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Toward reconstruction of the dynamics of the Universe from distant type Ia supernovae

Marek Szydłowski* and Wojciech Czaja†

Astronomical Observatory, Jagielonian University, Orla 171, 30-244, Krako´w, Poland
~Received 6 September 2003; published 9 April 2004!

We describe a model-independent method of estimating the qualitative dynamics of an accelerating universe
from observations of distant type Ia supernovae. Our method is based on the luminosity-distance function,
optimized to fit observed distances of supernovae, and the Hamiltonian representation of dynamics for the
quintessential universe with a general form of the equation of statep5w@a(z)#r. Because of the Hamiltonian
structure of Friedmann-Robertson-Walker~FRW! dynamics with the equation of statep5w@a(z)#r, the dy-
namics is uniquely determined by the potential functionV(a) of the system. The effectiveness of this method
in the discrimination of model parameters of the Cardassian evolution scenario is also given. Our main result
is the following: restricting consideration to the flat model with the current value ofVm,050.3, the constraints
at a 2s confidence level to the presence ofrn modification of the FRW models are20.50&n&0.36.

DOI: 10.1103/PhysRevD.69.083507 PACS number~s!: 98.80.Bp, 11.25.2w, 98.80.Cq
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I. INTRODUCTION

Recent observations of type Ia supernovae~SNIa! @1–3#
supported by Wilkinson Microwave Anisotropy Prob
~WMAP! measurements of the anisotropy of the angu
temperature fluctuations@4# indicate that our Universe is spa
tially flat and accelerating. On the other hand, the pow
spectrum of galaxy clustering@5# indicates that about 30% o
the critical density of the Universe should be in the form
nonrelativistic matter~cold dark matter and baryons!. The
remaining, almost two-thirds of the critical energy, may be
the form of a component having negative pressure~dark en-
ergy!. Although the nature of dark energy is unknown, t
positive cosmological constant term seems to be a ser
candidate for the description of dark energy. In this case
cosmological constant L and energy density «L

5L/(8pG) remain constant with time and the correspon
ing mass density rL[«L /c256.44310230(VL/0.7)
3(h/0.7) g cm23, whereh is the Hubble constantH0 ex-
pressed in units of 100 km s21 Mpc21 and VL50.760.1.
Although the cold dark matter~CDM! model with a cosmo-
logical constant and dust provides an excellent explana
of the SNIa data, the present value ofL is ;10123 times
smaller than the value predicted by the particle phys
model. Many alternative candidates for dark energy h
been advanced and some of them are in good agreement
the current observational constraints@6–12#. Moreover, it is
a natural suggestion that theL term has a dynamical natur
as in the inflationary scenario. Therefore, it is reasonabl
consider the next simplest form of a dark energy alterna
to the cosmological constant (w521) for which the equa-
tion of state depends upon time in such a way thatp
5w@a(z)#r, wherew[p/r is a coefficient of the equation
of state parametrized by the scale factor or redshift. It
been demonstrated@13,14# that the dynamics of such a sy
tem can be represented by the one-dimensional Hamilto
flow
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2
1V~a!, ~1!

where the overdot means differentiation with respect to
cosmological timet and V(a) is a potential function of the
scale factora given by

V~a!52
reff~a!

6
a2, ~2!

wherereff is the effective energy density, which satisfies t
conservation condition

ṙeff523
ȧ

a
~reff1peff!.

For example, for the CDM model with a cosmological co
stant (LCDM) model we have

reff5L1rm,0a
23,

peff52L10. ~3!

Of course the trajectories of the system lie on the zero ene
surfaceH[0.

The Hamiltonian~1! can be rewritten in the following
form convenient for our current reconstruction of the equ
tion of state from the potential functionV:

H~px,x!5
px

2

2
1V~x!, ~4!

wherepx5]L/] ẋ. Here overdot means differentiation wit
respect to some new reparametrized timet→t:dt5uH0udt,
x[a/a05(11z)21.

For example, for a mixture of noninteracting fluids th
potentialV(x) takes the form

V~x!52
1

2 (
i

V i ,0x
223(wi11), ~5!
©2004 The American Physical Society07-1
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wherepi5wir i for the i th fluid and; iwi5const~similar to
the quiessence model of dark energy!.

Due to the Hamiltonian structure of Friedman
Robertson-Walker~FRW! dynamics, with the general form
of the equation of statep5w@a(z)#r, the dynamics is
uniquely determined by the potential functionV(a) @or
V(x)] of the system. Only for simplicity of presentation w
assume that the universe is spatially flat~in the opposite case
the trajectories of the system should be considered at
energy levelH5 1

2 Vk,0).
Let us note that from the potential function we can obt

the equation of state coefficientw5p/r,

w52
1

3 S 11
d~ lnV!

d~ lna! D . ~6!

The termd(lnV)/d(lna) has a simple interpretation as an ela
ticity coefficient of the potential function with respect to th
scale factor.

Thus from the potential functionV bothr(a) andp can be
unambiguously calculated:

r~a!526
V~a!

a2
,

p52
V~a!

a2 S 11
d~ lnV!

d~ lna! D . ~7!

II. THE EXPANSION SCENARIO FROM SUPERNOVAE
DISTANCES

As is well known, in a flat FRW cosmology the lumino
ity distancedL and the coordinate distancer to an object at
redshiftz are simply related as

a0r 5a0E
t

t0 dt8

a~ t8!
5

dL~z!

11z
~8!

(c58pG51 here and elsewhere!. From Eq.~8! the Hubble
parameter is given by

H~z!5@ lnȧ#5F d

dzS dL~z!

11z D G . ~9!

It is crucial that the formula~9! is purely kinematic and
depends on neither the microscopic model of matter, incl
ing theL term, nor the dynamical theory of gravity. Due
the existence of such a relation it is possible to calculate
potential function, which is

V~a!52
1

2
H2a252

$~d/dz!@dL~z!/~11z!#%22

2~11z!2
.

~10!

This in turn allows us to reconstruct the potentialV(z)
from SNIa data. Let us note thatV(z) depends on the firs
derivative with respect toz whereasw(z) is associated with
the second derivative.
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Let us also note that the one-dimensional potential fu
tion for a particle-universe moving in the configurationala
~or x) space can be reconstructed from recent measurem
of the angular size of high-z compact radio sources compile
by Gurvitset al. @15#. The corresponding formula is

V~a!52
$~d/dz!@dA~z!~11z!#%22

2~11z!2
, ~11!

where the luminosity distancedL and the angular distancedA
are related by the simple formula

dL~z!5~11z!2dA~z!. ~12!

Since the potential function is related to the luminos
function by relation~10! one can determine both the class
trajectories in the phase plane (a,ȧ) and the Hamiltonian
form as well as reconstructing the quintessence param
w(z) provided that the luminosity functiondL(z) is known
from observations.

Now we can reconstruct the form of the potential functi
~10! using a natural ansatz introduced by Sahniet al. @16#. In
this approach the dark energy density that coincides withreff
is given as a truncated Taylor series with respect tou5(1
1z):

rDE5reff5A01A1u1A2u2.

This leads to

H~z!5H0AVm,0~11z!31A01A1~11z!1A2~11z!2

~13!

and

dL~z!

~11z!
5

1

H0

3E
0

z dz

AVm,0~11z!31A01A1~11z!1A2~11z!2
.

~14!

The values of the three parametersA0 , A1 , A2 can be
obtained by applying a standard fitting procedure to SN
observational data based on the maximum likeliho
method.

The potential function~10! written in terms of (11z) is

V@a~z!#52
reffa

2

6
52

1

2
H0

2@Vm,0~11z!1A0~11z!22

1A1~11z!211A2# ~15!

or in dimensionless form

V@x~z!#52
1

2
@Vm,0x211VL,0x2

1V t,0x1Vk,0#, ~16!
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FIG. 1. ~Color online! Confidence levels for the potential functionV for the model with~a! A350.3 ~sample C!, ~b! A350.05 ~sample
C!, ~c! A350.3 ~sample A!, ~d! A350.05 ~sample A!, and for the Perlmutter model~e! ~sample C! and~f! ~sample A!. The best fit for each
model is represented by the bold line. Solid and dashed lines represent potential functions for theoretical Cardassian modelsVm,0

50.3 @~a!,~b!,~e!,~f!# and 0.05@~c!,~d!# andn51/2,1/3,0,21/3,22/3,24/3.
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whereAi /(3H0
2)5V i ,0( i 5L,t,k).

Our approach to the reconstruction of the dynamics of
model is different from the standard approach in whichw(z)
is determined directly from the luminosity-distance formu
It should be stressed that the latter approach has an inevi
08350
e

.
ble

limitation because the luminosity-distance dependence
w(z) is obtained through a multiple-integral relation th
loses detailed information onw(z) @17#. In our approach the
reconstruction is simpler~only a single integral is required!.
Our approach is also different from the concept of reco
7-3
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TABLE I. Fitting results of the statistical analysis from distant type Ia supernovae data. The best fit and most probable v
parametersAi andM for the polynomial fit~14! for sample A of Perlmutter SNIa data.

A0 A1 A2 A3 M x2 zmax Vmax

Best fit 0.61 0.09 0.00 0.30 23.38 96.03 0.659 21633.21
Max(P) 0.6020.43

10.40 0.0920.40
10.43 0.00 0.30 23.3820.06

10.06

Best fit 20.25 1.20 0.00 0.05 23.37 96.84 3.677 21011.88
Max(P) 20.2620.44

10.38 1.2020.38
10.44 0.00 0.05 23.3620.06

10.06
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struction of the potential of scalar fields considered in
context of quintessence@8#.

The key steps of our method are the following.
~1! We reconstruct the potential functionV(a) for the

Hamiltonian dynamics of the quintessential universe fr
the luminosity distances of supernovae type Ia;

~2! we draw the best fit curves and confidence level
gions obtained from the statistical analysis of SNIa data;

~3! we set the theoretically predicted forms of the pote
tial functions on the confidence level diagram;

~4! those theoretical potentials that are even partially o
side the 2s confidence level are treated as being unfitted
observations; and

~5! we choose the potential function that lies near the b
fit curve.

Our reconstruction is an effective statistical techniq
which can be used to compare a large number of theore
models with observations. Instead of estimating some
evant parameters for each model separately, we choo
model-independent fitting function and perform a maximu
likelihood parameter estimation for it. The confidence lev
obtained can be used to discriminate between the mo
considered. In this paper this technique is used to find
fitting function for the luminosity distance.

The additional argument which is important when cons
ering the potentialV(a) is that it allows us to find some
modification in the Friedmann equations as in the ‘‘Card
sian expansion scenario’’@18#. This proposition is very in-
triguing because of additional terms, which automatica
cause the acceleration of the universe@19–22#. These modi-
fications come from the fundamental physics and these te
can be tested using astronomical observations of distant
Ia supernovae. With this aim the recent measurements o
angular size of high-redshift compact radio sources can
be used@15#.

The important question is the reliability of the data ava
able. We expect that supernovae data will improve gre
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over the next few years. The SNAP mission should give
about 2000 type Ia supernovae cases each year. This sat
mission and the next planned ones will increase the accu
of the data compared to data from the 1990s. In our anal
we use the available data starting from the three Perlmu
samples~sample A is the complete sample of 60 supernov
but in the analysis we also used samples B and C, in wh
four and six outliers, respectively, were excluded!. The fit for
the sample C is more robust and this sample was accepte
the basis of our consideration. For technical details of
method the reader is referred to our previous two pap
@13,14#.

In Fig. 1 we show the reconstructed potential functi
obtained using the fitting values ofAi as well asM. The
bold line represents the potential function for the best
values of the parameters~see Tables I, II and III!. In each
case the shaded areas cover the confidence levels 6
(1s) and 95.4% (2s) for the potential function. The differ-
ent forms of the potential function that are obtained from
theory are presented in the confidence levels. Here we c
sider one case, namely, the Cardassian model. In this cas
standard FRW equation is modified by the presence of
additionalrn term, wherer is the energy density of matte
and radiation. For simplicity we assume that the density
rameter for radiation is zero~see Table IV!. The Cardassian
scenario is proposed as an alternative to the cosmolog
constant in explaining the acceleration of the Universe.
this scenario the Universe automatically accelerates with
any dark energy component. The additional term in
Friedmann equation arises from exotic physics of the ea
universe~i.e., in the brane cosmology with Randall-Sundru
versionn52).

Let us note that there is a simple interpretation of t
Cardassian term as an additional noninteracting fluid w
pressurep5@n(11w)21#r, where the standard term is ob
tained from the fluidp5wr and w5const. In the specia
rnovae

TABLE II. Fitting results of the statistical analysis from distant type Ia supernovae data. The best fit values of parametersAi andM for

the polynomial fit~14! for sample C of Perlmutter SNIa data. The fit is more robust, because the two very likely reddened supe
SN1996cg and SN1996cn have been removed@3#.

A0 A1 A2 A3 M x2 zmax Vmax

Best fit 0.74 20.04 0.00 0.30 23.43 53.28 0.676 21567.33
Max(P) 0.7320.44

10.40 0.0420.40
10.44 0.00 0.30 23.4320.06

10.06

Best fit 20.13 1.08 0.00 0.05 23.42 53.83 3.522 2968.74
Max(P) 20.1420.44

10.40 1.0820.39
10.44 0.00 0.05 23.4120.06

10.06
7-4
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TABLE III. Fitting results of the statistical analysis for the Perlmutter model and both~A and C! samples
of Perlmutter SNIa data.

Sample VL,0 Vm,0 M x2 zmax Vmax

Best fit C 0.71 0.29 23.43 53.29 0.684 21573.69
Max(P) C 0.7020.05

10.05 0.3020.05
10.05 23.43

Best fit A 0.69 0.31 23.39 96.00 0.632 21628.31
Max(P) A 0.6820.05

10.05 0.3220.05
10.05 23.39
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case of dust we obtainp5(n21)r. The effective energy
density can be modeled by some kind of quintessence m
with the equation of state

peff5w~a!reff ,

where

w~a! 5
~n21!VC,0

Vm,0a
3(n21)1VC,0

. ~17!

The solid lines in Fig. 1 represent the potential functio
for the different Cardassian scenarios of an accelerated
pansion of the universe.

For visualizing the quality of the fitting procedure pe
formed the Hubble diagrams are presented on Fig. 2.

The general conclusion from our statistical analysis is t
the potential function has a maximum at somez5z0 ~or a
5a0) and that

]2V

]a2
~z!,0. ~18!

In the next section it will be demonstrated that the rec
structed potential function contains all the information th
we need for reconstruction of the dynamics of any cosm
logical model on the phase plane.
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III. APPLICATION: TOWARD THE RECONSTRUCTION
OF PHASE PORTRAIT AND MODEL PARAMETERS

The dynamics of the considered cosmological models
governed by the dynamical system

ẋ[
dx

dt
5y,

ẏ[
dy

dt
52

]V

]x
, ~19!

with the first integral for Eq.~19! H50⇔ ẋ2/21V(x)50.
The main aim of dynamical system theory is the investig
tion of the space of all solutions~19! for all possible initial
conditions, i.e., phase spaceM. In the context of quintessen
tial models with the equation of statep5w@a(z)#r there
exists a systematic method of reducing Einstein’s field eq
tions to the form of the dynamical system~19! @13#. One of
the features of such a representation of the dynamics is
possibility of resolving some cosmological problems like t
horizon and flatness problems in terms of the potential fu
tion V(x).

The phase spaceM ~or state space! is a natural visualiza-
tion of the dynamics of any model. Every pointP5(x,y)
PM corresponds to a possible state of the system. The ri
hand sides of the system~19! define a vector fieldF(P)
5@y,2]V/]x# belonging to the tangent spaceTpM. Integral
curves of this vector field define a one-parameter group
diffeomorphismsf(P) called the phase flow. In the phas
space the phase curves@orbits of the groupf(P)] represent
the evolution of the system whereas the critical pointsy
TABLE IV. The potential functions in dimensionless form for two cases: theLCDM model and Cardassian scenario.

Form of the potential Position of the maximum Position of the maximum
function predicted by theoretical models from reconstruction

Sample Value

Perlmutter model V(x)52
1
2 @Vm,0x

211VL,0x
2# x05A3 1

2

Vm,0

12Vm,0

A 0.613

C 0.594

Cardassian scenario V~x!52
1
2 @Vm,0x

211VC,0x
223n# x05F ~223n!S 1

Vm,0
21D G1/3(n21) A 0.598

C 0.599
7-5
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FIG. 2. Hubble diagrams for
Perlmutter SNIa data for sample
A ~a! and C~b!. The different type
lines represent the best fitte
magnitude-redshift relations~the
Perlmutter model and polynomia
fits with fixed Vm,0 parameters!
and hypothetical Cardassian sc
narios for different values of the
parametersVC,0 andn.
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50, ]V/]x50 are singular solutions—equilibria from th
physical point of view. The phase curves together with
critical points constitute the phase portrait of the system~see
Figs. 3 and 4!.

Now we can define the equivalence relation between
phase portraits~or two vector fields! by the topological
equivalence, namely, two phase portraits are equivalen
there exists an orientation-preserving homeomorphism tr
forming integral curves of both systems into each other. F
lowing the Hartman-Grobman theorem, the behavior of
system near hyperbolic critical points (; i Rel iÞ0, where
l i is the appropriate eigenvalue of the linearizati
08350
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matrix A of the dynamical system! is equivalent to the be-
havior of its linear part

ẋ5y, ẏ52S ]2V

]x2 D
(x5x0,0)

~x2x0!. ~20!

In our case the linearization matrix takes the form

A5F 0, 1

2]2V/]x2, 0G
(x0,0)

. ~21!
7-6
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FIG. 3. ~Color online! Phase space for the
system ~19! reconstructed from the potentia
function ~16! for the best fitted parameters~Table
I, A350.3). The shaded domain of phase space
the domain of accelerated expansion of the U
verse. The dashed line represents the flat mo
trajectory which separates regions with negati
and positive curvatures.
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Classification of the critical points is given in terms of th
eigenvalues of the linearization matrix since the eigenval
can be determined from the characteristic equationl2

2(Tr A)l1detA50. In our case TrA50 and the eigenval-
ues are either real if (]2V/]x2)u(x0,0),0 or purely imaginary

and mutually conjugated if (]2V/]x2)u(x0,0).0. In the
former case the critical points are saddles and in the la
case they are centers.

The advantage of representing the dynamics in term
the Hamiltonian~1! is the possibility of discussing the sta
bility of the critical points, which is based only on the co
vexity of the potential function. In our case the only possib
critical points in a finite domain of phase space are center
saddles.

FIG. 4. ~Color online! Phase space shown in Fig. 3 transform
on the compact Poincare´ sphere. Nonphysical domain of phas
space is shaded.
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The dynamical system is said to be structurally stable
all other dynamical systems~close to it in a metric sense! are
equivalent to it. Two-dimensional dynamical systems
compact manifolds form an open and dense subset in
space of all dynamical systems on the plane@23#. Structur-
ally stable critical points on the plane are saddles, nodes,
limit cycles whereas centers are structurally unstable. Th
is a widespread opinion among scientists that each physic
realistic model of the Universe should possess some kin
structural stability—because the existence of many dra
cally different mathematical models, all in agreement w
observations, would be fatal for the empirical method of s
ence@24#.

Based on the reconstructed potential function one
conclude the following.

~1! Since the diagram of the potential functionV†a(z)‡ is
convex up and has a maximum which corresponds to a si
critical point, the quantity (]2V/]a2)u(a0,0),0 at the critical
point ~saddle point! and the eigenvalues of the linearizatio
matrix at this point are real with opposite signs.

~2! The model is structurally stable, i.e., small perturb
tions of it do not change the structure of the trajectories
the phase plane.

~3! Since ä52]V/]a one can easily conclude from th
geometry of the potential function that in the accelerat
region (ä.0)V(a) is a decreasing function of its argumen

~4! The reconstructed phase portrait for the system
equivalent to the portrait of a model with matter and a c
mological constant.

By an inspection of the phase portraits we can distingu
four characteristic regions in the phase space. The bou
aries of region I are formed by a separatrix coming out fro
the saddle point and going to the singularity and anot
separatrix coming out of the singularity and approaching
saddle. This region is covered by trajectories of closed
recollapsing models with initial and final singularities.

The trajectories moving in region IV are also confined
a separatrix and they correspond to closed universes
tracting from the unstable de Sitter node toward the stable
Sitter node.
7-7



d
m
n
si

al
ng
he

d
on

a

te
le
w

ca
h

m
e

ui

n

e
r is

out

e of
a. It

il-
od-
-
the
ntial

r.
as

M. SZYDŁOWSKI AND W. CZAJA PHYSICAL REVIEW D 69, 083507 ~2004!
The trajectories situated in region III correspond to mo
els expanding toward a stable de Sitter node at infinity. Si
larly, the trajectories in the symmetric region II represe
universes contracting from the unstable node toward the
gularity.

The main idea of the qualitative theory of differenti
equations is the following. Instead of finding and analyzi
an individual solution of the model one investigates t
space of all possible solutions. Any property~for example
acceleration! is believed to be realistic if it can be attribute
to a large subsets of models within the space of all soluti
or if it possesses some stability property that is shared by
slightly perturbed models.

IV. CONCLUSION

The possible existence of the unknown form of mat
called dark energy has usually been invoked as the simp
way to explain the recent observational data of SNIa. Ho
ever, the effects arising from new fundamental physics
also mimic the gravitational effects of dark energy throug
modification of the Friedmann equation.

We exploited the advantages of our method to discri
nate among different dark energy models. With the indep
dently determined density parameter of the Universe (Vm,0
50.3) we found that the current observational results req
et

. B

y

08350
-
i-
t
n-

s
ll

r
st
-
n
a

i-
n-

re

the cosmological constantn.0 in Cardassian models. O
Fig. 1 we can see that in both cases of sample A~Fig. 1c! and
sample C~Fig. 1a! n should be close to zero. Similarly, if w
assume that the density parameter for baryonic matte
Vm,050.05 thenn.0.36 in the case of sample C~Fig. 1b!
and n.0.39 for sample A~Fig. 1d!. Moreover, we showed
~for sample C of the Perlmutter SNIa data! that a simple
Cardassian model as a candidate for dark energy is ruled
by our analysis at the confidence level 2s if n*0.36 andn
&20.50 for Vm,050.3 and if n*0.48 and n&0.13 for
Vm,050.05.

Our main result is that the structure of the phase spac
accelerating models can be reconstructed from SNIa dat
is a consequence of the fact that the potential of the Ham
tonian system describing the dynamics of accelerating m
els can be obtained from thedL relation for distant superno
vae of type Ia. We demonstrate that all information about
structure of the phase space is contained in the pote
function, which gives the Hamiltonian flow.
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