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Singularity resolution in quantum gravity
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We examine the singularity resolution issue in quantum gravity by studying a new quantization of standard
Friedmann-Robertson-Walker geometrodynamics. The quantization procedure is inspired by the loop quantum
gravity program, and is based on an alternative to the ‘Sahger representation normally used in metric
variable quantum cosmology. We show that in this representation for quantum geometrodynamics there exists
a densely defined inverse scale factor operator, and that the Hamiltonian constraint acts as a difference operator
on the basis states. We find that the cosmological singularity is avoided in the quantum dynamics. We discuss
these results with a view to identifying the criteria that constitute “singularity resolution” in quantum gravity.
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[. INTRODUCTION by Bojowald[7,8] to the old question of quantizing mini-
superspace models, with a view to studying what happens to
It is widely believed that a quantum theory of gravity will classical curvature singularities upon quantization. This ap-
give insights into the question of what becomes of classicaplication has produced some interesting results: for
curvature singularities. This is based largely on intuitionFriedmann-Robertson-Walk¢FRW) mini-superspace mod-
from the uncertainty principle and fundamental length scaleels the Hamiltonian constraint acts like a difference operator
arguments in regions of large spacetime curvatures. What @n the space of states, and there is an upper bound on the
required to address the problem quantitatively is quantizatiogPectrum of the inverse scale factor operator. Taken together,
of model systems that contain classical metrics with curvathese results lead to the conclusion that the big bang singu-
ture singularities. Such models are usually symmetry redudarity is resolved in the loop quantum gravity appro46h
tions of general relativity or other generally covariant metric A humber of questions may be asked at this stage con-
theories. Within a model an obvious approach is to look aferning classical variables, quantization procedures, and sin-
classical observables such as curvature scalars, and seedilarity resolution: What criteria constitute singularity avoid-
they can be represented as operators on a suitable Hilbe#ce? Is the singularity avoidance conclusion from the loop
space. Their spectra and quantum dynamics may give afiuantum gravity program a result of both the classical start-
indication of what becomes of the classical singularity. ing point and the choice of representation? Would a non-
This question has been studied using models derived frochralinger representation quantization in the geometrody-
symmetry reductions of general relativity since the latenamical ADM variables give the same results?
1960s [1—4]. All of this work used the Arnowitt-Deser- Motivated by these questions, we study a new quantiza-
Misner (ADM) (metric variablg Hamiltonian formulation of ~ tion of flat FRW cosmologythe model in which the loop
general relativity (‘geometrodynamics) as the classical duantum gravity results were first obtaingtig]). Our clas-
starting point, and the Schimger representation as the Sical starting point is the geometrodynamical Hamiltonian
quantum starting point for developing a quantum gravityformulation, which we quantize via a non-Sctiger rep-
model. The results obtained from various mini- and midi-resentation motivated by holonomy-like variables. We obtain
superspace models were largely inconclusive. Some indiesults qualitatively similar to those obtained in loop quan-
cated singularity avoidance, others did not, but no insightdum cosmology: the Hamiltonian constraint acts like a differ-
emerged as general and definitive in the sense of transcen@ice operator on the space of states, and the spectrum of the
ing the model studied. inverse scale factor has an upper bound.

After the development of the Ashtekézonnection vari- This paper is organized as follows: The next section in-
able Hamiltonian formulation (“connection dynamicsy,  troduces the classical theory and a set of basic variables for

many of the questions studied in the ADM formulation were FRW geometrodynamics. Section Ill describes the quantiza-
reexamined, including the general canonical quantum gravit§ion procedure and discusses the volume, inverse scale fac-
program(for reviews sed5,6]). The different classical vari- tor, and Hamiltonian constraint operators. Section IV con-
ables led to the development of a non-Sclinger represen- tains a discussion of the results with the singularity
tation program based on holonomy variakdsop quantum  fesolution question in mind.
gravity”). Recently results from this program were applied

Il. CLASSICAL THEORY

*Email address: husain@math.unb.ca The canogical Hamiltonian variables in geometrodynam-
"Email address: owinkler@perimeterinstitute.ca ics are (1ap,72"), where the configuration variablg,, is

0556-2821/2004/68)/0840167)/$22.50 69 084016-1 ©2004 The American Physical Society



V. HUSAIN AND O. WINKLER PHYSICAL REVIEW D 69, 084016 (2004

the metric on a spatial 3-surface, and the conjugate momen-

tum variabler2® is a function of the surface’s extrinsic cur- 0= SWGNZXdX/\dP: 87.,GNdX/\d(2X P. (8
vature. In terms of these variables, the vacuum Hamiltonian
and spatial diffeomorphism constraints are Thus the new momentum ip=2xP, for which {x,p}

=87Gy. (Both coordinates<x and p now have dimension
1 /(. _ 1. length) Note that in this parametrization, the poit0 is
H= —( 3 — —772) — JERzo (1) included to give the full real line as the configuration space.
JG 2 This amounts to an extension of the original parametrization
to include the degenerate metric wift) =0. (This feature
C.=D.7°=0 is also present in the connection-triad variables, where in-
a by ' (2) T . . .
vertibility of the triad is not a requirement.
o The Hamiltonian constraintl) as a function of X,p) is
whereq=detq,,, 7= 72°q,,, andR is the Ricci scalar of
2 2
Qab - 3p 3p
For the flat FRW model a reduced Hamiltonian theory - §?|X|:_ 8 x| ™
may be obtained by the ansatz
Note that this constraint is now quite different in form than
_ ~ab_ ab the one in the connection-triad variables, althoughxthiari-
Gap=B(V)eap,  m7=P(t)e™, ® able may be regarded as a “triad.” The reason for this is that
the new momentum is a product of the metric and extrinsic
~. curvature variables, and this is quite unlike the connection
sity weight on 72" is obtained using this fiducial metric. variableA made of the triad connectidh and extrinsic cur-
Unlike in general relativity whereB(t) is dimensionless vatureK asA=TI"+K. (It is this connectior that is essen-
since it is a metric variable, we will take it to have dimensiontjal for formulating the loop representation through holono-
length squaréwhich means that the spatial coordinates aremies[5,6].)
dimensionless The conjugate momentur(t) is then di- We now introduce an algebra of classical observables and
mensionless in order that the symplectic form write quantities of physical interest as functions of these
variables. Their form is motivated by the holonomy observ-
ables used for quantization in the loop quantum gravity pro-
= 3Gy, dB/AdP (4)  gram. We use as the fundamental variablesd

. . - . U,(p):=expliyp/L), 8
has dimensions of actiofin c=1 unitg. The phase space
topology is that of a particle on the half ling," X R, since  wherey is a real parameter aridfixes the(arbitrary unit of
B(t)>0 in this parametrization. The standard FRW scalelength. The parametey is necessary in order to separate

wheree,, is the flat Euclidean metric diég,1,1). The den-

w

factor isa(t) = yB(t). momentum points in phase spa@eg. fixing y/L=1 say,
The Hamiltonian constraint is gives the same value &f for p andp+2n). This variable
may be viewed as momentum analog of the holonomy vari-
3 able of loop quantum gravity.
H=-— EPZ\/E (5 The pair[x,U,(p)] has the Poisson bracket algebra
iy
and the diffeomorphism constraiij vanishes identically. It X, U(p)}=(87Cn)1~U,(P). 9

is interesting to note that this Hamiltonian constraint is iden-

tical in form to that obtained in the connection variadl€&s  This is the basic algebra which will be taken over to the
To facilitate quantization, however, it is useful to make agyantum theory.

canonical transformation that lifts the half line restriction. " other quantities of interest are the volume, which up to a

We proceed in two steps. The first is to extend the classicghtiplicative constant is

configuration space to include the singulamgyt) =0. This

step is essential for addressing the question of singularity V(t)=B(t)%¥%=|x|?, (10)

resolution for without it there is “no classical singularity to

avoid” in the quantum theory(This, for example, is done— and inverse powers of the scale factft). The latter has

more or less unconsciously—in the familiar quantization ofproven useful in determining whether there is “singularity

the hydrogen atom by the choice of Hilbert spac€Ry),  avoidance” in a quantum theory7]. It is possible to write

even though the classical configuration space is dhly)  these observables, and the Hamiltonian constraint using our

The second step is to reparametrize the configuration varihoice of fundamental variablg¢s,U (p)].

able such that its domain is the real line. The standard FRW scale factor is
This is done by introducing new variables,p) by writ-
ing x?=B. The symplectic form becomes a(t)=yB(t)=|x. (12)
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Using the method introduced [10], inverse powers of the contain the smallest number bf factors. However, we will
scale factor may be defined classically either via the bracketriefly comment on other choices.
—1g\yn —_11-1 3n
UV v 'UV}_UV {|X| ’U?’} I1l. QUANTUM THEORY
; Y - To construct the quantum theory for the classical system
=i(87Gy)—3nsgnx)|x[3""t, (12 . qua 'y Y
(8 N)L 99 (12 described above, we will proceed in analogy to the procedure
used in loop quantum gravity. The first step is to choose an

or more simply by inverse powers of the volume observableg|gepra of classical functions that is represented as quantum

However, the latter definition cannot be carried over to thegnfiguration operators. We take here the algebra generated
quantum theory since, as we see will below, the volume oppy the functions

erator turns out to have zero as an eigenvalue, so negative

powers of it are not densely defined. Therefore the somewhat W(\)=eML, (16)
indirect definition(12), with n>0 will be useful in studying

the approach to the singularity in the quantum theory. Thevhere\ e R. It consists of all functions of the form
requirement that the power of on the right hand side be

negative means that<1/3. Thus we need €n<1/3 in n _
order to obtain a sequence of inverse powers of the scale f(x)= >, cje™¥t, (17)
factor in terms of the basic variables. The choite 1/6 =1
gives with ¢;eC and their limits with respect to the supremum
sgr(x) oL norm. This algebra is known as the algebra of almost peri-
=-— Ufl{vlfﬁuy}, (13) odic functions ovelR and we denote it bAP(R).
\/m (87Gn)y 7 It is well known thatAP(R) is naturally isomorphic to

C(ﬁBohr), the algebra of continuous functions on the so-
called Bohr compactification oR [11]. As the name sug-

1 4 4 gests,Rgonr IS @ compact group which can be obtained as the
—= ( —) (U;l{vl"‘,uy})“_ (14  dual group ofly;sc,, the real line endowed with the discrete

Xl 1 3(87G)»L topology. This suggests that taking(Rgon,,duo), Where

From this it is clear that powers of Poisson bracket in Eq/o iS Haar measure ofig,p,, as the Hilbert space for our
(12) may be used as a starting point for defining a large clas§€0rY is a viable optionThis is the decisive point where we
of operators for inverse powers of the scale factor. It is ofdepart from the traditional approach in geometrodynamics,
interest to see whether these all lead to qualitatively similafVhere ghe Hilbert space is the conventional Sciinger
behavior concerning the quantum nature of the big bang sirsPace E(R,dx). Once we adopt this new choice, basis states
gularity. in our Hilbert space are given by

The Hamiltonian constraint can be written as a function of
the basic variables by using the relatic8) for the inverse
scale factor as follows:

andn=1/4 gives

|)\>E|ei)\x/L>, )\ER, (18)

with the inner product

2 3L2
P___= 2(U Y VYU H2 (15 (mIN)=8,. (19

3
N 8 X~ 287Gy 22"

. . . . This representation has been discussed in some mathematical
Note here that there is the alternative choice of using Eqdetail iFrjl [12], and also in[13] where it is applied to the

(14) 1o define the Hamiltonian constraint. However, this uantization of a particle. Notice the difference from the
leads to a more complicated form due to the larger number of P - . :
U factors. standard quantum mechanics of a particle on the real line,

It is of course also possible to write the Hamiltonian Con_where the right hand side is given instead by a delta function

straint in other classically equivalent ways. One alternative i??(ﬁr;t)i\czr.l -Is:hgc;e?stutrr?eIsret;?clﬁaet:b{f/ittr(\) ttr?ee g?scértqut ttc?eolcc:) on-
to substitute|x|/x? rather than directly using the inverse 9 P hology,

scale factor 1k| from Egs.(13) or (14). These choices will ¥|v(:]rl12h in turn stems from the choice of the algebra of func-
clearly lead to inequivalent operators in the quantum theory = _°

since the number of factors & are different. As for the The action of the configuration operat&h{\) is defined
inverse scale factor, it is generally useful to also study variby

ous choices for the Hamiltonian constraint in order to iden- R . _

tify the main features that are to be associated with “singu- W) | ) =™ ) =™ ). (20)

larity resolution” in the quantum theory. ) . )
In the fo”owing, we focus primar”y on the Simp'est or- Itis Stra|ghtf0rward to Venfy that these OperatOI’S are Weakly

dering of the Hamiltonian constraint, and the square of théontinuous in\, which procures the existence of a self-
definition(13) for the inverse scale factor, since both of theseadjoint operatox, acting on basis states according to
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X| ) =Ll ). (1) i e e
4= g2tV (VU OV )
P
The next step is to construct the operators corresponding to 1
the classical momentum functions, = €' "L Their action — RV VR VEL TAVEL
on the basis states is fixed by the definition of xheperator 2mlp
and the requirement thgt the _commutator betweamd U, _\"/1/6071\"/1/60_’_\"/1/3”#)
reflects the corresponding Poisson bradRetbetweenx and
U, . With the definition 2 o 1o
= W—lé(lu—ll—ZI/xl =15+ [ )
U lwy=lp=7), (22 >
= \/W—lg(MI”Z—lu—ll”z)zlm. 27)

the commutator is

This result reveals some important properties of the eigen-
values. First, they are always positive or at most zero, as
should be the case. Second and more importantly, the spec-
Making now the standard commutator-Poisson bracket cortrum is clearly bounded from above. Fr|— the eigen-
respondencg, ]« —i#{,}, gives using Eq(9) the relation  values approach 0, as would be expected from the behavior
of 1/|x| for large |x|. Moreover, the eigenvalue of the state
iy |w=0) corresponding to the classical singularity|Q)
—yL=ih(87CN) T, (249 =[x]|0)=0) is y2/7I2, and this is the largest possible ei-
genvalue.(This is notably different from the results 9],
where the eigenvalue of the inverse scale operator for the
which fixes the length. to L= \87lp. This shows explicitly  state|=0) is 0, and the maximal eigenvalue is obtained
how the eigenvalues of arise in Planck units upon quanti- instead for the stathu=1). Although there are no principal
zation. reasons why this could not happen in the quantum regime, it
Obviously, Uy is unitary; however, it is not weakly con- S€eéms somewhat unnatural from the classical point of view.
tinuous with respect toy. As a consequencehere is no |t should be pointed out, however, that this result is obtained
momentum operator in this representation stark contrast I our formalism for a different choice of operator ordering.
to the Schrdinger quantization. With the basic quantum op- In summary, this new quantization of the inverse scgle
erators now at our disposal, we are in a position to construd@ctor in geometrodynamics mimics the expected classical

the inverse scale factor operator and investigate its spectrurR€havior for large values(t), and departs significantly from
the divergence in the standard quantization near the classical

singularitya(t)=0. In this sense, the quantization resolves
A. Volume and inverse scale factor the singularity. This “resolution,” however, is so far only
kinematical, since we have not investigated the quantum dy-
namics. It is conceivable that the quantum dynamics breaks
down at the statf)), in which case it would be hard to claim
~ a satisfactory resolution of the singularity. As the dynamics is
Viwy= (N8l )% | ). (29 encoded in the Hamiltonian constraint, we now turn our at-
tention to its operator realization.
The operators corresponding tbandV can be used to ob-
tain an operator for the inverse scale factor. One way to do
this is to use the square of the expression in @§) with
y=1. The resulting operator is As discussed already in the classical section, the Hamil-
tonian can be written in many different, classically equiva-
lent forms. The one we will focus on in this section is

[x,0,]=—-~L0,. (23

The operator for the volum¥ is provided directly by the
operatorx defined in Eq(21). We have

B. Hamiltonian constraint

i 1
W:ﬁg(u*[v”ﬁ,up% (26) 3 p?

H:—gm, (28)

The key question is whether this operator is unbounded as in

standard quantum cosmology, where its eigenvalues divergas this is in some sense the simplest one, and the spectrum of
when approaching the quantum state corresponding to the inverse scale operator is already known.pAdoes not

=0, or whether it is bounded, indicating (&inematical  exist as an operator in our quantum representation, we have
resolution of the classical singularity. To decide this we cal-to choose an alternative way to represpfitas an operator.
culate its eigenvalue on a basis stpie: One way to do this is motivated by the classical expression
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1
p=L?lim 7(2—U7—U;1). (29 <wl=§ ). (35)

y—0

A physical interpretation of this expression is obtained by ) ) . )

settingy=1¢ /L pnys, WhereL i the characteristic size of Notice that, whlle th_e sum is continuous as it runs over every
the system under consideration ahd is a fundamental réal number, its action on an elementbis well defined by
length scale(Note that a Hamiltonian naturally introduces a construction. The constraint equation—symbolically written
scaleL ppys for a physical system.The limit then suggests 23S

that the “point” form of the momentum is recoverable in the

casel ppys> e .

For quantum cosmology these considerations migan H[y)=0, (36)
=lp andy=Ip/Lppys, and lead to a Hamiltonian constraint
operator is now interpreted as an equation in the dual space,
A2 Lgiog)
Ty (Uyrl =25 (yIHT=0. (37

3 . N - PN
= —Z(Uy+U;1—2)(U*1[V1’6,U])2, (30)  Using the form of a general element of the dual sp&®
2y and the(dualized action of the(dual) Hamiltonian on(dual

- . basis elements, we can derive a relation for the coefficients
where a specific operator ordering has been chosen. The a&zﬂ).

tion of H, on a basis state is given by

/18 W+ p(p+y) =2V w) p(p) + V(= y) P(pn—y) =0.
a 38
)= ol | 152 %9

X (|u+yy+ = y)—2|u)) What is the meaning of this equation and in what sense does

it encode the quantum dynamics? First of all, it determines
the coefficients for those dual states that are physical. As in
= _2I P (lut )+ u—7)=2|m). @D the classical theory solutions to the constraint equation rep-
4 resent classical spacetimes, these physical dual states can be
On the eigenstat®) of volume with zero eigenvalue, which interpreted as representing “quantum spacetimes.”

is the classical singularity, we have The difference equatio(88) gives physical states that are

linear combinations of a countable number of components of
the form

. V18

H,I0)=—Te(l7)+]—»)—2|0)), (32

’ Yptny)|pt+ny), (39

1 [ 2 - B

—10Y= \/—|0). (33) where vy is fixed at the Planck scaleyélp/Lphy_s 1) anq

x| 7l neZ. As each component corresponds to a different eigen-

value for the volume and scale factor, it can be interpreted as
These equations represent the effects of quantization on thRe quantum state representing the Universe at the “time”
classical singularity. In order to probe the dynamical part, + y. A solution of the Hamiltonian constraint therefore
further we must solve the quantum constraint equation thatepresents a linear combination of FRW universes specified
encodes time evolution. at certain discrete volumes, or equivalently, at discrete times.

As is well known in the theory of constrained systems, |t is in this sense that time evolution is “discrete with fun-

normalizable solutions of the quantum constraints do not ligggmental time step”. It is also clear that this “discrete
in the kinematical Hilbert spacé( but rather in a larger eyolution” does not represent the state of a single universe at
spaceC”. This space can be obtained as the dual space of thgifferent discrete times, since the term “single universe” has
dense subspacgof X, which is spanned by all elements of no meaning here. Rather a “discrete solution” of the Hamil-

the form tonian constraint[i.e., one satisfying Eq(38)], gives the
n amplitudes that the physical universe is in one or other of the
2 ) i) (34) discretely separated components of the physical state.
= VU7 The statg(0| corresponding to the classical singularity is

contained in only one specific “quantum spacetimég,g.,
A general element of * can thus be written as the solution of the Hamiltonian constrainEurthermore, in

084016-5



V. HUSAIN AND O. WINKLER PHYSICAL REVIEW D 69, 084016 (2004

that one case we can see that the system evolves rigBiohr compactification is applicable to other mini-superspace
through the singularity without encountering any problemsmodels, since in all such models the phase space variables
since the componenk(0) can be computed in terms of the are functions of only a time coordinate. It is also clear that
components/(y) and (—v). In all other physical states, this applicability is independent of whether the classical
the state(0| does not occur, and so in a sense one can saghase space variables are metric-extrinsic curvature or
that the discrete evolution “jumps” over the singularity if the connection-triad. The main difference between the variables
state contains components with both positive and negativgrises in the form and action of the Hamiltonian constraint.
values ofu. In such cases there is an instance of smallest but | the flat FRW case we have discussed, the Ricci scalar

finite volume. term in the Hamiltonian constraint vanishes. Thus the action

From these observations one can perhaps conclude thgf \he constraint as a difference operator is due only to the
dynamically the singularity has been resolved. A dynam'c‘f"kinetic term. In other mini-superspace models the Ricci sca-

non-resolution of the_singularity mig_ht have occurred had Gar term, which is a purely configuration variable, will have
turned out that the difference equations have no solutions Irtuaon—trivial action on the basis states. However, in the Bohr

they contain the/(0) component, or if they contain compo- representation, this action is multiplicative. Thus it appears

nents with both positive and negatiyein the sum(35). that in other mini-superspace models the “difference opera-
Finally, it is interesting to note that for our representation, " perspa . . . Pe
tor” feature of the Hamiltonian constraint will survive. Simi-

Of.H ' dth_e stat? at tthte ctlr?ssmal lstlngrglarﬁ(O) can bﬁ %eter- larly it appears that an inverse scale factor operator is defin-
mined in contrast to the results i9]. However, had we able using volume antl operators, and that it is likely to

chosen to write the. classical Ham|lto.n|an using Bk in- have a spectrum bounded above. For models where the phase
stead of Eq(13), which amounts to using double the number . . ) .
space is more than two dimensional, the new representation

of U operators, we would have ended up with the same re-

sult: 4(0) cannot be determined from the difference equa_can clearly be used for each pair of phase space variables.

tion, but a solution is still possible as it turns out tligdty) is Egtgnsmn beyond mlnl-superspama,lantum mechaniggo
then given in terms ofs(— ). This shows the significant midi-superspacéquantum field theor)ymodels, such as the
differences that can arise due to quantization ambiguitiech’:’V(_jy cosmology, W‘?“I‘f be of much inter¢a#]. _
Ultimately, only physical predictions and comparison with ~Singularity resolution” appears to consist of two main

mine the “right” choice. matical feature is the spectrum of the operator associated

with a curvature scalafor other relevant classical observ-
ablg that diverges at a curvature singularity. If the spectrum
IV. CONCLUSIONS AND DISCUSSION is bounded, the singularity may be considered kinematically
Our main result is that there is an alternative to the Schro'€Solved. Itis important to identify the largest eigenvalue and
dinger quantization of the FRW cosmology in the standardcorresponding eigenstate of such an operator,_smce FhIS is the
ADM geometrodynamical variables. This quantization leads closest” the quantum theory can get to the singularity. The
to conclusions qualitatively similar to those obtained in loopdynamical feature of singularity resolution concerns the ac-
quantum C05m0|ogy Starting from the connection-triad Vari_tion of the Hamiltonian constraint on the state of |argeSt cur-
ables: (i) the Hamiltonian constraint acts like a difference vature: this could lead either to no solution of the constraint
operator, andii) the inverse scale factor can be representedor zero or negative values gf, or to a well defined “evo-
as a densely defined operator. Thiuss the representation lution” through zero to negative values @f. The former
space and the realizations of the basic observables rathemay be taken as an indication of the breakdown of quantum
than the nature of the classical variablt#st are responsible evolution, and hence a dynamical non-resolution of the sin-
for the similar conclusions for this model. gularity, regardless of the boundedness of the curvature op-
To what extent is the quantization we have presented diferator.
ferent from the one employed in loop quantum cosmology? An alternative viewpoint is that the kinematical vs dy-
The differences at the classical level are clear: the phasgamical views are artificial in that the question of singularity
space variablesx(p) are not the standard mini-superspaceresolution is relevant only for the physical state space with a
variables that arise via standard reduction from theye| defined physical inner product. The question then be-
connection-triad canon_lcal variables, as a comparison Witgmes whether there are any physical states for which the
[A7,8] shows. The key difference at the quantum level is that, ,nature operator spectrum is unbounded. This appears
U, is not the holonomy operatoassociated with the more compelling, but it has not been addressed here, or in
Ashtekar-Sen connection for the FRW model. Ratherthe the context of loop quantum cosmology.
we use is a standard translation generator whose realization

on the Hilbert spacé_z(]BTBohr,dMo) is applicable to any

classical theory, as has been discussefili]. Thus inter- ACKNOWLEDGMENTS
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