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Scalar perturbation spectra from warm inflation
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We present a numerical integration of the cosmological scalar perturbation equations in warm inflation. The
initial conditions are provided by a discussion of the thermal fluctuations of an inflaton field and thermal
radiation using a combination of thermal field theory and thermodynamics. The perturbation equations include
the effects of a damping coefficientG and a thermodynamic potentialV. We give an analytic expression for the
spectral index of scalar fluctuations in terms of a new slow-roll parameter constructed fromG. A series of toy
models, inspired by spontaneous symmetry breaking and a known form of the damping coefficient, lead to a
spectrum withns.1 on large scales andns,1 on small scales.
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I. INTRODUCTION

Inflation is the most successful idea which we have av
able for explaining the large scale structure of the Univer
Inflationary dynamics can be realized in two distinct wa
In the original picture, termed supercooled inflation, the U
verse rapidly supercools during an inflation phase and s
sequently a reheating period is invoked to end inflation a
fill the Universe with radiation@1–4#. In the other picture,
termed warm inflation, dissipative effects are important d
ing the inflation period, so that radiation production occu
concurrently with inflationary expansion.

The idea of warm inflation was influenced by a calcu
tion of the friction term in the inflaton equation of motion b
Hosoya and Sakagami@5#. The magnitude of the dampin
term suggested the possibility that it could be the domin
effect prolonging inflation@6–9#. The significance of dissi-
pation to inflation was independently realized in@10#, but
this time with a clearer picture of the associated inflat
dynamics, and named warm inflation. This and associa
works @11,12# also outlined the nonequilibrium thermody
namical problem underlying this picture, which subsequen
has been studied in greater detail@13–19#. These works con-
firmed that at high temperature the damping was prop
tional to the relaxation time of the radiation. In addition
these studies of warm inflation dynamics, several phen
enological warm inflation models have been discussed in
literature@20–24#.

The density fluctuations in warm inflation arise from the
mal, rather than vacuum, fluctuations@6,25,26#. These have
their origin in the hot radiation and influence the inflat
through a noise term in the equations of motion@11,26#.

The development of cosmological perturbations in wa
inflation has been investigated by several authors. Taylor
Berera@27# have analyzed the perturbation spectra by mat
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ing the thermally produced fluctuations to gauge invari
parameters when the fluctuations cross the horizon. T
technique should be good for order of magnitude estima
For more accurate treatment of the density perturbations
necessary to use the cosmological perturbation equati
which can be found in the literature@28–30#.

The main focus of the present work is to solve the pert
bation equations numerically. We will also set up the eq
tions to take into account some effects which have pre
ously been ignored. We introduce a new slow-roll parame
and include modifications to the equations when the damp
term and the potential depend on temperature.

Other improvements have been made in the treatmen
thermal fluctuations. The influence of the cosmological e
pansion on the inflaton fluctuations is considered in det
This gives a clearer and more accurate picture of the de
opment of the thermal fluctuations than previously. Therm
fluctuations in the radiation, which lead to entropy perturb
tions, are also analyzed. Entropy perturbations are alw
present during warm inflation and react back on the cur
ture fluctuations. In the basic model, the entropy fluctuatio
disappear before inflation ends.

Section II contains an updated outline of the theory
warm inflation. In Sec. III we obtain expressions for the th
mal fluctuations of the inflaton and the radiation. Cosmolo
cal perturbations are discussed in Sec. IV. The results
numerical solutions for the cosmological perturbations us
the thermal fluctuations as initial conditions are compa
with observations in Sec. V. A summary of the main resu
and some general comments appear in Sec. VI.

II. WARM INFLATION

In this section we shall consider the case of a homo
neous inflaton field interacting with thermalized radiation.
the inflaton is evolving very slowly, then the radiation crea
a thermal correction to the inflaton potential@31# and a
damping force@5#. The system of equations describing th
system includes an equation for the inflaton and an equa
describing how the energy lost by the inflaton through
©2004 The American Physical Society25-1
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damping force is transferred to the radiation.
The equation describing the effects of radiation damp

on the evolution of the inflaton field was first obtained
Hosoya@5# using a form of thermodynamic transport theo
This is applicable as long as the inflaton evolves slowly a
the radiation remains close to thermal equilibrium. More
cent treatments are based on the closed time path forma
and an account of the effects of radiation damping on
evolving field in flat space can be found, for example, in
paper by Gleiser and Ramos@32#. An interesting variation
occurs when the inflaton interacts with the radiation via
intermediate particle decay@19#.

When the early Universe is in homogeneous expans
with expansion rateH(t), the evolution equation for the in
flaton field is given by

f̈1~3H1G!ḟ1V,f50, ~1!

whereG(f,T) is the damping term andV(f,T) is the ther-
modynamic potential. The damping term has a generic fo
given approximately byG;g4f2t, whereg is a coupling
constant. For Hosoya’s damping termt[t(f,T) is related
to the relaxation time of the radiation and for the mod
with an intermediate particle decayt[t(f) is related to the
lifetime of the intermediate particle. The thermodynamic p
tential can be expressed in a standardized way by@33#

V~f,T!52
p2

90
g* T41

1

2
~dmT!2f21V0~f!, ~2!

whereg* (T) is the effective particle number anddmT(f,T)
represents thermal corrections.

The relative strength of the thermal damping compared
the expansion damping can be described by a parameter,

r 5
G

3H
. ~3!

Warm inflation is defined to be inflation with large values
r, as opposed to supercooled inflation in whichr can be
neglected.

The dissipation of the inflaton’s motion is associated w
the production of entropy. The entropy density of the rad
tion s(f,T) is defined by a thermodynamic relation in term
of the thermodynamic potential,

s52V,T . ~4!

The rate of entropy production can be deduced from the c
servation of energy-momentum. The total densityr and pres-
surep are given by

r5
1

2
ḟ21V1Ts ~5!

p5
1

2
ḟ22V. ~6!

Energy-momentum conservation,
08352
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ṙ13H~p1r!50 ~7!

now implies entropy production. Making use of Eq.~1! we
get

T~ ṡ13Hs!5Gḟ2. ~8!

The zero curvature Friedmann equation completes the se
differential equations forf, T and the scale factora,

3H258pGS 1

2
ḟ21V1TsD . ~9!

The entropy production has been described in a sligh
different way in some previous work on warm inflatio
@10,26#. We can recover an alternative equation in the c
when the temperature corrections to the potential are ne
gible. If we setdmT50 in Eq.~2!, then the radiation density
r r53sT/4, and Eq.~8! becomes

ṙ r14Hr r5Gḟ2. ~10!

This equation is validonly whendmT50.
The slow-roll approximation consists of neglecting term

in the preceding equations with the highest order in ti
derivatives

ḟ52
V,f

3H~11r !
, ~11!

Ts5r ḟ2, ~12!

3H258pGV. ~13!

Note thatTs is of the same order as two time derivative
Slow roll automatically implies inflation,ä.0.

The consistency of the slow-roll approximation is go
erned by a set of slow-roll parameters. Warm inflation h
extra slow-roll parameters in addition to the usual set
supercooled inflation due to the presence of the damp
termG. There are four ‘‘leading order’’ slow-roll parameter

e5
1

16pG S V,f

V D 2

, h5
1

8pG S V,ff

V D ,

b5
1

8pG S G ,fV,f

GV D , d5
TV,fT

V,f
. ~14!

The first two parameters are the standard ones introduce
supercooled inflation@34–37#. Two new parameters are re
quired for thef dependence of the damping term and t
temperature dependence of the potential. The slow-roll
proximation is valid when all of the slow-roll parameters a
smaller than 11r . In supercooled inflation, the condition i
tighter and the slow roll parameters have to be smaller t
1.
5-2
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As an example, consider the caseG ,T5V,fT50. In the
warm inflationary regimer @1, the rate of change of variou
slowly varying parameters are given by differentiating E
~11!–~13!,

1

H

d ln H

dt
52

1

r
e, ~15!

1

H

d ln ḟ

dt
52

1

r
~h2b!, ~16!

1

H

d ln Ts

dt
52

1

r
~2h2b2e!. ~17!

In each case, the right hand side of these equations give
relative sizes of terms neglected in the slow-roll approxim
tion. Slow roll therefore requirese!r , h!r andb!r .

Inflation ends at the time whenä5Ḣ1H2 falls to 0.
From Eq.~15!, the end of inflation corresponds to the co
dition e5r . Furthermore, the slow-roll equations allow us
rewrite this condition asr r5V; in other words inflation ends
when the radiation energy density reaches the same valu
the vacuum energy.

Similar arguments apply whenG ,T andV,fT are non-zero,
for example,

1

H

d ln ḟ

dt
52

1

r S 42c

41c
h2

4

41c
b1

c

41c
e2

3c

41c
d D .

~18!

Note thatc5TG ,T /G is not required to be small and ther
fore does not enter the list of slow-roll parameters. The slo
roll approximation is valid fore!r , h!r , b!r andd!r .

III. THERMAL FLUCTUATIONS

In this section we shall consider the behavior of therm
fluctuations during inflation and their influence on dens
perturbations on length scales smaller than the size of
horizon. Thermal fluctuations, if they are present, form
predominant source of density perturbations in warm in
tion. We will assume throughout that the radiation is close
thermal equilibrium. Surprisingly, this is not a necessary c
dition for warm inflation but it is an important regime. Con
ditions for thermalization are model dependent, and are
cussed in Refs.@13,14,17,19#.

The evolution of a comoving mode of the inflaton flu
tuations during a warm inflationary era can be divided in
three regimes, depending on the relative effects of differ
physical processes:

~1! Thermal noise.
~2! Expansion.
~3! Curvature fluctuations.

The transitions between these regimes are called fre
out and horizon crossing. Where previous calculations h
treated each of these regimes seperately, we shall con
the combined effects of the thermal noise and the expans
08352
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and then the combined effects of expansion and curva
fluctuations. The main results of this section are Eqs.~37!,
~38! and ~51!, which provide the initial conditions for the
classical evolution equations described in the next sectio

A. Inflaton fluctuations

The behavior of a scalar field interacting with radiatio
can be analyzed using the Schwinger-Keldysh approac
non-equilibrium field theory@38,39#. According to this ap-
proach, a simple picture emerges in which the field evol
by a Langevin equation@32,40#,

2¹2f~x,t !1Gḟ~x,t !1V,f5j~x,t !, ~19!

where j is a stochastic noise source. Correlation functio
can be evaluated by probability averages.

The Schwinger-Keldeysh approach has been studied
curved, as well as flat, spacetime backgrounds@41#. Al-
though the particular form of the Langevin equation has
yet been fully investigated, we can appeal to the equivale
principle to deduce the form of the Langevin equation
scales smaller than the horizon@26#.

We shall analyze the inflaton fluctuations on an expand
background over time scales which are longer than the
crophysical processes, but short compared to the variatio
the expansion rate. We also take modes with physical len
scales larger than the microphysical processes. The com
ing wave number will be denoted byk and the physical wave
number byq5ka21.

The Langevin equation for the Fourier transform of t
inflaton fluctuationshk takes the form@26#

ḧk13Hḣk1Gḣk1k2a22hk5jk , ~20!

wherejk is a stochastic noise source. Over the time scale
interest,H and G are constant anda5exp(Ht). As in the
previous section, we setr 5G/3H.

The correlation function of the noise can be found
converting flat space results@32# to the comoving frame. In
the high temperature limitT→`, the noise source is Mar
kovian,

^jk~ t !j2k8~ t8!&52GTa23~2p!3d3~k2k8!d~ t2t8!.
~21!

The scale factor appears due to the use of comoving coo
nates.~The temperature should be large in comparison w
the mass of the particles which make up the radiation for
approximation. We shall make the same approximation
the damping term later.!

For the eventual comparison with observational data,
define the power spectraP(k) by

Pff~k!~2pk21!3d3~k2k8!5^hk~ t !h2k8~ t !&, ~22!

Ppp~k!~2pk21!3d3~k2k8!5^ḣk~ t !ḣ2k8~ t !&, ~23!

Ppf~k!~2pk21!3d3~k2k8!5^ḣk~ t !h2k8~ t !&. ~24!
5-3
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When comparing to classical perturbation theory it is a
useful to define root-mean-square fluctuation amplitudes

df~k!5uPff~k!u1/2, ~25!

dḟ~k!5uPpp~k!u1/2. ~26!

Defined in this way,df has the same dimensions asf.
The power spectra can be found by solving the stocha

equation~20! by Green function methods,

hk~ t !52
p

H2E
z

`

$Jn~z!Yn~z8!2Jn~z8!Yn~z!%

3S z

z8
D n

j~z8!
dz8

z8
~27!

wherez(t)5k/a(t)H and the order of the Bessel functions

n5
3

2
~11r !. ~28!

It is now possible to use the relation~21! to obtain the power
spectrum,

Pff~k!52S p

2 D 2

2GTE
z

`

$Jn~z!Yn~z8!

2Jn~z8!Yn~z!%2z2nz8222n dz8. ~29!

Similarly, for the time derivatives,

Ppp~k!52S p

2 D 2

H2z22GTE
z

`

$Jn21~z!Yn~z8!

2Jn~z8!Yn21~z!%2z2nz8222n dz8. ~30!

The formula for the power spectrum can be simplified
late or early times. For early times, when the physical size
the modea/k is much smaller than the horizon, we can u
the z@n approximation for the Bessel functions to obtain

Pff~k!;ka21T, ~31!

Ppp~k!;k3a23T. ~32!

Allowing for the transformation from comoving to physic
wave numbers, these results are identical to the thermal
tuations of a field in flat space. The rms fluctuations
proportional toT1/2, which is typical of the fluctuations of a
classical object in a radiation field@42#.

A different approximation holds for later times, whenH
,ka21,(GH)1/2, and we can use thez!n approximation
for the Bessel functions. The power spectrum simplifies

Pff~k!;
p2

2
GTz2nYn~z!2E

0

`

Jn~z8!2z8222n 1O~z3!.

~33!
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The root-mean-square fluctuation is approaching the do
nant solutionznYn(z) of the homogeneous equation forhk in
this regime as if the noise had no effect. With the wa
inflation conditionG@H, the results further reduce to

Pff~k!;S p

4 D 1/2

~GH !1/2TS 11
1

GH

k2

a2 1 . . . D , ~34!

Ppp~k!;S p

4 D 1/2 k4

G2a4 ~GH !1/2T. ~35!

The cross correlation reduces to

Ppf~k!;2@Pff~k!#1/2@Ppp~k!#1/2, ~36!

which also indicates that the effects of the noise term
fading away.

The transition between the two regimes has been ca
freeze-out@26#, and occurs at a particular timetF(k) when
ka215(GH)1/2. In warm inflation, the freeze-out time wil
always precede the Hubble crossing time, at whichka21

5H. The evolution of the inflaton becomes increasingly d
terministic for timest.tF .

The fluctuations approach a constant value,

df~k!;S p

4 D 1/4

~GH !1/4T1/2, ~37!

dḟ~k!;2S p

4 D 1/4 k2

Ga2 ~GH !1/4T1/2. ~38!

Apart from the numerical factor, the value ofdf agrees with
the results of Berera@26#, who analyzed Eq.~20! in the re-
gime ka21.(GH)1/2. The sign ofdḟ has been chosen fo
consistency with the cross correlations~36!. It is also consis-
tent with the deterministic solution.

B. Energy fluctuations

Now we turn to thermal fluctuations in the energy dens
in flat space. The classical theory of energy fluctuations
based on fundamental principles of statistical physics.
the energy fluctuationDE in a fixed volumeV, Lifshitz and
Pitaevstii@42# give the formula

^~DE!2&V5CvT2, ~39!

where Cv is the specific heat. This result can also be e
pressed in terms of the energy densityr and the entropy
densitys,

^~Dr!2&V5V21T3s,T . ~40!

We shall investigate the equivalent result in finite tempe
ture quantum field theory before considering the applicat
to warm inflation.

Consider a scalar fieldx in thermal equilibrium at tem-
peratureT. Fluctuations« in the energy density are define
by

«5H~x!2^H&T , ~41!
5-4
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where the energy density operator

H5
1

2
ẋ21

1

2
~¹x!21

1

2
m2x2, ~42!

and the energy densityr r5^H&T is the thermal ensembl
expectation value ofH.

The correlation function

^«~x!«~x8!&T5^H~x!H~x8!&T2^H&T
2 . ~43!

The simplest way to remove any divergences will be to s
tract the zero temperature correlations, which in any case
not of interest to us. We therefore define the power spect
of the radiationPr by

Pr~q!~2pq21!3d3~q2q8!

5^«q~ t !«2q8~ t8!&T2^«q~ t !«2q8~ t8!&0 . ~44!

As before, we also define a root-mean-square fluctuation

dr r~k!5uPr~q!u1/2. ~45!

The expectation values for four field operators can be
duced using the cluster decomposition principle@43# to give

Pr~q!5E d3q8

~2p!3
q3@2q~q2q8!1] t] t81m2#2

3@GT
.~q,t !GT

.~q2q8,t8!

2G0
.~q,t !G0

.~q2q8,t8!#, ~46!

where the expectation values of products of two fields
given by the thermal Green function,

^xq~ t !x2q8~ t8!&5~2p!2d3~q2q8!GT
.~q,t2t8!. ~47!

For a bosonic field in thermal equilibrium,

GT
.~q,t !5n~vq!eivqt1~11n~vq!!e2 ivqt, ~48!

wherevq5(m21q2)1/2 andn(v)5(ev/T21)21. The power
spectrum reduces to the integral

Pr~q!5E d3q8

~2p!3

q3

4vq8vq2q8

~2vq2q8
2 vq8

2
2m2q2!

3@2n~vq2q8!n~vq8!1n~vq2q8!1n~vq8!#. ~49!

The classical limit corresponds toq!T. The integral is
then dominated by the regionq8@q. For a massless field
the integral reduces to

Pr~q!54q3Tr r , ~50!

wherer r is the energy density. This is in agreement with t
thermodynamic result~40! for pure radiation if we identify
q3 with V21.

In the expanding Universe, the inflaton and radiation flu
tuations are effectively in equilibrium for timest,tF , where
08352
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tF is the freeze-out time mentioned earlier. The total ene
fluctuations in this regime are given by Eq.~40!. After tF ,
the radiation and inflaton fluctuations are uncorrelated
Eq. ~50! can be used for the fluctuations in the energy den
of the radiation,

dr r~k!5S 2p2

15 D 1/2

g
*
1/2k3/2a23/2T5/2, ~51!

whereg* is the effective particle number and we have intr
duced the comoving wave numberk5aq.

The total energy is defined by Eq.~5!. The inflaton energy
fluctuations fort.tF are therefore

drf5ḟdḟ1V,fdf, ~52!

wheredf anddḟ are given above.

IV. COSMOLOGICAL PERTURBATIONS

The thermal fluctuations occurring during warm inflatio
evolve gradually into cosmological perturbations. The th
mal noise has a diminishing effect on the development of
perturbations until the freeze-out time when it becomes
significant. The perturbations can then be described b
Gaussian random field which grows deterministically.

In warm inflation there are cosmological perturbations
the inflaton field, the radiation and the gravitational field. W
shall consider only the scalar gravitational mode, wh
means that there is one degree of freedom in the metric
turbations. We shall also use a particular gauge, the z
shear gauge, in which the scalar metric perturbation has
form

ds252~122w!dt21a2~112w!d i j dxidxj . ~53!

The inflaton perturbation will be denoted bydf, the tem-
perature perturbationdT and the velocity perturbationv.

For any random perturbation fieldg(x), the power spec-
trum is defined by an average

Pg~k!~2pk21!3d3~k2k8!5^gkg2k8&, ~54!

where gk is the Fourier transform ofg(x). The amplitude
will be normalized by

g~k!5uPg~k!u1/2. ~55!

Note thatg(k) satisfies the same linear equations of moti
as gk . We use this normalization for the perturbations a
omit explicit reference tok.

The total energy density and pressure perturbations
then

dr5ḟdḟ1V,fdf1ḟ2w1Tds, ~56!

dp5ḟdḟ2V,fdf1ḟ2w1sdT, ~57!

and the energy momentum flux (r1p)v.
5-5
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A complete set of perturbation equations can be obtai
from the Einstein field equations and the scalar field equa
@29,30#. From the Einstein equation we obtain

ẇ1Hw14pGk21a~p1r!v50, ~58!

3Hẇ1~3H21k2a22!w24pGdr50, ~59!

ẅ14Hẇ1~2Ḣ13H2!w14pGdp50. ~60!

Perturbations of the scalar field equation give

df̈1~3H1G!dḟ1ḟ~dG!1k2a22df

1dV,f14ḟẇ2Gḟw22V,fw50. ~61!

In general, we can haveG[G(f,T) andV[V(f,T),

dG5G ,fdf1G ,TdT, ~62!

dV,f5V,ffdf1V,fTdT, ~63!

ds52V,fTdf2V,TTdT. ~64!

The numerical results of the next section are obtained
integrating these equations with the initial conditions set
the thermal fluctuations.

During warm inflation, the background solution rapid
approaches the slow-rolldown approximation~11!–~13!. In a
similar way, the perturbations also have a slow-roll lim
which begins when their length scales become larger than
horizon,k,aH. The df̈, ẇ and ẅ terms become insignifi-
cant, and perturbations approach a slow-roll large-scale l

df;2CH21ḟ, ~65!

w;4pGC~11r !ḟ2, ~66!

v;2Cka21H21, ~67!

whereC is a constant andr 5G/3H.
The cosmological perturbations can also be describe

terms of gauge invariant quantities, and these are usefu
following the development of perturbations after the end
inflation. The curvature perturbationR @44#, is defined by

R5w2k21aHv. ~68!

The entropy perturbatione is defined by@45#

e5dp2cs
2dr, ~69!

wherecs
25 ṗ/ ṙ. In the slow-roll large-scale limit, the curva

ture perturbation is constant,R;C and the entropy pertur
bations vanish.

The curvature and entropy perturbations are coupled b
second order equation@30#

R̈1GRṘ1cs
2k2a22R52@~He1!•2GRHe1#, ~70!

wheree15e/(p1r) and
08352
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GR523Hcs
222H21Ḣ22cs

21ċs . ~71!

The perturbation equation~70! implies the classic result@46#
that if there is no further entropy generation then the cur
ture fluctuationR will retain the constant value it reache
during inflation while the wavelength exceeds the horiz
size,k,aH.

If the entropy perturbation vanishes on small as well
large scales, then we need only solve the cosmological
turbation equation forR. This is a reasonable approximatio
during supercooled inflation, and the equation is often u
in that context@47#.

In warm inflation the entropy perturbations are importa
Nevertheless, for the caseG ,T50, it is possible to obtain
analytic results. It is advantageous to use the inflaton eq
tion for approximate solutions, relying on the fact that t
metric perturbations remain small on scales smaller than
horizon, k.aH. An analytic approximation to the densit
perturbation amplitude can be obtained by matching the c
sical result fordf Eq. ~11! to the thermal fluctuations Eq
~37! at the crossing timetH whenk5aH,

PR;S p

4 D 1/2H5/2G1/2T

ḟ2
. ~72!

This result is analogous to the resultPR5H4/ḟ2 for super-
cooled inflation.

The spectral indexns is defined by

ns215
] ln PR
] ln k

. ~73!

The slow-roll equations~15!–~17! enable us to express th
spectral index for the amplitude~72! in terms of slow-roll
parameters,

ns215
1

r S 2
9

4
e1

3

2
h2

9

4
b D . ~74!

The first two terms agree with Ref.@26#. Theb term shows
the dependence of the spectrum on the gradient of the reh
ing term. For comparison, the spectral index for standard
supercooled inflation, isns5126e12h @48#.

V. NUMERICAL RESULTS

We shall consider the evolution of the cosmological p
turbations and the spectrum of density perturbations in a
ticular toy model which allows us to investigate a number
interesting phenomena. The toy models include some b
features of consistent models of warm inflation, such
@14,19#, but they are simplified in order to isolate particul
effects.

The same potential for the inflaton field will be use
throughout. The thermal corrections to the potential are ta
to be insignificant. Three different types of damping te
will be considered. We hope to compare the perturbat
spectra for different potentials and potentials with large th
mal corrections in later work.
5-6



a
e
av

o

y
rm

e

rs
h

m
ia

o

th
th

g
av

r

T
o

the
m.
et-
the

ted

SCALAR PERTURBATION SPECTRA FROM WARM INFLATION PHYSICAL REVIEW D69, 083525 ~2004!
The potential we choose is

V~f!5
1

4
l~f22f0

2!2. ~75!

The important features of this potential are the maximum
f50 and the minimum atf5f0 . These features can aris
in models with spontaneous symmetry breaking and h
been used before in models of supercooled inflation@49#.

For the damping termG, we will take

G5G0S f

f0
D bS T

V~0!1/4D c

, ~76!

with different choices ofb andc. In the first example,b5c
50, which allows comparison with the analytic results
Taylor and Berera@27#. The second example usesb52 and
c50 to isolate the effects of thef dependence. The third
case,b52, c521, is the damping term first calculated b
Hosoya @5#, and used in some consistent models of wa
inflation, for example@14#.

A. Homogeneous solution

The inflatonf, entropys and scale factora satisfy Eqs.
~1!–~9!. The numerical solutions shown in Fig. 1 plot th
potential and the radiation densityr r for the three models
listed in Table I. The radiation density drops rapidly at fi
due to the expansion, but rises as the solutions approac
slow-roll regime.

The end of inflation happens when the slow-roll para
etere511r , and coincides with the equality between rad
tion and potential energy,r r5V. It is convenient to relate
the times of events during inflation to the time of the end
inflation, t f , and so we plotN(t), where

N5 ln~af /a!, ~77!

along the horizontal axis.
The radiation temperatures at the end of inflation for

three models are given in Table I. These determine
Hubble length at the end of inflation~when the total energy
density is 2r r),

cHf
2151.77310225g

*
21/2T14

22 m ~78!

where T145Tf /(1014 GeV). For comparison, a comovin
scale which is 500 Mpc at the present epoch would h
length

3.5931022T14
21 m ~79!

at the end of inflation.
In the models withb52, the inflation continues for large

values off than the model withb50. A consequence of this
is that the reheat temperature is smaller in these models.
can have an important effect on the production of gravitin
@50#.
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B. Perturbations on small scales

Our earlier discussion of thermal fluctuations ignored
effects of fluctuations in the metric and the damping ter
The cosmological perturbation equations imply that the m
ric perturbation remains small and has little effect before
horizon crossing timetH , when k.aH. However, for an

FIG. 1. The potential and the radiation density are plot
againstN for the three models described in the text:~I! Constant
damping ~top!, ~II ! damping depends onf ~middle!, and ~III !
damping depends onf and T ~bottom!. In all casesr'100 atN
560.
5-7
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TABLE I. Three models with different damping terms.Tf is the temperature at the end of inflation and
g* 5100.

Model b c l f0 V(0) G0 ~GeV! Tf ~GeV!

I 0 0 2310215 0.3mPl (4.4831014 GeV)4 1.4331013 3.031013

II 2 0 6.4310216 0.6mPl (6.7531014 GeV)4 4.331013 2.131013

III 2 21 6.4310216 0.6mPl (6.7531014 GeV)4 4.331011 1.131013

FIG. 2. Evolution of the fluctuations for two different values of the comoving wave numberk. The three rows represent the three mode
constant damping~top!, damping depends onf ~middle!, damping depends onf and T ~bottom!. The vertical lines indicates horizon
crossing,k5aH.
083525-8
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SCALAR PERTURBATION SPECTRA FROM WARM INFLATION PHYSICAL REVIEW D69, 083525 ~2004!
accurate treatment, and for dealing with fluctuations in
damping term, we must solve the perturbed Einstein eq
tions and perturbed equation of motion.

Our numerical code simultaneously integrates the eq
tions for the homogeneous background and the perturba
equations for a given wave numberk. The integration begins
with the homogeneous solution alone. Integration of the p
turbation equations only commences at the freeze-out t
tF , defined by the conditionk5a(GH)1/2. This is done in
order to ensure that the noise term in the Langevin equa
which we saw earlier can be neglected. When the integra
of the perturbation equations begins, the wavelength of
perturbation is much smaller than the horizon size, and
rizon crossing occurs at a later timetH . The integration is
stopped when the radiation energy density reaches the s
value as the vacuum energy density.

Initial conditions have to be set for the perturbed quan
ties at the freeze-out time when the integration of the per
bation equations begins. The initial inflaton fluctuations w
given in Eq.~37! and Eq.~38!. The initial value of the metric

FIG. 3. The spectral index is plotted for the potentiall(f2

2f0
2)2/4 with ~top! constant damping and~bottom! damping de-

pends onf. The physical wave numberk/a has been normalized
by the Hubble lengthcH21 at the end of inflation~see Sec. V A!,
ln@0.002 Mpc21c/(afH f)#52 ln(g

*
1/2T14)253.6, where T14

31014 GeV is the temperature at the end of inflation.
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perturbation is given by the perturbed Einstein equatio
~58! and ~59!,

w5
a2

k2 4pGdr, ~80!

wheredr is given by Eq.~51!. Interestingly, at the freeze-ou
time, udr r u'udrfu'u(p1r)vu.

The time evolution of the gauge invariant parameters
scribing the perturbations is shown in Fig. 2. The entro
perturbations are on the left. In the rangetF,t,t f , the en-
tropy perturbation is dominated by the radiation,

e'd~Ts!. ~81!

The entropy perturbation has a significant peak but alw
approaches zero after the perturbation crosses the horizo
supercooled inflation the entropy perturbation is small co
pared to the curvature perturbation.

Figure 2 also shows the amplitude of the curvature fl
tuations for the three damping models. The amplitudes be
relatively small and grow to approach a constant value v
shortly after horizon crossing. The influence of the entro
perturbations can be seen in a small bump on the rising e

FIG. 4. The scalar fluctuation spectrum for the potentiall(f2

2f0
2)2/4 with Hosoya’s damping term. The spectral index ove

limited range ofk is also shown.
5-9
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of the plots. The final value of the curvature fluctuation
model I is within 5% of the analytic approximation~72!.

The third model, where the damping term depends on
temperature, differs from the other two. In this case, the
tropy fluctuation has a direct influence on the inflaton flu
tuation. This causes the curvature perturbation to follow
entropy perturbation more closely, and even leads to the fi
value of the curvature perturbation changing sign.~Note that
the root mean square value of the curvature perturbatio
given by the modulus in this case.! The analytic approxima-
tion for the scalar perturbation amplitude is not applicable
this case and the numerical results confirm this.

C. Perturbation spectra

The spectral index for the first two models is plotted
Fig. 3. The results are in close agreement with the analyt
formula ~74!. When the damping depends on the tempe
ture, the spectrum is rather more complicated and has
oscillatory form shown in Fig. 4. The location of the zeros
this spectrum depends on the parametersG0 , l andf0 . At
an extremum in the spectrum, the index changes from b
(ns.1) to red (ns,1) with increasing wave numberk.

The observational situation is developing rapidly. The fi
year of cosmic microwave background anisotropy meas
ments made by the WMAP satellite suggest a spectral in
ns,1 @51#. However, the combination of the microwave da
with large scale structure data@52# produce a quite differen
conclusion, that the spectral index runs from blue (ns.1) to
red (ns,1) with increasing wave numberk. Peiris et al.@52#
give their best estimate of the spectral index asns51.2 and
dns /d ln k520.077 atk50.002 Mpc21.

The possibility of a spectrum which runs from blue to r
is particularly interesting because it is not commonly seen
inflationary models, which typically predict red spectra. E
amples of inflation with blue spectra do exist however. T
hybrid inflation models, which have two scalar fields, a
examples@53,54#.

The numerical results show clearly that warm inflati
can produce a spectrum of density perturbations with b
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runs to red behavior. This behavior is seen quite generally
potentials with spontaneous symmetry breaking whenG has
the form Eq.~76! with b52 andc50, and is a possibility
whenb52 andc521.

VI. CONCLUSION

The numerical results presented here show some of
possibilities which we might expect from scalar density flu
tuations in the warm inflationary scenario. We have focus
on the effects that result from various forms of the damp
coefficientG. Our main results are as follows:

~1! The nonstochastic evolution begins at the freeze-
time tF when the fluctuations in the inflaton are given b
Eqs.~37! and ~38!.

~2! The spectral index whenG[G(f) is given by three
slow-roll parameters Eq.~74!. In this case warm inflation
introduces only one extra slow-roll parameter.

~3! The combination of ‘‘spontaneous symmetry brea
ing’’ potentials andG[G(f) typically leads tons.1 on
long scales andns,1 on short scales.

Emphasis has been placed here on methods for sol
the perturbation equations rather than constructing a real
inflaton potential. However, the equations and the numer
integration have been set up in a way which makes th
easily adaptable to different models. The inflaton potent
may include thermal corrections and different forms of t
damping terms may also be taken into account, for exam
using the friction coefficients calculated in Refs.@13,17,19#.

A better understanding of non-equilibrium thermodyna
ics will enable us to calculate the friction term in the inflato
equation for a wider range of conditions than is possible
present. Models of warm inflation are restricted by cons
tency requirements@13,15,26#, many of which are a result o
assumptions made due to the difficulties in calculating
from equilibrium effects. Our results suggest that warm
flation can easily produce a spectrum of density fluctuati
that fits the observational data and that this is a direct
worth pursuing.
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