moves according to
"d?R/dt?=gy(x=R). If the motion is circular, themm pos-
“sesses a uniform angular velocity given by

We next improve our description by incorporating the
ravitational effects produced by the smaller mass. The exact
ewtonian potential is

(2.5

- +—— . 2.6
ol T TR 29

This gives rise to a field perturbatiafg that exerts a force
on the smaller mass. This is the particle’s “bare” self-

In this section we consider a Newtonian system involvingacceleration, and the correspondence with the relativistic
a large mas# and a much smaller mass The position of  problem is clear.

Il. NEWTONIAN SELF-ACCELERATION

084019-4



LOW MULTIPOLE CONTRIBUTIONS TO THE .. .. PHYSICAL REVIEW D 69, 084019 (2004

An examination of Eq(2.6) reveals that the last term on physical effects that should not be ignored. Since there is no
the right-hand side diverges at the position of the smalleanalogue in Newtonian theory to the odd parity metric per-
mass. But since the gravitational field produced by this ternturbations, this statement might be restricted to kkel,
is isotropic aroundR(t), we know that this field will exert no even parity perturbations of the Schwarzschild spacetime.
force on the particle. We conclude that the last term can be While ®z(x) possesses only a dipole component, the
identified with the singular “S” part of the perturbation, same is not true obg(x) and 8P (x). Their monopole com-

ponents are given by

(2.7 ~m/R, r<R,

-mlr, r>R,

DL O(x)= 5c1>'0(x):{ (2.12
and that the remainder makes up the regular “R” field,

and this gives rise to a monopole field perturbation

M M
(DR(X)Z—W‘F T (28) 0 r<R
The full ion i i _ —mx/r®, r>R. '
perturbation is then given byd(x)=dg(x)

®g(x), and only the °R potential” affects the motion of This is discontinuous at=R: the field is zero when the limit

the sma_ller mass. ane more the correspondence with thlg taken from the inside, and equal tomR/R® when taken
relativistic problem is clear.

It is easy to check that to first order m/M, Eq. (2.9 Iirgrznisthgeivzl;]tsblge. The jump in the monopole field perturba-

simplifies to
R. X [5g| :O]E 59' :O(X: R)|outside_ 59' :O(X: R) | inside
Pr(x)=m—r; 2.9
r m
=-=R (2.19
this simplification occurs because thanks to Ej1), p is R

formally of orderm/M <1. The regular “R” part of the field

perturbation is then These results, which could be described as the Newtonian

bare self-acceleration fore=0, will be recovered as limits of

3(R-X)x—r2R our exact relativistic expressions in Sec. Ill.
gR(x):m—S, (2.10 The dipole component of the singular potential is calcu-
r lated to be

and evaluating this at the particle’s position yields a correc- ~m(R-x)/R%, r<R
tion to the background fieldy(x=R)=—MR/R® given by <I>'S_1(x)=( 3' ’ (2.15
gr(x=R)=2mR/R?; the force still points in the radial direc- —Mm(R-X)/r*, T>R,
tion but the active mass has been shifted frddnto M : . ,
—2m. For circular motion the angular velocity becomes and adding this to E¢2.9) we find

o _M—2m 501 =mRx| = - —| (<R (216

07=—0—. (2.1 r? R '

This can be cast in a more recognizable form if we expres@nd 8®'~*(x)=0 for r>R. This gives rise to the field per-

the angular velocity in terms of the total separatsaR  turbation

+p=(1+m/M)R between the two masses. To first order in

m/M we obtain Q2= (M+m)/s®, which is just the usual

form of Kepler’s third law. The regular part of the field per-

turbation is therefore responsible for the finite-mass correc-

tion to the angular velocity. and 8g'=*=0 for r>R. The dipole field also is discontinu-

ous atx=R: it is zero when the limit is taken from the

C. Multipole decomposition of the perturbations outside, and equal torBR/R® when taken from the inside.

Its jump, defined as in Eq2.14), is given by

3(R-x)x—r?R

59=1=m c ~ (r<R) (2.17

r

We now examine the low-multipole content éfb(x),
D(x), andPg(x). It is evident from Eq.(2.9 that ®x(x)
possesses a pure dipolar form, and its multipole decomposi- [5g=0]=— 3_mR. (2.18
tion, therefore, involves a single term lat 1. As we have 3
seen, this dipole potential is responsible for an important
finite-mass correction to the orbital frequency. We take thisThese results, which could be described as the Newtonian
as a clear indication that in the relativistic context, thel bare self-acceleration for=1, will also be recovered as lim-
contribution to the metric perturbations produces importanits of our exact relativistic expressions in Sec. V.
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I1l. MONOPOLE GRAVITATIONAL PERTURBATIONS and we haveKzzo while HS and H% are nonzero. The

Our task in this section is to calculate the 0 metric ~ 9auge transformation is given by, 5= h%s—2é(ap and
perturbations of the Schwarzschild spacetime produced by ®is translates to
particle of masan in circular orbit at a radiufR. We shall
also calculate the associated contribution to the self-
accelerationag[l1=0] as defined by Eq(1.3). We need the
perturbations in the Lorenz gauge, and our strategy will be to
obtain them first in the simpler Zerilli gauge, and then look

H.=H?% Z_M
0o~ O+ 2 gv
r

. 2M
for a transformation to the Lorenz gauge. H,= H%— 2f¢ — _25, (3.9
r
A. Perturbations in the Zerilli gauge of
The monopole perturbations produced by a point particle K=- Té’

in arbitrary motion around a Schwarzschild black hole were
first computed by Zerilli[26]. With his specific choice of \here a prime indicates differentiation with respect.tdhe

gauge for circular motion, the metric perturbations are new perturbation will satisfy the Lorenz gauge condition if
1
Z_omE == — 2M 2(2r—3M 4f
i ZmE(r R—2M>®(r R) @1 f(H(’)+H§—2K’)+—2HO+—( . )H2—7K= .
r r
and (3.5

Using Egs.(3.1), (3.2), and(3.4), this becomes an ordinary

2mE differential equation fog(r):
hﬁ=rf—2®<r—R>, (3.2

2 2f
B fg//+ Fé_«/_ _25
where f=1-2M/r, E=(1-2M/R)(1-3M/R) %2 is the r
particle’'s energy per unit rest mass, afr —R) is the ~

Heaviside step function. It is easy to check that forR, = S(r—R)+ zle@(r_R)
7 : i wi R—-2M 2f R—2M '

Japt hyp is another Schwarzschild metric with mass param- ref

eterM +mE. The perturbation therefore describes the sud- (3.6)

den shift in mass parameter that occurs atR.
Our task is now to find a solution to this equation.
The function&(r) can be expressed as a superposition of

B. Transformation to the Lorenz gauge . . . .
interior and exterior solutions,

The metric perturbation of Eq$3.1) and (3.2) does not
satisfy the Lorenz gauge condition of EG.2). We therefore EN)=E-(NO(R=1)+&-(r)O(r—R). 3.7
seek a vector field® that generates a transformation from
the Zerilli gauge to the Lorenz gauge. This vector must posThe interior solution{_(r) satisfies the homogeneous ver-
sess only am=0 component, and so it must be of the form sion of Eq.(3.6), while the exterior solutiorg..(r) satisfies
£,=[0,£(r),0,0]. As the perturbation is static, there is no Eg. (3.6) with §(r —R) set equal to zero an®(r —R) set
need to include a component in the time directithis point ~ equal to 1. The solutions must comply with the jump condi-
is elaborated in the Appendixnor a time dependence in the tions
radial component.

To find this vector we express the Lorenz-gauge metric ) mER
perturbations in the standard Regge-Whef&] form [£]=0, [&']= (R2M)?’ (3.9
hy=fHo(r),

where[£]=£&-(r=R)—¢_(r=R) and a similar definition
holds for[¢']. Equations(3.8) and (3.4) imply that in the
Lorenz gauge, the metric perturbations are continuous at
, =R: [Ho]=[H>]=[K]=0.

hag=r“QagK(r), The interior solution is a linear superposition of the two

independent solutionst;=[r(r—2M)]"* and &=r?/(r
where the upper-case latin indices run over the angular co=2M). Regularity at the event horizon requires tigabe
ordinatesd and ¢, andQ 5g=diag(1,sif6) is the metric of well behaved in the limit —2M. We must therefore choose
the unit two-sphere. We have shit,=H(r)=0 on the
i i imi r2+2Mr+4M2

grounds that the perturbation must be static. A similar nota-

tion can be used to express the Zerilli-gauge perturbations, ¢<(r)=a r ' 3.9

hy, = Hy(r)/f, (3.3
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wherea is a constant that will be determined by the jumpwhile the internal value is zer@a_[I1=0;Zerilli]=0. The
conditions. The exterior solution is a linear superposition ofgauge acceleration, on the other hand, is found to be

&1, &, and the particular solutiod,=—-mE(R—3M)(R
—ZM)_ll—‘(l’), where ° a[|:0-gaug§:——SM(R_ZM)Zf(R)
' RY(R—3M) ’
L'(r)y=={[9Mr(r—2M)] 3r3n(1—2M/r)—3Mr?
and by virtue of Eq(3.8), the internal and external values
—12M?r +44M°=24M°In[r/(2M)—11}. (310  are equal. The gauge vector can most simply be evaluated
from the orbit's interior, and Eq(3.9 gives &(R)=a(R?
Becauseé; ~1/r?, &,~r, and'~1 whenr—o, proper +2MR+4M?)/R. But the jump conditions implya

asymptotic behavior requires that we discatd from the = L(mE/M)[(R-3M)In(1—2M/R)—M]/(R—2M), and alto-

exterior solution. We then have gether we obtain
M3 ~R—3M —o ~(R—2M)(R?*+2MR+4M?)
= —mE . a[l=0;gaugé=mE
wher.e.b is a constant that will be determined by the jump % —In( 1— ﬂ) _ (3.14
conditions. R—3M R

The gauge vector is now fully determined: The interior ) ,
solution is given by Eq(3.9) and the exterior solution by Eq. Fom Eqs.(3.121—(3;14) we arrive at our final results. The
(31D with the functionI'(r) displayed in Eq(3.10. The Mternal value for thd=0 self-acceleration is

complete gauge vector field is then constructed as in Eq. _ 2 2

(3.7), and the constants andb are determined by the jump a_[l :o]:mTE(R ZM)(R™+ 2ZMR+4M)
conditions of Eq(3.8). This is sufficient information to cal- R®

culate the Lorenz-gauge metric perturbations with the help of M oM

Egs. (3.3 and (3.4). Because the resulting expressions are % ——In(l— _” (3.15
moderately lengthy, we shall not display these results here, R—3M R

but proceed instead with the calculation of the self-
acceleration.

Before moving on we wish to call attention to the fact that 4 3 4
. . . ) . - ~R*™—MR>+8M
in the foregoing manipulations, the requirements of staticity, a-[1=0]=—-mE
regularity at the event horizon, and regularity at infinity have R%(R—3M)
allowed us to construct anique solutiorto the perturbation 5 5
equations in the Lorenz gauge. This conclusion is elaborated TE(R_ZM)(R +2MR+4M7)
in the Appendix. R®

while the external value is

C. Monopole contribution to the self-acceleration XIn

2M
1- ?) . (3.1
The self-acceleration produced by theQ perturbations
can be expressed as a sum of two terms, When R>M these expressions simplify t@a_[l=0]
- ~3mM/R® anda- [l =0]~—m/R*+ mM/(2R®); the inter-
a[l=0]=a[l=0;Zerilli]+a[I=0;gaugé, (3.12  na| value is smaller than the external value by a factor of
order M/R<1. These limiting expressions are compatible
wherea[ | =0;Zerilli] is the radial component of the accel- with the Newtonian results displayed in E(®.13. They
eration vector constructed as in Ed.1 but by replacing differ, however, from the results of Nakano, Sago, and Sasaki
hR . with hiﬁ, while a[l=0;gaugé is constructed from [31], which are displayed in their EE19—our expres-

a

h3%'9% — 2£(,.5 - The calculation involves the particle’s ve- sions are smaller than theirs by a terrm M/R3. This dis-
locity vectoru”=(1—-3M/R) %¥41,0,00], and at the end crepancy is explained in the Appendix. Equati¢ds5 and
h.g., must be evaluated at the position of the partiale ( (3.16 were used to generate the curves shown in Figs. 1 and
=R, =m/2, and ¢=Ot), either from the orbit's interior 2.

(r<R) or from its exterior {>R). This leads to two differ-

ent values for the acceleratioa,. and a., respectively. IV. DIPOLE, ODD-PARITY GRAVITATIONAL

Such a discontinuity was encountered before in a Newtonian PERTURBATIONS

context—refer back to Eq2.13.

The external value of the Zerilli acceleration is given by In this section we calculate thie=1, odd-parity metric

perturbations of the Schwarzschild spacetime produced by a

~ particle of massnin circular orbit at a radiuf. From these

a_[1=0:Zerilli]= - mE (3.13 we shall derive their contribution to the self-acceleration,
- ' R(R—-3M)’ ' a[l=1;o0dd| as defined by Eq.1.3). Here we shall find that

084019-7



S. DETWEILER AND E. POISSON PHYSICAL REVIEW B9, 084019 (2004

the expressions provided by Zerilli already satisfy the Lorenz A. Perturbations in the Zerilli gauge

gauge condition. The dipole, even-parity perturbations produced by a point

The dipole, odd-parity perturbations produced by & pointyarticie in arbitrary motion around a Schwarzschiid black
particle in arbitrary motion around a Schwarzschild blackpqe were first computed by Zerill6] in a simple choice of

hole were first computed by Zerili26] and shown to be g5 ge. After specializing to circular motion, his results be-
intimately related to the shift in angular-momentum param-

eter that occurs at the orbit. After specializing to circularCome
motion in the equatorial plane, his results read , - R—2M s _
htt:szr(r——ZM)(l_r Q“/M)sing
- r’/lR% <R,

hyy=-2mLsirox) o (4. X cog p— Q1O (r—R), (5.1
wherel =[ MR/(1—-3M/R)]*?is the particle’s angular mo- r
mentum per unit rest mass. FoKR, the metricg,z+h,g htzr: —GmEQ(R—ZM)—Zsinf)
differs fromg,; only by a gauge transformation—it is also a (r—2Mm)
Schwarzschild metric with mass paramedMr For r >R, Xsin(d—Qt)O(r—R), (5.2)

Jupth,p is @ Kerr metric linearized with respect to the

angular-momentum paramete=(m/M)L. The perturba-

: . o i B r
tion therefore describes the sudden shift in angular momen hZ = 6mE(R—2M) _sino

tum that occurs at=R. (r—2M)
It is easy to check that the perturbation of E4.1) satis-
fies the Lorenz gauge condition of Ed.2). It is also easy to xcog¢p—QO1)0(r—R), (5.3

show that altime-independentgauge transformation within

the class of Lorenz gauges would produce a pathologicalhere 0 = /M/RS is the particle’s angular velocity ané
behavior of the perturbation at the event horizon. Equatiorg(1_2M/R)(1_3M/R)—1/2 is its energy per unit mass.
(4.1 therefore gives us a unique solution to the perturbation are we see that the perturbations are time dependent, and

equations in the Lorenz gauge. _ this complicates considerably the task of finding the transfor-
A straightforward calculation then reveals that the internaly,5tion to the Lorenz gauge. Equatiéhl) reveals that the

value of thel=1, odd-parity contribution to the self- Zerilli gauge is not asymptotically flat, sinctqzt grows lin-

acceleration is early withr asr—oco. This indicates the fact that the metric
MM 1—2M/R Japt hfl is expressed in a noninertial coordinate system
, (4.20  anchored to the black hole instead of the system’s center of
R® (1-3M/R)3? mass. This statement will be elaborated below.

a_[l=1;odd=—

while the external value is _ _ )
B. Perturbations in a singular gauge
2mM 1-2M/R The metric perturbations of Eq&.1)—(5.3) do not satisfy
R® (1-3M/R)%2 (4.3 the Lorenz gauge condition of E¢L.2). To transform to the
Lorenz gauge we proceed in two steps. We shall first trans-

These results have no analogue in Newtonian theory. Equzggrm fo a gauge in which Fh? pgrturbatlon IS zero every-
where, except at=R where it is singular. We shall then go

tions (4.2) and(4.3) were used to generate the curves shownf his sinaul he L
in Figs. 1 and 2. rom this singular gauge to the Lorenz gauge.

It is well known from Zerilli's work[26] thatin vacuum
a dipole, even-parity perturbation can be completely re-
V. DIPOLE, EVEN-PARITY GRAVITATIONAL moved by a gauge transformation. Such a perturbation,
PERTURBATIONS therefore, represents a coordinate transformation; and as we

Our task in this section is to calculate the 1, even- have already suggested, for R the metricg,, 5+ h? ; is just
parity metric perturbations of the Schwarzschild spacetimé Schwarzschild solution expressed in a noninertial coordi-
produced by a particle of massin circular orbit at a radius nate system. The perturbations of E(s1)—(5.3), however,

R We shall also calculate the associated contribution to th@re not pure gauge because of the presence of the particle.
self-acceleratiorg[| =1;ever as defined by Eq1.3. Once ~ They can be removed in the vacuum region outsider of
more we need the perturbations in the Lorenz gauge, and asR. but the gauge transformation leaves something behind
in Sec. Il our strategy will be to obtain them first in the atr=R. The result of this transformation Is, ;, the metric
simpler Zerilli gauge, and then look for a transformation toperturbation in what we shall call trengular gauge

the Lorenz gauge. The solution to the wave equation satisfied The gauge transformation that removes a dipole, even-
by the gauge vector field will be obtained numerically andparity perturbation in vacuum was constructed by Zerilli
provided in tabulated form. It will also be obtained analyti- [26]. It is generated by a vector fiel*, so thathjﬁ=hﬁﬁ

cally in a post-Newtonian expansion in powershfR. —2¢g,:p) - For circular motion this is given by

a-[l=1;odd=
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_mE 2
st—WQ(R—ZM)r_ZMsm&sm(q&—ﬂt)@(r—R),
(5.9
_ mE r2 .
sr——V(R—ZM)msmecosgﬁ—Qt)
X0(r—R), (5.5
_ mE r2
sg——V(R—ZM)r_ZMcosBcos{¢—Qt)®(r—R),
(5.6
~mE 2
sd,—V(R—ZM)r_ZMsmasm(d)—ﬂt)(r—R).
(5.7

The new metric perturbation is then

mE
h =— VQstin fsin(p—Qt)8(r—R), (5.9

h3—2m~E R Qt)o(r—R
= VR_ZMsmecos(qS— t)o(r—R),
(5.9
mE
hy,= VRZCOSG cog ¢p— Q1) 8(r—R),
(5.10
. mE_,
W’:_VR singsin(¢—Qt)d(r—R),
(5.11

PHYSICAL REVIEW D 69, 084019 (2004

mE )
b'=-— V(R—ZM)Slnecw(ﬁ—Qt),

, ME 1
b =—V(R—2M)Fcosacos(¢—ﬂt),

mE _
b¢= V(R—ZM) sin(¢— Qt).

rsing
If we introduce asymptotic Cartesian coordinates
=r sinfgcos¢, y=r sinédsin¢, andz=r cosd, we have

mE ] .
bt= — V(R_ZM)E(X cosQt+ysinQt),

mE
b*=— V(R—ZM)COSQI,

mE )
bY=— V(R—ZM)stt,

b*=0.

To give a Newtonian interpretation to these resultsxlet
be the Zerilli coordinates of an arbitrary field point, let
R(t)=(R—2M)(cost,sin(t,0) be the position vector of
the orbiting particle, and express the preceding equations as

mE
b(t)=— —R(t),

t— .}
M b'=x-b(t),

where an overdot indicates differentiation with respect. to
The coordinate transformation generatedddyis then

and we see that in the singular gauge, the metric perturbation
is proportional tos(r —R), which is produced by differen-
tiation of the step function im,. The gauge transformation
therefore makes the perturbation zero everywhere in th@ve can now explain that this transformation represents a
vacuum region outsidé@nd insider =R, but it contributes a  translation from a noninertial reference frame attached to the
singular term at the orbit. This illustrates the fact that thepjack hole to an inertial frame attached to the center of mass.
presence of matter prevents the Zerilli-gauge metric perturplease refer back to Sec. Il for a definition of the notation
bation from being pure gauge. employed here.

In the center-of-mass frame, the particle moves on a tra-
jectory R;(t), and the black hole moves on a trajectory

The preceding discussion on coordinate systems can een(1). I the black-hole frame we ha\@Ph(t)%R(p and
clarified if we examine the asymptotic behavior of the gauge?on(t)=0. The center-of-mass condition is mE)Rcm,
vector field in the limitr —co. In this limit we can seek a +Mp.,=0, so we havg.,,= —(ME/M)R.,,. We also have
Newtonian interpretation of the results, and we shall see thgR=R_,— p.,= (1+ME/M) Ry, so that R,=R
in the original Zerilli gauge, the perturbed metric is that of a — _(mE 2012
moving black hole. The following is patterned after a similar+o(m/M) and pon=—(ME/M)R+O(m*/M7), or
discussion produced by Zerill26].

The vectore® becomes asymptotically equal b§ in the
limit r—c0, where

Xnew:X+b(t)= tnewzt+xb(t)

C. Interpretation of the gauge transformation

Pem(t)=b(t) +O(m?/M?).

The vectorb(t) is therefore the position of the black hole
= 5 relative to the center of mass, and the coordinate transforma-
m N . i
- tion is truly a translation from the moving frame of the black
b= —(R-2M)—r sin6 cog ¢p— Ot), .
M ( )at ! 19 ) hole to the fixed reference frame of the center of mass.
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D. Transformation to the Lorenz gauge refers to the angular components; we have @t (6, ¢)
*+1
We now return to the task of transforming the metric per-@nd Y= (#")= Yam (6%) = J3/(8) sin ™.
turbation from the singular gauge of E5.8—(5.1) to the The vectorS* can be decomposed in a similar way, and to
Lorenz gauge. The gauge transformation is generated by ¥mplify the form of the reduced wave equation we define
vector field£®, such that the functionsA™(r), B*(r), andC*(r) by the relations
h,g=hsz—2&,. (5.12 =
ap™ Ha (a:B) 87 mE A=(r) _.
’ & (t,r)= TV QR—( )e+'m, (5.21)
is the Lorenz-gauge metric perturbation. For this to comply r
with Eqg. (1.2), the vector field must satisfy the inhomoge-
neous wave equation 87mE B*(r) .
& (tr)= + — ———e"'"
e 3 M r-2Mm
whereD=V'3Vﬁ is the wave operator and
. 1 [8mmE a
1 EUnN=+3\V35 < (r)e’!
is the source term. This is given explicitly by With these definitions Eq5.13 becomes the following set
of ordinary differential equations:
. ME OR
ST M Roam[(BR72MAr=R) @A [ 0%’ 2 . 2MIR
+R(R-2M)&'(r—R)Jsingsin(¢—0Qt),  (5.19 dr2  [(r—2m)? r(r=2m) (r—2Mm)2
2
mE 1 = 8(r—R)+R?8'(r—R), (5.29
S'=— =[(2R-5M)&(r—R) R=2M
M R
+R(R—2M)&’(r—R)]singcog ¢—Qt), (5.16 d’B* . Q?r? _Ar=Mm) . 20°MR A
5 dr2 | (r—=2M)? r2(r—2M) (r—2M)2
,. ME 1
SZVE[(3R—8M)5(I’—R) 4 . R(R—M) -
+—2C_=W5(F—R)+R 5'(r—-R), (5.2H
] _
+R(R—2M)é'(r—R)]cosfcog p—Qt), (5.17
= d’c* 2M  dC* Q0?2 2
S'=~ WU maerzg BRTBMST—R) drz r(r=2M) dr |(r—2m)? r(r-2Mm)
/ ; ; 2
+R(R—2M) &' (r—R)]sin@sin(¢— Ot). (5.18 +—Bi=R8(r—R)+R26’(r—R). (5.26

r(r—2Mm)

To arrive at these results we have invoked the distributional
identity g(r)é'(r—R)=g(R)8'(r—R)—g'(R)(r —R), The steps required to obtain the Lorenz-gauge metric pertur-
whereg(r) is any test function angd’(r) its derivative with  bation are therefore these: First, solve E&s24)—(5.26) for
respect ta. the functionsA=(r), B*(r), andC™=(r); second, insert the

To solve Eq.(5.13 we decompose the vectdy, in even-  solutions into Eqs(5.21)—(5.23), and these into Eq$5.19
parity spherical harmonics of degrée 1. The form of the and (5.20, to construct the gauge vector fielg,; third,
source term indicates that only terms with==1 are computeh,, using Eq.(5.12.
needed, and we let

E. Jump conditions and asymptotic behavior
fa(UﬁAFZ & (LN)Y™(6Y), (5.19 The solutions to Eq95.24—(5.26) can be expressed as

A*(N=AZ(r)O(R-r)+AZ(r)®(r—R), (5.27

EAtT, 0 =2 E(LN)aY (6. (520 X X
* B*(r)=BZ(r)®(R—r)+BZ(r)®(r—R), (5.28

Here, the lower-case latin indexrefers to thet andr com- . . .
ponents of the vector field, while the upper-case index Co(r)=CZ(rn®(R-r)+CI(r)O(r—-R), (5.29
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where the interior and exterior solutions satisfy the correfor n<O0, a,, b,, andc, are zero. Fon=0 and 1, Egs.
sponding homogeneous equations. To account for the sour¢B.37)—(5.39 allow a4, a;, andc, to be chosen freely. Other
terms, these functions must comply with the jump conditionsearly coefficients in the sequences are

[A*]=[B"]=[C"]=R? (5.30
and

[dAT] 2R?
L dr | R-2M’ (5.31
[dB*] R(R—M)
| dr | R-2M " (5-32
[dC*| R(R-4M)
| dr | R-2M (5.33

where[¢]= ¢~ (r=R)—¢-(r=R) for any function ¢ of
the radial coordinate.

bo=*+iQRay, (5.40
Ray _
b1=—ﬁ+|QRal, (54])
_ Co+iQRy 54
T M(1=ai0M) 542

Similarly, for larger the exterior functions can be ex-
panded as

Near the event horizon the interior functions can be ex-

panded as

o0

AZ(r)=e"10" ZO an(r—2m)", (5.34
BZ(r)=e"i0" ZO b,(r—2M)", (5.35
Ci(r)=e*ior E A(r—2M)", (5.36

These forms ensure that the vecfgrsatisfies ingoing-wave

AZ(r)=e*ior" 2 ar ", (5.43
BZ(r)=e='" ZO bar ", (5.44
(r)y=e*ir E cor " (5.45

These forms ensure that the vect®y satisfies outgoing-
wave boundary conditions at infinity, another necessary con-
dition to obtain aretarded solutiorio Eq.(5.13. Substitution
into Eqs.(5.24—(5.26 provides recurrence relations consist-

ing of three coupled expressions for the, b,, andc,:
+2iQna,=[(n—2)(n+1)*2iOM(2n—3)]a,_,
—4M(n?-3n+1)a,_,

+4M3(n—-2)(n—3)a,_3—2MR *b,_,,

boundary conditions at the horizon, a necessary condition to

obtain aretarded solutionto Eq. (5.13. Substitution into
Egs. (5.24—(5.26 provides recurrence relations consisting
of three coupled expressions for thg, b,, andc,:

[2Mn(n—1)F4iQOM?(2n—1)]a,—4M?R b,

—[n(n=3)F2iQAM(4n—5)]a,_1+2iQ(2—n)a,_,

+2MR b,_4, (5.37
802M3Ra,+[4M?n(n—1)F8iOM3(2n—1)]b,
=-802M?%Ra,_;—20°MRa,_,
—[4M(n?>=3n+1)*8iOM?(3n—4)]b,_;
—[n?-5n+2%2iQM(6n—13)]b,_,
F2iQ(3—n)b,_3—4c,_5, (5.39
2nM(nF4iQM)c,
=—2b,_1—[N(n=3)F8iQM(n—1)]c,_4
F2iQ(n—2)c,_». (5.39

(5.46
+2iQnb,=20°RMa,_,
+[n?—n—4%2iQM(2n-3)]b,_;
—4M(n?-3n—1)b,_,
+4M2(n2—5n+4)b,_s+4C,_,
—16McC,_,+16M?%C,,_3, (5.47)
and
+2|ann 2bn 1t (n— 2)(n+1)cn 1
—2Mn(n—2)C,_». (5.48

Forn<O0, a,, b,, andc, are zero. Equationt.46—(5.48

allow ag, by, andc, to be chosen freely. Other early coef-
ficients in the sequences are given by

*iQa;=—(1*xiQM)a,—Mby/R, (5.49

+iQb;=—-MQOQ?Ra;,— (21 QOM)by+ 2¢,,
(5.50

+iQc,=by— (5.51)
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The set of homogeneous solutions to E¢s24)—(5.26), In our numerical work we use double-precision arithmetic
inside and outside the orbit, forms a six-dimensional lineaand have adopted two different ODE integration routines
vector space. The six amplitudes from Chapter 16 oNumerical Recipeg32], the Runge-Kutta

. . . and the Burlish-Stoer algorithms. Each of these routines con-
ag, 44, Cg, ag, by, ¢g tains an accuracy parameter. A comparison of the numerical

results over a range of values of this parameter allows us to
determine one complete homogeneous solution and may lse certain that all digits quoted in Table | are significant. We
considered to be the “components” of any member of thistested the consistency of the integrations versus the expan-
vector space. The six amplitudes that generate the particulgions by numerically integrating over a wide rangerin
solution which satisfies the matching conditions of Eqgs.where the expansions give accurate valuesXoB and C.
(5.30—(5.33 therefore identify the member of the vector The consistency of the expansion routines with the integra-
space that corresponds to the desired gauge transformatiofion routines is strong evidence that coding errors have been

eliminated. Furthermore, we have written two independent

F. Numerical integration of the ABC equations codes, one per author, and all results were obtained indepen-

The numerical integration of the homogeneous versionsc,iently before they were compared with each other. The

of Egs. (5.24—(5.26) is performed by first choosing starting agregment was well \iwthm thf numerlcal errors of-each-code.
pointsr i, andr ., Which are close enough to their limiting Our final results forA_(R), B(R) andC<(R2 are I|sEed n
values M and infinity, respectively, that the expansions andTabl({I for selected. values & Results fgrA<(R), B-(R)
recursion relationg5.34—(5.39 and (5.43—(5.48 provide arldC<(R)+ are obta|n+ed by complex conjugation. Results for
appropriate initial conditions foA, B, and C at machine A=(R), BZ(R) andC(R) are obtained from the jump con-
accuracy with a reasonable number of terms in the stnms ~ ditions of Eq.(5.30.

more than 30 in our cageAlso, the starting points are cho-

sen to be sufficiently close & that the resulting integration G. Calculation of the self-acceleration

to R takes only a few seconds of machine time. Satisfying Substitution of Eqs(5.27—(5.29) into Egs.(5.20—(5.23
these two requirements simultaneously, both inside and oUfpase into Eqs(5.19 ('5 20 and finally these into E'q
side the orbit, is not difficult in practice. (5.12, yields T e ’ '

The integration routine requires six input parameters, the
complex amplitudes,, a;, Cq, éo, BO, andf;o. These must ha5=hfw—([ga]ryﬁJrr,a[gﬁ])ﬁ(r—R)
be chosen so that the six jump conditio#s30—(5.33 are - _ - -
enforced. We have six algebraic equations for six unknowns. —(aptépa) ORI = (£, 51 E5)0(T—R)
We pick a set of six linearly independent “basis solutions,”.
each of which having only one of tfeg . . . ¢, equal to 1, all
other amplitudes being zero. After integrating the basis solu
tions to R we collect the values o, B, C, dA/dr, dB/dr
anddC/dr, all evaluated aR, in a matrix

n an obvious notation; for examplg; is the internal ¢
<R) solution to Eq(5.13), constructed fronA_(r), B_(r),
andC_(r). The first three terms on the right-hand side ap-
pear to be singular, but it is easy to check that by virtue of
Egs. (5.8—(5.11) and (5.30, the factors multiplyingd(r
—R) are all zero. We therefore have

A —Axc —Azc A A Ase

—Bic —Boc —Bs< By By Bso haB:_(fi;,8+§;;a)(R_r)_(§Z;ﬁ+§;:a)®(r_l(?5)53)
M= "G TG TG G G Co The jump conditiong5.31)—(5.33 also enforce
_Ai< _Aé< —Aé< A:,L> Aé> Aé> ,
—-Bj. —Bj. _Bé< Bi~ By. B [ga;ﬁ+§ﬁ;“]zo'
-Cij. —-Cj,. —-Ci. Cj. C,o Cgo and we see that in the Lorenz gauge, the metric perturbation

is continuous at =R. Equation(5.53 also reveals that the
where we use an obvious notation; for exampg. is the internal {<R) and external (>R) forms of h,,; are ob-
value of dA/dr at r=R for the first of the internal basis tained by a pure gauge transformation. The internal and ex-
solutions. The required amplitudes of the six basis solutiongernal transformations, however, are distinct, and the pertur-
form the unknown column vector, and the column vectgr  bation is not globally pure gauge.
contains the values of the discontinuities obtained from the Differentiation ofh,, gives
jump conditiong5.30—(5.33. After integrating the six basis
solutions, we are left to solve the system of linear equations Napiy=~[€apT Epiall y0(r—R)

MX:j (552 (6&;[37+ gﬁ;ay)(a(R r)
—(& 467 )O(r—R).
for the desired amplitudesof our basis solutions; these then (Caipy™ Epiay) O
combine to give us the desired solution of EGs24—(5.26  Once more the singular terms vanish and we end up with the
with appropriate boundary conditions. nonsingular(but discontinuoustensor
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TABLE |. Computed values for the internal functioAs (R), BZ(R) andCZ(R). The external values
are obtained by applying the jump conditions]{R&]=Rg Af]+R? and the imaginary parts are identical
(similar statements hold fd andC). The functionsA™ (R), B~ (R), andC™ (R) are obtained by complex
conjugation. All digits provided are significant. Note that we haveMet1 in our computations.

R ReAL] Im[AZ] RgBI] Im[BZ] R R4 CZ] Im[CZ]

6 —39.427067 —0.68518043 —28.037347 3.1558616 —26.185013 3.8814154
7 —52.930571 —0.68313011 —38.997736 3.6225886 —37.151392 4.3105572
8 —68.389381 —0.66104724 —51.991922 4.0456669 —50.152019 4.6962809
9 —85.826868 —0.63522323 —67.000673 4.4373057 —65.166204 5.0547070
10 —105.25284 —0.61006840 —84.015966 4.8042522 —82.185790 5.3926745
11 —126.67197 —0.58677222 —103.03408 5.1508692 —101.20722 5.7139596
12 —150.08673 —0.56553614 —124.05317 5.4802524 —122.22887 6.0210382
13 —175.49853 —0.54624909 —147.07229 5.7947312 —145.24995 6.3157134
14 —202.90822 —0.52871248 —172.09095 6.0961288 —170.27013 6.5993856
15 —232.31636 —0.51271828 —199.10891 6.3859127 —197.28925 6.8731864
16 —263.72332 —0.49807505 —228.12606 6.6652898 —226.30729 7.1380554
17 —297.12936 —0.48461496 —259.14236 6.9352693 —257.32427 7.3947870
18 —332.53466 —0.47219375 —292.15781 7.1967063 —290.34024 7.6440626
19 —369.93935 —0.46068823 —327.17244 7.4503337 —325.35525 7.8864727
20 —409.34355  —0.44999342 —364.18629 7.6967858 —362.36939 8.1225343
25 —636.35940 —0.40594758 —579.24539 8.8386535 —577.42896 9.2219041
30 —913.37000 —0.37286764 —844.29131 9.8621836 —842.47459 10.213754
35 —1240.3777 —0.34683600 —1159.3279 10.797069 —1157.5106 11.123814
40 —1617.3835 —0.32564845 —1524.3578 11.662460 —1522.5399 11.969054
45 —2044.3881 —0.30796022 —1939.3826 12.471537 —1937.5641 12.761341
50 —2521.3918 —0.29289834 —2404.4036 13.233822 —2402.5846 13.509349
55 —3048.3949 —0.27986801 —2919.4216 13.956447 —2917.6021 14.219636
60 —3625.3975 —0.26844793 —3484.4373 14.644917 —3482.6173 14.897304
65 —4252.3997 —0.25833015 —4099.4510 15.303582 —4097.6306 15.546405
70 —4929.4016 —0.24928356 —4764.4632 15.935949 —4762.6423 16.170225
75 —5656.4033 —0.24113082 —5479.4740 16.544892 —5477.6528 16.771470
80 —6433.4048 —0.23373328 —6244.4838 17.132801 —6242.6622 17.352398
85 —7260.4061 —0.22698069 —7059.4926 17.701689 —7057.6707 17.914916
90 —8137.4073 —0.22078417 —7924.5006 18.253269 —7922.6784 18.460652
95 —9064.4083 —0.21507114 —8839.5079 18.789014 —8837.6855 18.991011
100 —10041.409 —0.20978162 —9804.5146 19.310200 —9802.6919 19.507212

Nop:y= _(§a<,,3 +§;a YO(R—T) on the radial component df, is a consequence of the facts
’ Y " that the acceleration is pure gaugethe sense given aboyve
- (gj;Ber g;ay)@(r —-R). (5.54  and that the motion is circular. The curves displayed in Figs.

1 and 2 were obtained by substituting the numerical results

This can now be substituted into E¢L.1) to obtain thel ~ of Table I into Eq.(5.55. o _
=1, even-parity contribution to the self-acceleration; the Thel=1, even-parity contribution to the self-acceleration
calculation also involves the particle’s velocity vectar  takes different values depending on whetBe(R) is evalu-

=(1—3M/R)"Y41,0,00]. In the notation of Eq(1.3), we ated from inside or outside the orbit. By virtue of E§.30),
Y ' its jump across the orbit is given by

have
_ R-2M [a[l=1;eved]=—3mE— ———. (5.5
a[|=1;ever]:—3mEmRe[B+(R)], R°(R—3M)

(5.55 WhenR>M, this agrees with the Newtonian result of Eq.
(2.18.

H. Self-acceleration in the post-Newtonian limit

which must be evaluated on either siderefR. To arrive at
Eq. (5.55 we have used the property tHat (R) is the com-
plex conjugate of B*(R), so that B"(R)+B (R) While we have not been able to find exact analytic solu-
=2 RdB*(R)]. That the acceleration vector depends onlytions to Egs.(5.24—(5.26), it is possible to make some
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progress by linearizing the equations with respediitcSo-  and
lutions to these equations are then post-Newtonian approxi-
mations to the exact, numerically obtained solutions. We
now set out to obtain these approximations, and to compare

P+ =0, (5.64

them with the numerical results.
After linearization—recall thatQ?=M/R® is linear in
M—the homogeneous equations become

where we have introduced the rescaled independent variable
z=Qr and the small quantity®=MQ=(M/R)*?% a prime
indicates differentiation with respect roln terms of the new
variables, the jump conditions become

d2A 2 4M 2M/R
— 40— - —|A- B=0, (5.5 [¥-]1=v? [¥ 1=3v (5.65
dr? re  r3 r2 (559
and
d°B (QZ 4_ M B+ c 0, (559 2
dr? (2 | [v:]=1-30% [¥i]=> 1) (566
and matching is carried out a&=v.
2C  2M dC Y To find solutions to Eq(5.63 we use the fact that is

dr2 2 dr r2 oy

2 4AM|

(5.59

where we have omitted the labels for ease of notation. The

jump conditions reduce tpA]=[B]=[C]=R? and

We notice that the equations f8andC decouple from the

equation forA. In the sequel we will construct solutions to

the B andC equations, and leaw&(r) undetermined; for the
purposes of calculating the self-acceleration, oBlr) is

small and write

Y_= o+ 03P +O(v°).

Substitution into Eq(5.63 yields an equation fog,,

(5.67

6
[dA] 2M Yo+ 1——2) =0, (5.68
“Zl=2Rr| 1+ =], z
| dr | R
o and another equation faf,
dB _rl1 M
ar) "R R) ] 6) 6
o 1t 1‘; 9”1:;%- (5.69
[dC] _rl1 2M 56
dr| \T R/ (560 we first solve these equations in the domainy. Among

all possible solutions to E(q5.63, we choose one which
does not diverge in the limiz—0. While this condition
seems appropriate for our purposes, it is important to under-
stand that we cannot fully justify it here: this choice must be
introduced as an additional assumption. The reason is as fol-

required. Our solutions will satisfy outgoing-wave bOUndaronws Linearization of the equations with respecthoim-

conditions atr—, so that in the followingB(r)=B"(r)
andC(r)=C™(r).

To decouple thd andC equations we introduce the new

dependent variablesy_=[B—(1-M/r)C]/R? and .
=[$B+%(1—M/r)CJ/R?, such that

plies that Eqs(5.63 and(5.64 apply only in the domaim
>M, orz>v3, and this restriction prevents us from impos-
ing a proper ingoing-wave condition at the horizon (
=2M, or z=2v?%. We must therefore identify a suitable
replacement for this boundary condition, in the form of an
asymptotic condition holding whenis restricted byv3<z

) 2 <v. Previous experiencg33,34 with solving the Regge-
B=R ‘/’++§’/’* (56D Wwheeler equation25] in the low-frequency limit MQ
=p3<1) suggests that an appropriate substitution is a regu-
and larity condition in the formal limitz—0. This is the choice
we make here, without confirmation that this conclusion ap-
M 1 lies to th ten5.24—(5.26).
c=r? 1+ )y =2y |, plies to esysep(ﬁ 4—(5.26 _ -
r 3 A regular solution to Eq(5.68 is ¢y(z) =zj,(2), or
(5.62
3 3
Away from r=R, these functions satisfy the differential Yo (2)= sinz——cosz, (5.70
equations
6 608 wherej,(z) is a spherical Bessel function. Substituting Eq.
4+ 1- —— v y_=0 (5.63 (5.7_@ into Eq. (5.69 and integrating returns a linear super-
z? position ofzj,(2), zny(z), and ¢,(2z), a particular solution
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to the differential equation. The term involvizg,(z) can be 45 (2)=a(sinz— Bvicosz), (5.78
discarded, as it simply renormalizes the zeroth-order solution
of Eq. (5.70. The coefficient in front ozn,(z) must then be wherea and g8 are constants; the scaling of the cosine term

chosen so as to yield a regular solution. This gives with v2 is introduced for convenience, in anticipation of later
results. We note that this solution is regular in the formal
- 31 2} 1 1 6 limit z—0, in agreement with the discussion given previ-
Y1(2)=— 217 3 sinz+ 207 2 cosz, ously, and that it involves two undetermined constants. For
(5.70) an exterior solution we choose
and the complete interior solution to E@.63 is v (2)=v€", (5.79
v=(z2)=al gy +v3y7 +0(v®)]. (5.72  wherevy is another constant. Substitution of E¢5.78 and
(5.79 into the jump conditions of Eq(5.66 allows us to
The amplitudea will be determined by matching. determinea and vy, but 8 is left over as a free parameter.

We next turn to the domain>v and construct an exterior Once more the resulting expressions are too complicated to
solution to EQ.(5.63); this will be required to satisfy an be displayed, but they simplify fos<1. At the matching
outgoing-wave condition as—o. The procedure is largely point we find
the same as for the interior solution, but is simplified by the

fact that the outer boundary is part of the domzsaw3. An -\ 2\, R
outgoing-wave solution to EQ.(5.69 is o(2)= Yi(v)= =1+ B+ z]v"+O(v v,
—izh{(z), or
¥ (v)=Bv?+0(iv3v?), (5.80
Yo (2)=| 1+ 7 ;) e, (573 and in the interior domain we have

Substituting this into Eq(5.69 and integrating returns a W(2)=—(zlv)+
linear superposition azh$"(z), zh?(z), andy,(2), a par-

ticular solution to the differential equation. As before the (5.89)
term involving zh$"(2) can be discarded, and the term in- g psiitution of Eqs(5.76 and(5.80) into Eqs.(5.61 and
volving zh?)(z) must also be eliminated because it repre-(s 6 yields ' ' o

sents an incoming wave. We are left with the particular so-

1 1
,3+E(z/v)-i—E(Z/v)3}02+0(iv3,v4).

lution, M
B.(R)=C_(R)=—R? 1—,8E+O(iMQ,M2/R2) ,
i1 2|
lﬁf(Z):?(—z‘i‘ —3) e'z. (574) (583
2z as wellaB- (R)=C.(R)=B8MR+ - - -. According to these
The complete exterior solution to E€5.63 is then results, Eq(5.55 becomes
¥~ (2)=blyg +v ¢ +0(°)], (5.75

3mE M
a<[I=1;ever]:—2[1—(,8—1)E} (5.83
and the amplitudé will be determined by matching. R

The constanta and b are determined by inserting Eqs.

(5.72 and(5.75 into the jump conditions of E(q5.65. The and

results are moderately complicated, and we shall not display 3mE AM

them here. The expressions, however, simplify once we take a.[l=1;eveq=— —— —. (5.8
into account the fact that is small. At the matching point R R

we find

This is compatible with the Newtonian results presented in
y=(v)=—0v2+0(%, ¢ (v)=0(v*. (576 Eq.(2.17.
Substitution of Eqs(5.77) and(5.81) into Egs.(5.61) and
In the interior domain Z<v) we can take advantage of the (5.62 gives us expressions for the interior functions:
fact thatz is formally of orderv to derive

1 1 M
—_R2 _ - _Z 3| =
U= (2)= — (20)%2+O(v%). (5.77) B_(r)=—R ((rlR) B+ 2(r/R) 2(r/R) } R
We now proceed with finding interior and exterior solu- . 2152
tions to Eq.(5.64). This is a much simpler task, but as we +0O(IMQ,MTR) (5.89

shall see, our solutions will not be fully determined. For an
interior solution we write and
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T
B(r)/numerical emmm—
C(rynumerical ssanzan
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+O(iMQ,M2/R2)}. (5.86

These solutions are parametrized ®ywhich cannot be de-
termined here because of our lack of control over the behav:
ior of the solutions near=2M.

We can, however, estimate the value pty fitting Eq.
(5.82 to our numerical results. We proceed as follows. First, vors B
we fit the expression 4 SM/R+ B5(M/R)? to our numeri- '
cal values forB_(R)/(—R?) in the interval 26<R/M /
<100; this yields=1.9936+0.0006 and3;=4.07+0.02. 5 10 5 zo =
Second, we fit the expression-18M/R+ B¢(M/R)? to our ™
numerical values foC_(R)/(—R?) restricted to the same FIG. 3. Accuracy of the post-Newtonian expressions for the
interval; this yields 8=1.9936-0.0006 and B.=2.26 functionsB_(r) andC(r), for R=25M. The solid curve is a plot
+0.02. Third, we fit the expressiop+ Bs(M/R) to our  Of REB(r)], as given by Eq(5.89, divided by the numerical
numerical values foB-(R)/(MR); this yields 8=1.9951 results listed in Table |I. The dashed curve is a plot ofRg(r)],

-+ n_ _ : ) _as given by Eq(5.86), divided by the numerical results listed in

__O.Oooé:_ar),dﬂ'\i/R 4'1'2t 0.02. Finally, .Wel fit thle eXpn?S Table I. In both cases we have ggt2. The error is estimated to

sion B+ Bc( . ) . 0 our numerical va ues” O be of order /R)?=0.002. The plots reveal that this estimate is
C.(R)/(MR); this yields 5=1.9952-0.0004 andBc= accurate for all values of except near =2M.

—2.31+0.02. We notice an excellent consistency among our
estimates of, and we conclude that according to our nu- s we have shown in Sec. II. The dipole metric perturbations

accurary of post-Newtonian approximation

merical results, cannot be ignored.
Zerilli found analytic expressions for tHe=0 andl=1
B=1.994+0.001. metric perturbations in a convenient gauge. The Lorenz

gauge, however, with its hyperbolic wave operator, is pre-
It is probable that the actual value =2, and that the ferred for self-force calculations. We, as well as Nakano,
slight discrepancy results from a failure to include additionalsago, and SasakB1], have found analytic expressions for
terms in the expansions in powers ®/R. The two-  thel=0 and odd-parity=1 cases. Our analysis of the even-
parameter fits presented here were obtained with a nonline@arity | =1 case is mostly numerical, but our procedure is
least-squares Marquardt-Levenberg algorithm, as implerobust and easy to implement.
mented in the softwareNuPLOT. While the Lorenz-gauge treatment of these nonradiating
The quality of the fits can be judged by comparing themodes is now in hand, this analysis is but a small part of a
numerically obtained functionB_(r) and C_(r) with the  complete computation of the regularized self-acceleration, a
post-Newtonian approximations of E¢8.85 and(5.86, in  program that was outlined in Sec. I. And the ultimate goal of
which we substitutgd=2. We present this comparison in incorporating the equations of motion, with their corrections
Fig. 3 forR=25M. We see that the analytic expressions areof orderm/M, into a wave-generation formalism to obtain

very accurate for all values of<R except near =2M. accurate gravitational-wave templates, remains elusive.
For example, the conservative forces discussed in this pa-
V1. DISCUSSION per affect the trajectory of the small mass at onth¢M. But

the description of this effect inherently depends upon the

Using the tensor harmonic decomposition of Regge andhoice of gauge. While the actual observation of a
Wheeler[25], Zerilli [26] and many others have studied the gravitational-wave signal at a large distance from the system
metric perturbations resulting from the geodesic motion of ds a gauge-independent measurement, the details of the con-
small mass in the background geometry of a Schwarzschilgersion from the self-force, as measured in the Lorentz
black hole. Most of the attention was devoted to the radiatin@auge, to then/M corrections to the wave forms, which are
modes, those with=2, and their analysis typically involves gauge invariant, are not yet known.
numerical work.

Much less attention has been garnered by the nonradiat-
ing, =0 andl=1 modes. In fact, the vacuuis=1 even-
parity metric perturbations were shown to jost gaugeby This work originated during the fifth Capra meeting held
Zerilli. This mode contains no gravitational radiation, and isat the Center for Gravitational Wave Physics of the Pennsyl-
usually ignored in analyses involving gravitational perturba-vania State University, which is funded by the National Sci-
tions of black holes. Nonetheless, this very mode plays aence Foundation under Cooperative Agreement PHY
important role in self-force calculations: only the dipole 0114375. We thank the organizé®arren Anderson, Patrick
mode has a Newtonian-order contribution to the self-forceBrady, Eanna Flanagan, and Lee Samuel Ffontheir hos-
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pitality during this meeting, and the participants for numer-is a gauge transformation generateddy=[ «t,0,0,0] with
ous discussions. The work was pursued during the sixth Cg;=mE/(R—2M), so that
pra meeting held at the Yukawa Institute for Theoretical

Physics in Kyoto, Japan, with additional support from 2mE r—2M
Monbukagaku-sho Grant-in-Aid for Scientific Research Nos. —2¢. =hy>—hi=—— _ (A4)
14047212 and 14047214. We thank the organizers r R-2M

(Norichika Sago, Misao Sasaki, Hideyuki Tagoshi, Takahiro
Tanaka, Hiroyuki Nakano, and Takashi Nakamufa their ~ All other components of(,, ) are zero.

hospitality during this meeting, and the participants for addi- NOW we see_k an answer to our earlier questions. We as-
tional discussions. In addition we would like to thank Amos SUMe that thé=0 metric perturbation has already been ob-

Ori for a very helpful correspondence. This work was sup-'[a‘ined in one Lorenz gaug@urs, the results appearing in

ported by the Natural Sciences and Engineering ResearcheC- !l), and we ask whether it is possible to take it to

Council of Canada and the National Science Foundation ur@nother Lorenz gaugevhich we imagine to be a relativistic
der grant PHY-0245024. generalization of the choice made by NS®/e consider the

most general =0 gauge vector

APPENDIX: MONOPOLE GAUGE TRANSFORMATION j“=[at,j(r),0,0] (A5)
WITHIN THE LORENZ GAUGE

In Sec. Il we calculated the self-acceleration from theth@t keeps the metric perturbation static, wherés now an

monopole metric perturbation in the Lorenz gauge anoarbitrary constant. The gauge transformation generated by

claimed that this result was unique. Nevertheless, our resul(%”S vector prqduces a shift in t.he metric pert.urbatlon given
differ from the post-Newtonian results of Nakano, Sago, and®Y 2has=~2i(a;) - FOr the shifted perturbation to satisfy
Sasaki(NSS [31], who also work in the Lorenz gauge. In the Lorenz gauge ggndmon, _the_ gauge vector must satisfy
this appendix we outline a possible cause for the discrepanc}’® Wave equationlj“=0. This gives

Both groups begin with differing solutions in the Zerilli
gauge and then find differing gauge transformations to the ., 2., 2  2aM
Lorenz gauge, with resulting metric perturbations that yield s r_zl er
differing accelerations. We ask: do our results differ from
NSS by a gauge transformation from one Lorenz gaug§heref=1—2M/r. The general solution to this wave equa-
(ours to another Lorenz gauggheirg? An affirmative an-  ion is
swer would invalidate our statement that our choice of Lo-
renz gauge is unique. We shall instead argue that while our N
results are indeed related by a gauge transformation, thisjzclr+cz—2+—2[3r3ln(1—2M/r)—3M r2—12M3r
transformation takes our Lorenz gauge into another Lorenz r r
gauge that fails to be regular on the event horizon. We are
therefore correct in stating that our gauge choice is unique,
because the gauge employed by NSS, while appropriate for a
post-Newtonian treatment, does not have a proper relativisti
generalization.

Before we investigate this matter, we note that our expres
sion for the metric perturbation in the Zerilli gauge has

: (A6)

+44M3—24M8In(r/2M —1)], (A7)

herec; andc, are arbitrary, dimensionless constants. No-
tice that the complicated function within the square brackets
is closely related to the functiohi(r) defined in Eq(3.10),
namely[ ]=—9Mr?fI'(r). The resulting non-zero shifts in
the metric perturbation are

Z_
(——

_2mE L r—2Mm o0 _R AL oM
“Room) 2R, (A1) Ahy=2af+2j(r),

which is zero inside the orbit; this property simplifies our _
implementation of the boundary conditions at the horizon. _2dj(r) 2™

Nakano, Sago, and Sasaki, their Eg5), have instead Ahy = T ar T @J(r)’
2mE[r—2Mm Ahgy,=sirfgAh,,=—2rj(r). A8
{\:SS:T[R—ZM @(R—r)+(r—R)}, (A2) 00 0=~ 211(1) (A8)

We must now find constants;, c¢,, and a which yield a

which inside the orbit is very similar to the Newtonian result "€9ular metric perturbation everywhere, including on the

of Eq. (2.12. The difference event horizon and at infinity.
Behavior at the event horizon is easily examined in

~ Eddington-Finkelstein coordinates
Nss Lz 2METr—2M
M M= R

(A3) V=t+r+2MIn(r/2M—-1), R=r. (A9)
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The coordinated’ andR are well defined everywhere in the ThusAh,,, andAhz% are regular on the future horizon, but

vicinity of the future horizon, which is located &=2M.

Ahyy, is singular ifa is not zero. Further analysis shows that

One component gf* in Eddington-Finkelstein coordinates is a choice of constants which does not satisfy &qL1) only

Y=gt

—a[V-R—2M In(RI2M—1)]+j(R). (A10)

makes the shifts more singular. Examination of behavior on
the past horizon leads to the same conclusion. The only con-
dition on the constants that makéd,, a regular tensor
field on the horizon ise=0 andc,= —c,/8; but Ah,; is

With a substitution from Eq(A7) it is seen that regularity of then ill behaved as—=. We conclude that there is no

j¥ at the future horizon requires that

1 2
2ci+ —=Cr+ —a=0,

267 g (A11)

and with this same conditiof’*=0(f). We still need to

monopole gauge transformation that simultaneously pre-
serves the Lorenz gauge condition and behaves properly on
the event horizon and at infinity. This confirms that our claim
was true: our choice of Lorenz gauge is indeed unique.
Nonetheless, if we set;=0 and make a gauge transfor-
mation with Eq.(A5), we find that the resulting change in the

check the regularity oAh, s in Eddington-Finkelstein coor-  self-acceleration is completely due, at first post-Newtonian

dinates,
AhW: Ahtt y
Ahyr=Ah,/f,

Ahgr=Ahy/f2+Ah,, .
(A12)

With the choice of constants in E¢A11), we see that
Ahy=af[1+In(r/2M—1)]+O(f?), (A13)
and

Ahy/f2+Ah,,=2a+O(f). (A14)

order, toj'=at; the contribution fromj"=j(r) appears at
higher post-Newtonian order. With the value af set to
mE/(R—2M), the first post-Newtonian contribution to the
self-acceleration is-4mM/R®, and it completely accounts
for the difference between our results and those of Nakano,
Sago, and SasakB1], who present first post-Newtonian re-
sults in their Eq(E19. From the discussion provided above,
we conclude that our results are related by a gauge transfor-
mation, but that this transformation takes our Lorenz gauge
into a Lorenz gauge that fails to be regular on the event
horizon. In other words, the Lorenz gauge employed by Na-
kano, Sago, and Sasaki, while appropriate for their post-
Newtonian treatment, does not have a proper relativistic gen-
eralization.
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