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Inflationary slow-roll formalism and perturbations in the Randall-Sundrum type II braneworld

Erandy Ramı´rez and Andrew R. Liddle
Astronomy Centre, University of Sussex, Brighton BN1 9QH, United Kingdom

~Received 24 September 2003; published 28 April 2004!

We formalize the Hubble slow-roll formalism for inflationary dynamics in Randall-Sundrum type II brane-
world cosmologies, defining Hubble slow-roll parameters which can be used along with the Hamilton-Jacobi
formalism. Focusing on the high-energy limit, we use these to calculate the exact power spectrum for power-
law inflation, and then perturb around this solution to derive the higher-order expression for the density
perturbations~sometimes called the Stewart-Lyth correction! of slow-roll braneworld models. Finally we apply
our result to specific examples of potentials to calculate the correction to the amplitude of the power spectrum,
and compare it with the standard cosmology. We find that the amplitude is not changed significantly by the
higher-order correction.
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I. INTRODUCTION

New ideas in fundamental physics have suggested
possibility that our observable Universe lies on a ‘‘bran
within a higher-dimensional bulk space-time, and this id
may have serious ramifications for early Universe cosmol
@1#. The most studied scenario, viewed as a toy model
more elaborate proposals, is the Randall-Sundrum typ
~RS-II! model where there is a single brane living in
anti–de Sitter bulk@2#. In that case, the Friedmann equati
is modified at high energy, potentially with significant co
sequences for our understanding of inflation and the per
bations it generates.

The most powerful tool for studying inflationary dynam
ics is the slow-roll approximation@3#, which is expected to
be extremely accurate for models capable of matching
rent observations such as those of the Wilkinson Microw
Anisotropy Probe~WMAP! @4#. This enables considerabl
analytical progress to be made, and predictions for the
turbations generated by inflation are most conveniently
pressed in terms of slow-roll parameters which measure
accuracy of the approximation@5#. Such an approach wa
used by Maartens et al.@6# to describe the outcome of infla
tion in the RS-II braneworld scenario.

In that paper, the version of the slow-roll approximati
used was based on derivatives of the potential driving in
tion. In this paper we formulate the approximation in term
of derivatives of the Hubble parameter, which in the stand
cosmology is an important tool for developing high-accura
predictions for density perturbations. We take advantage
our formalism to carry out similar calculations for the hig
energy limit of RS-II inflation models, deriving an exact r
sult for power-law inflation and calculating the higher-ord
slow-roll correction to the perturbation amplitude~often
called the Stewart-Lyth correction, as they carried out
original calculation for the standard cosmology@7#!. We find
that the correction is of a similar size to that in the stand
cosmology~i.e. negligible in many inflationary models!, and
calculate it for some sample inflation models.

II. SLOW-ROLL FORMALISM

We follow the notation set down by Liddle and Taylor@8#.
In the Randall-Sundrum type II model@2# the Friedmann
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equation receives an additional term quadratic in the den
@9#. The Hubble parameterH is related to the energy densit
r by

H25
8p

3M4
2
rS 11

r

2l D , ~1!

whereM4 is the four-dimensional Planck mass andl is the
brane tension. We have set the four-dimensional cosmol
cal constant to zero, and assumed that inflation rap
makes any dark radiation term negligible. This reduces to
usual Friedmann equation forr!l. We assume that the sca
lar field is confined to the brane, so it obeys the usual eq
tion

f̈13Hḟ52V8, ~2!

where prime indicates derivative with respect tof, and dot a
derivative with respect to time. Its energy density isr5V

1ḟ2/2.
For the standard cosmology, the Hubble slow-roll form

ism was set down in detail in Ref.@10#. The first two param-
eters are defined as

eH[3
ḟ2/2

V1ḟ2/2
5

M4
2

4p

H82

H2
, ~3!

hH[23
f̈

3Hḟ
5

M4
2

4p

H9

H
. ~4!

If these parameters are much less than one, they allow
neglect of theḟ term in the Friedmann equation, and thef̈
term in the scalar wave equation@3#. In addition, the condi-
tion for inflation, ä.0, is conveniently expressed aseH
,1.

We seek a generalization of those parameters suitable
use with the braneworld equations. We note that there
some arbitrariness to the definitions, at least in terms of
constant prefactor. However this can be removed by imp
ing the requirements that the parameterseH andhH continue
to correspond to the conditions enabling neglect of terms
©2004 The American Physical Society22-1
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the Friedmann and fluid equations respectively, thateH,1
remains the condition for inflation, and that in the slow-r
limit the density perturbation spectral index takes the sa
form as in the standard cosmology.

We will make use of an approach developed by Hawk
and Lidsey@11,12#, who devised a formalism for braneworl
inflation with many of the properties of the Hamilton-Jaco
approach used in the standard cosmology@13#. They define a
quantityy(f), which is to play a similar role toH(f) in the
standard cosmology, by

y25
r/2l

11r/2l
. ~5!

The inverse relation is

r[
2ly2

12y2 . ~6!

At low energies r!l, y2→0, while at high energies
r@l, y2→1.

The Friedmann equation can be written as

H~y!5S 16pl

3M4
2 D 1/2 y

12y2 . ~7!

From the scalar wave equation and Eq.~6! one obtains

ḟ52S lM4
2

3p D 1/2 y8

12y2 . ~8!

Taking the derivative with respect to the field in the Frie
mann equation, one finds

H85S 16pl

3M4
2 D 1/2F 11y2

~12y2!2Gy8, ~9!

and using Eq.~8!

H852
4p

M4
2

~11y2!

~12y2!
ḟ. ~10!

In Ref. @12#, Hawkins and Lidsey define two paramete

b[
M4

2

4p

y82

y2
, g[

M4
2

4p

y9

y2
, ~11!

by analogy to the standard cosmology Hubble slow-roll
rameters. These parameters prove useful in analyzing the
act dynamics of braneworld inflationary models. Howev
their smallness~as compared to unity! does not precisely
correspond to the ability to neglect terms in the Friedma
and scalar wave equations, and this means they are not
for the purpose of analyzing perturbation generation.
therefore define new Hubble slow-roll parameters for
braneworld, which do have this property.

To do this, we define the parameters as ratios of term
the Friedmann and wave equations, following Eqs.~3! and
~4!:
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eH5C~y!
ḟ2/2

V1ḟ2/2
, hH52D~y!

f̈

3Hḟ
, ~12!

At this stage we have allowed the ‘‘constant’’ prefacto
C(y) andD(y) to depend ony; we will next show how to fix
them using the requirements thateH,1 corresponds to infla-
tion, and that in the slow-roll limit the density perturbatio
spectral index takes its usual form. In order for these para
eters to correspond to the ability to neglect terms, those p
actors should always be of order unity, and we will soon s
that they are.

From the definition ofeH , using Eqs.~7! and ~10!, one
can find

eH5
C~y!

3 S lM4
2

3p D 1/2 y

~11y2!2

H82

H3 . ~13!

The coefficientC(y) can be determined by demanding th
ä50⇔eH51; taking the derivative of the Friedmann equ
tion with respect to time gives

ä

a
5

16ply2

M4
2~12y2!2 F2~11y2!

C~y!
1

1

3G ~14!

and so we requireC(y)[3(11y2). Its value ranges from 3
in the low-energy limit to 6 in the high-energy limit. Ou
definition for eH is therefore

eH[S lM4
2

3p D 1/2 y

~11y2!

H82

H3 . ~15!

In the low-energy limit, Eq.~15! becomes the usual expre
sion Eq.~3!.

For hH we apply Eqs.~7! and ~10! to obtain

hH5
D~y!

3 S lM4
2

3p D 1/2F y

~11y2!

H9

H2
2

4y3

~11y2!3

H82

H3 G .

~16!

There are several ways one could aim to fix the cons
D(y) to establish a unique definition ofhH . We choose to
do so such that the slow-roll expression for the dens
perturbation spectral index takes its usual form, nam
n5124eH12hH , as was done for the potential slow-ro
parameters in Ref.@6#. The slow-roll expression for the per
turbation amplitude is@6#

PR
1/25

H2

2pḟ
U

k5aH

, ~17!

which in terms of those variables is exactly the usual res
The spectral index is defined as

n215
d ln PR
d ln k

, ~18!

and using Eqs.~7! and ~10! one obtains
2-2
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n21524S lM4
2

3p D 1/2 y

~11y2!

H82

H3

12S lM4
2

3p D 1/2F y

~11y2!

H9

H2
2

4y3

~11y2!3

H82

H3 G .

~19!

This agrees with the usual expressionn5124eH12hH pro-
vided D(y) is set to 3 for all regimes. That gives us o
definition

hH[S lM4
2

3p D 1/2F y

~11y2!

H9

H2
2

4y3

~11y2!3

H82

H3 G . ~20!

This too reduces to the usual expression, Eq.~4!, in the low-
energy regime.

The two definitions Eqs.~15! and ~20! define Hubble
slow-roll parameters valid in all regimes of RS-II brane i
flation, generalizing the usual ones while preserving ma
key results: they give the conditions for neglecting terms
the Friedmann and fluid equations,eH,1 corresponds to an
inflationary expansion, and the slow-roll spectral index f
mula is alwaysn5124eH12hH .

III. EXACT AND HIGHER-ORDER PERTURBATIONS IN
THE HIGH-ENERGY REGIME

In this section we exploit the formalism of the previo
section to make accurate calculations of the density per
bations. Throughout this section we will restrict ourselves
the high-energy regime, obtained by takingy→1, where our
slow-roll parameters can be written

eH5
M5

3

4p

H82

H3
, hH1eH5

M5
3

4p

H9

H2
~21!

where M5[(4pl/3)1/6M4
1/3 is the five-dimensional Planc

mass. The high-energy versions of Eqs.~10! and ~7! are

ḟ52
M5

3

4p

H8

H
~22!

and

H5
4p

3M5
3
r. ~23!

All these expressions could have been obtained directly
the high-energy regime using the same criteria we set d
for the general case in the previous section.

We will consider one case where the perturbations can
obtained exactly~namely power-law inflation, though in thi
case the corresponding potential is not exponential!, and then
carry out our main calculation which is to compute the c
rection to the density perturbation amplitude from next-or
in slow roll. This type of calculation was first performed b
Stewart and Lyth for the standard cosmology@7#, and is often
08352
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known as the Stewart-Lyth correction. We will compute
equivalent for the density perturbations in the high-ene
regime of the RS-II model.

We will calculate the perturbations using a formalism d
to Mukhanov @14#. He defined a new variableu5adf
~where df is defined in the spatially-flat gauge; a gaug
invariant definition can be made which includes a contrib
tion from the curvature perturbation!, and demonstrated tha
in linear perturbation theory its Fourier modes obey the wa
equation

d2uk

dt2
1S k22

1

z

d2z

dt2D uk50. ~24!

Heret is the conformal time, andz[aḟ/H encodes all the
relevant information about how the background is evolvin
It is by no means clear that the Mukhanov equation rema
correct in the braneworld context; it encodes the backre
tion from scalar metric perturbations on the scalar field e
lution, assuming they take the 4D form. So far it has n
proven possible to calculate the backreaction from fi
dimensional gravity in order to assess whether it is differ
from the four-dimensional backreaction that the Mukhan
equation incorporates, other than in the large-scale li
where energy conservation alone is sufficient to ensure
perturbations remain constant@15#. Nevertheless, until such
calculation becomes possible it is a reasonable working
pothesis to use the Mukhanov equation,1 and we have veri-
fied explicitly that the same equation does result using
modified Friedmann equation in the derivation as given
Ref. @16#, as well as giving the correct result for the pertu
bation amplitude in the slow-roll limit. This however fall
short of being a full five-dimensional calculation as would
required to fully verify the use of the equation, but as yet it
not known how to implement such a calculation.

Having adopted the Mukhanov equation, the first step
to write it in terms of the slow-roll parameters, with
lengthy calculation yielding

1

z

d2z

dt2
52a2H2F11eH2

3

2
hH2

7

2
eHhH1

1

2
hH

2

1
M5

6

32p2

H8H-
H4 G , ~25!

which is an exact relation.

A. Exact mode equation solution

It is well known that the mode function can be solve
exactly if the square-bracketed term in Eq.~25! is constant,

1Indeed, after the original version of this paper was submitt
Calcagni @17# analyzed the inflationary consistency equations
the braneworld to second order. To do so he made assump
about how scalar and tensor perturbations might behave, and fo
scalars his assumptions are equivalent to using the Mukhanov e
tion and give the same result as we obtain.
2-3
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which in the standard cosmology corresponds to power-
inflation from an exponential potential@18#, the calculation
having first been performed by Lyth and Stewart@19#. To
discover if there is an analogous result for the RS-II scena
we set eH51/p where p.1 is a constant, and examin
whether this makes the square bracket constant.

Taking the derivative ofeH with respect to the field, one
can write

eH8 5
H8

H
@2hH2eH#. ~26!

As we have demandedeH is constant, this implies
hH51/2p. Similarly, differentiatinghH gives

M5
6

32p2

H8H-

H4
5eHF ~hH1eH!1

H

2H8
~hH8 1eH8 !G ~27!

implying

M5
6H8H-

32p2H4
5

3

2p2
. ~28!

The square bracket of Eq.~25! therefore indeed is constan
so the equation can be solved exactly.

Before going on to do that, it is interesting to ask wh
potential gives this solution. Solving for the Hubble para
eter from the definition ofeH , and then substituting into th
Hamilton-Jacobi equation in the high-energy limit, namel

H2
M5

3

24p

H82

H2 5
4p

3M5
3 V~f!, ~29!

we find that the corresponding potential is

V~f!5
1

8

M5
6~6p21!

p2f2
. ~30!

Instead of the exponential potential found in the stand
cosmology, we have an inverse power-law potential. Nev
theless, the corresponding expansion lawa}tp is power-law
inflation as usual.

Following Refs.@7,19,20#, the conformal time for con-
stanteH is given by

t52
1

aH

1

12eH
, ~31!

and Eq.~25! with the values of the Hubble slow-roll param
eters gives

1

z

d2z

dt2
5

1

4

8p212p21

t2~p21!2
. ~32!

This allows one to write the Mukhanov equation~24! as a
Bessel-like one
08352
w
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t
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F d2

dt2
1k22

~n221/4!

t2 Guk50, ~33!

with n53p/2(p21). The solution with the appropriate be
havior at small scales can be written as

uk~t!5
Ap

2
ei (n11/2)p/2~2t!1/2Hn

(1)~2kt!, ~34!

whereHn
(1) is the Hankel function of the first kind of ordern.

The asymptotic form of this equation once the mode is o
side of the horizon is obtained by taking the limitk/aH
→0

uk→ei (n21/2)p/22n23/2
G~n!

G~3/2!

1

A2k
~2kt!2n11/2, ~35!

from which the corresponding form of the power spectru
using @20#

PR
1/2~k!5A k3

2p2 UuzU ~36!

yields

PR
1/2~k!5

3n21/2n1/22n

M5
3

G~n!

G~3/2!

H3

uH8u
U

k5aH

. ~37!

B. Higher-order perturbation calculation

We now perturb around the exact solution given above
small eH andhH , following Refs.@7# and @20#. The expan-
sion to lowest order of the conformal time gives

t52
1

aH
~11eH!. ~38!

Applying this in Eq. ~25! and truncating the expansion t
first order, one arrives at another Bessel equation, now w
n given by

n.
3

2
12eH2hH . ~39!

Note that the final three terms of Eq.~25! do not affect the
form of this expression. Then the solution Eq.~35! can be
used with the new form forn and the conformal time, ex
panding also the Gamma function and the other express
to first order, to obtain the final result

PR
1/25@12~2C11!eH1ChH#

2H3

M5
3uH8u

U
k5aH

~40!

where C5221 ln 21b.20.73, with b the Euler-
Mascheroni constant. The leading-order term, obtained
setting the square bracket to one, agrees with the resu
Maartenset al. @6# in the high-energy limit.
2-4
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From this expression we can also obtain the second-o
formula for the spectral index of the perturbations in t
high-energy regime, using the high-energy relation

df

d ln k
52

M5
3H8

4pH2
~11eH!, ~41!

and keeping terms up to second order to obtain

n21524eH12hH12~8C13!eHhH22~C13!eH
2

24C
M5

6

32p2

H8H-
H4 . ~42!

While formally the correction term in the square brack
of Eq. ~40! looks exactly the same as in the standard cosm
ogy @7,20#, we should recall that the slow-roll paramete
which appear in it are generalizations of those in the stand
cosmology, and could have been defined in different wa
To get a feel for what this correction means, we need
evaluate it for some characteristic potentials, which we do
the next subsection.

C. Specific examples

To determine the typical size of the next-order correcti
we study the monomial potentialsV}fa for a52, 4 and 6,
assuming inflation takes place well within the high-ener
regime. For comparison, we also calculate the magnitud
the correction for the standard cosmology.

To calculate the size of the correction term, we can
the slow-roll approximation foreH and hH , since any cor-
rections to that will be of higher order. The simplest a
proach is to rewriteeH andhH in terms of the potential and
its derivatives. We will make use of the equations

H.
4p

3M5
3 V, ~43!

3Hḟ.2V8, ~44!

ḟ52
M5

3

4p

H8

H
. ~45!

The first and second of these use the slow-roll approxim
tion, and the first and third use the high-energy approxim
tion. These enable us to obtain the relations

eH.eV , hH.hV2eV , ~46!

where the potential slow-roll parameters are

eV5
3M5

6

16p2

V82

V3 , hV5
3M5

6

16p2

V9

V2 , ~47!

being the high-energy limit of the parameters as defined
Maartens et al.@6#. Using them, we can write Eq.~40! as
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PR
1/25@12~3C11!eV1ChV#

2H3

M5
3uH8u U

k5aH

, ~48!

where we aim to calculate the square-bracketed term.
We assume that observable scales crossed the Hubbl

dius 50e-foldings before the end of inflation, and need
compute the slow-roll parameters at that time. We take
potential as

V~f!5mfa, ~49!

wherem is a constant. Putting this in Eq.~47! and setting
eV51, which corresponds to the end of inflation, we c
obtain the value offend. We use this in the expression fo
the number ofe-foldings in the high-energy limit@6#

N.2
16p2

3M5
6 E

fN

fendV2

V8
df. ~50!

TakingN550, this gives the value off50 and substituting in
the equations foreV andhV one gets

eV,505
a

100151a
, ~51!

hV,505
a21

100151a
. ~52!

In the case of standard cosmology, the same calculatio
carried out using the corresponding expressions for the sl
roll parameters and the power spectrum given by Refs.@7,20#

PR
1/2~k!5@12~2C11!eH1ChH#

2H2

M4
2uH8u

U
k5aH

~53!

with eH and hH , defined as in Eqs.~3! and ~4!, being the
Hubble slow-roll parameters in the standard cosmology.
rewrite them in terms of the potential, we use the equati
@20#

H2.
8p

3M4
2

V, ~54!

3Hḟ.2V8, ~55!

ḟ52
M4

2

4p
H8, ~56!

which are the standard cosmology equivalents of Eqs.~43!–
~45!. This leads to the same relations as in the previous c

eH.eV , hH.hV2eV , ~57!

with

eV5
M4

2

16p

V82

V2
, hV5

M4
2

8p

V9

V
. ~58!
2-5
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Then the power spectrum can be written as

PR
1/2~k!5@12~3C11!eV1ChV#

2H2

M4
2uH8u

U
k5aH

~59!

where nowN.2(8p/M4
2)*fN

fend(V/V8)df.

The results for both regimes are shown in Table I. Th
show that the magnitude of the correction is similar in bo
cases, though it differs in detail. Nevertheless, these res
confirm that the amplitude of the power spectrum is n
changed significantly with respect to the slow-roll result
the higher-order correction.

D. Correction from the high-energy approximation

We end by mentioning that, especially when it is sma
the higher-order slow-roll correction may well be subdom
nant to corrections coming from the high-energy approxim
tion not being exact. The slow-roll approximation allows
to determine the size of such corrections; using Eq.~17!
which is valid in any regime, we find the slow-roll perturb
tion amplitude to be

PR
1/2.F11

1

2 S l

VD 2G 2H3

M5
3uH8u

U
k5aH

, ~60!

where we have expanded the result in terms of the param
l/V which is small in the high-energy regime. Because
term linear inl/V happens to cancel, the high-energy a
proximation is a better one than might have been expec
and we only needV*10l to bring the correction from tha
approximation within one percent. More generally, compa
son of Eqs.~40! and ~60! allows a test of when the higher
order slow-roll correction dominates the correction to t
high-energy approximation.

If one were very ambitious, one could also attempt
generalize our higher-order slow-roll calculation to be va

TABLE I. Fractional correction to the power spectrum.

Standard cosmology High-energy braneworld
eV,50 hV,50 correction eV,50 hV,50 correction

a52 1
101

1
101 1.0046 1

101
1

202 1.0082
a54 1

51
3

102 1.0019 1
76

3
304 1.0085

a56 3
103

5
103 0.9992 3

203
5

406 1.0086
08352
y

lts
t

,
-
-

ter
e
-
d,

-

in any regime, but given the limited ability of observations
probe or distinguish amongst such small corrections, suc
calculation does not seem worthwhile. The same remark
plies to an attempt to calculate the higher-order gravitatio
wave spectrum correction; as gravitational waves are kno
to be subdominant such corrections are even less relev
and also much harder to calculate due to the gravitatio
waves’ ability to penetrate the bulk dimension.

IV. CONCLUSIONS

We have devised a Hubble slow-roll formalism for infl
tion in the RS-II braneworld cosmology, extending work b
Hawkins and Lidsey@11,12# to define parameters whic
share the nice properties of those used in the standard
mology, which are recovered in that limit. As an applicatio
we have computed the density perturbation spectrum in
high-energy limit, both exactly for power-law inflation and
higher-order for general slow-roll inflation models. To do
we have used the Mukhanov equation; while no one has
been able to show that this equation is still valid in the bra
world context, it is the best working hypothesis curren
available. We have also quantified how well the high-ene
approximation must hold in order for the higher-order slo
roll correction to be the dominant one.

It is interesting to note that, having defined the slow-r
parameterseH andhH so as to give the usual spectral inde
formula for slow-roll perturbations, it turns out that the nex
order correction is of the same form as in the standard c
mology. We are not aware of a physical reason which le
to this result. Nevertheless, for a given choice of poten
one expects that observable perturbations are generated
different location on that potential depending on the bra
world regime, and so predictions for both the spectral indi
~see e.g. Ref.@21#! and for the higher-order corrections wi
be different. We have examined the magnitude of the corr
tion for some simple potentials, and we conclude that ther
no reason to believe that the higher-order correction migh
more important in the high-energy regime than in the st
dard cosmology. As recent observations including WMA
have restricted viable inflation models to regions close to
slow-roll limit, such corrections are expected to be small
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@9# C. Csáki, M. Graesser, C. Kolda, and J. Terning, Phys. Lett
462, 34 ~1999!; J.M. Cline, C. Grojean, and G. Servant, Phy
Rev. Lett.83, 4245 ~1999!; P. Binétruy, C. Deffayet, U. Ell-
wanger, and D. Langlois, Phys. Lett. B477, 285 ~2000!; T.
Shiromizu, K.I. Maeda, and M. Sasaki, Phys. Rev. D62,
024012~2000!.

@10# A.R. Liddle, P. Parsons, and J.D. Barrow, Phys. Rev. D50,
7222 ~1994!.

@11# R.M. Hawkins and J.E. Lidsey, Phys. Rev. D63, 041301
~2001!.

@12# R.M. Hawkins and J.E. Lidsey, Phys. Rev. D68, 083505
~2003!.

@13# D.S. Salopek and J.R. Bond, Phys. Rev. D42, 3936~1990!.
@14# V.F. Mukhanov, Pis’ma Zh. E´ksp. Teor. Fiz.41, 402 ~1985!

@JETP Lett.41, 493 ~1985!#; V.F. Mukhanov, Phys. Lett. B
08352
.
218, 17 ~1989!; see also M. Sasaki, Prog. Theor. Phys.76,
1036 ~1986!.

@15# D. Wands, K.A. Malik, D.H. Lyth, and A.R. Liddle, Phys. Rev
D 62, 043527~2000!.

@16# A. R. Liddle and D. H. Lyth,Cosmological Inflation and
Large-Scale Structure~Cambridge University Press, Cam
bridge, England, 2000!.

@17# G. Calcagni, J. Cosmol. Astropart. Phys.0311, 009 ~2003!.
@18# F. Lucchin and S. Matarrese, Phys. Rev. D32, 1316~1985!.
@19# D.H. Lyth and E.D. Stewart, Phys. Lett. B274, 168 ~1992!.
@20# J.E. Lidsey, A.R. Liddle, E.W. Kolb, E.J. Copeland, T. Ba

reiro, and M. Abney, Rev. Mod. Phys.69, 373 ~1997!.
@21# A.R. Liddle and A.J. Smith, Phys. Rev. D68, 061301~R!

~2003!.
2-7


