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Improved estimates of cosmological perturbations
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We recently derived exact solutions for the scalar, vector, and tensor mode functions of a single, minimally
coupled scalar plus gravity in an arbitrary homogeneous and isotropic background. These solutions are applied
to obtain improved estimates for the primordial scalar and tensor power spectra of anisotropies in the cosmic
microwave background.
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I. INTRODUCTION

Mukhanov and Chibisov@1# were the first to suggest tha
quantum fluctuations during inflation produced the tiny inh
mogeneities needed to form the various cosmic structures
observe currently—as the result of gravitational collap
over the course of more than 10 billion years. Early work
the subject was also done by Hawking@2#, by Guth and Pi
@3#, and by Starobinski� @4#. The formalism has since bee
described at length in a number of review articles@5–7#. It
has received much attention recently owing to the unpr
edented precision with which the imprint of these fluctu
tions on the cosmic microwave background radiation
been imaged by the Wilkinson Microwave Anisotropy Pro
~WMAP! satellite@8,9#.

Much of the fascinating structure revealed by these m
surements derives from processes which occurred long
the end of inflation, and are not the subject of this pap
Instead, we recompute the primordial fluctuation spectr
which is the starting point for the analysis of subsequ
processes. The justification is that we now have at our
posal the exact scalar and graviton mode functions u
which the calculation is based@10,11#. There has never bee
any doubt regarding the spacetime dependence of the m
functions during the epoch of matter domination in which t
cosmic microwave background radiation anisotropies ac
mulate. What was previously unavailable is an exact exp
sion for the normalization factor which the mode functio
build up during inflation.

Previous computations have been based on approxima
schemes that were developed over the course of two deca
A key step in this effort was the introduction, by Stewart a
Lyth, of the slow-roll Bessel function approximation@12#.
However, Wang, Mukhanov and Steinhardt@13# demon-
strated that carrying this approximation to higher orders d
not generally improve accuracy, while Martin and Schwa
@14# showed that the technique’s accuracy is not suffici
for comparison with precision experiments such as WM
and Planck. Recent improvements@15–18# have overcome
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these obstacles, at least for slow-roll inflation@19#, so the
additional precision available from our exact solutions
probably not necessary for comparison with foreseeable d
But it is nice to have, and it is simple enough to constru
exotic models in which the slow-roll paradigm breaks dow
completely. We shall study one in Appendix B.

To fix notation, note that cosmologically relevant spac
times are characterized by scale factora:

ds252dt21a2~ t !dxW•dxW . ~1!

Although not directly an observable, the ratio of its curre
valuea0 to its value at past timet is the cosmological red-
shift experienced by light emitted at that time and receiv
now:

z~ t ![
a0

a~ t !
21. ~2!

Its logarithmic derivative defines the Hubble parameterH
which measures the rate at which distant matter is reced
due to the expansion of the Universe:

H~ t ![
ȧ~ t !

a~ t !
. ~3!

Its second time derivative enters into the deceleration par
eterq:

q~ t ![2
a~ t !ä~ t !

ȧ2~ t !
5212

Ḣ~ t !

H2~ t !
. ~4!

The weak energy condition implies thatq(t)>21; inflation
is characterized byq(t),0.

Quantum fluctuations are not especially big during infl
tion, but they are enormously larger than afterwards. The
fore, we can analyze the process using linearized quan
field theory. Furthermore, the high degree of homogene
and isotropy of the inflationary geometry implies both tha
fluctuation can be characterized by its constant, comov
wave vectorkW :
©2004 The American Physical Society05-1
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kW5
2pnW

l
, ~5!

and that each fluctuation evolves independently. The phys
wavelengthlph of a fluctuation grows as the Universe e
pands:

lph~ t !5a~ t !l, ~6!

wherel is the comoving wave length. During inflation th
Hubble radiusr H ,

r H~ t ![H21~ t !, ~7!

is approximately constant, whereas it grows more rapi
than the scale factor after the end of inflation~see Fig. 1!.
This variation ofr H gives rise to the two horizon crossing
which characterize the fluctuations of interest to us. Th
happen when

horizon crossing⇒lph~ t ![r H~ t !. ~8!

First horizon crossing occurs during inflation. Before th
time the linearized fields oscillate with falling amplitud
afterwards they are approximately constant. Second hor
crossing occurs long after the end of inflation, indeed a
the emission of the cosmic microwave radiation. Before s
ond horizon crossing the fields are approximately cons
whereas they oscillate with falling amplitude afterwards.

We can be more precise by defining the dimensionl
variable x which represents the physical wave number
Hubble units:

x~ t,k![
k

a~ t !H~ t !
, ~9!

and in terms of which horizon crossing means:

FIG. 1. The first and second horizon crossings of the phys
wavelengthlph. The Hubble radiusr H is constant during inflation
(blue), behaves liker H;a2 during radiation(red), and like r H

;a3/2 during matter domination(green). The present is ata0. The
graph is not properly scaled.
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horizon crossing ⇒ x~ t,k!51. ~10!

When the deceleration parameterq is constant, which is a
good approximation during the dominant phases in the
tory of the Universe, the following relation is valid:

q~ t !5q̄⇒x~ t,k!5x~ t i ,k!S 11z~ t i !

11z~ t ! D q̄

. ~11!

If we take the initial time instantt i to signify the onset of
inflation, it becomes apparent that during inflationx de-
creases with time:q̄ is negative in this era whilez is an ever
decreasing function of time. Thus, the modes of interest s
with x larger than 1 and achieve condition~10!—first horizon
crossing—as the Universe still inflates. After first horizo
crossing, the variablex for these modes further decreases a
becomes very much less than 1. However, postinflation
evolution is characterized by positiveq̄ and, hence,x in-
creases during this era. The modes of physical interest
such that condition~10! is satisfied again—second horizo
crossing—before the present.

Moreover, we note that significant fluctuations do not o
cur for all fields, only for those which are both much light
than the inflationary Hubble parameter and also not con
mally invariant. These two requirements mean we need c
sider only gravitons and light, minimally coupled scalars.

It is unnecessary to discuss invariant characterization
cosmological perturbations. The fully general and invaria
formula of Sachs and Wolfe—which is reviewed in Sec. II
allows us to solve for the perturbations with any conveni
choice of gauge and field variables. Although we shall n
work beyond linearized order, it is worth noting that the r
sult of Sachs and Wolfe can be extended to any desired o
in the weak field expansion. The method is applied for
generic system of a graviton with a massless, minima
coupled scalar in Sec. III. The scalar and tensor power sp
tra are derived in Secs. IV and V respectively. In both ca
improved estimates are obtained. Our conclusions comp
Sec. VI. The basics of the evolution dependent improvem
factors have been summarized in Appendix A. Appendix
describes a model in which the slow roll paradigm co
pletely breaks down but our methods can still be employ

II. THE SACHS AND WOLFE EFFECT

The gravitational field equations are1

Gmn[Rmn2
1

2
gmnR58pGTmn , ~12!

1By Rmn andR we denote the Ricci tensor and Ricci scalar co
structed from the spacelike metric tensorgmn . Furthermore, an
overdot indicates differentiation with respect to comoving timet
while an overprime denotes differentiation with respect to conf
mal timeh.

al
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in which G is the Newton constant. A spatially homogeneo
and isotropic universe can be conveniently represented
the stress tensorTmn of a perfect fluid with energy densityr,
pressurep and 4-velocityum:

Tmn5~r1p!umun1pgmn , ~13!

whereum obeys

umungmn521. ~14!

To account for the observed structures and obtain a m
realistic cosmological description, deviations from homog
neity and isotropy are essential. Without any reference
their origin, it is simple to incorporate such departures
linear perturbations on the dynamical variables of the s
tem:

gmn~h,xW !5ḡmn~h!1dgmn~h,xW !, ~15!

r~h,xW !5 r̄~h!1dr~h,xW !, ~16!

p~h,xW !5 p̄~h!1dp~h,xW !. ~17!

The unperturbed metric fieldḡmn belongs to the Robertson
Walker class of spacetimes and is, therefore, conformally
and characterized by scale factora:

ḡmn5a2~h!hmn . ~18!

The unperturbedr̄ and p̄ correspond to the average ener
density and pressure of the physical system respectively.
arbitrariness in the choice of coordinates is resolved by
ploying a frame that moves with the fluid:

g00~h,xW !521, ~19!

G0
i ~h,xW !50⇔um~h,xW !5a21~h!d0

m . ~20!

It is important to note the relation between comoving a
conformal time intervals:

dt5a~h!dh. ~21!

Sachs and Wolfe have computed@20# the redshift accu-
mulated by a light ray as it travels in the presence of Eq.~15!
from its emission to its reception~see Fig. 2!. The result is
quite general as the only relevant ingredient is the me
field perturbation:

dgmn[a2~h!hmn~h,xW !. ~22!

If the light signal is observed from directionê, the wave-
length shiftz(ê) is given by

11z~ ê!5
@umkm#E

@umkm#R

, ~23!
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whereE and R stand for the emission and reception eve
respectively, and wherekm is the 4-momentum of the ligh
ray:

km~t!5ẋm~t!. ~24!

The lightlike geodesicxm satisfies

ẍm~t!1Gab
m @x~t!#ẋa~t!ẋb~t!50, ~25!

gab@x~t!#ẋa~t!ẋb~t!50, ~26!

and Eqs.~25!, ~26! can be integrated to give the followin
result forz(ê) to first order in the perturbationhmn @20#:

11z~ ê!5
a~hR!

a~hE! H 12E
0

hR2hE
dsF êih0i ,0~x!

2
1

2
êi êjhi j ,0~x!G

xm5(hR2s,sê)
J . ~27!

Suppose that thermal radiation of average temperatureTE
was emitted from a spacelike surface at the timehE of the
coordinate system. Then, at the reception event (hR ,0W ),

TR~ ê!5
TE~ ê!

11z~ ê!
, ~28!

so that the first order temperature fluctuation observed fr
direction ê is

DTR

TR
~ ê!5

DTE

TE
~ ê!1E

tE

tR
dtF êih0i ,t~x!

2
1

2
êi êjhi j ,t~x!G

xm5(t,ê*
t

tRdt8a21(t8))

, ~29!

FIG. 2. The light emission (hE ,xW ) and reception (hR ,0W ) events,
and the lightlike geodesicxm.
5-3
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and has been expressed in terms of the comoving timt.
Since the accumulated wavelength shift and the tempera
fluctuation are observables, expressions~27! and ~29! are
manifestly gauge invariant.

The cosmic microwave background radiation~CMBR!
consists of photons emitted during the period of decouplin2

What is measured is the product of temperature fluctuat
simultaneously observed from two different directions~see
Fig. 3!. Thus, the connection between the measured qua
and the quantum mechanical origin of these fluctuati
comes from the study of

^Vu
DTR

TR
~ ê1!

DTR

TR
~ ê2!uV&, ~30!

for the appropriate vacuum stateuV&.

III. THE PERTURBATIONS OF THE GRAVITON-SCALAR
SYSTEM

The Lagrangian describing the system of the graviton
a minimally coupled scalar is

L5
1

16pG
RA2g2

1

2
]mw]nwgmnA2g2V~w!A2g.

~31!

Its dynamical variables are the metric fieldgmn and the scalar
w. Both are expressed as a background plus a quantum fi

gmn~h,xW !5a2~h!~hmn1hmn~h,xW !!, ~32!

[a2~h!~hmn1kcmn~h,xW !!,
~33!

w~h,xW !5w0~h!1f~h,xW !, ~34!

wherek2[16pG is the loop counting parameter of quantu
gravity.

The background Einstein equations are

2In the history of the Universe, the period of decoupling is ce
tered aroundz;1089 with a widthDz;195.

FIG. 3. A typical lightlike geodesicxm on its way to the ob-
server. The graph is not properly scaled.
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3H258pGS 1

2
ẇ0

21V~w0! D , ~35!

~2112q!H258pGS 1

2
ẇ0

22V~w0! D , ~36!

where an overdot represents differentiation with respec
the comoving timet.3 Although it is traditional to regard the
potential as known and then infer the scale factor, with o
method it is more convenient to regarda(t)—and hence
H(t)5ȧ/a and q(t)52aä/ȧ2—as a known function from
which the background scalar and the potential can be
pressed as follows:

ẇ052A11q~ t !
H~ t !

A4pG
, ~37!

V~w0!5~22q~ t !!
H2~ t !

8pG
. ~38!

We parametrize the third derivative ofa(t) using the variable

r ~ t ![
1

H~ t !

d

dt
ln~A11q~ t !!. ~39!

Hence, the derivative of the potential is

V8~w0!5~22q~ t !1r ~ t !!A11q~ t !
H2~ t !

A4pG
. ~40!

Higher derivatives of the potential can obviously be obtain
by taking higher time derivatives of the scale factor, for e
ample,

V9~w0!5S 3q~ t !r ~ t !2r 2~ t !2
ṙ ~ t !

H~ t !
DH2~ t !. ~41!

A convenient diagonalization of the linearized system
given in @21,22# and is summarized in@11#. By employing a
generalized de Donder gauge condition:

Fm[aFcm,n
n 2

1

2
cn,m

n 22aHcm012dm
0A11qaHf G50,

~42!

all linearized fields can be expressed in terms of

c i j
TT~h,xW !5E d3k

~2p!3 (
s

$e i j ~kW ,s!UA~h,k!eikW•xWa~kW ,s!

1~c.c.!%, ~43!

- 3The relation between comoving and conformal time derivativ
is ]/]t5(1/a)(]/]h).
5-4
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c00~h,xW !5E d3k

~2p!3
$UC~h,k!eikW•xWY~kW !1~c.c.!%,

~44!

as follows:

c0i~h,xW !50, ~45!

c i j ~h,xW !5d i j c00~h,xW !1c i j
TT~h,xW !, ~46!

f~h,xW !5
1

A11q~ t !

1

H~ t !a~ t !

]

]t
~a~ t !c00~h,xW !!,

~47!

The mode functionsUA,C are of the form

UA~h,k![
A2

a~ t !
QA~h,k!, ~48!

UC~h,k![2A11q~ t !H~ t !
1

k
QC~h,k!, ~49!

whereQA,C obey @11#4

QA,C9 1Fk22
uA,C9

uA,C
GQA,C50, ~50!

uA[a, uC[
1

aA11q
. ~51!

The graviton and scalar creation and annihilation opera
are canonically normalized:

@a~kW ,s!,a†~kW8,s8!#5~2p!3d3~kW2kW8!dss8 , ~52!

@Y~kW !,Y†~kW8!#5~2p!3d3~kW2kW8!. ~53!

The graviton polarization tensor is purely spatial, transve
and traceless:

e0m~kW ,s!5kie i j ~kW ,s!5e i i ~kW ,s!50. ~54!

Moreover, summing products of two polarization tenso
gives

(
s

e i j ~kW ,s!emn* ~kW ,s!5
1

2
@P imP jn1P inP jm2P i j Pmn#,

~55!

P i j [d i j 2 k̂i k̂ j , ~56!

whereP i j is the transverse projector.

4While the general solutions to Eqs.~50!, ~51! are known@11#, it
is only in a particular limit that we shall need them for the purpo
of this paper.
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In order to apply the basic formula~29! for the first order
temperature fluctuation, we must transform the lineariz
fields ~44!–~47! from obeying the gauge condition~42! to
satisfying the comoving gauge conditions~19!, ~20!. This is
achieved by effecting the field-dependent coordinate tra
formation:

xm~x8![x8m1k«m~x8!, ~57!

which imposes the comoving gauge conditions:

«0~h,xW !52
1

2a~h!
E

hE

h
dh8a~h8!c00~h8,xW !, ~58!

« i~h,xW !5E
hE

h
dh8Fc0i~h8,xW !1

f ,i~h8,xW !

kw08~h8!
G ,

~59!

on the linearized fields. In particular, since under any infi
tesimal coordinate transformation~57! the graviton field
transforms to

c̃mn5cmn12« (m,n)22Ha«0hmn , ~60!

for the specific choice~58!, ~59! we obtain

c̃00~h,xW !50, ~61!

c̃0i~h,xW !52
1

2a~h!
E

hE

h
dh8a~h8!c00,i~h8,xW !2

f ,i~h,xW !

kw08~h!
,

~62!

c̃ i j ~h,xW !5c i j
TT~h,xW !1d i j Fc00~h,xW !1H~h!E

hE

h
dh8a~h8!

3c00~h8,xW !G22E
hE

h
dh8

f ,i j ~h8,xW !

kw08~h8!
. ~63!

Thus, by construction the graviton field~61!–~63! obeys
Eqs.~19!, ~20!. Keeping in mind the definition~33!, the first
order temperature fluctuation~29! becomes

DTR

TR
~ ê!5

DTE

TE
~ ê!1kE

hE

hR
dh8F êi c̃0i ,0~x!

2
1

2
êi êj c̃ i j ,0~x!G

xm5(h8,(hR2h8)ê)

. ~64!

Further reduction of Eq.~64! uses
s

5-5
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êi c̃0i ,0~h,xW !

5êiF2
1

2
c00,i~h,xW !1

H~h!

2 E
hE

h
dh8a~h8!c00,i~h8,xW !

2S f~h,xW !

kw08~h!
D

,0i
G , ~65!

together with
d
lu
d
hi
s

en
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8

r-
a
is
a
n

a
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2
1

2
êi êj c̃ i j ,0~h,xW !5êi êjF2

1

2
c i j ,0

TT ~h,xW !1S f~h,xW !

kw08~h!
D

,i j
G

2
1

2 Fc00,0~h,xW !1
a8~h!

a~h!
c00~h,xW !

1H8~h!E
hE

h
dh8a~h8!c00~h8,xW !G .

~66!

A straightforward computation leads to the final form for t
first order temperature fluctuations:
DTR

TR
~ ê!5

DTE

TE
~ ê!1

k

2 Fc00~hR ,0W !2HRE
hE

hR
dh8a~h8!c00~h8,0W !G2

êif ,i~hR ,0W !

w08~hR!
1

êif ,i„hE ,~hR2hE!ê…

w08~hR!

2
k

2
c00„hE ,~hR2hE!ê…2kE

hE

hR
dh8c00,0„h8,~hR2h8!ê…2

k

2
êi êjE

hE

hR
dh8c i j ,0

TT
„h8,~hR2h8!ê…. ~67!
the

the
t of
The right-hand side of Eq.~67! consists of a part associate
with the temperature fluctuations of the emitting surface p
seven terms. The first two of the latter have no angular
pendence and belong to the monopole contribution. The t
term is the dipole contribution while the fourth is the Sach
Wolfe velocity potential term. The spectra of scalar and t
sor perturbations that are usually reported reside in the
~the Sachs-Wolfe potential term! and seventh terms respe
tively. The remaining sixth term is sometimes called the
tegrated Sachs-Wolfe effect.

IV. THE TENSOR POWER SPECTRUM

In 1979, Starobinski� @23# became the first to calculate th
tensor power spectrum from what would later be called
model of inflation. Subsequent computations were in 19
made by Rubakov, Sazhim and Veryaskin@24# and by Fabbri
and Pollock@25#. The definitive result was obtained by Sta
obinski� in 1985 @26#. These calculations all depend upon
normalization for the late-time mode functions whose prec
determination is our only improvement. However, we sh
also carry out the computation in a slightly different fashio

The part of Eq.~67! relevant to tensor perturbations is

DTR

TR
~ ê!uh52

k

2
êi êjE

hE

hR
dh8c i j ,0

TT
„h8,~hR2h8!ê…,

~68!

and can be expressed as a sum over graviton momenta
polarizations:

DTR

TR
~ ê!uh5E d3k

~2p!3 (
s

$h~ ê,kW !êi êje i j ~kW ,s!a~kW ,s!

1~c.c.!%, ~69!
s
e-
rd
-
-

th

-

a
2

e
ll
.

nd

where the scalar response function is

h~ ê,kW !52
k

2EtE

tR
dtS ]

]t
UA(t,k) DexpF ikW•êE

t

tR
dt8a21~ t8!G .

~70!

It is straightforward to compute the expectation value~30! in
the presence of the state which was empty of gravitons in
distant past:

a~kW ,s!uV&50, ~71!

and obtain

^Vu
DTR

TR
~ ê1!

DTR

TR
~ ê2!uV&h

5E d3k

~2p!3
h~ ê1 ,kW !h* ~ ê2 ,kW !

3ê1
i ê1

j ê2
mê2

nFP imP jn2
1

2
P i j PmnG . ~72!

The scalar response function~70! can be explicitly evalu-
ated because the physical process occurs entirely during
epoch of matter domination. If we assume that the onse
matter domination occurred at a timetM , when the Hubble
parameter and scale factor wereHM and aM respectively,
then at later times:5

5During matter domination, the deceleration parameterq(t) is
quite well approximated by the constantqm51

1
2 .
5-6
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IMPROVED ESTIMATES OF COSMOLOGICAL PERTURBATIONS PHYSICAL REVIEW D69, 084005 ~2004!
matter⇒H~ t !5
HM

11
3

2
HM~ t2tM !

, ~73!

a~ t !5aMF11
3

2
HM~ t2tM !G2/3

. ~74!

In view of Eqs. ~73!, ~74!, the dimensionless variable~9!
equals

matter⇒x~ t,k!5x~ tM ,k!F11
3

2
HM~ t2tM !G1/3

. ~75!

In terms ofx, the radial component of a lightlike geodes
timesk takes the form

matter⇒kE
t

tR dt8

a~ t8!
52x~ tR ,k!22x~ t,k!, ~76!

and the scalar response function~70! becomes6

h~ ê,kW !52
k

2ExE

xR
dxS ]

]x
UA~ t,k! De2i k̂•ê(xR2x). ~77!

Further progress in the evaluation of the scalar respo
function~77! requires an explicit form for the mode function
Indeed, the source of our improved estimate for the grav
power spectrum is our improved derivation of the gravit
mode functions@10#. Since the physical process under stu
involves modes that underwent first horizon crossing at
5t1, the relevant form of the mode functions fort.t1 is
@11#7

UA~ t,k!5
2 iH 1

Ak3

G~12n!J2nS 2
x

qD
S 2

x

2qD 2n 3C1A~k!3CiA~k!.

~78!

It consists of three factors, the first of which is the tim
dependent part:

G~12n!J2nS 2
x

qD
S 2

x

2qD 2n U
q51/2,n523/2

53Ap

2

J3/2~2x!

~2x!3/2
.

~79!

This is a standard result.8 The remaining two factors in Eq
~78! represent our improvement to the normalization of
mode functions;C1A depends upon the state of the system
first horizon crossing:

6Henceforth in this section, all quantities refer to the form th
take for a matter dominated universe.

7The subscript 1 in a quantity signifies its value at first horiz
crossingt5t1.

8See, for instance, Eq.~4.29! of @6#.
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se

n

e
t

C1A~k![

1

Ap
GS 1

2
2

1

q1
D

S 2
1

2q1
D 21/q1

. ~80!

To get a feeling forC1A , it is important to note that for
perfect de Sitter inflation it equals one:

q1521⇒C1A~k!51, ~81!

while for a more realistic situation one finds to first order

q1~k!5211Dq~k!

⇒ _C1A~k!511FcS 3

2D1 ln 221GDq~k!,

c~z![
G8~z!

G~z!
. ~82!

The factorCiA depends upon previous evolution. Had the
been no evolution inq from the initial timet i to t1, its value
would be one:

q~ t !5q̄⇒CiA~k!51. ~83!

When—as is the physical case—there is a mild evolution
results in small deviations about Eq.~83! whose explicit
form is given in Appendix A.

In view of Eq. ~79!, we can express Eq.~78! with its
conventional slow-roll normalization times the two corre
tion factors:

UA~ t,k!5
2 iH 1

Ak3
3F sin~2x!

8x3
2

cos~2x!

4x2 G3C1A~k!3CiA~k!.

~84!

With the infrared approximation~84! it is possible to ex-
actly evaluate the scalar response function~77!:

h~ ê,kW !5
ikH1

A2k3

3

A2
C1AC iAe2iwxRH F sin~2x!

8x3
2

cos~2x!

4x2

2 iwS sin~2x!

8x2
2

cos~2x!

4x D 2w2
sin~2x!

4x Ge22iwx

1
w

4
~12w2!@Ei~2i ~12w!x!

2Ei~22i ~11w!x!#J U
xE

xR

, ~85!

where, to economize on writing, we have definedw[ k̂•ê as
the cosine of the angle between the unit vectorsk̂ and ê.
5-7
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However, there is no point in retaining the full complexity
this result. It is easy to check that the term inside the cu
brackets falls likex22 for largex. Therefore, potentially ob-
servable effects must derive from modes which had not
experienced second horizon crossing at the time of emiss
This impliesxE!1. The modes which produce anisotropi
within our current horizon volume must also have expe
enced second horizon crossing by the time of recept
Hence we can also assumexR@1. It follows that the only
significant contribution comes from the lower limit, fo
which we may as well take the limiting form relevant
small xE :9

h~ ê,kW !uxE!1
xR@1

52
ikH1

Ak3
C1AC iAe2iwxRH 1

2
2

3

4
w2

2
3

8
w~12w2!F lnS 11w

12wD1 ipG J . ~86!

The angular dependence in our expression~86! for the
scalar response function is complicated. However, one
recognize some of the factors as spherical harmonics
zenith angleu5arccos(ê• k̂) and azimuthal anglef50:

1

2
2

3

4
w25

Ap

2
Y002Ap

5
Y20, ~87!

2
3

8
w~12w2!52

3

2
A2p

105
Y32. ~88!

It makes sense to decompose the scalar response fun
into a part depending only uponk[ikW i and an angular facto
Q, with theY00 term in the latter bearing unit normalization

h~ ê,kW !uxE!1
xR@1

5
2 ikH1

Ak3
C1ACiA

Ap

2
Q~ ê,kW !. ~89!

Obviously

Q~ ê,kW ![
e2iwxR

A4p
H 223w22

3

2
w~12w2!F lnS 11w

12wD1 ipG J .

~90!

We define the ‘‘graviton power spectrum’’ in terms of th
radial factor:

Ph~k![
k3

4p2 I2 ikH1

Ak3
C1AC iA

Ap

2 I 2

, ~91!

5GH1
2~k!C 1A

2 ~k!iCiA~k!i2. ~92!

Because the literature abounds with different conventions
this quantity, we correspondPh(k) to the symboldh

2(k) used

9Although our technique has been different, this result seem
agree with Starobinski�’s equation~12! @26#.
08400
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by Mukhanov, Feldman and Brandenberger@5#, to the vari-
ablePg(k) used by Liddle and Lyth@6#, and to the quantity
AT

2(k) used by Lidseyet al. @7#:

Ph~k!5
9p

4
dh

2~k!5
p

16
Pg~k!5

25p

4
AT

2~k!. ~93!

Perhaps the clearest specification ofPh(k) is to state how it
enters the temperature correlation function:

^Vu
DTR

TR
~ ê1!

DTR

TR
~ ê2!uV&h

52E
0

`dk

k
Ph~k!E d2k̂

4p
Q~ ê1 ,kW !

3Q* ~ ê2 ,kW !ê1
i ê1

j ê2
mê2

nFP imP jn2
1

2
P i j PmnG . ~94!

The leading order slow roll result forPh(k) is typically
expressed in terms of the value of the scalar potentia
horizon crossing. Using Eq.~38! it can be converted to ou
notation:

8p

3
G2V15GH1

2S 22q1

3 D . ~95!

Our correction factors of 3/(22q1), C1A
2 (k) and iCiA(k)i2

are typically near one for slow roll inflation. Note especia
the factoriCiA(k)i2, which represents the effect of evolutio
from the beginning of inflation up to horizon crossing,
required by the analysis of Wang, Mukhanov and Steinha
@13#.

It is elementary to verify that there is no monopole co
tribution to Eq.~94! by fixing one of the two directions, for
instanceê2, and integrating over the other:

monopole⇒ 1

4pE d2ê1^Vu
DTR

TR
~ ê1!

DTR

TR
~ ê2!uV&h .

~96!

If we take thez axis to be along thek̂ direction, we can
expressê1 in terms of the zenith angleu and azimuthal
anglef:

ê15~sinu cosf,sinu sinf,cosu!. ~97!

The resulting azimuthal integration is simple:

E
0

2pdf

2p
ê1

i ê1
j 5

1

2
P i j sin2u1 k̂i k̂ jcos2u, ~98!

and the properties ofP i j ensure that Eq.~98! gives a van-
ishing monopole contribution~96!.

In a similar fashion, it can be proved that Eq.~94! con-
tains no dipole component:

to
5-8
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dipole⇒ 1

4pE d2ê1ê1
j ^Vu

DTR

TR
~ ê1!

DTR

TR
~ ê2!uV&h50,

~99!

where, as for the monopole case, directionê2 has been fixed.

V. THE SCALAR POWER SPECTRUM

The spectrum of scalar perturbations can be compu
from the Sachs-Wolfe potential term in Eq.~67!:

DTR

TR
~ ê!uSW52

k

2
c00„hE ,~hR2hE!ê…. ~100!

By virtue of Eq.~44! we have

DTR

TR
~ ê!uSW52

k

2E d3k

~2p!3
$UC~hE ,k!eik(hR2hE) k̂•êY~kW !

1~c.c.!%. ~101!

In the presence of the state without any scalars in the dis
past:

Y~kW !uV&50, ~102!

the temperature correlation function~30! becomes

^Vu
DTR

TR
~ ê1!

DTR

TR
~ ê2!uV&SW

5
k2

4 E d3k

~2p!3
iUC~hE ,k!i2e2i (xR2xE) k̂•(ê12ê2), ~103!

in terms of the dimensionless variable~9!.
The relevant form of the mode functions is fort.t1 @11#:

UC~ t,k!ux!15
2H1

A2k3~11q1!

H~ t !

a~ t !
E

t1

t

dt8a~ t8!

3@11q~ t8!#C1C* ~k!3CiC* ~k!, ~104!

where t1, as always, signals first horizon crossing. In an
ogy with Sec. IV, the normalization factorC1C depends upon
the state of the system att1. It is expressed in terms o
r (t)—defined in Eq.~39!—and the parameterqC(t):

qC~ t ![12
q~ t !

11r ~ t !
2

F12
ṙ ~ t !

H~ t !
G

@11r ~ t !#2
. ~105!

The expression is
08400
d

nt

-

C1C[

1

Ap
GS 1

2
1

1

q1C
D

S 1

2q1C
D 1/q1C

e2 i (p/q1C)cosS p

q1C
D ~11r 1!1/q1C,

~106!

q1C[qC~ t1!, r 1[r ~ t1!. ~107!

During inflation—in fact, quite generally—the parameterr is
typically zero. Therefore

r ~ t !50⇒qC~ t !52q~ t !

⇒C1C~k!5C1A~k!ei (p/q1)cosS p

q1
D . ~108!

More generally, ifr is small we can write to first order

qC~ t !52q~ t !1@21q~ t !#r ~ t !1
ṙ ~ t !

H~ t !
. ~109!

Consequently, as in Eq.~82!, we have to first order

q1~k!5211Dq~k!

⇒ iC1C~k!i511FcS 3

2D21GFDq~k!2r 12
ṙ ~ t !

H~ t !
G .

~110!

The other factor,CiC , depends upon evolution fromt i to t1.
Just likeCiA , it equals one whenq is constant; its genera
form can be found in Appendix A.

Because the physical process takes place entirely du
pure matter domination:10

matter⇒E
t1

t

dt8a~ t8!@11q~ t8!#

;
a~ t !@11q~ t !#

H~ t !
;

3aE

2HE
. ~111!

Thus, the mode functions can be expressed as a produ
the conventional slow roll normalization with the two corre
tion factors:

UC~ tE ,k!5
3H1

2A2k3~11q1!
3C1C* ~k!3CiC* ~k!, ~112!

and the temperature correlation function takes the form

10Henceforth in this section, all quantities refer to the form th
take for a matter dominated universe.
5-9
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^Vu
DTR

TR
~ ê1!

DTR

TR
~ ê2!uV&SW

59pGE d3k

~2p!3

1

2k3

H1
2

11q1
iC1C~k!i2

3iCiC~k!i2e2i (xR2xE) k̂•(ê12ê2). ~113!

The identity

E d3k

~2p!3
f ~k!eikW•xW5

1

2p2E0

`

dkk2f ~k!
sinx

x
, ~114!

reduces Eq.~113! to its final form:

^Vu
DTR

TR
~ ê1!

DTR

TR
~ ê2!uV&SW

5
9G

4pE0

`dk

k

H1
2

11q1
iC1C~k!CiC~k!i2

3
sin@2~xR2xE!i ê12ê2i #

2~xR2xE!i ê12ê2i
. ~115!

The ‘‘scalar power spectrum’’ is defined by the way
enters the correlation function between temperature fluc
tions observed from directionsê1 and ê2:

^Vu
DTR

TR
~ ê1!

DTR

TR
~ ê2!uV&SW

5E
0

`dk

k
PSW~k!E d2k̂

4p
e2i (xR2xE) k̂•(ê12ê2).

~116!

Hence, we obtain

PSW~k!5
9

4p

GH1
2

11q1
iC1C~k!i2iCiC~k!i2. ~117!

We again correspondPSW(k) to the symbold(k) used by
Mukhanov, Feldman and Brandenberger@5#, to the variable
PR(k) used by Liddle and Lyth@6#, and to the quantity
AS

2(k) used by Lidseyet al. @7#:

PSW~k!5
25

4
id~k!i25

9

4
PR~k!5

225

16
AS

2~k!. ~118!

The leading slow roll result forPSW(k) is usually ex-
pressed in terms of the scalar potential and its derivativ
the time of horizon crossing. Using Eqs.~38! and ~40! we
can convert this to our notation:

96pG3
V1

3

V18
2

5
9

4p

GH1
2

11q1

~22q1!3

3~22q11r 1!2
. ~119!
08400
a-

at

Our correction factors of 3(22q11r 1)2/(22q1)3,
iC1C

2 (k)i2 andiCiC(k)i2 are typically near one for slow rol
inflation. Consistent with the analysis of Wang, Mukhan
and Steinhardt@13#, there is a factoriCiC(k)i2 which repre-
sents the effect of evolution from the beginning of inflatio
up to horizon crossing.

VI. EPILOGUE

We have taken advantage of a recent, exact solution
the mode functions of scalar-driven cosmology@11# to re-
compute the scalar and tensor power spectra for anisotro
in the cosmic microwave background. For completeness,
to emphasize its inherent gauge invariance, we have
reviewed the standard computation of the Sachs-Wolfe
fect. The principal new feature is our expressions for
normalization factors that were built-up during inflation.

We have not expanded the temperature correlation fu
tion in spherical harmonics. Nonetheless, since our res
take the form of the standard normalization times correct
factors, it should suffice to simply multiply the standard r
sult by these correction factors evaluated at the wave num
appropriate for thel-th multipole moment:

k5
1

2
la0H0 . ~120!

The tensor correction factorsC1A andCiA are given by Eqs.
~80! and~A12! respectively; the analogous scalar factorsC1C

andCiC by Eqs.~106! and ~A13!.
How observable are the correction factors we have fou

Since it is likely to require a major effort to detect a nonze
tensor amplitude, the fractional improvement we give for t
probably does not matter. On the other hand, precision m
surements of the scalar amplitude might very well be se
tive to the structure we provide. The greatest advantage
our formalism is not the incremental improvements it offe
for the standard, slow roll regime but rather its applicabil
to exotic scenarios that lie beyond the slow roll paradig
We present an example in Appendix B.

Finally, we disagree slightly with the standard treatme
of the tensor contribution. The original authors seem to h
averaged over graviton polarizations before taking the exp
tation value. This makes a small but possibly significant d
ference in the tensor contribution to the multipole mome
of the temperature fluctuations correlation function.
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APPENDIX A: THE EVOLUTION DEPENDENT
CORRECTION FACTORS

A central feature of our exact solutions is the trans
matrix,MI(t,t i ,k). There is anI 5A transfer matrix for the-
graviton mode function and anI 5C one for the scalar mode
function. Each of them is the time-ordered product of t
exponential of a line integral:

MI~ t,t i ,k![PH expF E
t i

t

dt8AI~ t8,k!G J , ~A1!

[ (
n50

` E
t i

t

dt1E
t i

t1
dt2 . . . E

t i

tn21
dtn

3AI~ t1 ,k!•••AI~ tn ,k!. ~A2!

The exponent matrixAI(t,k) vanishes whenever there is n
evolution of the appropriateqI(t):

11
08400
r

e

graviton⇒ qA~ t !5q~ t !, ~A3!

scalar⇒ qC~ t !512
q~ t !

11r ~ t !
2

F12
ṙ ~ t !

H~ t !
G

@11r ~ t !#2
.

~A4!

There is a similar dichotomy for the appropriate physic
wave number expressed in Hubble units,

graviton⇒ xA~ t,k!5
k

a~ t !H~ t !
, ~A5!

scalar⇒ xC~ t,k!5
xA~ t,k!

11r ~ t !
. ~A6!

With these definitions the exponent matrix takes the form
AI~ t,k!5
p

4
ṅ IS csc~n Ip!cn IS 2

xI

qI
D 22idn IS 2

xI

qI
D

22icsc2~n Ip!bn IS 2
xI

qI
D 2csc~n Ip!cn IS 2

xI

qI
D D , ~A7!
e-

e

where the various coefficient functions are

bn~z!5
1

2Ap
(
n51

` ~21!nGS n2n2
1

2D z2n22n~n2n!21

G~n!G~n2n11!G~n22n11!
,

~A8!

cn~z!52
4

p
sin~np!Fc~n!212 lnS 1

2
zD G

2
1

Ap
(
n51

` ~21!nGS n2
1

2D z2nn21

G~n1n!G~n11!G~n2n11!
, ~A9!

dn~z!5
1

2Ap
(
n50

` ~21!nGS n1n2
1

2D z2n12n~n1n!21

G~n12n!G~n1n11!G~n11!
,

~A10!

11Recall the definition~39! of the parameterr (t).
and we have defined

n I~ t ![
1

2
2qI

21~ t !, c~z![
G8~z!

G~z!
. ~A11!

We can now give precise definitions for the evolution d
pendent normalization factors:

CiA~k![M A
11~ t1 ,t i ,k!1M A

12~ t1 ,t i ,k!ei (p/qi )secS p

qi
D ,

~A12!

CiC~k![M C
21~ t1 ,t i ,k!

1M C
22~ t1 ,t i ,k!e2 i (p/qiC)secS p

qiC
D . ~A13!

The subscripti denotes the initial value of the respectiv
parameter. Since during inflation one typically has

ṅ~ t !5
q̇~ t !

q2~ t !
!1, ~A14!
5-11
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it ought to be a very good approximation to simply take t
first several terms of the series expansion of the transfer
trix in estimating these corrections:

M I
11;11E

t i

t1
dtg I~ t !1E

t i

t1
dtE

t i

t

dt8@g I~ t !g I~ t8!

2d I~ t !b I~ t8!#, ~A15!

M I
12;2 i E

t i

t1
dtd I~ t !2 i E

t i

t1
dtE

t i

t

dt8@g I~ t !d I~ t8!

2d I~ t !g I~ t8!#, ~A16!

M I
21;2 i E

t i

t1
dtb I~ t !2 i E

t i

t1
dtE

t i

t

dt8@b I~ t !g I~ t8!

2g I~ t !b I~ t8!#, ~A17!

M I
22;12E

t i

t1
dtg I~ t !1E

t i

t1
dtE

t i

t

dt8@g I~ t !g I~ t8!

2b I~ t !d I~ t8!#, ~A18!

where the coefficient functions are

b I~ t !5

pn İbn IS 2
x

qI
D

2 sin2~n Ip!
, ~A19!

g I~ t !5

pn İ cn IS 2
x

qI
D

4 sin~n Ip!
, ~A20!

d I~ t,k!5
pṅ I

2
dn IS 2

x

qI
D . ~A21!

APPENDIX B: ULTRA SLOW ROLL INFLATION

Consider an inflation potential like that depicted in Fig
and suppose inflation begins with the scalar to the righ
the flat portion. Once the scalar rolls into the flat region
background equation of motion becomes

ẅ013Hẇ050. ~B1!

This can be integrated to give an exact expression for
scalar’s time derivative in terms of its value at the beginn
of the flat region:

ẇ0~ t !5ẇ f S af

a~ t ! D
3

,0. ~B2!

If the scalar has enough kinetic energy it can roll through
flat region, and then on down its potential. The condition
this to happen is
08400
a-

f
s

e
g

e
r

2E
t f

`

dtẇ f S af

a~ t ! D
3

.2
ẇ f

3H f
.w f2we . ~B3!

We shall assume this and study the scalar power spectrum
modes which experience first horizon crossing while the s
lar is on the flat section.

In the flat region all derivatives of the potential vanish,
all of the slow roll parameters are zero. Although the scala
rolling ever more slowly—hence the name—this is a situ
tion in which the conventional slow roll approximation com
pletely breaks down. In fact the slow roll prediction~119! for
the scalar power spectrum actually diverges. The difficulty
reconciling this with a system which is approaching a pu
de Sitter phase was the occasion of much reflection by
ishchuk @27#. We shall see thatPSW(k) is finite, but that it
can become quite large.

By adding the background Einstein equations~35!, ~36!
and then substituting Eq.~B2! one finds

11q~ t !54pG
ẇ0

2

H2
54pGS ẇ f

H~ t !
D 2S af

a~ t ! D
6

. ~B4!

During inflation the deceleration parameter is typically ne
21, but the fact that it approaches this value exponentia
fast during the ultra slow roll phase makes a crucial cha
in the parameterr (t) defined in Eq.~39!:

r ~ t ![
1

H

d

dt
ln~A11q!5232

Ḣ

H2
5221q~ t !. ~B5!

Although r (t) is near zero for typical models of inflation, w
see that it is nearly23 during the ultra slow roll phase. It is
simple enough to obtain an exact expression as well for
derivative during this phase:

FIG. 4. The scalar potential associated with a phase of u
slow roll inflation. In the regionwe<w<w f the potential is exactly
flat with valueVf .
5-12
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ṙ

H
5

q̇

H
52~11q!3

1

2H

q̇

11q
522~22q!~11q!.

~B6!

Note that this quantity is nearly zero, both for typical infl
tion and during ultra slow roll phase.

It is now straightforward to evaluate our factorC1C(k)
that depends upon the system’s state at horizon cross
Substituting in Eq.~105! gives the following result during
the ultra slow roll phase:

qC~ t !512
q

q21
2

112~22q!~11q!

~q21!2

521
1

q21
2

5

~q21!2
. ~B7!

Although qC(t).11 in typical models of inflation, we se
that it rapidly approaches1 1

4 during the ultra slow roll
phase. Evaluating Eq.~106! for q1C5 1

4 and r 1523 gives

C1C~k!ur 1523
q1C51/4

5
1

Ap
GS 9

2D5
105

16
. ~B8!

To estimate the evolution-dependent factorCiC(k) we
make the reasonable assumption that the system goes
denly from qC.11 to qC.1 1

4 . In this case the transfe
matrix is determined by matching the mode functions a
their first time derivatives at the onset of the flat region:12

2~2 iJ7/2~2xf !,J27/2~2xf !!S M C
11 M C

12

M C
21 M C

22D
5~ iJ1/2~2xf !,J21/2~2xf !!, ~B9!

4~2 iJ7/28 ~2xf !,J27/28 ~2xf !!S M C
11 M C

12

M C
21 M C

22D
52~ iJ1/28 ~2xf !,J21/28 ~2xf !!. ~B10!

The matrix elements needed for the scalar power spect
are

M C
2152

ipxf

4
@J7/2~2xf !J1/28 ~2xf !12J7/28 ~2xf !J1/2~2xf !#,

~B11!

M C
2252

pxf

4
@J7/2~2xf !J21/28 ~2xf !

12J7/28 ~2xf !J21/2~2xf !#. ~B12!

Substituting in Eq.~A13! with qiC511 we obtain

CiC~k!5M C
211M C

22, ~B13!

12In accordance with the definition~9!, xf[k/H faf .
08400
g.

ud-

d

m

5Apxf

8
e2 ix f H 2F12

i

2xf
GJ7/2~2xf !12iJ7/28 ~2xf !J ,

~B14!

5
1

A8
e2 ix fH F211

15

4xf
2Gcos~2xf !

1F 3

xf
2

15

8xf
3Gsin~2xf !1 i F2

6

xf
1

45

4xf
3Gcos~2xf !

1 i F221
21

2xf
2

2
45

8xf
4Gsin~2xf !J . ~B15!

Because first horizon crossing occurs after the scalar
rolled onto the flat region we can assumexf.1. It is not safe
to assumex@1 because some modes will experience horiz
crossing soon after the ultra slow roll phase begins. T
power spectrum of these modes will deviate much more fr
scale invariance than is typically the case. Although the
region must be narrow enough that the scalar can roll acr
this process can be tuned to require an arbitrarily long tim
For modes which experience horizon crossing long after
onset of the ultra slow roll phase, one can assumexf@1, in
which case

xf@1⇒iCiC~k!i2.
1

8
1

3

8
sin2~2xf !. ~B16!

This still shows anomalously strong violations of scale
variance.

We constructed this model as an exotic system in wh
the slow roll paradigm completely breaks down. However
has two other properties worthy of note. The first is th
although our prediction~117! for the scalar power spectrum
remains finite, it can become quite large owing to the inve
factor of (11q1). We have seen from Eq.~B4! that „1
1q(t)… approaches zero exponentially fast. It seems ine
table that back reaction must eventually become significan
the ultra slow roll phase is protracted.

The second interesting property of this model is that
anisotropies generated during the ultra slow roll phase
entirely due to scalar kinetic energy. The potential is co
pletely flat so the only possible fluctuations derive from t
gravitational response to kinetic energy. This is usually d
missed as negligible but we have just seen that it can d
an enormously strong effect as the system approache
Sitter inflation. This suggests that one might expect a si
larly strong effect from gravitons—the combination of tw
of which can produce a scalar—if the computation were c
ried to next order in the weak field expansion.
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