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Singularity resolution in quantum gravity
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We examine the singularity resolution issue in quantum gravity by studying a new quantization of standard
Friedmann-Robertson-Walker geometrodynamics. The quantization procedure is inspired by the loop quantum
gravity program, and is based on an alternative to the Schro¨dinger representation normally used in metric
variable quantum cosmology. We show that in this representation for quantum geometrodynamics there exists
a densely defined inverse scale factor operator, and that the Hamiltonian constraint acts as a difference operator
on the basis states. We find that the cosmological singularity is avoided in the quantum dynamics. We discuss
these results with a view to identifying the criteria that constitute ‘‘singularity resolution’’ in quantum gravity.

DOI: 10.1103/PhysRevD.69.084016 PACS number~s!: 04.60.Ds
ill
ic
on
al
at
tio
va
u
ric
a

e
lb

ro
te

-

l
e
ity
di
nd
h
en

re
vi

ed

-
s to
ap-
for
-
tor
the

ther,
gu-

on-
sin-
d-
op

art-
n-
dy-

iza-

an

ain
n-
r-
f the

in-
for

iza-
fac-
n-

ity

m-
I. INTRODUCTION

It is widely believed that a quantum theory of gravity w
give insights into the question of what becomes of class
curvature singularities. This is based largely on intuiti
from the uncertainty principle and fundamental length sc
arguments in regions of large spacetime curvatures. Wh
required to address the problem quantitatively is quantiza
of model systems that contain classical metrics with cur
ture singularities. Such models are usually symmetry red
tions of general relativity or other generally covariant met
theories. Within a model an obvious approach is to look
classical observables such as curvature scalars, and s
they can be represented as operators on a suitable Hi
space. Their spectra and quantum dynamics may give
indication of what becomes of the classical singularity.

This question has been studied using models derived f
symmetry reductions of general relativity since the la
1960s @1–4#. All of this work used the Arnowitt-Deser
Misner ~ADM ! ~metric variable! Hamiltonian formulation of
general relativity ~‘‘geometrodynamics’’! as the classica
starting point, and the Schro¨dinger representation as th
quantum starting point for developing a quantum grav
model. The results obtained from various mini- and mi
superspace models were largely inconclusive. Some i
cated singularity avoidance, others did not, but no insig
emerged as general and definitive in the sense of transc
ing the model studied.

After the development of the Ashtekar~connection vari-
able! Hamiltonian formulation ~‘‘connection dynamics’’!,
many of the questions studied in the ADM formulation we
reexamined, including the general canonical quantum gra
program~for reviews see@5,6#!. The different classical vari-
ables led to the development of a non-Schro¨dinger represen-
tation program based on holonomy variables~‘‘loop quantum
gravity’’ !. Recently results from this program were appli

*Email address: husain@math.unb.ca
†Email address: owinkler@perimeterinstitute.ca
0556-2821/2004/69~8!/084016~7!/$22.50 69 0840
al

e
is
n
-

c-

t
e if
ert
an

m

-
i-

ts
d-

ty

by Bojowald @7,8# to the old question of quantizing mini
superspace models, with a view to studying what happen
classical curvature singularities upon quantization. This
plication has produced some interesting results:
Friedmann-Robertson-Walker~FRW! mini-superspace mod
els the Hamiltonian constraint acts like a difference opera
on the space of states, and there is an upper bound on
spectrum of the inverse scale factor operator. Taken toge
these results lead to the conclusion that the big bang sin
larity is resolved in the loop quantum gravity approach@9#.

A number of questions may be asked at this stage c
cerning classical variables, quantization procedures, and
gularity resolution: What criteria constitute singularity avoi
ance? Is the singularity avoidance conclusion from the lo
quantum gravity program a result of both the classical st
ing point and the choice of representation? Would a no
Schrödinger representation quantization in the geometro
namical ADM variables give the same results?

Motivated by these questions, we study a new quant
tion of flat FRW cosmology~the model in which the loop
quantum gravity results were first obtained@7,8#!. Our clas-
sical starting point is the geometrodynamical Hamiltoni
formulation, which we quantize via a non-Schro¨dinger rep-
resentation motivated by holonomy-like variables. We obt
results qualitatively similar to those obtained in loop qua
tum cosmology: the Hamiltonian constraint acts like a diffe
ence operator on the space of states, and the spectrum o
inverse scale factor has an upper bound.

This paper is organized as follows: The next section
troduces the classical theory and a set of basic variables
FRW geometrodynamics. Section III describes the quant
tion procedure and discusses the volume, inverse scale
tor, and Hamiltonian constraint operators. Section IV co
tains a discussion of the results with the singular
resolution question in mind.

II. CLASSICAL THEORY

The canonical Hamiltonian variables in geometrodyna
ics are (qab ,p̃ab), where the configuration variableqab is
©2004 The American Physical Society16-1
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the metric on a spatial 3-surface, and the conjugate mom
tum variablep̃ab is a function of the surface’s extrinsic cu
vature. In terms of these variables, the vacuum Hamilton
and spatial diffeomorphism constraints are

H5
1

Aq
S p̃abp̃ab2

1

2
p̃2D2AqR50 ~1!

Ca5Dbp̃a
b50, ~2!

whereq5detqab , p̃5p̃abqab , andR is the Ricci scalar of
qab .

For the flat FRW model a reduced Hamiltonian theo
may be obtained by the ansatz

qab5B~ t !eab , p̃ab5P~ t !eab, ~3!

whereeab is the flat Euclidean metric diag~1,1,1!. The den-
sity weight on p̃ab is obtained using this fiducial metric
Unlike in general relativity whereB(t) is dimensionless
since it is a metric variable, we will take it to have dimensi
length square~which means that the spatial coordinates
dimensionless!. The conjugate momentumP(t) is then di-
mensionless in order that the symplectic form

v5
1

8pGN
dB`dP ~4!

has dimensions of action~in c51 units!. The phase spac
topology is that of a particle on the half line,R13R, since
B(t).0 in this parametrization. The standard FRW sc
factor isa(t)5AB(t).

The Hamiltonian constraint is

H52
3

2
P2AB ~5!

and the diffeomorphism constraintCa vanishes identically. It
is interesting to note that this Hamiltonian constraint is ide
tical in form to that obtained in the connection variables@7#.

To facilitate quantization, however, it is useful to make
canonical transformation that lifts the half line restrictio
We proceed in two steps. The first is to extend the class
configuration space to include the singularityB(t)50. This
step is essential for addressing the question of singula
resolution for without it there is ‘‘no classical singularity t
avoid’’ in the quantum theory.~This, for example, is done—
more or less unconsciously—in the familiar quantization
the hydrogen atom by the choice of Hilbert spaceL2(R0

1),
even though the classical configuration space is onlyR1.!
The second step is to reparametrize the configuration v
able such that its domain is the real line.

This is done by introducing new variables (x,p) by writ-
ing x25B. The symplectic form becomes
08401
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v5
1

8pGN
2xdx̀ dP5

1

8pGN
dx`d~2xP!. ~6!

Thus the new momentum isp52xP, for which $x,p%
58pGN . ~Both coordinatesx and p now have dimension
length.! Note that in this parametrization, the pointx50 is
included to give the full real line as the configuration spa
This amounts to an extension of the original parametrizat
to include the degenerate metric withB(t)50. ~This feature
is also present in the connection-triad variables, where
vertibility of the triad is not a requirement.!

The Hamiltonian constraint~1! as a function of (x,p) is

H52
3

8

p2

x2 uxu52
3

8

p2

uxu
. ~7!

Note that this constraint is now quite different in form tha
the one in the connection-triad variables, although thex vari-
able may be regarded as a ‘‘triad.’’ The reason for this is t
the new momentump is a product of the metric and extrinsi
curvature variables, and this is quite unlike the connect
variableA made of the triad connectionG and extrinsic cur-
vatureK asA5G1K. ~It is this connectionA that is essen-
tial for formulating the loop representation through holon
mies @5,6#.!

We now introduce an algebra of classical observables
write quantities of physical interest as functions of the
variables. Their form is motivated by the holonomy obse
ables used for quantization in the loop quantum gravity p
gram. We use as the fundamental variablesx and

Ug~p!ªexp~ igp/L !, ~8!

whereg is a real parameter andL fixes the~arbitrary! unit of
length. The parameterg is necessary in order to separa
momentum points in phase space~e.g. fixing g/L51 say,
gives the same value ofU for p andp12np). This variable
may be viewed as amomentum analog of the holonomy va
able of loop quantum gravity.

The pair@x,Ug(p)# has the Poisson bracket algebra

$x,Ug~p!%5~8pGN!
ig

L
Ug~p!. ~9!

This is the basic algebra which will be taken over to t
quantum theory.

Other quantities of interest are the volume, which up t
multiplicative constant is

V~ t !5B~ t !3/25uxu3, ~10!

and inverse powers of the scale factora(t). The latter has
proven useful in determining whether there is ‘‘singular
avoidance’’ in a quantum theory@7#. It is possible to write
these observables, and the Hamiltonian constraint using
choice of fundamental variables@x,Ug(p)#.

The standard FRW scale factor is

a~ t !5AB~ t !5uxu. ~11!
6-2
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Using the method introduced in@10#, inverse powers of the
scale factor may be defined classically either via the brac

Ug
21$Vn,Ug%5Ug

21$uxu3n,Ug%

5 i ~8pGN!
g

L
3n sgn~x!uxu3n21, ~12!

or more simply by inverse powers of the volume observab
However, the latter definition cannot be carried over to
quantum theory since, as we see will below, the volume
erator turns out to have zero as an eigenvalue, so neg
powers of it are not densely defined. Therefore the somew
indirect definition~12!, with n.0 will be useful in studying
the approach to the singularity in the quantum theory. T
requirement that the power ofx on the right hand side be
negative means thatn,1/3. Thus we need 0,n,1/3 in
order to obtain a sequence of inverse powers of the s
factor in terms of the basic variables. The choicen51/6
gives

sgn~x!

Auxu
52

2Li

~8pGN!g
Ug

21$V1/6,Ug%, ~13!

andn51/4 gives

1

uxu
5S 4

3~8pGN!gL̃
D 4

~Ug
21$V1/4,Ug%!4. ~14!

From this it is clear that powers of Poisson bracket in E
~12! may be used as a starting point for defining a large c
of operators for inverse powers of the scale factor. It is
interest to see whether these all lead to qualitatively sim
behavior concerning the quantum nature of the big bang
gularity.

The Hamiltonian constraint can be written as a function
the basic variables by using the relation~13! for the inverse
scale factor as follows:

H52
3

8

p2

uxu
5

3L2

2~8pGN!2g2 p2~Ug
21$V1/6,Ug%!2. ~15!

Note here that there is the alternative choice of using
~14! to define the Hamiltonian constraint. However, th
leads to a more complicated form due to the larger numbe
U factors.

It is of course also possible to write the Hamiltonian co
straint in other classically equivalent ways. One alternativ
to substituteuxu/x2 rather than directly using the invers
scale factor 1/uxu from Eqs.~13! or ~14!. These choices will
clearly lead to inequivalent operators in the quantum the
since the number of factors ofU are different. As for the
inverse scale factor, it is generally useful to also study v
ous choices for the Hamiltonian constraint in order to ide
tify the main features that are to be associated with ‘‘sin
larity resolution’’ in the quantum theory.

In the following, we focus primarily on the simplest o
dering of the Hamiltonian constraint, and the square of
definition~13! for the inverse scale factor, since both of the
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contain the smallest number ofU factors. However, we will
briefly comment on other choices.

III. QUANTUM THEORY

To construct the quantum theory for the classical syst
described above, we will proceed in analogy to the proced
used in loop quantum gravity. The first step is to choose
algebra of classical functions that is represented as quan
configuration operators. We take here the algebra gener
by the functions

W~l!5eilx/L, ~16!

wherelPR. It consists of all functions of the form

f ~x!5(
j 51

n

cje
il j x/L, ~17!

with cjPC and their limits with respect to the supremu
norm. This algebra is known as the algebra of almost p
odic functions overR and we denote it byAP(R).

It is well known thatAP(R) is naturally isomorphic to
C(R̄Bohr), the algebra of continuous functions on the s
called Bohr compactification ofR @11#. As the name sug-
gests,R̄Bohr is a compact group which can be obtained as
dual group ofRdiscr , the real line endowed with the discre
topology. This suggests that takingL2(R̄Bohr ,dm0), where
m0 is Haar measure onR̄Bohr , as the Hilbert space for ou
theory is a viable option.This is the decisive point where w
depart from the traditional approach in geometrodynamic
where the Hilbert space is the conventional Schro¨dinger
space L2(R,dx). Once we adopt this new choice, basis sta
in our Hilbert space are given by

ul&[ueilx/L&, lPR, ~18!

with the inner product

^mul&5dm,l . ~19!

This representation has been discussed in some mathem
detail in @12#, and also in@13# where it is applied to the
quantization of a particle. Notice the difference from t
standard quantum mechanics of a particle on the real l
where the right hand side is given instead by a delta func
d(m2l). This feature is traceable to the fact that the co
figuration space is the real line with the discrete topolo
which in turn stems from the choice of the algebra of fun
tions.

The action of the configuration operatorsŴ(l) is defined
by

Ŵ~l!um&5eil x̂/Lum&5eilmum&. ~20!

It is straightforward to verify that these operators are wea
continuous inl, which procures the existence of a se
adjoint operatorx̂, acting on basis states according to
6-3
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x̂um&5Lmum&. ~21!

The next step is to construct the operators correspondin
the classical momentum functionsUg5eigp/L. Their action
on the basis states is fixed by the definition of thex̂ operator
and the requirement that the commutator betweenx̂ and Ûg
reflects the corresponding Poisson bracket~9! betweenx and
Ug . With the definition

Ûgum&5um2g&, ~22!

the commutator is

@ x̂,Ûg#52gLÛg . ~23!

Making now the standard commutator-Poisson bracket
respondence@ ,#←→ i\$,%, gives using Eq.~9! the relation

2gL5 i\~8pGN!
ig

L
, ~24!

which fixes the lengthL to L5A8p l P . This shows explicitly
how the eigenvalues ofx̂ arise in Planck units upon quant
zation.

Obviously,Ûg is unitary; however, it is not weakly con
tinuous with respect tog. As a consequence,there is no
momentum operator in this representation, in stark contrast
to the Schro¨dinger quantization. With the basic quantum o
erators now at our disposal, we are in a position to const
the inverse scale factor operator and investigate its spect

A. Volume and inverse scale factor

The operator for the volumeV̂ is provided directly by the
operatorx̂ defined in Eq.~21!. We have

V̂um&5~A8p l P!3umu3um&. ~25!

The operators corresponding toU andV can be used to ob
tain an operator for the inverse scale factor. One way to
this is to use the square of the expression in Eq.~13! with
g51. The resulting operator is

1̂

uxu
ª

1

2p l P
2 ~Û21@V̂1/6,Û# !2. ~26!

The key question is whether this operator is unbounded a
standard quantum cosmology, where its eigenvalues div
when approaching the quantum state corresponding ta
50, or whether it is bounded, indicating a~kinematical!
resolution of the classical singularity. To decide this we c
culate its eigenvalue on a basis stateum&:
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1̂

uxu
um&5

1

2p l P
2 @Û21~V̂1/6Û2ÛV̂1/6!#2um&

5
1

2p l P
2 ~Û21V̂1/3Û2Û21V̂1/6ÛV̂1/6

2V̂1/6Û21V̂1/6Û1V̂1/3!um&

5A 2

p l P
2 ~ um21u22umu1/2um21u1/21umu!um&

5A 2

p l P
2 ~ umu1/22um21u1/2!2um&. ~27!

This result reveals some important properties of the eig
values. First, they are always positive or at most zero,
should be the case. Second and more importantly, the s
trum is clearly bounded from above. Forumu→` the eigen-
values approach 0, as would be expected from the beha
of 1/uxu for large uxu. Moreover, the eigenvalue of the sta
um50& corresponding to the classical singularity (âu0&
[uxû u0&50) is A2/p l P

2 , and this is the largest possible e
genvalue.~This is notably different from the results in@9#,
where the eigenvalue of the inverse scale operator for
state um50& is 0, and the maximal eigenvalue is obtain
instead for the stateum51&. Although there are no principa
reasons why this could not happen in the quantum regim
seems somewhat unnatural from the classical point of vi
It should be pointed out, however, that this result is obtain
in our formalism for a different choice of operator ordering!

In summary, this new quantization of the inverse sc
factor in geometrodynamics mimics the expected class
behavior for large valuesa(t), and departs significantly from
the divergence in the standard quantization near the clas
singularity a(t)50. In this sense, the quantization resolv
the singularity. This ‘‘resolution,’’ however, is so far onl
kinematical, since we have not investigated the quantum
namics. It is conceivable that the quantum dynamics bre
down at the stateu0&, in which case it would be hard to claim
a satisfactory resolution of the singularity. As the dynamics
encoded in the Hamiltonian constraint, we now turn our
tention to its operator realization.

B. Hamiltonian constraint

As discussed already in the classical section, the Ham
tonian can be written in many different, classically equiv
lent forms. The one we will focus on in this section is

H52
3

8

p2

uxu
, ~28!

as this is in some sense the simplest one, and the spectru
the inverse scale operator is already known. Asp does not
exist as an operator in our quantum representation, we h
to choose an alternative way to representp2 as an operator.
One way to do this is motivated by the classical express
6-4
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SINGULARITY RESOLUTION IN QUANTUM GRAVITY PHYSICAL REVIEW D 69, 084016 ~2004!
p25L2 lim
g→0

1

g2 ~22Ug2Ug
21!. ~29!

A physical interpretation of this expression is obtained
settingg5 l F /Lphys, whereLphys is the characteristic size o
the system under consideration andl F is a fundamental
length scale.~Note that a Hamiltonian naturally introduces
scaleLphys for a physical system.! The limit then suggests
that the ‘‘point’’ form of the momentum is recoverable in th
caseLphys@ l F .

For quantum cosmology these considerations meanl F
5 l P andg5 l P /Lphys, and lead to a Hamiltonian constrain
operator

Ĥg5
3p l P

2

g2
~Ûg1Ûg

2122!
1̂

uxu

5
3

2g2
~Ûg1Ûg

2122!~Û21@V̂1/6,Û# !2, ~30!

where a specific operator ordering has been chosen. Th
tion of Ĥg on a basis state is given by

Ĥgum&5
A18

g2
l P~ umu1/22um21u1/2!2

3~ um1g&1um2g&22um&)

[
A18

g2
l PV~m!~ um1g&1um2g&22um&). ~31!

On the eigenstateu0& of volume with zero eigenvalue, whic
is the classical singularity, we have

Ĥgu0&5
A18

g2
l P~ ug&1u2g&22u0&), ~32!

1̂

uxu
u0&5A 2

p l P
2 u0&. ~33!

These equations represent the effects of quantization on
classical singularity. In order to probe the dynamical p
further we must solve the quantum constraint equation
encodes time evolution.

As is well known in the theory of constrained system
normalizable solutions of the quantum constraints do not
in the kinematical Hilbert spaceH but rather in a larger
spaceC !. This space can be obtained as the dual space o
dense subspaceC of H, which is spanned by all elements o
the form

(
i 51

n

c~m i !um i&. ~34!

A general element ofC ! can thus be written as
08401
y
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c~m!^mu. ~35!

Notice that, while the sum is continuous as it runs over ev
real number, its action on an element ofC is well defined by
construction. The constraint equation—symbolically writt
as

Ĥuc&50, ~36!

is now interpreted as an equation in the dual space,

^cuĤ†50. ~37!

Using the form of a general element of the dual space~35!
and the~dualized! action of the~dual! Hamiltonian on~dual!
basis elements, we can derive a relation for the coefficie
c(m):

V~m1g!c~m1g!22V~m!c~m!1V~m2g!c~m2g!50.
~38!

What is the meaning of this equation and in what sense d
it encode the quantum dynamics? First of all, it determin
the coefficients for those dual states that are physical. A
the classical theory solutions to the constraint equation r
resent classical spacetimes, these physical dual states c
interpreted as representing ‘‘quantum spacetimes.’’

The difference equation~38! gives physical states that ar
linear combinations of a countable number of component
the form

c~m1ng!um1ng&, ~39!

whereg is fixed at the Planck scale (g5 l P /Lphys;1) and
nPZ. As each component corresponds to a different eig
value for the volume and scale factor, it can be interpreted
the quantum state representing the Universe at the ‘‘tim
m1g. A solution of the Hamiltonian constraint therefor
represents a linear combination of FRW universes speci
at certain discrete volumes, or equivalently, at discrete tim
It is in this sense that time evolution is ‘‘discrete with fun
damental time step’’g. It is also clear that this ‘‘discrete
evolution’’ does not represent the state of a single univers
different discrete times, since the term ‘‘single universe’’ h
no meaning here. Rather a ‘‘discrete solution’’ of the Ham
tonian constraint,@i.e., one satisfying Eq.~38!#, gives the
amplitudes that the physical universe is in one or other of
discretely separated components of the physical state.

The statê 0u corresponding to the classical singularity
contained in only one specific ‘‘quantum spacetime,’’~i.e.,
the solution of the Hamiltonian constraint!. Furthermore, in
6-5
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that one case we can see that the system evolves
through the singularity without encountering any problem
since the componentc(0) can be computed in terms of th
componentsc(g) and c(2g). In all other physical states
the statê 0u does not occur, and so in a sense one can
that the discrete evolution ‘‘jumps’’ over the singularity if th
state contains components with both positive and nega
values ofm. In such cases there is an instance of smallest
finite volume.

From these observations one can perhaps conclude
dynamically the singularity has been resolved. A dynami
non-resolution of the singularity might have occurred had
turned out that the difference equations have no solution
they contain thec(0) component, or if they contain compo
nents with both positive and negativem in the sum~35!.

Finally, it is interesting to note that for our representati
of Ĥ, the state at the classical singularityc(0) can be deter-
mined in contrast to the results in@9#. However, had we
chosen to write the classical Hamiltonian using Eq.~14! in-
stead of Eq.~13!, which amounts to using double the numb
of U operators, we would have ended up with the same
sult: c(0) cannot be determined from the difference eq
tion, but a solution is still possible as it turns out thatc(g) is
then given in terms ofc(2g). This shows the significan
differences that can arise due to quantization ambiguiti.
Ultimately, only physical predictions and comparison w
known facts or~as yet hypothetical! experiments can deter
mine the ‘‘right’’ choice.

IV. CONCLUSIONS AND DISCUSSION

Our main result is that there is an alternative to the Sch¨-
dinger quantization of the FRW cosmology in the stand
ADM geometrodynamical variables. This quantization lea
to conclusions qualitatively similar to those obtained in lo
quantum cosmology starting from the connection-triad va
ables: ~i! the Hamiltonian constraint acts like a differen
operator, and~ii ! the inverse scale factor can be represen
as a densely defined operator. Thusit is the representation
space and the realizations of the basic observables ra
than the nature of the classical variablesthat are responsible
for the similar conclusions for this model.

To what extent is the quantization we have presented
ferent from the one employed in loop quantum cosmolog
The differences at the classical level are clear: the ph
space variables (x,p) are not the standard mini-superspa
variables that arise via standard reduction from
connection-triad canonical variables, as a comparison w
@7,8# shows. The key difference at the quantum level is t
Ûg is not the holonomy operatorassociated with the
Ashtekar-Sen connection for the FRW model. Rather, theUg
we use is a standard translation generator whose realiza
on the Hilbert spaceL2(R̄Bohr ,dm0) is applicable to any
classical theory, as has been discussed in@12#. Thus inter-
preting our quantization as a ‘‘loop representation’’ wou
mean that one is generalizing this term to includeall quan-

tizationson the Hilbert spaceL2(R̄Bohr ,dm0).
It is clear that the alternative representation based on
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Bohr compactification is applicable to other mini-superspa
models, since in all such models the phase space varia
are functions of only a time coordinate. It is also clear th
this applicability is independent of whether the classi
phase space variables are metric-extrinsic curvature
connection-triad. The main difference between the variab
arises in the form and action of the Hamiltonian constrai

In the flat FRW case we have discussed, the Ricci sc
term in the Hamiltonian constraint vanishes. Thus the act
of the constraint as a difference operator is due only to
kinetic term. In other mini-superspace models the Ricci s
lar term, which is a purely configuration variable, will hav
non-trivial action on the basis states. However, in the B
representation, this action is multiplicative. Thus it appe
that in other mini-superspace models the ‘‘difference ope
tor’’ feature of the Hamiltonian constraint will survive. Sim
larly it appears that an inverse scale factor operator is de
able using volume andU operators, and that it is likely to
have a spectrum bounded above. For models where the p
space is more than two dimensional, the new representa
can clearly be used for each pair of phase space variab
Extension beyond mini-superspace~quantum mechanics! to
midi-superspace~quantum field theory! models, such as the
Gowdy cosmology, would be of much interest@14#.

‘‘Singularity resolution’’ appears to consist of two mai
features, one kinematical and the other dynamical. The k
matical feature is the spectrum of the operator associa
with a curvature scalar~or other relevant classical observ
able! that diverges at a curvature singularity. If the spectru
is bounded, the singularity may be considered kinematic
resolved. It is important to identify the largest eigenvalue a
corresponding eigenstate of such an operator, since this i
‘‘closest’’ the quantum theory can get to the singularity. T
dynamical feature of singularity resolution concerns the
tion of the Hamiltonian constraint on the state of largest c
vature: this could lead either to no solution of the constra
for zero or negative values ofm, or to a well defined ‘‘evo-
lution’’ through zero to negative values ofm. The former
may be taken as an indication of the breakdown of quan
evolution, and hence a dynamical non-resolution of the s
gularity, regardless of the boundedness of the curvature
erator.

An alternative viewpoint is that the kinematical vs d
namical views are artificial in that the question of singular
resolution is relevant only for the physical state space wit
well defined physical inner product. The question then
comes whether there are any physical states for which
curvature operator spectrum is unbounded. This app
more compelling, but it has not been addressed here, o
the context of loop quantum cosmology.

ACKNOWLEDGMENTS

We thank Thomas Thiemann for discussions. V. H. than
the Natural Sciences and Engineering Research Counc
Canada for support.
6-6



m
n-

r.

-

d-

av.

SINGULARITY RESOLUTION IN QUANTUM GRAVITY PHYSICAL REVIEW D 69, 084016 ~2004!
@1# C.W. Misner, Phys. Rev.186, 1319~1969!.
@2# B.K. Berger, Phys. Lett.108B, 394 ~1982!.
@3# B.K. Berger, Ann. Phys.~N.Y.! 156, 155 ~1984!.
@4# V. Husain, Class. Quantum Grav.4, 1587~1987!; also in Ph.D.

thesis, Yale University, 1989.
@5# C. Rovelli, Living Rev. Relativ.1, 1 ~1998!.
@6# T. Thiemann, ‘‘Introduction to Modern Canonical Quantu

General Relativity,’’ gr-qc/0110034; ‘‘Lectures on Loop Qua
tum Gravity,’’ gr-qc/0210094.

@7# M. Bojowald, Phys. Rev. D64, 084018~2001!.
@8# M. Bojowald, Class. Quantum Grav.18, 1071~2001!.
08401
@9# A. Ashtekar, M. Bojowald, and J. Lewandowski, Adv. Theo
Math. Phys.7, 233 ~2003!.

@10# T. Thiemann, Class. Quantum Grav.15, 839 ~1998!.
@11# O. Bratteli and D. W. Robinson,Operator Algebras and Quan

tum Statistical Mechanics 1, 2nd ed.~Springer-Verlag, Berlin,
2002!.

@12# H. Halvorson, ‘‘Studies in the History and Philosophy of Mo
ern Physics,’’ 35~2004!; quant-ph/0110102~2001!.

@13# A. Ashtekar, S. Fairhurst, and J. Willis, Class. Quantum Gr
20, 1031~2003!.

@14# V. Husain and O. Winkler~in preparation!.
6-7


