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In the first part of this article | present a system of retarded coordinates based at an arbitrary world line of
an arbitrary curved spacetime. The retarded-time coordinate labels forward light cones that are centered on the
world line, the radial coordinate is an affine parameter on the null generators of these light cones, and the
angular coordinates are constant on each of these generators. The spacetime metric in the retarded coordinates
is displayed as an expansion in powers of the radial coordinate and expressed in terms of the world line’'s
acceleration vector and the spacetime’s Riemann tensor evaluated at the world line. The formalism is illustrated
in two examples, the first involving a comoving world line of a spatially flat cosmology, the other featuring an
observer in circular motion in the Schwarzschild spacetime. The main application of the formalism is presented
in the second part of the article, in which | consider the motion of a small black hole in an empty external
universe. | use the retarded coordinates to construct the metric of the small black hole perturbed by the tidal
field of the external universe, and the metric of the external universe perturbed by the presence of the black
hole. Matching these metrics produces the MiSaTaQuWa equations of motion for the small black hole.
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[. INTRODUCTION A gquasi-Cartesian version of the retarded coordinates is
introduced in Sec. Il B, after reviewing some necessary geo-
In the first part of this article | present a system of re-metrical elementga tetrad transported op, Synge’s world
tarded coordinatesu(r, 6, ¢) based at an arbitrary world line function, and the bitensor of parallel transpart Sec. Il A.
y of an arbitrary spacetime with metrg,;. The coordi- In Sec. IIC, | explore the significance ofas an affine pa-
nates are adapted to the forward light cone of each @¢ijt  rameter on the generators of the light cones, and describe the
of the world line (r is the proper-time parameter ar). The  vectork® that is tangent to the congruence of generators. The
retarded-time coordinate is constant on each light cone, metric in retarded coordinates is gradually constructed in
and it agrees witlr at the cone’s apex. The radial coordinate Secs. |1 D through II'F, and its quasi-Cartesian form is dis-
r is an affine parameter on the cone’s null generators, and filayed in Eqs(2.39—(2.41). In Sec. Il G, | carry out a trans-
gives a measure of distance away from the world line. Thdormation to angular coordinates, and this form of the metric
angular coordinateg”= (6, ) are constant on each of these is displayed in Eqs(2.55—(2.58. In Sec. Il H, | present an
generators. important simplification of the formalism that occurs when
This formalism complements a line of research that wass a geodesic and the Ricci tensor vanishes on the world line.
initiated by Syngd 1] and pursued by Ellis and his collabo- Two examples are worked out in Secs. Il and 11 J: first |
rators [2—7] in their work on observational cosmology. apply the formalism to a comoving world line of a spatially
While the central ideas exploited here are the same as witflat cosmology, and then | examine the metric near an ob-
Synge and Ellis, my implementation is substantially differ-server in circular motion in the Schwarzschild spacetime.
ent: While Synge and Ellis sought definitions for their optical The main application of the formalism is presented in the
or observational coordinates that apply to large regions of theecond part of the paper. Here | consider the motion of a
spacetime, my considerations are limited to a small neighnonrotating black hole of small mass in a background
borhood of the world line; and while Ellis favored a con- spacetime with metrig,,;; the metric is assumed to be a
struction based on past light conédsecause of the cosmo- solution to the Einstein field equations in vacuum. By em-
logical context in which information ay is gathered from ploying the powerful method of matched asymptotic expan-
the pasl, here the preference is given to future light cones. sions(see, for example, Ref8] for a discussio)) | derive
The introduction of retarded coordinates is motivated byequations of motion for the black hole.2f(7) are the para-
the desire to construct solutions of wave equations for massnetric relations describing the black hole’'s world ling*
less fields that are produced by pointlike sources moving or=dz*/dr is the velocity vector, and*=Du*/dr the accel-
the world line. The retarded coordinates naturally incorporateration vector, then the equations of motion take the form of
the causal relation that exists between the source and the
field, and for this reason the solution takes a simple explicit
form (in the neighborhood in which the coordinates are de-
fined). The point of view developed here, therefore, is oppo-
site to the cosmological view developed by Ellis: herés
the cause and the effect is propagated along forward light
cones. where

1 . .
v v | |
a=— = (g"+utu )(2h% —hi,

ywtu?, (1.
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, = 1 which the coordinates are based. The world line is described
hfﬂx:“mj Vx(G;w,uV'— 59 Gy [(77) by relationsz#(7) with = denoting proper time, its normal-
o ized tangent vector is*=dz*/dr, and its acceleration vec-
<uf u” dr (1.2) tor is a*=Du*/d7 with D/d7 denoting covariant differen-

tiation along the world line. Throughout we use Greek
is an integration over the past portion of the world line; theindicesu, v, \, p, etc. to refer to tensor fields defined, or
integral involves the retarded Green's function evaluated, on the world line.
G (2(7),2(7")) for the metric perturbatiofh9] associ- We install ony an orthonormal tetrad that consists of the

ated wi+th the small black hole, and it is cut off at=7" (angent vectow* and three spatial vectors. These are
=7—0" to avoid the singular behavior of the Green’s func- transported on the world line according to

tion at coincidence.

Equation(1.1) is not new, and the method of derivation DeX
presented here also is not new; they both originate in a 1997
paper by Mino, Sasaki, and Tanak&O]. [The equations dr
were later rederived by Quinn and Wdltll], and they are
now known as the MiSaTaQuWa equations of mofigthe ~ Whereaa(r)=a,e; are the frame components of the accel-
method of matched asymptotic expansions was first used @ration vector and,,(7) = — wp,(7) is a prescribed rotation
establish that in the limin— 0, the motion of a black hole is tensor. Settingv,,=0 would make the triad Fermi-Walker
geodesic in the background spacetifi®@—14. Using this  transported on the world line, and in many applications this
approach, Mino, Sasaki, and Tandkae also Ref.15]) were  would be a sensible choice. We nevertheless allow the spatial
able to compute the first-order correction to this result, and/ectors to rotate as they are transported on the world line;
showed that at ordem, the motion is accelerated and gov- this makes the formalism more general, and we will need this
erned by Eq(1.1). Their derivation, however, did not rely on flexibility in Sec. Ill of the paper. It is easy to check that Eq.
a specific choice of coordinates, and it left many details ob{2.1) is compatible with the requirement that the tetrad
scured. By adopting retarded coordinates, these details cq~,e") be orthonormal everywhere op

be re_vealed and the _matching procedure cla_rif.ieq. This Was Erom the tetrad ory we define a dual tetradaﬁ ,e%) with
my aim here: to provide a clearer, more explicit |mplemen-the relations r
tation of the matching procedure employed by Mino, Sasaki,
and Tanaka. 0=y
The method of matched asymptotic expansions is ex- m mr
plained in Sec. Il A. Essentially, the metric of the small a . . -
black hole perturbed by the tidal gravitational field of the 1€ dual vectore), satisfy a transport law that is very simi-
external Universe is matched to the metric of the external@ to Ed.(2.1). The tetrad and its dual give rise to the com-
Universe perturbed by the black hole; ensuring that this metPleteness relations

ric is a valid solution to the vacuum Einstein field equations

=a,u "+ wLlef, (2.1

e=5g,,,ep. (2.2

determines the motion of the black hole. The perturbed met- g'=—uru’+ 5*%ley,
ric of the small black hole is constructed in Brternal zone
in terms of internal retarded coordinates, t,#*); this is Our= —e2e8+ 5abeie,kﬂ (2.3

carried out in Sec. Il B. The perturbed metric of the external

Universe is constructed in aexternal zonén terms of ex-  for the metric and its inverse evaluated on the world line.

ternal retarded coordinatesi,¢,#"); this is carried out in The retarded coordinates are constructed with the help of

Sec. llI C. The matching of the two metrics is performed in aa null geodesic that links a given poirtto the world line.

buffer zonethat overlaps with both the internal and external This geodesic must be unique, and we thus reskrict be

zones; this involves a transformation from the external to th&yithin the normal convex neighborhood gf We denote by

internal coordinates that is eprICItIy worked out in Appendix :8 the unique, future-directed null geodesic that goes from

C. The matching is carried out in Sec. IlID, where we seethe world line tox, and x'=z(u) is the point at whichg

that it does indeed produce E(..1). ~intersects the world liney is the value of the proper-time
This concludes the summary of the results contained itharameter at this point. To tensorsatve shall assign the

this paper. Various technical details are relegated to Appengreek indicesa, B, v, 8, etc.; to tensors ax’ we shall
dixes A and B. Throughout the paper | work in geometrizedassign the indices’, 8', y', 8', and so on.

units (G=c=1) and with the conventions of Misner,
Thorne, and Wheeldt16]. Other applications of the retarded
coordinategincluding the fields produced by point particles,
and their motion in curved spacetijrere featured in a recent
review article[17].

From the tetrad l(“',eg") atx’ we construct another tet-
rad (eg,e;) atx by parallel transport orB. By raising the
frame index and lowering the vectorial index, we obtain also
a dual tetrad ax: e2=—g,zef and e?=5%"g,zef. The
metric atx can then be expressed as
II. RETARDED COORDINATES 0.0 ab

=—e e,+d,,e%e,, 2.4
A. Geometrical elements Gap avp ' “abFatp 24

To construct the retarded coordinates we must first introand the parallel propagatfit] (also known as the bivector of
duce some geometrical elements on the world lineat  geodetic parallel displacemefit8]) from x’ to x is given by
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g“ .(x,x')=—efu, +eie’,,

a1 _ " 0 a' ja
g%, (X" X)=u“ e, +e; €.

(2.9

This is defined such that iR is a vector that is parallel
transported ong, then A“(x)zg"a,(x,x’)A“'(x’) and

A“'(x’)=g“;(x’,x)A”‘(x). Similarly, if p, is a parallel-

transported dual vector, thqah(x)=g“;(x’,x)pa,(x’) and

Par(X')=9%, (X, X")Pa(X).

PHS®ICAL REVIEW D 69, 084007 (2004

r=(8,x®X")2=u,, 0%, (2.10
andr is a positive quantity by virtue of the fact thgtis a
future-directed null geodesic—this makes’ past-directed.

In flat spacetimea"" (x—x")?%, and in a Lorentz frame
that is momentarily comoving with the world line=t—t’
>0; with the speed of light set equal to unityjs also the
spatial distance betweeti andx as measured in this frame.

This gives us an interpretation of= ua,a“' as aretarded

The last ingredient we shall need is Synge’s world func-distancebetweerx and the world line, and we shall keep this

tion o(z,x) [1] (also known as the biscalar of geodetic inter-

interpretation even in curved spacetime. The claim that

val [18]). This is defined as half the squared geodesic disgives a measure of distance betwegnand x will be sub-

tance between the world-line poir{r) and a neighboring
point x. The derivative of the world function with respect to
z* is denotedr ,(z,x); this is a vector az (and a scalar at)
that is known to be tangent to the geodesic linkingnd x.
The derivative ofa(z,x) with respect tox* is denoted
o,(z,Xx); this vector atx (and scalar ag) is also tangent to

stantiated in Sec. Il C.
Another consequence of E.9) is that

(2.1

o =—r(u* +Q%y ),

the geodesic. We use a similar notation for multiple deriva\here O2=%2/r is a frame vector that satisfie$, ;020

tives; for exampleo,,=V,V, 0 and o,5=V;V,0, where
V, denotes a covariant derivative atwhile V, indicates
covariant differentiation at.

The vector—o#(z,x) can be thought of as a separation
vector betweerx and z, pointing from the world line tox.
Whenx is close toy, —a*(z,x) is small and can be used to
express bitensors in terms of ordinary tensors[dt18]. For
example,

1
Cuv=0ur— §RMVPU)‘0"’+ - (2.6
v 1 A
O-,ua: —dg a g,uv+ ER,U.}\VP(T of+-.. ’ (27)
v 1 N
UaB:gMag B g,uv_ §R,u,}\vpo- o4, (28)

whereg’,=g*,(z,x) is the parallel propagator arigl,, ,,, is
the Riemann tensor evaluated on the world line.

B. Definition of the retarded coordinates

The quasi-Cartesian version of the retarded coordinates

are defined by

xX0=u, x@=-e,(x)o? (x,x), a(xx)=0.

(2.9

The last statement indicates thdt=z(u) andx are linked
by a null geodesié.

From the fact that-®' is a null vector we obtain

A similar definition can be given for Fermi normal coordinates
[1,19]. Herex is linked toy by a spacelike geodesic that intersects
the world line orthogonally. The intersection point is such that
o,(x,2)u#=0, and this replaces the last condition of E2,9). The
other relations are unchanged.

=1.

A straightforward calculation reveals that under a dis-
placement of the poink, the retarded coordinates change
according to

du=—k,dx, (2.12

a' g _aa a'quB
gU”)du—el, o%pdx7,

(2.13

dx2=—(ra®— wab;(b+ .o
o

wherek,=o,/r is a future-directed null vector atthat is
tangent to the geodesj@. To obtain these results we must
keep in mind that a displacement gftypically induces a
simultaneous displacement »f, because the new poinks
+6x and x’' + 6x" must also be linked by a null geodesic.
We therefore have 9 o(x+8x,x +X')=0,6x
+0o,0x%, and Eq.(2.12 follows from the fact that a dis-
placement along the world line is described #Hx*’
=u® su.

C. Retarded distance; null vector field

If we keepx’ linked tox by the relationo(x,x") =0, then

(2.19

r(X)=o, (X, x)u® (x")

can be viewed as an ordinary scalar field defined in a neigh-
borhood ofy. We can compute the gradient oby finding
how r changes under a displacementxofwhich again in-
duces a displacement &f). The result is

&Br: _(O'araa/"‘o'ar'gruaruﬁr)kﬁ"f‘ O'arﬁua’.

(2.195

Similarly, we can view
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a®(x,x")

K*(x)= —r(x)

(2.19

as an ordinary vector field, which is tangent to the congru-
ence of null geodesics that emanate fram It is easy to
check that this vector satisfies the identities

: (2.17

o,
(Taﬁk'B:ka, O-af’ﬁkﬁ:T

from which we also obtaima,ﬁu“/k‘?:l. From this last
result and Eq(2.15 we deduce the important relation
k“d,r=1. (2.18

In addition, combining the general statement®
= _g“a,a“' with Eq. (2.11) gives

FIG. 1. Retarded coordinates of a pointelative to a world line
v. The retarded time selects a particular null cone, the unit vector
02=x?/r selects a particular generator of this null cone, and the
retarded distance selects a particular point on this generator.

ke=g® ,(u* +0%2); (2.19

the vector ax is therefore obtained by parallel transport of

u®’ +022 on . From this and Eq(2.4) we get the alter-

native expression ) ) ) ]
Using the expansion far®, given by Eq.(2.8), we find that

k*=ed+ 0%, (220 this becomes®=2—3R, 5 0% a# +0O(r), or

which confirms thak® is a future-directed null vector field
(recall thatQ2=X?/r is a unit frame vector _ 1, a acb 3
The covariant derivative df, can be computed by find- r0=2-3r"(Root 2Roal"+ Rap2%017) +O(r”)
ing how the vector changes under a displacement ¢f is (2.29
in fact easier to first calculate hovk, changes, and then
substitute our previous expression fgyr.) The result is
after using Eq. (2.1D. Here, Rop=R, 5 U uf", Roq
=R, pu®ef | andRy,=R, z e ef are the frame com-
(oa® o au® UP K K 29 ponents of the Ricci tensor _eval_uateoxat This result con-
(0 Ta'p Mok (22D gre that the congruence is singular a0, because®
From this we infer thak® satisfies the geodesic equation in diverges as 2/in this limit; the caustic coincides with the
affine-parameter fornk“ ;k#=0, and Eq.(2.18 informs us pointx”. . .
that the affine parameter is in factA displacement along a Finally, we infer from Eq.(2.21) thatk® is hypersurface
member of the congruence is therefore describeddky ~ Orthogonal. This, together with the property thdtsatisfies
=kedr. Specializing to retarded coordinates, and using Eqsthe geodesic equation in affine-parameter form, implies that

(2.12, (2.13, and (2.17, we find that this statement be- there exists a scalar field(x) such that

comesdu=0 and dx®=(x?/r)dr, which integrate tou

=const andx®=r?, respectively, withQQ? representing a k,=—d,u. (2.25
constant unit vector. We have found that the congruence of

null geodesics emanating frori is described by

rka;,g:aaﬁ—kao'ﬁy,uy - leO'ay/uy

R This scalar field was already identified in E@.12: it is
u=const, x*=rQ* ") (2.22  numerically equal to the proper-time parameter of the world
line atx’. We may thus conclude that the geodesics to which

in the retarded coordinates. Here, the two anghés(A ke is tangent are the generators of the null careconst. As
=1,2) serve to parametrize the unit vectdrf, which is  Eq. (2.22 indicates, a specific generator is selected by

independent of . o _ choosing a directiof2?® (which can be parametrized by two
Equation (2.21) also implies that the expansion of the angles¢”), andr is an affine parameter on each generator.
congruence is given by The geometrical meaning of the retarded coordinates is now
N completely clear, and is recognized as a meaningful mea-
a9 a2 sure of distance betweenand the world line. The construc-
0=k = . (2.23 S =
o r tion is illustrated in Fig. 1.
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D. Frame components of tensors on the world line Notice that the result fodu is exact, but thatdx® is ex-
The metric atx in the retarded coordinates will be ex- pressed as an expansion in powers.of _
pressed in terms of frame components of vectors and tensors These results can also be expressed in the form of gradi-

evaluated ony. For example, ia®’ is the acceleration vector €Nts of the retarded coordinates:
atx’, then as we have seen,

du=e2—0,e?, (2.39
ay(u)=a, e’ (2.26 .
va— _ a__ a b, —,2 3 0
are the frame components of the acceleration at proper JaX rai=ro% 0+ 2r SO e
time u. 1
Similarly, +| 8%+ | ra?—rw? Q°+ §r28")Qb

! ! ’ ’
R =R, mselu”efu’,
a0b0 a'y' B’ *a b

1
+ grzsab+ o(rd)|eb. (2.39

RaObd(u) = Ra’y'ﬁ’ﬁ’eg/uyleg/eg/ y

(2.27) Notice that Eq.(2.34) follows immediately from Eqs(2.20

B o v B and (2.25. From Eq.(2.35 and the identityd,r=Q aa)}a
Rachd U) =Ry, 5 €5 €1 €f €] we also infer ’

are the frame components of the Riemann tensor evaluated

L 1
on y. From these we form the useful combinations 3,r=—|ra02+ §r28+ o(r®) eg

Sab= Raono T RaOchC+ RbOacQC+ RacbdQCQd: Shas

1 1
(2.28 + 1+rabe+§r28 Qa+6r28a+0(r3) e,
Sa= Sabe: RaObOQb_ RabOchch (2.29 (2.36
S=S5,0%=Ra0502%Q", (230  where we have used the facts thg;=S,,Q° and S

. =5,07%; see Egs(2.29 and(2.30. It may be checked that
in which the quantitie€)®=x?/r depend on the angle®  Eq.(2.36 agrees with Eq(2.15.
only—they are independent ofandr.
We have previously introduced the frame components of F. Metric near y

the Ricci tensor in Eq(2.24). The identit
a(2.24 y It is straightforward to invert the relations of E¢2.32

Root+ 2R0a22+ RypQ20°P= 62°S,, — S (2.3) and(2.33 and solve fore2dx® ande2dx®. The results are

; it 1
foIIow_s e_aS|Iy from Eqs(2.28—(2.30 and the definition of egdx“= 1+ra,0%+ =r25+0(r?) |du
the Ricci tensor. 2
E. Coordinate displ t 12 1 3 dxd
. Coordinate displacements neary +[| 1+ Er S Qa—gr S+ O(r®) |dx?,

The changes in the quasi-Cartesian retarded coordinates
under a displacement of are given by Eqs(2.12 and (2.37
(2.13. In these we substitute the expansions 4y 5 and
o, that appear in Egs(2.6) and (2.7), as well as Egs.
(2.17) and(2.19. After a straightforward calculation, we ob-
tain the following expressions for the coordinate displace-
ments:

1
r(a®= Q")+ 5r’$+0(r%)

eddx¥= du

1 1 N
+| 8% — ErZSabJr ngSaQbJr o(r3) [dxP.

du=(e2dx®)— Q,(ePdx?), (2.32 2.3

(e2dx?) These relations, when specialized to the retarded coordinates,
“ give us the components of the dual tetra] (?) atx. The

1 metric is then computed by using the completeness relations

ra?—rw? Q%+ §r25a)gb of Eq. (2.3). We find

~ 1
dx@=—|ra?—rw?, QP+ §r283+ o(r?)

+| &%+

Juu=—(1+1a,0%2+r%(a,— 0,pQ°) (a%— 02 Q°)

—r?S+0(rd), (2.39

1
+€r28""b+0(r3) (ePdx?). (2.33
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9?°= 62+ r(a?~ 0? 090"

b, 2 2 b
1+ray() +§r S|Q tr(ag— wapQ2°)

Qua=— 1
) +r03(aP- o’ 0%+ §r28ab
+ §r23a+ o(r3), (2.40 .
+ 3140+ 08 +O(r). (2.46
1 1
Oab= Oap— ( 1+ §r28)ﬂaﬂb— §r28ab The results fog“" andg“® are exact, and they follow from

the general relationsg*?(d,u)(dgu)=0 and g*#(d,u)

1 X(dgr)=—1 that are derived from Eq¢2.18 and(2.25.

+ §r2(3a9b+9a5b)+0(f3)- (2.41) The metric determinant is computed fromi—g=1
+37*h,z+0(r®), which gives

We see that the metric possesses a directional ambiguity on
the world line: the metric at=0 still depends on the vector

02=x3/r that specifies the direction to the poitThe re-

1
V=g=1-5r¥(6%S,,—5)+0(r°)

. . . 1
tarded coordinates are therefore singular on the world line, =1— —r?(Rogt 2R Q2+ R,,Q220P) + O(r?),
and tensor components cannot be defined/oBecause we 6
are working withframe componentsf tensors, this poses no (2.47

particular difficulty. . ) .

By setting S,,=S,=S=0 in Egs.(2.39—(2.41) we ob- where we have substituted the identity of £2.31). Com-
tain the metric of flat spacetime in the retarded coordinated?2s%" with Eq.3(2.24) gives us the interesting relation
This we express as V—0g=3r®+0(r*), where® is the expansion of the gen-

erators of the null cones= const.

o= — (1+1a,0%)2+r%(a,— wpQ2°)(a%— 02 .0°), G. Transformation to angular coordinates
Because the frame vectd®=X?/r satisfies 5,,Q2Q°
Nua=— (L+ra,QP)Q +r(ay— wpQP), (242 =1, it can be parametrized by two anglé®. A canonical
choice for the parametrization is Q2

=(sinf#cos¢,sindsin ¢,cosb). It is then convenient to per-
form a coordinate transformation frow? to (r,6"), using
o o , _the relationsx?=rQ3(¢"). (Recall from Sec. IIC that the
and we see that the directional ambiguity persists. Thignglesg” are constant on the generators of the null cones
should not come as a surprise: the ambiguity is present eva=const, and that is an affine parameter on these genera-
whena,=w,p=0, and is generated simply by performing y,s The relations®=r? therefore describe the behavior

the coordinate transformatiom=t— yx“+y“+2z°. The re- s the generators.The differential form of the coordinate
tarded coordinates are therefore necessarily singular at thggnsformation is

world line. But in spite of the directional ambiguity, the met- A
ric of flat spacetime has a unit determinant everywhere, and dx3=Q2adr+rQ3de”, (2.48
it is easily inverted:

Nab= Sap— Qallp,

where the transformation matrix

7''=0, . 00
= 2.4
A aen (249
ua= — 032, 2.4 . -
g 243 satisfies the identitf2 ,Q2=0.
We introduce the quantities
7= 5"+ r(a%- 0 Q90 +1Q%a" - 0’ 0°). b
Qap=0ap2pa 5, (2.50

The inverse metric also is ambiguous on the world line.  which act as d&nonphysical metric in the subspace spanned

To invert the curved-spacetime metric of Eq8.39— by the angular coordinates. In the canonical parametrization,
(2.41) we express it ag,p= 7,5+ h,s+O(r% and treat Qﬁgzdlag(lﬂﬁe)- We use the inverse of),g, denoted
has=0(r?) as a perturbation. The inverse metric is then{}"", t0 raise upper-case Latin indices. We then define the
g*B=yeb= naynﬁﬁhws_f_ o(r3), or new object

OA=5,,0"B08 (2.5
g""=0, (2.44 . - R
which satisfies the identities

gUa=—03, (2.45 0R03=55, Q400=6%—0Q%Q,. (2.52
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The second result follows from the fact that both sides are/—

symmetric ina and b, orthogonal toQ), and Q°, and have
the same trace.

From the preceding results we establish that the transfor-

mation fromx2 to (r,#*) is accomplished by

a a;(a a
— =072, %IFQA, (2539

while the transformation fromr(#") to X is accomplished
by

ar

ax@

B ot 1,
—Qa, %—Fﬂa. (254)

1
=r2Q 1—ng(ROOJr2ROaQa+RaanQb)+O(r3) ,

(2.63

where() is the determinant of) 55 ; in the canonical param-
etrization, JQ =sin 6.

H. Specialization toa*=0=R,,,,

In this subsection we specialize our previous results to a
situation wherey is a geodesic on which the Ricci tensor
vanishes. We therefore sat'=0=R,, everywhere ony,
and for simplicity we also sab,, to zero.

It is known that when the Ricci tensor vanishes, the Rie-
mann tensor can be decomposed in terms of a timelike vector

With these rules it is easy to show that in the angular COOIry? and two Symmetric-tracefree1 Spatia| tens@&g andBaB

dinates, the metric takes the form of

ds?= gy du?—2dudr+2g,Adude? + gagd 6°d 68,
(259

with

Juu=— (1+1a,0%2+r%(a,— wpQP)(a%— 0 .0°)

—r2S+0(r?), (2.56
b 2 2 3 a
Oua=r|r(a;— w,p,0°) + §r S,+0(r°) |Q4%,
(2.57
2 1 2 anb 3
gAB:r QAB_Er SabQAQB-i-O(I’ ) . (258

The resultg,,= —1, g,, =0, andg,,=0 are exact, and they

follow from the fact that in the retarded coordinatkgdx®
=—du andk“d,=J, .

(see, for example, Ref8]). In terms of frame components
we have

Raobo(U) =Eqp
Raobe(U) =¢nca s (2.64
Racbd U) = Sap€eaT Scafab™ Sadfbc— SbcCad:

where &, and B,, depend onu, are such that,,=¢&,;,,
6%°8,,=0, Bya=Bap, 6%°Bp=0, and e,y is the three-
dimensional permutation symbol. These relations can be sub-
stituted into Egs(2.28—(2.30 to give

Sab: Zgab_ Qagbcﬂc_ ngaCQC+ 5abgbCQCQd

+£acd2°B %+ £0cd2°B Y, (2.69
Sa=E QP+ £, 02°B,Q°, (2.66
S=£,,020°. (2.67)

The nonvanishing components of the inverse metric are In these expressions the dependence on retardeduiime

gu'=—1, (2.59

9" =1+2ra,0%+r2S+0(rd), (2.60
1 a a b 2 2ca 3 A
r(a®— w,Q2 )+§r S+ 0(r°)|Qy,

rA_
9=y
(2.61)

oo L
I.2

1
0%+ 2125720205+ O(r?’)}.
(2.62

The resultsgU¥=0, g'"=—1, andg""=0 are exact, and

they follow from the same reasoning as before.

contained in&,, and By, while the angular dependence is
encoded in the unit vectd?.
It is convenient to introduce the irreducible quantities

(2.68
(2.69

& =£,0%0°,
5'; =( 5ab_QaQb)gchCv

g;b: Zgab_ ZQagbCQC_ ZngacQC‘l‘ (5ab+ QaQb)g* y

(2.70
B =&, 0QPB° QY (2.71
Biy=2(85 = Q0% ep)caQ B . 2.72

These are all orthogonal t@)?: & Q2*=B;0%=0 and

Finally, we note that in the angular coordinates, the metric€s,Q°=B5,Q°=0. In terms of these Eq$2.65—(2.67) be-

determinant is given by

come
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Sap=Eap T Qalp +Ex U+ Q0 pEF

+ B+ QB+ Bi Qyp, (2.73
Sa=EE+ Q.+, (2.74
S=&*. (2.795

When Eqgs.(2.73—(2.75 are substituted into the metric

tensor of Eqs(2.39—(2.41)—in which a, and w,, are both
set equal to zero—we obtain the compact expressions

Quu=—1-r28+0(r3),

(2.79
2 2 k 3

OQua=—Qa+ §r (& +B5)+0(r?), (2.77

1 2 k 3
Qab= 5ab_QaQb_§f (Eapt Bhy) +0O(r7). (2.78

The metric becomes
Quu=—1-r28+0(r3), (2.79
Our=-—1, (2.80
2 3 4

9ua= 3" (EA+BR)+O(r?), (2.81

2 1 4 % 5
gag="r QAB_§r (Eapt Bap) +O(r°) (2.82
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muthal indexm and the letter indicates whether the function
is proportional to cosi¢) or sin(m¢). Vectorial harmonics
are defined by
Y=Y, XQ=—e2YTR, (2.89
where a colon indicates covariant differentiation with respect
to a connection compatible with 55, andeag is the two-
dimensional Levi-Civita tensor. The vectorial harmonits
have even parity, whilX}' have odd parity. Tensorial har-
monics are defined by
Y"Qup,  YRe=Yhes, Xae=—X(ag: (2.89
the harmonic'™Q 45 and Y1 have even parity, whil&X g
have odd parity. Apart from notation and normalization,
these definitions agree with those of Regge and Wheeler
[20], and explicit expressions appear in Appendix A.
We define the harmonic componeidtg of the tensoi€,,
with the relations

Eo=E33= — (&1t &),
E1c=2&13,

E15= 2853,

1
Exc= 5 (11— &),

5252 2512. (29@

Similarly, we define the harmonic componerits, of the

after transforming to angular coordinates using the rules ofensorBy;, by

Eqg. (2.53. Here we have introduced the projections

EA=E4Qa=Ep0R0", (2.83
Erg= A0 =28, OR0R+ £ Qg

(2.84

Br=B4 Q=5 aQ°BQ°, (2.89

Brg=Bi0a00=2¢,,42°B,0508 . (2.86

It may be noted that the inverse relations &fe=£5Q%,
Bf=BiQ%, &.=E0008, and B, =B50508, where
Q% was introduced in E¢(2.52).

By=Bz= — (B111 B2),
Byc= 283,
Bys=2B53,

1

Bye= 2 (B11— B2,

st: 2812. (291)

It is then straightforward to prove that Eq2.83—(2.86) are
equivalent to

The angular dependence of the quantities listed in Egs.

(2.83—(2.86 can be made more explicit by expressing them
in terms of scalar, vectorial, and tensorial spherical harmon-

ics. Let

Ym:{YO,YlC,Yls,YZC,YZS} (287)

g => &Y™
m

1
g=23 &nym,
2 4

be a set of real, unnormalized, spherical-harmonic functions

of degreel =2; explicit expressions are provided in Appen-
dix A. The numerical part of the labeh refers to the azi-

Eho= 2 En(YRa+3Y ),
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1 " Another contraction witf)? gives
= 2 % By Xa
S=-ala,
=—2> BuX}g. (2.92  according to Eq(2.30. From these results it follows that
m
This shows that the angular dependence of these quantities is SapQa0R=[—a/a+(a/a)?]Qpg,

purely quadrupolarlE2).
where Q5=002/ 96" and Q ,g=diag(1,sik6) were first in-
I. Comoving observer in a spatially flat cosmology troduced in Sec. IIG. We also ha®&)4=
Substituting these relations into E¢2.56—(2.58 shows

To illustrate how the formalism works we first consider that in the retarded coordinates, the metric components are

the world line of a comoving observer in a cosmological

spacetime with metric given by
ds?=—dt®+a?(t)(dx®+dy?*+d7), (2.93 guu=—1+r%ala)+0(r?),
wherea(t) is an arbitrary scale factor; for simplicity we take Jua=0(r%) (2.96
the cosmology to be spatially flat. We take the observer to be v '
at the spatial origin of the coordinate system=(y=z 1
=0), and her velocity vector is given by Opp=r2Q el 1+ §r2[é/a—(é/a)2]+0(r3) ,
u#=(1,0,0,0. (2.99

) o . . . in addition to g,,=—1. Not surprisingly, the metric is
This satisfies the geodesic equation,as6=0. We wish to  spherically symmetric. Recall that the scale factor and its
transform the metric of Eq(2.93 to retarded coordinates derivatives are all functions of retarded tinoe When the

based at the world line of this observer. scale factor behaves as a power lat)t® with « a con-
To do so we must first construct a triad of orthonormalstant’ we havea/a=—a(l—a)/u? and a/a—(ala)?

spatial vectors; . A simple choice is = —a/u?. When instead the scale factor behaves as an ex-

et=(0a"%,0,0), ponential,a(t)=e"" with H a constant, we hava/a=H?
anda/a—(a/a)?=0.
=(0,0a"1,0), (2.95 To help clarify the meaning of these results, we present
next anab initio derivation of Eq.(2.96). We take the metric
=(0,0,0a™Y); of EqQ. (2.93 and switch to conformal timey, which is de-

fined by the relatiord »=dt/a(t). The metric becomes
these vectors are all parallel transportedjygrand we have
w,p,=0 according to Eq(2.1). ds?=a%(n)(—d7m?+dx?+dy*+d2).
Using Q2= (sin §cos¢,sindsin ¢,cosd) we find that the
components o8,,, as defined by Eq2.28), are given by  We then introduce spherical coordinates{, ¢) through the
relations x=p sinfcos¢, y=psindsing, z=p coshd, and

Su=—ala+(ala)’(sir’dsir’ ¢+ cos'o), the null coordinatei= —p. The metric now reads
L (5)a)2cir2 A < _ .
S;,= —(ala)?sirtd sin ¢ cosg, d?=a2(u+ p)(— dw—2dudp + p?d0?), (2.97)
— (5)a) 2 _
S13= ~(a/a)"sing cosf cos¢, where d02?=(,5d6*d0B=d 62+ sir2odg?. While U is a
. R retarded-time coordinate andis a radial coordinate, these
Sy=—ala+(ala)*(sitf cos ¢+ cos 6), are distinct fromu andr, and Eq.(2.97 does not match the
o . form of Eq.(2.96). Sinceu andu can both be used to label
Sys=—(ala)"sinf cosdsin ¢, light cones centered at=0, there must exist between them

a relation of the forrru=u(U). And sincer andp can both
be used to parametrize the null generators of a light aone

where an overdot indicates differentiation with respect;to —const(althoughp is not an affine parameterthere must
the scale factor and its derivatives are now all evaluated a@xist between them a relation of the fomser(u,p). We
t=u. According to Eq(2.29, contractingS,,, with QP gives  shall now obtain these relations. We recall that the world line
S,, and we obtain is located ap=r=0.
) In the coordinatesy, p, 8, ¢), the observer’s velocity vec-
Sa=—(ala)fd,. tor is given by

Ss3= —ala+ (ala)?sinte,
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u“z(—i;QQ%, (2.99 P LS 24 0( o3
a(u Qu=—1+| 5= 3| P*+0(p°)

where the scale factor is evaluatedoat 0 and expressed as

a function ofu only. The null vectok,= — d,u is tangent to

the null conesu=const, and its components are given by

k= (0,a-2,0,0), where the scale factor is now a function of

u+p. We havek,u“=—1/a(u). gas=a’p’ Qs
We are seeking a null coordinatieand a null vector field

k.= —d,u such thatk, u*=—1; refer back to Eqs(2.19
and(2.25. It is easy to see that this should be givenkyy  Expressing these results in termsrahstead ofp, and con-

and

1+2w + a”+a 2+0(p)®
aPtlatyz)r (p)

=a(U)E¥. We therefore define with the statement vertingUderivatives intou derivatives using Eq(2.99, re-
turns the results of E2.96). It should be noted that while
du=a(u)du, (2.99 Eqg. (2.96 gives the metric in a neighborhood pf0, the

expression given in Eq2.102 holds globally.

and
J. Circular motion in Schwarzschild spacetime

As another example we consider the world line of a freely
(2.100 . S ) .
moving observer in circular motion around a Schwarzschild
black hole. In the wusual Schwarzschild coordinates
is tangent to the light cones=const. This vector satisfies (s:'s.0s.¢s) the metric is given by
the geodesic equatidd’jﬁkﬁzo, and the affine parameter on
the null generators is. From Eq.(2.100 we havedp/dr ds?=—(1-2M/rgdt3+(1—2M/rg) dr?

=a(u)/a’(u+p), which integrates to

( a(u)
ke=| 0,———0,0
a’(u+p)

+ri(dei+sirfo,de?), (2.103
pa2(u+p') .
r:J ———dp’, (2.10)  whereM is the mass of the black hole. The observer moves
o a(u on a circular orbit of radiuss=R with an angular velocity

_ des/dte=Q=M/R?, in the equatorial planés= =/2. The
taking into account the boundary valuegu,p=0)=0. velocity vector is
Equations(2.99 and(2.101) give us the transformation be-

Evl:/er(;n the old coordinatesu{p) and the new coordinates ut=y(1,0,00), (2.109
After applying the coordinate transformation to the metric
we obtain wherey=(1-3M/R) ~*?is a normalization factor. The mo-

tion is geodesic, and we can once moreaét 0. Because
- R.s=0 for the Schwarzschild spacetime, we will rely on the
du?—2dudr+a?(u+p)p?dQ?, results presented in Sec. Il H.
The vectors

a%(u+p) 2ry

4=

a’(u)  a(u)

(2.102
—_— M= M —
wherer,=dr/du. To show that this matches the results of e'=(04.00), €;=(00,1R0),
Eqg. (2.96, we must evaluate the integral of E§.10J). It is

sufficient to work in a neighborhood gf=0, anda?(u  and

+p) can be expressed as a Taylor expansion. This yields
&= y(QRIB.0,08R),

, where=(1-2M/R)¥?, are normalized, mutually orthogo-
nal, and all orthogonal to*. As such they form a valid set
. of spatial vectors, but this choice is not optimal because ex-
where a prime indicates differentiation with respectuo  cept fore/, the vectors are not parallel transported on the
here and below, the scale factor and its derivatives are evalwyorld line. By forming linear superpositions, however, and
ated atp=0 and expressed as functionswbénly. From this ~ choosing the coefficients appropriately, we can find a set of
we gather thatry=a’p+a’p?+0(p°), and Eq.(2.102  parallel-transported vector;. We choosee/ = cos()7)e
gives —sin(Qn)ey;, e5=sin(7)e+cos)n)e;, andes=—ey, or

r=ap

1+a’ +l ”+a 2+0(p®
aftalat 2P (p°)
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( o )
B ,
y ( vOR
2

B
., 1
ef=(0,0- 50/,

where3=(1-2M/R)¥2 y=(1-3M/R)" 2 an

By .
—ﬁsmcb

ey sin®, B cos®d,0,

e cosd |,

cosd,B sin@,o,%

(2.109

d

P=Qr. (2.1006
The vectorse) are all parallel transported on the world line,
and according to Eq2.1), we havew,,=0.

The electric part,, of the Riemann tensor is defined by
Eqg. (2.64), and EQq.(2.90 gives its decomposition into har-
monic components,,,. Using the tetrad introduced previ-
ously we find that the nonvanishing components are

e M
" RA(R-3M)’

o _ SMR-2M

2= JREIR—3M

£ SMR™2M 2o 2.10

The magnetic par3,, of the Riemann tensor is defined in

EqQ. (2.64 and decomposed in harmonic components in Eq.

(2.97). Its nonvanishing components are

6MQ L™
= Rr-am) VI R OO

_ eMOQ /l M oo
15~ 7 R(R—3M) R Sin®. (2108

Equivalent results were obtained by AM1], based on ear-
lier work by Fishbond22] and Marck[23].

To construct the metric we must form the quantiti&s
Ex, Erg, Ba, andB,g, defined by Eqs(2.68 and(2.83—
(2.86). For this we use Eq2.92 and the spherical harmon-
ics listed in Appendix A. We obtain

e 20—
ZRZ(R—3M)(300 0—1)

3M R—2M
2R3 R—3M

sirfdcosAp— D),

3M
2R3(R—3M)

[R+(R—2M)cosA¢p—P)]

&

X sinf coso,

PHSICAL REVIEW D 69, 084007 (2004

3M R—-2M

= 5r R—3M ———sirfdsin 2(¢p— D),

o 3M _
= ———8S]
% 2R2(R—3M)

3M R—-2M

TR RS 3M(l+cos?«9)cos?(¢> D),

3M R—2M

R3 R_3M ———sinfcosfdsin2(¢p—D),

0~

3M

—sin“&
2R?’(R—3M)

Eso

3M R-2M

+— Sr? R=3M ———sirff(1+cosh)cos A p— D),

(2.109
and
3IMQ

2M .
_ m\/l— ?cosesm(qS—CD),
3IMQ 2M 2
RR=3W) \/1— ?sma(l—z cos )

Xcog ¢p—D),

[, 2M
1-— ——singsin(¢p— D),
R
2M
\/1- ?sinzacosacos{q&—d)),
\/1- Z?Msing’esir(¢—¢>).

(2.110

4

k

B¢:

6MQ

Biy= R(R—3M)

6MQ

By = R(R—3M)

6MQ

Bjy=— R(R—3M)

In these expressions, the components of the Riemann tensor
are all evaluated at=u, so that® = Qu. Substituting them

into Eqgs.(2.79—(2.82 gives the Schwarzschild metric in the
retarded coordinatesu(r, 8, ¢); these are based at the world
line of an observer moving on a circular orbit of radiBs

with an angular velocity) = /M/R®.

IlI. MOTION OF A SMALL BLACK HOLE
IN AN EXTERNAL UNIVERSE

A. Matched asymptotic expansions

In this section we consider a nonrotating black hole of
small massn moving in a background spacetime with metric
d.p5. and we seek to determine the equations that govern its
motion. We will employ the powerful technique ofatched
asymptotic expansiori8,10,12—15,2]land make use of the
retarded coordinates developed in Sec. Il.
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The problem presents itself with a clean separation othis world line, in the form of equations of motion to be
length scales, and the method relies heavily on this. On theatisfied by the black hole; these equations will be formu-
one hand we have the length scale associated with the smddited in the background spacetime. It is important to under-
black hole, which is set by its mass On the other hand we stand that fundamentallyy exists only as an external-zone
have the length scale associated with the background spacesnstruct: It is only in the external zone that the black hole
time, which is set by the radius of curvatuRs this is de- can be thought of as moving on a world line; in the internal
fined so that a typical component of the background spacezone the black hole is revealed as an extended object and the
time’s Riemann tensor is equal toRf up to a numerical notion of a world line describing its motion is no longer
factor of order unity. We demand that/ R<1. For simplic- meaningful.
ity we assume that the background spacetime contains no Equations(3.1) and (3.2) give two different expressions
matter, so that its metric is a solution to the Einstein fieldfor the metric of the same spacetime; the first is valid in the
equations in vacuum. internal zoner <r;<7R, while the second is valid in the ex-

Letr be a meaningful measure of distance from the smalternal zoner >r,>m. The fact thatk>m allows us to de-
black hole, and let us consider a region of spacetime definefine abuffer zonein which r is restricted to the interval,
by r<r;, wherer; is a constant that is much smaller ttRBn ~ <r<r;. In the buffer zone is simultaneously much larger
This inequality defines a narrow world tube that surroundghanm and much smaller thaR—a typical value might be
the black hole, and we shall call this region theernal zone  \/mR—and Eqs(3.1), (3.2) are simultaneously valid. Since
In the internal zone the gravitational field is dominated bythe two metrics are the same up to a diffeomorphism, these
the black hole, and the metric can be expressed as expressions must agree. And singéexternal zone) is a
functional of a world liney while g(internal zone) contains
no such informationmatching the metrics necessarily deter-
mines the motion of the small black hole in the background

. . . time
whereg(black hole) is the metric of a nonrotating black hole spacetim . .
in isolation (as given by the unperturbed Schwarzschild so- Matching the metrics of Eq¢3.1) and(3.2) in the buffer

lution), while H; andH, are corrections associated with the Zone can b_e carried out in practice °'?'y after performing a
conditions in the external Universe. The metric of E8,1) transformation from the external coordinates used to express

represents a black hole that is distorted by the tidal gravitag(eXtemal zone) to the internal coordinates employed for

tional field of the external Universe, andl,, H, are func- g(internal zone). The details of this coordinate transforma-
tions of the spacetime coordinates that can be obtained by nt ﬁre presenteld dlr'] Aspper:ﬁ')[() C and the end result of
solving the Einstein field equations. They must be such thaf'3cNiNg IS reveaied in sec. fiiL.

the spacetime possesses a regular event horizon mear

=2m, and such thag(internal zone) agrees with the metric B. Metric in the internal zone

of the external Universe—the metric of the background 14 proceed with the program outlined in the previous sub-
spacetime in the absence of a black hole—whem. As  gection we first calculate the internal-zone metric and replace
we shall see in Sec. lll B, actually vanishes and the small Eqg. (3.1) by a more concrete expression. We recall that the

correctionH,/R ? can be obtained by employing the well- jyternal zone is defined by<r;<R, wherer is a suitable
developed tools of black-hole perturbation thefit$,20,24— 1 easure of distance from the black hole.

26]. . . . . We begin by expressing(black hole), the Schwarzschild
Consider now a region of spacetime definedroyre,  metric of an isolated black hole of mass in terms of re-

wherer . is a constant that is much larger thamthis region . : . L=y —
will be called theexternal zoneln the external zone the tarded Eddington-Finkelstein coordinatesr| 6"), whereu

gravitational field is dominated by the conditions in the ex-iS retarded time the usual areal radius, ard=(6,4) are

g(internal zong=g(black hol§+H;/R+H,/R?+-- -,
(3.9

ternal Universe, and the metric can be expressed as two angles on the spheres of constargndr. The metric is
given by
g(external zong o o
i ) ds?=—fdu®—2dudr+r2dQ?, (3.3
= g(background spacetimeé mh; +m-h,+---, (3.2
. . . here
whereg(background spacetime) is the unperturbed metric of
the background spacetime in which the black hole is moving,
while h; and h, are corrections associated with the hole’s fo1_ 2_m 3.4
presence; these are functions of the spacetime coordinates T '

that can be obtained by solving the Einstein field equations.

We shall truncate E(3.2) to first order inm, andmh; will — = o g .

be calculated in Sec. Il C by linearizing the field equationsand d?=Q,gd#*d¢°=d6*+ sir*ed¢?” is the line element

about the metric of the background spacetime. on the unit twg-sphere. In the limit>m this metric achieves
The metricg(external zone) is a functional of a world line the asymptotic valueg,,——1, gu=-1, g;a=0, and

v that represents the motion of the small black hole in thegag=r°Q,g; these are appropriate for a black hole im-

background spacetime. Our goal is to obtain a description ofmersed in a flat spacetime charted by retarded coordinates.
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The correctiondd; andH,, in Eq. (3.1) encode the infor- . 1 _ _
mation that our black hole is not isolated but in fact im- 9as=r"Qag— §f4[93(r)523+ ba(r)Bxgl+O(r°*/R3).
mersed in an external universe whose metric becomes 3.9
g(background spacetime) asymptotically. In the internal
zone the metric of the background spacetime can be exfhe five functionse;, e,, €5, b,, andb; can all be deter-

panded in powers af/ R and expressed in a form that can be mined by solving the Einstein field equations; they must ap-
directly imported from Sec. Il. If we assume that the “world proach unity whem>m and be well behaved at=2m (so

line” r_zo has no acceleration in the background Spacetiméhat the tldally distorted _black hole will have a non.singular
(a statement that will be justified shomtlythen the eventhorizon In Appendix B, | show that they are given by
asymptotic values aof(internal zone) must be given by Egs. )
(2.79-(2.82: — — — 2m
ei(r)=e,(r)=f, 93(r):1_r—_2, (3.9
Oo— — 1-r2&* +O(r3R3),
and
gur=—1, B B
) by(r)="f, bs(r)=1. (3.10
s Y = T4 3
Yua— 3r (Ex+BA)+O(r/R %), Itis clear from Eqgs(3.5—(3.8) that the assumed deviation of
g(internal zone) with respect tg(black hole) scales as
—— 1— — _ 1/R2. It is therefore of the form of Eq(3.1) with H;=0.
Jag— 1 Qap— §r4(57§5+ Brg) +O(r°IR3), The fact thatH, vanishes comes as a consequence of our

previous assumption that the “world line’=0 has a zero
where acceleration in the background spacetime; a nonzero accel-
_ S — eration of order IR would bring terms of order ® to the
EF =E,50%0°, metric, andH; would then be nonzero. The perturbed metric
o of Egs.(3.5—(3.10 differs from the one presented by Det-
Z’;:gabgng, weiler [15] only by a transformation from Schwarzschild to
Eddington-Finkelstein coordinates, and a transformation
from the Zerilli gauge[24] gauge adopted by him to the
retarded gauge adopted here.
Why is the assumption of no acceleration justified? As |
shall explain more fully in the next paragraph, the reason is
— simply that it reflects a choice of coordinate system: setting

aB: Zgab{_liﬁg+§* 6AB

and

_ 0a0nb 0d
Br=£ap2aQ2°B°4Q°, the acceleration to zero amounts to adopting a specific—and
o - o convenient—gauge condition.
Big=2¢,.40°8%,080Y Inspection of Eqs(3.5—(3.8) reveals that the angular de-

pendence of the metric perturbation is generated entirely by
are the tidal gravitational fields that were first introduced inscalar, vectorial, and tensorial spherical harmonics of degree
Sec. Il H. Recall tha2?= (sin §cos,sin 6sin ¢,cosé) and 1=2; th|s_ observatl_on was elab_orated toward _the end of Sec.
— T A IlH and in Appendix A. In particularH, contains nd =0
(2p=0Q% 36" Apart from an angular dependerE:e made ®X-andl =1 modes, and this statement reflects a choice of gauge
plicit by these relations, the tidal fields dependwthrough  condition. Zerilli has showri24] that a perturbation of the
the frame components,,=Raopo=0(1/R?) and B,  Schwarzschild spacetime with=0 corresponds to a shift in
=3%9Ry,q= O(1/R ?) of the Riemann tensofThis is the  the mass parameter. As Thorne and Hartle have sligjym
Riemann tensor of the background spacetime evaluated atblack hole interacting with its environment will undergo a
=0.) Notice that we have incorporated the fact that the Riccichange of mass, but this effect is of ordef/R? and thus
tensor vanishes at=0: the black hole moves in a vacuum Peyond the level of accuracy of our calculations. There is

spacetime. therefore no need to include=0 terms inH,. Similarly, it
The modified asymptotic values lead us to the followingVas shown by Zerilli that odd-parity perturbations of degree
ansatz for the internal-zone metric: I=1 correspond to a shift in the black hole’s angular-
momentum parameters. As Thorne and Hartle have shown, a
9= —f[1+r_2el(r_)?*]+0(7*’/7€3), 3.5 change of angular momentum is quadratic in the hole’s an-

gular momentum, and we can ignore this effect when dealing

with a nonrotating black hole. There is therefore no need to

include odd-parity,l=1 terms inH,. Finally, Zerilli has

9 shown that in a vacuum spacetime, even-parity perturbations
— e, (N +b.(1) B+ O(rHR3), 3 of degreel=1 correspond to a change. of coordinate

Gua 3r [e2(r)EA-+ba(r) By] (r/R5 3.9 system—these modes are pure gauge. Since we have the

Gu=—1, (3.6
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freedom to adopt any gauge condition, we can exclude everwhereg,; is the metric of the background spacetime and
parity,| =1 terms from the perturbed metric. This leads us toh,;=0O(m) is the perturbation; we shall work consistently
Egs. (3.5—(3.8), which contain onlyl=2 perturbation to first order inm and systematically discard all terms of
modes; the even-parity modes are contained in those terntégher order. We relatk,,; to trace-reversed potentiajs, z,
that involve&,,, while the odd-parity modes are associated
with B,,. The perturbed metric contains also higher multi- 1 >
poles, but those come at a higher order iR 1for example, Nap=Yap™ 5(97°7y5)9ap. 319
the terms of order R 2 include|=3 modes. We conclude
that Eq5(35)—(38) is a sufficiently general ansatz for the and we impose the Lorenz gauge condition
metric in the internal zone.

It shall prove convenient to transform(internal zone) y*E ,=0; (3.16

- BT
from the quasispherical coordinatas ") to a set of quasi-
Cartesian coordinate€=rQ2(¢"); the transformation rules indices are raised and lowered wig#” andg,s, respec-

are worked out in Sec. I1G. This gives tively. With the understanding that the background spacetime
contains no matter, linearizing the Einstein field equations
goo=—f(L+r2f&)+O(r3IR 3), (3.10) produces the wave equation
Oy*A+2R* Piy?o=— 16T (3.17

— 2. _
Gua=~Qa+ 51 (& +B}) + O(r*/R?),
(3.12 for the potentials. Here]=g“BVaVB is the wave operator

and
_ R 2 J—
_ _ _ 2 o
Yab= dap— Lallp 3 ( 1 2r_2 ) Eab T*A(x)= mf g“M(X,z)gﬁy(x,z)u“u”&(X,Z)dr
Y
1 o (3.18
— —r?B5+O(r®¥IR3), (3.13
3 is the stress-energy tensor of a point particle of nmassav-

_ ) ) eling on a world liney; d84(%,2z) is a scalarized, four-
wheref=1-2m/r and where the tidal fields dimensional Dirac functional, the world line is described by
. _ relationsz*(7) in which 7 is proper time, and*=dz*/dr is
£ =£,,020°, the particle’s velocity vector. Solving the linearized field

equations produces

(5ab_9a5b)gbc(_2cv

A
I

o . . . . _ yaﬁ(x)=4mj Gupur(X,Z) Uk u”dT, (3.19
g;b:Zgab_ZQagbCQC_ZngaCQCJF(5ab+QaQb)<5‘k, Y

— whereG,z,,(X,2) is the retarded Green’s functiof9] as-

Bi = £ap2°B°401, sociated with Eq(3.17).
- o o o o We now place ourselves in the buffer zofveherem<r
B;bzsacd‘QCBde( 5eb—QeQb)+gbch°Bde( 5%,—0°Q,), <R and where the matching will take placand work to-

ward expressing(external zone) as an expansion in powers
of r/’R. For this purpose we adopt the retarded coordinates

were first introduced in Sec. Il H. The metric of E§3.11)— a :
(3.13 represents the spacetime geometry of a black hol%ﬁ?érré2 ) of Sec. Il and rely on the machinery developed

immersed in an external universe and distorted by its tidal' ", begin withg,,;, the metric of the background space-

gravitational field. time. We have seen in Sec. Il H that if the world lines a
o geodesic, if the vectorsy are parallel transported on the
C. Metric in the external zone world line, and if the Ricci tensor vanishes on then the
We next move on to the external zone and seek to replac@etric takes the form given by Eq$2.76—(2.78. This
Eqg. (3.2 by a more concrete expression; recall that the exform, however, is too restrictive for our purposes: We must
ternal zone is defined am<r,<r. We take advantage of the allow y to have an acceleration, and allow the basis vectors
fact that in the external zone, the gravitational perturbation
associated with the presence of a black hole cannot be dis-—
tinguished from the perturbation produced by a point particle *The normalization of the gravitational Green’s function varies

of the same mass. from author to author. Here the normalization is such that the
The external-zone metric is decomposed as Green’s function obeys a wave equation with a right-hand side
given by—4q-rg(§(x,z)gﬁy)(x,z) 04(X,2). The factor of 4r accounts
9up=9apt Nagps (38.14  for the factor of 4 on the right-hand side of Eg.19.
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to be transported in the most general way compatible with

their orthonormality property; this transport law is given by
Eq. (2.2),

Def
dr

=a,ut+ w, el

wherea,(7)=a,ej; are the frame components of the accel-
eration vector*=Du*/dr, andw,,(7) = — wpa(7) IS a ro-
tation tensor to be determined. Anticipating tlagtand w
will both be proportional tan, we express the metric of the
background spacetime as

guu=—1-2ra,0%—r2& +O(r3/R %), (3.20
Gua= — Qat1(8,°— 0,0 a,— 1w, 0"
2 2 k 3 3
+3r%(E +B)+O(r¥R?), (3.29)
1 2 3 3
Jab= é\ab_QaQb_gr (g;b+B;b)+O(r IR,
(3.22

where&*, &, &, Ba , and By, are the tidal gravitational
fields first introduced in Sec. Il H. The metric of E¢8.20—
(3.22 is obtained from the general form of EqR.39-
(2.42 by neglecting terms quadratic &), and w,, and spe-
cializing to a zero Ricci tensor.

To express the perturbatidn,; as an expansion in pow-
ers ofr/R we assume that is sufficiently close toy that a
portion of the world line traverse§{x), the normal convex
neighborhood of the point (see Fig. 2, this assumption is

compatible with the condition<R. We then reexpress Eq.

(3.19 as
7al§=4m f <+J’ >+f GQBMVU“UVdT,
- T< T>

where7r_ andr. are the values of the proper-time parameter

at which y enters and leave&/x), respectively. The third
integration contributes nothing becausés then in the past

of z(7) and the retarded Green’s function vanishes. For the

second integratiorx is the normal convex neighborhood of

z(7), and the retarded Green’s function can be put in the

Hadamard forn{9,18,27,28

Gaﬁ,u.l/(xvz) = Uaﬂ,u,v(xiz) 5+(0-) +Vaﬁp,v(xiz) 0+( - 0-)1
(3.23

where U ,4,,(X,2) andV,g,,(X,z) are smooth bitensots
o(x,z) is Synge’s world function1,18], and §, (o) and

PHSICAL REVIEW D 69, 084007 (2004

FIG. 2. The region within the dashed boundary represents the
normal convex neighborhood of the pointThe world liney enters
the neighborhood at proper time. and exits at proper time-. .
Also shown is the retarded point =z(u) and the null geodesic
that linksx to the world line.

z(7) passes through the retarded panit))=x’; recalling
the definition of retarded distance given in E.10, the

integral evaluates tt .5, & (x,x')u? u®'/r. The integration
over the Heaviside term is cut off at=u, and we obtain our
final expression for the perturbation:

4m .
’ r t |
— Uogy o (6X U U + 55

Yap(X)= (x). (3.29

Here, primed indices refer to the retarded pomtEz(u)
associated withx, and

u

tail Vg X,z utuvdr

Yap(X) =4mj

T<

T

<
+am [

E4mfu Gapur(X,Z)uu"dr

Gapur(X,2)UFudr

(3.29

is the “tail part” of the gravitational potentials. Notice that |
have introduced a short-hand notation in the last line of Eq.
(3.295; the important point is that the integral of

6. (o) are Dirac and Heaviside distributions restricted to theG,,,,(X,Z)u*u” up to 7=u" avoids the singular behavior
future of z(7) [18,28. To integrate over the Dirac term we of the Green’s function on the light cong(x,z) =0.

change variables fromr to o, noticing thato increases as

We must next express E€B.24) in the form of an expan-

sion in powers of /R. For this we shall need the expansion

3The tail part of the Green’s function is denot&(,,,(x,2) in
this work, but most authors insert a minus sign and call it
—Vopui(X,2).

“This result is implicitly contained in Appendix A of RefL0]. It

is derived from scratch in Sec. 15 of RE1L7].
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Upyrsrt? u? =g%,0% [Uyug +O(r¥IR )],

which contains no terms at ordefR or (r/R)2. We shall
also need the general expansion of a tersgy(x) in terms
of its values at a neighboring poirt:°

Aa'B(X):gaa,g%(Aar'Br_Aarﬁr;yrUy’+ . )

HereA,, ; will stand for y2; andx’ will be the retarded point

z(u) associated withx; accordingly, Eq(2.11) gives ot =

—r(u"'+Qaeg"). Combining all these results, E¢3.24)
becomes

tail

o p|4M
yaﬁ(x)zg a’gﬁ _UarUBr+ 'yarﬁr

+ry8 (w7 + Q%) +0o(mrA/R 3|, (3.26

tail

wherey ., is the tensor of Eq(3.29 evaluated ak’, and

ta|l

Yo' pr y(x) 4mf V, Gy (X', Z)Uku"dr

(3.27

emerges during the computation of

tail

Vyr’ytail _4m((9 ru)va B8 e rU U +’)/ B,y,;

arﬁr

the term proportional taJ,,u disappears after contraction
with .
At this stage we introduce the fields

htall -4 u- G 1 Gﬁ’ ruvd
a' B m . a' Bluv Ega,ﬁ, 5" uv u”u-dr,
(3.28
hamam [, Gupar gy G ururd
a’ﬁ'y’_ m . ' a' B uy zgarﬁr & uv u”u T
(3.29

PHYSICAL REVIEW 39, 084007 (2004

tail

g 2m
ag —(2U /UBI‘I‘gaB)‘l—h ,ﬁ,

haﬁ(x)

tall

+ rﬁr ’

(U’ +0°%)+o(mr2/R3)|.
(3.30

This is the desired expansion of the metric perturbation in
powers ofr/R. Our next task will be to calculate the com-
ponents of this tensor in the retarded coordinatesQ?).

The first step of this computation is to decompbgg in
the tetrad €5 ,e;) that is obtained by parallel transport of

(u“/,eg/) on the null geodesic that linksto its correspond-
ing retarded poink’=z(u) on the world line.(The vectors
are parallel transported in the background spacetiffiee

projections are

hoo(u,r,Q3)=h,zefes

2m
:_+htal|(u)+r[hta”({l.])'f‘hta”(u)ﬂc]

+0(mr3R?3), (3.3)
hop(u,r,Q%)=h,gefef
=iy (u) + r[ hgho(u) +heh(u) Q°]
+0(mr?/R3), (3.32
hap(u,r, Q3 =h,zesef
2m
= ab+hEp(u)
+r[hgo(W) + hi(W Q]+ 0(mr?/R ).
(3.33
On the right-hand side we have the frame components of
hi%s, andh(®,, . taken with respect to the tetrad? &3 );

these are functions of retarded timeonly.
The perturbation is now expressed as

0,0 0,b b .0 b
h.s=hoo€,e5+ Nop(€,85T €a€5) +hapele,

and its components are obtained by involving Eg8s37) and
(2.38, which list the components of the tetrad vectors in the

and recognize that the metric perturbation obtained fronfetarded coordinates; this is the secdadd longeststep of

Egs.(3.15 and(3.26 is

SThis is Eq.(A21) of Ref.[10]. This result is derived from scratch
in Sec. 5 of Ref[17].

the computation. Noting that, and w,, can both be set
equal to zero in these equatiofiecause they would produce
negligible terms of ordem? in h,z), and thatS,y, S,, and
Scan all be expressed in terms of the tidal fielifs & ,
Eaps Ba . and By, using Eqs.(2.73—(2.75, we arrive at
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2m : 1
hyu=——+hgg+r(2me* +higo+ hig, O°) Gan= b~ QaQp— 32 Exp+ Bap) O(r¥R?)

+0O(mr?R3), 33 2m
( : 39 + == (Bapt Qafdy) + Qafdphy + Qahy + QphGy

2m
— [ [ . 2m
hua= —— Qo+ hga+ Qahy +hE | = 5 (Ept Qi + E3 Qpt Blyt QaBy

+ QB3 ) + Qay( ot Mg Q%) + Qa(hGho + hGpe Q)

2m * tail tail
r 2m€*Qa+ ?(5; +Ba)+hOaO+QahOOO

tail tail ¢ tail tail nc
+hELOP+ 0, hE 0| +O(mi2IR ), (339 2oz T aactt) T Raoo P
Oab '
+0(mréIR3). (3.39
2m tail tail tall tail
Nap= — (5ab+Q allp) +QaQphgy + Qahgy + Qphgy +hgy D. Matching: motion of the black hole
in the background spacetime
2 .
+r|— _m(g;b+ QL& +EQp+ B+ QB Comparison of Eq93.1)—(3.13 and Eqs.(3.37)—(3.39)
3 reveals that the internal-zone and external-zone metrics do

no match in the buffer zone. But as the metrics are expressed

k tail tail ¢
T 06B3) + Qallp(Nooot Nooc2”) in different coordinate systems, this mismatch is hardly sur-

+Q,(h@ 4 pal o)1 0, (hEl 4+ p@l gy prising. A meaningful comparison of the two metrics must
therefore come after a transformation from the external co-
. a . . —_a .
+(h@! 4 p@l ocy | £ o(mr2/R 3 33 ordinates (¢,r (%) to the internal coordinatesu(r 2?). This
(NabotNabc2") | +O( )- (330 | ansformation is worked out in Appendix C, and it puts the

external-zone metric in its final form

These are theoordinate componentsf the metric perturba- om
tion h, in the retarded coordinatesi f Q?), expzrlessed N go=—1-r28*+0(r3R3}+ —
terms of frame componentf the tail fields .7, and r

hf”;, ,. The perturbation is expanded in powersrb’R and .
it also involves the tidal gravitational fields of the back- a[4m€* 2\ a
ground spacetime.

The external-zone metric is obtained by addimg; as (3.40
given by Eqs(3.20—(3.22 to h,z as given by Eqs(3.34—
(3.36. The final result is

+O(MriIR3),

_ - htall + hE)ai;lo) (_la

2
goa= — Q.+ = 2(8*+B*)+O( 3IR3)
124 O(YRY 4 T +hgy am _ — —
e R ﬂ—?(%w’;)ﬂéﬁ—ﬂaﬂb)
+r(2me* —2a,0+ hg};'0+ hi&l 02)+0(mr?/R3),

1
(337) X| ap— Ehtall + hE)atl,lo

— (@ap— i) QP

) +0(mr3/R?3), (3.41
Qua=—Qat = r2(gg+B;)+0(r3/R3)

- 1
. 2_mQ ey 0 Jab= Oap— QaQp— §r2(g;b+ B:,)+O(r3IR3)
r
+O(mréR3). (3.42)

2m
r2mes O+ — (S*+B*)+(5b Q,0%a,
Except for the terms involving, and w,,, this metric is
equal tog(internal zone) as given by Eg8.11)—(3.13 lin-

— QP+ hEL 0 h - hEl b4 0 hiEl b earized with respect ton.
A precise match betweeng(external zone) and
+0(mr?/R3), (3.38 g(internal zone) is produced when we impose the relations
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1 . ) APPENDIX A: SPHERICAL HARMONICS
22=5 e~ Gao (3.43 . . . . .
In this appendix | provide explicit expressions for the sca-
lar, vectorial, and tensorial spherical harmonics introduced in
and Sec. Il H. All harmonics are of degrde=2.
_ The scalar harmonics are
0_
While Eq. (3.43 tells us how the black hole moves in the Y= 2(3 cos6—1),
background spacetime, E(B.44) indicates that the vectors

ek are not Fermi-Walker transported on the world line. Y1¢=sin ¢ cose cose,
The black hole’s acceleration vectar*=a%%4 can be s )
constructed from the frame components listed in B$3. Y=>=sind cosfsing,

A straightforward computation gives
g P 9 Y2¢=sir 6 cos 2,

1 R o
at=— 5 (g"'+uru)(2hiy,—hij,)u'u’, (3.4 Y#=sin’ g sin 2¢.

VAp \pv

o The vectorial harmonics are defined B{'=Y", (even par-
where the tail integral ity) and XY= —& 2Y™ (odd parity, where a colon indicates
covariant differentiation with respect to a connection com-

tail _ T - p , patible with Q.g=diag(1,sik6), and s, is the two-
h;m_4mﬁwvx G v = 59wy |(1.77) dimensional Levi-Civita tensor. Explicitly,
<ut'ut dr’ (3.46 Y%= —3sing cos,
was previously defined by Ed3.29. Here, the unprimed Y?ﬁ:O,
indices refer to the current positiat{7) on the world line, 1
while the primed indices refer to a prior positiatir’); the Yy°=(2 cog6—1)cos¢,
integral is cut short at’= 7" in the manner defined by Eq. 1 . .
(3.25. These are the MiSaTaQuWa equations of motion, as Yy =—sinfcosdsing,
they were first presented by Mino, Sasaki, and Tardke 1 _
and later rederived by Quinn and W4lti1]. Y;°=(2cogh-1)sing,
Substituting Eqs(3.43 and(3.44) into Eq.(2.1) gives the L _
following transport equation for the tetrad vectors: Y¢S=Sln 6 cosf cose,
2c ;
Dej 1 . A Yy =2 sinf cosé cos 2,
TPl Eu"“(th,,a)'\'p— hf‘/;')\)uVeQuP
Yii=—2sirfgsin 26,
+(g*P+urur)hiy) uvel. (3.47

Y25=2 sing cos sin 2¢,
This can also be written in the alternative form
Y3=2sirff cos 2,

Dek 1 _
= — _(uﬂeguP_F g,u)\eg_ g”’)eg)u”hta"

a- 5 Ap (3.48 and

x9=0,
that was first proposed by Mino, Sasaki, and Tanaka. Both o
equations state that in the background spacetime, the tetrad X0 = — 3 sirf0 cosf
vectors are not Fermi-Walker transported gnthe rotation ’

tensor is nonzero and given by E§.44). X1°=cosf sin g,

ACKNOWLEDGMENTS X3=(2 cog6—1)sin g cosg,

This work was supported by the Natural Sciences and
Engineering Research Council of Canada. Conversations
with Claude Barrabe and Werner Israel were instrumental

1s__
Xy = —C0s6 cose,

1 _ . .
during the early stage of my work on the retarded coordi- Xg=(2cog6—1)singsing,
nates. Conversations with Steve Detweiler helped me clarify ae o
my thoughts on matched asymptotic expansions. Xy =2 sinfsin2¢,
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X%°=2 sirf 6 cos6 cos 2p,
XZ5=—2 sinf cos 2,
X%°=2 sirf6 cosé sin 2¢.

The tensorial harmonics are defined¥jJ;= Y"A5 (even par-
ity) and Xpgg= —X{a.) (0dd parity. Explicitly,

Y%,=—3(2coh-1),
Y9,=0,
Y9,=—3sirtgcog,
Y3°=—4 sinf cosé cose,
Y5, =sinf@sing,
Y= — 2 sirf g cosé cos,
Yie=—4sinf cosfsin g,
Yy = —sinf6 cose,
Yo, = —2sirfgcosfsing,
Y2¢=2(2 co$6—1)cos 24,
Y55,=—2sin6 cosé sin 2¢,
Y35, =2 sirf6(cos 60— 2)cos 2,
Y25=2(2 cog6—1)sin 2¢,
Y55,=2 siné cosé cos 2p,
Y5,=2 sirfo(cos 60— 2)sin 2¢,
and

X56=0,

Xogp=— gsin30,

X36=0,

Xp5=sindsin¢,

X5 = sir 6 cosf cose,

Xy,=—sin@sing,

X}s=—sing cos¢,

X5 =sir?g cosfsing,

Xy, =sin* 6 cose,

PHSBICAL REVIEW D 69, 084007 (2004

X2¢=—2 cosf sin 2¢

60— ’
X55,= —sin6(cos' 9+ 1)cos 2,
X%, =2 sirf  cosf sin 2,
X25=2 cosf cos 2,
X2 = —sin6(coL 6+ 1)sin 2

0 ,

X%, = — 2 sirf cosé cos 2p.

APPENDIX B: CALCULATION OF THE METRIC
PERTURBATIONS

In this appendix | derive the form of the functioas, e,,
ez, b,, andb, that appear in Sec. IlI B. For this it is suffi-
cient to take, say&,,= &, and B1,= BB,; as the only nonva-
nishing components of the tidal fields,, and 5,,. And
since the equations for even-parity and odd-parity perturba-
tions decoupld20,24], each case can be considered sepa-
rately.

Including only even-parity perturbations, E¢8.5—(3.8)
become

goo=—f(1+r%e,E .50 sin 2¢),

ur=—1,

2, - —
Guo= 3 3e,£,,5In 6 cosf sin 2,

2 L
Gug= 3 3e,E 1,5i 6 cos 20,

1 o o
ggg= 17— 3r*es€a( 1+ cog B)sin 24,

Jog=— §r4e3£125in§cos§cos 2,

1 - o
Ugp=T>si o+ §r4935123in20(1+cos’-6)sin 2¢.

This metric is then substituted into the vacuum Einstein field
equations. Computing the Einstein tensor is simplified by
linearizing with respect t&;, and discarding its derivatives

with respect tou: Since the time scale over whic8,,
changes is of ordeR, the ratio between temporal and spatial

derivatives is of order/R and therefore small in the internal
zone; the temporal derivatives can be consistently neglected.
The field equations produce ordinary differential equations to
be satisfied by the functiores , e,, ande;. Those are easily
decoupled, and demanding that the functions all approach
unity asr—o and be well behaved at=2m yields the
unigue solutions
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m2

el(r—):ez(r_):f7 e3(r_):1_r__2’

as was stated in E@3.9).
Switching now to odd-parity perturbations, EJ8.5)—
(3.8) become

=",
Qur=—1,

2. o
gug=— §r3b28123|n 6 cos 2,

2, P
Jus= 37 "b2B 1,8inf 6 cosé sin 2¢,

2 _
gog=r°+ §r4b3812c056cos 2p,

1y Ty '0)sin 2.
Gos=— 3" b3B1,Sin O(1+ cos 6)sin 26,

2 o
Ugp="rsinfo— 3 rbsBB 1,Si? 6 cosé cos 2p.

Following the same procedure, we arrive at
ba(r)=1, bs(r)=1,

as was stated in E@3.10.

APPENDIX C: TRANSFORMATION FROM EXTERNAL
TO INTERNAL COORDINATES

Our task in this appendix is to construct the transforma-

tion from the external coordinatesi,f Q%) to the internal

PHYSICAL REVIEW 9, 084007 (2004

2m _
Qu = =112 +O(r "R+ == +hig

+17(4mE"* — 22,03+ higo+ hig.Q'?)

+0(mr'?IR3),

2 _
Quar=—Qi+ T2 (7 +B*)+0(r"*IR®) +hgy

4m % %
—?(Ea +Ba )

+(8,°— QL0 P)ap— wap QP

tail
+Qhgy+r’

Nl QNS+ R+ O
+0(mr'2IR3),

1
Oarn = 5ab_QéQt’>_ §I"2(5é§ +Bé§)+0(l"3/R3)

+Q Q hta|I+Q hta|I+Q hta|l+ htal|
’ 2m 1% I otk 1%y !

+Bi+ QLB+ QBT

+0.00(h&+

taIIQIC)+Qa(hBal;|O+ E)atl)ICQ/C)

+ Qb( hE)aalllo talI

tail t il
Oac ,C)+(h;ll)o aakl)cﬂlc)

+0(mr'?/R3).

This metric matcheg(internal zone) at orders 1,2%/R?,

andm/r’, but there is still a mismatch at orden¥ R and
mr'/R2.

The second stage of the coordinate transformation is

coordinateSlQT(_la). We shall proceed in three stages. The 7=y’ — %f ta"(u ydu

first stage of the transformationy Q) —(u’,r'Q’#), will
be seen to remove unwanted terms of ondér in g, 5, as
listed in Egs.(3.37—(3.39. The second stageu(,r'Q'?)
—(u”,r"Q"?), will remove all terms of ordem/R in g,/ .

Finally, the third stageu”,r"Q") — (u,r Q2 will produce

the desired internal coordinates and return the metric in the xj =x;+

form of Eqs.(3.40—(3.42.
The first stage of the coordinate transformation is

m
u'=u—2minr, ’a—(1+ )

and it affects the metric at orders/r and mr/R?. This
transformation redefines the radial coordinate—+'=r
+m—and incorporates iru’ the gravitational time delay
contributed by the small mass. After performing the coor-
dinate transformation the metric becomes

r [htall(u )+2htall(u )Q/a+htall(u )Q/aQ/b]

a|I(u )X

and it affects the metric at orders/R and mr/R?. After
performing this transformation the metric becomes

nyn— —
gU u

2m
1— rr/ZE//* + O(r//3/R3) +
rH

r!/

4mE"* —2| a,—

Shsk i 02

+0(mr?IR3),
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” 2 n2; ok "% "3 3 d | |
Qurar=— Qg+ ZT"(EF" +BF7)+O("™IR?) 9u —hia=heao.

+r”

m n
— —(EM +BI*)—2mE O ° .
C : » —hih=4m&,p+hiy,

which are obtained by covariant differentiation of £g.28

in the direction of u*. The metric now matches
" i @il onb . tall g(internal zone) at orders 1/?/R?2, m/r", andm/R, but

~ 0apd"+ 5 03hg00~ 5 Nabo{2”+ hoapt there is still a mismatch at ordenr”/R 2.

The third and final stage of the coordinate transformation

+(8,°—030")| a hg’g{,+ hGho

is
+ = (5 +Q//erb)htall +O(mr”2/R3),
_ 1 : ) )
= (1 + 20l 07
1
— ” //_ //2 "% //* n3 3 .
Garpr = -Q Q ( ab+ )+O(r IR ) (hta|lo+2h'g)aalllb)ﬂ//aﬂ//b+ hf’;{atl)lcﬂ,,aﬂ,,bﬂ,,c]’
2m " "eon ” ” ” — m 1 i
4 ?( *+Q g * 1 £ *Qb+ * _ 1+§rngbCanerc Xg"‘zr"z{_ hBa(;L+hBa;|0
" " "y tail tall "
+Q B *+QbB *)+Q Qb(h000+ Q C) htail _htall htall 4_m an
" tail tail yrc " tail tail yrnc oab Oba * 3 gab
+ Q5 (hopot+ hgp2"€) + Q4 (hgaot+ hoac2”©)
+( at|1|0+ tall HC) +O(mr”2/R3) +(Qabc_cha+ Qcab)Q”bQ”C}.

. . ) . where
To arrive at these expressions we had to involve the relations 1 m
— tail d d
Qabc_zhabc+ §(8acd8 bt €bcaB a)-
tail _ . tail
—— hoo=hogo.

du” This produces the metric of Eq&.40—(3.42.
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