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Retarded coordinates based at a world line and the motion of a small black hole
in an external universe
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In the first part of this article I present a system of retarded coordinates based at an arbitrary world line of
an arbitrary curved spacetime. The retarded-time coordinate labels forward light cones that are centered on the
world line, the radial coordinate is an affine parameter on the null generators of these light cones, and the
angular coordinates are constant on each of these generators. The spacetime metric in the retarded coordinates
is displayed as an expansion in powers of the radial coordinate and expressed in terms of the world line’s
acceleration vector and the spacetime’s Riemann tensor evaluated at the world line. The formalism is illustrated
in two examples, the first involving a comoving world line of a spatially flat cosmology, the other featuring an
observer in circular motion in the Schwarzschild spacetime. The main application of the formalism is presented
in the second part of the article, in which I consider the motion of a small black hole in an empty external
universe. I use the retarded coordinates to construct the metric of the small black hole perturbed by the tidal
field of the external universe, and the metric of the external universe perturbed by the presence of the black
hole. Matching these metrics produces the MiSaTaQuWa equations of motion for the small black hole.

DOI: 10.1103/PhysRevD.69.084007 PACS number~s!: 04.20.2q, 04.25.2g, 04.40.2b, 04.70.2s
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I. INTRODUCTION

In the first part of this article I present a system of r
tarded coordinates (u,r ,u,f) based at an arbitrary world lin
g of an arbitrary spacetime with metricgab . The coordi-
nates are adapted to the forward light cone of each pointz(t)
of the world line (t is the proper-time parameter ong). The
retarded-time coordinateu is constant on each light cone
and it agrees witht at the cone’s apex. The radial coordina
r is an affine parameter on the cone’s null generators, an
gives a measure of distance away from the world line. T
angular coordinatesuA5(u,f) are constant on each of thes
generators.

This formalism complements a line of research that w
initiated by Synge@1# and pursued by Ellis and his collabo
rators @2–7# in their work on observational cosmolog
While the central ideas exploited here are the same as
Synge and Ellis, my implementation is substantially diffe
ent: While Synge and Ellis sought definitions for their optic
or observational coordinates that apply to large regions of
spacetime, my considerations are limited to a small nei
borhood of the world line; and while Ellis favored a co
struction based on past light cones~because of the cosmo
logical context in which information atg is gathered from
the past!, here the preference is given to future light cone

The introduction of retarded coordinates is motivated
the desire to construct solutions of wave equations for m
less fields that are produced by pointlike sources moving
the world line. The retarded coordinates naturally incorpor
the causal relation that exists between the source and
field, and for this reason the solution takes a simple exp
form ~in the neighborhood in which the coordinates are
fined!. The point of view developed here, therefore, is opp
site to the cosmological view developed by Ellis: hereg is
the cause and the effect is propagated along forward l
cones.
0556-2821/2004/69~8!/084007~21!/$22.50 69 0840
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A quasi-Cartesian version of the retarded coordinate
introduced in Sec. II B, after reviewing some necessary g
metrical elements~a tetrad transported ong, Synge’s world
function, and the bitensor of parallel transport! in Sec. II A.
In Sec. II C, I explore the significance ofr as an affine pa-
rameter on the generators of the light cones, and describe
vectorka that is tangent to the congruence of generators. T
metric in retarded coordinates is gradually constructed
Secs. II D through II F, and its quasi-Cartesian form is d
played in Eqs.~2.39!–~2.41!. In Sec. II G, I carry out a trans
formation to angular coordinates, and this form of the me
is displayed in Eqs.~2.55!–~2.58!. In Sec. II H, I present an
important simplification of the formalism that occurs wheng
is a geodesic and the Ricci tensor vanishes on the world l
Two examples are worked out in Secs. II I and II J: firs
apply the formalism to a comoving world line of a spatial
flat cosmology, and then I examine the metric near an
server in circular motion in the Schwarzschild spacetime

The main application of the formalism is presented in t
second part of the paper. Here I consider the motion o
nonrotating black hole of small massm in a background
spacetime with metricgab ; the metric is assumed to be
solution to the Einstein field equations in vacuum. By e
ploying the powerful method of matched asymptotic expa
sions ~see, for example, Ref.@8# for a discussion!, I derive
equations of motion for the black hole. Ifzm(t) are the para-
metric relations describing the black hole’s world line,um

5dzm/dt is the velocity vector, andam5Dum/dt the accel-
eration vector, then the equations of motion take the form

am52
1

2
~gmn1umun!~2hnlr

tail 2hlrn
tail !ulur, ~1.1!

where
©2004 The American Physical Society07-1
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hmnl
tail 54mE

2`

t2

¹lS Gmnm8n82
1

2
gmnG rm8n8

r D ~t,t8!

3um8un8dt8 ~1.2!

is an integration over the past portion of the world line; t
integral involves the retarded Green’s functio
Gmnm8n8„z(t),z(t8)… for the metric perturbation@9# associ-
ated with the small black hole, and it is cut off att85t2

[t201 to avoid the singular behavior of the Green’s fun
tion at coincidence.

Equation~1.1! is not new, and the method of derivatio
presented here also is not new; they both originate in a 1
paper by Mino, Sasaki, and Tanaka@10#. @The equations
were later rederived by Quinn and Wald@11#, and they are
now known as the MiSaTaQuWa equations of motion.# The
method of matched asymptotic expansions was first use
establish that in the limitm→0, the motion of a black hole is
geodesic in the background spacetime@12–14#. Using this
approach, Mino, Sasaki, and Tanaka~see also Ref.@15#! were
able to compute the first-order correction to this result, a
showed that at orderm, the motion is accelerated and go
erned by Eq.~1.1!. Their derivation, however, did not rely o
a specific choice of coordinates, and it left many details
scured. By adopting retarded coordinates, these details
be revealed and the matching procedure clarified. This
my aim here: to provide a clearer, more explicit impleme
tation of the matching procedure employed by Mino, Sas
and Tanaka.

The method of matched asymptotic expansions is
plained in Sec. III A. Essentially, the metric of the sma
black hole perturbed by the tidal gravitational field of t
external Universe is matched to the metric of the exter
Universe perturbed by the black hole; ensuring that this m
ric is a valid solution to the vacuum Einstein field equatio
determines the motion of the black hole. The perturbed m
ric of the small black hole is constructed in aninternal zone
in terms of internal retarded coordinates (ū, t̄ ,ūA); this is
carried out in Sec. III B. The perturbed metric of the exter
Universe is constructed in anexternal zonein terms of ex-
ternal retarded coordinates (u,r ,uA); this is carried out in
Sec. III C. The matching of the two metrics is performed in
buffer zonethat overlaps with both the internal and extern
zones; this involves a transformation from the external to
internal coordinates that is explicitly worked out in Append
C. The matching is carried out in Sec. III D, where we s
that it does indeed produce Eq.~1.1!.

This concludes the summary of the results contained
this paper. Various technical details are relegated to App
dixes A and B. Throughout the paper I work in geometriz
units (G5c51) and with the conventions of Misne
Thorne, and Wheeler@16#. Other applications of the retarde
coordinates~including the fields produced by point particle
and their motion in curved spacetime! are featured in a recen
review article@17#.

II. RETARDED COORDINATES

A. Geometrical elements

To construct the retarded coordinates we must first in
duce some geometrical elements on the world lineg at
08400
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which the coordinates are based. The world line is descri
by relationszm(t) with t denoting proper time, its normal
ized tangent vector isum5dzm/dt, and its acceleration vec
tor is am5Dum/dt with D/dt denoting covariant differen-
tiation along the world line. Throughout we use Gre
indicesm, n, l, r, etc. to refer to tensor fields defined, o
evaluated, on the world line.

We install ong an orthonormal tetrad that consists of th
tangent vectorum and three spatial vectorsea

m . These are
transported on the world line according to

Dea
m

dt
5aaum1va

beb
m , ~2.1!

whereaa(t)5amea
m are the frame components of the acc

eration vector andvab(t)52vba(t) is a prescribed rotation
tensor. Settingvab50 would make the triad Fermi-Walke
transported on the world line, and in many applications t
would be a sensible choice. We nevertheless allow the sp
vectors to rotate as they are transported on the world l
this makes the formalism more general, and we will need
flexibility in Sec. III of the paper. It is easy to check that E
~2.1! is compatible with the requirement that the tetr
(um,ea

m) be orthonormal everywhere ong.
From the tetrad ong we define a dual tetrad (em

0 ,em
a ) with

the relations

em
0 52um , em

a 5dabgmneb
n . ~2.2!

The dual vectorsem
a satisfy a transport law that is very sim

lar to Eq.~2.1!. The tetrad and its dual give rise to the com
pleteness relations

gmn52umun1dabea
meb

n ,

gmn52em
0 en

01dabem
a en

b ~2.3!

for the metric and its inverse evaluated on the world line
The retarded coordinates are constructed with the hel

a null geodesic that links a given pointx to the world line.
This geodesic must be unique, and we thus restrictx to be
within the normal convex neighborhood ofg. We denote by
b the unique, future-directed null geodesic that goes fr
the world line tox, and x8[z(u) is the point at whichb
intersects the world line;u is the value of the proper-time
parameter at this point. To tensors atx we shall assign the
Greek indicesa, b, g, d, etc.; to tensors atx8 we shall
assign the indicesa8, b8, g8, d8, and so on.

From the tetrad (ua8,ea
a8) at x8 we construct another tet

rad (e0
a ,ea

a) at x by parallel transport onb. By raising the
frame index and lowering the vectorial index, we obtain a
a dual tetrad atx: ea

052gabe0
b and ea

a5dabgabeb
b . The

metric atx can then be expressed as

gab52ea
0eb

01dabea
aeb

b , ~2.4!

and the parallel propagator@1# ~also known as the bivector o
geodetic parallel displacement@18#! from x8 to x is given by
7-2



l

c
r-
is

to

va

n

o

at

.

is
t

is-
e

st

c.

igh-

es
ts
a

RETARDED COORDINATES BASED AT A WORLD LINE . . . PHYSICAL REVIEW D 69, 084007 ~2004!
g a8
a

~x,x8!52e0
aua81ea

aea8
a ,

g a
a8~x8,x!5ua8ea

01ea
a8ea

a . ~2.5!

This is defined such that ifAa is a vector that is paralle
transported onb, then Aa(x)5g a8

a (x,x8)Aa8(x8) and

Aa8(x8)5g a
a8(x8,x)Aa(x). Similarly, if pa is a parallel-

transported dual vector, thenpa(x)5g a
a8(x8,x)pa8(x8) and

pa8(x8)5g a8
a (x,x8)pa(x).

The last ingredient we shall need is Synge’s world fun
tion s(z,x) @1# ~also known as the biscalar of geodetic inte
val @18#!. This is defined as half the squared geodesic d
tance between the world-line pointz(t) and a neighboring
point x. The derivative of the world function with respect
zm is denotedsm(z,x); this is a vector atz ~and a scalar atx)
that is known to be tangent to the geodesic linkingz andx.
The derivative ofs(z,x) with respect toxa is denoted
sa(z,x); this vector atx ~and scalar atz) is also tangent to
the geodesic. We use a similar notation for multiple deri
tives; for example,sma[¹a¹ms and sab[¹b¹as, where
¹a denotes a covariant derivative atx while ¹m indicates
covariant differentiation atz.

The vector2sm(z,x) can be thought of as a separatio
vector betweenx and z, pointing from the world line tox.
Whenx is close tog, 2sm(z,x) is small and can be used t
express bitensors in terms of ordinary tensors atz @1,18#. For
example,

smn5gmn2
1

3
Rmlnrslsr1•••, ~2.6!

sma52g a
n S gmn1

1

6
Rmlnrslsr1••• D , ~2.7!

sab5g a
m g b

n S gmn2
1

3
Rmlnrslsr1••• D , ~2.8!

whereg a
m [g a

m (z,x) is the parallel propagator andRmlnr is
the Riemann tensor evaluated on the world line.

B. Definition of the retarded coordinates

The quasi-Cartesian version of the retarded coordin
are defined by

x̂05u, x̂a52ea8
a

~x8!sa8~x,x8!, s~x,x8!50.
~2.9!

The last statement indicates thatx8[z(u) and x are linked
by a null geodesic.1

From the fact thatsa8 is a null vector we obtain

1A similar definition can be given for Fermi normal coordinat
@1,19#. Herex is linked tog by a spacelike geodesic that intersec
the world line orthogonally. The intersection point is such th
sm(x,z)um50, and this replaces the last condition of Eq.~2.9!. The
other relations are unchanged.
08400
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r[~dabx̂
ax̂b!1/25ua8s

a8, ~2.10!

and r is a positive quantity by virtue of the fact thatb is a
future-directed null geodesic—this makessa8 past-directed.
In flat spacetime,sa852(x2x8)a, and in a Lorentz frame
that is momentarily comoving with the world line,r 5t2t8
.0; with the speed of light set equal to unity,r is also the
spatial distance betweenx8 andx as measured in this frame
This gives us an interpretation ofr 5ua8s

a8 as aretarded
distancebetweenx and the world line, and we shall keep th
interpretation even in curved spacetime. The claim thar
gives a measure of distance betweenx8 and x will be sub-
stantiated in Sec. II C.

Another consequence of Eq.~2.9! is that

sa852r ~ua81Vaea
a8!, ~2.11!

where Va[ x̂a/r is a frame vector that satisfiesdabV
aVb

51.
A straightforward calculation reveals that under a d

placement of the pointx, the retarded coordinates chang
according to

du52kadxa, ~2.12!

dx̂a52~raa2v b
a x̂b1ea8

a s b8
a8 ub8!du2ea8

a s b
a8dxb,

~2.13!

whereka[sa /r is a future-directed null vector atx that is
tangent to the geodesicb. To obtain these results we mu
keep in mind that a displacement ofx typically induces a
simultaneous displacement ofx8, because the new pointsx
1dx and x81dx8 must also be linked by a null geodesi
We therefore have 05s(x1dx,x81dx8)5sadxa

1sa8dxa8, and Eq.~2.12! follows from the fact that a dis-
placement along the world line is described bydxa8

5ua8du.

C. Retarded distance; null vector field

If we keepx8 linked tox by the relations(x,x8)50, then

r ~x!5sa8~x,x8!ua8~x8! ~2.14!

can be viewed as an ordinary scalar field defined in a ne
borhood ofg. We can compute the gradient ofr by finding
how r changes under a displacement ofx ~which again in-
duces a displacement ofx8). The result is

]br 52~sa8a
a81sa8b8u

a8ub8!kb1sa8bua8.
~2.15!

Similarly, we can view

t

7-3
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ka~x!5
sa~x,x8!

r ~x!
~2.16!

as an ordinary vector field, which is tangent to the cong
ence of null geodesics that emanate fromx8. It is easy to
check that this vector satisfies the identities

sabkb5ka , sa8bkb5
sa8
r

, ~2.17!

from which we also obtainsa8bua8kb51. From this last
result and Eq.~2.15! we deduce the important relation

ka]ar 51. ~2.18!

In addition, combining the general statementsa

52g a8
a sa8 with Eq. ~2.11! gives

ka5g a8
a

~ua81Vaea
a8!; ~2.19!

the vector atx is therefore obtained by parallel transport

ua81Vaea
a8 on b. From this and Eq.~2.4! we get the alter-

native expression

ka5e0
a1Vaea

a , ~2.20!

which confirms thatka is a future-directed null vector field
~recall thatVa5 x̂a/r is a unit frame vector!.

The covariant derivative ofka can be computed by find
ing how the vector changes under a displacement ofx. ~It is
in fact easier to first calculate howrka changes, and then
substitute our previous expression for]br .! The result is

rka;b5sab2kasbg8u
g82kbsag8u

g8

1~sa8a
a81sa8b8u

a8ub8!kakb . ~2.21!

From this we infer thatka satisfies the geodesic equation
affine-parameter form,k ;b

a kb50, and Eq.~2.18! informs us
that the affine parameter is in factr. A displacement along a
member of the congruence is therefore described bydxa

5kadr. Specializing to retarded coordinates, and using E
~2.12!, ~2.13!, and ~2.17!, we find that this statement be
comes du50 and dx̂a5( x̂a/r )dr, which integrate tou

5const andx̂a5rVa, respectively, withVa representing a
constant unit vector. We have found that the congruenc
null geodesics emanating fromx8 is described by

u5const, x̂a5rVa~uA! ~2.22!

in the retarded coordinates. Here, the two anglesuA (A
51,2) serve to parametrize the unit vectorVa, which is
independent ofr.

Equation ~2.21! also implies that the expansion of th
congruence is given by

Q5k ;a
a 5

s a
a 22

r
. ~2.23!
08400
-
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Using the expansion fors a
a given by Eq.~2.8!, we find that

this becomesrQ522 1
3 Ra8b8s

a8sb81O(r 3), or

rQ522
1

3
r 2~R0012R0aVa1RabV

aVb!1O~r 3!

~2.24!

after using Eq. ~2.11!. Here, R005Ra8b8u
a8ub8, R0a

5Ra8b8u
a8ea

b8 , andRab5Ra8b8ea
a8eb

b8 are the frame com-
ponents of the Ricci tensor evaluated atx8. This result con-
firms that the congruence is singular atr 50, becauseQ
diverges as 2/r in this limit; the caustic coincides with the
point x8.

Finally, we infer from Eq.~2.21! that ka is hypersurface
orthogonal. This, together with the property thatka satisfies
the geodesic equation in affine-parameter form, implies t
there exists a scalar fieldu(x) such that

ka52]au. ~2.25!

This scalar field was already identified in Eq.~2.12!: it is
numerically equal to the proper-time parameter of the wo
line atx8. We may thus conclude that the geodesics to wh
ka is tangent are the generators of the null coneu5const. As
Eq. ~2.22! indicates, a specific generator is selected
choosing a directionVa ~which can be parametrized by tw
anglesuA), and r is an affine parameter on each generat
The geometrical meaning of the retarded coordinates is n
completely clear, andr is recognized as a meaningful me
sure of distance betweenx and the world line. The construc
tion is illustrated in Fig. 1.

FIG. 1. Retarded coordinates of a pointx relative to a world line
g. The retarded timeu selects a particular null cone, the unit vect

Va[ x̂a/r selects a particular generator of this null cone, and
retarded distancer selects a particular point on this generator.
7-4
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D. Frame components of tensors on the world line

The metric atx in the retarded coordinates will be ex
pressed in terms of frame components of vectors and ten
evaluated ong. For example, ifaa8 is the acceleration vecto
at x8, then as we have seen,

aa~u!5aa8ea
a8 ~2.26!

are the frame components of the acceleration at pro
time u.

Similarly,

Ra0b0~u!5Ra8g8b8d8ea
a8ug8eb

b8ud8,

Ra0bd~u!5Ra8g8b8d8ea
a8ug8eb

b8ed
d8 ,

~2.27!

Racbd~u!5Ra8g8b8d8ea
a8ec

g8eb
b8ed

d8

are the frame components of the Riemann tensor evalu
on g. From these we form the useful combinations

Sab5Ra0b01Ra0bcV
c1Rb0acV

c1RacbdV
cVd5Sba ,

~2.28!

Sa5SabV
b5Ra0b0Vb2Rab0cV

bVc, ~2.29!

S5SaVa5Ra0b0VaVb, ~2.30!

in which the quantitiesVa[ x̂a/r depend on the anglesuA

only—they are independent ofu and r.
We have previously introduced the frame components

the Ricci tensor in Eq.~2.24!. The identity

R0012R0aVa1RabV
aVb5dabSab2S ~2.31!

follows easily from Eqs.~2.28!–~2.30! and the definition of
the Ricci tensor.

E. Coordinate displacements nearg

The changes in the quasi-Cartesian retarded coordin
under a displacement ofx are given by Eqs.~2.12! and
~2.13!. In these we substitute the expansions forsa8b8 and
sa8b that appear in Eqs.~2.6! and ~2.7!, as well as Eqs.
~2.11! and~2.19!. After a straightforward calculation, we ob
tain the following expressions for the coordinate displa
ments:

du5~ea
0dxa!2Va~ea

bdxa!, ~2.32!

dx̂a52F raa2rv b
a Vb1

1

2
r 2Sa1O~r 3!G~ea

0dxa!

1Fd b
a 1S raa2rv c

a Vc1
1

3
r 2SaDVb

1
1

6
r 2S b

a 1O~r 3!G~ea
bdxa!. ~2.33!
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Notice that the result fordu is exact, but thatdx̂a is ex-
pressed as an expansion in powers ofr.

These results can also be expressed in the form of gr
ents of the retarded coordinates:

]au5ea
02Vaea

a , ~2.34!

]ax̂a52F raa2rv b
a Vb1

1

2
r 2Sa1O~r 3!Gea

0

1Fd b
a 1S raa2rv c

a Vc1
1

3
r 2SaDVb

1
1

6
r 2S b

a 1O~r 3!Gea
b . ~2.35!

Notice that Eq.~2.34! follows immediately from Eqs.~2.20!
and ~2.25!. From Eq.~2.35! and the identity]ar 5Va]ax̂a

we also infer

]ar 52F raaVa1
1

2
r 2S1O~r 3!Gea

0

1F S 11rabVb1
1

3
r 2SDVa1

1

6
r 2Sa1O~r 3!Gea

a ,

~2.36!

where we have used the facts thatSa5SabV
b and S

5SaVa; see Eqs.~2.29! and ~2.30!. It may be checked tha
Eq. ~2.36! agrees with Eq.~2.15!.

F. Metric near g

It is straightforward to invert the relations of Eqs.~2.32!
and ~2.33! and solve forea

0dxa andea
adxa. The results are

ea
0dxa5F11raaVa1

1

2
r 2S1O~r 3!Gdu

1F S 11
1

6
r 2SDVa2

1

6
r 2Sa1O~r 3!Gdx̂a,

~2.37!

ea
adxa5F r ~aa2v b

a Vb!1
1

2
r 2Sa1O~r 3!Gdu

1Fd b
a 2

1

6
r 2S b

a 1
1

6
r 2SaVb1O~r 3!Gdx̂b.

~2.38!

These relations, when specialized to the retarded coordin
give us the components of the dual tetrad (ea

0 ,ea
a) at x. The

metric is then computed by using the completeness relat
of Eq. ~2.3!. We find

guu52~11raaVa!21r 2~aa2vabV
b!~aa2v c

a Vc!

2r 2S1O~r 3!, ~2.39!
7-5
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gua52S 11rabVb1
2

3
r 2SDVa1r ~aa2vabV

b!

1
2

3
r 2Sa1O~r 3!, ~2.40!

gab5dab2S 11
1

3
r 2SDVaVb2

1

3
r 2Sab

1
1

3
r 2~SaVb1VaSb!1O~r 3!. ~2.41!

We see that the metric possesses a directional ambiguit
the world line: the metric atr 50 still depends on the vecto
Va5 x̂a/r that specifies the direction to the pointx. The re-
tarded coordinates are therefore singular on the world l
and tensor components cannot be defined ong. Because we
are working withframe componentsof tensors, this poses n
particular difficulty.

By settingSab5Sa5S50 in Eqs.~2.39!–~2.41! we ob-
tain the metric of flat spacetime in the retarded coordina
This we express as

huu52~11raaVa!21r 2~aa2vabV
b!~aa2v c

a Vc!,

hua52~11rabVb!Va1r ~aa2vabV
b!, ~2.42!

hab5dab2VaVb ,

and we see that the directional ambiguity persists. T
should not come as a surprise: the ambiguity is present e
when aa5vab50, and is generated simply by performin
the coordinate transformationu5t2Ax21y21z2. The re-
tarded coordinates are therefore necessarily singular a
world line. But in spite of the directional ambiguity, the me
ric of flat spacetime has a unit determinant everywhere,
it is easily inverted:

huu50,

hua52Va, ~2.43!

hab5dab1r ~aa2v c
a Vc!Vb1rVa~ab2v c

b Vc!.

The inverse metric also is ambiguous on the world line.
To invert the curved-spacetime metric of Eqs.~2.39!–

~2.41! we express it asgab5hab1hab1O(r 3) and treat
hab5O(r 2) as a perturbation. The inverse metric is th
gab5hab2haghbdhgd1O(r 3), or

guu50, ~2.44!

gua52Va, ~2.45!
08400
on

e,

s.

is
en

he

d

gab5dab1r ~aa2v c
a Vc!Vb

1rVa~ab2v c
b Vc!1

1

3
r 2Sab

1
1

3
r 2~SaVb1VaSb!1O~r 3!. ~2.46!

The results forguu andgua are exact, and they follow from
the general relationsgab(]au)(]bu)50 and gab(]au)
3(]br )521 that are derived from Eqs.~2.18! and ~2.25!.

The metric determinant is computed fromA2g51
1 1

2 habhab1O(r 3), which gives

A2g512
1

6
r 2~dabSab2S!1O~r 3!

512
1

6
r 2~R0012R0aVa1RabV

aVb!1O~r 3!,

~2.47!

where we have substituted the identity of Eq.~2.31!. Com-
parison with Eq.~2.24! gives us the interesting relatio
A2g5 1

2 rQ1O(r 3), whereQ is the expansion of the gen
erators of the null conesu5const.

G. Transformation to angular coordinates

Because the frame vectorVa5 x̂a/r satisfiesdabV
aVb

51, it can be parametrized by two anglesuA. A canonical
choice for the parametrization is Va

5(sinu cosf,sinu sinf,cosu). It is then convenient to per
form a coordinate transformation fromx̂a to (r ,uA), using
the relationsx̂a5rVa(uA). ~Recall from Sec. II C that the
anglesuA are constant on the generators of the null con
u5const, and thatr is an affine parameter on these gene
tors. The relationsx̂a5rVa therefore describe the behavio
of the generators.! The differential form of the coordinate
transformation is

dx̂a5Vadr1rVA
aduA, ~2.48!

where the transformation matrix

VA
a[

]Va

]uA
~2.49!

satisfies the identityVaVA
a50.

We introduce the quantities

VAB5dabVA
aVB

b , ~2.50!

which act as a~nonphysical! metric in the subspace spanne
by the angular coordinates. In the canonical parametrizat
VAB5diag(1,sin2u). We use the inverse ofVAB , denoted
VAB, to raise upper-case Latin indices. We then define
new object

Va
A5dabV

ABVB
b ~2.51!

which satisfies the identities

Va
AVB

a5dB
A , VA

aVb
A5d b

a 2VaVb . ~2.52!
7-6
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The second result follows from the fact that both sides
symmetric ina and b, orthogonal toVa and Vb, and have
the same trace.

From the preceding results we establish that the trans
mation fromx̂a to (r ,uA) is accomplished by

] x̂a

]r
5Va,

] x̂a

]uA
5rVA

a , ~2.53!

while the transformation from (r ,uA) to x̂a is accomplished
by

]r

] x̂a
5Va ,

]uA

] x̂a
5

1

r
Va

A . ~2.54!

With these rules it is easy to show that in the angular co
dinates, the metric takes the form of

ds25guudu222dudr12guAduduA1gABduAduB,
~2.55!

with

guu52~11raaVa!21r 2~aa2vabV
b!~aa2v c

a Vc!

2r 2S1O~r 3!, ~2.56!

guA5r F r ~aa2vabV
b!1

2

3
r 2Sa1O~r 3!GVA

a ,

~2.57!

gAB5r 2FVAB2
1

3
r 2SabVA

aVB
b1O~r 3!G . ~2.58!

The resultsgru521, grr 50, andgrA50 are exact, and they
follow from the fact that in the retarded coordinates,kadxa

52du andka]a5] r .
The nonvanishing components of the inverse metric a

gur521, ~2.59!

grr 5112raaVa1r 2S1O~r 3!, ~2.60!

grA5
1

r F r ~aa2v b
a Vb!1

2

3
r 2Sa1O~r 3!GVa

A ,

~2.61!

gAB5
1

r 2 FVAB1
1

3
r 2SabVa

AVb
B1O~r 3!G .

~2.62!

The resultsguu50, gur521, and guA50 are exact, and
they follow from the same reasoning as before.

Finally, we note that in the angular coordinates, the me
determinant is given by
08400
e

r-

r-

c

A2g

5r 2AVF12
1

6
r 2~R0012R0aVa1RabV

aVb!1O~r 3!G ,
~2.63!

whereV is the determinant ofVAB ; in the canonical param
etrization,AV5sinu.

H. Specialization toaµÄ0ÄRµn

In this subsection we specialize our previous results t
situation whereg is a geodesic on which the Ricci tens
vanishes. We therefore setam505Rmn everywhere ong,
and for simplicity we also setvab to zero.

It is known that when the Ricci tensor vanishes, the R
mann tensor can be decomposed in terms of a timelike ve
ua and two symmetric-tracefree, spatial tensorsEab andBab
~see, for example, Ref.@8#!. In terms of frame component
we have

Ra0b0~u!5Eab

Ra0bc~u!5«bcdB a
d , ~2.64!

Racbd~u!5dabEcd1dcdEab2dadEbc2dbcEad ,

where Eab and Bab depend onu, are such thatEba5Eab ,
dabEab50, Bba5Bab , dabBab50, and «abc is the three-
dimensional permutation symbol. These relations can be s
stituted into Eqs.~2.28!–~2.30! to give

Sab52Eab2VaE bcV
c2VbE acV

c1dabE bcV
cVd

1«acdV
cB b

d 1«bcdV
cB a

d , ~2.65!

Sa5E abV
b1«abcV

bB d
c Vd, ~2.66!

S5E abV
aVb. ~2.67!

In these expressions the dependence on retarded timeu is
contained inEab andBab , while the angular dependence
encoded in the unit vectorVa.

It is convenient to introduce the irreducible quantities

E* 5E abV
aVb, ~2.68!

Ea* 5~da
b2VaVb!E bcV

c, ~2.69!

Eab* 52Eab22VaE bcV
c22VbE acV

c1~dab1VaVb!E* ,
~2.70!

Ba* 5«abcV
bB d

c Vd, ~2.71!

Bab* 52~d (a
e2V (aVe!«b)cdV

cB e
d . ~2.72!

These are all orthogonal toVa: Ea* Va5Ba* Va50 and
Eab* Vb5Bab* Vb50. In terms of these Eqs.~2.65!–~2.67! be-
come
7-7
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Sab5Eab* 1VaEb* 1Ea* Vb1VaVbE*

1Bab* 1VaBb* 1Ba* Vb , ~2.73!

Sa5Ea* 1VaE* 1Ba* , ~2.74!

S5E* . ~2.75!

When Eqs.~2.73!–~2.75! are substituted into the metri
tensor of Eqs.~2.39!–~2.41!—in which aa andvab are both
set equal to zero—we obtain the compact expressions

guu5212r 2E* 1O~r 3!,
~2.76!

gua52Va1
2

3
r 2~Ea* 1Ba* !1O~r 3!, ~2.77!

gab5dab2VaVb2
1

3
r 2~Eab* 1Bab* !1O~r 3!. ~2.78!

The metric becomes

guu5212r 2E* 1O~r 3!, ~2.79!

gur521, ~2.80!

guA5
2

3
r 3~EA* 1BA* !1O~r 4!, ~2.81!

gAB5r 2VAB2
1

3
r 4~EAB* 1BAB* !1O~r 5! ~2.82!

after transforming to angular coordinates using the rules
Eq. ~2.53!. Here we have introduced the projections

EA* [Ea* VA
a5E abVA

aVb, ~2.83!

EAB* [Eab* VA
aVB

b52E abVA
aVB

b1E* VAB ,
~2.84!

BA* [Ba* VA
a5«abcVA

aVbB d
c Vd, ~2.85!

BAB* [Bab* VA
aVB

b52«acdV
cB b

d V (A
a VB)

b . ~2.86!

It may be noted that the inverse relations areEa* 5EA* Va
A ,

Ba* 5BA* Va
A , Eab* 5EAB* Va

AVb
B , andBab* 5BAB* Va

AVb
B , where

Va
A was introduced in Eq.~2.51!.
The angular dependence of the quantities listed in E

~2.83!–~2.86! can be made more explicit by expressing the
in terms of scalar, vectorial, and tensorial spherical harm
ics. Let

Ym5$Y0,Y1c,Y1s,Y2c,Y2s% ~2.87!

be a set of real, unnormalized, spherical-harmonic functi
of degreel 52; explicit expressions are provided in Appe
dix A. The numerical part of the labelm refers to the azi-
08400
f

s.

-

s

muthal indexm and the letter indicates whether the functio
is proportional to cos(mf) or sin(mf). Vectorial harmonics
are defined by

YA
m5Y:A

m , XA
m52«A

BY:B
m , ~2.88!

where a colon indicates covariant differentiation with resp
to a connection compatible withVAB , and«AB is the two-
dimensional Levi-Civita tensor. The vectorial harmonicsYA

m

have even parity, whileXA
m have odd parity. Tensorial har

monics are defined by

YmVAB , YAB
m 5Y:AB

m , XAB
m 52X(A:B)

m ; ~2.89!

the harmonicsYmVAB andYAB
m have even parity, whileXAB

m

have odd parity. Apart from notation and normalizatio
these definitions agree with those of Regge and Whe
@20#, and explicit expressions appear in Appendix A.

We define the harmonic componentsEm of the tensorEab
with the relations

E05E3352~E111E22!,

E1c52E13,

E1s52E23,

E2c5
1

2
~E112E22!,

E2s52E12. ~2.90!

Similarly, we define the harmonic componentsBm of the
tensorBab by

B05B3352~B111B22!,

B1c52B13,

B1s52B23,

B2c5
1

2
~B112B22!,

B2s52B12. ~2.91!

It is then straightforward to prove that Eqs.~2.83!–~2.86! are
equivalent to

E* 5(
m

E mYm,

EA* 5
1

2 (
m

E mYA
m ,

EAB* 5(
m

Em~YAB
m 13YmVAB!,
7-8
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BA* 5
1

2 (
m

B mXA
m ,

BAB* 52(
m

B mXAB
m . ~2.92!

This shows that the angular dependence of these quantiti
purely quadrupolar (l 52).

I. Comoving observer in a spatially flat cosmology

To illustrate how the formalism works we first consid
the world line of a comoving observer in a cosmologic
spacetime with metric

ds252dt21a2~ t !~dx21dy21dz2!, ~2.93!

wherea(t) is an arbitrary scale factor; for simplicity we tak
the cosmology to be spatially flat. We take the observer to
at the spatial origin of the coordinate system (x5y5z
50), and her velocity vector is given by

um5~1,0,0,0!. ~2.94!

This satisfies the geodesic equation, soam50. We wish to
transform the metric of Eq.~2.93! to retarded coordinate
based at the world line of this observer.

To do so we must first construct a triad of orthonorm
spatial vectorsea

m . A simple choice is

e1
m5~0,a21,0,0!,

e2
m5~0,0,a21,0!, ~2.95!

e3
m5~0,0,0,a21!;

these vectors are all parallel transported ong, and we have
vab50 according to Eq.~2.1!.

Using Va5(sinu cosf,sinu sinf,cosu) we find that the
components ofSab , as defined by Eq.~2.28!, are given by

S1152ä/a1~ ȧ/a!2~sin2u sin2f1cos2u!,

S1252~ ȧ/a!2sin2u sinf cosf,

S1352~ ȧ/a!2sinu cosu cosf,

S2252ä/a1~ ȧ/a!2~sin2u cos2f1cos2u!,

S2352~ ȧ/a!2sinu cosu sinf,

S3352ä/a1~ ȧ/a!2sin2u,

where an overdot indicates differentiation with respect tot;
the scale factor and its derivatives are now all evaluate
t5u. According to Eq.~2.29!, contractingSab with Vb gives
Sa , and we obtain

Sa52~ ä/a!Va .
08400
is

l

e

l

at

Another contraction withVa gives

S52ä/a,

according to Eq.~2.30!. From these results it follows that

SabVA
aVB

b5@2ä/a1~ ȧ/a!2#VAB ,

whereVA
a[]Va/]uA andVAB5diag(1,sin2u) were first in-

troduced in Sec. II G. We also haveSaVA
a50.

Substituting these relations into Eqs.~2.56!–~2.58! shows
that in the retarded coordinates, the metric components
given by

guu5211r 2~ ä/a!1O~r 3!,

guA5O~r 4!, ~2.96!

gAB5r 2VABH 11
1

3
r 2@ ä/a2~ ȧ/a!2#1O~r 3!J ,

in addition to gur521. Not surprisingly, the metric is
spherically symmetric. Recall that the scale factor and
derivatives are all functions of retarded timeu. When the
scale factor behaves as a power law,a(t)}ta with a a con-
stant, we have ä/a52a(12a)/u2 and ä/a2(ȧ/a)2

52a/u2. When instead the scale factor behaves as an
ponential,a(t)}eHt with H a constant, we haveä/a5H2

and ä/a2(ȧ/a)250.
To help clarify the meaning of these results, we pres

next anab initio derivation of Eq.~2.96!. We take the metric
of Eq. ~2.93! and switch to conformal timeh, which is de-
fined by the relationdh5dt/a(t). The metric becomes

ds25a2~h!~2dh21dx21dy21dz2!.

We then introduce spherical coordinates (r,u,f) through the
relations x5r sinu cosf, y5r sinu sinf, z5r cosu, and
the null coordinateū5h2r. The metric now reads

ds25a2~ ū1r!~2dū222dūdr1r2dV2!, ~2.97!

where dV25VABduAduB5du21sin2u df2. While ū is a
retarded-time coordinate andr is a radial coordinate, thes
are distinct fromu and r, and Eq.~2.97! does not match the
form of Eq. ~2.96!. Sinceu and ū can both be used to labe
light cones centered atr50, there must exist between the
a relation of the formu5u(ū). And sincer andr can both
be used to parametrize the null generators of a light conū
5const ~althoughr is not an affine parameter!, there must
exist between them a relation of the formr 5r (ū,r). We
shall now obtain these relations. We recall that the world l
is located atr5r 50.

In the coordinates (ū,r,u,f), the observer’s velocity vec
tor is given by
7-9
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um5S 1

a~ ū!
,0,0,0D , ~2.98!

where the scale factor is evaluated atr50 and expressed a
a function ofū only. The null vectork̄a52]aū is tangent to
the null conesū5const, and its components are given
k̄a5(0,a22,0,0), where the scale factor is now a function
ū1r. We havek̄mum521/a(ū).

We are seeking a null coordinateu and a null vector field
ka52]au such thatkmum521; refer back to Eqs.~2.19!
and ~2.25!. It is easy to see that this should be given byka

5a(ū) k̄a . We therefore defineu with the statement

du5a~ ū!dū, ~2.99!

and

ka5S 0,
a~ ū!

a2~ ū1r!
,0,0D ~2.100!

is tangent to the light conesu5const. This vector satisfie
the geodesic equationk ;b

a kb50, and the affine parameter o
the null generators isr. From Eq.~2.100! we havedr/dr

5a(ū)/a2(ū1r), which integrates to

r 5E
0

r a2~ ū1r8!

a~ ū!
dr8, ~2.101!

taking into account the boundary valuesr (ū,r50)50.
Equations~2.99! and ~2.101! give us the transformation be
tween the old coordinates (ū,r) and the new coordinate
(u,r ).

After applying the coordinate transformation to the met
we obtain

ds252Fa2~ ū1r!

a2~ ū!
2

2r ū

a~ ū!
Gdu222dudr1a2~ ū1r!r2dV2,

~2.102!

where r ū[]r /]ū. To show that this matches the results
Eq. ~2.96!, we must evaluate the integral of Eq.~2.101!. It is
sufficient to work in a neighborhood ofr50, and a2(ū
1r) can be expressed as a Taylor expansion. This yield

r 5arF 11
a8

a
r1

1

3
S a9

a
1

a82

a2
D r21O~r3!G ,

where a prime indicates differentiation with respect toū;
here and below, the scale factor and its derivatives are ev
ated atr50 and expressed as functions ofū only. From this
we gather thatr ū5a8r1a9r21O(r3), and Eq. ~2.102!
gives
08400
f

f

lu-

guu5211S a9

a
2

a82

a2
D r21O~r3!

and

gAB5a2r2VABF 112
a8

a
r1S a9

a
1

a82

a2
D r21O~r!3G .

Expressing these results in terms ofr instead ofr, and con-
verting ū derivatives intou derivatives using Eq.~2.99!, re-
turns the results of Eq.~2.96!. It should be noted that while
Eq. ~2.96! gives the metric in a neighborhood ofr 50, the
expression given in Eq.~2.102! holds globally.

J. Circular motion in Schwarzschild spacetime

As another example we consider the world line of a fre
moving observer in circular motion around a Schwarzsch
black hole. In the usual Schwarzschild coordina
(ts ,r s ,us ,fs) the metric is given by

ds252~122M /r s!dts
21~122M /r s!

21drs
2

1r s
2~dus

21sin2usdfs
2!, ~2.103!

whereM is the mass of the black hole. The observer mov
on a circular orbit of radiusr s5R with an angular velocity
dfs /dts5V5AM /R3, in the equatorial planeus5p/2. The
velocity vector is

um5g~1,0,0,V!, ~2.104!

whereg5(123M /R)21/2 is a normalization factor. The mo
tion is geodesic, and we can once more setam50. Because
Rab50 for the Schwarzschild spacetime, we will rely on th
results presented in Sec. II H.

The vectors

er
m5~0,b,0,0!, eu

m5~0,0,1/R,0!,

and

ef
m5g~VR/b,0,0,b/R!,

whereb5(122M /R)1/2, are normalized, mutually orthogo
nal, and all orthogonal toum. As such they form a valid se
of spatial vectors, but this choice is not optimal because
cept for eu

m , the vectors are not parallel transported on t
world line. By forming linear superpositions, however, a
choosing the coefficients appropriately, we can find a se
parallel-transported vectorsea

m . We choosee1
m5cos(Vt)er

m

2sin(Vt)ef
m , e2

m5sin(Vt)er
m1cos(Vt)ef

m , ande3
m52eu

m , or
7-10
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e1
m5S 2

gVR

b
sinF,b cosF,0,2

bg

R
sinF D ,

e2
m5S gVR

b
cosF,b sinF,0,

bg

R
cosF D ,

e3
m5S 0,0,2

1

R
,0D , ~2.105!

whereb5(122M /R)1/2, g5(123M /R)21/2, and

F5Vt. ~2.106!

The vectorsea
m are all parallel transported on the world lin

and according to Eq.~2.1!, we havevab50.
The electric partEab of the Riemann tensor is defined b

Eq. ~2.64!, and Eq.~2.90! gives its decomposition into har
monic componentsEm . Using the tetrad introduced prev
ously we find that the nonvanishing components are

E05
M

R2~R23M !
,

E2c52
3M

2R3

R22M

R23M
cos 2F,

E2s52
3M

2R3

R22M

R23M
sin 2F. ~2.107!

The magnetic partBab of the Riemann tensor is defined
Eq. ~2.64! and decomposed in harmonic components in
~2.91!. Its nonvanishing components are

B1c52
6MV

R~R23M !
A12

2M

R
cosF,

B1s52
6MV

R~R23M !
A12

2M

R
sinF. ~2.108!

Equivalent results were obtained by Alvi@21#, based on ear-
lier work by Fishbone@22# and Marck@23#.

To construct the metric we must form the quantitiesE* ,
EA* , EAB* , BA* , andBAB* , defined by Eqs.~2.68! and~2.83!–
~2.86!. For this we use Eq.~2.92! and the spherical harmon
ics listed in Appendix A. We obtain

E* 5
M

2R2~R23M !
~3 cos2u21!

2
3M

2R3

R22M

R23M
sin2u cos 2~f2F!,

Eu* 52
3M

2R3~R23M !
@R1~R22M !cos 2~f2F!#

3sinu cosu,
08400
.

Ef* 5
3M

2R3

R22M

R23M
sin2u sin 2~f2F!,

Euu* 5
3M

2R2~R23M !
sin2u

2
3M

2R3

R22M

R23M
~11cos2u!cos 2~f2F!,

Euf* 5
3M

R3

R22M

R23M
sinu cosu sin 2~f2F!,

Eff* 52
3M

2R2~R23M !
sin4u

1
3M

2R3

R22M

R23M
sin2u~11cos2u!cos 2~f2F!,

~2.109!

and

Bu* 52
3MV

R~R23M !
A12

2M

R
cosu sin~f2F!,

Bf* 5
3MV

R~R23M !
A12

2M

R
sinu~122 cos2u!

3cos~f2F!,

Buu* 5
6MV

R~R23M !
A12

2M

R
sinu sin~f2F!,

Buf* 5
6MV

R~R23M !
A12

2M

R
sin2u cosu cos~f2F!,

Bff* 52
6MV

R~R23M !
A12

2M

R
sin3u sin~f2F!.

~2.110!

In these expressions, the components of the Riemann te
are all evaluated att5u, so thatF5Vu. Substituting them
into Eqs.~2.79!–~2.82! gives the Schwarzschild metric in th
retarded coordinates (u,r ,u,f); these are based at the wor
line of an observer moving on a circular orbit of radiusR
with an angular velocityV5AM /R3.

III. MOTION OF A SMALL BLACK HOLE
IN AN EXTERNAL UNIVERSE

A. Matched asymptotic expansions

In this section we consider a nonrotating black hole
small massm moving in a background spacetime with metr
gab , and we seek to determine the equations that govern
motion. We will employ the powerful technique ofmatched
asymptotic expansions@8,10,12–15,21# and make use of the
retarded coordinates developed in Sec. II.
7-11
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The problem presents itself with a clean separation
length scales, and the method relies heavily on this. On
one hand we have the length scale associated with the s
black hole, which is set by its massm. On the other hand we
have the length scale associated with the background sp
time, which is set by the radius of curvatureR; this is de-
fined so that a typical component of the background spa
time’s Riemann tensor is equal to 1/R 2 up to a numerical
factor of order unity. We demand thatm/R!1. For simplic-
ity we assume that the background spacetime contains
matter, so that its metric is a solution to the Einstein fie
equations in vacuum.

Let r be a meaningful measure of distance from the sm
black hole, and let us consider a region of spacetime defi
by r ,r i , wherer i is a constant that is much smaller thanR.
This inequality defines a narrow world tube that surroun
the black hole, and we shall call this region theinternal zone.
In the internal zone the gravitational field is dominated
the black hole, and the metric can be expressed as

g~ internal zone!5g~black hole!1H1 /R1H2 /R 21•••,
~3.1!

whereg(black hole) is the metric of a nonrotating black ho
in isolation ~as given by the unperturbed Schwarzschild
lution!, while H1 andH2 are corrections associated with th
conditions in the external Universe. The metric of Eq.~3.1!
represents a black hole that is distorted by the tidal grav
tional field of the external Universe, andH1 , H2 are func-
tions of the spacetime coordinates that can be obtained
solving the Einstein field equations. They must be such
the spacetime possesses a regular event horizon ner
52m, and such thatg(internal zone) agrees with the metr
of the external Universe—the metric of the backgrou
spacetime in the absence of a black hole—whenr @m. As
we shall see in Sec. III B,H1 actually vanishes and the sma
correctionH2 /R 2 can be obtained by employing the we
developed tools of black-hole perturbation theory@15,20,24–
26#.

Consider now a region of spacetime defined byr .r e ,
wherer e is a constant that is much larger thanm; this region
will be called theexternal zone. In the external zone the
gravitational field is dominated by the conditions in the e
ternal Universe, and the metric can be expressed as

g~external zone!

5g~background spacetime!1mh11m2h21•••, ~3.2!

whereg(background spacetime) is the unperturbed metric
the background spacetime in which the black hole is movi
while h1 and h2 are corrections associated with the hole
presence; these are functions of the spacetime coordin
that can be obtained by solving the Einstein field equatio
We shall truncate Eq.~3.2! to first order inm, andmh1 will
be calculated in Sec. III C by linearizing the field equatio
about the metric of the background spacetime.

The metricg(external zone) is a functional of a world lin
g that represents the motion of the small black hole in
background spacetime. Our goal is to obtain a descriptio
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this world line, in the form of equations of motion to b
satisfied by the black hole; these equations will be form
lated in the background spacetime. It is important to und
stand that fundamentally,g exists only as an external-zon
construct: It is only in the external zone that the black h
can be thought of as moving on a world line; in the intern
zone the black hole is revealed as an extended object an
notion of a world line describing its motion is no longe
meaningful.

Equations~3.1! and ~3.2! give two different expressions
for the metric of the same spacetime; the first is valid in
internal zoner ,r i!R, while the second is valid in the ex
ternal zoner .r e@m. The fact thatR@m allows us to de-
fine a buffer zonein which r is restricted to the intervalr e
,r ,r i . In the buffer zoner is simultaneously much large
thanm and much smaller thanR—a typical value might be
AmR—and Eqs.~3.1!, ~3.2! are simultaneously valid. Sinc
the two metrics are the same up to a diffeomorphism, th
expressions must agree. And sinceg(external zone) is a
functional of a world lineg while g(internal zone) contains
no such information,matching the metrics necessarily dete
mines the motion of the small black hole in the backgrou
spacetime.

Matching the metrics of Eqs.~3.1! and~3.2! in the buffer
zone can be carried out in practice only after performing
transformation from the external coordinates used to exp
g(external zone) to the internal coordinates employed
g(internal zone). The details of this coordinate transform
tion are presented in Appendix C and the end result
matching is revealed in Sec. III D.

B. Metric in the internal zone

To proceed with the program outlined in the previous su
section we first calculate the internal-zone metric and repl
Eq. ~3.1! by a more concrete expression. We recall that
internal zone is defined byr ,r i!R, wherer is a suitable
measure of distance from the black hole.

We begin by expressingg(black hole), the Schwarzschild
metric of an isolated black hole of massm, in terms of re-
tarded Eddington-Finkelstein coordinates (ū, r̄ ,ūA), whereū

is retarded time,r̄ the usual areal radius, andūA5( ū,f̄) are
two angles on the spheres of constantū and r̄ . The metric is
given by

ds252 f dū222dūdr̄1 r̄ 2dV̄2, ~3.3!

where

f 512
2m

r̄
, ~3.4!

anddV̄25V̄ABdūAdūB5dū21sin2ūdf̄2 is the line element
on the unit two-sphere. In the limitr @m this metric achieves
the asymptotic valuesgūū→21, gūr̄521, gūĀ50, and

gĀB̄5 r̄ 2V̄AB ; these are appropriate for a black hole im
mersed in a flat spacetime charted by retarded coordina
7-12
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The correctionsH1 andH2 in Eq. ~3.1! encode the infor-
mation that our black hole is not isolated but in fact im
mersed in an external universe whose metric beco
g(background spacetime) asymptotically. In the inter
zone the metric of the background spacetime can be
panded in powers ofr̄ /R and expressed in a form that can
directly imported from Sec. II. If we assume that the ‘‘wor
line’’ r̄ 50 has no acceleration in the background spacet
~a statement that will be justified shortly!, then the
asymptotic values ofg(internal zone) must be given by Eq
~2.79!–~2.82!:

gūū→212 r̄ 2Ē* 1O~ r̄ 3/R 3!,

gūr̄521,

gūĀ→ 2

3
r̄ 3~ ĒA* 1B̄A* !1O~ r̄ 4/R 3!,

gĀB̄→ r̄ 2V̄AB2
1

3
r̄ 4~ ĒAB* 1B̄AB* !1O~ r̄ 5/R 3!,

where

Ē* 5E abV̄
aV̄b,

ĒA* 5E abV̄A
aV̄b,

ĒAB* 52E abV̄A
aV̄B

b1 Ē* V̄AB

and

B̄A* 5«abcV̄A
aV̄bB d

c V̄d,

B̄AB* 52«acdV̄
cB b

d V̄A
(aV̄B

b)

are the tidal gravitational fields that were first introduced

Sec. II H. Recall thatV̄a5(sinū cosf̄,sinū sinf̄,cosū) and

V̄A
a5]V̄a/]ūA. Apart from an angular dependence made

plicit by these relations, the tidal fields depend onū through
the frame componentsEab[Ra0b05O(1/R 2) and B b

a

[ 1
2 «acdR0bcd5O(1/R 2) of the Riemann tensor.~This is the

Riemann tensor of the background spacetime evaluatedr̄
50.! Notice that we have incorporated the fact that the Ri
tensor vanishes atr̄ 50: the black hole moves in a vacuu
spacetime.

The modified asymptotic values lead us to the followi
ansatz for the internal-zone metric:

gūū52 f @11 r̄ 2e1~ r̄ !Ē* #1O~ r̄ 3/R 3!, ~3.5!

gūr̄521, ~3.6!

gūĀ5
2

3
r̄ 3@e2~ r̄ !ĒA* 1b2~ r̄ !B̄A* #1O~ r̄ 4/R 3!, ~3.7!
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gĀB̄5 r̄ 2V̄AB2
1

3
r̄ 4@e3~ r̄ !ĒAB* 1b3~ r̄ !B̄AB* #1O~ r̄ 5/R 3!.

~3.8!

The five functionse1 , e2 , e3 , b2, andb3 can all be deter-
mined by solving the Einstein field equations; they must
proach unity whenr @m and be well behaved atr 52m ~so
that the tidally distorted black hole will have a nonsingu
event horizon!. In Appendix B, I show that they are given b

e1~ r̄ !5e2~ r̄ !5 f , e3~ r̄ !512
2m2

r̄ 2
, ~3.9!

and

b2~ r̄ !5 f , b3~ r̄ !51. ~3.10!

It is clear from Eqs.~3.5!–~3.8! that the assumed deviation o
g(internal zone) with respect tog(black hole) scales as
1/R 2. It is therefore of the form of Eq.~3.1! with H150.
The fact thatH1 vanishes comes as a consequence of
previous assumption that the ‘‘world line’’r̄ 50 has a zero
acceleration in the background spacetime; a nonzero ac
eration of order 1/R would bring terms of order 1/R to the
metric, andH1 would then be nonzero. The perturbed met
of Eqs. ~3.5!–~3.10! differs from the one presented by De
weiler @15# only by a transformation from Schwarzschild
Eddington-Finkelstein coordinates, and a transformat
from the Zerilli gauge@24# gauge adopted by him to th
retarded gauge adopted here.

Why is the assumption of no acceleration justified? A
shall explain more fully in the next paragraph, the reason
simply that it reflects a choice of coordinate system: sett
the acceleration to zero amounts to adopting a specific—
convenient—gauge condition.

Inspection of Eqs.~3.5!–~3.8! reveals that the angular de
pendence of the metric perturbation is generated entirely
scalar, vectorial, and tensorial spherical harmonics of deg
l 52; this observation was elaborated toward the end of S
II H and in Appendix A. In particular,H2 contains nol 50
andl 51 modes, and this statement reflects a choice of ga
condition. Zerilli has shown@24# that a perturbation of the
Schwarzschild spacetime withl 50 corresponds to a shift in
the mass parameter. As Thorne and Hartle have shown@8#, a
black hole interacting with its environment will undergo
change of mass, but this effect is of orderm3/R 2 and thus
beyond the level of accuracy of our calculations. There
therefore no need to includel 50 terms inH2. Similarly, it
was shown by Zerilli that odd-parity perturbations of degr
l 51 correspond to a shift in the black hole’s angula
momentum parameters. As Thorne and Hartle have show
change of angular momentum is quadratic in the hole’s
gular momentum, and we can ignore this effect when dea
with a nonrotating black hole. There is therefore no need
include odd-parity,l 51 terms in H2. Finally, Zerilli has
shown that in a vacuum spacetime, even-parity perturbat
of degree l 51 correspond to a change of coordina
system—these modes are pure gauge. Since we have
7-13
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ERIC POISSON PHYSICAL REVIEW D69, 084007 ~2004!
freedom to adopt any gauge condition, we can exclude ev
parity, l 51 terms from the perturbed metric. This leads us
Eqs. ~3.5!–~3.8!, which contain only l 52 perturbation
modes; the even-parity modes are contained in those te
that involveEab , while the odd-parity modes are associat
with Bab . The perturbed metric contains also higher mu
poles, but those come at a higher order in 1/R; for example,
the terms of order 1/R 3 include l 53 modes. We conclude
that Eqs.~3.5!–~3.8! is a sufficiently general ansatz for th
metric in the internal zone.

It shall prove convenient to transformg(internal zone)
from the quasispherical coordinates (r̄ ,ūA) to a set of quasi-

Cartesian coordinatesx̄a5 r̄ V̄a( ūA); the transformation rules
are worked out in Sec. II G. This gives

gūū52 f ~11 r̄ 2f Ē* !1O~ r̄ 3/R 3!, ~3.11!

gūā52V̄a1
2

3
r̄ 2f ~ Ēa* 1B̄a* !1O~ r̄ 3/R 3!,

~3.12!

gāb̄5dab2V̄aV̄b2
1

3
r̄ 2S 122

m2

r̄ 2 D Ēab*

2
1

3
r̄ 2B̄ab* 1O~ r̄ 3/R 3!, ~3.13!

where f 5122m/ r̄ and where the tidal fields

Ē* 5E abV̄
aV̄b,

Ēa* 5~da
b2V̄aV̄b!E bcV̄

c,

Ēab* 52Eab22V̄aE bcV̄
c22V̄bE acV̄

c1~dab1V̄aV̄b!Ē* ,

B̄a* 5«abcV̄
bB d

c V̄d,

B̄ab* 5«acdV̄
cB e

d ~d b
e 2V̄eV̄b!1«bcdV̄

cB e
d ~d a

e 2V̄eV̄a!,

were first introduced in Sec. II H. The metric of Eqs.~3.11!–
~3.13! represents the spacetime geometry of a black h
immersed in an external universe and distorted by its t
gravitational field.

C. Metric in the external zone

We next move on to the external zone and seek to rep
Eq. ~3.2! by a more concrete expression; recall that the
ternal zone is defined bym!r e,r . We take advantage of th
fact that in the external zone, the gravitational perturbat
associated with the presence of a black hole cannot be
tinguished from the perturbation produced by a point part
of the same mass.

The external-zone metric is decomposed as

gab5gab1hab , ~3.14!
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where gab is the metric of the background spacetime a
hab5O(m) is the perturbation; we shall work consistent
to first order inm and systematically discard all terms o
higher order. We relatehab to trace-reversed potentialsgab ,

hab5gab2
1

2
~ggdggd!gab , ~3.15!

and we impose the Lorenz gauge condition

g ;b
ab 50; ~3.16!

indices are raised and lowered withgab and gab , respec-
tively. With the understanding that the background spacet
contains no matter, linearizing the Einstein field equatio
produces the wave equation

hgab12R g d
a b ggd5216pTab ~3.17!

for the potentials. Here,h5gab¹a¹b is the wave operator
and

Tab~x!5mE
g
g m

a ~x,z!g n
b ~x,z!umund4~x,z!dt

~3.18!

is the stress-energy tensor of a point particle of massm trav-
eling on a world lineg; d4(x,z) is a scalarized, four-
dimensional Dirac functional, the world line is described
relationszm(t) in which t is proper time, andum5dzm/dt is
the particle’s velocity vector. Solving the linearized fie
equations produces

gab~x!54mE
g
Gabmn~x,z!umundt, ~3.19!

whereGabmn(x,z) is the retarded Green’s function2 @9# as-
sociated with Eq.~3.17!.

We now place ourselves in the buffer zone~wherem!r
!R and where the matching will take place! and work to-
ward expressingg(external zone) as an expansion in powe
of r /R. For this purpose we adopt the retarded coordina
(u,rVa) of Sec. II and rely on the machinery develope
there.

We begin withgab , the metric of the background spac
time. We have seen in Sec. II H that if the world lineg is a
geodesic, if the vectorsea

m are parallel transported on th
world line, and if the Ricci tensor vanishes ong, then the
metric takes the form given by Eqs.~2.76!–~2.78!. This
form, however, is too restrictive for our purposes: We m
allow g to have an acceleration, and allow the basis vect

2The normalization of the gravitational Green’s function vari
from author to author. Here the normalization is such that
Green’s function obeys a wave equation with a right-hand s
given by24pg m

(a(x,z)g n
b)(x,z)d4(x,z). The factor of 4p accounts

for the factor of 4 on the right-hand side of Eq.~3.19!.
7-14
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to be transported in the most general way compatible w
their orthonormality property; this transport law is given
Eq. ~2.1!,

Dea
m

dt
5aaum1va

beb
m ,

whereaa(t)5amea
m are the frame components of the acc

eration vectoram5Dum/dt, andvab(t)52vba(t) is a ro-
tation tensor to be determined. Anticipating thataa andvab
will both be proportional tom, we express the metric of th
background spacetime as

guu52122raaVa2r 2E* 1O~r 3/R 3!, ~3.20!

gua52Va1r ~da
b2VaVb!ab2rvabV

b

1
2

3
r 2~Ea* 1Ba* !1O~r 3/R 3!, ~3.21!

gab5dab2VaVb2
1

3
r 2~Eab* 1Bab* !1O~r 3/R 3!,

~3.22!

whereE* , Ea* , Eab* , Ba* , andBab* are the tidal gravitationa
fields first introduced in Sec. II H. The metric of Eqs.~3.20!–
~3.22! is obtained from the general form of Eqs.~2.39!–
~2.41! by neglecting terms quadratic inaa andvab and spe-
cializing to a zero Ricci tensor.

To express the perturbationhab as an expansion in pow
ers of r /R we assume thatx is sufficiently close tog that a
portion of the world line traversesN(x), the normal convex
neighborhood of the pointx ~see Fig. 2!; this assumption is
compatible with the conditionr !R. We then reexpress Eq
~3.19! as

gab54mS E
2`

t,

1E
t,

t.

1E
t.

` DGabmnumundt,

wheret, andt. are the values of the proper-time parame
at which g enters and leavesN(x), respectively. The third
integration contributes nothing becausex is then in the past
of z(t) and the retarded Green’s function vanishes. For
second integration,x is the normal convex neighborhood o
z(t), and the retarded Green’s function can be put in
Hadamard form@9,18,27,28#

Gabmn~x,z!5Uabmn~x,z!d1~s!1Vabmn~x,z!u1~2s!,
~3.23!

where Uabmn(x,z) and Vabmn(x,z) are smooth bitensors3,
s(x,z) is Synge’s world function@1,18#, and d1(s) and
u1(s) are Dirac and Heaviside distributions restricted to
future of z(t) @18,28#. To integrate over the Dirac term w
change variables fromt to s, noticing thats increases as

3The tail part of the Green’s function is denotedVabmn(x,z) in
this work, but most authors insert a minus sign and call
2vabmn(x,z).
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z(t) passes through the retarded pointz(u)[x8; recalling
the definition of retarded distance given in Eq.~2.10!, the
integral evaluates toUabg8d8(x,x8)ug8ud8/r . The integration
over the Heaviside term is cut off att5u, and we obtain our
final expression for the perturbation:

gab~x!5
4m

r
Uabg8d8~x,x8!ug8ud81gab

tail~x!. ~3.24!

Here, primed indices refer to the retarded pointx8[z(u)
associated withx, and

gab
tail~x!54mE

t,

u

Vabmn~x,z!umundt

14mE
2`

t,

Gabmn~x,z!umundt

[4mE
2`

u2

Gabmn~x,z!umundt ~3.25!

is the ‘‘tail part’’ of the gravitational potentials. Notice that
have introduced a short-hand notation in the last line of
~3.25!; the important point is that the integral o
Gabmn(x,z)umun up to t5u2 avoids the singular behavio
of the Green’s function on the light cones(x,z)50.

We must next express Eq.~3.24! in the form of an expan-
sion in powers ofr /R. For this we shall need the expansio4

4This result is implicitly contained in Appendix A of Ref.@10#. It
is derived from scratch in Sec. 15 of Ref.@17#.

FIG. 2. The region within the dashed boundary represents
normal convex neighborhood of the pointx. The world lineg enters
the neighborhood at proper timet, and exits at proper timet. .
Also shown is the retarded pointx8[z(u) and the null geodesic
that linksx to the world line.
7-15
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Uabg8d8u
g8ud85g (a

a8 g b)
b8 @ua8ub81O~r 3/R 3!#,

which contains no terms at orderr /R or (r /R)2. We shall
also need the general expansion of a tensorAab(x) in terms
of its values at a neighboring pointx8:5

Aab~x!5g a
a8g b

b8~Aa8b82Aa8b8;g8s
g81••• !.

HereAab will stand forgab
tail andx8 will be the retarded point

z(u) associated withx; accordingly, Eq.~2.11! gives sa85

2r (ua81Vaea
a8). Combining all these results, Eq.~3.24!

becomes

gab~x!5g a
a8g b

b8F4m

r
ua8ub81ga8b8

tail

1rga8b8g8
tail

~ug81Vcec
g8!1O~mr2/R 3!G , ~3.26!

wherega8b8
tail is the tensor of Eq.~3.25! evaluated atx8, and

ga8b8g8
tail

~x8!54mE
2`

u2

¹g8Ga8b8mn~x8,z!umundt

~3.27!

emerges during the computation of

¹g8ga8b8
tail

54m~]g8u!Va8b8d8e8u
d8ue81ga8b8g8

tail ;

the term proportional to]g8u disappears after contractio
with sg8.

At this stage we introduce the fields

ha8b8
tail

54mE
2`

u2S Ga8b8mn2
1

2
ga8b8G d8mn

d8 Dumundt,

~3.28!

ha8b8g8
tail

54mE
2`

u2

¹g8S Ga8b8mn2
1

2
ga8b8G d8mn

d8 Dumundt

~3.29!

and recognize that the metric perturbation obtained fr
Eqs.~3.15! and ~3.26! is

5This is Eq.~A21! of Ref. @10#. This result is derived from scratc
in Sec. 5 of Ref.@17#.
08400
hab~x!5g a
a8g b

b8F2m

r
~2ua8ub81ga8b8!1ha8b8

tail

1rha8b8g8
tail

~ug81Vcec
g8!1O~mr2/R 3!G .

~3.30!

This is the desired expansion of the metric perturbation
powers ofr /R. Our next task will be to calculate the com
ponents of this tensor in the retarded coordinates (u,rVa).

The first step of this computation is to decomposehab in
the tetrad (e0

a ,ea
a) that is obtained by parallel transport o

(ua8,ea
a8) on the null geodesic that linksx to its correspond-

ing retarded pointx8[z(u) on the world line.~The vectors
are parallel transported in the background spacetime.! The
projections are

h00~u,r ,Va![habe0
ae0

b

5
2m

r
1h00

tail~u!1r @h000
tail ~u!1h00c

tail ~u!Vc#

1O~mr2/R 3!, ~3.31!

h0b~u,r ,Va![habe0
aeb

b

5h0b
tail~u!1r @h0b0

tail ~u!1h0bc
tail ~u!Vc#

1O~mr2/R 3!, ~3.32!

hab~u,r ,Va![habea
aeb

b

5
2m

r
dab1hab

tail~u!

1r @hab0
tail ~u!1habc

tail ~u!Vc#1O~mr2/R 3!.

~3.33!

On the right-hand side we have the frame components

ha8b8
tail andha8b8g8

tail taken with respect to the tetrad (ua8,ea
a8);

these are functions of retarded timeu only.
The perturbation is now expressed as

hab5h00ea
0eb

01h0b~ea
0eb

b1ea
beb

0 !1habea
aeb

b

and its components are obtained by involving Eqs.~2.37! and
~2.38!, which list the components of the tetrad vectors in t
retarded coordinates; this is the second~and longest! step of
the computation. Noting thataa and vab can both be set
equal to zero in these equations~because they would produc
negligible terms of orderm2 in hab), and thatSab , Sa , and
S can all be expressed in terms of the tidal fieldsE* , Ea* ,
Eab* , Ba* , andBab* using Eqs.~2.73!–~2.75!, we arrive at
7-16
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huu5
2m

r
1h00

tail1r ~2mE* 1h000
tail 1h00a

tail Va!

1O~mr2/R 3!, ~3.34!

hua5
2m

r
Va1h0a

tail1Vah00
tail

1r F2mE* Va1
2m

3
~Ea* 1Ba* !1h0a0

tail 1Vah000
tail

1h0ab
tail Vb1Vah00b

tail VbG1O~mr2/R 3!, ~3.35!

hab5
2m

r
~dab1VaVb!1VaVbh00

tail1Vah0b
tail1Vbh0a

tail1hab
tail

1r F2
2m

3
~Eab* 1VaEb* 1Ea* Vb1Bab* 1VaBb*

1VbBa* !1VaVb~h000
tail 1h00c

tail Vc!

1Va~h0b0
tail 1h0bc

tail Vc!1Vb~h0a0
tail 1h0ac

tail Vc!

1~hab0
tail 1habc

tail Vc!G1O~mr2/R 3!. ~3.36!

These are thecoordinate componentsof the metric perturba-
tion hab in the retarded coordinates (u,rVa), expressed in
terms of frame componentsof the tail fields ha8b8

tails and
ha8b8g8

tails . The perturbation is expanded in powers ofr /R and
it also involves the tidal gravitational fields of the bac
ground spacetime.

The external-zone metric is obtained by addinggab as
given by Eqs.~3.20!–~3.22! to hab as given by Eqs.~3.34!–
~3.36!. The final result is

guu5212r 2E* 1O~r 3/R 3!1
2m

r
1h00

tail

1r ~2mE* 22aaVa1h000
tail 1h00a

tail Va!1O~mr2/R 3!,

~3.37!

gua52Va1
2

3
r 2~Ea* 1Ba* !1O~r 3/R 3!

1
2m

r
Va1h0a

tail1Vah00
tail

1r F2mE* Va1
2m

3
~Ea* 1Ba* !1~da

b2VaVb!ab

2vabV
b1h0a0

tail 1Vah000
tail 1h0ab

tail Vb1Vah00b
tail VbG

1O~mr2/R 3!, ~3.38!
08400
gab5dab2VaVb2
1

3
r 2~Eab* 1Bab* !1O~r 3/R 3!

1
2m

r
~dab1VaVb!1VaVbh00

tail1Vah0b
tail1Vbh0a

tail

1hab
tail1r F2

2m

3
~Eab* 1VaEb* 1Ea* Vb1Bab* 1VaBb*

1VbBa* !1VaVb~h000
tail 1h00c

tail Vc!1Va~h0b0
tail 1h0bc

tail Vc!

1Vb~h0a0
tail 1h0ac

tail Vc!1~hab0
tail 1habc

tail Vc!G
1O~mr2/R 3!. ~3.39!

D. Matching: motion of the black hole
in the background spacetime

Comparison of Eqs.~3.11!–~3.13! and Eqs.~3.37!–~3.39!
reveals that the internal-zone and external-zone metrics
no match in the buffer zone. But as the metrics are expres
in different coordinate systems, this mismatch is hardly s
prising. A meaningful comparison of the two metrics mu
therefore come after a transformation from the external

ordinates (u,rVa) to the internal coordinates (ū, r̄ V̄a). This
transformation is worked out in Appendix C, and it puts t
external-zone metric in its final form

gūū5212 r̄ 2Ē* 1O~ r̄ 3/R 3!1
2m

r̄

1 r̄ F4mĒ* 22S aa2
1

2
h00a

tail 1h0a0
tail D V̄aG1O~mr̄2/R 3!,

~3.40!

gūā52V̄a1
2

3
r̄ 2~ Ēa* 1B̄a* !1O~ r̄ 3/R 3!

1 r̄ F2
4m

3
~ Ēa* 1B̄a* !1~da

b2V̄aV̄b!

3S ab2
1

2
h00b

tail 1h0b0
tail D2~vab2h0[ab]

tail !V̄bG
1O~mr̄2/R 3!, ~3.41!

gāb̄5dab2V̄aV̄b2
1

3
r̄ 2~ Ēab* 1B̄ab* !1O~ r̄ 3/R 3!

1O~mr̄2/R 3!. ~3.42!

Except for the terms involvingaa and vab , this metric is
equal tog(internal zone) as given by Eqs.~3.11!–~3.13! lin-
earized with respect tom.

A precise match betweeng(external zone) and
g(internal zone) is produced when we impose the relatio
7-17
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aa5
1

2
h00a

tail 2h0a0
tail ~3.43!

and

vab5h0[ab]
tail . ~3.44!

While Eq. ~3.43! tells us how the black hole moves in th
background spacetime, Eq.~3.44! indicates that the vector
ea

m are not Fermi-Walker transported on the world line.
The black hole’s acceleration vectoram5aaea

m can be
constructed from the frame components listed in Eq.~3.43!.
A straightforward computation gives

am52
1

2
~gmn1umun!~2hnlr

tail 2hlrn
tail !ulur, ~3.45!

where the tail integral

hmnl
tail 54mE

2`

t2

¹lS Gmnm8n82
1

2
gmnG rm8n8

r D ~t,t8!

3um8un8dt8 ~3.46!

was previously defined by Eq.~3.29!. Here, the unprimed
indices refer to the current positionz(t) on the world line,
while the primed indices refer to a prior positionz(t8); the
integral is cut short att85t2 in the manner defined by Eq
~3.25!. These are the MiSaTaQuWa equations of motion,
they were first presented by Mino, Sasaki, and Tanaka@10#,
and later rederived by Quinn and Wald@11#.

Substituting Eqs.~3.43! and~3.44! into Eq.~2.1! gives the
following transport equation for the tetrad vectors:

Dea
m

dt
52

1

2
um~2hnlr

tail 2hnrl
tail !unea

lur

1~gmr1umur!hn[lr]
tail unea

l . ~3.47!

This can also be written in the alternative form

Dea
m

dt
52

1

2
~umea

lur1gmlea
r2gmrea

l!unhnlr
tail ~3.48!

that was first proposed by Mino, Sasaki, and Tanaka. B
equations state that in the background spacetime, the te
vectors are not Fermi-Walker transported ong; the rotation
tensor is nonzero and given by Eq.~3.44!.
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APPENDIX A: SPHERICAL HARMONICS

In this appendix I provide explicit expressions for the sc
lar, vectorial, and tensorial spherical harmonics introduced
Sec. II H. All harmonics are of degreel 52.

The scalar harmonics are

Y05
1

2
~3 cos2u21!,

Y1c5sinu cosu cosf,

Y1s5sinu cosu sinf,

Y2c5sin2u cos 2f,

Y2s5sin2u sin 2f.

The vectorial harmonics are defined byYA
m5Y:A

m ~even par-
ity! andXA

m52«A
BY:B

m ~odd parity!, where a colon indicates
covariant differentiation with respect to a connection co
patible with VAB5diag(1,sin2u), and «AB is the two-
dimensional Levi-Civita tensor. Explicitly,

Yu
0523 sinu cosu,

Yf
0 50,

Yu
1c5~2 cos2u21!cosf,

Yf
1c52sinu cosu sinf,

Yu
1s5~2 cos2u21!sinf,

Yf
1s5sinu cosu cosf,

Yu
2c52 sinu cosu cos 2f,

Yf
2c522 sin2u sin 2f,

Yu
2s52 sinu cosu sin 2f,

Yf
2c52 sin2u cos 2f,

and

Xu
050,

Xf
0 523 sin2u cosu,

Xu
1c5cosu sinf,

Xf
1c5~2 cos2u21!sinu cosf,

Xu
1s52cosu cosf,

Xf
1s5~2 cos2u21!sinu sinf,

Xu
2c52 sinu sin 2f,
7-18
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Xf
2c52 sin2u cosu cos 2f,

Xu
2s522 sinu cos 2f,

Xf
2s52 sin2u cosu sin 2f.

The tensorial harmonics are defined byYAB
m 5Y:AB

m ~even par-
ity! andXAB

m 52X(A:B)
m ~odd parity!. Explicitly,

Yuu
0 523~2 cos2u21!,

Yuf
0 50,

Yff
0 523 sin2u cos2u,

Yuu
1c524 sinu cosu cosf,

Yuf
1c 5sin2u sinf,

Yff
1c 522 sin3u cosu cosf,

Yuu
1s524 sinu cosu sinf,

Yuf
1s 52sin2u cosf,

Yff
1s 522 sin3u cosu sinf,

Yuu
2c52~2 cos2u21!cos 2f,

Yuf
2c 522 sinu cosu sin 2f,

Yff
2c 52 sin2u~cos2u22!cos 2f,

Yuu
2s52~2 cos2u21!sin 2f,

Yuf
2s 52 sinu cosu cos 2f,

Yff
2s 52 sin2u~cos2u22!sin 2f,

and

Xuu
0 50,

Xuf
0 52

3

2
sin3u,

Xff
0 50,

Xuu
1c5sinu sinf,

Xuf
1c 5sin2u cosu cosf,

Xff
1c 52sin3u sinf,

Xuu
1s52sinu cosf,

Xuf
1s 5sin2u cosu sinf,

Xff
1s 5sin3u cosf,
08400
Xuu
2c522 cosu sin 2f,

Xuf
2c 52sinu~cos2u11!cos 2f,

Xff
2c 52 sin2u cosu sin 2f,

Xuu
2s52 cosu cos 2f,

Xuf
2s 52sinu~cos2u11!sin 2f,

Xff
2c 522 sin2u cosu cos 2f.

APPENDIX B: CALCULATION OF THE METRIC
PERTURBATIONS

In this appendix I derive the form of the functionse1 , e2 ,
e3 , b2, andb3 that appear in Sec. III B. For this it is suffi
cient to take, say,E125E21 andB125B21 as the only nonva-
nishing components of the tidal fieldsEab and Bab . And
since the equations for even-parity and odd-parity pertur
tions decouple@20,24#, each case can be considered se
rately.

Including only even-parity perturbations, Eqs.~3.5!–~3.8!
become

gūū52 f ~11 r̄ 2e1E 12sin2ū sin 2f̄ !,

gūr̄521,

gūū5
2

3
r̄ 3e2E12sinū cosū sin 2f̄,

gūf̄5
2

3
r̄ 3e2E 12sin2ū cos 2f̄,

gū ū5 r̄ 22
1

3
r̄ 4e3E12~11cos2ū !sin 2f̄,

gūf̄52
2

3
r̄ 4e3E12sinū cosū cos 2f̄,

gf̄f̄5 r̄ 2sin2ū1
1

3
r̄ 4e3E 12sin2ū~11cos2ū !sin 2f̄.

This metric is then substituted into the vacuum Einstein fi
equations. Computing the Einstein tensor is simplified
linearizing with respect toE12 and discarding its derivative
with respect toū: Since the time scale over whichEab
changes is of orderR, the ratio between temporal and spat
derivatives is of orderr̄ /R and therefore small in the interna
zone; the temporal derivatives can be consistently neglec
The field equations produce ordinary differential equations
be satisfied by the functionse1 , e2, ande3. Those are easily
decoupled, and demanding that the functions all appro
unity as r→` and be well behaved atr 52m yields the
unique solutions
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e1~ r̄ !5e2~ r̄ !5 f , e3~ r̄ !512
2m2

r̄ 2
,

as was stated in Eq.~3.9!.
Switching now to odd-parity perturbations, Eqs.~3.5!–

~3.8! become

gūū52 f ,

gūr̄521,

gūū52
2

3
r̄ 3b2B12sinū cos 2f̄,

gūf̄5
2

3
r̄ 3b2B 12sin2ū cosū sin 2f̄,

gū ū5 r̄ 21
2

3
r̄ 4b3B12cosūcos 2f̄,

gūf̄52
1

3
r̄ 4b3B12sinū~11cos2ū !sin 2f̄,

gf̄f̄5 r̄ 2sin2ū2
2

3
r̄ 4b3B 12sin2ū cosū cos 2f̄.

Following the same procedure, we arrive at

b2~ r̄ !5 f , b3~ r̄ !51,

as was stated in Eq.~3.10!.

APPENDIX C: TRANSFORMATION FROM EXTERNAL
TO INTERNAL COORDINATES

Our task in this appendix is to construct the transform
tion from the external coordinates (u,rVa) to the internal

coordinates (ū, r̄ V̄a). We shall proceed in three stages. T
first stage of the transformation, (u,rVa)→(u8,r 8V8a), will
be seen to remove unwanted terms of orderm/r in gab , as
listed in Eqs.~3.37!–~3.39!. The second stage, (u8,r 8V8a)
→(u9,r 9V9a), will remove all terms of orderm/R in ga8b8 .

Finally, the third stage (u9,r 9V9a)→(ū, r̄ V̄a) will produce
the desired internal coordinates and return the metric in
form of Eqs.~3.40!–~3.42!.

The first stage of the coordinate transformation is

u85u22m ln r , x8a 5S 11
m

r D xa,

and it affects the metric at ordersm/r and mr/R 2. This
transformation redefines the radial coordinate—r→r 85r
1m—and incorporates inu8 the gravitational time delay
contributed by the small massm. After performing the coor-
dinate transformation the metric becomes
08400
-

e

gu8u85212r 82E 8* 1O~r 83/R 3!1
2m

r 8
1h00

tail

1r 8~4mE 8* 22aaV8a1h000
tail 1h00a

tail V8a!

1O~mr82/R 3!,

gu8a852Va81
2

3
r 82 ~E a8* 1B a8* !1O~r 83/R 3!1h0a

tail

1Va8h00
tail1r 8F2

4m

3
~E a8* 1B a8* !

1~da
b2Va8V8b!ab2vabV8b

1h0a0
tail 1Va8h000

tail 1h0ab
tail V8b1Va8h00b

tail V8bG
1O~mr82/R 3!,

ga8b85dab2Va8Vb82
1

3
r 82~E ab8* 1B ab8* !1O~r 83/R 3!

1Va8Vb8h00
tail1Va8h0b

tail1Vb8h0a
tail1hab

tail

1r 8F2m

3
~E ab8* 1Va8E b8* 1E a8* Vb8

1B ab8* 1Va8B b8* 1Vb8B a8* !

1Va8Vb8~h000
tail 1h00c

tail V8c!1Va8~h0b0
tail 1h0bc

tail V8c!

1Vb8~h0a0
tail 1h0ac

tail V8c!1~hab0
tail 1habc

tail V8c!G
1O~mr82/R 3!.

This metric matchesg(internal zone) at orders 1,r 82/R 2,
and m/r 8, but there is still a mismatch at ordersm/R and
mr8/R 2.

The second stage of the coordinate transformation is

u95u82
1

2Eu8
h00

tail~u8!du8

2
1

2
r 8@h00

tail~u8!12h0a
tail~u8!V8a1hab

tail~u8!V8aV8b#,

xa9 5xa81
1

2
hab

tail~u8!x8b,

and it affects the metric at ordersm/R and mr/R 2. After
performing this transformation the metric becomes

gu9u95212r 92E 9* 1O~r 93/R 3!1
2m

r 9

1r 9F4mE 9* 22S aa2
1

2
h00a

tail 1h0a0
tail DV9aG

1O~mr92/R 3!,
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gu9a952Va91
2

3
r 92~E a9* 1B a9* !1O~r 93/R 3!

1r 9F2
4m

3
~E a9* 1B a9* !22mE abV9b

1~da
b2Va9V9b!S ab2

1

2
h00b

tail 1h0b0
tail D

2vabV9b1
1

2
Va9h000

tail 2
1

2
hab0

tail V9b1h0ab
tail V9b

1
1

2
~da

b1Va9V9b!h00b
tail G1O~mr92/R 3!,

ga9b95dab2Va9Vb92
1

3
r 92~E ab9* 1B ab9* !1O~r 93/R 3!

1r 9F2m

3
~E ab9* 1Va9E b9* 1E a9* Vb91B ab9*

1Va9B b9* 1Vb9B a9* !1Va9Vb9~h000
tail 1h00c

tail V9c!

1Va9~h0b0
tail 1h0bc

tail V9c!1Vb9~h0a0
tail 1h0ac

tail V9c!

1~hab0
tail 1habc

tail V9c!G1O~mr92/R 3!.

To arrive at these expressions we had to involve the relat

d

du9
h00

tail5h000
tail ,
n

tu

tu

tu

08400
ns

d

du9
h0a

tail5h0a0
tail ,

d

du9
hab

tail54mEab1hab0
tail ,

which are obtained by covariant differentiation of Eq.~3.28!
in the direction of ua8. The metric now matches
g(internal zone) at orders 1,r 92/R 2, m/r 9, and m/R, but
there is still a mismatch at ordermr9/R 2.

The third and final stage of the coordinate transformat
is

ū5u92
1

4
r 92@h000

tail 1~h00a
tail 12h0a0

tail !V9a

1~hab0
tail 12h0ab

tail !V9aV9b1habc
tail V9aV9bV9c#,

x̄a5S 11
m

3
r 9EbcV9bV9cD xa91

1

2
r 92F2

1

2
h00a

tail 1h0a0
tail

1S h0ab
tail 2h0ba

tail 1hab0
tail 1

4m

3
EabDV9b

1~Qabc2Qbca1Qcab!V9bV9cG ,
where

Qabc5
1

2
habc

tail 1
m

3
~«acdB b

d 1«bcdB a
d !.

This produces the metric of Eqs.~3.40!–~3.42!.
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