PHYSICAL REVIEW D 69, 083525 (2004

Scalar perturbation spectra from warm inflation
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We present a numerical integration of the cosmological scalar perturbation equations in warm inflation. The
initial conditions are provided by a discussion of the thermal fluctuations of an inflaton field and thermal
radiation using a combination of thermal field theory and thermodynamics. The perturbation equations include
the effects of a damping coefficieftand a thermodynamic potentil We give an analytic expression for the
spectral index of scalar fluctuations in terms of a new slow-roll parameter constructed frArseries of toy
models, inspired by spontaneous symmetry breaking and a known form of the damping coefficient, lead to a
spectrum withng>1 on large scales antk<<1 on small scales.
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[. INTRODUCTION ing the thermally produced fluctuations to gauge invariant
parameters when the fluctuations cross the horizon. This

Inflation is the most successful idea which we have availtechnique should be good for order of magnitude estimates.
able for explaining the large scale structure of the UniversefFor more accurate treatment of the density perturbations it is
Inflationary dynamics can be realized in two distinct ways.necessary to use the cosmological perturbation equations,
In the original picture, termed supercooled inflation, the Uni-which can be found in the literatuf@8—30.
verse rapidly supercools during an inflation phase and sub- The main focus of the present work is to solve the pertur-
sequently a reheating period is invoked to end inflation andPation equations numerically. We will also set up the equa-
fill the Universe with radiatiof1—4]. In the other picture, tions to take into account some effects which have previ-
termed warm inflation, dissipative effects are important dur-Ously been ignored. We introduce a new slow-roll parameter
ing the inflation period, so that radiation production occursand include modifications to the equations when the damping
concurrently with inflationary expansion. term and the potential depend on temperature.

The idea of warm inflation was influenced by a calcula- Other improvements have been made in the treatment of
tion of the friction term in the inflaton equation of motion by thermal fluctuations. The influence of the cosmological ex-
Hosoya and Sakagamib]. The magnitude of the damping pansio_n on the inflaton fluctuations is copsidered in detail.
term suggested the possibility that it could be the dominant his gives a clearer and more accurate picture of the devel-
effect proionging |nf|at|0r'[6_9] The Significance of dissi- Opment of the thermal fluctuations than preVIOUSIy. Thermal
pation to inflation was independently realized [it0], but fluctuations in the radiation, which lead to entropy perturba-
this time with a clearer picture of the associated inflationtions, are also analyzed. Entropy perturbations are always
dynamics, and named warm inflation. This and associateBresent during warm inflation and react back on the curva-
works [11’12 also outlined the nonequiiibrium thermody_ tl.:lre fluctuations. In the basic mOde|, the entropy fluctuations
namical problem underlying this picture, which subsequentlydisappear before inflation ends.
has been studied in greater defaiB—19. These works con- Section Il contains an updated outline of the theory of
firmed that at high temperature the damping was proporwarm inflation. In Sec. 11l we obtain expressions for the ther-
tional to the relaxation time of the radiation. In addition to Mal fluctuations of the inflaton and the radiation. Cosmologi-
these studies of warm inflation dynamics, several phenomgal perturbations are discussed in Sec. IV. The results of
enological warm inflation models have been discussed in thBUmerical solutions for the cosmological perturbations using
literature[20—24. the thermal fluctuations as initial conditions are compared

The density fluctuations in warm inflation arise from ther- With observations in Sec. V. A summary of the main results
mal, rather than vacuum, fluctuatiofs;25,26. These have and some general comments appear in Sec. VI.
their origin in the hot radiation and influence the inflaton
through a noise term in the equations of motjdd,2§.

The development of cosmological perturbations in warm
inflation has been investigated by several authors. Taylor and In this section we shall consider the case of a homoge-
Berera[27] have analyzed the perturbation spectra by matchneous inflaton field interacting with thermalized radiation. If

the inflaton is evolving very slowly, then the radiation creates
a thermal correction to the inflaton potenti81] and a

Il. WARM INFLATION

*Electronic address: lisa.hall@ncl.ac.uk damping force[5]. The system of equations describing the
"Electronic address: ian.moss@ncl.ac.uk system includes an equation for the inflaton and an equation
*Electronic address: ab@ph.ed.ac.uk describing how the energy lost by the inflaton through the
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damping force is transferred to the radiation. p+3H(p+p)=0 @)
The equation describing the effects of radiation damping

on the evolution of the inflaton field was first obtained by

Hosoya[5] using a form of thermodynamic transport theory. et

This is applicable as long as the inflaton evolves slowly anog

the radiation remains close to thermal equilibrium. More re-

cent treatments are based on the closed time path formalism,

and an account of the effects of radiation damping on a . .

evolving field in flat space can be found, for exa?np%e, in anl'.he zero curvatu_re Friedmann equation completes the set of

paper by Gleiser and Ram@82]. An interesting variation differential equations fogp, T and the scale facta,

occurs when the inflaton interacts with the radiation via an

intermediate particle decdy9]. 3H2=87TG(£¢2+V+TS
When the early Universe is in homogeneous expansion 2

with expansion ratéd(t), the evolution equation for the in-

now implies entropy production. Making use of Ed) we

T(s+3Hs)=T¢> (8)

. 9

flaton field is given by The entropy production has been described in a slightly
different way in some previous work on warm inflation
¢+ (3H +F)¢$+V'¢:o, (1) [10,2G. We can recover an alternative equation in the case

when the temperature corrections to the potential are negli-
wherel'(¢,T) is the damping term and(¢,T) is the ther-  gible. If we setdmy=0 in Eq.(2), then the radiation density
modynamic potential. The damping term has a generic fornp,=3sT/4, and Eq.8) becomes
given approximately by ~g*¢?r, whereg is a coupling
constant. For Hosoya’s damping terree 7( ¢, T) is related pr+4Hp, =T ¢2. (10
to the relaxation time of the radiation and for the models
with an intermediate particle decay= 7(¢) is related to the  Thjs equation is valicnly when m;=0.
lifetime of the intermediate particle. The thermodynamic pO' The S|0w_ro” approximation Consists Of neg'ecting terms

tential can be expressed in a standardized waj38y in the preceding equations with the highest order in time
) 1 derivatives
o
V(h,T)=— a0« T*+ 5(6mp)?p*+Vo(d),  (2)
90 2 : Vi
$= "3 (L

whereg, (T) is the effective particle number artin(¢,T)
represents thermal corrections. )
The relative strength of the thermal damping compared to Ts=r¢? (12

the expansion damping can be described by a parameter
- 3H?=87GV. (13)

3R 3 Note thatTs is of the same order as two time derivatives.

o _ . _ Slow roll automatically implies inflatiora>0.
Warm inflation is defined to be inflation with large values of  The consistency of the slow-roll approximation is gov-
r, as opposed to supercooled inflation in whicltan be  erned by a set of slow-roll parameters. Warm inflation has
neglected. , o . ~extra slow-roll parameters in addition to the usual set for
The dissipation of the inflaton’s motion is associated W'thsupercooled inflation due to the presence of the damping

the production of entropy. The entropy density of the radiayermr . There are four “leading order” slow-roll parameters,
tion s(¢,T) is defined by a thermodynamic relation in terms

of the thermodynamic potential, 1 (V ¢) 2 1 (V </>¢)
€= T~ - il 7]= — | il
s=—Vr. (4) 167G\ V 8wG| V
The rate of entropy production can be deduced from the con- A AV TV 41
servation of energy-momentum. The total denpignd pres- B= saGl 1TV |' T Vv o (14)

surep are given by

1 The first two parameters are the standard ones introduced for
p=—d2+V+Ts (5)  supercooled inflatiof34—-37. Two new parameters are re-
2 quired for the¢ dependence of the damping term and the
temperature dependence of the potential. The slow-roll ap-

_ } 2_y 6 proximation is valid when all of the slow-roll parameters are
P= 2¢ ‘ ©) smaller than ¥r. In supercooled inflation, the condition is
tighter and the slow roll parameters have to be smaller than
Energy-momentum conservation, 1.
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As an example, consider the caBe=V 4r=0. In the and then the combined effects of expansion and curvature
warm inflationary regime> 1, the rate of change of various fluctuations. The main results of this section are H83),
slowly varying parameters are given by differentiating Eqs.(38) and (51), which provide the initial conditions for the
(11)—(13), classical evolution equations described in the next section.

% dlstH: _ Eé, (15) A. Inflaton fluctuations

The behavior of a scalar field interacting with radiation
can be analyzed using the Schwinger-Keldysh approach to

i din ¢: _ l(,]_ﬁ) (16) non-equilibrium field theory38,39. According to this ap-

H dt r ’ proach, a simple picture emerges in which the field evolves
by a Langevin equatiof32,4Q,

1dinTs 1 5 1 _

Hodt - r@nATe @ —VH( )T G +V 4=Ext), (19

In each case, the right hand side of these equations gives thehere £ is a stochastic noise source. Correlation functions
relative sizes of terms neglected in the slow-roll approxima-can be evaluated by probability averages.
tion. Slow roll therefore requires<r, n<<r and B<r. The Schwinger-Keldeysh approach has been studied for
Inflation ends at the time whea=H+H? falls to 0. curved, as well as flat, spacetime backgroufds]. Al-
From Eq.(15), the end of inflation corresponds to the con- though the particular form of the Langevin equation has not
dition e=r. Furthermore, the slow-roll equations allow us to Yet been fully investigated, we can appeal to the equivalence
rewrite this condition ag, = V; in other words inflation ends Principle to deduce the form of the Langevin equation on
when the radiation energy density reaches the same value §gales smaller than the horiz26].

the vacuum energy. We shall analyzg the inflaton flyctuations on an expanding
Similar arguments app|y thh,T andquﬂ_ are non-zero, baCkgrO.Und over time scales which are |Onger than the mi-
for example, crophysical processes, but short compared to the variation of
the expansion rate. We also take modes with physical length
1ding 1/4—c 4 c 3c scales larger than the microphysical processes. The comov-

. ing wave number will be denoted lyand the physical wave
(18 number byg=ka *.

The Langevin equation for the Fourier transform of the
Note thatc=TI +/T" is not required to be small and there- inflaton fluctuationss, takes the forn{26]
fore does not enter the list of slow-roll parameters. The slow-

roll approximation is valid fore<r, p<r, g<r and d<r. mt 3HpAT p+K2a 2= &, (20

H dt rlarc? avcPr arce a7 c®

IIl. THERMAL FLUCTUATIONS whereé, is a stochastic noise source. Over the time scales of
interest,H and I are constant and=expHt). As in the
In this section we shall consider the behavior of thermalprevious section, we set=T'/3H.
fluctuations during inflation and their influence on density The correlation function of the noise can be found by
perturbations on length scales smaller than the size of thgonverting flat space resulf82] to the comoving frame. In

horizon. Thermal fluctuations, if they are present, form thethe high temperature limiT—c, the noise source is Mar-
predominant source of density perturbations in warm inflakovian,

tion. We will assume throughout that the radiation is close to
thermal equilibrium. Surprisingly, this is not a necessary con- (£ E_o(t))y=2I"Ta 3(2m)36%(k—k')8(t—t").

dition for warm inflation but it is an important regime. Con- (21
ditions for thermalization are model dependent, and are dis-
cussed in Refd.13,14,17,1% The scale factor appears due to the use of comoving coordi-

The evolution of a comoving mode of the inflaton fluc- nates.(The temperature should be large in comparison with
tuations during a warm inflationary era can be divided intothe mass of the particles which make up the radiation for this
three regimes, depending on the relative effects of differenapproximation. We shall make the same approximation for
physical processes: the damping term later.

For the eventual comparison with observational data, we

(1) Thermal noise. define the power spectra(k) by

(2) Expansion.

(3) Curvature fluctuations. P¢¢,( k)(zﬂ_kfl)353(k_ k') — < nk(t) 777k'(t)>, (22)
The transitions between these regimes are called freeze- 1343 , . .

out and horizon crossing. Where previous calculations have ~ Par(K)(27k™ %) 6 (k=K' ) =(m(t) (1)), (23

treated each of these regimes seperately, we shall consider _
the combined effects of the thermal noise and the expansion, P, ,4(k)(27k™1)38%(k—Kk')=(m(t) 7_1o (D). (24
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When comparing to classical perturbation theory it is alsoThe root-mean-square fluctuation is approaching the domi-
useful to define root-mean-square fluctuation amplitudes nant solutiorz”Y ,(z) of the homogeneous equation fgg in
this regime as if the noise had no effect. With the warm
Sp(K)=|Pyg(K)| 2, (25 inflation conditionl'>H, the results further reduce to

2

. 1/2
Sp(K)=|P, (k)2 (26) T 1 l
Pyo(K)~| 7| (TH) Tl 1+ TH 22

Defined in this wayd¢ has the same dimensions @s
The power spectra can be found by solving the stochastic

equation(20) by Green function methods,

+...), (34

172 1.4
Pﬂ,(k)~(z) 7zga (TH) YT (39)

The cross correlation reduces to
Pors(K)~ = [Pyg(K) ¥ P, oK) (36)

X z ”g(ﬂd_z’ 27) which also indicates that the effects of the noise term are
z' fading away.
The transition between the two regimes has been called
wherez(t) =k/a(t)H and the order of the Bessel functions is freeze-out{26], and occurs at a particular tinte(k) when
ka '=(I'H)Y2 In warm inflation, the freeze-out time will

always precede the Hubble crossing time, at whieh !

7T oo
() =— ngz {3.(2)Y,(2')=J(Z)Y (D)}

v=5(1+r). (28)  =H. The evolution of the inflaton becomes increasingly de-
terministic for timest>t .

It is now possible to use the relatié®1) to obtain the power The fluctuations approach a constant value,

spectrum, o 1/4
op(k)~ —) (TH)YT, (37)

HE) 4
K\=—|= 21“Tf J(2)Y (2
Pgp(k) > , {3.(2)Y,(2') v (2
Shk)~—|=| ——(THY4TV2 38
_J,,(Z,)YV(Z)}ZZZVZ'272V dz'. (29) d)( ) 4 Faz( ) ( )
Similarly, for the time derivatives, Apart from the numerical factor, the value && agrees with

the results of Bererf26], who analyzed Eq(20) in the re-

T\ o, o , gime ka~*>(I'H)*2 The sign of5¢ has been chosen for
Prr(k)=— 5| HZ ZFTJZ {3,-1(2)Y(Z') consistency with the cross correlatio@®§). It is also consis-
tent with the deterministic solution.
=J3(2)Y,_1(2)}?2?2'?7 2" d7'. (30
B. Energy fluctuations
The formula for the power spectrum can be simplified at

late or early times. For early times, when the physical size of Now we turn to thermal fluctuations in the energy dgnsny
the modea/k is much smaller than the horizon. we can use™ flat space. The classical theory of energy fluctuations is

S L : . “based on fundamental principles of statistical physics. For
the z> v approximation for the Bessel functions to obtain the energy fluctuatiosE in a fixed volumeV, Lifshitz and

Pys(k)~ka™ T (31) Pitaevstii[42] give the formula

AE)?),=C,T?, 39
,Pwﬂ-(k)wk3a73_|_. (32) <( ) >V v ( )
where C, is the specific heat. This result can also be ex-
Allowing for the transformation from comoving to physical pressed in terms of the energy densityand the entropy
wave numbers, these results are identical to the thermal fludensitys,
tuations of a field in flat space. The rms fluctuations are , i3
proportional toTY?, which is typical of the fluctuations of a ((Ap)Hhy=V "Ts. (40)
classical object in a radiation fie[d2].
A different approximation holds for later times, wheéh
<ka '<(I'H)Y2 and we can use the<y approximation
for the Bessel functions. The power spectrum simplifies to

We shall investigate the equivalent result in finite tempera-
ture quantum field theory before considering the application
to warm inflation.

Consider a scalar fielg in thermal equilibrium at tem-
peratureT. Fluctuationse in the energy density are defined

772 *®
P¢,¢(k)~?FT22”YV(z)2f0 J(Z)%2'27%" + O(2%). by
(33 e=H(x)—(H)r, (41)
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where the energy density operator tr is the freeze-out time mentioned earlier. The total energy
fluctuations in this regime are given by E@O0). After tg,

the radiation and inflaton fluctuations are uncorrelated and
Eq. (50) can be used for the fluctuations in the energy density
of the radiation,

1. 1 1
e N 2,5 2 2
H >X +2(V)() +2mx, (42

and the energy density, =(H)t is the thermal ensemble

expectation value oH. 2\ 12 -
The correlation function opr(K)=| 75 g, k3%~ 32T, (52)
' _ ' 2
(e(¥)e(x))r=(HOOH(X))1=(H)T. (43 whereg* is the effective particle number and we have intro-

The simplest way to remove any divergences will be to subSj uc'l:'ide ttr(;?alcgrr?;rvm?svéae\flii; durl;]blég)aq'l-'he inflaton ener
tract the zero temperature correlations, which in any case ar, . 9y y ' 9y
uctuations fort>tp are therefore

not of interest to us. We therefore define the power spectru
of the radiationP, by

P(a)(2mq~1)36%(q—q’)
=(eq()e_g (1)1 (eq(D)e_g(t"))o. (44)

As before, we also define a root-mean-square fluctuation IV. COSMOLOGICAL PERTURBATIONS
The thermal fluctuations occurring during warm inflation
Sp, (k)= 172 45 : . .
pe(k)=[Pr(a)] (45) evolve gradually into cosmological perturbations. The ther-
The expectation values for four field operators can be reMal noise has a diminishing effect on the development of the

duced using the cluster decomposition princi8] to give perturbations until the freeze-out time when it becomes in-
significant. The perturbations can then be described by a

Spy=dSP+V 466, (52

whered¢ and 5¢ are given above.

d3a’ Gaussian random field which grows deterministically.
Pr(q)=J 3q3[—q(q—q’)+at(9t,+m2]2 In warm inflation there are cosmological perturbations in
(2m) the inflaton field, the radiation and the gravitational field. We

> >0y shall consider only the scalar gravitational mode, which
X[Gr(@HGr(a-at) means that there is one degree of freedom in the metric per-
—Gﬁ(q,t)GE(q—q’,t’)], (46) turbations. We shall also use a particular gauge, the zero-
shear gauge, in which the scalar metric perturbation has the
where the expectation values of products of two fields ardorm
given by the thermal Green function,

(Xq(Dx-q(t"))=(2m)?6°%(q—0q")G7 (q,t—t"). (47
The inflaton perturbation will be denoted B, the tem-
For a bosonic field in thermal equilibrium, perature perturbatioAT and the velocity perturbation.
For any random perturbation fietlg(x), the power spec-
trum is defined by an average

ds?=—(1-2¢)dt>+a%(1+2¢)5;dxdx. (53

GT(g,t)=n(wg)e'“d+(1+n(wy))e '“d,  (48)

wherew,= (m?+g?)2andn(w)= (/"= 1)"1. The power 1,3 830 1 —
spectrum reduces to the integral Pyl (2mk ™) S k=K)=(ug-). 649
3 where gy is the Fourier transform of(x). The amplitude

(sz w2 —m?g?) will be normalized by
a-q’'“a’

d*q’ q

(2m)3 dogogq_q

Pi@- |
g(k)=|Py(k)|*2 (55)
X[2n(wq-g )N(@gq) +N(wgq-g) T N(wg)]. (49)
Note thatg(k) satisfies the same linear equations of motion

The classical limit corresponds @<T. The integral is 55 We use this normalization for the perturbations and
then dominated by the regioq'>q. For a massless field, it explicit reference td.

the integral reduces to The total energy density and pressure perturbations are
then
P(a)=49Tp;, (50)
wherep, is the energy density. This is in agreement with the 8p=pdp+V 46¢+ o+ TS, (56)
thermodynamic result40) for pure radiation if we identify o .
q® with v~ 1. p=¢dp—V 4,0+ dp?e+soT, (57)

In the expanding Universe, the inflaton and radiation fluc-
tuations are effectively in equilibrium for timest, where  and the energy momentum fluy ¢ p)v.
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A complete set of perturbation equations can be obtained I'o=—3Hc2—2H H-2c- 16 (71)
from the Einstein field equations and the scalar field equation R s s s
[29,30. From the Einstein equation we obtain The perturbation equatiof70) implies the classic resul6]
) that if there is no further entropy generation then the curva-
o+He+47Gk ta(p+p)v=0, (58)  ture fluctuationR will retain the constant value it reached
) during inflation while the wavelength exceeds the horizon
3He+(3H?+k*a™%) ¢—4mGsp=0, (59 size,k<aH.
) _ . If the entropy perturbation vanishes on small as well as
o+4He+(2H+3H?) o +47Gsp=0. (60) large scales, then we need only solve the cosmological per-
_ i _ ) turbation equation foR. This is a reasonable approximation
Perturbations of the scalar field equation give during supercooled inflation, and the equation is often used

in that contex{47].
In warm inflation the entropy perturbations are important.
Nevertheless, for the cade=0, it is possible to obtain

S5+ (BH+T) 8¢+ ¢(ST) +k?a 25¢

TV gt ade—Tde—2V 40=0. (6D analytic results. It is advantageous to use the inflaton equa-
In general, we can havB=T(¢,T) andV=V(#,T), tion for approximate solutions, relying on the fact that the
metric perturbations remain small on scales smaller than the
or=r ,6¢+1 16T, (62 horizon, k>aH. An analytic approximation to the density
perturbation amplitude can be obtained by matching the clas-
OV 4=V 440¢+V 416T, (63)  sical result foré¢ Eq. (11) to the thermal fluctuations Eq.
(37) at the crossing timéy whenk=aH,
552 —VY¢-|—5¢)—VYTT5T. (64)
o\ V2 s2pier
The numerical results of the next section are obtained by Pr~ Z) — (72
integrating these equations with the initial conditions set by ¢

the thermal fluctuations. )
During warm inflation, the background solution rapidly This result is analogous to the resiitg=H?/ ¢ for super-
approaches the slow-rolldown approximatidi)—(13). Ina  cooled inflation.
similar way, the perturbations also have a slow-roll limit, ~The spectral index; is defined by
which begins when their length scales become larger than the

horizon,k<aH. The 8¢, ¢ and ¢ terms become insignifi- ne—1= 7In PR_ (73)
cant, and perturbations approach a slow-roll large-scale limit dlnk
S~ —CH ¢ (65) The slow-roll equation$15)—(17) enable us to express the
' spectral index for the amplitud&’2) in terms of slow-roll
o~47GC(1+1) ¢, (66)  Parameters,
1 9 3 9
~—Cka H™1, 6 —l=—|——et=p—~
v a (67) n—1=—|-zet57- 78/ (74)

whereC is a constant and=1"/3H. ) .
The cosmological perturbations can also be described if) 1€ first two terms agree with Re26]. The 3 term shows

terms of gauge invariant quantities, and these are useful fgPe dependence of th? specr':rum on th?a.g(rjadient of thg redheat—
following the development of perturbations after the end ofing term. IFor.c]E:mparlgon,_t e spectral index for standard, or
inflation. The curvature perturbatioR [44], is defined by ~ SuPercooled inflation, igs=1-6e+27 [48].

R=¢—k taHv. (68) V. NUMERICAL RESULTS
The entropy perturbatioa is defined by[45] We shall consider the evolution of the cosmological per-
turbations and the spectrum of density perturbations in a par-
e=dp—ciop, (69 ticular toy model which allows us to investigate a number of

. interesting phenomena. The toy models include some basic
wherec2=p/p. In the slow-roll large-scale limit, the curva- features of consistent models of warm inflation, such as
ture perturbation is constarR~C and the entropy pertur- [14,19, but they are simplified in order to isolate particular

bations vanish. effects. , _ : .
The curvature and entropy perturbations are coupled by a The same potential for the inflaton field will be used
second order equatidi30] throughout. The thermal corrections to the potential are taken

to be insignificant. Three different types of damping term
7"3+1“R7'3+c§k2a*27z:_[(Hel)-_rRHel], (70) will be considered. We hope to compare the perturbation
spectra for different potentials and potentials with large ther-

wheree;=e/(p+p) and mal corrections in later work.
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The potential we choose is 1

1 olf  V/Vog——
V($)= ZM($* = )% (79 oorf Pe/Vo

0.001
The important features of this potential are the maximum at 4,
¢=0 and the minimum at)= ¢,. These features can arise |
in models with spontaneous symmetry breaking and have '*% [

been used before in models of supercooled inflaft#s]. 1e-06
For the damping ternh’, we will take r.07 i
¢ b T ) c 1e-08 -u
r=r (— — (76) . . . s s .
% o V(0)Y4 1o o 200 150 100 50 0

N = In(a/ a)
with different choices ob andc. In the first exampleb=c
=0, which allows comparison with the analytic results of 1]
Taylor and Berer&27]. The second example usbs-2 and l‘
c=0 to isolate the effects of thé dependence. The third |
case,b=2, c=—1, is the damping term first calculated by 0.01 1
Hosoya[5], and used in some consistent models of warm g g,
inflation, for examplg 14]. ‘

0.0001 [} |

A. Homogeneous solution 1805 11

The inflaton¢, entropys and scale factoa satisfy Eqs. teer "',,"'

(1)—(9). The numerical solutions shown in Fig. 1 plot the 1e-07
potential and the radiation densipy for the three models
listed in Table I. The radiation density drops rapidly at first
due to the expansion, but rises as the solutions approach the % 100 20 50 m 20 o
slow-roll regime. N = In(a¢/ a)

The end of inflation happens when the slow-roll param-
etere=1+r, and coincides with the equality between radia- 1 F ' ' ' ' ' ' '
tion and potential energyy,=V. It is convenient to relate :
the times of events during inflation to the time of the end of o1k
inflation, t;, and so we ploN(t), where ‘

0.01 —I“-.‘
N=In(as/a), (77) 0.001 [
along the horizontal axis. o000t /
The radiation temperatures at the end of inflation for the 1e0s] | ;
three models are given in Table I. These determine the /
Hubble length at the end of inflatiofwhen the total energy
density is 2,), 16-07 L

16-08 | ¥

CHy '=1.77x10 %%y, T m (78) e e 70 e s 4 30 20 10 0
N =In(a¢/ a)
where T,,=T;/(10** GeV). For comparison, a comoving

ro ] FIG. 1. The potential and the radiation density are plotted
scale which is 500 Mpc at the present epoch would haveagainstN for the three models described in the tefth: Constant

length damping (top), (II) damping depends oy (middle), and (Ill)
_ damping depends o and T (bottom. In all cases~100 atN
3.59 10 ?T;' m (79 =0
at the end of inflation. B. Perturbations on small scales

In the models witth= 2, the inflation continues for larger Our earlier discussion of thermal fluctuations ignored the
values of¢ than the model withh=0. A consequence of this effects of fluctuations in the metric and the damping term.
is that the reheat temperature is smaller in these models. Thighe cosmological perturbation equations imply that the met-
can have an important effect on the production of gravitinogic perturbation remains small and has little effect before the
[50]. horizon crossing timey, when k>aH. However, for an
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TABLE I. Three models with different damping ternig; is the temperature at the end of inflation and

g, =100.
Model b c N bo V(0) Iy (GeVv) T; (GeV)
| 0 0 2x10° % 0.3mp,  (4.48x10% GeVv)*  1.43x108®  3.0x10%
Il 2 0 6.4<10° %  0.6mp  (6.75x10% GeV)* 4.3x 10" 2.1x 10"
11 2 -1 6.4<10°1®  0.6mp,  (6.75x 10" GeV)* 4.3x 10" 1.1x 101
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E - % 4e-05 |
w o2 | g
=
Q 2005
-0.0025 |
-0.003 v . . . o : : y y
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£ o.00015 | / a 8e05f
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56-05 H
(6] i
-0.00015 |
o . . i . -0.0002 . . .
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N =lIn(a,/ a) N =In(a,/ a)
0.0004 5 3.5¢-05
K= 00002 Mpcy
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« B
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W .o0008 [ >
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N = Infa, / a) N =In(a; / a)

FIG. 2. Evolution of the fluctuations for two different values of the comoving wave nukfére three rows represent the three models,
constant dampingtop), damping depends ogh (middle), damping depends og and T (bottom). The vertical lines indicates horizon
crossing,k=aH.
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FIG. 3. The spectral index is plotted for the potentidie:? FIG. 4. The scalar fluctuation spectrum for the potentigd

- (15(2,)2/4 with Hosoya’s damping term. The spectral index over a

—¢§)2/4 with (top) constant damping antbhottom) damping de- ¢ -
limited range ofk is also shown.

pends ong. The physical wave numbed«/a has been normalized

by the Hubble lengtttH ™! at the end of inflatior(see Sec. V A . ) i )
In[0.002 Mpc c/(aH)]=—In(g¥?T,)—53.6, where T,, Perturbation is given by the perturbed Einstein equations

*

X 10" GeV is the temperature at the end of inflation. (58) and(59),

a2
accurate treatment, and for dealing with fluctuations in the ¢=—4mGop, (80
damping term, we must solve the perturbed Einstein equa- k

tions and pertprbed equapon of mot|on.. wheredp is given by Eq(51). Interestingly, at the freeze-out
Our numerical code simultaneously integrates the equas o 80,1 ~|8p4]~|(p+ p)o|
) rl ™ ] -~ .

tions for the homogeneous background_ and th_e pertur_bation The time evolution of the gauge invariant parameters de-

equations for a given wave numberThe integration begins - gqyjning the perturbations is shown in Fig. 2. The entropy

with the homog_eneous solution alone. Integration of the p_erperturbations are on the left. In the range<t<t;, the en-

turbathn equations only' commences at thg freeze-ouF tlmﬁopy perturbation is dominated by the radiation,

te, defined by the conditiok=a(I'H)*2 This is done in

order to ensure that the noise term in the Langevin equation e~5(Ts). (81)

which we saw earlier can be neglected. When the integration

of the perturbation equations begins, the wavelength of th&he entropy perturbation has a significant peak but always

perturbation is much smaller than the horizon size, and hoapproaches zero after the perturbation crosses the horizon. In

rizon crossing occurs at a later timg. The integration is supercooled inflation the entropy perturbation is small com-

stopped when the radiation energy density reaches the sarpared to the curvature perturbation.

value as the vacuum energy density. Figure 2 also shows the amplitude of the curvature fluc-
Initial conditions have to be set for the perturbed gquanti-tuations for the three damping models. The amplitudes begin

ties at the freeze-out time when the integration of the perturrelatively small and grow to approach a constant value very

bation equations begins. The initial inflaton fluctuations wereshortly after horizon crossing. The influence of the entropy

given in Eq.(37) and Eq.(38). The initial value of the metric perturbations can be seen in a small bump on the rising edge
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of the plots. The final value of the curvature fluctuation inruns to red behavior. This behavior is seen quite generally for

model | is within 5% of the analytic approximatidii2). potentials with spontaneous symmetry breaking whemas
The third model, where the damping term depends on thé¢he form Eq.(76) with b=2 andc=0, and is a possibility

temperature, differs from the other two. In this case, the enwhenb=2 andc=—1.

tropy fluctuation has a direct influence on the inflaton fluc-

tuation. This causes the curvature perturbation to follow the VI. CONCLUSION

entropy perturbation more closely, and even leads to the final

value of the curvature perturbation changing sigdiote that

the root mean square value of the curvature perturbation i

given by the modulus in this cagé.he analytic approxima-

tion for the scalar perturbation amplitude is not applicable t

this case and the numerical results confirm this.

The numerical results presented here show some of the
gossibilities which we might expect from scalar density fluc-
tuations in the warm inflationary scenario. We have focused
Pn the effects that result from various forms of the damping
coefficientI’. Our main results are as follows:

(1) The nonstochastic evolution begins at the freeze-out
C. Perturbation spectra time tg when the fluctuations in the inflaton are given by

The spectral index for the first two models is plotted in Egs.(37) and(38). . L
Fig. 3. The results are in close agreement with the analytical (2) The spectral index Wheﬁzr(‘ﬁ) IS given by thrge
formula (74). When the damping depends on the tempera?low'ron parameters Eq(74). In this case warm inflation
ture, the spectrum is rather more complicated and has th|5|troduces only one extra s‘I‘ow-roII parameter.
oscillatory form shown in Fig. 4. The location of the zeros in . (3) The .comb|nat|on of spontaneous symmetry break-
this spectrum depends on the parametéys\ and ¢y. At N9 potentials andI'=TI"(¢) typically leads tons>1 on
an extremum in the spectrum, the index changes from blulPnd Scales ands<'1 on short scales.
(ng>1) to red y<1) with increasing wave numbdr Emphasis has been placed here on methods for solving
The observational situation is developing rapidly. The firstthe perturbation equations rather than constructing a realistic
year of cosmic microwave background anisotropy measurenflaton potential. However, the equations and the numerical
ments made by the WMAP satellite suggest a spectral indetegration have been set up in a way which makes them
ns<1[51]. However, the combination of the microwave dataeasily adaptable to different models. The inflaton potentials
with large scale structure daft&2] produce a quite different may include thermal corrections and different forms of the
conclusion, that the spectral index runs from blngX1) to  damping terms may also be taken into account, for example
red (ng<1) with increasing wave numbér Peiris et al[52] using the friction coefficients calculated in Reff$3,17,19.
give their best estimate of the spectral indexnas 1.2 and A better understanding of non-equilibrium thermodynam-
dng/d Ink=—0.077 atk=0.002 Mpc ™. ics will enable us to calculate the friction term in the inflaton
The possibility of a spectrum which runs from blue to red equation for a wider range of conditions than is possible at
is particularly interesting because it is not commonly seen irpresent. Models of warm inflation are restricted by consis-
inflationary models, which typically predict red spectra. Ex-tency requirementgl3,15,28, many of which are a result of
amples of inflation with blue spectra do exist however. Theassumptions made due to the difficulties in calculating far
hybrid inflation models, which have two scalar fields, arefrom equilibrium effects. Our results suggest that warm in-
exampleqg53,54]. flation can easily produce a spectrum of density fluctuations
The numerical results show clearly that warm inflationthat fits the observational data and that this is a direction
can produce a spectrum of density perturbations with bluevorth pursuing.
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