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Signatures of relativistic neutrinos in CMB anisotropy and matter clustering

Sergei Bashinsky* and UrošSeljak†

Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
~Received 9 October 2003; published 29 April 2004!

We present a detailed analytical study of ultrarelativistic neutrinos in cosmological perturbation theory and
of the observable signatures of inhomogeneities in the cosmic neutrino background. We note that modification
of perturbation variables that removes all the time derivatives of scalar gravitational potentials from the
dynamical equations simplifies their solution notably. The used perturbations of particle number per coordinate,
not proper, volume are generally constant on superhorizon scales. In real space the analytical approach can be
extended beyond fluid models to neutrinos. The faster cosmological expansion due to the neutrino background
affects the acoustic and damping angular scales of the cosmic microwave background~CMB!. But we find that
equivalent changes can be produced by varying other standard parameters, including the primordial helium
abundance. The low-l integrated Sachs-Wolfe effect is also not sensitive to neutrinos. However, the gravity of
neutrino perturbations suppresses the CMB acoustic peaks for the multipoles withl *200 while it enhances the
amplitude of matter fluctuations on these scales. In addition, the perturbations of relativistic neutrinos generate
a unique phase shiftof the CMB acoustic oscillations that, for adiabatic modes, cannot be caused by any other
standard physics. The origin of the shift is traced to neutrino free-streaming velocity exceeding the sound speed
of the photon-baryon plasma. We find that from a high-resolution, low-noise instrument such as CMBPOL the
effective number of light neutrino species can be determined with an accuracy ofs(Nn).0.05–0.09, depend-
ing on the constraints on the helium abundance.

DOI: 10.1103/PhysRevD.69.083002 PACS number~s!: 98.70.Vc, 98.80.Es, 98.80.Ft
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I. INTRODUCTION

Neutrinos play a significant role in the evolution of th
early Universe. They are expected to provide around 4
e.g., Ref.@1#, of the total energy density during the radiatio
era. The gravitational potentials~metric perturbations! in-
duced by inhomogeneities in the photon and neutrino ba
grounds are comparable. Because of the internal photon
neutrino dynamics the potentials decay when the grow
acoustic, for photons, or particle, for neutrinos, horizon
the universe becomes of the order of the perturbation sc
i.e., as the perturbation modes ‘‘enter the horizon.’’ This d
cay, in contrast with the constancy of the potential genera
during matter domination by freely collapsing cold dark m
ter ~CDM!, leads to a substantial difference between the a
plitude of the acoustic oscillations in the cosmic microwa
background~CMB! on the scales that enter the horizon b
fore and after the matter-radiation equality. For example
the model without neutrinos the amplitude generated
equal primordial power on the smaller scales is five tim
larger, Ref.@2#. In addition, the gravity of both the photo
and neutrino perturbations at the horizon entry boosts C
peculiar velocities, contributing to matter clustering.

The neutrino contribution to the radiation energy dens
reduces the redshift of the transition from radiation to ma
domination, bringing the transition closer to CMB deco
pling. This too leads to important consequences for b
CMB anisotropies and matter clustering. The reasons are
larger amplitude of the acoustic oscillations entering the
rizon in the radiation universe, larger early integrated Sac
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Wolfe ~ISW! effect from the transition proximity, and sup
pressed growth of matter fluctuations in the radiation epo
But these and other effects caused by the neutrino ba
ground speeding up the cosmological expansion, discus
later, can generally be mimicked by variations of other st
dard cosmological parameters. For example, the redshif
the radiation-matter equality could be reduced not by
neutrino background but by CDM density being smaller th
derived from the fits assuming the standard neutrino cont

The internal dynamics of neutrino perturbations bears
most no resemblance to the more familiar acoustic physic
the photon-baryon fluid. All the three main distinctions b
low arise from neutrinos being fully decoupled and fr
streaming since a very early redshiftzn dec;1010, long be-
fore the hydrogen recombination and CMB photon dec
pling at zg dec.1090.

First, the tightly coupled photon-electron-baryon flu
supports compressional acoustic waves. These waves
little attenuated until the recombination. Neutrino perturb
tions propagate differently, by means of free streaming. N
trinos escape overdense regions in every direction; the
jection of their velocity on the density gradient spans t
entire interval@21,1# ~in units c51.! The dispersion of the
perturbation transfer velocity along the density gradie
called ‘‘directional dispersion’’@3#, damps subhorizon neu
trino perturbations inversely proportional to time. Th
damping was noted three decades ago@4#. But it was quickly
realized@5# that, regardless of their evolution, the subhoriz
neutrino perturbations exert negligible gravitational effe
on other species.

Second, neutrino stress is locally anisotropic. Accord
to Einstein’s equations, the stress sources the perturbatio
the space-time metric. The anisotropic stress leads to ric
structure of the metric perturbations than locally isotrop
fluids can provide.

Third, neutrino perturbations propagate with the speed

light, exceeding the sound speed of acoustic perturbations in

©2004 The American Physical Society02-1
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the photon-baryon fluid. As a result, the gravitational eff
of neutrino perturbations on CMB, viewed in real space,
tends beyond the acoustic horizon of primordial inhomo
neities. We find that this leads to a unique phase shift of
CMB mode oscillations in the presence of neutrino gravi

What new physics can be revealed by the imprint of n
trino gravity on the more easily observable species, suc
CMB photons or nonrelativistic matter? The considered n
trino signatures probe the ratio of neutrino and photon
ergy densities, evaluated when the observed scales ente
horizon. Complimentary constraints on the universe com
sition in the radiation era are set by the predictions of
bang nucleosynthesis~BBN! for the primordial abundance
of light elements. The baryon to photon ratios inferred fro
BBN and CMB are in good agreement with each other,
the presently low observational estimates of the primord
4He abundance@6–10# favor the effective number of neutri
nos,Nn , at BBN below its standard value 3.04. Joint ana
ses @11,12# of the current data on the primordial4He and
D/H abundances and of the cosmological constraints con
ered by the Wilkinson Microwave Anisotropy Prob
~WMAP! team@13# @CMB 1 large scale structure1 Lyman
a, fit by the cold dark matter model with a cosmologic
constant (LCDM) model# give the 2s limits 1.7,Nn

,3.0. If a neutrino chemical potential, characterizingn/ n̄
asymmetries,1 is treated as a free parameter to be margin
ized over, the limits relax@18# to 21.7,Nn,4.1. However,
the constraints from BBN and CMB should be combin
with caution.

One of the reasons is that the redshifts probed are s
rated by many orders of magnitude. The processes tha
termine the BBN yield of light elements extend from th
freeze-out ofnm , nt , and ~shortly after! ne interactions at
zn dec;1010 to the fusion of light nuclei atzns;43108. On
the other hand, the CMB multipoles up tol;3000 probe the
neutrino density in the redshift range fromzl entry;63104 to
zeq.3.23103 ~assuming the ‘‘standard’’ cosmological pa
rameters@13,19#.! Either the photon entropy or the numb
of uncoupled relativistic species per comoving volume m
change2 in the considerable span of the universe history fr

1Any initial differences among the individualn/ n̄ asymmetries for
the three generations of active neutrinos are equilibrated@14–17#
by neutrino oscillations by the time BBN begins.

2The change of the photon entropy density is tightly constrai
below zg chem eq.(2 –5)3106, Refs. @20–22#, by the Planckian
shape of the CMB spectrum from COBE@23#. Although energy
released into the photon gas at smaller redshifts can still be re
tributed among the photons by Compton scattering, the photon
duction rates, from double Compton scattering (eg→egg) and
bremsstrahlung (eN→eNg), become insufficient to change th
photonnumberto its new equilibrium value. This would lead to
Bose-Einstein CMB frequency spectrum with a nonzero chem
potential; see reviews in Refs.@24,25#. The present agreement be
tween the BBN- and CMB-derived ratio of baryons to photons is
additional evidence against a large change of the comoving ph
entropy density. Of course, the above considerations do not limit
change of the energy of the uncoupled relativistic species; see,
Ref. @26# for specific scenarios.
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BBN to the redshifts probed by CMB. The responsible phy
cal mechanisms could be, though are not limited to, hea
from decays of massive particles or fields, e.g.@27–30#, such
as expected in thermal inflation@31,32#, or cooling by ther-
mal contact with other species@28,33#.

Another reason is that both BBN and CMB constrain
depend on certain properties of the uncoupled relativi
species, in addition to their total energy density. For BB
the relevant characteristics include the asymmetry betw
the active neutrinos and their antiparticles, their interact
and mixing with other species beyond the standard mo
and the cosmological expansion rate, which may be affec
by the density of other uncoupled relativistic particles
‘‘dark radiation’’ ~right-handed neutrinos, Goldstone boson
moduli, etc.! and by more exotic phenomena such as ea
quintessence, nonminimally coupled fields, or ext
dimensional physics. On the other hand, the CMB aniso
pies and matter clustering do not discriminate between ac
neutrinos, their antiparticles, and other relativistic degree
freedom. But the dynamics of cosmological perturbations
the unseen relativistic background becomes important
this paper we focus on the signatures caused by ultrarela
istic decoupled particles. Their energy spectrum need no
thermal. Given specific initial conditions, their gravitation
impact on the ‘‘visible’’ species indeed depends only on th
combined energy density, parameterized by the effec
number of neutrino speciesNn , Eq. ~45!.

While the impact of neutrinos on the light element pr
duction at BBN has been studied in detail, the neutrino f
tures in the CMB spectra are less well established. Th
comprehensive analysis and the investigation of their po
tial for probing the primordial radiation of nonelectroma
netic origin are presented in this paper. The motivations
exploring these features and the related constraints inde
dently from the BBN physics include verification of th
‘‘standard BBN’’ model~SBBN!; guidance in resolving the
tensions between SBBN predictions and observational e
mates of the light element abundances~the tension presently
exists for 4He but in future is also conceivable for othe
elements as potentially more sensitive experiments with
studied systematics appear!; probing the parameter space
extended BBN models in the directions of degeneracies~e.g.,
the degeneracy in then chemical potential–Nn plane@18#!;
constraining the models of high-energy physics, frequen
leading to decoupled relics, nonstandard BBN, particle
cays during or after BBN, or modified cosmological expa
sion; finally, clarifying robustness of the constraints deriv
from CMB anisotropies and matter clustering.

The possibility of identifying the background of deco
pled ultrarelativistic species with CMB, sometimes comp
mented by other cosmological probes, has been analyzed
tensively@12,34–39# in the past using numerical calculation
with Boltzmann integrator codes, such asCMBFAST or CAMB/
CosmoMC @40–42#, or with simpler codes in that the Boltz
mann hierarchy is truncated at the quadrupole order in a
that mimics free steaming@43,44#. Some of this work fore-
cast future constraints on the density of relativistic spec
using likelihood~Fisher matrix! analysis of specific experi
ments.
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The authors of Refs.@2,45# noted that the CMB mode
entering the horizon in the radiation era are perturbed
and the CDM modes more in a model with a larger neutr
to photon ratio. Later work@44# stressed the essential role
neutrinoperturbationsin breaking the degeneracies betwe
Nn and the density of nonrelativistic matter, set byvm

[Vmh2, either of which affects the redshift of radiation
matter equalityzeq115rm,0 /(rg,01rn,0). Degeneracies be
tween the variation of neutrino density and other cosmolo
cal parameters were studied numerically in Ref.@34#. This
work pointed out that, with a fixedzeq and fixed angular size
of the acoustic CMB horizon, the remaining CMB spectru
variation withNn to the third acoustic peak can be practica
removed by a same sign change in the scalar spectral in
ns , and that the matter power spectrum breaks this deg
eracy. However, because of the normalization of the calc
tional results by the height of the first acoustic peak,
neutrino-induced suppression of CMB anisotropy on sm
scales was explained as increased ISW contribution on l
scales. This interpretation propagated into several later
pers. We argue at the end of Sec. III and Sec. V A that
interpretation is incorrect.

The Fisher matrix likelihood analysis of Ref.@34# showed
that, prior to WMAP,Nn could not be constrained by CMB
alone. With the WMAP data@46# new analyses@12,35,38# set
the upper limitsNn&7 or somewhat better if matter cluste
ing or HST data are included. Reference@38# reported a
lower limit Nn.1.6 at 95% confidence level from WMAP
only andNn.1.9 with HST data added. We find that the
constraints can be improved dramatically with future expe
ments and become comparable to and tighter than those
ently derived using the standard BBN model from the p
mordial element abundances.

Recently, Ref.@47# considered the interaction of neutrin
perturbations with tensor gravitational waves. The probl
was reduced to an integro-differential equation using the
called line-of-sight solution for free-streaming particles, d
rived previously in a context of photons@48–50#. Numerical
integration of this equation showed that neutrinos supp
the amplitude of the gravitational waves entering the horiz
in the radiation era and of the relatedB mode of CMB po-
larization by about 20%. Even on the largest angular sc
the neutrino damping of the tensor correlation functions
predicted to be close to 10%.

In this work we focus on the more significant and, as
now, the only accessible to observations scalar3 perturba-
tions. We use an analytic approach. It provides the phys
insight into the cosmological role of neutrinos and helps fi
a quantitatively small but unique signature of neutrino p
turbations, the phase shift, which turns out to play the p
mary role in measuring the neutrino background density w
CMB experiments. The analytical methods developed in
paper are easily applicable to the tensor sector and give

3As customary in cosmology, the term ‘‘scalar perturbation’’ d
notes the invariance of the perturbation Fourier modes with res
to thelittle rotational group: the axial rotations that do not chang
mode wave vectork.
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sults consistent with Ref.@47#.
A real-space view of cosmological perturbation dynam

will be essential for obtaining analytic results for neutrin
perturbations, which cannot be modeled by a fluid. Ma
equations governing perturbation dynamics in the radiat
era are integrated trivially in real space. This permits analy
calculations that would seem hopeless in momentum sp
A real-space analysis of cosmological perturbations was
tempted earlier in Ref.@51# and applied to CMB anisotropy
in Refs.@52,53#. We follow the plane wave formalism deve
oped in Refs.@54–56#.

The rest of the paper is organized as follows. In Sec. II
introduce a slight modification to the classical definition
cosmological perturbation variables. A consequence is s
stantial simplification of the evolution equations, for bo
their later solution and conceptual understanding. In Sec
we set up the notation and evolution equations for
radiation-matter universe around the time of CMB deco
pling. Then we study the impact of neutrinos on the evo
tion of superhorizon perturbations. In Sec. IV we review t
Green’s function formalism and apply it to find how neutrin
perturbations influence the CMB and CDM modes that en
the horizon in the radiation era. A reader not interested in
specifics of the analytic calculations can look at their resu
in the figures of Secs. III and IV and proceed toward t
discussion of Sec. V. In Sec. V we analyze the neutrino s
natures in the CMB and matter perturbation spectra and
ther their robustness or degeneracy to the variation of o
cosmological parameters. In Sec. VI we estimate the ac
racy of constraining the effective number of neutrino spec
from some planned or proposed CMB experiments. We c
clude in Sec. VII.

Appendix A reviews the linear cosmological perturbati
theory and summarizes the properties of the used me
gauges. In Appendix B we prove that all the matter or me
Green’s functions in the Newtonian or synchronous gau
vanish for growing adiabatic perturbations beyond the p
ticle horizon. Appendix C contains technical calculations
Sec. IV.

All the following formulas imply the metric signature
(21,1,1,1). Greek indices range from 0 to 3; latin from 1
3. Overdots denote the derivatives with respect to confor
time dt[dt/a, wherea is the cosmological scale factor. Th
universe expansion rate with respect to conformal time
denoted byH[ȧ/a5aH, whereH(z) is the proper Hubble
expansion rate.

II. DYNAMICAL PERTURBATION VARIABLES

In this paper we use predominantly the conformal Ne
tonian, later ‘‘Newtonian,’’ gauge@57,58# and parametrize
scalar metric perturbations as

ds25a2~t!@~2122F!dt21~122C!dr2#. ~1!

The potentialF determines the gravitational acceleration
free-falling objectsg52“F. C characterizes the perturba
tions of spatial curvature in this gauge.~This choice of po-
tentials agrees with Ref.@58#. It is related to other frequently

ct
a
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cited works asF there5Chere, C there5Fherefor Refs.@57,59#,
and C there5Fhere, F there52Chere for Refs. @2,45,60#.! In
the presence of anisotropic stress, provided by neutrino
turbations, the potentialsF andC differ from each other.

Occasionally, we invoke the synchronous, spatially fl
comoving, and uniform density gauges. Their definitions a
the relations between various metric gauges are summa
in part 3 of Appendix A.

A. Coordinate particle number densities

It appears very useful to describe perturbations of mat4

species in terms of the variables that rate of change does
depend on the time derivatives of other perturbation v
ables. This is not so, for example, for the usually conside
proper energy density enhancementdra /ra in the Newton-
ian gauge, nor the proper phase-space density perturb
d f a , nor the local CMB temperature anisotropydT(n̂)/T,
nor the ‘‘effective temperature’’ perturbationdT/T1F, for
all of which the corresponding conservation equations

volve Ċ or Ḟ1Ċ terms. Via the Poisson equation, E
~A46! in Appendix A, these terms, which are dominant
horizon scales, bring the time derivatives of other ma
perturbations. This complicates the description of pertur
tion evolution.

Instead, we characterize density perturbation of specia
in the Newtonian gauge by a variable

da[
dna,coo

na,coo
5da23C, ~2!

where

da[
dna,prop

na,prop
[

dra

ra1pa
~3!

is the proper particle number overdensity.5 The latter is re-
lated to the energy momentum tensorTa

mn by Eq. ~A19! in
Appendix A. Unless noted otherwise, we suppose that
matter species in any groupa do not interact nongravitation
ally with the species of the other groups; henceTa

mn is well
defined and covariantly conserved. Examples of the spe
groupsa are photon-baryon plasma, neutrinos, or cold d
matter.

The species mean velocity and anisotropic stress, defi
with Eqs.~A19!, for scalar perturbations can be described
a velocity potentialua asv ia52¹iua and by an anisotropic
stress potentialpa , Eqs.~A19!–~A21!. From the energy and
momentum conservation equations~A41! and da definition
~2!,

4In Sec. II ‘‘matter’’ refers to all the dynamical degrees of fre
dom, whether in relativistic or nonrelativistic particles or fields,
contrast to nondynamical scalar metric perturbations.

5If n is the density of any conserved number, its change i
locally inertial frame for a closed volumeV equals dn/n
52dV/V5dr/(r1p), given the energy conservationd(rV)
1pdV50.
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ḋa5¹2ua , ~4!

u̇a5ca
2da2xaua1¹2pa1F13ca

2C, ~5!

where6 ca
2[dpa /dra is the ‘‘sound speed’’ and

xa[H~123ca
2! ~6!

is the Hubble drag rate for the speciesa. Equations~4! and
~5! can be combined into a single second order equation

d̈a1xaḋa2ca
2¹2da2¹4pa5¹2~F13ca

2C!. ~7!

For the special cases of CDM and tightly coupled pho
fluid with negligible baryon density, Eq.~7! reduces to

d̈c1Hḋc5¹2F ~CDM!, ~8!

d̈g2
1

3
¹2dg5¹2~F1C! ~photon fluid! . ~9!

The variablesda can be interpreted in the Newtonia
gauge as the perturbations of the conserved particle num
densities with respect to the coordinate differential volu
d3r , rather than the proper volumea3(123C)d3r . The
change of these densities with time is determined only by
particle flux into a unit coordinate volume, Eq.~4!. It does
not explicitly depend on the metric evolution, affecting th
proper number densitiesda . More formally,da corresponds
to the gauge invariant quantity

da5da23HL1¹2x, ~10!

whereHL andx parametrize the general perturbation of sp
tial metric gi j as given by Eqs.~A25!–~A26!. Therefore, the
variablesda coincide with the particle number overdensiti
da in the gauge where the spatial metric is unperturbed—
‘‘spatially flat’’ gauge of Appendix A3. The density perturba
tionsda are simply related to the ‘‘conserved curvature’’ pe
turbations of Ref.@61# on the hypersurfaces of uniform en
ergy density of speciesa, za[2HL

(uniform,a) , asda53za .

Likewise, we eliminateĊ from the equations of pertur
bation dynamics in phase space. For this purpose we defi
variabled fa(t,r ,q,n̂):

a

6Except for the generalized proof of superhorizon conservation
Sec. II B, we will assume that for all the speciesa the local pressure
pa is uniquely specified by the local energy densityra . This as-
sumption is general enough to apply to photon-baryon plasma,
matter, massless or massive neutrinos, and constant vacuum en
It is not valid for a classical field~quintessence! or modified Hubble
expansion~Cardassian energy.! Without this assumption Eq.~4!
should be replaced by Eq.~39!.
2-4
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d fa[d f a1q
] f̄ a

]q
C, ~11!

whered f a(t,r ,q,n̂) is the perturbation of the proper phas
space distribution for speciesa, f̄ a(t,q) is their unperturbed
density in phase space, and the particle comoving mom
tum q5qn̂ is defined in Appendix A by Eq.~A53!. The lin-
earized Boltzmann equation~A57! in terms of the variable
~11! reads

~d fa!˙1
q

e
ni¹i~d fa!5q

] f̄ a

]q
ni¹i S q

e
C1

e

q
F D . ~12!

Summation over the repeated indexi 51,2,3 is implied. Hav-
ing in mind the applications to collisionless particles, w
dropped the collision term and the terms involving the tim
derivatives off̄ a and of] f̄ a /]q.

The number of phase-space coordinates in the Boltzm
equation can be reduced by one, Ref.@62#, when the mass o
the particles is negligible relatively to their average kine
energy, so thate.p and thef a perturbations propagate wit
the same speed, the speed of light, regardless of the pa
energy. Defining a function

Da~t,r ,n̂![
3

4

E q2dq q d fa~t,r ,q,n̂!

E q2dqq f̄a~q!

, ~13!

and integrating both sides of Eq.~12! over q3dq, we find

Ḋa1ni¹iDa523ni¹i~C1F!. ~14!

The variableDa(t,r ,n̂) is related to the energy-average
phase space distribution perturbation of Refs.@48–50# as
Fa(t,r ,n̂)5(4/3)Da14C. If the free-streaming particle
had the thermal velocity distribution at their decoupling th
the temperature perturbation of the particles moving in
specified directionn̂ is dTa(t,r ,n̂)/Ta5Da/31C.

Equation~14! is formally solved by

Da~t,r ,n̂!5Da, in~r2n̂t,n̂!

23ni¹iE
0

t

dt8~F1C!ut8,r2n̂(t2t8) . ~15!

In the following subsection we will show that for adiabat
initial conditionsDa, in(r ,n̂) is independent ofn̂. It will be
related to the conserved superhorizon value of the sp
curvature perturbationz in the uniform density gauge~the
‘‘Bardeen’s curvature’’@63#! as

Da, in~r ,n̂!523z in~r ! ~16!

for all a.
Any scalar perturbationDa(t,r ,n̂) can be described by

scalar multipole potentials$dl ,a(t,r )% l 50,1, . . . as
08300
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Da~ n̂!5(
l 50

1`

~21! l~2l 11!Pl S ni¹i

¹ D¹ ldl ,a , ~17!

where Pl are Legendre polynomials. SincePl(m) contains
only the powersm l 22q with q50,1, . . . ,b l /2c, the gradient
operator enters the right hand side of Eq.~17! only through
natural powers ofni¹i or ¹2. The potentialsdl ,a are gauge
invariant for l>2.

As follows from Eqs.~A55!, ~11!, ~13!,

dTa
m

n54raK nmnnS 1

3
Da~ n̂!1C D L

n̂

, ~18!

where n0[1, n0[21, ni5ni , and ^& n̂ stands for
*d2V n̂/4p. Substituting the multipole expansion~17!, re-
membering the definition of the variablesda , ua , andpa ,
Eqs.~2!, ~A19!–~A21!, and using that for the ultrarelativisti
particlespa5ra/3, we find

d0,a5da , d1,a5ua , d2,a5
3

2
pa . ~19!

The dl ,a dynamics follows from Eqs.~14!, ~17! and
the relation mPl(m)5@( l 11)/(2l 11)#Pl 111@ l /(2l
11)#Pl 21:

ḋl ,a5
l

2l 11
dl 21,a1

l 11

2l 11
¹2dl 11,a1d l1~F1C!.

~20!

~The Kronecker symbold l1 in the last term should not to b
confused with a density perturbation.! One can write a for-
mal integral solution of these equations by expanding
line-of-sight solution~15! over the spherical harmonics.7

The scalar metric perturbationsF andC are determined
from the linearized Einstein equations, Eqs.~A42!–~A45!. In
terms of the introduced dynamical variables,

7Namely,

dl,a~t,r !53H 2
j l~kt!

kl
z in~r !

1E
0

t

dt̃
j l8~kt̃ !

kl 21
@F~t̃,r !1C~t̃,r !#J

k2→2¹2

, ~21!

where j l are spherical Bessel functions. This equation is obtain
from Eqs.~15!, ~16! and ~17! by noting that for any analytic func-
tion f (r )

f~r2n̂t!5e2tni¹i f ~r !

5(
l 50

`

~21! l~2l 11!Pl S ni¹i

¹ D i l j l~2 i¹t! f ~r !. ~22!

In Eq. ~21!, the operatorsj l(kt)/kl and j l8(kt)/kl 21, with k2

→2¹2, are well defined as their Taylor expansions involve on
even powers ofk, hence, only integer powers of the Laplace ope
tor ¹2. If the perturbations in Eq.~21! refer to a single spatia
harmonic plane wave with a wave vectork then2¹2 does become
k2.
2-5
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¹2C23gC5g~d13Hu!, ~23!

C2F53gp, ~24!

whereg[4pGa2(r1p) and

d5(
a

xada , u5(
a

xaua , p5(
a

xapa , ~25!

wherexa[(ra1pa)/(r1p). Equations~23!, ~24! for C and
F are nondynamicalconstraintequations. These constraint
however, do not limit one’s freedom of setting the initi
matterdistribution potentialsdl ,a .

The above equations of matter dynamics, e.g., Eqs.~8!,
~9!, ~14! for the model with dark matter, photon fluid, an
neutrinos, that are complemented by the elliptic gravitatio
equations~23!, ~24! form a well posed closed system. The
are the basis for our subsequent analytical analysis of
perturbation dynamics.

B. Superhorizon conservation of the coordinate number
densities

To illustrate the conservation laws prior to their gene
derivation, we start from the model where all the scalar
namical ~matter! degrees of freedom can be described
scalar potentialsdl ,a that satisfy the evolution equations o
the form ~4!,~5!,~20!. Below, l is a characteristic comoving
scale of perturbation variation in space. For a harmo
mode it can be taken asl51/k. Since in the subsequen
sections we are interested in the universe evolution long a
the inflation, we first assume that the comoving Hubble sc
H 21(t) grows throughout all the considered time. Then it
natural to choose the zero of timet at the formal limit of the
equationsH 21→0. This choice will be implied wheneve
we refer to a specifict value, in the context of postinflation
ary expansion. All of the above assumptions will be lifted
the end of the section.

We set the initial conditions at a timet in!l as dl ,a
;(t in)

l . Such initial conditions are natural forgrowing
modes, where perturbations are finite fort→0. If the global
intrinsic curvatureK does not dominate the Friedmann e
pansion and the universe does not inflate (w.21/3) then,
by Eqs. ~A15!, ~A13!, H;1/t and g;1/t2. Then for our
initial conditions andt!l we can drop all the¹2 terms in
the evolution equations up to an errorO(t2/l2). We thus
find

ḋa.0, ~26!

u̇a.ca
2~da13Hua13C!2Hua1F, ~27!

ḋl ,a.
l

2l 11
dl 21,a ~free stream,l>2!, ~28!

d13Hu13C.0, ~29!

C2F53gp. ~30!
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The corresponding solutions scale fort in!t!l asdl ,a;t l

and F;C;1. Specifically, the coordinate particle numb
density perturbationsda are constant, up to O(t2/l2) cor-
rections. Adiabaticity of the initial perturbations hasnot been
assumed for this result.

If the initial conditions areadiabatic,8 from Eq.~A24!, the
density and velocity perturbations of all the species in
Newtonian gauge are related in the limitt→0,l5const as

da523Hua5d ~adiabatic, t/l→0!, ~31!

whered is a same function oft and r for all the speciesa.
Also, by Eq.~2!,

da5d ~adiabatic, t/l→0! ~32!

with d5d23C for all a. Then the terms in Eq.~27! that are
proportional toca

2 cancel by Eq.~29!. Hence, all the velocity
potentials evolve identically on superhorizon scales in
leading and next to the leading orders int/l:

u̇a.2Hua1F ~adiabatic,t!l!. ~33!

The same is true for allda5d, which remain constant by Eq
~26!. The leading order evolution of thel>2 multipoles de-
pends on the internal dynamics of the species. For exam
these multipoles vanish identically for perfect fluids but th
grow for neutrinos. Nevertheless, the given definition
adiabaticity demands thatdl ,a→0 in thet→0 limit. This is
consistent with our previous observation that, for the ‘‘gro
ing mode’’ initial conditions, Eq.~28! yields dl ,a;t l .

In addition to the coordinate particle number density p
turbationd, two other perturbation variables are known to
constant for adiabatic perturbations on superhorizon sca
These are the spatial curvature perturbation in the comov
gauge

R5C1Hu, ~34!

Eqs. ~A36!,~A38!, Refs.@59,65–67#, and the curvature per
turbation in the uniform density gaugez, Eq. ~A39! @63#.

8We define a perturbation as ‘‘adiabatic’’~a curvature perturba-
tion! if in some space-time coordinates all the proper matter dis
butions or fields and their proper rate of change, all smoothed o
an arbitrary comoving scalel, appear unperturbed in the limitt
→0,l5const.@Without the assumptionH;1/t, the relevant limit
is @64# H 21(t)→0,l5const.# In this, ‘‘superhorizon,’’ limit the
space-time metric in the considered coordinates remains pertur
We prove in Appendix B that for any wave vectork there exists a
nondecaying perturbation mode with such properties. This m
satisfies the conditions of adiabaticity of Ref.@65# and Ref.@59#: As
shown in this subsection, under mild natural assumptions abou
internal matter dynamics, the corresponding comoving curva
perturbationR is constant beyond the horizon, up toO(t2/l2)
corrections. Since after a coordinate change~A23! the proper en-
ergy density and pressure of speciesa appear perturbed asdra

5 ṙadt and dpa5 ṗadt in the linear order, all the ratiosdra / ṙa

and dpa / ṗa in any other gauge in the above limit are equal@59#.
~The general existence of superhorizon-scale perturbations

constantR and equal values for all the ratiosdra/ ṙa and dpa/ ṗa

was proved previously in Ref.@65#.!
2-6
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~The sign ofR andz in this paper coincides with the sign o
the Newtonian potentials. Most of the references use the
posite sign.! Since the scalar metric perturbations are n
dynamical but are fixed by matter perturbations with co
straint equations, one may expect a simple relation betw
the conserved matter perturbationd and the metric perturba
tions R or z. Indeed, the comparison of Eq.~2! and Eq.
~A39! gives immediately that

d523z. ~35!

It also follows from Eqs.~A40!,~A17! that

R5z1OS t2

l2D . ~36!

Thus, up toO(t2/l2) corrections, for the growing adia
batic perturbations and all the speciesa,

da~t!l,r !523z in~r ! ~adiabatic!, ~37!

wherez in(r ) is the time-independent superhorizon value
the curvature perturbationz. Substituting this result in Eq
~17! and remembering that forl>1 dl ,a;t l→0, we also
find

Da~t!l,r ,n̂!523z in~r ! ~adiabatic!. ~38!

The conservation ofDa(n̂) or, for noninteracting particles
with non-negligible mass, ofd fa(q,n̂) in Eq. ~11! is also
evident from Eq.~14! or Eq.~12!, in which all the terms with
gradients can be dropped for superhorizon growing pertu
tions by the same arguments as before.

Equation~7! assumed that local pressure of the specie
uniquely determined by their local energy density. Witho
this assumption, for all the mutually noninteracting groupa
of matter species or fields, the energy conservationTa

0m
;m

50 gives

ḋa5¹2ua1
ṙadpa2 ṗadra

~ra1pa!2
. ~39!

@We emphasize thatTa
mn and all the variables in Eq.~39! are

defined Appendix A independently of the nature of the s
cies self-interaction.# As previously,¹2ua can be dropped for
growing superhorizon perturbations. Since energy den
and pressure perturbations transform under a gauge tran
mation ~A23! as dr̃a5dra1 ṙadt and d p̃a5dpa1 ṗadt,
the additional term on the right-hand side of Eq.~39! is
gauge invariant. If for a considered group of speciesa, which
may interact among themselves but do not couple to
other species, the energy density and pressure become h
geneous ast/l→0 in some coordinate frame, this term
initially zero in any frame. We call such initial conditions fo
the speciesa ‘‘internally adiabatic.’’ For them, all the right-
hand side of Eq.~39! vanishes andda is constant beyond the
horizon. Generalization of the arguments that follow Eq.~41!
gives thatda starts changing only in the orderO(t2/l2).
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If all the speciesa are perturbed internally adiabatically
which is automatic for single-component perfect fluids, th
we showed that all theda are constant for growing mode
beyond the horizon. However, the variablesda need not be
equal for differenta’s if the overall perturbation is not adia-
batic. In this case

z52
1

3
d52

1

3 (
a

xada ~40!

in general changes outside the horizon as the species
thalpy abundancesxa , Eq.~A10!, vary during the expansion
This is essentially the curvaton mechanism of Ref.@68# ~see
Ref. @69# for a modern version! converting isocurvature into
curvature perturbations.

Most generally, any system with locally interacting matt
and Einstein gravity possesses a covariantly conser
energy-momentum tensorTmn. Therefore, the scalar pertur
bation variablesd5d23C and u are always well defined
with Eqs. ~A19!,~A20!. From the covariant conservatio
T0m

;m50,

ḋ5¹2u1
ṙdp2 ṗdr

~r1p!2
. ~41!

In Appendix B we show that if a growing adiabatic pertu
bation is initially localized in a spatial region then all th
matter and gravitational Newtonian gauge potentials, incl
ing u, vanish beyond the particle horizon of this regio
Then, by the Gauss’s theorem, the velocity divergence t
in Eq. ~41! has zero integral over any volume enclosing t
particle horizon. For the initial conditions that are adiaba
as defined in footnote 8, the gauge invariant quantityḋnonad

[( ṙdp2 ṗdr)/(r1p)2 tends to zero in the limitt→0,l
5const. If, motivated by either the equivalence principle
analyticity of the system dynamics, we accept that the me
perturbations generateḋnonad only in O(t/l2) order ~in the
frame where the matter is initially unperturbed but also
any other frame because of the gauge invariance ofḋnonad)
then in the leading and next to leading orders int/l the
variables d and z52d/3 are constant. So the comovin
gauge curvature perturbationR, Eq. ~36!, is constant up to
O(t2/l2) deviations.

If a stage of inflation, defined as cosmic expansion w
positive accelerationd2a/dt2, and hence acontractingco-
moving Hubble scaleH 21(t), is also considered, the con
dition t→0 should be replaced byH 21(t)→0, Ref. @64#.
Then this limit and the related definition of adiabaticity
footnote 8 in the inflating universe apply to thefuture rather
than the past.

Finally, what about the universe evolution that begi
with an inflationary stage and proceeds to the canonical
bang? Reference@65# defines adiabaticity and considers th
conservation laws in the limitl→`. However, the initial
conditions for modes with finite wavelengths can be differe
from those for the infinitely large scales. To accommod
such physically viable possibilities, we define the adiaba
initial conditions for anyfixedfinite spatial scalel51/k on
2-7
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S. BASHINSKY AND U. SELJAK PHYSICAL REVIEW D69, 083002 ~2004!
the stage of increasingH 21(t) by formally evolving the
perturbation with the postinflationary equations backward
time toH 21→0 ~and similarly by evolving forward in time
to H 21→0 during the inflation!. This approach allows one
to quantify the primordial nonadiabaticity~admixture of
isocurvature modes!, which can be probed by CMB or matte
spectra, atany k. The smaller the primordial nonadiabatici
and the ‘‘tidal’’ O(H 22/l2) dynamical deviations are, th
better the proved conservation laws apply.

III. RADIATION-MATTER UNIVERSE

If the primordial perturbations are nearly adiabatic,9 the
inhomogeneities in the neutrino background may affect o
those CMB and CDM perturbations that entered the hori
while the radiation fraction of the universe energy was n
negligible. As for the perturbation modes with larger wav
lengths, the number density perturbationsda523z in remain
frozen and the higher angular multipolesdl>1,a of the photon
and matter distributions negligible until the horizon entry. B
the time these modes enter the horizon and the species
tributions start evolving, the neutrino energy density pert
bations are too small to have a gravitational impact on th
evolution.

Thus in much of this work we will be interested in th
perturbation dynamics at the redshiftz*103. Barring the
possibilities of noticeable early quintessence@71# or the Car-
dassian modification of Friedmann expansion@72,73#, the
background expansion at that time can be described by a
radiation-matter model. The radiation energy density is p
vided by CMB photons and neutrinos, whose mass beco
dynamically relevant only at z&mn /(3kTn,0)
.200mn /(0.1 eV) and is neglected here.~The published
WMAP @13# 95% C.L. limit on the neutrino masses ismn

,0.23 eV.! The massive matter consists of cold dark mat
c and baryonsb.

We begin from establishing notation convenient for t
radiation-matter model. The linearized gravitational eq
tions, e.g., Eqs.~23!,~24! or ~A42!,~A45!, involve the re-
duced enthalpy background densityg[4pGa2(r1p), Eqs.
~A11!–~A13!. For baryons and CDM, withra5ra,0 /a3 and
negligible pressure, it equals

gb(c)5
4pGrb(c),0

a
5

3H ref
2 vb(c)

2a
, ~42!

where H ref[100 kms21 Mpc21 and vb(c)[Vb(c)h
2. The

present WMAP constraints@13# on vb and vm[vb1vc ,
assuming the standard neutrino content, arevb50.024
60.001 andvm50.1460.02.

The reduced enthalpy of photons,gg5(16/3)pGa2rg , at
a given redshift 1/a is fixed by today’s CMB temperatur
Tg,052.72560.002 K @74# as

9The following argument and its conclusion do not apply
isocurvature initial conditions, considered recently for neutrinos
Ref. @70#.
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gg5
16pGrg,0

3a2
5

2H ref
2 vg

a2
, ~43!

where vg[Vgh2'2.4731025(Tg,0/2.725 K)4. For neutri-
nos,

gn5angg , an[
rn

rg
[

7

8 S 4

11D
4/3

Nn.0.23Nn , ~44!

where the standard big bang nucleosynthesis predictsNn

'3.04, assuming three Standard Model neutrino generat
and zero neutrino chemical potential. The effective num
of neutrino speciesNnÞ3, first, because neutrinos sha
some of the energy ofe1e2, annihilating soon after the neu
trino decoupling peak@75#; second, because this energ
most of which heats the photons after the annihilation,
somewhat reduced by finite temperature QED correcti
@76,77#. The physics of both effects is concisely reviewed
Ref. @78#.

Of course, here we allowNn to be a free parameter. I
characterizes the energy density of all the decoupled
trarelativistic species at the moment considered, implied
ing aftere1e2 annihilation but before CMB decoupling,

Nn[r rel decoupY F7

8 S 4

11D
4/3

rgG . ~45!

This parameter may have a nonstandard value due to
ther an unaccounted change ofrn or rg , or the density of
additional weakly interacting ultrarelativistic species (X).
The latter would presumably decouple at very high tempe
ture when the universe contained more relativistic degree
freedom than during the neutrino decoupling. As partic
such as heavy leptons, hadrons,W and Z bosons, Higgs
fields, superparticles, etc., become nonrelativistic and a
hilate, the entropy shared by the coupled photons, electr
and neutrinos increases. Since the comoving entropy den
of the decoupled speciesX remains unchanged, their contr
bution to the parameter~45! may become substantially below
unity. A light field carryinggX effective degrees of freedom
with the fermionic ones multiplied by 7/8, that decouple
when the remaining particles in thermal contact h
g(T,Xdec) degrees of freedom, contributes to the ratio~45!
as

DNn5
4

7
gXFg~T,Xdec!

ggen
G4/3

, ~46!

were ggen543/4. So, for example, a hypothetical neutr
Majorana fermion or a scalar Goldstone boson that dec
pled when the remaining relativistic degrees of freedom w
composed of all the fields of the minimal supersymmet
standard model@g(T,Xdec)5915/4# would give DNn.1.7
31022 andDNn.9.731023, respectively.

It is sometimes convenient to use the ratio of comov
time t to a characteristic time of the radiation-matter ener
equality, and the ratio of the scale factora to its value at the
equality:

n

2-8
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t̄[
t

te
, ā[

a

aeq
, ~47!

where

aeq5
~11an!vg

vm

'
1

3.53103 S 11an

1.69 D S 0.330.72

Vmh2 D , ~48!

and

te[
teq

2~A221!
5

1

H ref
Aaeq

vm

'130 MpcA11an

1.69 S 0.330.72

Vmh2 D .

~49!

The Friedmann equation for the radiation-matter universe
terms of the variables~47! reads (dā/dt̄)2511ā, yielding

ā5 t̄1
1

4
t̄ 2. ~50!

We find it useful to introduce the variable

r[
t̄

ā
5

1

11
1

4
t̄

5
2

11A11ā
. ~51!

Note for reference thatt54te(12r )/r , dt524tedr/r 2,
anda54aeq(12r )/r 2. In terms ofr,

H5
22r

t
, gn5

2Rnr 2

t2
, ~52!

where

Rn[
rn

r r
5

an

11an
~53!

is the neutrino fraction of the total radiation energy dens
r r5rg1rn ; Rn'0.408 for Nn53.04. The formulas de
scribing the superhorizon perturbation modes, Sec. III C,
come very compact if the mode evolution is parametrized
r. For example, see Eq.~75! for the well knownk50 grow-
ing mode of the gravitational potential in the radiation-mat
neutrinoless model@60#. The radiation and matter domina
tion limits of these formulas are easily read off by settingr to
1 and 0, respectively.

A. Perturbations in the radiation era

When the universe energy density is dominated by pho
gas and ultrarelativistic neutrinos, for all of whichwa5ca

2

5 1
3 , then
08300
in

y

e-
y

r

n

H (r )5
1

t
, g (r )5

2

t2
. ~54!

In the radiation eraxg
(r )512Rn , xn

(r )5Rn , andxa
(r ) for any

nonrelativistic species is negligible. The evolution equatio
~9!,~14!,~23!,~24! in this regime become

d̈g2
1

3
¹2dg5¹2~F1C!, ~55!

Ḋn1ni¹iDn523ni¹i~C1F!, ~56!

t2¹2C26C52d1
6

t
u, ~57!

F5C2
6Rnpn

t2
. ~58!

On scales well inside the acoustic horizon,l!t/A3, the
gravitational terms on the right hand side of Eqs.~55!,~56!
are negligible. The oscillating photon acoustic modes and
free-streaming neutrinos decouple from each other. Howe
the phase and the amplitude of the acoustic oscillations
set by the perturbation dynamics during the horizon en
when the gravity of neutrino perturbations played a sign
cant role. Likewise, the neutrino perturbations affect the d
matter peculiar velocities, evolving according to Eq.~8!, as
the matter received a gravitational boost from the radiat
when the fluctuations entered the horizon in the radiation

If the neutrino density is negligible (Rn→0) then the
above equations have compact analytic solutions in ei
Fourier space, Eqs.~110!,~117!,~127!, or real space, Eqs
~109!,~116!,~126!. When the neutrino gravity is appreciabl
it appears difficult to track the evolution of the Fouri
modes analytically through the horizon entry. But in Sec.
we succeed with an analytical approach in real space.

B. Perturbations in the matter era

When massive matter, with pressure and anisotropic st
being negligible comparatively with its energy density, b
comes the dominating component then by Eqs.~52! and
~A13!

H (m)5
2

t
, g (m)5

6

t2
. ~59!

Provided the energy density perturbations are also domin
by massive matter, giving negligiblep, by Eq. ~24! the
gravitational potentialsF and C are equal. After baryons
decouple from CMB photons atzd;1090, we can also take
dp'0. Then by Eq.~A44!

F̈13HḞ50. ~60!

The corresponding nondecaying solutions are time indep
dent on all scales. The constantF and C modes that enter
the particle horizon afterzd are easily related to the epoch
2-9
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S. BASHINSKY AND U. SELJAK PHYSICAL REVIEW D69, 083002 ~2004!
independent primordial curvature perturbationz in . Indeed,
by applying Eq. ~A38! to superhorizon scales, whereR
5z in by Eq. ~A40!, one finds

F (m,l@H zd

21)5C (m,l@H zd

21)5
3

5
z in . ~61!

WhenḞ5Ċ50, we can rewrite Eq.~14! for ultrarelativ-
istic neutrinos or for photons after their decoupling as

Q̇a
eff1ni¹iQa

eff50, ~62!

where

Qa
eff~t,r ,n̂![

1

3
Da1F1C. ~63!

@If the free-streaming particles were in local thermal equil
rium at their decoupling thenQa

eff(t,r ,n̂) is the relative tem-
perature perturbation of the particles propagating in the
rection n̂ plus the gravitational redshift correction:Qa

eff

5dTa(t,r ,n̂)/Ta1F.# For superhorizon adiabatic perturb
tions in the matter eraQa

eff(t!l,r ,n̂)52z in1F1C
5 1

3 F(r ), Eqs.~16!,~72!. The corresponding, ‘‘Sachs-Wolfe
@79#, solution of Eq.~62! at later time is

Qa
eff~t,r ,n̂!5

1

3
F~r2n̂t!. ~64!

The related multipole potentialsdl ,a , Eq. ~17!, for a single
Fourier harmonic Fk(r )5Re(Aeik•r) follow from Eqs.
~63!, ~64! and Eq.~22! in footnote 7 as

da5Fsin~kt!

kt
26GFk , dl>1,a5

j l~kt!

kl
Fk . ~65!

The evolution equations for the perturbations of other s
cies also have simple analytic solutions when the grav
tional potentials are time independent. We do not write th
solutions here because the linear perturbation dynamic
the matter era has been thoroughly studied in the past,
neutrinos, while relativistic, do not modify it. Of course, th
power spectra of perturbations in the matter era are affe
by neutrinos through the change of the effective initial co
ditions for the modes that entered the horizon prior to ma
domination. We discuss this modification of CMB and mat
power spectra in Sec. V.

C. Superhorizon scales

The l>2 multipolesdl ,a of the phase space distribution
for the nonrelativistic CDM and baryons are negligible in t
linear regime. They are also small for CMB photons, isot
pized by scattering prior to hydrogen recombination. T
integral solution for the multipoles of free-streaming pa
ticles, Eq.~21! in footnote II A, shows that for neutrinos o
superhorizon scalesdl ,n;t lz in . Particularly, the neutrino an
isotropic stress potentialpn5 2

3 d2,n is of the order oft2z in .
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Then, by Eqs.~24!,~52!, C2F53gnpn;Rnr 2z in . Hence,
in the radiation era, whenr→1, the neutrino anisotropic
stress leads to splitting the Newtonian gauge potentialsF
and C even on superhorizon scales@57#. The effect disap-
pears in the matter and later eras, after the ene
momentum tensor of neutrinos becomes negligible comp
tively to that of nonrelativistic species.

In Sec. II B we showed that for superhorizon growin
adiabatic perturbationsda523z in5const for all the matter
and radiation species. The superhorizon evolution of thl
>1 multipolesdl ,a and gravity is described by Eqs.~33!,
~28!–~30! of Sec. II B. In that section we also observed th
for adiabatic perturbations all the velocity potentialsua are
equal, up to O(t2/l2) corrections, to the momentum
averaged velocity potentialu. Then, by Eqs.~28!,~19!,

ṗn5
4

15
u ~t!l!. ~66!

Combining this with Eqs.~33!,~29!–~30!,~35! we find a
closed equation

p̈n12Hṗn1
4

5
gnpn5

4

15
z in ~t!l!. ~67!

Its nondecaying numerical solution forNn53 is plotted in
Fig. 1~a! with the solid line.

Given the neutrino anisotropic stress potentialpn , the
superhorizon value of the velocity potentialu can be calcu-
lated from Eq.~66!. The gravitational potentialsF andC are
then obtained from Eqs.~33!,~24!. The potentials corre-
sponding to theNn53 numerical solution of Eq.~67! are
plotted in Fig. 1~b! with the solid lines.

We observe that, first, coincidentally, the Newtonian p
tential F is almost unchanged during the radiation-mat
transition if Nn'3. Second, when radiation is dynamical
significant, the sumF1C is smaller in a universe with a
larger effective number of neutrinos. This sum governs
propagation of CMB photons, as seen from Eq.~7! with ca

2

5 1
3 . The following analytical analysis quantifies these obs

vations.

FIG. 1. The evolution of superhorizon adiabatic perturbations
the radiation-matter universe.~a! Neutrino anisotropic stress poten
tial. ~b! The Newtonian gauge gravitational potentials. On bo
plots, the solid curves show the full result for three neutrino spec
The dotted curves correspond to zero neutrino species. The da
curves on plot~b! are the sums of the leading and subleading ter
in the expansion of the potentials inRn , for three neutrino species
The dashed vertical lines showa/aeq at CMB decoupling, given the
cosmological parameters of Ref.@46#.
2-10
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In the radiation era H (r )51/t, gn
(r )52Rn /t2, and the

growing mode solution of Eq.~67! is

pn
(r ,t!l)5

t2

1514Rn

2z in

3
. ~68!

Hence, from Eqs.~66!,~33!,~24!,

F (r ,t!l)5
1

11
4

15
Rn

S 2z in

3 D , ~69!

C (r ,t!l)5S 11
2

5
RnDF (r ,t!l). ~70!

Relation~70! between the potentials in the radiation era w
previously derived in Ref.@57#.

In the matter era H (m)52/t and thegnpn term in Eq.
~67! is negligible. Then

pn
(m,t!l)5

t2

25

2z in

3
~71!

and we obtain the conventional result

F (m,t!l)5C (m,t!l)5
3

5
z in ; ~72!

cf. Eq. ~61!.
In the intermediate regime Eq.~67! has no simple exac

solution. But the physics of the superhorizon perturbat
dynamics in the presence of neutrino anisotropic stress
be studied analytically by expanding the solution in the po
ers ofRn . The calculations in the zeroth and the first orde
are straightforward and are given below.

In the zeroth order, i.e., when the neutrino fractionRn is
negligible, the gravitational potentialsF and C are equal.
Then using Eqs.~33!,~29! and remembering that on the s
perhorizon scalesd523z in we have

1

a2
~a2u(Rn→0)!•5z in . ~73!

This relation is easily integrated whenr of Eq. ~51! is taken
for the evolution variable:

u(Rn→0)5
t~613r 1r 2!

30
z in . ~74!

The gravitational potentials then follow from Eq.~29! as

F (Rn→0)5C (Rn→0)5
1

10S 91
r 2

2
1

r 3

2 D 2z in

3
. ~75!

This fluid limit solution, known in more lengthy forms be
fore from Ref.@60#, is plotted in Fig. 1~b! with the dotted
line. The anisotropic stress potentialpn of a trace amount of
neutrinos can be found by the integration of Eqs.~66!,~74! as
08300
s

n
an
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s

pn
(Rn→0)

5
t2f p~r !

15

2z in

3
, ~76!

where

f p~r ![
1

5 F32r 2

12r
1

2r 2ln r

~12r !2G .

The function f p(r ) is plotted in Fig. 2~a!. Its radiation (r
→1) and matter (r→0) era limits are 1 and35 correspond-
ingly. In Fig. 1~a! we compare the leading order solutio
pn

(Rn→0)/t2, dotted curve, with the previously found numer
cal solution forNn53.

To determine theO(Rn) terms in the gravitational poten
tials, we rewrite Eqs.~66!,~67! as

1

a2
~a2u!•5z in2

6Rnr 2

t2
pn , ~77!

where we substituted the result~52! for gn . The O(Rn) so-
lution for the velocity potential is obtained by using th
O(1) solution~76! for pn on the right-hand side of Eq.~77!.
After its integration,

u5u(Rn→0)2
4tz in

45
f uRn1O~Rn

2!, ~78!

with

f u~r ![
3r 2

10 F5
~22r ! f p21

~12r !
112r G .

Hence, by Eqs.~29!,~30!,

F5F (Rn→0)2
8z in

45
f FRn1O~Rn

2!,

C5F (Rn→0)1
4z in

45
f CRn1O~Rn

2!, ~79!

where

FIG. 2. The functionsf p , f F , f C , and the combination 2f F

2 f C that appear in theO(Rn) order of superhorizon perturbatio
evolution, as considered in the main text. The evolution variabler is
defined by Eq.~51!. The radiation density domination correspon
to r→1, the matter density domination tor→0.
2-11
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f C~r ![~22r ! f u , f F~r ![
3r 2f p2 f C

2
.

All the functions f u , f F , and f C tend to 1 in the radiation
era limit r→1, and to 0 in the matter era limitr→0. f F(r )
and f C(r ) are plotted with solid curves in Fig. 2~b!.

The dashed lines in Fig. 1~b! show the sums of the leadin
and subleading terms in the analytic solutions~79! with Rn

set to its standard value 0.408, corresponding toNn53.04.
As seen from the plots, theO(Rn) approximations describe
the main features of the numerical solutions rather well. T
splitting, about 11% smaller than predicted, between the
tentials C and F in the radiation era corresponds to
4Rn/15'11% smaller actual value of the anisotropic stre
pn than is given by the leading order formula~76! @cf. Fig.
1~a!#.

By Eqs. ~9!,~14!, both after the photon decoupling an
when the baryon loading is negligible prior to the deco
pling, the photon dynamics is affected only by the sumF
1C. This sum depends on the neutrino abundance as

]~F1C!

]Rn
52

4z in

45
@2 f F~r !2 f C~r !#1O~Rn!. ~80!

The combination 2f F2 f C is plotted in Fig. 2~b! with the
dash-dotted line. It vanishes atr .0.55, corresponding to
a/aeq.6.0, and has a small negative value at smaller r
shifts.

The photon density perturbationdg on superhorizon
scales remains constant and independent ofF andC evolu-
tion. Thus on the scales entering the particle horizon at
redshiftsz&zeq/6 ~for vm50.14 and 3 neutrinos, these scal
exceed the acoustic horizon at recombination threefold
more! the potential variation and the ISW effect induced
it in the CMB temperature anisotropy are little affected
neutrino perturbations. Even more so, the background
the adiabatic perturbations of relativistic species play no r
in the late ISW effect, caused by the global potential dec
during the universe transition from matter to dark ene
domination. By this time, their energy density is dynamica
irrelevant.

IV. STUDYING RADIATION ERA WITH GREEN’S
FUNCTIONS

The evolution of cosmological perturbations in the line
regime may be studied by superposing perturbative solut
~Green’s functions! that are localized in real space. It is co
venient to consider the Green’s functions that vary with o
one spatial coordinate@56#, say x. They are related to the
Fourier space perturbation modes by one-dimensional F
rier transformation. For example, for the curvature pertur
tion z,

z~t,x!5E
2`

1` dk

2p
eikxz~t,k!. ~81!

Normalizing the Fourier modes to
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z~t→0,k!5z in , ~82!

wherez in is a k-independent constant, we see from Eq.~81!
that

z~t→0,x!5z indD~x!. ~83!

@dD(x) denotes the Dirac delta function.# Thus the consid-
ered Green’s function describes the linear evolution o
sheetlike curvature perturbation that was created on
whole planex50 and is independent of they andz coordi-
nates.

The initial ratios of the perturbations for different speci
should be specified as well. In our analysis the initial con
tions are assumed adiabatic, but the Green’s function me
can be generalized to incorporate an admixture of isocu
ture perturbations. The right-hand side of Eq.~82! could also
be chosen asA( ik)n whereA is constant andn is assumed
natural. The resulting Green’s functions would also be i
tially localized, with limt→0z(t,x)5Ad D

(n)(x). These initial
conditions are even or odd with respect to the parity tra
formationx→2x if n is even or odd correspondingly. If th
initial conditions for the relative species perturbations ha
the same parity, this parity will be preserved for allt. It is
convenient to imposeeveninitial conditions, as implied by
Eq. ~83!, for adiabatic perturbations andodd for isocurva-
ture ones.

We discuss only the ‘‘growing’’ mode Green’s function
corresponding to growing Fourier modes in Eq.~81!. The
decaying solutions of the evolution equations are irrelevan
the primordial perturbations were generated manye-foldings
before the scales of our interest entered the horizon.

The following two observations prove extremely handy
calculating the Green’s function. First, applying the inver
Fourier transformation to Eq.~81! and settingk to 0, one
finds the following simple connection between the integral
a Green’s function over all the space and the superhori
Fourier modes of the same variable:

E
2`

1`

dxz~t,x!5z~t,k→0!, ~84!

or an analogous relation for any other perturbation variab
As it was shown in Sec. II B, for adiabatic perturbations t
right-hand side of a sum rule such as Eq.~84! is time inde-
pendent for the curvature or density perturbationsz, R, da ,
Da , or d fa . It vanishes for the growing adiabatic perturb
tions of all thel .0 multipole potentials. In the radiation era
the k→0 limit for any other perturbation, i.e., involving
gravitational potentials, is trivially calculable for any ne
trino density from the results of Sec. III C.

Second, the adiabatic Green’s functions with even ini
conditions~83! identically vanish beyond the particle hor
zon of the original perturbation,uxu.t, for all the consid-
ered perturbation variables in the Newtonian gauge, incl
ing the potentialsF and C. This result is proven in
Appendix B. This is a nontrivial statement, taking into a
count that thel>1 multipole and gravitational potentials ar
2-12
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not locally measurable physical quantities and their dyna
ics is not necessarily causal.10

A. Green’s functions for phase space distributions

Neutrinos and decoupled photons are described by t
distributions f a(t,r ,q,n̂) in the phase space (r ,q[qn̂). A
scalar perturbation off a that does not depend ony and z
coordinates must also be independent ofny and nz : d f a
5d f a(t,x,q,m), where m[nx . For ultrarelativistic free-
streaming particles, the energy-averaged distribut
Da(t,x,m), Eqs.~13!,~11!, satisfies the transport equation

Ḋa1m¹Da523m¹~C1F!, ~85!

where¹[]/]x @cf. Eq. ~14!#. The corresponding multipole
potentialsdl ,a(t,x), Eq. ~17!, equal

~21! l¹ ldl ,a5E
21

1 dm

2
Pl~m!Da~m!. ~86!

To illustrate the application of Green’s functions to ne
trino dynamics, we first consider the free streaming of ma
less particles in a time-independent gravitational potentia
is the case in the matter era, Sec. III B. The transport eq
tion satisfied by the effective temperature Green’s funct
Qa

eff(t,x,m)[ 1
3 Da1F1C, Eq. ~62!, becomes

Q̇a
eff1m¹Qa

eff50. ~87!

Given the initial conditionsQa
eff(0,x,m)5Q indD(x), it is

solved by

Qa
eff~t,x,m!5Q indD~x2mt!. ~88!

The multipole potentialsdl ,a corresponding toDa53(Qa
eff

2F2C) follow immediately from Eq.~86!. Remembering
the definition of the Legendre polynomials

Pl~m![
1

2l l !

dl~m221! l

dm l
,

we find

dl ,a5
3Q int

l 21

2l 11l !
F12S x

t D 2G l

u~t2uxu!23d l0~F1C!,

~89!

10For gravitationally interactingperfect fluidsthe linear evolution
of the Newtonian gravitational potentials turns out to be causal
can be shown by generalizing the formalism of Ref.@56# to arbi-
trary fluids. This is not true in general. As a simple counterexam
consider an absolutelyinelastic collision at x50 of two identical
sheets of ultrarelativistic particles that are orthogonal to thex axis
and move toward each other with opposite velocities. At the m
ment of the collision the system anisotropic stress atx50 disap-
pears. This changesC2F instantly throughout all the space.
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whereu is the Heaviside step function. In the matter eraF
5C5F indD(x), Q in5F in/3, and the Fourier transform o
the above formula reproduces the modes of Eq.~65!.

B. Neutrino distributions

In the radiation era the evolution equations~55!–~58! can
be converted from partial into ordinary differential equatio
with respect to a dimensionless variable

x[
x

t
. ~90!

Indeed, the growing modes of such perturbations asdg , Dn ,
F, or C during radiation domination have the formf (t,k)
5 f (kt). The corresponding Green’s functions@cf. Eq. ~81!#,
scale as

F~t,x!5
1

t
F̄~x!, C~t,x!5

1

t
C̄~x!,

dg~t,x!5
1

t
d̄g~x!, Dn~t,x,m!5

1

t
D̄n~x,m!. ~91!

All the first or second partial derivatives of a functio
f (t,x)5 f̄ (x)/t are completex derivatives, which we de-
note by primes, times some power oft:

ḟ 52~x f̄ !8/t2, ¹ f 5 f̄ 8/t2,

f̈ 5~x2 f̄ !9/t3, ¹ ḟ 52~x f̄ !9/t3,

¹2f 5 f̄ 9/t3. ~92!

The powers oft can be canceled out of all the terms in th
evolution equations~55!–~58!. For future reference, let u
note that

f ~t,k!5E
2`

1`

dxe2 iktx f̄ ~x!. ~93!

We define

F1[
F1C

2
, F2[

C2F

2
. ~94!

The gravitational potentialF2 is sourced directly by neu
trino anisotropic stress as described by Eq.~58!. On the other
hand, the motion of photons in the radiation era and of n
trinos, Eqs.~55!,~56!, is affected byF1 only.

Applying the differentiation rules~92! to the neutrino
transport formula~85!, we obtain an easily integrable equ
tion

@~x2m!D̄n#856mF̄18 . ~95!

Since the Green’s functions vanish foruxu.1,

~x2m!D̄n56mF̄1 . ~96!

s

,

-
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Equation~96! does not constrainD̄n at x5m. It is satisfied
by

D̄n~x,m!5pn~m!dD~x2m!1
6m

x2m
F̄1~x! ~97!

with any functionpn(m). @Even whenF1 and so the right-
hand side of Eq.~85! are identically zero, there are nonze
Dn solutions that describe free-streaming neutrinos
Minkowski space.#

The functionpn(m) in Eq. ~97! must be fixed by the ini-
tial conditions. Considering thetk→0 limit of relation ~93!
and remembering Eq.~38!, for any umu<1 we find

E
21

1

dxD̄n~x,m!5Dn~tk→0,m!523z in . ~98!

Substituting the solution~97! into the left-hand side of the
above identity,

pn~m!523z in2E
21

1

dx
6m

x2m
F̄1~x!. ~99!

For the multipoles

D̄ l ,n~x![E
21

1 dm

2
Pl~m!D̄n~x,m!

Eqs.~97!,~99! give

D̄ l ,n~x!523F1

2
z inPl~x!

1E
21

1

dx8
F̄1~x8!xPl~x!1F̄1~x!x8Pl~x8!

x82x
G

3u~12uxu!. ~100!

In Fig. 3~a! the solid line shows the neutrino density pertu
bation D̄0,n(x)5d̄n(x) that is obtained from this equatio

and the potentialF̄1 in the limit Rn→0, Eq.~109!, when the
integrals in Eq.~100! are easily taken.

FIG. 3. ~a! Adiabatic Green’s functions for neutrino~solid! and
photon~dashed! number density perturbations in the radiation e
The neutrino fractionRn of the radiation density is assumed infin
tesimal.~b! Adiabatic Green’s functions for the gravitational pote
tials F6[(C6F)/2 in the radiation era. The solid and dash
curves are the sums of theO(Rn

0) andO(Rn) terms for three neu-
trino species. The dotted line isF15F for Rn→0.
08300
n

C. A note on generalized functions

The expressions under the integrals in Eq.~99! or Eq.
~100! are singular atx85x. The value of the integrals de
pends on how the singularity is treated during the integ
tion. Physically, this ambiguity corresponds to resolving t
last, divergent, term in Eq.~97! outside of an intervalx
P@m2e1 ,m1e2# and approximating theD̄ l ,n structure in-
side the interval by the first,d-function term in Eq.~97!. The
most direct approach is to take the integral Cauchy princ
values, implyinge15e2→0.

Soon we will encounter the integrals of even more div
gent expressions, such asx22 or x22ln x, for which even the
Cauchy principal value does not exist. Nevertheless, we
proceed with their meaningful calculation if all the singul
expressions are understood asgeneralized functions. A de-
tailed mathematical treatment of the latter can be found
Ref. @80#. The physical meaning of these calculations
clarified by the following two theorems. The first one stat
that any generalized function is a finite order generaliz
derivative of a continuous function;11 the second that differ-
entiation of a generalized functionf (x) multiplies its Fourier
componentsf (k) by ik. Green’s functions can be formall
defined as Fourier integrals of perturbation modes, Eq.~81!.
Generalized functions provide a consistent, elegant form
ism for their manipulation even when the integrals diverge
the Riemann’s sense. One could avoid the divergences
working only with sufficiently smooth potentials of singula
real space perturbations, e.g., consideringF instead ofdr
}¹2F, on small scales. But the use of generalized Gree
functions simplifies and streamlines the calculations.

Table I gives the definite integrals of several singu
functions, interpreted as generalized functions. This tabl

11To be precise, any finite order derivative of a continuous fu
tion f (x) with u f u bounded asuxu→` by a finite power ofuxu
defines a generalized function and, conversely, any genera
function can be presented as such a derivative.

.

TABLE I. The integrals of singular generalized functions. A
ditional valid formulas are obtained by simultaneously multiplyi
the expressions on the left and on the right by sgn(x2a).

f (x) E
x1

x2

dxf~x!

1

(x2a)n11
, n51,2, . . . 2

1

n~x2a!nU
x1

x2

1
x2a

lnux2auux1

x2

lnux2au

~x2a!n11
, n51,2, . . . 2

lnux2au1
1

n

n~x2a!n
U

x1

x2

lnux2au
x2a

1
2 ln2ux2auux1

x2
2-14
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TABLE II. The Fourier transforms of singular generalized functions. The derivation of these result
be found in Ref.@80#. The values ofc(n), the logarithmic derivative of the gamma function, for a natu
argument follow recursively fromc(n11)51/n1c(n) andc(1)52g, whereg.0.5772 is Euler’s con-
stant. In every case, shifting the transformed function argument by a constanta, as displayed in the first and
third lines, multiplies the Fourier image bye2 iaw.

f̄~x!5E
2`

1`dw

2p
eiwxf~w! f~w!5E

2`

1`

dxe2iwx f̄~x!

d(n)~x2a!, n50,1,2, . . . ~ iw!ne2 iaw

sgnx
2

iw

~x2a!2n, n51,2, . . .
~2 i !np

~n21!!
wn21sgnwe2 iaw

x2nsgnx, n51,2, . . . 2
2~2 i !n21

~n21!!
wn21@ lnuwu2c~n!#

lnuxu 2pF 1

uwu
12gd~w!G

x2nlnuxu, n51,2, . . . 2
~2 i !np

~n21!!
wn21sgnw@ lnuwu2c~n!#

x2nsgnx lnuxu, n51,2, . . .
~2 i !n21

~n21!!
wn21$@ lnuwu2c~n!#22

1
6p

22c8~n!%
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d
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o
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m
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easily understood by noting that the generalized functi
corresponding to the expressions on the left are define
the derivatives of the less singular expressions on the ri
Of course, the generalized integration agrees with the c
ventional one on any interval on which the Riemann integ
exists.

Table II lists the Fourier transforms of singular gener
ized functions. It is useful to remember that the Fourier i
age of an even real function is even and real and of an
real function is odd and imaginary.

D. Gravitational potentials

Now we turn to the linearized Einstein equations a
solve them consistently with the dynamical equations for
relativistic matter. First, we differentiate Eq.~58! twice to
obtain

F̄29 52RnD̄2,n , ~101!

where we applied the last of Eqs.~19!. The perturbation
D̄2,n(x) on the right-hand side is given in terms of the p

tential F̄1 by Eq. ~100! with l 52.
Second, we note that for adiabatic perturbations in

radiation eradp/dr51/3. Then we can easily eliminate a
the matter perturbations from Einstein equatio
~A42!,~A44!,~A45! to find

C̈2
2

3
¹2C1

1

3
¹2F1

1

t
~3Ċ1Ḟ!50. ~102!
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Using Eqs.~92!, we obtain a relation that can be integrat
once trivially, giving

S x22
1

3D F̄18 1~x221!F̄28 22xF̄150. ~103!

The general solution of the above equation is

F̄1~x!

x22
1

3

5const2F2~x!, ~104!

F2~x![E
21

x

dx8
x82 21

S x82 2
1

3
D 2F̄28 ~x8!. ~105!

The integration constant on the right-hand side of Eq.~104!
is unambiguously defined for allx if only we specify how
the integral in the second equation is understood forx
.21/A3, when the integration path encounters singularit
at x8561/A3. As discussed in the preceding subsection,
treat the singular expression under the integral as a gen

ized function. Then, given a certainF̄28 , one can integrate
the singular terms using Table I.

The constant in Eq.~104! may differ among thex inter-
vals (2`,21/A3), (21/A3,1/A3), and (1/A3,`). For ex-

ample, if Rn50 then F̄250, F2(x)50 and F̄1(x) van-
ishes foruxu.1/A3 but not foruxu,1/A3 @cf. Eq. ~109!#. As
shown in Appendix B, with the initial conditions that ar
adiabatic and satisfy Eq.~83!, the metric must remain unper
2-15
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turbed beyond the particle horizonuxu51. From this we
immediately conclude that const50 in the interval
(2`,21/A3). Taking into account thatF2(x>1)50 be-

causeF̄28 (x) is odd, we see that the constant also vanis
for x>1/A3. Denoting the value of the constant in the inte
val (21/A3,1/A3) by pF , we thus have

F̄1~x!5S x22
1

3D F pFuS 1

A3
2uxu D 2F2~x!G .

~106!

pF may be calculated from the results~69!,~70! for superho-
rizon Fourier modes in the radiation era that give

E
21

1

dxF̄1~x!5

11
1

5
Rn

11
4

15
Rn

2z in

3
. ~107!

In the following subsection we obtain another, equivalent
easier to apply, condition fixingpF .

The system of the integro-differential equations~101! and

~105!, ~106! for the pair (F̄1 ,F̄28 ) can be solved by itera
tions starting from the solution in the limitRn→0. The latter
is

F̄
2

(Rn→0)
50, ~108!

F̄
1

(Rn→0)
5

3A3z in

2 S 1

3
2x2D uS 1

A3
2uxu D , ~109!

as immediately follows from Eq.~101! and Eqs.~106!, ~107!.
Note that the Fourier transform~93! of the last Green’s func-
tion matches the well known potential modes in a tigh
coupled radiation fluid:

F
1

(Rn→0)
~t,k!52z inS sinws

ws
3

2
cosws

ws
2 D , ~110!

with ws5kt/A3.
The next iteration step, giving the potentials inO(Rn)

order, is performed in Appendix C. Figure 3~b! shows the

zeroth orderF̄1 ~dotted! and the O(Rn) corrected F̄1

~solid! andF̄2 ~dashed! potentials forNn53.04.

E. Neutrino effect on CMB perturbations

The Green’s function for the photon density perturbat
can be easily found in terms of the gravitational poten
F1 . From Eqs.~55!,~92! we obtain

S x22
1

3D d̄g52F̄1 . ~111!

The general solution of this equation is
08300
s
-

t

l

d̄g5pgdDS uxu2
1

A3
D 1

2F̄1

x22
1

3

. ~112!

The delta function prefactorpg is fixed by the condition
*21

1 dxd̄g(x)5dg(kt→0)523z in , giving

pg52
3

2
z in2E

21

1

dx
F̄1~x!

x22
1

3

. ~113!

The prefactorpg can be related to the constantpF , ap-
pearing in Eq.~106!, by applying the ‘‘Poisson law’’~57!.
When Eq.~57! is considered as a relation among the Gree
functions, the only delta-function singularity appearing on
right-hand side is the one provided by the photon den
perturbation ~112!. As for the left-hand side, whereC
5F11F2 , the only delta function comes from the doub
derivative of the term (x22 1

3 )pFu(1/A32uxu) in Eq. ~106!.
The equality of these contributions requires

pF52A3~12Rn!pg . ~114!

Substituting Eq.~106! in Eq. ~113! and eliminatingpF with
the relation above, we obtain

pg5
1

122Rn
F3

2
z in2E

21

1

dxF2~x!G . ~115!

Calculating pF from the last two equations is somewh
easier than from Eq.~107!.

Now we have all the analytic tools to analyze how ne
trinos affect CMB perturbations. The evolution of metric pe
turbationswithout neutrinosis given by Eqs.~108!,~109!.
Then the photon density Green’s function follows from Eq
~112!,~115! as

d̄g
(Rn→0)

523z inFA3uS 1

A3
2uxu D 2

1

2
dDS uxu2

1

A3
D G .

~116!

Its Fourier transform~93! leads to the photon density Fourie
modes in the radiation era:

dg
(Rn→0)

~t,k!523z inS 2 sinws

ws
2coswsD , ~117!

with ws5kt/A3. In particular, without neutrinos the photo
density modes oscillate under the acoustic horizon (ws@1)
as a purews cosine.

The predictions for both the phase and the amplitude
the photon mode oscillations differ when the gravity of ne
trino perturbations is taken into account. The oscillations
the Fourier modes on subhorizon scales are described by
singular terms in the real-space Green’s functions. For
photon density ~112! these are thed-function and (x
61/A3)21 singularities atx561/A3:
2-16
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d̄g~x!5pgdDS uxu2
1

A3
D 1

2r g

x22
1

3

1•••, ~118!

where

r g5F̄1~1/A3! ~119!

and the ellipsis stands for more regular terms. The Fou
transform of Eq.~118! follows from the first and third lines
of Table II, wheren is set to 0 and 1, as

dg~t,k!52~pgcosws2r gpA3 sinws!1O~ws
21!.

~120!

A nonzero phase shift with respect to the cosws oscillations is
generated wheneverr gÞ0. By Eq.~119! this can happen for
adiabatic perturbations if only some perturbations propag
faster than the sound speed in the photon fluid, and thus
able to generate metric perturbations beyond the acoustic
rizon. This is the case for the neutrino perturbations, pro
gating with the speed of light, Fig. 3~a!.

The values ofpg and r g in Eq. ~118! are calculated in
O(Rn) order in Appendix C. With its results~C6! and ~C7!,
the mode~120! can be presented as

dg~t,k!53z in~11Dg!cos~ws1dw!1O~ws
21!, ~121!

where

Dg.20.2683Rn1O~Rn
2!,

dw.0.1912pRn1O~Rn
2!. ~122!

As demonstrated in Fig. 4~a!, our theoretical predictions ar
in excellent agreement with numerical calculations for
radiation era, at the redshiftz5107, obtained withCMBFAST

@42#.
The numerical calculations show that theO(Rn

2) correc-
tions contribute toDg anddw less than 10% whenNn;3.

FIG. 4. ~a! Numerically calculated photon number density pe
turbationdg in the radiation era for zero and three neutrino spec
Nn ~dots! versus the theoretical prediction~117! for Nn50 ~dashed!
and its rescaled and phase shifted asymptotic form~121!,~122! for
Nn53 ~solid!. ~b! Similar comparison for the dark matter densi
perturbation dc and Nn50,1,3. The theoretical predictions ar
given by Eqs.~127!–~129!. In all the cases theO(Rn

2) terms in the
analytical formulas are neglected.
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Our analytical results~121!,~122! can be compared with
the numerical fit~B7! of Ref. @2#, giving for the photon over-
density in the radiation era

dg
(HS fit)~t,k!'

9C~tk→0!cosws

2S 11
2

5
RnD 5

3z incosws

S 11
4

15
RnD .

~123!

This formula misses the phase shift due to neutrino per
bations but describes the decrease of the oscillation am
tude with the increase of neutrino fraction remarkably we
In the O(Rn) order it coincides with the result~122! by
better that 1%.

Although the primordial magnitude of the cosmologic
perturbations is unmeasurable directly, one can detect
amplitude change of the CMB acoustic oscillations, p
dicted by the first of Eqs.~122!, by comparing CMB and
dark matter density fluctuations. The latter, however,
themselves affected by neutrinos. In the next section we
the leading,O(Rn), corrections to the CDM density pertu
bation modes entering the horizon in the radiation era.

F. Neutrino effect on CDM perturbations

The evolution of the CDM coordinate density perturb
tion dc is given by Eq.~8!. In the radiation era it becomes

d̈c1
1

t
ḋc5¹2F. ~124!

Using the CDM Green’s function ansatzdc(t,x)5d̄c(x)/t
and the differentiation rules~92!, canceling the common fac
tors 1/t3, and integrating the resulting equation once triv
ally, we find

~x2d̄c!82xd̄c5F̄8. ~125!

In Appendix C we show that in theRn→0 limit and with the
adiabatic initial conditions this equation gives forxÞ0

d̄c
(Rn→0)

523z inSA32
1

uxu D uS 1

A3
2uxu D . ~126!

In Fourier space

dc
(Rn→0)

~t,k!526z inS ln ws1g2
1

2
2ciws1

sinws

ws
D ,

~127!

with ws5kt/A3.
A finite neutrino fraction of the radiation energy densi

Rn affects the gravitational potential on the right-hand side
Eq. ~124! and so the matter density perturbationdc . On
scales well inside the acoustic horizon (ws@1), when the
potential term in Eq.~124! can be dropped, the general s
lution for CDM Fourier modes should be of the form

s

2-17
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dc~t,k!526z in~11Dc!S ln ws1g2
1

2
1dcD1O~ws

21!.

~128!

The values of the integration constantsDc anddc are deter-
mined by the mode dynamics during the horizon entry a
are sensitive to the gravity of neutrino perturbations. The r
space calculations in Appendix C give that

Dc.0.2297Rn1O~Rn
2!,

dc520.6323Rn1O~Rn
2!. ~129!

The density perturbation~128!,~129! in O(Rn) order is com-
pared with the radiation era (z5107) CMBFAST calculations
in Fig. 4~b!. Whenkt@1, theO(Rn) analytical results un-
derpredictdc variation forNn change from 0 to 1 by 11.6%
and from 0 to 3 by 23%. Since in the second caseRn changes
by 2.1 times more than in the first one, the twofold increa
in the relative error is consistent with the origin of this d
viation from theO(Rn

2) corrections.

V. NEUTRINO SIGNATURES IN CMB AND MATTER
SPECTRA

Decoupled neutrinos affect observable cosmolog
probes both by the gravity of theirperturbationsand by the
change of the cosmological expansion rate due to the co
bution of the neutrinobackgroundto the universe energy
density. The first effect is prominent when cosmological p
turbation modes enter the horizon in the radiation era. T
corresponding modifications of the photon and CDM pert
bations were found in the previous section. The perturbati
remain to be propagated to the later epochs and relate
observable statistical power spectra. These tasks are
dressed in the current section.

A. CMB power spectra

1. Theory overview

While photons are tightly coupled, their number dens
perturbationdg satisfies the equation

d̈g1
HRb

11Rb
ḋg2cs

2¹2dg52td¹2ḋg1¹2S F1
C

11Rb
D .

~130!

It follows from Eq. ~7! applied to the photon-baryon flui
with

cs
2~t!5

dpgb

drgb
5

1

3~11Rb!
,

Rb~t![
3rb

4rg
.0.6

a~t!

1023 S vb

0.02D ~131!

@45#. The Silk damping term 2td¹2ḋg in Eq. ~130! owes its
origin to both partial photon diffusion and the lagging
08300
d
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e

l
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e
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s
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baryons behind photons in imperfectly coupled photo
baryon plasma. While these effects are minor, the damp
coefficient equals@81#

td~t!5
tc~t!

6 F12
14

15~11Rb!
1

1

~11Rb!2G , ~132!

where

tc~t![
1

anesThompson
. ~133!

The above result fortd and Eq.~130! are valid whiletc
!min(1/k,t). The damping increases substantially@58#
within the CMB last scattering surface, where the imperf
fluid approximations fail.

The general solution of Eq.~130! can be obtained for
subhorizon Fourier modes,kt@1, using the WKB approxi-
mation @45,82#. For the monopole of the photon effectiv
temperature perturbation

Q0,g
eff [

^d Tg~t,r ,n̂!& n̂

Tg
1C5

1

3
dg1F1C, ~134!

it gives

Q0,g
eff .A

e2k2xS
2

~11Rb!1/4
cos~kS1dw!2RbF, ~135!

where the size of the acoustic horizonS and the Silk damp-
ing lengthxS equal

S~t![E
0

t

csdt8, xS
2~t![E

0

t

tddt8. ~136!

The solution~135!,~136! takes into account that on subhor
zon scales the photon-baryon fluid and neutrinos contrib
negligibly to the gravitational potentialsF andC, primarily
generated by CDM. Hence, these potentials do not vary s
stantially over a single period of acoustic oscillations. It a
assumes thattd!1/k, which is a necessary condition for th
validity of Eqs.~130! and ~132!.

The photon-baryon plasma velocity potential, affecti
the CMB anisotropy through the Doppler effect, is eas
found from Eq.~4!. For Fourier modes,

ug52
ḋg

k2
.2

3Q̇0,g
eff

k2
.

AA3

k

e2k2xS
2

~11Rb!3/4
sin~kS1dw!,

~137!

where the last two equalities are valid within the approxim
tions that were applied to the WKB result~135!.

The present CMB temperature anisotropy observed in
direction n̂,

d T~ n̂!

T
[Q~ n̂![(

l 50

`

(
m52 l

l

Q lmYlm~ n̂!, ~138!
2-18
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can be written as the line-of-sight integral@42#

Q~ n̂!5E
0

t0
dt@ ġ~Q0,g

eff 2vg
i ni1Qi j ninj !

1g~Ḟ1Ċ!#t,r5(t02t)n̂ . ~139!

Here, for scalar perturbations,Q0,g
eff is given by Eq.~134!,

vg
i 52¹ iug , and Qi j 5(¹ i¹ j2 1

3 d i j ¹2)q, where q, negli-
gible during the tight coupling, is a linear combination ofpg
and multipole potentials that describe photon polarizati
The perturbationsQ0,g

eff , ug , andq are evaluated along th

line of sightr (t)5(t02t)n̂, assuming the observer is pos
tioned at the origin. The ‘‘integral visibility function’’g(t) is
the probability for a CMB photon to propagate unscatte
from time t to the present timet0:

g~t!5expF2E
t

t0 dt8

tc~t8!
G . ~140!

Expanding the expression under the line-of-sight integ
~139! over Fourier harmonics in a flat universe, we have

Q~ n̂!5E
0

t0
dtE d3k

~2p!3
z in~k!TQ~t,k!ei (t02t)n̂•k.

~141!

The transfer functionTQ in the above equation is constructe
from the perturbation Fourier modes, normalized byz(t
→0,k)51, as

TQ~t,k![ġFQ0,g
eff 1ug

]

]t0
1qS ]2

]t0
2

1
1

3
k2D G1g~Ḟ1Ċ!.

~142!

Given that for primordial fluctuationŝ z in(k)z in* (k8)&
5(2p)3d D

(3)(k2k8)Pz(k) and that a plane harmoni

projects onto a spherical one as*d2V n̂Ylm* (n̂)ei n̂•x

54pYlm* ( x̂) i l j l(x), the CMB temperature autocorrelatio
function Cl

TT[^uQ lmu2& becomes

Cl
TT5

2

pE k2dkPz~k!U E
0

t0
dtTQ~t,k! j l@k~t02t!#U2

.

~143!

When CMB polarization or other cosmological anisotrop
are accessible, additional two-point correlations can be c
sidered, such asCl

EE or Cl
TE for the linear polarization com

ponent E generated by scalar perturbations@83#. The ob-
served CMB polarization can be expressed similarly to
~139! as a line-of-sight integral@50# over the perturbations
that source the photon polarization. Likewise, the cor
spondingCl ’s are given by adk integral of the product of the
power spectrumPz(k) and two time convolutions of pertur
bation variables withj l@k(t02t)# or its derivatives.

Any contribution to the correlation functionsCl from the
time of last scattering is characterized byt!t0. The corre-
08300
.

d

l

s
n-

.

-

sponding Bessel functions vanish exponentially when th
argumentk(t02t).kt0 is less thanl, given l @1. Thus the
related to the acoustic oscillations constituents ofCl are es-
sentially affected by only the modes that enter the horiz
well before the radiation-matter equality ifl @t0 /S(te)
'230, with te given by Eq.~49! and the WMAP best fit
parameters@46#.

2. Neutrino signatures and degeneracies

For the modes that enter the horizon in the radiation e
both the WKB solution~135!,~136! and the radiation era so
lution ~121! should be valid over a positive time interva
1/k!t!te . Then the comparison of Eq.~135!, whereRb

and xS
2 are negligible in the radiation era, with formula

~134!,~121! shows that in Eq.~135!
~a! the phase shiftdw is given by Eq.~122!;
~b! the integration constantA equals

A5z in~11Dg!. ~144!

The Fourier modes of plasma velocity potential~137! ac-
quire the same phase shift and same multiplicative chang
the amplitude relative to the neutrinoless case.

The phase shift of the photon acoustic oscillations on s
horizon scalescannotbe produced from adiabatic primordia
fluctuations by any dynamics involving only the photo
baryon plasma and nonrelativistic species. This is seen ea
in real space by noting that the acoustic oscillations co
spond to small-scale, appearing singular on the Hubble sc
features in the photon Green’s function. We found in S
IV E that in the radiation dominated universe where no p
turbations can propagate faster than the acoustic speed
only such features would be the delta-function spikes in
~116! at x56t/A3.

The spikes would continue propagating away from t
perturbation origin with the speedcs(t) of Eq. ~131! past the
radiation era until the recombination, as, by the gene
equivalence principle, their local acoustic dynamics co
not be altered by the gravity of perturbations of other s
cies. By the time of recombination, the singular part of t
photon density Green’s function would have the form

dg,sing~t,x!5D~t!dD„uxu2S~t!…. ~145!

The amplitudeD(t) depends on the expansion rate of t
photon background. The calculations of Ref.@56# in real

space show thatD(t)}e2k2xS
2
/(11Rb)1/4. The singularity

dD(uxu2S) becomes 2 cos(kS) in Fourier space, i.e., withou
neutrinos we would recover the oscillating part of the WK
solution ~135! with dw50.

Although the observed period ofCl oscillations depends
on a number of cosmological parameters, such asvb
5Vbh2, vm5Vmh2, or the totalV, the oscillation phase
ideally, can be extracted independently of the period. In pr
tice, caution is required. Indeed, even in the neutrinol
model the location of the acoustic peaks inCl is not exactly
proportional to the wave numberk of the extrema of the
effective temperature transfer function~135!. This is caused
by a variety of effects, listed in Sec. 8.3.2 of Ref.@84#. Most
2-19
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of them vanish in thel→` limit but only as negative power
of l and are still sufficiently important to modify quantitativ
predictions forCl phase even atl;3000. Two of the effects
remain finite for arbitrarily highl. First, the Bessel function
in Eq. ~143!, or a similar equation for polarization, is expo
nentially cut off for l .kr, where r[t02tg dec in the flat
model. But^u j l u2& decreases slowly, by a power law, forl
,kr. As a consequence, an extremum of the tempera
perturbation transfer function~135! at a certaink contributes
most to theCl with l somewhatlessthankr. This shiftsCl

peaks toward lowerl ’s: l nth peak5@pr /S(tg dec)#(n2fn),
with fn.0. Fortunately, the corresponding shiftfn for Cl

TT

approaches a model-independent constant value 1/8@84#.
Second, the phase ofCl oscillations is obscured by the rap
decrease ofCl magnitude forl *103 due to the Silk damping
and smoothing of the anisotropies by the nonzero width
the last scattering surface. Nevertheless, the numerical an
sis of Sec. VI shows the robustness of the phase under
change of any standard parameter other than the neu
density. The phase shift signature enables one to const
Nn tightly when a sufficiently largel interval is accessible.

The rescaling of the photon-baryon oscillation amplitu
by 11Dg,1 for k@1/S(te) causes the same rescaling of
the photon phase space density and polarization multipo
which develop during the decoupling. The nonoscillati
part of the gravitational potentials, also affecting the CM
anisotropy by Eqs.~135! and ~139!, is, however, generate
by CDM density perturbations and rescales differently,
11Dc.1, Sec. IV F. In thesquareof the transfer function
in Eq. ~143! some terms oscillate ink with the periodDk
5p/S. They come from and only from the product of tw
oscillating perturbations and must involve the factor
1Dg)2,1. There are terms that oscillate with the peri
Dk52p/S. They are produced by the cross product of t
oscillating photon and nonoscillating CDM generated con
butions and thus get multiplied by (11Dg)(11Dc), which
by Eqs. ~122!,~129! is very close to 1. It is hard to find a
similar factor for the sum of nonoscillating terms without
detailed calculation. These terms consist of both the CD
CDM contributions, scaling as (11Dc)

2, and the nonoscil-
lating parts of g-g terms from squares like (cosw)251

2

11
2 cos 2w, scaling as (11Dg)2.
Thus we expect that forl @r /S(te)'230 the acoustic os

cillations of theCl ’s aredecreasedby the gravity of neutrino
perturbations by the factor (11Dg)2. But the magnitude of
the Cl oscillations depends on other physical quantities
well.

First of all, on the primordial power spectrumPz(k). In
principle, this unknown could be excluded by comparing
CMB anisotropies with the matter density perturbations. T
latter scale differently underNn variation, as seen in Sec
IV F and in the next subsection. However, given the la
experimental error on the matter perturbations, a be
method to excludePz is to compare the height of the initia
acoustic peaks, entering the horizon closer to the matter
and hence less affected by neutrino perturbations, to
height of the subsequent peaks. This signature is degen
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with the power spectral indexns[d ln Pz /(d ln k)14 and its
running in k, especially for only a limited number of ob
served peaks@34#.

Second, the scaling (11Dg)2 is directly applicable only if
one compares the models in which the photon subhori
dynamics is identical in angular and redshift coordinate12

since the radiation era until the present. Here is the list of
dimensionless quantities that characterize the cosmolog
background expansion and the local photon-bary
dynamics.13 ~1! The ratio of the universe expansion rates
any redshiftz and at the present:H(z)/H0. It shows how
distances are mapped to angles: (z,k/h)→ l . It also affects
the photon and baryon perturbation dynamics, considere
the dimensionless variablesdz52H(z)dt andH0dx. This
ratio

H~z!/H05@Vr~z!/r~0!1~12V!/a2#1/2 ~146!

is specified by today’s total density parameterV.Vm
1Vde,Vm , the redshift of the radiation-matter equality
1zeq5rm,0 /r r ,0 , and the dark energy ‘‘equation of state
wde(z)[pde/rde. ~2! The ratio of baryon and photon dens
ties,rb /rg , controlling the photon-baryon plasma dynamic
~3! The ratio of the photon free-flight timetc(t), Eq. ~132!,
to the particle horizon sizet. This ratio determines the inte
gral visibility function g(z), Eq. ~140!, and the important
Silk damping scale, Eq.~136!.

The present photon densityrg,0 is well constrained by the
COBE measurement of CMB temperature 2.72560.002 K
@74#. It is expected to redshift predictably asrg5(1
1z)4rg,0 deep into the radiation era. The total radiation de
sity depends onNn asr r5rg(11an), wherean.0.23Nn ,
Eq. ~44!. Given this, two models with differentNn will have
the same ratiosrb /rg and H(z)/H0, and the related
rm,0 /r r ,05zeq11, if these models have the samevb
5Vbh2, V, Vm , and wde(z), but their Hubble constants
scale ash}A11an.

The two top panels in Fig. 5 show the relative chan
dCl /Cl for CMB temperature and polarization spectra und
Nn variation from 2.5 to 3.5. The solid curves correspond
preserving the parametersvb , V51, Vm , wde521, and
h/A11an, as described above, as well as the primord
power spectrum and the primordial helium fractionY
[rHe/rb . As seen from the plots, the model with a larg
Nn has noticeably stronger damping on small scales. Inde
for a fixed ionization fractionxe[ne /nH}ne /vH , where
vH5(12Y)vb specifies the primordial hydrogen densit
the ratio

12A universe with larger neutrino density expands faster, at leas
the radiation era. The corresponding photon temperature m
therefore, decrease faster in the time coordinate.

13We still ignore the ratiorb /rm , somewhat relevant to CMB. As
seen in the next subsection, this ratio is very important for ma
evolution. But it affects CMB anisotropies rather mildly, throug
the nonoscillating CDM potential term in Eq.~135! or through the
CMB lensing by matter structure.
2-20
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tc

t
5

1

tanesThompson
}

h

xe~12Y!vbsThompson
~147!

increases withNn ash}A11an.
The full conformal equivalence of the photon subhoriz

dynamics can be straightforwardly implemented in nume
cal calculations. The dotted curves on the top panels of
5 show dCl /Cl when the global cosmological paramete
vary as before but the numerically integrated equations
both models use the sametc /t and the same integral visibil
ity function g(z). The remainingCl change for the mode
l @200, entering the horizon before the radiation-mat
equality, is uniform power suppression and a constant ph
shift, as predicted for the effects of neutrino perturbatio
The shiftl→ l 1d l in the numerical calculations is only 80%
of the expectedd l 5D l peakdw/p.4.6, for the period of the
acoustic oscillationsD l peak.300 from Ref. @85# and dw
evaluated from the radiation era result Eq.~122!. Likewise,
the power suppression is somewhat less than the radia
era predictiond(11Dg)2.24.8%, with Dg given by the
leading term in Eq.~122!. These discrepancies are caused
the residual effect of the large-scale relativistic correct
@see the first term in Eq.~117!#, non-negligible matter density
during the horizon entry, andO(Rn

2) corrections in Eq.~122!.
As suggested by Eq.~147!, the ratiotc /t in the compared

models could be matched by varying the helium abunda
Y. Apparently, when all the helium has recombined but
hydrogen remains fully ionized (xe51), the quantity~147!
remains constant ifY varies as (12Y)}h}A11an. It is less

FIG. 5. The relative change inCl
TT ~top left!, Cl

EE ~top right!,
matter density perturbationdm(k/h) ~bottom left!, andCl

kk ~bottom
right! when Nn varies from 2.5 to 3.5. The solid curves show t
changes when all the other parameters, listed in Sec. VI, are fi
The top two panels also show the change for fixed recombina
history and equivalent Silk damping~dotted!. The dotted curve on
the bottom left panel gives the change indm whenvb /vm is held
fixed.
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obvious that the after such a rescalingtc /t coincides in both
models during the recombination, whenxe violently changes
with time. Despite the complicated nature of recombinati
the physical mechanism that is primarily responsible forxe

evolution around the peak of the photon visibility functionġ
does lead to degeneratexe(z) and so degeneratetc /t.

At the redshifts 1400*z*800, which are of the mos
interest, the dominating process leading to H recombina
to the ground state 1s is the suppressed 2s→1s1g1g de-
cay. Faster transitions to 1s with the emission of a single
photon do not create more hydrogen in the ground state
cause the emitted resonance photon soon ionizes or ex
another H atom in the ground state. Using the approxim
tions of Ref.@86# ~see Ref.@87# for a recent review!, one can
find the rate ofxe change by assuming that due to the ov
cooling of the universe from the delay in recombination t
fraction of all the excited H atoms is negligible compar
tively to the concentration ofH in the ground statex1s
[n1s /nH and to xe . Then x1s1xe.1, hence dx1s
.2dxe . The change inx1s is mainly due to the spontaneou
decay 2s→1s1g1g with the lifetime L.8.2 s21:
dx1s /dt.Lx2s . ~The photoexcitation 1s→2s is negligible
when z,1300.! xe decreases inep recombination and in-
creases in hydrogen photoionization. With realistic appro
mations@86#, one findsdxe /dt52axexpnH1bx2s , where
xp.xe , and a and b at a given CMB temperature, dete
mined by the redshift, are independent of cosmological
rameters. The elimination ofx2s from the equality of
dx1s /dt and2dxe /dt yields

dxe

dt
.2

aL

b1L
xexpnH . ~148!

When both d/dt52(11z)H(z)d/dz}h and nH}(1
2Y)vb vary in proportion toA11an, as discussed above
Eq. ~148! predicts that the functionxe(z) is unchanged, as is
the last ratio in Eq.~147!.

Numerical calculations show that this conclusion ho
very well after the end of helium recombination atz
.1500. For a variation ofNn from 2.5 to 3.5 and the corre
sponding adjustment ofY by14 20.051, the ionization frac-
tion xe changes at most by 0.5%, and even twice as li
within the peak of the photon visibility functionġ. ~For com-
parison, without the adjustment of helium abundance,
change ofxe reaches 6% within the visibility peak.! At
2000&z&5000, when helium is singly ionized, the decrea
of the helium density decreases the total number of free e
trons by about 2%, and more at higher redshifts, when
second helium electron unbounds. But the related increas
the Silk damping scale, Eqs.~132!,~136!, is insignificant, and
the effect is quite negligible fordg/dz. The changedCl /Cl

14Astrophysical constraints on the primordial helium abundan
vary among groups and span a rangeY50.23860.010 (2s), Refs.
@6–10#; review in @88#. Taking this prior,Y needs to be considere
as a free parameter in a CMB analysis only for the accura
uDNnu&0.4.

d.
n
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S. BASHINSKY AND U. SELJAK PHYSICAL REVIEW D69, 083002 ~2004!
for TT andEE spectra under the considered variation is se
from Fig. 6 ~solid line!. It is compared with the theoretica
reconstruction~dashed line! obtained by shiftingCl by d l
50.8D l peakdw/p.3.7 and rescaling it byd(11Dg)2

524.8%. The plots show that theY adjustment removes
most of the damping seen in Fig. 5.

The approximate conformal degeneracy of CMB dyna
ics among the models withchangeddynamical time and
length scales should be distinguished from the well kno
degeneracy of primary CMB anisotropies under any va
tion of H(z) for z,zg dec that preserves the angular diame
distance to the last scattering surface@59#. The latter degen-
eracy is generally violated by the late ISW effect. The o
found is respected by ISW but is somewhat violated by
gravity of matter perturbations~see footnote 13!, and, of
course, by the gravity of neutrino perturbations.

The internal CMB dynamics is shown to be conforma
invariant in an increment ofNn if the helium abundanceY is
decreasedasDY/DNn.20.05. In contrast, the standard b
bang nucleosynthesis then predictsincreased 4He
production.15 Indeed, for DNn.0 the universe expand
faster and fewer neutrons decay by the time it cools su
ciently to allow their conversion into helium. Of course, o
should not presumea priori that the ratio of neutrino and
photon energy densities is preserved since the nucleosyn
sis until the matter era, i.e., thatNn in BBN and CMB phys-
ics are equal. But if they are not, the non-degeneracy
CMB dynamics along the BBN-predicted curveY(Nn)
makes it easier to spot the discrepancy.

Neutrino perturbations can affect the gravitational pot
tials even after the photon decoupling if radiation is stil
significant component of the total energy density. When
gravitational potentials are time dependent, there is a co
bution to the CMB anisotropy~139! that depends on the

line-of-sight integral of Ḟ1Ċ, the so-called integrated
Sachs-Wolfe effect. However, as discussed in Sec. III C,
superhorizon modes the derivative](F1C)/]Rn changes
insignificantly after recombination in the standard mod
with matter radiation equality atz;3000. Thus the modifi-

15The sensitivity of the BBN yield of4He and D/H to variation of
Nn and h[nB /ng about Nn53 and the WMAP@13# ‘‘best fit’’
valueh'6.1310210 is roughly

S DY

D ln ~D/H!
D'S0.013 0.01

0.14 21.6 D S DNn

D ln hD
~based on the numerical results from Refs.@11,89,90#!.

FIG. 6. The relative change inCl
TT ~left! andCl

EE ~right! for Nn

variation from 2.5 to 3.5 and the adjustment of the helium ab
danceY by 20.051 ~solid!. It is compared with the change from
rescalingCl ’s by 24.8% and shifting them to smallerl ’s by d l
53.7 ~dashed!.
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cation of the ISW effect by neutrino anisotropic stress do
not play a major role as a neutrino signature in CMB. Sp
cifically, on large scales (l , l 1st peak/3.70) the ISW effect
becomes insensitive to perturbations of relativistic neutrin

B. Matter power spectrum

The growth of the acoustic perturbations in the tigh
coupled photon-baryon fluid is halted by photon pressu
described in Eq.~7! by the term2cs

2¹2dg , wherecs*1/2
before recombination. Likewise, relativistic neutrinos a
CMB photons after their decoupling are stabilized agai
gravitational collapse by the effective pressure, described
the same term withca51/A3, due to the velocity dispersion
In addition, as noted in the introduction, the perturbati
modes of free-streaming particles on subhorizon scales d
by ‘‘directional’’ damping. Assuming the dark energy to
does not strongly cluster on small scales, only CDM a
after recombination baryons can cluster sufficiently to g
erate non-negligible gravitational potential inside the sub
rizon. On subhorizon scales Eq.~23! simplifies to ¹2C
5gd. Then Eqs.~7!,~24! applied to nonrelativistic speciesn
with negligible pressure (cn

2.0) give

d̈n1Hḋn5 (
m:cm

2 .0

gmdm ~subhorizon!. ~149!

One can distinguish the following stages of the linear ma
perturbation growth from their entry of the horizon in th
radiation era to the present.

~1! Growth of CDM perturbations in the radiation-matt
universe until the recombination while baryons are tigh
coupled to CMB.

~2! Decoupling of the baryons from CMB and joining th
matter gravitational collapse atzd;1090.

~3! Growth of the pressureless CDM-baryon matter p
turbations through the subsequent universe evolution,
fected by dark energy and, possibly, global curvature.

Equation~128! for CDM density perturbations in the ra
diation era on subhorizon scales can be presented as

dc
(r ,l!t)~t,k!526z in~11Dc!H A1 lnF ~11d c!

k

hG J ,

~150!

whereA is the same function ofth for all k andRn :

A~th!5 lnS th

A3
D 1g2

1

2
~radiation era!. ~151!

At later times the matter density perturbation must be of
form

dm~t,k!526z in~11Dc!H A1B lnF ~11d c!
k

hG J , ~152!

whereA and B depend onth and on the cosmological pa
rameters affecting the background evolution at low redsh
We argue that throughout linear evolutionA andB are inde-

-
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SIGNATURES OF RELATIVISTIC NEUTRINOS IN CMB . . . PHYSICAL REVIEW D 69, 083002 ~2004!
pendent of the mode wave numberk and of Rn , provided
that the compared models agree inVm , in Vb , and in the
background effective equation of statew(z)[p/r. This
would immediately follow from the linearity of the evolutio
with the initial conditions~150! in the radiation era if the
equations of matter dynamics in terms of the dimension
variable tH0}th coincide. The latter is manifestly so b
Eqs.~149!,~42! for stages 1 and 3 of the three stages of lin
matter clustering identified above. As for stage 2, the sc
andRn invariances of the dynamics are violated by the sm
oscillations of the baryon density and velocity at the dec
pling due to the acoustic oscillations in CMB@2#. However,
this effect becomes negligible at sufficiently small scales
cause of the Silk damping. Hence we assume that the b
ons decouple with initially negligible density and veloci
perturbations. Then all the stages of the matter evolution
scale andRn invariant. Then, from Eq.~152!, the matter
density perturbation modesdm(z,k,Rn) can be obtained from
the modes in the model16 with Rn→0 and the identicalVm ,
Vb , andw(z) as

dmS z,
k

h
,RnD5~11Dc!dm

(Rn→0)S z,~11d c!
k

hD ,

~153!

where for the considered small scales, entering the horizo
the radiation era,Dc anddc are given by Eq.~129!.

This effect of neutrino perturbations on the matter dens
~dotted curve on the left bottom panel of Fig. 5! is too small
to provide by its own a useful information aboutNn from the
available cosmological probes. A realistic data analysis c
straining the abundance of ultra-relativistic neutrinos sho
also include CMB data. However, the variations of CM
spectra withNn , Sec. V A, are less contaminated by neutri
unrelated physics ifvb5Vbh2, rather thanVb , is fixed.
Likewise, the big bang nucleosynthesis constrainsvb and
not Vb . Thus it is more practical to consider the variation
matter density modes withNn in the direction of the maxima
CMB and BBN degeneracies—under a fixedvb .

The magnitude of matter perturbations after the radiat
era is sensitive to the parameter

b[
rb

rc1rb
5

vb

vm
, ~154!

e.g., Ref. @2#, which is currently estimated as 0.1760.01
@13#. One reason for this sensitivity is the slower growth
CDM perturbations prior to the recombination in the mod
in which a larger fractionb of the nonrelativistic matter is

16In the models with dark matter, cosmological constant, glo
curvature, but negligible neutrino and baryon densities (Rn,rb /rc

!1), the linear matter density perturbation well after the radiat
era on the small scales is

dm
(Rn→0)

5dinF lnS4kte

A3
D 1g2

7

2G15H~a!

2aeqH0
E

0

a

da8S a8
H~a8!

H0
D 23

,

where din523z in . Analytical, albeit more complicated, expre
sions also exist for non-negligible baryon density@2,82#.
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withheld from gravitational collapse by the photon pressu
The other reason is a greater dilution of the growing CD
perturbations by almost unperturbed baryons when the la
finally decouple from photons.

It is apparently impossible to change the neutrino den
preserving all of the parametersvm /v r , vb , andb. If one
varies Rn while keeping 11zeq5vm /v r and vb fixed, to
minimize the changes in CMB spectra, then the parameteb
will vary. For example,b decreases by approximately 41
for Nn change from 0 to 3, and by 14% forNn variation by
1 around its standard value 3.04. This is yet another sou
of breaking the degeneracies betweenNn and the other cos-
mological parameters. The significance ofb variation for the
growth of matter perturbations is evident from comparing
dotted ~fixed Vb and Vm) and solid ~fixed vb and Vm)
curves in Fig. 5.

VI. FORECASTS FOR FUTURE EXPERIMENTS

In this section we use numerical solutions fromCMBFAST

and apply them to predict the precision to whichNn can be
constrained from future experiments. We follow the ba
approach of Ref.@91#: we evaluate the standard error in
cosmological parametersi asDsi5(a21) i i

1/2, wherea is the
Fisher matrix

a i j 5(
l

(
X,Y

]Cl
X

]si
Cov21~Ĉl

X ,Ĉl
Y!

]Cl
Y

]sj
. ~155!

Here, Cov21 is the inverse of the covariance matrix,si are
the unconstrained cosmological parameters, andX,Y stand
for the observable power spectra. We limit the analysis
CMB spectraTT, EE, TE, and lensing convergence powe
spectrumkk as measured from CMB itself. For eachl, one
has to invert the covariance matrix and sum overX and Y.
The derivatives were calculated by finite differences. T
step was usually taken to be about 5% of the value of e
parameter and symmetric around the pivot point at the b
fitted WMAP model, Ref.@13#.

An experiment is fully characterized by its sky covera
f sky, temperature, polarization, and convergence instrum
~or reconstruction! noise wT

21 , wP
21 , and wk

21 and by the

beam smearing window functionBl
225el ( l 11)ub

2/(8 ln 2), with
ub measuring the width of the beam. For example, the co
riance element forTT is given by

Cov~Ĉl
TT ,Ĉl

TT!5
2

~2l 11! f sky
~Cl

TT1wT
21Bl

22!2. ~156!

The full covariance matrix for the CMB power spectra
given in Ref.@92#. For the lensing convergence noise spe
trum we take the values from the maximum likelihoo
method developed in Ref.@93#, which gives the lowest re-
construction noise. In addition, we impose a maximuml max
53000 cutoff on all the spectra and we do not include
information from higherl. The justification for this is that
scattering off moving electrons during and after reionizat
leads to an additional component in the CMB that cannot
separated from the CMB on the basis of frequency inform

l

n
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TABLE III. Standard deviations onNn as expected from Planck, ACT, Planck1ACT, and CMBPOL
using temperature data only~TT! and added polarization (TT1TE1EE). The primordial helium abundanc
Y is considereda priori unconstrained for the last column results and fixed by independent measureme
the preceding two columns. Adding weak lensing convergence as reconstructed from CMB (TT1TE1EE
1kk) does not significantly improve the bounds, even assuming polarization information is available

Experiment f sky ub wT
21/2 wP

21/2 DNn DNn DNn ~free Y)

~mK arcmin! ~mK arcmin! TT TT1TE1EE TT1TE1EE

Planck 0.8 78 40 56 0.6 0.20 0.24

ACT 0.01 1.78 3 4 1 0.47 0.9

ACT1Planck 0.4 0.18 0.24

CMBPOL 0.8 48 1 1.4 0.12 0.05 0.09
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tion. This component is rather uncertain since it recei
contributions from perturbative and nonlinear structures,
well as from the patchiness in ionizing fraction. It is e
pected to be significantly less important for polarization,
our approach may be conservative for polarization sensi
experiments.

In our analysis we use parameters for several future
periments. While WMAP constraints onNn are not yet com-
petitive with the nucleosynthesis limits, Planck satellite w
improve the sensitivity of WMAP by an order of magnitud
In parallel, there will be ground-based experiments, such17

SPT or the proposed18 ACT, that will extend Planck to
smaller angular scales. Whether or not they will be polari
tion sensitive remains to be determined, so we explore b
possibilities. Finally, we also explore the prospects of an a
bitious high-resolution, low-noise satellite dedicated to p
larization ~CMBPOL!, which will be able to measure with
high accuracy not only CMB temperature and polarizat
but also the matter power spectrum using the weak len
induced signal in higher order correlations. We also expl
if adding information from more local probes, such as we
lensing, can further reduce the uncertainties.

We explore 11 parameters in our analysis. The
are $vm /v r ,vb ,vn massive,Nn ,Vde,wde,t reion,P,ns ,ns8 ,Y%.
The first one is proportional to the ratio of matter density
radiation density~photons plus neutrinos!, the second to
proper baryon density, and the third to the proper density
massive neutrinos.Vde is the dark energy density relative t
the critical density,wde is its effective constant equation o
statepde/rde, t reion is the reionization optical depth,P is the
amplitude of curvature power spectrum atk50.05/Mpc, and
ns and ns85dns /d ln k are the scalar spectral index and
running atk50.05/Mpc. We do the analysis for both fixe
and unconstrained helium abundanceY.

We ignore tensor perturbations since their contribution
limited to large scales, where neutrinos do not play a ma
role. We also ignoreBB power spectrum, which is usefu
primarily as a tracer of tensors.~On small scales it can be
useful tracer of matter power spectrum and can provide

17http://astro.uchicago.edu/spt/
18http://www.hep.upenn.edu/;angelica/act/act.html
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ditional constraints on the convergence power spectrum
extracted from the nongaussianities in CMB; we ignore t
additional information here.! We use the basis function
]Cl

X/]si as defined by these parameters, but we also exp
any possible numerical instabilities due to the variation in
angular scale of the acoustic horizon, which is affected
variations in several of the parameters.

Figure 5 shows theNn derivatives ofCl
X for X5TT, EE,

kk, and of the matter fluctuationdm . The derivatives of
CMB spectra with lensing are plotted, but the unlensed o
are qualitatively similar and the wiggles are not due to le
ing, but due to the phase shift~the lensed derivatives wer
used in the Fisher matrix analysis!. The solid curves on the
Cl plots show theNn derivatives with the other paramete
kept fixed. As discussed in previous sections, changing
effective number of neutrinos changes not only the init
phase and amplitude of the acoustic oscillations but also
angular scales of the acoustic horizon and oscillation da
ing. To separate these effects, we also show with the dot
blue line the change in the spectra while keeping the visi
ity function and the photon free flight length in the units
H0

21 unchanged at every redshift.
The modification of CMB spectra due to the change in

angular scale of acoustic oscillations is described by mu
plicative rescalingl→(120.002DNn) l . By itself, it is de-
generate with other effects that change the angular acou
scale, such as variation ofwde. The combined effect of the
additive and multiplicative phase shifts is such that the ph
shifts cancel exactly atl;1500, but not at other values ofl.
For the temperature anisotropies, the phase shift is ba
visible since temperature oscillations are weaker due to
competing effects from density and velocity terms. They
further suppressed by lensing. For polarization, which
more prominent acoustic oscillations, the phase shift rema
visible and can be clearly distinguished from the change
angular size of the acoustic horizon. This suggests that
larization information is crucial in extracting neutrino sign
ture. Quantitative analysis in Table III confirms that. No
that ]Cl /]Nn approach zero at lowl. There is no significant
neutrino dependent contribution coming from the integra
Sachs-Wolfe term at lowl, as discussed in Secs. III C an
V A.

In Fig. 7 we show the derivatives ofCl
TT and Cl

EE with
respect to some of the other parameters. The displayed
2-24
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SIGNATURES OF RELATIVISTIC NEUTRINOS IN CMB . . . PHYSICAL REVIEW D 69, 083002 ~2004!
rivative are forvm /v r , vb , ns , dns /d ln k, andY and they
are taken by keeping the angular scale of the acoustic h
zon constant. Other derivatives are trivial and we do
show them here: the amplitude and reionization optical de
only rescale the amplitude, while dark energy density and
equation of state only change the angular scale of the ac
tic horizon and make no effect after this change is taken
Massive neutrinos have a minor effect on CMB over t
range of interest. It is evident that none of these can mi
the additive phase shift generated by neutrinos. This sig
ture thus uniquely identifies the presence of neutrinos in
context of adiabatic initial conditions.

If matter power spectrum information is available, o
can exploit the fact that while neutrino perturbationssup-
press CMB anisotropies, theyenhancethe matter power
spectrum, Figs. 4 and 5. ForDNn51 at a fixedvb , k/h
51 Mpc21, andz50 this givesDPm /Pm'0.12, of which
0.02 is due to neutrinos alone and the rest to the variatio
vb /vm , as discussed in Sec. V B. At the same time,
CMB power spectra are suppressed by 15% atl 53000 ifY is
fixed. Whether or not this is a useful method to break
degeneracies depends on the accuracy with which m
power spectrum can be extracted. We performed the ana
for the experiments in Table III assuming weak lensing
formation as can be extracted from the CMB itself. A Fish
matrix analysis with lensing reconstructed converge
power spectrum using minimum variance maximum like
hood errors@93# fails to improve significantly the accurac
on Nn , even with the polarization information, which allow
for a better reconstruction of the convergence spectrum. T

FIG. 7. The derivatives ofCl
TT ~top! and Cl

EE ~bottom! with
respect tovb ~solid, red!, vm /v r ~dotted, black!, dns /d ln k ~short-
dashed, cyan!, ns ~long dashed, blue!, andY ~dotted-dashed, green!.
All were shifted to match the angular scale of acoustic horizon. T
explains the lack of oscillations when varyingvm /v r or Y. Varying
vb changes the amplitude of the oscillations, so adjusting the
gular scale does not make their change vanish. Note that the v
tion in Y appears as a change in damping length.
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is in contrast to other parameters such as massive neutr
for which lensing information significantly improves th
bounds@94#.

Unless the astrophysical constraints on the primordial
lium abundanceY will improve by an order of magnitude,Y
should be included in the list of unknown cosmological p
rameters for the accuracies of the order ofDNn;1021. On
the other hand, if we assume that the neutrino fraction of
radiation is unchanged between BBN and recombination
there are no significantn/ n̄ asymmetries then BBN tightly
limits the helium fraction, toDY;1023 or better @11,12#.
For this reason, we performed the parameter prognosis
and without theY parameter. As found in Sec. V A, an ad
justment ofY can compensate the changes in the acou
and damping scales due to neutrino density but it prese
the phase shift signature due to the gravity of neutrino p
turbations. Correspondingly, the CMB limits onNn some-
what broaden but remain tight even with the unknown va
of Y. Interestingly, the CMB data itself can be used to co
straint theprimordial helium abundance independently of th
astrophysical measurements and the related systematic
certainties. For the considered CMBPOL experiment w
the polarization data included we finds(Y).0.005 from the
CMB alone.

VII. CONCLUSIONS

In this paper we study analytically the evolution of co
mological perturbations in the presence of ultra-relativis
neutrinos. While dynamical equations for cosmological p
turbations have been known for a while@3,57,95–97#, their
analytical solutions exist only in a handful of cases and
restricted to the fluid description. The best known examp
e.g., Ref.@60#, are the solutions for CDM and photon-baryo
plasma in the matter and radiation eras or in the subhori
limit, and for superhorizon metric perturbations. In contra
neutrinos cannot be modeled by a fluid and their phase sp
distribution should be considered.

Most of the recent publications abandoned the anal
approaches and relied on numerical results from Boltzm
integrator codes. While, in principle, there is nothing wro
with this, analytic solutions often lead to deeper understa
ing of the problem that can reveal the new directions
exploration. They sharpen the focus on the features that
unique and cannot be mimicked by the variation of oth
parameters. Care must be exercised when performing
merical analysis and parameter forecasting for future exp
ments. The computational errors must be well controll
otherwise they can lead to artificial breaking of degenerac
In addition, the parameter space of forecasting is often sm
and with the addition of new parameters new degenera
may open up. For example, while so far only simple para
eterization of the primordial power spectrum have been
plored, one could consider its more general parameteriza
including the running of the slope, its running, etc., as fr
parameters. In this case analytic solutions can provide a
ter understanding of whether the limits on a given parame
are robust against adding new parameters.

We obtain analytic perturbative inrn /r r solutions for
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cosmological perturbations in the presence of ultrarelativi
neutrinos. Much of the success is due the following res
equally useful for fluid models. We find that a simple rede
nition of the independent dynamical variables that is con
tent with their classical interpretation and preserves them
small scales, eliminates all the time derivatives of the n
dynamical metric perturbations from the evolution equatio
in the Newtonian gauge. The resulting description of cosm
logical perturbations acquires the advantages of an in
value Cauchy’s problem while remains formulated in t
Newtonian gauge, which is fully fixed and is especially su
able for describing the physics of CMB. Moreover, it tur
out that even in the solvable fluid models the solutions
matter or radiation density perturbations@cf. Eqs.
~117!,~127!# appear far simpler in the redefined variables.
addition, these variables are generally constant on supe
rizon scales.

While most of the previous literature has focused on F
rier space analysis, we also consider perturbation Gre
functions in real space@55,56#. The latter become indispens
able for the analytical study of neutrino perturbations. Th
also allow one to prove quickly that without neutrinos t
cosine form of the acoustic density oscillations in the rad
tion era cannot be modified by the gravitational feedbac
processes.

We use the zero, in the powers ofrn /r r , order solutions
for neutrino perturbations to derive the analytic expressi
for the CMB and matter density fluctuations in the line
order. We show that these first order solutions are for
most part sufficient for a quantitative interpretation of n
merical solutions. Finally, we use the full numerical solutio
from CMBFAST to derive parameter forecasts for vario
planned experiments. The presented methods can be stra
forwardly extended to other applications such as ten
modes and massive neutrinos. We plan to address som
these in future work.

The distinctive cosmological features of ultrarelativis
neutrinos are due to their free streaming at the speed of li
The free streaming creates neutrino anisotropic stress,
turbing Newtonian metric even for superhorizon modes.
real space, it also leads to perturbing the photon-bar
plasma beyond the acoustic horizon of a primordial per
bation. In Fourier space this manifests itself as the ph
shift in the acoustic oscillations that is generated at hori
crossing. This phase shift is unique in the sense that
adiabatic perturbations no nonrelativistic or fluid matter c
generate it. The effect changes the phase additively and
responds toD l;24 for DNn51. In contrast, any change i
the angular scale of acoustic horizon acts as multiplica
rescaling l→a l . The two shifts are only degenerate at
single l and can be distinguished in general, Fig. 5. T
effect is more visible in polarization, which has sharp
acoustic peaks relative to temperature anisotropy, where
density and velocity contributions to theCl oscillations par-
tially cancel. As a result, the precision of determining t
effective number of neutrino species can be improved d
matically if polarization information is included.

Phase shift is not the only signature of neutrinos in CM
The free streaming neutrinos also suppress the oscilla
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amplitude of the CMB modes entering the horizon in t
radiation era. A changeDNn51 leads toDCl /Cl'20.04.
Since the CMB modes entering in the matter era and
experiencing the suppression are limited to large sca
where sampling variance is large, this effect by itself can
be extracted with high precision. However, neutrino pert
bations amplify the CDM modes entering the horizon in t
radiation era. The effect is further enhanced by the fact t
while CMB physics is more sensitive to the ratiosvb /vg

andvm /v r , specifying the acoustic dynamics and the bac
ground evolution, matter fluctuations are also sensitive to
ratio vb /vm , which, if fixing the natural CMB variables
cannot be held fixed under varyingNn . This changes the
present matter fluctuation spectrum on small scales
DPm /Pm'0.12 forDNn51, of which 0.04 is due to neutri
nos and the rest tovb /vg variation.

It is unclear how accurately can this effect be extrac
from local probes of large scale structure, such as gal
clustering and weak lensing, since nonlinear evolution w
complicate or, in the case of galaxy clustering, prevent
determination on small scales. Weak lensing of CMB tra
matter fluctuations on larger scales and higher redshifts t
any other method. It may be the optimal tool to use h
since nonlinear reconstruction methods using the nonga
ian information, especially from polarization data@93,98#,
can achieve high signal to noise on the projected conv
gence power spectrum. However, from the Fisher ma
analysis we find that lensing of CMB cannot improve t
limits from primary CMB and its polarization significantly.

Finally, Nn variation changes the relativistic energy de
sity and thus changes the relation between the expan
factor and time. This leads to a change in the proper size
the acoustic horizon and so in its angular size, which de
mines the positions of acoustic peaks. The angular size o
horizon, however, is degenerate with other parameters, s
as those changing the angular diameter distance to reco
nation. The change of the expansion time scales also m
fies the recombination process, the visibility function, a
the angular damping scale. The effect on the CMB pow
spectrum can be significant, reaching 15% power supp
sion at l 53000 for DNn51, Fig. 5. However, this can be
mimicked by different primordial helium abundance:
change ofDNn50.1 is compensated byDY.2531023. If
CMB data is used to constrainnB /ng at BBN then the stan-
dard BBN limits onY are already at the level ofDY&1023

@11,12#, suggesting thatY can be assumed fixed. These limi
are not applicable in the models where the photon entr
changes between BBN and CMB decoupling or in nonsta
ard BBN models withn/ n̄ asymmetries or particle decays.

In summary, the effects of ultrarelativistic neutrinos o
CMB and matter power spectrum are generally small. Thi
why only weak limits on the neutrino background dens
have been placed from the available observations. On
other hand, neutrinos give rise to unique effects which e
on small scales and are thus less limited by sampling v
ance. As a consequence, future CMB experiments shoul
able to improve the limits significantly. While Planck will b
able to determineNn with a standard deviation 0.24, or 0.2
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if Y is constrained, a dedicated CMB polarization experim
should improve this bound even further, reaching accur
levels of 0.09 withoutY constraint, or 0.05 ifY is con-
strained. This will allow one to test the details of neutri
decoupling and the scenarios giving rise to a nonstand
number of neutrino species.
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APPENDIX A: COSMOLOGICAL DYNAMICS

Given mutually noninteracting, except than gravitatio
ally, groups of cosmological species$a%, one can define19 for
each group an energy-momentum tensorTa

mn that satisfies the
local conservation law Ta

mn
;n50. The total energy-

momentum tensor

Tmn5(
a

Ta
mn ~A1!

sources space-time curvature perturbations, as describe
the Einstein equationsRmn2 1

2 gmnR58pGTmn .

1. Background

We study cosmological perturbations relative to a s
tially homogeneous and isotropic model with the metric

ds25a2~t!~2dt21g i j dxidxj !. ~A2!

The spatial part of the background metric may be written

g i j dxidxj5
dr2

12Kr 2
1r 2dV2. ~A3!

For most applications of this paper, except for the late ti
evolution of the matter perturbations, the background cur
ture K can be neglected. In this case we takeg i j 5d i j .

The background expansion rate with respect to the c
formal time t is denoted byH[ȧ/a5aH. By the Fried-
mann equation, it equals

H 25
8pGa2

3
r2K, ~A4!

19The definition isTa
mn(x)[(2/A2g)dSa /dgmn(x), whereSa are

the terms of the action that describe the speciesa.
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wherer52T0
0.

In the unperturbed universe,

Ta
0

052ra , Ta
0

i50, Ta
i

j5d j
i pa . ~A5!

Assuming that the species pressurepa is uniquely specified
locally by the species energy densityra , we introduce

wa[
pa

ra
, ~A6!

ca
2[

dpa

dra
5wa1

dwa

d ln ra
. ~A7!

For the similar quantities applied to all the cosmological s
cies together, withr[(ara andp[(apa , we have

w[
p

r
,

1

11w
5(

a

xa

11wa
, ~A8!

cw
2 [

ṗ

ṙ
5S dp

dr D
adiab

5(
a

xaca
2 . ~A9!

Here

xa[
ra1pa

r1p
, ~A10!

are species enthalpy abundances, satisfying(axa51.
It will prove useful to introduce ‘‘reduced’’ enthalpy back

ground densities

ga[4pGa2~ra1pa!, ~A11!

g[4pGa2~r1p!5(
a

ga . ~A12!

From definition~A10! and the Friedmann equation~A4!,

ga5xag, g53~11w!~H 21K !/2. ~A13!

Finally, we give the rate of change of some of the abo
quantities with respect to the conformal timet. Energy con-
servation requires

ṙa523H~ra1pa!, ~A14!

This and the Friedmann equations give

Ḣ5
1

a

d2a

dt2
52

4pGa2

3
~r13p!

52
113w

2
~H 21K !. ~A15!

By Eqs.~A9!,~A14!,

ẇ53H~11w!~w2cw
2 !. ~A16!

By Eqs.~A7!, ~A9!, and~A14!,
2-27



se

en

te

iz

lar

for-

g

are
-

ew-

ca-

the

of
yn-

S. BASHINSKY AND U. SELJAK PHYSICAL REVIEW D69, 083002 ~2004!
ġa52H~113ca
2!ga , ġ52H~113cw

2 !g. ~A17!

From the last two equations we also see that

ẋa5S ga

g D •523H~ca
22cw

2 !xa . ~A18!

2. Matter perturbations

We parametrizeTa
m

n perturbations by theparticle number
overdensity20 da5dna /na , the peculiar velocity vectorva

i ,
and the anisotropic stress perturbationPa

i j :

Ta
0

052~ra1dra!, dra[~ra1pa!da ,

Ta
0

i5~ra1pa!v ia , ~A19!

Ta
i

j5d j
i ~pa1dpa!1~ra1pa!Pa

i
j , Pa

i
i[0.

In scalar modes the three-vectorsv ia and three-tensorsPa
i

j

are derivatives of scalar velocity potentialsua ,

v ia52¹iua , ~A20!

and anisotropic stress potentialspa ,

Pa
i

j5
3

2 S ¹ i¹j2
1

3
d j

i ¹2Dpa . ~A21!

With the normalization~A21!, ¹i¹jPa
i j 5¹4pa . The poten-

tials pa are related to some of the alternative variables u
to describe anisotropic stress ass52¹2p for the variable
of Ref. @57# andP52(3/2)(11r/p)¹2p for Ref. @60#.

For the perturbations in the total energy-momentum t
sor Tm

n , parametrized analogously to Eqs.~A19!,

d5(
a

xada , u5(
a

xaua , p5(
a

xapa ,

~A22!

wherexa were defined in Eq.~A10!.

3. Metric and gauges

Under a reparametrization of spacetime coordina
~gauge transformation!

t̃5t1dt~t,r !, x̃i5xi1dxi~t,r !, ~A23!

the perturbation variables transform as

d̃a5da13Hdt, ũa5ua2dt, p̃a5pa . ~A24!

Note that the following quantities are gauge invariant:da
13Hua , or da2db , or ua2ub .

The perturbed metric of space-time can be parameter
as

20Many authors useda for the energyoverdensitydra /ra5(1
1wa)da , in our notations.
08300
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ds25a2~t!@~2122A!dt222Bidtdxi1~122HL!dr2

22H̄ i j dxidxj #, ~A25!

whereH̄ i
i[0. For scalar modes, the three-vectorBi and the

three-tensorH̄ i j can be written as spatial derivatives of sca
functions:

Bi5¹ib, H̄ j
i 5S ¹ i¹j2

1

3
d j

i ¹2Dx. ~A26!

The metric perturbations transform under the gauge trans
mation ~A23! as

Ã5A2dṫ2Hdt, ~A27!

B̃i5Bi2¹idt1d ẋi , ~A28!

H̃L5HL1Hdt1
1

3
¹idxi , ~A29!

H! j
i 5H̄ j

i 1
1

2
~¹ idxj1¹jdxi !2

1

3
d j

i ¹kdxk. ~A30!

For scalar perturbations with

dxi[¹idl

the potentialsb andx in Eq. ~A26! transform as

b̃5b2dt1dl̇, x̃5x1dl. ~A31!

In the conformal Newtonian~longitudinal! gauge the gauge
conditions on scalar perturbations areb(N)[0 andx (N)[0.
For brevity, we refer to this gauge as ‘‘Newtonian.’’ Definin
F[A(N) andC[HL

(N) we arrive at the metric of Eq.~1!.
In the synchronousgauge one setsA(s)[0 andBi

(s)[0.
The observers who are at rest in the synchronous gauge
free falling in the gravitational field and their locally mea
sured proper time sets the coordinate time. By Eqs.~A31!,
the gauge transformation from the synchronous to the N
tonian gauge isdt52ẋ (s),dl52x (s). Hence, from Eqs.
~A27!,~A29!, the Newtonian potentials are related to the s
lar metric perturbations in the synchronous gauge as

F5ẍ (s)1Hẋ (s), C5HL
(s)2Hẋ (s)2

1

3
¹2x (s). ~A32!

For the reverse transformation from the Newtonian to
synchronous gauge, by Eqs.~A27!,~A31!, dt(x) anddl(x)
are any functions satisfying

dṫ1Hdt5F, dl̇5dt. ~A33!

The initial valuesdt(t in ,r ) and dl(t in ,r ) can be chosen
arbitrarily, corresponding to the residual gauge freedom
the synchronous gauge. The metric perturbations in the s
chronous gauge are obtained as
2-28
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HL
(s)5C1Hdt1

1

3
¹2dl, x (s)5dl. ~A34!

In the spatially flat gauge the scalar perturbations of t
spatial part of the metric are absent:HL

( f )[0 andx ( f )[0. By
Eqs.~A29!,~A31!, this gauge has no residual gauge freedo
It is obtained from the Newtonian gauge withdt52C/H,
dl50. In terms of the Newtonian potentials, the scalar m
ric perturbations in the spatially flat gauge are

A( f )5F1C1S C

HD •, b( f )5
C

H . ~A35!

The comovinggauge is defined as the gauge in which t
scalar components of the totalTi

0 vanishes:u(c)[0. By Eq.
~A24!, the transformation from Newtonian to the comovin
gauge is achieved withdt5u(N). For the second gauge con
dition, fixing dxi in Eq. ~A23!, it is convenient to choose
x (c)[0. Thendxi50. By Eq. ~A29!, the spatial curvature
potential in the comoving gauge is related to the Newton
gauge variables as

R[HL
(c)5C1Hu(N). ~A36!

For the remaining scalar metric perturbations E
~A27!,~A31! give

A(c)5F2u̇(N)2Hu(N), b(c)52u(N). ~A37!

By the following Eq.~A43! and Eq.~A13!, the ‘‘comoving
curvature’’R can be easily transformed into its convention
form

R5C1
2

3~11w!
S F1

Ċ

HD . ~A38!

The uniform densitygauge corresponds to the conditio
d (u)[0. Hence, Eq.~A24!, it is obtained from the Newton
ian gauge withdt52d (N)/(3H). Taking x (u)[0 to be the
second gauge condition, one finds that the three-curva
potentialHL in the uniform density gauge is

z[HL
(u)5C2

1

3
d (N). ~A39!

By the Einstein equations~A42!,~A43!, the curvature pertur-
bations in the comoving, uniform density, and Newtoni
gauges are related as

R5z1
¹2C

3g
. ~A40!

4. Conservation and Einstein equations

a. Newtonian gauge

The dynamics of the species density and velocity per
bations follows from the conservation lawTa

mn
;n50 as
08300
.

t-

n

.
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r-

ḋa5¹2ua13Ċ,

u̇a5ca
2da2xaua1¹2pa1F ~A41!

~for the scalar mode!, wherexa[H(123ca
2) is the Hubble

drag rate for the speciesa. The evolution of the anisotropic
stress potentialpa is determined by the internal dynamics
the species.

The linearized Einstein equations in Newtonian gau
Refs.@57,99#, are easily reduced to

¹2C23H~Ċ1HF!5gd, ~A42!

Ċ1HF5gu, ~A43!

C̈1H~2Ċ1Ḟ!23wH 2F5g
dp

dr
d1g¹2p, ~A44!

C2F53gp, ~A45!

where g is introduced by Eqs.~A12!,~A13! and the back-
ground is assumed spatially flat. If for all the speciesdpa

5ca
2dra then (dp/dr)d5(axaca

2da . By Eqs.~A42!,~A43!,

¹2C5gd (c), ~A46!

whered (c)5(axada
(c) is the averaged particle number de

sity perturbation in thecomovinggauge,

d a
(c)5da13Hu. ~A47!

b. Synchronous gauge

In Appendix B we refer to the evolution equations in th
synchronous gauge. In this gauge the energy and momen
conservation equations give

ḋ a
(s)5¹2ua

(s)13ḢL
(s) ,

u̇a
(s)5ca

2da
(s)2xaua

(s)1¹2pa . ~A48!

The corresponding linearized Einstein equations, e.g., R
@57#, in a spatially flat background are

¹2S HL
(s)2

1

3
¹2x (s)D23HḢL

(s)5gd (s), ~A49!

ḢL
(s)2

1

3
¹2ẋ (s)5gu(s), ~A50!

ḦL
(s)1HḢL

(s)5gS dp

dr
1

1

3D d (s), ~A51!

ẍ (s)12Hẋ (s)2S HL
(s)2

1

3
¹2x (s)D523gp. ~A52!
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5. Dynamics in phase space

Six variables specify the coordinates of a particle in ph
space at a given time. For them, following Refs.@3,57#, we
take the comoving coordinates of the particler i and the co-
moving momenta

qi[api ~A53!

wherepi are the proper momenta measured by a comov
observer, who is at rest with respect to the coordinate fra
For a particle with a massma the momenta that are canon

cally conjugate to the variablesr i are Pi5madxi /A2ds2

5(12c)qi .
The particle density in phase space is specified by

canonical phase-space distributionf a(r i ,Pj ,t):

dNa5 f a~r i ,Pj ,t!d3r id3Pj ~A54!

for every species of particles and their states of polariza
a. The energy-momentum tensor of the speciesa is given in
the Newtonian gauge by the following simple expression
to the first order of cosmological perturbation theory@3,57#:

Ta
m

n5E d3pi

pmpn

p0
f a , ~A55!

with p0[2p0[A(q/a)21ma
2 andpi[pi5qi /a. Below we

drop the species labela when referring to any sort of par
ticles in general.

The evolution of the phase-space distributions obeys
Boltzmann equation:

ḟ 1 ṙ i
] f

]r i
1q̇

] f

]q
1ṅi

] f

]ni
5S ] f

]t D
C

, ~A56!

wheref is considered as a function of the coordinatesr i , q
[uqi u, ni[qi /q, and t. The right-hand side of Eq.~A56!
describes the change of the phase-space density due to
ticle collisions. Linearizing the Boltzmann equation relati
to an unperturbed background phase space distributiof

5 f̄ 1d f , in the Newtonian gauge one finds@57#

~d f !˙1
qi

e
¹i~d f !1q

] f̄

]q S Ċ2
e

q
ni¹iF D5~ ḟ !C2~ fG !C ,

~A57!

wheree[Aq21a2m2.

APPENDIX B: LOCALITY OF ADIABATIC GREEN’S
FUNCTIONS

In this appendix for any ‘‘reasonable’’ cosmological sy
tem we construct the perturbation Green’s functions in t
all the scalar gravitational and matter distribution potenti
are identically zero in the Newtonian or synchronous gau
beyond the Green’s function particle horizonuxu.t. We ar-
gue that the perturbations formed with these Green’s fu
tions by their convolution with any smooth kernel are ad
batic, as defined in footnote 8. A Green’s function Four
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component with any wave numberk presents a nonzero non
decaying adiabatic mode.

We assume that all the scalar perturbations of matter
tributions, classical fields, or the metric tensor in our syst
can be parameterized by a sum of three-scalar funct
~matter potentials! acted by polynomials of¹i . This is easily
achieved for classical fields that are scalars, vectors, or
sors of a higher integer rank. Complications would arise
spinor and other noninteger spin fields. However, being
mions, such fields cannot support coherent semiclassica
citations. Without sacrifice of generality, we require that t
polynomials of ¹i are homogeneousl 50,1, etc., degree
polynomials that transform under spatial rotations as irred
ible tensors of the rankl. We treat all the dynamical degree
of freedom, whether they are dynamical ‘‘coordinates’’
‘‘velocities,’’ on equal footing, implying the Hamiltonian for
mulation of the system classical dynamics in the coordin
time of the chosen gauge.

We set the Green’s function initial conditions at a spat
slice of an infinitesimal thickness at a coordinate timet in
.0, which is eventually sent to zero. Within this slice w
impose the Newtonian gauge conditionsb[0 andx[0 on
the scalar metric potentials~A26!. We require that, in the
Newtonian gauge, all the matter distribution or field pert
bation potentialsinitially vanish for uxu.t in . ~The Green’s
functions considered in this paper are homogeneous in
normal tox spatial directionsy and z, Sec. IV.! Inside the
interval uxu<t in , to be specific, we set all thel>1 matter
distribution potentials att in to zero and adjust the initia
conditions for classical fields, if any are present, so t
u(t in)50. ~Then the metric on the initial spatial slice sati
fies the comoving gauge condition as well. The spatial sli
in the Newtonian and comoving gauges will, in general, d
fer for t.t in .) At the timet in by Eq. ~23!

¹2C23gC5gd. ~B1!

Let us demand thatC(t in ,x)5(1/t in)C̄0(x/t in) where

C̄0(x) is an arbitrarily chosenevenfunction thatvanishes
for uxu.1 and that has a nonzero integral overdx from
21 to 1. Then the coordinate ‘‘particle number’’ density pe
turbationd(t in ,x) should be given by the right-hand side
Eq. ~B1!. The corresponding proper number density pert
bationd at t in is

d5d13C5
1

g
¹2C. ~B2!

We set all the species initial densities and the initial con
tions for classical fields so thatda(t in ,x)5(1/g)¹2C and all
the other matter potentials areevenandvanishfor uxu.t in .
For interacting species, the separation of the total ene
momentum tensorTmn into Ta

mn and so the definition of the
species density perturbationsda may be ambiguous. In this
case, we take any of the possible definitions. In the lim
t in→0 all of them lead to the physically identical adiaba
Green’s functions. If any of the matter potentials or fiel
remain unfixed, we take them unperturbed att in for all x.
2-30
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The motivation for these initial conditions is to constru
an initially localized almost ‘‘pure’’ curvature perturbation
For anyt in.0, the curvature perturbation must be genera
by some nonzero matter disturbance. The above proce
attempts to restrict the required matter inhomogeneity so
in the limit t in /l→0 only curvature appears to be perturbe
Indeed, after the convolution of the constructed Gree
function with a primordial fluctuation fieldA(x) that is
smooth on the comoving scales below somel.0, the num-
ber density perturbation of any species att in by Eq. ~B1!
tends to

lim
t in→0

^d~x!&5 lim
t in→0

E dx8A~x8!
¹2C~x2x8!

g

5S E
21

1

dxC̄0~x! D lim
t in→0

¹2A~x!

g
. ~B3!

The last limit vanishes ast in
2 /l2. Since the other initial mat-

ter distributions are chosen unperturbed, they remain un
turbed after the smoothing. However, thet in→0 limits of the
smoothed comoving curvature perturbationR5C1Hu as
well as the variablez52d/3 at t in are nonzero:

lim
t in→0

^R~x!&5 lim
t in→0

^z~x!&5S E
21

1

dxC̄0~x! DA~x!.

~B4!

Given the locality of the Green’s function, which is prove
next, and the initially vanishing smoothed matter pertur
tions, we argue at the end of Sec. II B that the smoot
perturbationsz andR remain constant whilet!l. The Fou-
rier transformation is a convolution with the kernelA(x)
5exp(2ikx). Therefore, it gives nondecaying nonzero curv

ture perturbation modes~B4!, as long as*21
1 dxC̄0 is chosen

different from zero.
The smoothed density perturbation^d(x)& will remain as

small asO(t2/l2) for t in,t!l in the comoving gauge
where it is always related toC by Eq. ~A46!. In other
gauges, including the Newtonian, the proper density per
bation ^d(x)& and other proper matter perturbations do n
need to vanish fort in,t!l. For example, the specie
proper density and velocity perturbations are given by
~A24!, wheredt is the time lapse between the comoving a
the considered gauges.

Now we prove that in a synchronous gauge and the
initial conditions at t in all the matter and gravitationa
Green’s functions remain zero fort.t in beyond the particle
horizon uxu.t. The coordinate transformationsdt and dxi
5¹idl from the Newtonian to the synchronous gauge can
chosen so thatdt(t in)50 anddl(t in)50 for all x. Then,
from Eqs.~A33!, dṫ(t in)5F(t in) anddl̇(t in)50. Equation
~A34! gives that the synchronous gauge potentialsHL

(s) and
x (s) and their first time derivatives vanish att in for uxu
.t in . Same is true for the transformed initial perturbatio
of all the matter distributions and their rates of change.

Causality requires that in the synchronous gauge the m
ter and the metric remain unperturbed beyond the part
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horizon of the original perturbation. This means thatHL
(s) ,

¹2x (s) @cf. Eq. ~A26!#, ¹u(s), ¹2p, etc., are zero foruxu
.t. We argue that the potentialsx (s), u(s), p, etc., them-
selves are also zero foruxu.t. As an illustration, let us con-
sider the Euler’s equation forv̇x[2¹xu̇ that in the synchro-
nous gauge reads

¹xu̇
(s)5¹x@cw

2 d (s)2H~123cw
2 !u(s)1¹2p#. ~B5!

The gradient in this and the similar equations can be drop
after we define the expressions under the gradients to
equal at a certainx0, which may depend ont. Consistent
definition of the potentials is obtained ifx0 is chosen outside
of the perturbation horizon; suppose,x0(t),2t. Since a
sufficiently high spatial derivative of every synchrono
gauge potential gives a perturbation of some matter distr
tion or a metric tensor component and thus, by above, v
ishes forx,2t, the potentials themselves can be chosen
vanish in that interval for allt. We prove that the potential
then also vanish forx.t.

Let $ f l% be multipole potentials for some matter distrib
tion perturbationF(r ,n̂), which may depend on other, no
displayed, phase-space or internal coordinates,

F~r ,n̂![(
l 50

`

~21! l~2l 11!Pl S ni¹i

¹ D¹ l f l , ~B6!

where i runs over the spatial coordinatesx, y, and z. We
suppose that the distribution perturbation dynamics can
described as

Ḟ~r ,n̂!5~ local in space functional of perturbation fields!.
~B7!

The functional on the right-hand side is linear in the line
order of perturbation theory. Multiplying both sides of E
~B7! by a spherical functionYlm(n̂), integrating over the
solid angled2V n̂ , and applying the identity

E d2V n̂Ylm~ n̂!Pl S ni¹i

¹ D5
4p

2l 11
YlmS“¹ D ~B8!

on the left-hand side of Eq.~B7! we find ḟ l times a homo-
geneousn-degree polynomialQlm(¹x ,¹y ,¹z). The polyno-
mials $Qlm%m52 l

l transform under spatial rotations asYlm .
Since all the perturbation potentials are defined to be th
scalars,¹i are the only quantities that may appear on t
right-hand side and that transform non-trivially under spa
rotations. Therefore, after the convolution withYlm(n̂), ev-
ery term on the right-hand side of the linear equation~B7!
must contain the same polynomialQlm(¹x ,¹y ,¹z) that ap-
pears on the left-hand side. Puttingm50 and applying the
resulting evolution equation to they- and z-independent
Green’s functions, we find (¹x)

l ḟ l on the left and at leastl
derivatives¹x in every term on the right-hand side. Afterl
integrations overdx with zero initial values atx,2t we
find an equation of the form
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ḟ l~r !5~ local in space functional of scalar potentials!.
~B9!

The corresponding equations for the system of phot
baryon and CDM fluids and ultrarelativistic neutrinos, stu
ied in the main text, are Eqs.~4!,~5!,~20!. The scalar potentia
evolution can be generalized to describe photon-baryon
ompson scattering and photon polarization as shown in
Appendix of Ref. @56#. The evolution of the synchronou
metric potentialsHL

(s) , x (s), and ẋ (s) can as well be pre-
sented in the form~B9! using Eqs.~A49!,~A50!,~A52!.

Thus the dynamics of all the potentials in the synchron
gauge can be reduced to an initial value Cauchy probl
The initial conditions att5t in were chosen even. Assumin
the dynamical equations are invariant underx→2x inver-
sion, the resulting solution of the Cauchy problem will r
main even for allt. Hence, the potential values forx.t are
equal to those atx,2t, i.e., vanish in the synchronou
gauge.

The reverse transformation to the Newtonian gauge
achieved withdt52ẋ (s) and dl52x (s) ~see Appendix
A3!. These functions have been proved to vanish outsid
the horizon. Therefore, all the matter multipole potentials
the Newtonian gauge and the gravitational potentialsF and
C, related to the synchronous metric perturbations by E
~A32!, also vanish foruxu.t.

APPENDIX C: O„Rn… ORDER CALCULATIONS
IN THE RADIATION ERA

1. Gravitational potentials

In Secs. IV D–IV E we derived integro-differential equ
tions satisfied by the potentialsF6[(C6F)/2 during ra-
diation domination. We can rewrite these equations, E
~101!,~100! and ~106!,~105!,~114!,~115! as

F̄28 ~x!5RnF3

2
z inx~12x2!u~12uxu!

26E
21

x

dx8E
21

1

dx9

3
F̄1~x9!x8P2~x8!1F̄1~x8!x9P2~x9!

x92x8
G
~C1!

and

F̄1~x!5S x22
1

3D F pFuS 1

A3
2uxu D 2F2~x!G , ~C2!

with

F2~x!5E
21

x

dx8
x8221

S x822
1

3
D 2F̄28 ~x8!, ~C3!
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pF52
A3~12Rn!

122Rn
F3

2
z in2E

21

1

dxF2~x!G . ~C4!

In this appendix we use them to calculate atO(Rn) order the
prefactors at the singular terms in the photon and CDM d
sity Green’s functions. Up to smallO(Rn

2) corrections, this
yields the density modes on subhorizon scales.

The quantityF̄28 in O(Rn) order is obtained by substitut

ing the zeroth order solution forF̄1 , Eq. ~109!, into the
right-hand side of Eq.~C1!. The substitution gives

F̄28 5Rnz inH @ I 1~x!2I 0sgnx#u~12uxu!

2@ I 2~x!2I 0sgnx#uS 1

A3
2uxu D J 1O~Rn

2!,

where

I 1~x![9xS 1

2
x42

7

18
x21

1

9D2
~3x221!3

4A3
lnUx11/A3

x21/A3
U ,

~C5!

I 2~x![
3A3

4
~12x2!F2x~3x211!2~3x411!lnU11x

12xUG ,
I 0[I 1~1!5I 2S 1

A3
D 522

2

A3
ln~21A3!.

2. Photon singularities

The magnitude of the photon density acoustic spikepg ,
Eq. ~115!, can be calculated analytically using theF2 defi-

nition ~C3! and the above expression forF̄28 . For this we
employed the symbolic calculation programMathematica
~http://www.wolfram.com!. The resulting expression turn
out rather lengthy but is easily evaluated to

pg.
3

2
z in@120.2683Rn1O~Rn

2!#. ~C6!

The residuer g , as defined by Eq.~118!, follows from Eqs.
~112!,~106! as

r g5F̄1S 1

A3
D 5z inRnS I 0

A3
2

1

9D .0.1656z inRn . ~C7!

Substitution of the found values in Eq.~120! leads to the
results~121!,~122!.

3. CDM singularities

Now we proceed to the calculation of the neutrino corre
tionsDc anddc in the CDM density perturbation~128!. The
equation for the radiation era CDM Green’s function~125!
gives
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~xd̄c!85
1

x
F̄81pc1dD~x!. ~C8!

Integrating this expression, fixingpc1 by the requirement
that xd̄c is an odd function that vanishes atuxu.1, and
dividing the result byx, we obtain

d̄c5FG~x!

x
2

G~1!

uxu Gu~12uxu!1pcdD~x!, ~C9!

where

G~x![E
0

x dx̃ F̄8~ x̃ !

x̃
. ~C10!

The initial condition*21
1 dxd̄c523z in fixes the new con-

stantpc as

pc523z in2E
21

1

dxFG~x!

x
2

G~1!

uxu G .
The dx integral of G(1)/uxu, which would be infinite in
Riemann sense, is equal to 0 in the sense of genera
function integration~see Table I!. Hence,

pc523z in2E
21

1 dxG~x!

x
. ~C11!

The CDM density perturbation modes in the radiation
are given by the Fourier components of the Green’s func
~C9!. In the radiation era for adiabatic initial conditions th

potential F̄(x), generated by the photon and neutrino p
turbations, is regular atx50 and even. Hence, the functio
G(x) in Eq. ~C10! is regular atx50 and odd, andG(x)/x
is also regular at the origin. The subhorizon (kt@1) values
of the CDM Fourier modes are fully specified by the singu
terms in Eq. ~C9!, which are proportional to 1/uxu and
dD(x). From Table II we find that

dc~t,k!5Ac~ ln ws1c!1O~ws
21!, ~C12!

with ws5kt/A3 and

Ac52G~1!, c5g1
ln 3

2
1

pc

2G~1!
. ~C13!
.,

08300
ed

a
n

-

r

In the Rn→0 limit, with the potentials~108!, ~109!,

G(Rn→0)~x!523z in5 xA3, uxu<
1

A3
,

sgnx, uxu>
1

A3
.

~C14!

ThenG(Rn→0)(1)523z in and

d̄c
(Rn→0)

523z inSA32
1

uxu D uS 1

A3
2uxu D 1pcdD~x!,

~C15!

where by Eq.~C11!

pc
(Rn→0)

53z in~11 ln 3!. ~C16!

Fourier transforming Eq.~C15!,~C16!, where the singular
function 1/uxu can be transformed using Table II, we obta
the CDM density perturbation mode~127!. Of course, the
radiation era,Rn→0 Fourier mode could be obtained d
rectly in k space by integrating the evolution equation~124!.
Now we consider how the CDM density perturbatio
changes when neutrinos are added.

Although the analytical calculation of the integrals in Eq
~C10!,~C11! in theO(Rn) order may be possible, it does no
appear easy. On the other hand, the numerical evaluatio
the absolutely convergent integrals in Eqs.~C10!,~C11!,
given the potentials~C5!,~106!, is straightforward and yields

G~1!.23z in@110.2297Rn1O~Rn
2!#, ~C17!

pc.3z in@11 ln 311.746Rn1O~Rn
2!#. ~C18!

Then forAc andc in Eqs.~C12!, ~C13!

Ac.26z in@110.2297Rn1O~Rn
2!#,

c.g2
1

2
20.6323Rn1O~Rn

2!. ~C19!

The corresponding values forDc5Ac /Ac
(Rn→0)

21 and dc
5c2c(Rn→0) are used in Sec. IV F, Eq.~129!.
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