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Toward reconstruction of the dynamics of the Universe from distant type la supernovae
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We describe a model-independent method of estimating the qualitative dynamics of an accelerating universe
from observations of distant type la supernovae. Our method is based on the luminosity-distance function,
optimized to fit observed distances of supernovae, and the Hamiltonian representation of dynamics for the
quintessential universe with a general form of the equation of ptate[ a(z) ]p. Because of the Hamiltonian
structure of Friedmann-Robertson-WalK&RW) dynamics with the equation of stape=w[a(z)]p, the dy-
namics is uniquely determined by the potential functitf@a) of the system. The effectiveness of this method
in the discrimination of model parameters of the Cardassian evolution scenario is also given. Our main result
is the following: restricting consideration to the flat model with the current value 0§=0.3, the constraints
at a 2o confidence level to the presence @f modification of the FRW models are 0.50sn=<0.36.
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I. INTRODUCTION a2
H= > +V(a), 1)

Recent observations of type la supernoyaalla) [1-3]
supported by Wilkinson M|crowa_v e Anisotropy Probe where the overdot means differentiation with respect to the
(WMAP) measurements .Of _the anisotropy (.)f the .angmarcosmological timg andV(a) is a potential function of the
temperature fluctuatiorjg] indicate that our Universe is spa- scale factorm given by
tially flat and accelerating. On the other hand, the power
spectrum of galaxy clusterir{¢] indicates that about 30% of
the critical density of the Universe should be in the form of V(a)=—
nonrelativistic matter(cold dark matter and baryonsThe
remaining, almost two-thirds of the critical energy, may be in
the form of a component having negative presgdaek en-
ergy). Although the nature of dark energy is unknown, the
positive cosmological constant term seems to be a serious a
candidate for the description of dark energy. In this case the Pei= — 3= (Pefit+ Pefr) -
cosmological constant A and energy density g, a
= A/(87G) remain constant with time and the correspond-
ing mass density py=¢,/c?>=6.44x10 39 ,/0.7)
x(h/0.7) gcm 3, whereh is the Hubble constaritl, ex-
pressed in units of 100 km$Mpc™* and Q,=0.7+0.1. A+ 3
Although the cold dark mattgfCDM) model with a cosmo- Peff= AT Pmod
logical constant and dust provides an excellent explanation — _A40 3)
of the SNla data, the present value Afis ~10'%° times Pet '
smaller than the valqe predm;ted by the particle phyS|c§)f course the trajectories of the system lie on the zero energy
model. Many alternative candidates for dark energy hav%urface?—[so.
been advanced and some of the”? are in good agreer_ne_nt with The Hamiltonian(1) can be rewritten in the following
the current obseryatlonal constraifés-12. Moreqver, IS form convenient for our current reconstruction of the equa-
a natural suggestion that the term has a dynamical nature tion of state from the potential functiovt
as in the inflationary scenario. Therefore, it is reasonable to
consider the next simplest form of a dark energy alternative p2
to the cosmological constanive — 1) for which the equa- H(py,X) = 7X+V(x), (4)
tion of state depends upon time in such a way tpat
=wl[a(z)]p, wherew=p/p is a coefficient of the equation : , . ,
of state parametrized by the scale factor or redshift. It ha¥herep,=dL/dx. Here overdot means differentiation with
been demonstratdd 3,14 that the dynamics of such a sys- "€SPECt to some new reparametrized timer:dr=|H,|dt,

. . . Ly = — -1
tem can be represented by the one-dimensional Hamiltoniak=2a/@0=(1+2) . _ _ _ _
flow For example, for a mixture of noninteracting fluids the

potentialV(x) takes the form

pet()
6

a?, #)

wherep. is the effective energy density, which satisfies the
conservation condition

For example, for the CDM model with a cosmological con-
stant (A\CDM) model we have

. , _ 1 e
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wherep; =w;p; for theith fluid andV iw;= const(similar to Let us also note that the one-dimensional potential func-

the quiessence model of dark energy tion for a particle-universe moving in the configuratiomal
Due to the Hamiltonian structure of Friedmann- (or x) space can be reconstructed from recent measurements

Robertson-WalkefFRW) dynamics, with the general form of the angular size of high-compact radio sources compiled

of the equation of statep=w[a(z)]p, the dynamics is by Gurvitset al.[15]. The corresponding formula is

uniquely determined by the potential functiovi(a) [or .

V(x)] of the system. Only for simplicity of presentation we V(@)= — {(d/dz)[da(2)(1+2)]}

assume that the universe is spatially flatthe opposite case 2(1+2)2

the trajectories of the system should be considered at the

energy levelH=30Q, ). where the luminosity distanak and the angular distanch
Let us note that from the potential function we can obtainare related by the simple formula

the equation of state coefficient=p/p,

: 11)

L di(2)=(1+2)%da(2). (12

3

d(InV)
* d(Ina)

w=—

' (6) Since the potential function is related to the luminosity
function by relation(10) one can determine both the class of

The termd(InV)/d(Ina) has a simple interpretation as an elas-trajectories in the phase plana,&) and the Hamiltonian
ticity coefficient of the potential function with respect to the form as well as reconstructing the quintessence parameter

scale factor. w(z) provided that the luminosity functiod, (z) is known
Thus from the potential functiod bothp(a) andp can be  from observations.
unambiguously calculated: Now we can reconstruct the form of the potential function
(10) using a natural ansatz introduced by Sadtral.[16]. In
o 6V(a) this approach the dark energy density that coincides pdth
p(a)= a2’ is given as a truncated Taylor series with respectito( 1
+2):
_,V® + ddinV) _ ) POE= Pert=AoT AU+ AU,
a2 d(Ina)
This leads to
Il. THE EXPANSION SDCIENARIO FROM SUPERNOVAE H(z)=Ho\/Qmo(1+z)3+A0+A1(1+z)+A2(1+z)2
STANCES ' (13)
As is well known, in a flat FRW cosmology the luminos-
ity distanced, and the coordinate distanceo an object at and
redshiftz are simply related as d,(2) ) 1
fto dt’  d.(2) ® (1+2) H,
agl = —=
T a1z : dz
X .
(c=87G=1 here and elsewhereFrom Eq.(8) the Hubble J'o \/Q (1423 +Ag+ A (1+2)+Ax(1+2)2
parameter is given by m
(14
. d(d.(2)
H(z)=[Ina]= a2\ 15211 9 The values of the three parameteks, A;, A, can be

obtained by applying a standard fitting procedure to SNla

It is crucial that the formuld9) is purely kinematic and ©Pservational data based on the maximum likelihood
depends on neither the microscopic model of matter, inclugmethod. . . . : ,
ing the A term, nor the dynamical theory of gravity. Due to 1 he Potential functior{10) written in terms of (1+2) is

the existence of such a relation it is possible to calculate the P’ 1
potential function, which is V[a(z)]=— % = EHS[Qm’O(lJFZ) +Ay(1+2) 2
1 d/dz)[d (2)/(1+2)]} 2 _
V(a):__Hzazz_{( )[ L( ) ( )]} . +A1(1+Z) 1+A2] (15)
2 2(1+2)2

(10 or in dimensionless form

This in turn allows us to reconstruct the potentié]z) 1
from SNla data. Let us note that(z) depends on the first VIx(2)]=— E[Qm,oxil'FQA,OXZ
derivative with respect ta whereasw(z) is associated with
the second derivative. +Q oX+ Qy ol (16
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FIG. 1. (Color online Confidence levels for the potential functidhfor the model with(a) A;=0.3 (sample G, (b) A;=0.05(sample
C), (c) A;=0.3 (sample A, (d) A;=0.05(sample A, and for the Perlmutter modé) (sample @ and(f) (sample A. The best fit for each
model is represented by the bold line. Solid and dashed lines represent potential functions for theoretical Cardassian riipggls for
=0.3[(a),(b),(e),(f)] and 0.05[(c),(d)] andn=1/2,1/3,0,- 1/3,— 2/3,— 4/3.

whereAi/(3H§)=Qi,0(i=A,t,k). limitation because the luminosity-distance dependence on
Our approach to the reconstruction of the dynamics of thev(z) is obtained through a multiple-integral relation that

model is different from the standard approach in whid}z) loses detailed information om(z) [17]. In our approach the

is determined directly from the luminosity-distance formula.reconstruction is simplefonly a single integral is requirgd

It should be stressed that the latter approach has an inevitab®ur approach is also different from the concept of recon-
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TABLE |. Fitting results of the statistical analysis from distant type la supernovae data. The best fit and most probable values of
parameter#\; and M for the polynomial fit(14) for sample A of Perlmutter SNla data.

Ao Az Ay Az M XZ Zmax Vmax
Best fit 0.61 0.09 0.00 0.30 -3.38 96.03 0.659 —1633.21
Max(P) 0.60°373 0.09"3%3 0.00 0.30 -3.38'3%
Best fit -0.25 1.20 0.00 0.05 -3.37 96.84 3.677 —1011.88
Max(P) —-0.26"38 1.20°04%4 0.00 0.05 —3.36" 392

struction of the potential of scalar fields considered in theover the next few years. The SNAP mission should give us

context of quintessendé]. about 2000 type la supernovae cases each year. This satellite
The key steps of our method are the following. mission and the next planned ones will increase the accuracy
(1) We reconstruct the potential functiovi(a) for the  of the data compared to data from the 1990s. In our analysis

Hamiltonian dynamics of the quintessential universe fromwe use the available data starting from the three Perlmutter

the luminosity distances of supernovae type la; samplegsample A is the complete sample of 60 supernovae,
(2) we draw the best fit curves and confidence level reqt in the analysis we also used samples B and C, in which

gions obtained from the statistical analysis of SNla data; toyr and six outliers, respectively, were excluglebhe fit for

_ (3) we set the theoretically predicted forms of the poten-e sample C is more robust and this sample was accepted as

tial functions on thg confldenge level diagram; . the basis of our consideration. For technical details of the

. (4) those the(_)rencal potentials that are even partla_lly OUlihethod the reader is referred to our previous two papers

side the 2r confidence level are treated as being unfitted to[13 14

observations; and —

(5) we choose the potential function that lies near the bes(t)btained using the fitting values & as well asM. The

In Fig. 1 we show the reconstructed potential function

fit curve. bold | h Al f ion for the best fi
Our reconstruction is an effective statistical technique old line represents the potential function for the best fit
which can be used to compare a large number of theoretici2!ues of the parametefsee Tables |, Il and )l In each

models with observations. Instead of estimating some relc@S€ the shaded areas cover the confidence levels 68.2%

evant parameters for each model separately, we choose(&¢) and 95.4% (2) for the potential function. The differ-
model-independent fitting function and perform a maximument forms of the potential function that are obtained from the
likelihood parameter estimation for it. The confidence levelstheory are presented in the confidence levels. Here we con-
obtained can be used to discriminate between the modeRider one case, namely, the Cardassian model. In this case the
considered. In this paper this technique is used to find thetandard FRW equation is modified by the presence of an
fitting function for the luminosity distance. additional p" term, wherep is the energy density of matter
The additional argument which is important when consid-and radiation. For simplicity we assume that the density pa-
ering the potentiaV(a) is that it allows us to find some rameter for radiation is zer(see Table IV. The Cardassian
modification in the Friedmann equations as in the “Cardasscenario is proposed as an alternative to the cosmological
sian expansion scenariq’18]. This proposition is very in- constant in explaining the acceleration of the Universe. In
triguing because of additional terms, which automaticallythis scenario the Universe automatically accelerates without
cause the acceleration of the univef$6—22. These modi- any dark energy component. The additional term in the
fications come from the fundamental physics and these ternfsriedmann equation arises from exotic physics of the early
can be tested using astronomical observations of distant typgniverse(i.e., in the brane cosmology with Randall-Sundrum
la supernovae. With this aim the recent measurements of theersionn=2).
angular size of high-redshift compact radio sources can also Let us note that there is a simple interpretation of the
be used15]. Cardassian term as an additional noninteracting fluid with
The important question is the reliability of the data avail- pressurgg=[n(1+w)—1]p, where the standard term is ob-
able. We expect that supernovae data will improve greatlyained from the fluidp=wp and w=const. In the special

TABLE II. Fitting results of the statistical analysis from distant type la supernovae data. The best fit values of paranzeterst for
the polynomial fit(14) for sample C of Perlmutter SNla data. The fit is more robust, because the two very likely reddened supernovae
SN1996cg and SN1996¢n have been remdad

Ao Ay A, Az M X2 Zmax Vmax
Best fit 0.74 —0.04 0.00 0.30 -3.43 53.28 0.676 —1567.33
Max(P) 0.73°5%% 0.04" 5% 0.00 0.30 —-3.435%
Best fit -0.13 1.08 0.00 0.05 -3.42 53.83 3.522 —968.74
Max(P) -0.1479%9 1.08"04%9 0.00 0.05 —-3.41" 398
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TABLE IIlI. Fitting results of the statistical analysis for the Perlmutter model and td#nd O samples
of Perlmutter SNla data.

Sample Q'A,O Qm,O M X2 Zmax Vmax
Best fit C 0.71 0.29 —3.43 53.29 0.684 —1573.69
Max(P) C 0.70°3%  0.30'3% —-3.43
Best fit A 0.69 0.31 —3.39 96.00 0.632 —1628.31
Max(P) A 0.68°3% 032195 -3.39

case of dust we obtaip=(n—1)p. The effective energy Ill. APPLICATION: TOWARD THE RECONSTRUCTION
density can be modeled by some kind of quintessence matter OF PHASE PORTRAIT AND MODEL PARAMETERS

with the equation of state The dynamics of the considered cosmological models is

governed by the dynamical system
Pef=W(a) per,

.dx
X=——=Y,
dt
where
_dy 9V 19
(N—1)Qc Y=atT  x (19
W(a) = Q 3(n_1)+Q ) (17) .

m, & co with the first integral for Eq(19) H=0&x2/2+V(x)=0.

The main aim of dynamical system theory is the investiga-

The solid lines in Fig. 1 represent the potential functionstion of the space of all solutiond.9) for all possible initial
for the different Cardassian scenarios of an accelerated egonditions, i.e., phase spatk In the context of quintessen-

pansion of the universe. tial models with the equation of stae=w[a(z)]p there
For visualizing the quality of the fitting procedure per- €xists a systematic method of reducing Einstein’s field equa-
formed the Hubble diagrams are presented on Fig. 2. tions to the form of the dynamical systef9) [13]. One of

The general conclusion from our statistical analysis is thathe features of such a representation of the dynamics is the
the potential function has a maximum at somez, (or a  Possibility of resolving some cosmological problems like the

=a,) and that horizon and flatness problems in terms of the potential func-
tion V(x).
The phase spadd (or state spages a natural visualiza-
PV tion of the dynamics of any model. Every poiRt=(X,y)
E(Z)<O' (18) e M corresponds to a possible state of the system. The right-

hand sides of the systeifi9) define a vector field=(P)
=[y,—dVIdx] belonging to the tangent spatgM. Integral
In the next section it will be demonstrated that the recon-curves of this vector field define a one-parameter group of
structed potential function contains all the information thatdiffeomorphisms¢(P) called the phase flow. In the phase
we need for reconstruction of the dynamics of any cosmospace the phase curvisrbits of the groupp(P)] represent
logical model on the phase plane. the evolution of the system whereas the critical poipts

TABLE IV. The potential functions in dimensionless form for two cases:Al@DM model and Cardassian scenario.

Form of the potential Position of the maximum Position of the maximum
function predicted by theoretical models from reconstruction
Sample Value
A 0.613
1 — 3 QmO
Perlmutter model V(X)= =3[ Qnox 1+, ox°] %=\/ & i
1-Qpnp C 0.594
1/3(n—1) A 0.598
Cardassian scenario  V(x)=—3[Qnx *+Qcox® "] Xo=|(2— 3”)(9_ - 1) }
m.0 C 0.599
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=0, dV/9x=0 are singular solutions—equilibria from the matrix A of the dynamical systejris equivalent to the be-
physical point of view. The phase curves together with thehavior of its linear part
critical points constitute the phase portrait of the sys{eee
Figs. 3 and 4 )

Now we can define the equivalence relation between two X=y, y=-—
phase portraitsor two vector fields by the topological
equivalence, namely, two phase portraits are equivalent if
there exists an orientation-preserving homeomorphism trangn our case the linearization matrix takes the form
forming integral curves of both systems into each other. Fol-

*V
ax

(X=Xo). (20
(x=X0,0)

lowing the Hartman-Grobman theorem, the behavior of the 0, 1
system near hyperbolic critical point¥ (i Rex;#0, where A= 2ok 0 : (22)
\; is the appropriate eigenvalue of the linearization ’ (%.0)
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open models

111

FIG. 3. (Color online Phase space for the
system (19) reconstructed from the potential
closed function (16) for the best fitted paramete(Eable
TV @ T AN AN I, A;=0.3). The shaded domain of phase space is
the domain of accelerated expansion of the Uni-
verse. The dashed line represents the flat model
trajectory which separates regions with negative
and positive curvatures.

0.5 1 1.5 2 2.5 3
X

Classification of the critical points is given in terms of the  The dynamical system is said to be structurally stable if
eigenvalues of the linearization matrix since the eigenvaluesll other dynamical systenislose to it in a metric sengare
can be determined from the characteristic equatioh equivalent to it. Two-dimensional dynamical systems on
—(Tr A)A +detA=0. In our case TA=0 and the eigenval- compact manifolds form an open and dense subset in the
ues are either real ifV/x?)|x, 0y<O or purely imaginary ~space of all dynamical systems on the pld28]. Structur-

: : 2 ally stable critical points on the plane are saddles, nodes, and
and mutually conjugated if &v/dx )|(Xo'0>>o' In the limit cycles whereas centers are structurally unstable. There

former case the Cl’itical pOintS are Saddles and in the Iattqg awidespread Opinion among scientists that each phys|ca”y
case they are centers. realistic model of the Universe should possess some kind of
The advantage of representing the dynamics in terms oftructural stability—because the existence of many drasti-
the Hamiltonian(1) is the possibility of discussing the sta- cally different mathematical models, all in agreement with
bility of the critical points, which is based only on the con- observations, would be fatal for the empirical method of sci-
vexity of the potential function. In our case the only possibleence[24].
critical points in a finite domain of phase space are centers or Based on the reconstructed potential function one can
saddles. conclude the following.
. (1) Since the diagram of the potential functidpa(z)] is
b X convex up and has a maximum which corresponds to a single
critical point, the quantity ¢*V/da®)|a, <0 at the critical
point (saddle pointand the eigenvalues of the linearization
matrix at this point are real with opposite signs.
(2) The model is structurally stable, i.e., small perturba-
tions of it do not change the structure of the trajectories in
the phase plane.

(3) Sincea=—dV/da one can easily conclude from the
geometry of the potential function that in the accelerating

X region @>0)V(a) is a decreasing function of its argument.

(4) The reconstructed phase portrait for the system is
equivalent to the portrait of a model with matter and a cos-
mological constant.

By an inspection of the phase portraits we can distinguish
four characteristic regions in the phase space. The bound-
aries of region | are formed by a separatrix coming out from
the saddle point and going to the singularity and another
separatrix coming out of the singularity and approaching the
saddle. This region is covered by trajectories of closed and
recollapsing models with initial and final singularities.

The trajectories moving in region IV are also confined by

FIG. 4. (Color onling Phase space shown in Fig. 3 transformeda separatrix and they correspond to closed universes con-
on the compact Poincarsphere. Nonphysical domain of phase tracting from the unstable de Sitter node toward the stable de
space is shaded. Sitter node.
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The trajectories situated in region Ill correspond to mod-the cosmological constam=0 in Cardassian models. On
els expanding toward a stable de Sitter node at infinity. SimiFig. 1 we can see that in both cases of samp(Ei§. 19 and
larly, the trajectories in the symmetric region Il representsample QFig. 13 n should be close to zero. Similarly, if we
universes contracting from the unstable node toward the sirmssume that the density parameter for baryonic matter is
gularity. O mo=0.05 thenn=0.36 in the case of sample Eig. 1b

The main idea of the qualitative theory of differential and n=0.39 for sample AFig. 1d. Moreover, we showed
equations is the following. Instead of finding and analyzing(for sample C of the Perlmutter SNIa datéat a simple
an individual solution of the model one investigates theCardassian model as a candidate for dark energy is ruled out
space of all possible solutions. Any propeffgr example by our analysis at the confidence lever # n=0.36 andn
acceleratiohis believed to be realistic if it can be attributed <—0.50 for Omo=0.3 and if n=0.48 andn=<0.13 for
to a large subsets of models within the space of all solution§),, ;=0.05.
or if it possesses some stability property that is shared by all Our main result is that the structure of the phase space of

slightly perturbed models. accelerating models can be reconstructed from SNla data. It
is a consequence of the fact that the potential of the Hamil-
IV. CONCLUSION tonian system describing the dynamics of accelerating mod-

h ibl . f th K ‘ ¢ els can be obtained from tltk relation for distant superno-
The possible existence of the unknown form of matter a¢ of tyne 1. We demonstrate that all information about the

called dark energy has usually been invoked as the simplegj, ¢y re of the phase space is contained in the potential
way to explain the recent observational data of SNla. HOWz,tion. which gives the Hamiltonian flow.

ever, the effects arising from new fundamental physics can
also mimic the gravitational effects of dark energy through a
mod|f|cat|on.of the Friedmann equation. S ACKNOWLEDGMENTS
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