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Improved estimates of cosmological perturbations
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We recently derived exact solutions for the scalar, vector, and tensor mode functions of a single, minimally
coupled scalar plus gravity in an arbitrary homogeneous and isotropic background. These solutions are applied
to obtain improved estimates for the primordial scalar and tensor power spectra of anisotropies in the cosmic
microwave background.
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I. INTRODUCTION these obstacles, at least for slow-roll inflatiftf], so the
additional precision available from our exact solutions is
Mukhanov and Chibisoy/1] were the first to suggest that probably not necessary for comparison with foreseeable data.

quantum fluctuations during inflation produced the tiny inho-But it is nice to have, and it is simple enough to construct
mogeneities needed to form the various cosmic structures wexotic models in which the slow-roll paradigm breaks down
observe currently—as the result of gravitational collapsecompletely. We shall study one in Appendix B.
over the course of more than 10 billion years. Early work on  To fix notation, note that cosmologically relevant space-
the subject was also done by Hawkif®@], by Guth and Pi times are characterized by scale facior
[3], and by Starobinski[4]. The formalism has since been
described at length in a number of review artic[gs-7]. It ds?= —dt?+a?(t)dx- dx. (1)
has received much attention recently owing to the unprec-
edented precision with which the imprint of these fluctua-Although not directly an observable, the ratio of its current
tions on the cosmic microwave background radiation hasalue a, to its value at past timéis the cosmological red-
been imaged by the Wilkinson Microwave Anisotropy Probeshift experienced by light emitted at that time and received

(WMAP) satellite[8,9]. now:
Much of the fascinating structure revealed by these mea-
surements derives from processes which occurred long after ap
the end of inflation, and are not the subject of this paper. Z(I)Em—l- v

Instead, we recompute the primordial fluctuation spectrum

which is the starting point for the analysis of subsequentq |qarithmic derivative defines the Hubble parameter
processes. The justification is that we now have at our dis;

. - Swhich measures the rate at which distant matter is receding
posal the exact scalar and graviton mode functions UPOR e to the expansion of the Universe:

which the calculation is basgd0,11]. There has never been
any doubt regarding the spacetime dependence of the mode .

functions during the epoch of matter domination in which the H(t)= it)_ 3)
cosmic microwave background radiation anisotropies accu- a(t)

mulate. What was previously unavailable is an exact expres-

sion for the normalization factor which the mode functionslts second time derivative enters into the deceleration param-

build up during inflation. eterq:
Previous computations have been based on approximation
schemes that were developed over the course of two decades. a(t)a(t) H(t)
A key step in this effort was the introduction, by Stewart and q(t)y=— — == 1- YRS (4)
Lyth, of the slow-roll Bessel function approximatidiZ2]. a“(t) H=(1)

However, Wang, Mukhanov and Steinhardt3] demon-

strated that carrying this approximation to higher orders doedhe weak energy condition implies tha¢t)=—1; inflation

not generally improve accuracy, while Martin and Schwarzis characterized by(t) <O0.

[14] showed that the technique’s accuracy is not sufficient Quantum fluctuations are not especially big during infla-
for comparison with precision experiments such as WMAPtion, but they are enormously larger than afterwards. There-

and Planck. Recent improvemerts5—18 have overcome fore, we can analyze the process using linearized quantum
field theory. Furthermore, the high degree of homogeneity

and isotropy of the inflationary geometry implies both that a
*Email address: tsamis@physics.uoc.gr fluctuation can be characterized by its constant, comoving
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H horizon crossing = x(t,k)=1. (10

When the deceleration parametgiis constant, which is a
good approximation during the dominant phases in the his-
tory of the Universe, the following relation is valid:

— 1+z(ti))q
q(t)=g=x(t,k) =x(t; k)

1+z(t)) ° (1)

If we take the initial time instant; to signify the onset of
inflation, it becomes apparent that during inflatignde-

creases with timeg is negative in this era whileis an ever
decreasing function of time. Thus, the modes of interest start
with x larger than 1 and achieve conditi@t0)—first horizon
crossing—as the Universe still inflates. After first horizon
FIG. 1. The first and second horizon crossings of the physicatrossing, the variablefor these modes further decreases and
wavelength\,,. The Hubble radius, is constant during inflation becomes very much less than 1. However, postinflationary

(blue) behaves likery~a® during radiation(red), and like i eyolution is characterized by positivg and, hencex in-
~a”* during matter dominatiofigreen) The present is ao. The  creases during this era. The modes of physical interest are

a,

graph is not properly scaled. such that conditior(10) is satisfied again—second horizon
R crossing—before the present.

. 2mn Moreover, we note that significant fluctuations do not oc-

k= N ) cur for all fields, only for those which are both much lighter

than the inflationary Hubble parameter and also not confor-
and that each fluctuation evolves independently. The physicahally invariant. These two requirements mean we need con-
wavelengthh ;, of a fluctuation grows as the Universe ex- sider only gravitons and light, minimally coupled scalars.
pands: It is unnecessary to discuss invariant characterizations of
cosmological perturbations. The fully general and invariant
Apr(t)=a(t)\, (6)  formula of Sachs and Wolfe—which is reviewed in Sec. [l—

) ) L ) allows us to solve for the perturbations with any convenient
where\ is the comoving wave length. During inflation the chojce of gauge and field variables. Although we shall not
Hubble radiusy, work beyond linearized order, it is worth noting that the re-

F()=H"1(t) ) §ult of Sachs and Wolfe can be extended to any desired order
H ' in the weak field expansion. The method is applied for the

is approximately constant, whereas it grows more rapidlyd€neric system of a graviton with a massless, minimally

than the scale factor after the end of inflatisee Fig. L coupled sc.alar i_n Sec. lll. The scalar and.tensor power spec-
This variation ofr, gives rise to the two horizon crossings tra are derived in Secs. IV and V respectively. In both cases

which characterize the fluctuations of interest to us. TheyTProved estimates are obtained. Our conclusions comprise

happen when Sec. VI. The basics of the e_volut_ion depenc_jent improvement
factors have been summarized in Appendix A. Appendix B
horizon crossings\ p(t)=r (). (8 describes a model in which the slow roll paradigm com-

pletely breaks down but our methods can still be employed.
First horizon crossing occurs during inflation. Before this
time the linearized fields oscillate with falling amplitude;
afterwards they are approximately constant. Second horizon Il. THE SACHS AND WOLFE EFFECT
crossing occurs long after the end of inflation, indeed after Tpe gravitational field equations dre
the emission of the cosmic microwave radiation. Before sec-
ond horizon crossing the fields are approximately constant
whereas they oscillate with falling amplitude afterwards. G =R _=
We can be more precise by defining the dimensionless py Ty 29‘”
variable x which represents the physical wave number in
Hubble units:

R=87GT,,, (12)

By R,, andR we denote the Ricci tensor and Ricci scalar con-

X(t, k)= 9) structed _fro_m the s_pacelilfe_metri_c tensyy, . Furthermpre, an
' a(t)yH(t)’ overdot indicates differentiation with respect to comoving tine
while an overprime denotes differentiation with respect to confor-
and in terms of which horizon crossing means: mal time 7.
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in which G is the Newton constant. A spatially homogeneous Ul
and isotropic universe can be conveniently represented b
the stress tensdr,, of a perfect fluid with energy densiy,
pressurep and 4-velocityu*: (Mg »0) 4
T.=(pTpP)U,U,+pg,,, (13
xH
whereu” obeys
uu’g,,=—1. (14
To account for the observed structures and obtain a more (Mg +X)
realistic cosmological description, deviations from homoge- £
neity and isotropy are essential. Without any reference to X
their origin, it is simple to incorporate such departures as
linear perturbations on the dynamical variables of the sys-
tem:
9 (7. X) =0, (1) + 89, (7,X), (15) FIG. 2. The light emission#g ,X) and reception g ,0) events,
. # # and the lightlike geodesig*.
p(1.X)=p(7)+ 0p(7.X), (18 \hereE andR stand for the emission and reception events
L . respectively, and wherk* is the 4-momentum of the light
P(7,X)=p(7n)+ p(7,X). 17 ray:
The unperturbed metric fielaw belongs to the Robertson- K4(7)= x*(7). (29
Walker class of spacetimes and is, therefore, conformally flat
and characterized by scale factor The lightlike geodesig* satisfies
9= 7, (18) XH(7) + T4 X (1) Ix (1) x*(1) =0, (25
The unperturbeg andp correspond to the average energy 9usl X () Ix“(1)xP(1)=0, (26)

density and pressure of the physical system respectively. The ) ) _
arbitrariness in the choice of coordinates is resolved by emand Egs.(25), (26) can be integrated to give the following

ploying a frame that moves with the fluid: result forz(e) to first order in the perturbatioh,,,, [20]:
) — — “ a 7R n
Godl 7.%)=—1, 19 1+2(8)= agzg[l—fo " G| @hg; o)
Go(7,X) =0 U (p,x)=a"1(n) 5. (20 .

(27)

— Zalain..
It is important to note the relation between comoving and 2°¢ hij o(X)

o x#=(ng—0, é}
conformal time intervals: (g~ 0,0€)

Suppose that thermal radiation of average temperatgre

dt=a(z)dz. @) was emitted from a spacelike surface at the timeof the

Sachs and Wolfe have computg2h] the redshift accu- coordinate system. Then, at the reception evep,0),
mulated by a light ray as it travels in the presence of (&) -
from its emission to its receptiofsee Fig. 2. The result is T (é): Te(e) (28)
quite general as the only relevant ingredient is the metric R 1+z(e)’
field perturbation:

so that the first order temperature fluctuation observed from

59;“,532( 77)h,uy(771)2) (22) direCtioné is
If the Iight signgl is. observed from directios, the wave- ATR(é): ATE(é)+ Jtht éihom(x)
length shiftz(e) is given by Tr Te £
1....
1+2z(e)= M (23) —5e'ehi (%) y . (29
[uMk,u]R Xﬁ‘:(t,eftht’afl(t’))
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1.
3H2=87TG(§(p%+V(<po)), (35)

: (36)

. 1.
x 5@ wener (—1+ 2q)H2=8wG(§qoS—V(goO)
€

2

where an overdot represents differentiation with respect to
the comoving time.2 Although it is traditional to regard the
potential as known and then infer the scale factor, with our
. . . . method it is more convenient to regaeft)—and hence
1200 1000 0 H(t)=a/a and q(t)=—aa/a’—as a known function from
which the background scalar and the potential can be ex-
pressed as follows:

FIG. 3. A typical lightlike geodesig* on its way to the ob-
server. The graph is not properly scaled.

and has been expressed in terms of the comoving time R ey H()
Since the accumulated wavelength shift and the temperature $o~ 1+q(t)\/47rG' 37
fluctuation are observables, expressi@@3) and (29) are
manifestly gauge invariant. H2(t)
The cosmic microwave background radiatig@MBR) V(@) =(2—q(1)) 8-G (38

consists of photons emitted during the period of decougling.
What is measured is the product of temperature fluctuations ) ) o ) )
simultaneously observed from two different directidisee We parametrize the third derivative aft) using the variable
Fig. 3. Thus, the connection between the measured quantity 1 d

and the quantum mechanical origin of these fluctuations ((t)= In(vIT+qD). (39)

comes from the study of H(t) dt
| ATTR(Al)ATTR(é2)|Q>’ (30 Hence, the derivative of the potential is
R R
_ H2(1)
for the appropriate vacuum stat@). V' (gg)=(2—q(t)+r(t))Vv1i+a(t) . (40)
VamG

Ill. THE PERTURBATIONS OF THE GRAVITON-SCALAR

SYSTEM Higher derivatives of the potential can obviously be obtained

by taking higher time derivatives of the scale factor, for ex-
The Lagrangian describing the system of the graviton anémple,
a minimally coupled scalar is

1 1 V'(@o)=
= — — _— 22— J— —
L 167TGRV 9= 59upd,g""V—g V(e)V—g.
(31)

r(t
3q(t>r(t)—r2(t)—%)H2(t). (41)

A convenient diagonalization of the linearized system is
Its dynamical variables are the metric figlg, and the scalar 9'VeN in[21,22 and is summarized '_h_ll]'_ By employing a
¢. Both are expressed as a background plus a quantum fieldeneralized de Donder gauge condition:

9l 1.0 =8%(7) (M, 00 (7,%)), 3  F-a

1
v, > g, —2aH 0+ 2801+ an¢} =0,

=a%(0) (7t kPu(7,X)), (42)
33
33 all linearized fields can be expressed in terms of

¢(7,%)= o 1)+ B(7,%), (39 3

TT, 2\ " KX @
wherex?= 167G is the loop counting parameter of quantum il (ﬂyX)—f (2m)° z {€ij(k,s)Un( 7.k e *a(k,s)
gravity.
The background Einstein equations are +(c.c)}, (43

2In the history of the Universe, the period of decoupling is cen- °The relation between comoving and conformal time derivatives
tered aroundz~ 1089 with a widthAz~195. is 9l gt=(1/a)(dldn).
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) d3k L In order to apply the basic formul@9) for the first order
Yool 77,X)=J’ {Uc(7,k)e**Y(k)+(c.c)}, temperature fluctuation, we must transform the linearized
(2m)? fields (44)—(47) from obeying the gauge conditio2) to
(44 satisfying the comoving gauge conditioft®), (20). This is
as follows: achieved by effecting the field-dependent coordinate trans-
’ formation:
lr//Oi(nvx)IO! (45)
XH(X")=x"*+ ket (X'), (57)
i (7,X) = 8 thod 7.X) + ;" (1,X), (46)

which imposes the comoving gauge conditions:

- 1 1 1% -
¢( ﬂ,X): \/Tq(t) H(t)a(t) E(a(t)lpOO( ﬂ,X)),

- 1 7 -
X)=—=——| drn'a(y’ "\ X), 58
(47) &o( 7,X) 2a(m )y (7)o", X), (58
The mode functiond) 5 ¢ are of the form
2 o= " dw Lo bi(n' %)
UA( 7],k)— a(t) QA(U:k), (48) : 7 Oi K(Po(ﬂ’)
(59
I 1
Uc(m k)=~ 1+q(t)H(t)EQC(n’k)’ (49) on the linearized fields. In particular, since under any infini-
tesimal coordinate transformatiofb7) the graviton field
whereQp ¢ obey[11]* transforms to
QA,C HA’C QA,C_ ) ( ) (r/jl“/: ¢Mv+28(u,v)_2Ha80nMV’ (60)
1 51 for the specific choicé€58), (59) we obtain
Op=a, 0Oc= . 51
A ¢ avl+q
lﬂOO( 77!)():0! (61)

The graviton and scalar creation and annihilation operators
are canonically normalized:
" T of 36\’1‘ L ;[', ( )_()):__1 77d Ia( ')l/i ( ,)—(»)_(ﬁ'i(ﬂ,x)
[a(k,s),a (k 'S )]_(277) (k_k )555’1 (52) 0il 77, 28.(7]) e n n 00 /M K(pé(n) ’
(62)

[Y(K),YT(K)]=(2m)383(k—K"). (53)

The graviton polarization tensor is purely spatial, transverse. - T, >
and traceless: bij(7.X)= j (7,X) + &

> n
iﬁoo(ﬂ'X)JrH(??)L dn'a(y’)
E

€ou(k,8)=kieij(k,5) = €ji(k,s) =0. (54) _Zjndnﬁ,ij(,n',i). ©3
e Kkeo(n')

, o X oo 7' X)
Moreover, summing products of two polarization tensors
gives
Thus, by construction the graviton fie(61)—(63) obeys

R N 1 S - o -
> €ij(K,S) €t (K, 5)= E[Himnjn_"ninnjm_nijnmn]a Egs.(19), (20). Keeping in m|nd the definitiof33), the first
s order temperature fluctuatid29) becomes

(55)
_ i AT - ATeg . 7R o
[T = & —kikj, (56 —R(e)=—E(e)+Kf d7’| €'Y o(X)
TR TE 7E
wherell;; is the transverse projector. .
- Eéi el o(X) A (64)
. . . xt=(n",(ng—n')e€)
“While the general solutions to Eq&0), (51) are known[11], it
is only in a particular limit that we shall need them for the purposes
of this paper. Further reduction of Eq64) uses
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e Yoi o 7.X Tonom I | - X
Vorol 1) — €' ey o nx)=€'e| — Syl () + X
2 g 27 keo' (1))
~ 1 - H@p) (7 , , = ]
=e _§'Jf001(77,X)+T dn'a(n")oo;j(7",X) ,
- Y e B %
) 5| Yood 7, an) Yool 7,
X
a d)(? ) ) ! (65) ’ K ’ ' [
ke (1)) 4 +H'(n) | dn'a(n") oo 7".X) |.
s
(66)
A straightforward computation leads to the final form for the
together with first order temperature fluctuations:
ATg -~ ATe -« N " . ] €¢i(7r.0) €i(ne.(nr—1e)e)
T (&= @)+ 5| vod 7.0~ Hr | dn'a(n )il n',0) |~~~ —
R E 7E ®o’ (7R) ®o' (7R)

K o R ’ ’ A K'\i'\j R g TT ' " A
_El/fOO(WEv(WR_ 7g)€)— K , dn' Yoo dn',(7r— 7 )e)_Eee jn dn'¢ijo(n".(nr—n")e). (67)

The right-hand side of Eq67) consists of a part associated where the scalar response function is
with the temperature fluctuations of the emitting surface plus

seven terms. The first two of the latter have no angular de- . . K (trR [ - (IR
J dt| —+Ua(t.K) | ex |k~eJ dt'a (t")|.
E t

pendence and belong to the monopole contribution. The third(€,K) = 2/,
term is the dipole contribution while the fourth is the Sachs-
Wolfe velocity potential term. The spectra of scalar and ten-

sor perturbations that are usually reported reside in the fifth ;5 straightforward to compute the expectation valg®) in

(the Sachs-Wolfe potential tejnand seventh terms respec- hq presence of the state which was empty of gravitons in the
tively. The remaining sixth term is sometimes called the in-y;stant past;

tegrated Sachs-Wolfe effect.

(70

IV. THE TENSOR POWER SPECTRUM a(k,9)[Q2)=0, (71)
In 1979, Starobinski 23] became the first to calculate the and obtain
tensor power spectrum from what would later be called a
model of inflation. Subsequent computations were in 1982 ATg . ATg .
made by Rubakov, Sazhim and Veryaskz4] and by Fabbri (Qf T_R(el)T_R(ez)|Q>h
and Pollock 25]. The definitive result was obtained by Star-
obinski in 1985[26]. These calculations all depend upon a d3k . . o
normalization for the late-time mode functions whose precise = f sh(er,k)h*(ez k)
determination is our only improvement. However, we shall )
also carry out the computation in a slightly different fashion. o 1
The part of Eq.(67) relevant to tensor perturbations is x eyelen'ed IT;,IT;,— EH”H"“” . (72
ATR A KAiAj R P g TT o 1 A . ..
T—R(e)|h= —ee LE dn' ¢ o(n".(nr—7")e), The scalar response functi¢n0) can be explicitly evalu-

68) ated because the physical process occurs entirely during the

epoch of matter domination. If we assume that the onset of
and can be expressed as a sum over graviton momenta anthtter domination occurred at a tinig , when the Hubble
polarizations: parameter and scale factor welg, and ay respectively,
then at later times:

ATg - d3k N e - .
—(@)|p= > {h(e,k)e'ele;(k,s)a(k,s)
Tr (2m)% s e . : .
During matter domination, the deceleration paramefén) is
+(c.c)}, (69 quite well approximated by the constam= + 3.
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H
matte|:>H(t)=—M, (73 ir E_i
1o Vo 12
T Hu(t=tw) Cia(K)= T (80)
213 <_2_q1)

3
1+ - Hy(t—ty)

- (74

a(t)=ay

To get a feeling forC,,, it is important to note that for
In view of Egs.(73), (74), the dimensionless variablg)  Perfect de Sitter inflation it equals one:
equals

| a1=—1=Cia() =1, (8D
1/3

mattee=Xx(t,k) =x(ty ,K) (75 while for a more realistic situation one finds to first order:

3
1+ EHM(t_tM)

In terms ofx, the radial component of a lightlike geodesic qu(k)=—1+Aq(k)

timesk takes the form

3
tr dt’ = Cia(k)=1+ w(§ +|n2—1}Aq(k),
mattebkf T)=2x(tR,k)—2x(t,k), (76)
t
o M@
and the scalar response functitfd) become$ p(z)= T2 (82

h(e,k)=— EJXRdx(iUA(t,k))eznz'é(xR_x)_ (77  The factorCiy depends upon previous evolution. Had there
2 2 been no evolution i from the initial timet; to t,, its value

: . would be one:
Further progress in the evaluation of the scalar response

function(77) requires an explicit form for the mode function.
Indeed, the source of our improved estimate for the graviton
power spectrum is our improved derivation of the graviton
mode functiong10]. Since the physical process under study
involves modes that underwent first horizon crossing at
=t,, the relevant form of the mode functions fort, is

Xg

q()=g=Cia(k)=1. (83

When—as is the physical case—there is a mild evolution, it
results in small deviations about E(83) whose explicit
form is given in Appendix A.

In view of Eq. (79), we can express E(q78) with its

7
[11] conventional slow-roll normalization times the two correc-
X tion factors:
ri- v)J,,( 3
- 1 . .
Ua(t,k)= ——— XC1a(K) X Cia(K). —iHy |sin(2x)  cog2x)
A s X A A Ua(t,k) = 3 - X Ca(K) X Cia(K).
2q NE 8x® 4x?
(79 (84)
It consists of three factors, the first of which is the time  With the infrared approximatiof84) it is possible to ex-
dependent part: actly evaluate the scalar response funciion):
X . .
ri-v»J_,| —= .. ikHy 3 , sin(2x) cog 2x)
( ) q) =3 \/;JS/Z(ZX) h(E,k) = _ClACiAEZIWXR{ |: 3 - 5
( X )V - E (2X)3/2 : \/2k3 \/E 8x 4X
29 q=1/2y=—3/2 sin(2x)  cog2x) sin(2x) )
(79 —iw - —w? g 2iwx
8x2 4x 4x
This is a standard resf{tThe remaining two factors in Eq.
(78) represent our improvement to the normalization of the w e
mode functions¢; » depends upon the state of the system at + Z(l—W )LEI(2i(1—w)x)
first horizon crossing:
XR
—Ei(—2i(1+w)x)]] , (85
SHenceforth in this section, all quantities refer to the form they «
E

take for a matter dominated universe.

"The subscript 1 in a quantity signifies its value at first horizon . . i PR
crossingt=t,. where, to economize on writing, we have definegk- e as

83ee, for instance, E@4.29 of [6]. the cosine of the angle between the unit vecorand e.
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However, there is no point in retaining the full complexity of by Mukhanov, Feldman and Brandenber{g}; to the vari-
this result. It is easy to check that the term inside the curlyabIeP (k) used by Liddle and Lyth6], and to the quantity
brackets falls likex~2 for largex. Therefore, potentially ob-  AZ(k) used by Lidseyet al. [7]:

servable effects must derive from modes which had not yet

experienced second horizon crossing at the time of emission. 97

This impliesxg<1. The modes which produce anisotropies Pr(k)= T5ﬁ(k)= Pq(k) = AT(k) (93
within our current horizon volume must also have experi-

enced second horizon crossing by the time of receptio
Hence we can also assumg>1. It follows that the only
significant contribution comes from the lower limit, for
which we may as well take the limiting form relevant to
small xg :° Q==

nPerhaps the clearest specification/{k) is to state how it
enters the temperature correlation function:

ATg . ATg
T (e (8|0
R

ikH,y (1 3
h(e, k)|§RZi _C\/F lACiAeZIWXR1§_ZW2
| 1+w
n| 1=

+im
W

L (~dk . d2R® -
_Zfo ?Ph( )fﬂ (e1,k)

3 2
— §W(1—W ) (86)

X O (8,,K)8, 8l aman

1
HimHjn_EHinmn}- (99
The angular dependence in our expressi86) for the
scalar response function is complicated. However, one can The leading order slow roll result faP,(k) is typically
recognize some of the factors as spherical harmonics witBxpressed in terms of the value of the scalar potential at
zenith angleg=arccosé- k) and azimuthal angles=0: horizon crossing. Using Ed38) it can be converted to our
notation:

1 3 T
57 2" =5 Yoo VY20 (87

8 2
T;GAQ=GH4 3%>' (95)

3 3 27
- §W(1—W2)= BARTRES (88)  Our correction factors of 3/(2q;), C2,(k) and|Cia(K)|?
are typically near one for slow roll inflation. Note especially

It makes sense to decompose the scalar response functidie factor|Cia(K)[|?, which represents the effect of evolution

from the beginning of inflation up to horizon crossing, as
into a part depending only upde=||K|| and an angular factor
0, with the Yy, term in the latter bearing unit normalization: Eig]ulred by the analysis of Wang, Mukhanov and Steinhardt
i J7 It is elementary to verify that there is no monopole con-
h(e,k)[*> = #ClAclA 5 O(ek). (89)  tribution to Eq.(94) by fixing one of the two directions, for

et Jié instancee,, and integrating over the other:
Obviously AT ATg
‘ monopok_b—f dzel(QI—R(él) ez)|9>h
@AE-—EZIWXR 23w~ ow(L—w?)|In| ] 4 (96)
(eK)=—= 2= 3w~ Zw(l-w?) In| T +im

(90) If we take thez axis to be along thé direction, we can

We define the “graviton power spectrum” in terms of the €xpresse; in terms of the zenith anglé and azimuthal

radial factor: angle ¢:
2 ~ . . .
kK3 | —ikH; \/77 e;=(sin#f cos¢,sinf sin¢,cosh). (97
Pr(kK)=—|—=C1aCin—5| - 91
472 \/F 2 . . . L
The resulting azimuthal integration is simple:

=GHI(KCLA(K [Cia(k) 1% (92 2rdg. . 1
: - , f —elel =-IT1sirta+k'kicog, (99

Because the literature abounds with different conventions for 0o 2m 2

this quantity, we correspori, (k) to the symbol& (k) used
and the properties dffl;; ensure that Eq(98) gives a van-
ishing monopole contributiof96).
9Although our technique has been different, this result seems to In a similar fashion, it can be proved that E§4) con-
agree with Starobinsks equation(12) [26]. tains no dipole component:
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(e2)|Q)n=0,
(99

, 1 AT
dlpole:Ef d%e.e) (Q| (el)

where, as for the monopole case, directirhas been fixed.

V. THE SCALAR POWER SPECTRUM

PHYSICAL REVIEW B9, 084005 (2004

1 1 1
_I" 4+ —
m 2 dic (mlaac) T N
= —I(7/q - q
ClC ( 1d1c € i¢co Ui (1+I’1) 1c,
201¢c
(106
Qic=0dc(ty), ri=r(ty). (107

The spectrum of scalar perturbations can be computed

from the Sachs-Wolfe potential term in E@7):

ATg -

—(e ) sw= _—'ﬂoo(ﬂE (7r— 7E)€). (100

By virtue of Eq.(44) we have

ATp . d3k ) aa
R a f {Uc( e, k)emrmmekey (k)

T —(&)|sw=— m

+(c.c)}. (101

During inflation—in fact, quite generally—the parametés
typically zero. Therefore

r(t)=0=qc(t)=—q(t)

(108

. v
=Cic(K)=Cial k)e'("’ql)cos<q—
1

More generally, ifr is small we can write to first order

r(t)

IOk (109

de()=—q(t) +[2+q(t) Jr(t) + ——

In the presence of the state without any scalars in the distant

past:
Y(k)|Q)=0, (102
the temperature correlation functig¢®0) becomes
(Q |A (el) (ez)|Q>sw
=’§ | (;’%nucwak)n%wXEM@—‘z), (103

in terms of the dimensionless varial®.
The relevant form of the mode functions is fort; [11]:

—Hy  HM
UC(t,kHX«l_ma(t) tldt a(t)

X[1+q(t")1CIc(k) X Cie(K),

(104

wheret,, as always, signals first horizon crossing. In anal-
ogy with Sec. IV, the normalization fact@;c depends upon
It is expressed in terms of

the state of the system &i.
r(t)—defined in Eq(39—and the parameteyc(t):

TH®
[1+r(D]?

_ a(t)
W= 1"r0~

'r(t)}

(105

The expression is

Consequently, as in E¢82), we have to first order

g.(k)=—1+Aq(k)

3 r(t)
§>_1 Aq(k)_rl__H(t) .
(110

= [Cic(k)|=1+

¥

The other factorCic, depends upon evolution fromto t;.
Just likeC;,, it equals one wherq is constant; its general
form can be found in Appendix A.

Because the physical process takes place entirely during
pure matter dominatiotf

t
matter:j dt’a(t’)[1+q(t")]
t1

_amfi+qg)] 3ae
H(t) 2Hg

(112)

Thus, the mode functions can be expressed as a product of
the conventional slow roll normalization with the two correc-
tion factors:

3H,

2V2k3(1+qy)

and the temperature correlation function takes the form

Uc(tg, k)= X Cic(k)XCie(k), (112

Henceforth in this section, all quantities refer to the form they
take for a matter dominated universe.
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AT Our correction factors of 3(2q;+r;)%(2—0q,)3,

(e T (el) (92)|Q>sw |C2(k)||? and||C;c(k)||? are typically near one for slow roll
inflation. Consistent with the analysis of Wang, Mukhanov

dk 1 H? ) and Steinhardf13], there is a facto}fC;c(k)||> which repre-
=97 f (27)3 % 1+quclc(k)|| sents the effect of evolution from the beginning of inflation

- up to horizon crossing.
X|Cic(k[Pe?Crm@icere) (113
The identity V1. EPILOGUE

We have taken advantage of a recent, exact solution for
the mode functions of scalar-driven cosmoldgy] to re-
compute the scalar and tensor power spectra for anisotropies
in the cosmic microwave background. For completeness, and
reduces Eq(113) to its final form: to emphasize its inherent gauge invariance, we have also

reviewed the standard computation of the Sachs-Wolfe ef-
fect. The principal new feature is our expressions for the

d3k i L[ sinx
f (277)3f(k)e _Zqufo dkk2f (k) ot (114

(Q | (91) <ez)|9>sw normalization factors that were built-up during inflation.
We have not expanded the temperature correlation func-
=dk z tion in spherical harmonics. Nonetheless, since our results
|« 1+q T —lICic(K)Cic(K)|? take the form of the standard normalization times correction
7Jo

factors, it should suffice to simply multiply the standard re-
i 2(xq—xe)| 81— &)1 sult by these correction factors evaluated at the wave number
R _TEIIEL =2 (115  appropriate for thé-th multipole moment:

2(Xg— XE)”él_ éz”

The “scalar power spectrum” is defined by the way it
enters the correlation function between temperature fluctua-

1
tions observed from directiors, ande,: k=3 1aoHo. (120

Q== Tr (el) (92)|Q>SW The tensor correction factog , andC;, are given by Egs.
(80) and(A12) respectively; the analogous scalar fact®sg
_ fwdk Penk) f _ez.(xR xg)k-(1-85) andCic by Egs.(106 and (A13).
0 How observable are the correction factors we have found?
(116 Since it is likely to require a major effort to detect a nonzero
tensor amplitude, the fractional improvement we give for this
Hence, we obtain probably does not matter. On the other hand, precision mea-
surements of the scalar amplitude might very well be sensi-
’ ) tive to the structure we provide. The greatest advantage of
Psudk) = 47 1+q, ”ClC(k)H ICic i (117 our formalism is not the incremental improvements it offers
for the standard, slow roll regime but rather its applicability
We again correspon®s,(K) to the symbols(k) used by to exotic scenarios that lie beyond the slow roll paradigm.
Mukhanov, Feldman and Brandenber{ig}, to the variable We present an example in Appendix B.
Pr(k) used by Liddle and LytH6], and to the quantity Finally, we disagree slightly with the standard treatment
A%(k) used by Lidseyet al. [7]: of the tensor contribution. The original authors seem to have
averaged over graviton polarizations before taking the expec-
tation value. This makes a small but possibly significant dif-
ference in the tensor contribution to the multipole moments
of the temperature fluctuations correlation function.

2

, 225
Psw(k)——||5(k)|| I—Pn(k)— 15 Aslk). (118

The leading slow roll result foPsy(K) is usually ex-
pressed in terms of the scalar potential and its derivative at
the time of horizon crossing. Using Eg®8) and (40) we ACKNOWLEDGMENTS

can convert this to our notation: _ _ )
This work was partially supported by European Union

V? 9 GH% (2_q1)3 grants HPRN-CT-2000-00122 and HPRN-CT-2000-00131,
967G° —= = o 5. (119 by DOE contract DE-FG02-97ER41029, and by the Institute
Vi© 4T 1t0813(2—qp+ry) for Fundamental Theory at the University of Florida.

084005-10



IMPROVED ESTIMATES OF COSMOLOGICAL PERTURBATIONS PHYSICAL REVIEW B9, 084005 (2004

APPENDIX A: THE EVOLUTION DEPENDENT graviton= ga(t)=q(t), (A3)
CORRECTION FACTORS
A central feature of our exact solutions is the transfer 'r(t)
matrix, M, (t,t; ,K). There is arl = A transfer matrix for the- q(t) 1- H(t)
raviton m function and dr= C one for th lar m scalar=qc(t)=1— - .
graviton mode function and dr=C one for the scalar mode dc(t) 1+1()  [141()]?

function. Each of them is the time-ordered product of the

exponential of a line integral: (Ad)

¢ There is a similar dichotomy for the appropriate physical
M, (1,8 ,k)EP(exr{J dt’A,(t’,k)“, (Al)  wave number expressed in Hubble units,
1§
” it (t,k) X (A5)
t t th raviton= xa(t,k) = ———,
=3 [Ca [ a7, ’ SO
n=0 t t t
t,k)
X A(t1,K) - - Ay (t k). (A2) _ Xabk)
(T 1Ty scalar= xc(t,k) 1+ r(D) (AB)
The exponent matrix4, (t,k) vanishes whenever there is no
evolution of the appropriatg, (t):* With these definitions the exponent matrix takes the form
3 el
cs C,| —— —2i - —
. C(Vlﬂ-) V| ql V| ql
At =7 . o (A7)
—2icsé bv<——') —cs cy<——')
(vym) : a qvm) | a
|
where the various coefficient functions are and we have defined
1 O=2-ai0, pD=—n (A1)
=—-- , Z)=——.
. (—1)“F(n—v— E)ZZ”‘ZV(n—v)‘1 . 2 @ I'(z)
b,(2)= :
2\mi=1 F(M(n—v+1)I(n-2v+1) We can now give precise definitions for the evolution de-

(A8)  pendent normalization factors:

CMmiMﬂhhmhMﬁ%hMﬂM%%g»

4 1
c,(2)=— ;Sln(vw) g_//(v)—l—ln(iz)

( 1)”F(n 1)22%‘1 (A12)
1o O ~3
C (m ST+ »)T(n+ 1) (n—v+1)’ (A9) Cic(k)=MEX(ty,t; k)
. n
+ ME(t Y ,k)e'quc)sec( qf) : (A13)
1 iC
10> (=) n+v— 5)22”+2”(n+v)_1
d,(z)= 2 The subscripti denotes the initial value of the respective
g 2Jmizo T'(n+2v)[(n+r+1)T(n+1) parameter. Since during inflation one typically has
(A10)
. q(t
11 - v(t)= qz( ) <1, (A14)
Recall the definition(39) of the parameter(t). q-(t)
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it ought to be a very good approximation to simply take the Vv

first several terms of the series expansion of the transfer ma
trix in estimating these corrections:
tq ty t
M1+ [P+ [ o avnma
g G g V=0
—~a(0B(t)], (A15) A
ty ty t
M,12~—iﬁ dté,(t)—ift. dtft‘dt’[y,(t)&(t’)
—a(tn(t)], (A16)
21 ot S (u t ¢
M| ~_|£ dtBI(t)_IJ; dtJAt dtl[B|(t)’}/|(tl) q)e ¢f
| , | | FIG. 4. The scalar potential associated with a phase of ultra
—nOBIt)], (A17)  sjow roll inflation. In the regionp,<¢=< ¢; the potential is exactly
flat with valueV; .
t t t
M.Z2~1—fldty.<t>+fldtf dt'[y(t) % (t) -
t t t o . af for
—J dteg == o TPt Pe- (B3)
—Bi()& ()], (A18) t a(t) 3H;

where the coefficient functions are We shall assume this and study the scalar power spectrum for

modes which experience first horizon crossing while the sca-

m‘,le ( _X lar is on the flat section.
"ooq In the flat region all derivatives of the potential vanish, so
Bi(t)= 2 sik(vm) (A19) all of the slow roll parameters are zero. Although the scalar is
' rolling ever more slowly—hence the name—this is a situa-
x tion in which the conventional slow roll approximation com-
mC, ( — _) pletely breaks down. In fact the slow roll predicti@i9) for
"oq the scalar power spectrum actually diverges. The difficulty of

n(H= 4sinvym) ' (A20) reconciling this with a system which is approaching a pure
de Sitter phase was the occasion of much reflection by Gr-

x) ishchuk[27]. We shall see thaPgy/(k) is finite, but that it

- q_ (A21) can become quite large.
|

By adding the background Einstein equatidB$s), (36)
and then substituting E¢B2) one finds

’7T;l|
o(t,k)= Td’ﬁ(

APPENDIX B: ULTRA SLOW ROLL INFLATION

6

41" (Ba

Consider an inflation potential like that depicted in Fig. 4 05 ( o )2 8
a(t)

Po
and suppose inflation begins with the scalar to the right of 1+q(t)=4me=4wG H(t)
the flat portion. Once the scalar rolls into the flat region its
background equation of motion becomes

During inflation the deceleration parameter is typically near
¢0+3H¢0:0_ (B1) -1, buF the fact that it approaches this value exp_onentially
fast during the ultra slow roll phase makes a crucial change

This can be integrated to give an exact expression for thi¥) the parameter(t) defined in Eq(39):
scalar’s time derivative in terms of its value at the beginning
of the flat region: 1d

3 rH= H dt
<0. (B2

In(v1+q)=—3- %= —2+q(t). (B5)

Althoughr (t) is near zero for typical models of inflation, we
If the scalar has enough kinetic energy it can roll through thesee that it is nearly- 3 during the ultra slow roll phase. It is
flat region, and then on down its potential. The condition forsimple enough to obtain an exact expression as well for its
this to happen is derivative during this phase:
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roq 1 q [ i { i } .
== 1 = _92(2- =\/—= —| 1= 5|37 2X%s) + 2137/ 2 ,
H-H 2(1+Q)><2H 11q 2(2—=q)(1+q). g © 2%; 712 2X¢) + 2137/ 2Xs)
(B6)
Note that this quantity is nearly zero, both for typical infla- (B14)
tion and during ultra slow roll phase.
It is now straightforward to evaluate our fact6yc(k)
that depends upon the system’s state at horizon crossing. 1 15
Substituting in Eq.(105 gives the following result during = —e | -1+ —|cog2x)
the ultra slow roll phase: 8 4x?
q 1+2(2—q)(1+0q) 3 _ | 6 5
t)=1— — — — ——=|sin(2x¢) +i| — —+ —=|cog 2x;)
Ac(® q-1 (g—1)2 Xt 8x3 2 Xt 4x3 42
+ ! > (B7) +i| —2+ 24 in(2x¢) (B15)
=2+ —F- . i| =2+ ———|sin(2x;) | .
q9-1 (q—1)2 x;  8x{ f

Although qc(t)=+1 in typical models of inflation, we see
that it rapidly approaches-; during the ultra slow roll

: i ) Because first horizon crossing occurs after the scalar has
phase. Evaluating Eq106) for q,c=7 andr,=—3 gives

rolled onto the flat region we can assurje-1. It is not safe

1 9\ 105 to ass_;ume<>1 because some modes will experience_ horizon

Clc(k)|q1§:_g4 — —F( ) - (B8) crossing soon after the ultra slow roll phase begins. The
B N 16 power spectrum of these modes will deviate much more from

) ) scale invariance than is typically the case. Although the flat
To estimate the evolution-dependent factgr(k) we

ke th bl : hat th rﬁgion must be narrow enough that the scalar can roll across,
make the reasonable assumplnon that the system goes s process can be tuned to require an arbitrarily long time.
denly fromqgc=+1 to qc=+73. In this case the transfer

> . . : O,:or modes which experience horizon crossing long after the
matrix is determined by matching the mode functions an tnset of the ultra slow roll bhase. one can assorael  in
their first time derivatives at the onset of the flat regtén: P : el

2

which case
_ ME MP
2(= 137 2%¢), =7 2X0))| | ;1 2
ME ME T I
Xi=>1=|C; = =+ 5 SiN(2xy). B16
= (13 = X5), -y = X¢)), (B9) ' [Ciet] 8 8 (2x0) (616
M M
A(—137/A2%¢), 3" 7A2X)) M2 2 This still shows anomalously strong violations of scale in-
c ¢ variance.
=— (13— x%5),3" 1 —X%p)). (B10) We constructed this model as an exotic system in which

the slow roll paradigm completely breaks down. However, it
The matrix elements needed for the scalar power spectrutnas two other properties worthy of note. The first is that,
are although our predictiori117) for the scalar power spectrum
_ remains finite, it can become quite large owing to the inverse
21 I 77X , , factor of (1+q;). We have seen from EqB4) that (1
M= = 77 D372 2X0) Jol =X0) #2075 2%0) I =X0)]. 4 1)) approaches zero exponentially fast. It seems inevi-
(B11)  table that back reaction must eventually become significant if
the ultra slow roll phase is protracted.
The second interesting property of this model is that the
anisotropies generated during the ultra slow roll phase are
entirely due to scalar kinetic energy. The potential is com-

22_ _ TX '
M= = [ 2X0) I 1o = X4)

+237(2%1) I _ 1 —X¢) 1. (B12)  pletely flat so the only possible fluctuations derive from the
gravitational response to kinetic energy. This is usually dis-
Substituting in Eq(A13) with g;c=+1 we obtain missed as negligible but we have just seen that it can drive
” 2 an enormously strong effect as the system approaches de
Cic(K)=Me+ M7, (B13) Sitter inflation. This suggests that one might expect a simi-

larly strong effect from gravitons—the combination of two
of which can produce a scalar—if the computation were car-
2In accordance with the definitiof®), x;=k/Ha; . ried to next order in the weak field expansion.
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