PHYSICAL REVIEW D 69, 083522 (2004

Inflationary slow-roll formalism and perturbations in the Randall-Sundrum type Il braneworld
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We formalize the Hubble slow-roll formalism for inflationary dynamics in Randall-Sundrum type Il brane-
world cosmologies, defining Hubble slow-roll parameters which can be used along with the Hamilton-Jacobi
formalism. Focusing on the high-energy limit, we use these to calculate the exact power spectrum for power-
law inflation, and then perturb around this solution to derive the higher-order expression for the density
perturbationgsometimes called the Stewart-Lyth correcjiofslow-roll braneworld models. Finally we apply
our result to specific examples of potentials to calculate the correction to the amplitude of the power spectrum,
and compare it with the standard cosmology. We find that the amplitude is not changed significantly by the
higher-order correction.
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[. INTRODUCTION equation receives an additional term quadratic in the density
[9]. The Hubble parametét is related to the energy density
New ideas in fundamental physics have suggested the by
possibility that our observable Universe lies on a “brane”
within a higher-dimensional bulk space-time, and this idea , 8w
may have serious ramifications for early Universe cosmology H :WP
[1]. The most studied scenario, viewed as a toy model for 4
more elaborate proposals, is the Randall-Sundrum type
(RS-Il) model where there is a single brane living in an
anti—de Sitter bulK2]. In that case, the Friedmann equation
is modified at high energy, potentially with significant con-

p
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thereM4 is the four-dimensional Planck mass axds the
brane tension. We have set the four-dimensional cosmologi-
cal constant to zero, and assumed that inflation rapidly
sequences for our understanding of inflation and the pertuflakes any dark radiation term negligible. This reduces to the
bations it generates. usugl Fr_ledmar_m equation fprE . Wg assume that the sca-
The most powerful tool for studying inflationary dynam- Igr field is confined to the brane, so it obeys the usual equa-
ics is the slow-roll approximatiofi3], which is expected to tion
be extremely accurate for models capable of matching cur- . _
rent observations such as those of the Wilkinson Microwave $+3Hp=-V', 2
Anisotropy Probe(WMAP) [4]. This enables considerable L L .
analytical progress to be made, and predictions for the petYn€re prime indicates derivative with respeciftpand dot a
turbations generated by inflation are most conveniently exderivative with respect to time. Its energy densitypis V
pressed in terms of slow-roll parameters which measure the- ¢2/2.
accuracy of the approximatiofb]. Such an approach was For the standard cosmology, the Hubble slow-roll formal-
used by Maartens et dI6] to describe the outcome of infla- ism was set down in detail in R€fL0]. The first two param-

tion in the RS-II braneworld scenario. eters are defined as
In that paper, the version of the slow-roll approximation _
used was based on derivatives of the potential driving infla- d?12 M2 H’2
tion. In this paper we formulate the approximation in terms €En= ()

of derivatives of the Hubble parameter, which in the standard Vg2 AT H?
cosmology is an important tool for developing high-accuracy . 2
predictions for density perturbations. We take advantage of =_3i_ M3 H” @)
our formalism to carry out similar calculations for the high- = 3He T 4m H

energy limit of RS-11 inflation models, deriving an exact re-

sult for power-law inflation and calculating the higher-orderIf these parameters are much less than one, they allow the

slow-roll correction to the perturbation amplitudeften  neglect of theg term in the Friedmann equation, and te
called the Stewart-Lyth correction, as they carried out thgerm in the scalar wave equati8]. In addition, the condi-

original calculation for the standard cosmoldgy). We find - : P : :
L e . . ion for inflation, a>0, is conveniently expressed
that the correction is of a similar size to that in the standarc}<1 y exp &

cosmology(Le. negligible in many !nflatlonary modglsand We seek a generalization of those parameters suitable for

calculate it for some sample inflation models. use with the braneworld equations. We note that there is

some arbitrariness to the definitions, at least in terms of the

constant prefactor. However this can be removed by impos-
We follow the notation set down by Liddle and Tay[@. ing the requirements that the parametggsand 7 continue

In the Randall-Sundrum type Il mod¢R] the Friedmann to correspond to the conditions enabling neglect of terms in

II. SLOW-ROLL FORMALISM
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the Friedmann and fluid equations respectively, #hat 1l ¢2/2 b
remains the condition for inflation, and that in the slow-roll en=Cl(y) = m=—Dy)—, (12
limit the density perturbation spectral index takes the same V+¢/2 3H¢

form as in the standard cosmology.

We will make use of an approach developed by Hawkin
and Lidsey{11,12, who devised a formalism for braneworld
inflation with many of the properties of the Hamilton-Jacobi
approach used in the standard cosmolfdd3]. They define a
quantityy(¢), which is to play a similar role tél( ¢) in the
standard cosmology, by

gAt this stage we have allowed the “constant” prefactors
C(y) andD(y) to depend ory; we will next show how to fix
them using the requirements thgj<1 corresponds to infla-
tion, and that in the slow-roll limit the density perturbation
spectral index takes its usual form. In order for these param-
eters to correspond to the ability to neglect terms, those pref-
actors should always be of order unity, and we will soon see

pl2\ that they are.
y2=m. (5 From the definition ofey, using Egs.(7) and (10), one
p can find
The inverse relation is Cly) )\Mi 1/2 y H'2
_ 2y 6) T e @Ry R 13
p 1_ y2 "

The coefficientC(y) can be determined by demanding that
At low energies p<\, y?—0, while at high energies a=0ee,=1; taking the derivative of the Friedmann equa-
p>N\, y2—1. tion with respect to time gives
The Friedmann equation can be written as

a  16may?
16w\ |2y =
e (7) a M3(1-y?

—(1+y») 1
cy '3

(14)

H(y)=

and so we requir€(y)=3(1+y?). Its value ranges from 3

From the scalar wave equation and &6). one obtains in the low-energy limit to 6 in the high-energy limit. Our

. AM2\ 12y definition for e is therefore
¢=—( 3. ) 1—y2' (8) ()\Mi) CVITE 5
EY=| P Tl wi
Taking the derivative with respect to the field in the Fried- 8w (1+y?) H?

mann equation, one finds .
In the low-energy limit, Eq(15) becomes the usual expres-

167\ \Y7 1+y? sion Eq.(3).
,:( 3M} ) (1—y2)2}y” © For ny we apply Eqs(7) and (10) to obtain
4
and using Eq(8) :D(y) AMZ| ™y H_”_ 4_y3 H_’Z
, 74 3 37 (1+y2) H2 (1+y2)3 H3 .
, A (1+y9). 16

There are several ways one could aim to fix the constant
In Ref.[12], Hawkins and Lidsey define two parameters D(y) to establish a unique definition of,;. We choose to
do so such that the slow-roll expression for the density
Mf,y’z M 2 y” perturbation spectral index takes its usual form, namely
— = (11 n=1-4e4+2ny, as was done for the potential slow-roll
parameters in Ref6]. The slow-roll expression for the per-

by analogy to the standard cosmology Hubble slow-roll pa—turbatlon amplitude i$6]

rameters. These parameters prove useful in analyzing the ex- 2
; - . H

act dynamics of braneworld inflationary models. However, pR1/2:__

their smallnesgas compared to unijydoes not precisely 27

correspond to the ability to neglect terms in the Friedmann

and scalar wave equations, and this means they are not ideahich in terms of those variables is exactly the usual result.

for the purpose of analyzing perturbation generation. WeThe spectral index is defined as

therefore define new Hubble slow-roll parameters for the

, (17)

k=aH

braneworld, which do have this property. dinPr

To do this, we define the parameters as ratios of terms in n-1= dink ' (18)
the Friedmann and wave equations, following E@.and
(4): and using Egs(7) and(10) one obtains
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1_ 4 )\Mi 1/2 y H12
N"TETN B3] @) B
37 ) |(A+yH) pz (1+y?)® 3|’

(19

This agrees with the usual expression 1—4ey+ 27, pro-
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known as the Stewart-Lyth correction. We will compute its
equivalent for the density perturbations in the high-energy
regime of the RS-l model.

We will calculate the perturbations using a formalism due
to Mukhanov [14]. He defined a new variable=ad¢
(where 8¢ is defined in the spatially-flat gauge; a gauge-
invariant definition can be made which includes a contribu-
tion from the curvature perturbatiprand demonstrated that
in linear perturbation theory its Fourier modes obey the wave

vided D(y) is set to 3 for all regimes. That gives us our equation

definition
H" 4y3 H72
(1+y?) HZ  (1+y®)®h3

?\Mi 1/2)
ﬂHE( 37 )

1 . (20

This too reduces to the usual expression, @g.in the low-
energy regime.
The two definitions Eqs(15 and (20) define Hubble

dzuk

dr?

1d?z
+| k2= = —u=0. (24)

Z d42

Here 7 is the conformal time, and=a¢/H encodes all the
relevant information about how the background is evolving.
It is by no means clear that the Mukhanov equation remains
correct in the braneworld context; it encodes the backreac-

slow-roll parameters valid in all regimes of RS-II brane in-tion from scalar metric perturbations on the scalar field evo-
flation, generalizing the usual ones while preserving manyution, assuming they take the 4D form. So far it has not
key results: they give the conditions for neglecting terms inproven possible to calculate the backreaction from five-

the Friedmann and fluid equationg,;<1 corresponds to an

dimensional gravity in order to assess whether it is different

inflationary expansion, and the slow-roll spectral index for-from the four-dimensional backreaction that the Mukhanov

mula is alwaysn=1—4ey+27,.

IIl. EXACT AND HIGHER-ORDER PERTURBATIONS IN
THE HIGH-ENERGY REGIME

equation incorporates, other than in the large-scale limit
where energy conservation alone is sufficient to ensure the
perturbations remain constd5]. Nevertheless, until such a
calculation becomes possible it is a reasonable working hy-
pothesis to use the Mukhanov equattoand we have veri-

In this section we exploit the formalism of the previous fied explicitly that the same equation does result using the
section to make accurate calculations of the density pertuimodified Friedmann equation in the derivation as given in
bations. Throughout this section we will restrict ourselves toref. [16], as well as giving the correct result for the pertur-

the high-energy regime, obtained by takipg: 1, where our
slow-roll parameters can be written

M3 H'2

N am s TN a2

M3 H”

(21)

where Mg=(47\/3)Y®M1? is the five-dimensional Planck
mass. The high-energy versions of EK)) and(7) are

. M3 H
d’:_EW (22
and
H=4—773p. (23
3M3

bation amplitude in the slow-roll limit. This however falls
short of being a full five-dimensional calculation as would be
required to fully verify the use of the equation, but as yet it is
not known how to implement such a calculation.

Having adopted the Mukhanov equation, the first step is
to write it in terms of the slow-roll parameters, with a
lengthy calculation yielding

1o|2z_2 T PO JO R
Zd2 a EHT 5 HT S €HTHT 5 7H
.\ Mg H/'H" .
32 W] 25

which is an exact relation.

A. Exact mode equation solution

All these expressions could have been obtained directly for |t is well known that the mode function can be solved
the high-energy regime using the same criteria we set dowBxactly if the square-bracketed term in E85) is constant,

for the general case in the previous section.

We will consider one case where the perturbations can be———

obtained exactlynamely power-law inflation, though in this

case the corresponding potential is not exponentald then

lindeed, after the original version of this paper was submitted,
Calcagni[17] analyzed the inflationary consistency equations for

carry out our main calculation which is to compute the cor-the braneworld to second order. To do so he made assumptions
rection to the density perturbation amplitude from next-orderbout how scalar and tensor perturbations might behave, and for the
in slow roll. This type of calculation was first performed by scalars his assumptions are equivalent to using the Mukhanov equa-
Stewart and Lyth for the standard cosmol¢@y, and is often  tion and give the same result as we obtain.
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which in the standard cosmology corresponds to power-law
inflation from an exponential potentifl 8], the calculation
having first been performed by Lyth and Stewgi®]. To
discover if there is an analogous result for the RS-1l scenario, . ) , ,
we sete,=1/p where p>1 is a constant, and examine with v=3p/2(p—1). The solution with the appropriate be-

whether this makes the square bracket constant. havior at small scales can be written as

d? e (v?—1/4)

u,=0, (33
dr? 72 K

Taking the derivative ok with respect to the field, one Jr
can write up(7)= Tei("“’z)”’z( - DYHB(—kr), (34
=" [27n—enl. (26)  whereH" is the Hankel function of the first kind of order

The asymptotic form of this equation once the mode is out-

As we have demandede, is constant, this implies side of the horizon is obtained by taking the linkitaH

ny=1/2p. Similarly, differentiatingny gives —0
rgm . F(V) 1
Mg H'H H u _)el(v—1/2)7r/221f—3/2 (_ kT)—V+1/2 (35)
—=¢ +eq)+ — (Lt €l (27 K (312 ’
3972 4 H (71t €n) 2H,(77H H) ( )\/ﬂ
_ _ from which the corresponding form of the power spectrum
implying using[20]
M gH Ty 3 \/F u
_— 28 1/2 — 1
32m?H*  2p? 28 Pr (k) 22|z (36
The square bracket of E(R5) therefore indeed is constant, yields
so the equation can be solved exactly.
Before going on to do that, it is interesting to ask what 1 3vT2127v gy HS
potential gives this solution. Solving for the Hubble param- PRA(K)= mME T(32) |H| - @D
eter from the definition ok, and then substituting into the 5 k=aH
Hamilton-Jacobi equation in the high-energy limit, namely
B. Higher-order perturbation calculation
3 '2
Ms H 4w (29) We now perturb around the exact solution given above for

2= a3 V(e), .
247 H? 3M§ (¢) small e, and 5y, following Refs.[7] and[20]. The expan-

sion to lowest order of the conformal time gives

we find that the corresponding potential is 1
1 Mg(Gp—l) T aH(l-I—EH). (38
V)=g— 57 (30)
T Applying this in Eqg.(25 and truncating the expansion to

first order, one arrives at another Bessel equation, now with
Instead of the exponential potential found in the standard, gjven by
cosmology, we have an inverse power-law potential. Never-

theless, the corresponding expansion koat? is power-law

inflation as usual. v=75+2eu— 7y (39
Following Refs.[7,19,20, the conformal time for con-
stantey, is given by Note that the final three terms of E(@5) do not affect the
form of this expression. Then the solution E85) can be
— i 1 31) used with the new form fow and the conformal time, ex-
aH 1l-ey’ panding also the Gamma function and the other expressions

to first order, to obtain the final result
and Eq.(25) with the values of the Hubble slow-roll param-

eters gives 3

2H
PR=[1-(2C+ et ol (40)
1d%z 18p2+2p—1 > Hk=aH
Pt i vy o (32 |
zd”? 4 2A(p-1) where C=-2+In2+b=-0.73, with b the Euler-
Mascheroni constant. The leading-order term, obtained by
This allows one to write the Mukhanov equati@®4) as a  setting the square bracket to one, agrees with the result of

Bessel-like one Maartenset al. [6] in the high-energy limit.
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From this expression we can also obtain the second-order 1 2H3
formula for the spectral index of the perturbations in the Pr=[1-(3C+1)ey+ C’?v]m 7
high-energy regime, using the high-energy relation 5 k=aH

(48)

where we aim to calculate the square-bracketed term.

3

de _ MsH (1+ep) (41) We assume that observable scales crossed the Hubble ra-

dink 477H?2 o dius 50e-foldings before the end of inflation, and need to
compute the slow-roll parameters at that time. We take the

and keeping terms up to second order to obtain potential as
n—1=—4ey+274+2(8C+3)eyny—2(C+3)é V(¢)=me*, (49
ME H'H” wherem is a constant. Putting this in E§47) and setting
— #T' (42) ey=1, which corresponds to the end of inflation, we can
ar

obtain the value ofp.,q- We use this in the expression for

) ) . the number ofe-foldings in the high-energy limif6]
While formally the correction term in the square bracket

of Eq. (40) looks exactly the same as in the standard cosmol- 1672 [ dendV?
ogy [7,20], we should recall that the slow-roll parameters N==3y® v b. (50)
5 N

which appear in it are generalizations of those in the standard

cosmology, and could ha\(e been d.efmed in different Waysl’akingN=5O, this gives the value absyand substituting in
To get a feel for what this correction means, we need tqhe equations fok, and 7, one gets
\% V

evaluate it for some characteristic potentials, which we do in
the next subsection.

(44
€50~ 100+ 51a” &h
C. Specific examples
To determine the typical size of the next-order correction, a1 50
we study the monomial potentialséx ¢ for «=2, 4 and 6, V50T 100+ 51 (52)

assuming inflation takes place well within the high-energy

regime. For comparison, we also calculate the magnitude of In the case of standard cosmology, the same calculation is

the correction for the standard cosmology. carried out using the corresponding expressions for the slow-
To calculate the size of the correction term, we can useoll parameters and the power spectrum given by R&{&0]

the slow-roll approximation fok, and 7y, since any cor-

rections to that will be of higher order. The simplest ap- 12 2H?
proach is to rewritesy; and »y in terms of the potential and Pr(k)=[1-(2C+ 1)5H+C77H]M2|H,| (53
its derivatives. We will make use of the equations 4 k=aH
A with ey and 7y, defined as in Eqs(3) and (4), being the
H=_——3V, (43)  Hubble slow-roll parameters in the standard cosmology. To
3Mz : . . )
rewrite them in terms of the potential, we use the equations
. [20]
3Hp=—-V', (44)
) 8w
W . TR o
T “9
, , 3H¢p=—V', (55)
The first and second of these use the slow-roll approxima-
tion, and the first and third use the high-energy approxima- _ i
tion. These enable us to obtain the relations d=— EH’, (56)
EHT €V, HT TV €V, (48)  \which are the standard cosmology equivalents of E4R)—

. (45). This leads to the same relations as in the previous case
where the potential slow-roll parameters are

6 . ER=€y, Nu=1y— €y, (57)
3Mg v'? 3Me V"
V=162 V3 NT1gn2 V2 (47)  with
. . .. . M?‘ V!2 Mi Vi
being the high-energy limit of the parameters as defined by V=5, INT g - (58)
Maartens et al[6]. Using them, we can write E¢40) as 167 2 87 V
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TABLE |. Fractional correction to the power spectrum. in any regime, but given the limited ability of observations to
: probe or distinguish amongst such small corrections, such a
Standard cosmology High-energy braneworld  calculation does not seem worthwhile. The same remark ap-

€vso  7vso  COrrection  eyso  7myvso  correction  plies to an attempt to calculate the higher-order gravitational
wave spectrum correction; as gravitational waves are known

— 1 1 1 1
a=2 01 1o 1.0046 01 20 10082 43 be subdominant such corrections are even less relevant,
a=4 51 102 1.0019 s 304 1.0085 and also much harder to calculate due to the gravitational
=6 103 103 0.9992 203 406 1.0086 waves’ ability to penetrate the bulk dimension.
IV. CONCLUSIONS
Then the power spectrum can be written as
We have devised a Hubble slow-roll formalism for infla-
2H?2 tion in the RS-II braneworld cosmology, extending work by
PrA(k)=[1-(3C+1)ey+Crnyl—— (59  Hawkins and Lidsey{11,12 to define parameters which
M3[H’| k=aH share the nice properties of those used in the standard cos-
mology, which are recovered in that limit. As an application,
where nowN:—(8#/Mi)fﬁ2”"(V/V’)d¢. we have computed the density perturbation spectrum in the

The results for both regimes are shown in Table I. Theyhigh-energy limit, both exactly for power-law inflation and to
show that the magnitude of the correction is similar in bothhigher-order for general slow-roll inflation models. To do so
cases, though it differs in detail. Nevertheless, these resuli€ have used the Mukhanov equation; while no one has yet
confirm that the amp”tude of the power Spectrum is notbeen able to ShOW that thIS equation iS St”l Valid in the brane'
changed significantly with respect to the slow-roll result byworld context, it is the best working hypothesis currently
the higher-order correction. available. We have also quantified how well the high-energy
approximation must hold in order for the higher-order slow-
roll correction to be the dominant one.

It is interesting to note that, having defined the slow-roll

We end by mentioning that, especially when it is small,parameters,, and 7, so as to give the usual spectral index
the higher-order slow-roll correction may well be subdomi-formula for slow-roll perturbations, it turns out that the next-
nant to corrections coming from the high-energy approximaprder correction is of the same form as in the standard cos-
tion not being exact. The slow-roll approximation allows usmology. We are not aware of a physical reason which leads
to determine the size of such corrections; using Bd)  to this result. Nevertheless, for a given choice of potential
which is valid in any regime, we find the slow-roll perturba- one expects that observable perturbations are generated at a
tion amplitude to be different location on that potential depending on the brane-

5 3 world regime, and so predictions for both the spectral indices
14 }(ﬁ) } 2H (60) (see e.g. Refl21]) and for the higher-order corrections will
2\V] Mg H'|

D. Correction from the high-energy approximation

1/2__
Pr'= be different. We have examined the magnitude of the correc-

tion for some simple potentials, and we conclude that there is

where we have expanded the result in terms of the paramet8P réason to believe that the higher-order correction might be
MV which is small in the high-energy regime. Because thgnore important in the high-energy re.glme.than in the stan-
term linear in\/V happens to cancel, the high-energy ap-dard COS”_‘O'OGV-_ AS recent observations m_cludmg WMAP
proximation is a better one than might have been expecteéﬂave restr_lct_ed viable |nflat|_on models to regions close to the
and we only need/= 10\ to bring the correction from that slow-roll limit, such corrections are expected to be small.
approximation within one percent. More generally, compatri-
son of Egs.(40) and (60) allows a test of when the higher-
order slow-roll correction dominates the correction to the E.R. was supported by Conacyt and A.R.L. in part by the
high-energy approximation. Leverhulme Trust. We thank James Lidsey, David Lyth, Ka-

If one were very ambitious, one could also attempt torim Malik, Tonatiuh Matos and David Wands for useful dis-
generalize our higher-order slow-roll calculation to be validcussions.

1
k=aH
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