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Signatures of relativistic neutrinos in CMB anisotropy and matter clustering
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We present a detailed analytical study of ultrarelativistic neutrinos in cosmological perturbation theory and
of the observable signatures of inhomogeneities in the cosmic neutrino background. We note that modification
of perturbation variables that removes all the time derivatives of scalar gravitational potentials from the
dynamical equations simplifies their solution notably. The used perturbations of particle number per coordinate,
not proper, volume are generally constant on superhorizon scales. In real space the analytical approach can be
extended beyond fluid models to neutrinos. The faster cosmological expansion due to the neutrino background
affects the acoustic and damping angular scales of the cosmic microwave back@MBy But we find that
equivalent changes can be produced by varying other standard parameters, including the primordial helium
abundance. The lowintegrated Sachs-Wolfe effect is also not sensitive to neutrinos. However, the gravity of
neutrino perturbations suppresses the CMB acoustic peaks for the multipolds2&i®0 while it enhances the
amplitude of matter fluctuations on these scales. In addition, the perturbations of relativistic neutrinos generate
aunique phase shifif the CMB acoustic oscillations that, for adiabatic modes, cannot be caused by any other
standard physics. The origin of the shift is traced to neutrino free-streaming velocity exceeding the sound speed
of the photon-baryon plasma. We find that from a high-resolution, low-noise instrument such as CMBPOL the
effective number of light neutrino species can be determined with an accuradiNgj=0.05-0.09, depend-
ing on the constraints on the helium abundance.
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[. INTRODUCTION Wolfe (ISW) effect from the transition proximity, and sup-
pressed growth of matter fluctuations in the radiation epoch.
Neutrinos play a significant role in the evolution of the But these and other effects caused by the neutrino back-
early Universe. They are expected to provide around 409ground speeding up the cosmological expansion, discussed
e.g., Ref[1], of the total energy density during the radiation later, can gene_rally be mimicked by variations of other stan-
era. The gravitational potentialsnetric perturbationsin- dard co_smologlcal parameters. For example, the redshift of
duced by inhomogeneities in the photon and neutrino bac the rgdlatlon—matter equality could be- redqced not by the
. utrino background but by CDM density being smaller than
grounds are comparable. Because of the internal photon anglieq from the fits assuming the standard neutrino content.
neutrino dynamics the potentials decay when the growing The internal dynamics of neutrino perturbations bears al-
acoustic, for photons, or particle, for neutrinos, horizon ofmost no resemblance to the more familiar acoustic physics of
the universe becomes of the order of the perturbation scaléhe photon-baryon fluid. All the three main distinctions be-
i.e., as the perturbation modes “enter the horizon.” This dedow arise from neutrinos being fully decoupled and free
cay, in contrast with the constancy of the potential generategtreaming since a very early redshift 4o~ 10", long be-
during matter domination by freely collapsing cold dark mat-fore the hydrogen recombination and CMB photon decou-
ter (CDM), leads to a substantial difference between the amPling atz,, gec=1090. .
plitude of the acoustic oscillations in the cosmic microwave First, the tightly coupled photon-electron-baryon fluid
backgroundCMB) on the scales that enter the horizon be-SUpports compressional acoustic waves. These waves are

fore and after the matter-radiation equality. For example, i zgfsatﬁgngaig (ljji?fglrgr]ﬁl regong'ﬁé'g?%rssgiiggmﬁﬁrtu&bg_
the model without neutrinos the amplitude generated b){ propag Y: DY 9.

equal primordial power on the smaller scales is five time rinos escape overdense regions in every direction; the pro-
" . ion of their veloci n th nsi radien ns th
larger, Ref.[2]. In addition, the gravity of both the photon ﬁecto of their velocity on the density gradient spans the

. . : ntire intervall —1,1] (in unitsc=1.) The dispersion of the
and neutrino perturbations at the horizon entry boosts CDMyertrhation transfer velocity along the density gradient,
peculiar velocities, contributing to matter clustering.

: IR <l . called “directional dispersion3], damps subhorizon neu-
The neutrino contribution to the radiation energy densityring perturbations inversely proportional to time. This
reduces the redshift of the transition from radiation to mattelyamping was noted three decades pgjoBut it was quickly
domination, bringing the transition closer to CMB decou-realized[5] that, regardless of their evolution, the subhorizon
pling. This too leads to important consequences for bottheutrino perturbations exert negligible gravitational effects
CMB anisotropies and matter clustering. The reasons are then other species.
larger amplitude of the acoustic oscillations entering the ho- Second, neutrino stress is locally anisotropic. According
rizon in the radiation universe, larger early integrated Sachsto Einstein’s equations, the stress sources the perturbations of
the space-time metric. The anisotropic stress leads to richer
structure of the metric perturbations than locally isotropic
*Electronic address: sergei@princeton.edu fluids can provide. ) ]
"Electronic address: useljak@princeton.edu ~ Third, neutrino perturbations propagate with the speed of
light, exceeding the sound speed of acoustic perturbations in
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the photon-baryon fluid. As a result, the gravitational effectBBN to the redshifts probed by CMB. The responsible physi-
of neutrino perturbations on CMB, viewed in real space, ex-cal mechanisms could be, though are not limited to, heating
tends beyond the acoustic horizon of primordial inhomogefrom decays of massive particles or fields, ¢2y.—3(, such
neities. We find that this leads to a unique phase shift of theis expected in thermal inflatidi31,32, or cooling by ther-
CMB mode oscillations in the presence of neutrino gravity. mal contact with other speci¢28,33.

What new physics can be revealed by the imprint of neu-  Another reason is that both BBN and CMB constraints
trino gravity on the more easily observable species, such agepend on certain properties of the uncoupled relativistic
CmB p_hotons or nonrelativistiq matter? T_he considered NeUspecies, in addition to their total energy density. For BBN,
trino signatures probe the ratio of neutrino and photon enye relevant characteristics include the asymmetry between
ergy densities, evaluated when the observed scales enter tfy active neutrinos and their antiparticles, their interaction
horizon. Complimentary constraints on the universe compozng mixing with other species beyond the standard model,
sition in the radiation era are set by_ the predictions of bigand the cosmological expansion rate, which may be affected
bang nucleosynthesi®BN) for the primordial abundances py the density of other uncoupled relativistic particles—
of light elements. The baryon to photon ratios inferred from«gark radiation” (right-handed neutrinos, Goldstone bosons,
BBN and CMB are in good agreement with each other, buinoduyli, etc) and by more exotic phenomena such as early
the presently low observational estimates of the p“mordiahuintessence, nonminimally coupled fields, or extra-
“He abundancg6-10] favor the effective number of neutri- gimensional physics. On the other hand, the CMB anisotro-
nos,N,, at BBN below its standard value 3.04. Joint analy-pies and matter clustering do not discriminate between active
ses[11,12 of the current data on the primordidHe and neutrinos, their antiparticles, and other relativistic degrees of
D/H abundances and of the cosmological constraints consigreedom. But the dynamics of cosmological perturbations in
ered by the Wilkinson Microwave Anisotropy Probe the unseen relativistic background becomes important. In
(WMAP) team[13] [CMB + large scale structure Lyman  this paper we focus on the signatures caused by ultrarelativ-
a, fit by the cold dark matter model with a cosmological jstic decoupled particles. Their energy spectrum need not be
constant ACDM) mode| give the 2r limits 1.7<N,  thermal. Given specific initial conditions, their gravitational
<3.0. If a neutrino chemical potential, characterizimgpy  impact on the “visible” species indeed depends only on their
asymmetries,is treated as a free parameter to be marginalcombined energy density, parameterized by the effective
ized over, the limits relakl8] to —1.7<N,<4.1. However, number of neutrino specids,, Eq. (45).
the constraints from BBN and CMB should be combined While the impact of neutrinos on the light element pro-
with caution. duction at BBN has been studied in detail, the neutrino fea-

One of the reasons is that the redshifts probed are sepaires in the CMB spectra are less well established. Their
rated by many orders of magnitude. The processes that deemprehensive analysis and the investigation of their poten-
termine the BBN yield of light elements extend from the tial for probing the primordial radiation of nonelectromag-
freeze-out ofv,, v,, and(shortly aftej v, interactions at netic origin are presented in this paper. The motivations for
Z, dec~ 10 to the fusion of light nuclei az,«~4x10°. On  exploring these features and the related constraints indepen-
the other hand, the CMB multipoles uplte 3000 probe the dently from the BBN physics include verification of the
neutrino density in the redshift range fran,,~6x10* to  “standard BBN” model (SBBN); guidance in resolving the
Ze=3.2x10° (assuming the “standard” cosmological pa- tensions between SBBN predictions and observational esti-
rameterg13,19.) Either the photon entropy or the number mates of the light element abundanctr tension presently
of uncoupled relativistic species per comoving volume mayexists for “He but in future is also conceivable for other
changé@ in the considerable span of the universe history fromelements as potentially more sensitive experiments with less

studied systematics app&aprobing the parameter space of
T - _ extended BBN models in the directions of degenera@es,

Any initial dlf'fer(_ences among the |n(_1|V|duaVV asy_rr_1metr|es for the degeneracy in the chemical potentialN, plane[18));
the threg gener.atlo.ns of actlve. neutrinos are equilibrgidd-17 constraining the models of high-energy physics, frequently
b32’ neutrino oscillations by the time BBN begins. _leading to decoupled relics, nonstandard BBN, particle de-
be-lg\‘,‘: ;:hange ighfsgtign ??net;gpﬁ’zgfg?ygi tlﬁg“é;?:;ﬁgnedcgys during or after BBN, or modified cosmological expan-
shape vacrﬁre” e?:MB spectru;n from' c OE{ES;] Although energy sion; finally, cllarlfylng robustness of the cqnstramts derived

: from CMB anisotropies and matter clustering.

released into the photon gas at smaller redshifts can still be redis- o : o

i ) The possibility of identifying the background of decou-
tributed the photons by Compt it , the ph - : > .

ributed among the photons by Compton scaftering, the photon pro led ultrarelativistic species with CMB, sometimes comple-

duction rates, from double Compton scatterirgyy{-eyy) and P :
bremsstrahlung €N—eNy), become insufficient to change the mented by other cosmological probes, has been analyzed ex-

photonnumberto its new equilibrium value. This would lead to a teNSively[12,34—39in the past using numerical calculations
Bose-Einstein CMB frequency spectrum with a nonzero chemicalVith Boltzmann integrator codes, such@8BrAST or CAVB/
potential; see reviews in Refi24,25. The present agreement be- COSMoIC [40—42, or with simpler codes in that the Boltz-
tween the BBN- and CMB-derived ratio of baryons to photons is anmann hierarchy is truncated at the quadrupole order in a way
additional evidence against a large change of the comoving phototiat mimics free steamin#3,44. Some of this work fore-
entropy density. Of course, the above considerations do not limit th€ast future constraints on the density of relativistic species
change of the energy of the uncoupled relativistic species; see, e.gising likelihood(Fisher matrix analysis of specific experi-
Ref. [26] for specific scenarios. ments.
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The authors of Refd.2,45] noted that the CMB modes sults consistent with Ref47].

entering the horizon in the radiation era are perturbed less A real-space view of cosmological perturbation dynamics
and the CDM modes more in a model with a larger neutrinowill be essential for obtaining analytic results for neutrino
to photon ratio. Later work44] stressed the essential role of perturbations, which cannot be modeled by a fluid. Many
neutrinoperturbationsin breaking the degeneracies betweenequations governing perturbation dynamics in the radiation
N, and the density of nonrelativistic matter, set by, €raare integrated trivially in real space. This permits analytic
=0, h?, either of which affects the redshift of radiation- calculations that would seem hopeless in momentum space.
matter equalityZeq+ 1= pm o/ (p,.0+ puo)- Degeneracies be- A real—space. an_aIyS|s of cosmolog!cal perturba‘uo_ns was at-
tween the variation of neutrino density and other cosmologi{émpted earlier in Ref51] and applied to CMB anisotropy
cal parameters were studied numerically in R&#]. This N Ref_s.[52,53§|. We follow the plane wave formalism devel-
work pointed out that, with a fixeryq and fixed angular size oped in Refs[54-5¢. _
of the acoustic CMB horizon, the remaining CMB spectrum_ 1 N€ rest of the paper is organized as follows. In Sec. Il we
variation withN , to the third acoustic peak can be practically introduce a slight modification to the classical definition of
removed by a same sign change in the scalar spectral ind&pSmological perturbation variables. A consequence is sub-
ne, and that the matter power spectrum breaks this degeﬁ_tantlal simplification of the evolution equations, for both

Sy . . .
eracy. However, because of the normalization of the calculat€r later solution and conceptual understanding. In Sec. Il
tional results by the height of the first acoustic peak, theV€ Set up the notation and evolution equations for the
neutrino-induced suppression of CMB anisotropy on Sma|fa.d|at|on—matter universe .around the time of CMB decou-
scales was explained as increased ISW contribution on largding: Then we study the impact of neutrinos on the evolu-
scales. This interpretation propagated into several later p4lon ©f superhorizon perturbations. In Sec. IV we review the

pers. We argue at the end of Sec. Il and Sec. V A that thi&reen’s function formalism and apply it to find how neutrino
interpretation is incorrect. perturbations influence the CMB and CDM modes that enter

The Fisher matrix likelihood analysis of R§84] showed the horizon in the radiation era. A reader not interested in the

that, prior to WMAP,N,, could not be constrained by CMB _specific; of the analytic calculations can look at their results
alone. With the WMAP datb46] new analysef12,35,3¢ set 1" the f!gures of Secs. Ill and IV and proceed towa_lrd the
the upper limitsN,<7 or somewhat better if matter cluster- dlscussm_m of Sec. V. In Sec. V we analyz_e the neutrino SI9-
ing or HST data are included. Referenf@s] reported a natures in the CMB and matter perturbation spectra and ei-
lower limit N,>1.6 at 95% confidence level from WMAP ther their robustness or degeneracy to the variation of other

only andN,>1.9 with HST data added. We find that thesecosmological parameters. In Sec. VI we estimate the accu-

constraints can be improved dramatically with future experi—racy of constraining the effective number of neutrino species

ments and become comparable to and tighter than those pref om some planned or proposed CMB experiments. We con-

ently derived using the standard BBN model from the pri-¢ ude in Sec. VII. . . :
mordial element abundances. Appendix A reviews the linear cosmological perturbation

Recently, Ref[47] considered the interaction of neutrino theory and summarizes the properties of the used metric

perturbations with tensor gravitational waves. The problerrgauges' In Appendix B we prove that all the matter or metric

was reduced to an integro-differential equation using the soo'€€MN's functions in the Newtonian or synchronous gauges

called line-of-sight solution for free-streaming particles, de—V_aniSh f_or growing a_diabatic p_erturbatio_ns beyond _the par-
rived previously in a context of photoié8—50. Numerical ticle horizon. Appendix C contains technical calculations for

integration of this equation showed that neutrinos suppresgeznl\t/he followina formulas imolv the metric sianature
the amplitude of the gravitational waves entering the horizor% 1111). G kg' di ?y 0 to 3 lati ]9 1
in the radiation era and of the relat&mode of CMB po- (~ 11,1,1). Greek indices range from O to 3; latin from 1 to

larization by about 20%. Even on the largest angular scaleé' Overdots denote the derivatives with respect to conformal

the neutrino damping of the tensor correlation functions id'Mme d7=dt/a, wherea is the cosmological scale factor. The

predicted to be close to 10%. universe expansion rate with respect to conformal time is
In this work we focus on the more significant and, as ofdenoted by/{=a/a=aH, whereH(z) is the proper Hubble

now, the only accessible to observations sCafserturba- €xpansion rate.

tions. We use an analytic approach. It provides the physical

insight into the cosmological role of neutrinos and helps find Il. DYNAMICAL PERTURBATION VARIABLES

a quantitatively small but unique signature of neutrino per-

turbations, the phase shift, which turns out to play the pri- In this paper we use predominantly the conformal New-

mary role in measuring the neutrino background density witHonian, later “Newtonian,” gauge¢57,58 and parametrize

CMB experiments. The analytical methods developed in thigcalar metric perturbations as

paper are easily applicable to the tensor sector and give re-
d?=a%(n)[(—1—2®)d7?+(1—2¥)dr?]. (1)

3as customary in cosmology, the term “scalar perturbation” de- The potentiakb determines the gravitational acceleration of
notes the invariance of the perturbation Fourier modes with respedtee-falling objectgy= —V®. W characterizes the perturba-
to thelittle rotational group: the axial rotations that do not change ations of spatial curvature in this gaug@his choice of po-
mode wave vectok. tentials agrees with Ref58]. It is related to other frequently
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cited works asbere= Vherer Vinere= Pherefor Refs.[57,59, d,=VZ2u,, (4)

and V¥ ihere™ Pherer Pinere™ — Vhere for Refs. [2,45,60.) In

the presence of anisotropic stress, provided by neutrino per- . 5 5 5

turbations, the potential® and ¥ differ from each other. Ua=C5da— XaUa+ Voma+ P +3c3V, 5
Occasionally, we invoke the synchronous, spatially flat,

comoving, and uniform density gauges. Their definitions andvheré c2=dp,/dp, is the “sound speed” and

the relations between various metric gauges are summarized

in part 3 of Appendix A.
P PP Xa=H(1-3c2) ®)

A. Coordinate particle number densities is the Hubble drag rate for the speciesEquations(4) and

It appears very useful to describe perturbations of nfatter(5) can be combined into a single second order equation
species in terms of the variables that rate of change does not
depend on the time derivatives of other perturbation vari- da+ xala— c2V2d,— V47, = V(D +3c2W). )
ables. This is not so, for example, for the usually considered
proper energy density enhancemept,/p, in the Newton-
ian gauge, nor the proper phase-space density perturbati

o6f,, nor the local CMB temperature anisotroy (n)/T,
nor the “effective temperature” perturbatiosir/T+®, for . . 5
all of which the corresponding conservation equations in- dc+Hd.=V<® (CDM), (8)

volve ¥ or ®+W¥ terms. Via the Poisson equation, Eq.
(A46) in Appendix A, these terms, which are dominant on SR 5 .
horizon scales, bring the time derivatives of other matter dy,—3 Vid,=Vi(®+W¥) (photonfluid. (9
perturbations. This complicates the description of perturba-
tion evolution.

Instead, we characterize density perturbation of spexies
in the Newtonian gauge by a variable

(F r the special cases of CDM and tightly coupled photon
uid with negligible baryon density, Eq7) reduces to

The variablesd, can be interpreted in the Newtonian
gauge as the perturbations of the conserved particle number
densities with respect to the coordinate differential volume

SNa coo d®r, rather than the proper voluma®(1—3¥)d%. The
do=-———=05,—3V, (2)  change of these densities with time is determined only by the
acoo particle flux into a unit coordinate volume, E@). It does
where not explicitly depend on the metric evolution, affecting the
proper number densitie8, . More formally,d, corresponds
5= 5na,prop= Opa 3 to the gauge invariant quantity
é Naprop  PatPa
da=38,—3H_+ V2, (10

is the proper particle number overdensityhe latter is re-

lated to the energy momentum tensf” by Eq. (A19) in , i
hévhereH,_ andy parametrize the general perturbation of spa-

Appendix A. Unless noted otherwise, we suppose that t . .
matter species in any growpdo not interact nongravitation- tial 'metrlcgij as given py Eqs(A25)—(A26). Therefore, th,e_
ally with the species of the other groups; hefdd is well variablesd, coincide with the particle number overdensities

: ; ! . 9, In the gauge where the spatial metric is unperturbed—the
defined and covariantly conserved. Examples of the Speme%patially flat” gauge of Appendix A3. The density perturba-

groupsa are photon-baryon plasma, neutrinos, or cold dark . . .,
matter. tionsd, are simply related to the “conserved curvature” per-

The species mean velocity and anisotropic stress, definet(lj'rb""t'ons_Of Ref[61j on the hyﬂﬁﬁ?gﬂﬂgces of uniform en-
with Egs.(A19), for scalar perturbations can be described by€'9Y density of species, {,=—H{", asda =34,
a velocity potentiali, asv;,=— V,u, and by an anisotropic Likewise, we eliminate¥ from the equations of pertur-
stress potentiatr,, Egs.(A19)—(A21). From the energy and bation dynamics in phase space. For this purpose we define a
momentum conservation equatio41) and d, definition variabledfa(r,r,q,ﬁ):

(),

SExcept for the generalized proof of superhorizon conservations in
“In Sec. Il “matter” refers to all the dynamical degrees of free- Sec. Il B, we will assume that for all the specithe local pressure
dom, whether in relativistic or nonrelativistic particles or fields, in p, is uniquely specified by the local energy density. This as-

contrast to nondynamical scalar metric perturbations. sumption is general enough to apply to photon-baryon plasma, cold

5f n is the density of any conserved number, its change in amatter, massless or massive neutrinos, and constant vacuum energy.
locally inertial frame for a closed volumé/ equals dn/n It is not valid for a classical fiel§quintessengeor modified Hubble
=—dVIV=dp/(p+p), given the energy conservatiod(pV) expansion(Cardassian energyWithout this assumption Eq4)
+pdV=0. should be replaced by E¢39).

083002-4



SIGNATURES OF RELATIVISTIC NEUTRINOS INCMB . .. PHYSICAL REVIEW D 69, 083002 (2004

— + oo

dfazﬁfa+q%\lf, (11) D,(n)= E( 1)(2I+1)P,< )V'd|a, 17

where 5f4(7,r,,n) is the perturbation of the proper phase- Where P, are Legendre polynomials. Sind () contains

-2
space distribution for species f,(7,q) is their unperturbed only the powersy' 1 with q=0,1,...]1/2], the gradient
pperator enters the right hand side of Etj7) only through

natural powers of;V; or V2. The potentialsd, , are gauge
invariant forl =2.
As follows from Egs.(A55), (11), (13),

tum g=qn is defined in Appendix A by Eq(A53). The lin-
earized Boltzmann equatio57) in terms of the variable
(11) reads

_ 1

of oTh =4 n“n( n)+ ¥ > , 18
(df,) +qn V(df,)=q an(qw+§q>). (12) pa< Palm) ; 19
where n°=1, ny=-1, n'=n;, and (); stands for
[d2Q /4. Substituting the multipole expansioil7), re-
membering the definition of the variablédg, u,, and 7,

Eqs (2), (A19) (A21) and using that for the ultrarelativistic

Summation over the repeated index1,2,3 is implied. Hav-
ing in mind the applications to collisionless particles, we
dropped the collision term and the terms involving the time,

The number of phase- space coordinates in the Boltzmann
equation can be reduced by one, Ré&], when the mass of 3
the particles is negligible relatively to their average kinetic doa=0a, U1a=Ua, d2a=57a- (19

energy, so that=p and thef, perturbations propagate with
the same speed, the speed of light, regardless of the particle The d; o dynamics follows from Eqgs(14), (17) and
energy. Defining a function the relation wP(u)=[(1+1)/(21+1)]P,,,+[1/(2l
+1)]P,_q:
qudqqdfa(r,r,q n) _ | I+1
: (13 da=5 7 di-1at 2|+1V dit1at 02(P+V).

J 92dqqfy(q) (20)

a(r,r,n)

(The Kronecker symbod, in the last term should not to be
confused with a density perturbatiprOne can write a for-
D.+nVD = —3n,V,(V+ D). (14) r_nal inte_gral solu.tion of these equations by expar_1ding the
line-of-sight solution(15) over the spherical harmoniés.
The scalar metric perturbatios and ¥ are determined
from the linearized Einstein equations, EG542)—(A45). In
terms of the introduced dynamical variables,

and integrating both sides of E(L2) overq3dq, we find

The variabIeDa(r,r,ﬁ) is related to the energy-averaged
phase space distribution perturbation of Ré#3-50 as

F.(7,r,n)=(4/3)D,+4¥. If the free-streaming particles
had the thermal velocity distribution at their decoupling then——
the temperature perturbation of the particles moving in a Namely,

specified directiom is 8T,(7,r,n)/To=D,/3+ V. I
Equation(14) is formally solved by dl’a(ﬂr)_g( Ik AT
Da(7,r,n)=Dg, in(r—n7,n) o
. fd? 'k [cb(fr)mf(fr)]J . (2D
—3niVij dT/(q)+\Ir)|Tr’r_ﬁ(T_Tr). (15) k2——v2
0

wherej, are spherical Bessel functions. This equation is obtained
from Egs.(15), (16) and(17) by noting that for any analytic func-

In the following subsection we will show that for adiabatic ton f(r)

initial conditionsD, i,(r,n) is independent of. It will be f(r—hr)=e ™% (r)

related to the conserved superhorizon value of the spatial

©

curvature perturbatiod in the uniform density gaugéhe Z nV;
“Bardeen’s curvature'{63]) as ~1)'(21+ 1P, v /! Ni(=iVDf(r). (22
R In Eq. (21), the operatorSJ|(kr)/k' and j| (kr)/K' 71, with k2
Da,in(r,n)=—3&in(r) (16) . —v2, are well defined as their Taylor expansions involve only
for all a even powers ok, hence, only integer powers of the Laplace opera-

. tor V2. If the perturbations in Eq(21) refer to a single spatial
Any scalar perturbatiom ,(7,r,n) can be described by harmonic plane wave with a wave vectothen— V2 does become
scalar multipole potentialfd, ,(7,r)}-01,... @s k2.
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V2 —3yW¥ = y(d+3Hu), (23) The corresponding solutions scale fgf<7<\ asd, ,~ 7
and®~WV¥~1. Specifically, the coordinate particle number
V—® =3y, (29 density perturbationsl, are constant up to O(7%/\?) cor-
rections. Adiabaticity of the initial perturbations hastbeen
where 7541-;-Ga2(p+ p) and assumed for this result.

If the initial conditions arediabatic® from Eq.(A24), the
density and velocity perturbations of all the species in the
d=2 Xada, UZE XaUa, 7T=2 XaTa, (25 Newtonian gauge are related in the limi>0,\ =const as
a a a

8,=—3Hu,=4 (adiabatic, 7/A—0), (31
wherex,=(p,+ pa)/(p+p). Equationg23), (24) for ¥ and . . .
& are nondynamicatonstraintequations. These constraints, vAvlhereb5 ISE a szame function of andr for all the species.
however, do not limit one’s freedom of setting the initial so, by Eq.(2),
matterdistribution potentialg, ,. d,=d (adiabatic, 7/\—0) (32

The above equations of matter dynamics, e.g., E8js. ) )

(9), (14) for the model with dark matter, photon fluid, and With d=6-3¥ gor all a. Then the terms in Eq27) that are
neutrinos, that are complemented by the elliptic gravitationaProportional toc; cancel by Eq(29). Hence, all the velocity
equationg23), (24) form a well posed closed system. They pote_nt|als evolve Identlcally_on superh_onzon scales in the
are the basis for our subsequent analytical analysis of th€ading and next to the leading ordersif\:
perturbation dynamics.

u,=—Hu,+® (adiabatic,r<\). (33
B. Superhorizon conservation of the coordinate number The same is tr_ue for atl, =d, WhiCh remain constant by Ea.
densities (26). The leading order evolution of tHe=2 multipoles de-

) ) ) ) pends on the internal dynamics of the species. For example,
To illustrate the conservation laws prior to their generalihese multipoles vanish identically for perfect fluids but they
derivation, we start from the model where all the scalar dyyoy for neutrinos. Nevertheless, the given definition of

namical (matte) degrees of freedom can be described by, gighaticity demands tha ,—0 in the 7—0 limit. This is
scalar potentialgl; , that satisfy the evolution equations of ¢qnjstent with our previous observation that, for the “grow-
the form(4),(5),(20). Below, X is a characteristic comoving ing mode” initial conditions, Eq(28) yieldsd, ,~ 7.

scale of perturbation variation in space. For a harmonic “in addition to the coordinate particle number density per-
mode it can be taken as=1/k. Since in the subsequent y, hationd, two other perturbation variables are known to be
sections we are interested in the universe evolution long aftef,nstant for adiabatic perturbations on superhorizon scales.

the ilnflation, we first assume that the comoving Hubble scalghese are the spatial curvature perturbation in the comoving
‘H ~(7) grows throughout all the considered time. Then it ISgauge

natural to choose the zero of timeat the formal limit of the
equationsH ~1—0. This choice will be implied whenever R=W¥+MHu, (34

we refer to a specifie value, in the context of postinflation-
ary expansion. All of the above assumptions will be lifted byfqz' (tA%).’('A;ﬁS)’ R_?fs'[5g'65j{6z* and thEe Cl:'&\ga;)ur[zsr])er-
the end of the section. urbation in the uniform density gaugé Eq. .

We set the initial conditions at a time,<\ asd, ,
~(7n)'. Such initial conditions are natural fogrowing

modes, where perturbations are finite for0. If the global 8We define a perturbation as “adiabati¢a curvature perturba-

LT . . tion) if in some space-time coordinates all the proper matter distri-
intrinsic curvatureK does not dominate the Friedmann ex- " . : )
butions or fields and their proper rate of change, all smoothed over

pansion and the universe does not |ana;v.->(— 1/3) then, an arbitrary comoving scalk, appear unperturbed in the limit
by Egs.(A15), (A13), H~1/7 and y~1/7°. Th(gn for our 4 )\ = const.[Without the assumptioft{~ 1/7, the relevant limit
initial conditions andr<\ we can drop all th&/= terms in s [64] % ~1(7)—0,\=const] In this, “superhorizon,” limit the

: : 2
the evolution equations up to an err(7?/\?). We thus space-time metric in the considered coordinates remains perturbed.

find We prove in Appendix B that for any wave vectorthere exists a
. nondecaying perturbation mode with such properties. This mode
da=0, (26)  satisfies the conditions of adiabaticity of RE#5] and Ref[59]: As
shown in this subsection, under mild natural assumptions about the
Ua=C§(da+ 3Hu,+3W) —Huy+ P, (27) internal matter dynamics, the corresponding comoving curvature

perturbationR is constant beyond the horizon, up @(7%/\?)
corrections. Since after a coordinate chaiig23) the proper en-

d| s d_,. (free stream|=2), (28) ergy density and.pressure of specesppear perturbed aSPa
S 20+1 ' =p,07 and 8p,=p,d7 in the linear order, all the ratiodp,/p,
and 5pa/ba in any other gauge in the above limit are eql&9)].
d+3Hu+3¥=0, (29 (The general existence of superhorizon-scale perturbations with
constantR and equal values for all the ratia%./p, and 5pa/|ba
V—O=3y. (30 was proved previously in Ref65].)
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(The sign ofR and¢ in this paper coincides with the sign of If all the speciesa are perturbed internally adiabatically,
the Newtonian potentials. Most of the references use the opwvhich is automatic for single-component perfect fluids, then
posite sign. Since the scalar metric perturbations are notwe showed that all thel, are constant for growing modes
dynamical but are fixed by matter perturbations with con-beyond the horizon. However, the variabltsneed not be
straint equations, one may expect a simple relation betweegqual for differen@’s if the overall perturbation is not adia-
the conserved matter perturbatidrand the metric perturba- batic. In this case

tions R or {. Indeed, the comparison of ER) and Eg.

(A39) gives immediately that [=—d= S x4, (40)

d=-3¢. (35
in general changes outside the horizon as the species en-
It also follows from Eqs(A40),(A17) that thalpy abundances, , Eq.(A10), vary during the expansion.
This is essentially the curvaton mechanism of R68| (see
Ref.[69] for a modern versionconverting isocurvature into
curvature perturbations.
Most generally, any system with locally interacting matter

Thus, up toO(7?/\?) corrections, for the growing adia- and Einstein gravity possesses a covariantly conserved

R=(+0 (36)

F .

batic perturbations and all the specis energy-momentum tensdr*”. Therefore, the scalar pertur-
bation variablesd=§—3¥ andu are always well defined
da(7<N,r)=—=3¢n(r) (adiabatig, (37  with Egs. (A19),(A20). From the covariant conservation

To ,=0

N ’

where (1) is the time-independent superhorizon value of

the curvature perturbatios. Substituting this result in Eq. ., pSP—pdp
(17) and remembering that fdr=1 d, ,~7—0, we also d=Vaut+ ——-—-. (41)
find ' (ptp)

. . . In Appendix B we show that if a growing adiabatic pertur-
Da(7<\,r,n)=—3jn(r) (adiabatig. (38 pation is initially localized in a spatial region then all the
_ . . _ . matter and gravitational Newtonian gauge potentials, includ-
The conservation 0D,(n) or, for noninteracting particles ing u, vanish beyond the particle horizon of this region.
with non-negligible mass, ofif,(q,n) in Eq. (11) is also  Then, by the Gauss’s theorem, the velocity divergence term
evident from Eq(14) or Eq.(12), in which all the terms with  in Eq. (41) has zero integral over any volume enclosing the
gradients can be dropped for superhorizon growing perturbaparticle horizon. For the initial conditions that are adiabatic
tions by the same arguments as before. ~ as defined in footnote 8, the gauge invariant quartifyaq
_Equatlon(7) a_ssumed tha'_t local pressure of th_e SPecies i, s5p— pép)/(p+p)? tends to zero in the limir—0,\
uniquely determined by their local energy density. Without_ const. I, motivated by either the equivalence principle or
tTS assumption, for al:.trllg muhtually nonmteractlngﬂ.groaps analyticity of the system dynamics, we accept that the metric
of matter species or fields, the energy conserva 'éﬁ?“ perturbations generats, ,qonly in O(7/A?) order (in the

=0 gives frame where the matter is initially unperturbed but also in

_ PadPa—Padp any other frame because of the gauge invariancéngq‘a()
d,=Vau,+ —2 278 (39) then in the leading and next to leading ordersriin the
(PatPa)® variablesd and /=—d/3 are constant. So the comoving
gauge curvature perturbatidR, Eq. (36), is constant up to
[We emphasize thas” and all the variables in Eq39) are O(72/\?) deviations.
defined Appendix A independently of the nature of the spe- |f a stage of inflation, defined as cosmic expansion with
cies self-interactio As previously,Vu, can be dropped for positive acceleration?a/dt?, and hence &ontracting co-
growing superhorizon perturbations. Since energy densitynoving Hubble scalé{ ~%(7), is also considered, the con-
and pressure perturbations transform under a gauge transf@fition +—0 should be replaced b ~1(7)—0, Ref.[64].
mation (A23) as Sp,= Sp,+ p.dr and p,=Spa+pP.d7,  Then this limit and the related definition of adiabaticity in
the additional term on the right-hand side of HE§9) is  footnote 8 in the inflating universe apply to theure rather
gauge invariant. If for a considered group of speaieshich  than the past.
may interact among themselves but do not couple to the Finally, what about the universe evolution that begins
other species, the energy density and pressure become honwith an inflationary stage and proceeds to the canonical big
geneous as/\—0 in some coordinate frame, this term is bang? Referenckg5] defines adiabaticity and considers the
initially zero in any frame. We call such initial conditions for conservation laws in the limik —c. However, the initial
the species “internally adiabatic.” For them, all the right- conditions for modes with finite wavelengths can be different
hand side of Eq(39) vanishes and, is constant beyond the from those for the infinitely large scales. To accommodate
horizon. Generalization of the arguments that follow &4)  such physically viable possibilities, we define the adiabatic
gives thatd, starts changing only in the ord€(72/\?). initial conditions for anyfixedfinite spatial scale.=1/k on
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the stage of increasingt *(7) by formally evolving the 167Gp., o 2Hr2€fw
perturbation with the postinflationary equations backward in Yy= I = z
time to# ~*—0 (and similarly by evolving forward in time
to % ~1—0 during the inflation This approach allows one
to quantify the primordial nonadiabaticityadmixture of

, 43
3a? a? 43

where w,=Q_h*~2.47x10 (T, ¢/2.725 K)*. For neutri-

isocurvature modegswhich can be probed by CMB or matter nos,

spectra, aany k The smaller the primordial nonadiabaticity 7/ 4\43

and the “tidal” O(H ~?/\?) dynamical deviations are, the y,=a,y,, avzﬁz_<_) N,~0.2N,, (44)
better the proved conservation laws apply. py 8111

where the standard big bang nucleosynthesis predigts
lll. RADIATION-MATTER UNIVERSE ~3.04, assuming three Standard Model neutrino generations

If the primordial perturbations are nearly adiabdtithe and zero neutrino chemical potential. The effective number

inhomogenetities in the neutrino background may affect onI)Pf neutrino SpeCieSNVfg' first_, _be_cause neutrinos share
those CMB and CDM perturbations that entered the horizop®Me Of the energy @ e, annihilating soon after the neu-

while the radiation fraction of the universe energy was nonfin@ decoupling peal75]; second, because this energy,

negligible. As for the perturbation modes with larger wave-T0St of which heats the photons after the annihilation, is
lengths, the number density perturbatiahs= — 3¢;, remain somewhat reducgd by finite tempt_arature.QED cqrrectpns
frozen and the higher angular multipoles ; , of the photon [76,77]. The physics of both effects is concisely reviewed in
and matter distributions negligible until the horizon entry. By Ref. [78].
the time these modes enter the horizon and the species dis- Of course, here we allow, to be a free parameter. It
tributions start evolving, the neutrino energy density pertur-characterizes the energy density of all the decoupled ul-
bations are too small to have a gravitational impact on thei}rarelatlws}lcispec[e.s at the moment considered, implied be-
evolution. ing aftere™e™ annihilation but before CMB decoupling,
Thus in much of this work we will be interested in the 43
perturbation dynamics at the redshift 10°. Barring the N,=pielq / Z(i) o.l. (45)
possibilities of noticeable early quintessefé#] or the Car- v Preldecoup /gl 11) Y
dassian modification of Friedmann expansiat2,73, the . )
background expansion at that time can be described by a flat This parameter may have a nonstandard value due to ei-
radiation-matter model. The radiation energy density is prother an unaccounted change @f or p.,, or the density of
vided by CMB photons and neutrinos, whose mass becomedditional weakly interacting ultrarelativistic specieX)(
dynamically ~ relevant only at z=m,/(3kT, ) The latter would presumably Qecouple at very hl'gh tempera-
~200m,/(0.1 eV) and is neglected heréThe published fure when the universe contalne_d more rela_t|V|st|c degre_es of
WMAP [13] 95% C.L. limit on the neutrino masses fis, freedom than during the neutrino decoupling. As p_art|cles
<0.23 eV) The massive matter consists of cold dark matterSuch as heavy leptons, hadro, and Z bosons, Higgs
c and baryons. f|§lds, superparticles, etc., become nonrelativistic and anni-
We begin from establishing notation convenient for thehilate, the entropy shared by the coupled photons, electrons,
radiation-matter model. The linearized gravitational equa@nd neutrinos increases. Since the comoving entropy density
tions, e.g., Eqs(23),(24) or (A42),(A45), involve the re- of t_he decoupled specieéremains unchanged, thelr contri-
duced enthalpy background density=47Ga2(p+p), Eqs.  bution to the parametéA5) may become substantially below
(A11)—(A13). For baryons and CDM, witp,= p, o/a® and unity. A light f|'eld. carryinggy gﬁgctlve degrees of freedom,
negligible pressure, it equals with the fermionic ones multiplied by 7/8, that decoupled
when the remaining particles in thermal contact had
0(T-xged degrees of freedom, contributes to the rdt®)
, (42) as

2
47TGPb(c),o _ 3H ref®h(c)
a 2a

Yb(c) =
43

9(T <xded , (46)

AN 2
v 7gX gyev

where H=100 kms* Mpc™* and wp(y=Qpyh?. The
present WMAP constraintgl3] on w, and o,=wp+ o,
assuming the standard neutrino content, arg=0.024  were g,,,=43/4. So, for example, a hypothetical neutral
+0.001 andw,,=0.14+0.02. Majorana fermion or a scalar Goldstone boson that decou-
The reduced enthalpy of photong,=(16/3)7rG azpy, at  pled when the remaining relativistic degrees of freedom were
a given redshift H is fixed by today’s CMB temperature composed of all the fields of the minimal supersymmetric
T,0=2.725-0.002 K[74] as standard modelg(T - xged =915/4 would give AN, =1.7
X102 andAN,=9.7x 10 3, respectively.
It is sometimes convenient to use the ratio of comoving
9The following argument and its conclusion do not apply to time 7 to a characteristic time of the radiation-matter energy
isocurvature initial conditions, considered recently for neutrinos inequality, and the ratio of the scale fac#to its value at the
Ref.[70]. equality:
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=l a=2 4 n_t m_2
= — =— r)— r)—
T Te' aeq' ( 7) H —;, Y —?- (54)
where In the radiation era{’=1-R,, x{"=R,, andx{’ for any
(1+a,)o nonrelativistic species is negligible. The evolution equations
Qo= % (9),(14),(23),(24) in this regime become
m
.1
1 1+ 0.3x0.7 —2v2d, =V?2
_ a, , 48) d, 3V d,=Vi(>+V), (55)
3.5x10°\ 1.69/\ O _h?
and D,+nViD,=—-3nV(¥+®), (56)
6
_ Teq o 1 Aeq V¥ -6V =2d+ —u, (57
Te=— — _~— 1 — T
2( \/E— 1) Hier Vo
> 6R, T,
130 M [1+a,[ 0.3%0.7 P=V-— (58
~ pc 169 thz . T
(49) On scales well inside the acoustic horizang 7//3, the

The Friedmann equation for the radiation-matter universe i

terms of the variable§47) reads (la/dr)2=1+a, yielding

a=7+-72 (50

T 2 5
== = . 51
1 N
a
1+ZT 1+vVl+a

Note for reference thatr=4r4(1—r)/r, dr=—47dr/r?,
anda=4aeq(1—r)/r2. In terms ofr,

ravitational terms on the right hand side of E¢s5),(56)
are negligible. The oscillating photon acoustic modes and the
free-streaming neutrinos decouple from each other. However,
the phase and the amplitude of the acoustic oscillations are
set by the perturbation dynamics during the horizon entry,
when the gravity of neutrino perturbations played a signifi-
cant role. Likewise, the neutrino perturbations affect the dark
matter peculiar velocities, evolving according to Eg), as
the matter received a gravitational boost from the radiation
when the fluctuations entered the horizon in the radiation era.
If the neutrino density is negligibleR,—0) then the
above equations have compact analytic solutions in either
Fourier space, Eqs(110,(117),(127), or real space, Egs.
(109),(116),(126). When the neutrino gravity is appreciable,
it appears difficult to track the evolution of the Fourier
modes analytically through the horizon entry. But in Sec. IV

2-r 2R,r? we succeed with an analytical approach in real space.
H: 1 ’YV: 2 1 (52)
T T
B. Perturbations in the matter era
where When massive matter, with pressure and anisotropic stress
o being negligible comparatively with its energy density, be-
sz&z 4 (53) comes the dominating component then by E(&2) and
pr 1ta, (A13)

is the neutrino fraction of the total radiation energy density 2 6
pr=p,tp,; R,~0.408 for N,=3.04. The formulas de- HM=— 7(m):—2_ (59)
scribing the superhorizon perturbation modes, Sec. Il C, be- T T

come very compact if the mode evolution is parametrized by ) ) _

r. For example, see E75) for the well knownk=0 grow- Prowded_the energy dgn_sny pertl_Jr_batlons are also dominated
ing mode of the gravitational potential in the radiation-matter?Y Massive matter, giving negligibler, by Eq. (24) the
neutrinoless mode60]. The radiation and matter domina- 9ravitational potentialsb and V" are equal. After baryons

tion limits of these formulas are easily read off by settirg
1 and 0, respectively.

A. Perturbations in the radiation era

decouple from CMB photons a;~ 1090, we can also take
op~0. Then by Eq(A44)

O +3HP=0. (60)

When the universe energy density is dominated by photoThe corresponding nondecaying solutions are time indepen-

gas and ultrarelativistic neutrinos, for all of Whim@l:cg1
1

=3, then
3

dent on all scales. The constahtand¥V modes that enter

the particle horizon aftery are easily related to the epoch-
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independent primordial curvature perturbatig. Indeed, — °” " —
by applying Eq.(A38) to superhorizon scales, whef o, 0 105 3 el Y
=i, by EqQ. (A40), one finds ~ « I : :iiﬁgigﬁm
005 = i |... ®and¥,R=0
q)(m’)\>H;1):\I’(m’)\>H;1): Eg (61) Ni} Engs
d d 570 B ® 0o =
Whend =¥ =0, we can rewrite Eq(14) for ultrarelativ- s T e ER

istic neutrinos or for photons after their decoupling as

- off FIG. 1. The evolution of superhorizon adiabatic perturbations in
0, +nVi0, =0, (62 the radiation-matter univers&) Neutrino anisotropic stress poten-
tial. (b) The Newtonian gauge gravitational potentials. On both
where plots, the solid curves show the full result for three neutrino species.
1 The dotted curves correspond to zero neutrino species. The dashed
eff ~ curves on plotb) are the sums of the leading and subleading terms
O, (r.r.m= §Da+ ERRE (63 in the expansion of the potentials Ry, for three neutrino species.
The dashed vertical lines shaa,q at CMB decoupling, given the
[If the free-streaming particles were in local thermal equilib-cosmological parameters of R¢#6].

; ; ; eff N ; _
rium at their decoupling the®_"(7,r,n) is the relative tem Then, by Eqs(24),(52, ¥ —d=3y,m,~R,r2¢,. Hence,

perature perturbation of the particles propagating in the d'Tn the radiation era, whemn—1, the neutrino anisotropic

. ~ . . . . ff e i

rection n E)Ius the gravitational redshift correctior®$ stress leads to splitting the Newtonian gauge potentlals

= 8T (7,r,n)/T,+®.] For superhorizon adiabatic perturba- and¥ even on superhorizon scalgs7]. The effect disap-
tions in the matter era®@Sf(r<\,rn)=—¢,+®+¥  Pears in the matter and later eras, after the energy-
=1d(r), Eqs.(16),(72). The corresponding, “Sachs-Wolfe” momentum tensor of neutrinos becomes negligible compara-

; L tively to that of nonrelativistic species.
79], solution of Eq.(62) at later time is . .
[79] a.62 In Sec. 11 B we showed that for superhorizon growing

; 1 R adiabatic perturbationd,= —3¢;,= const for all the matter
0% (r,r,n)= 3 P(r=nm). (64)  and radiation species. The superhorizon evolution oflthe
=1 multipolesd, , and gravity is described by Eq$33),
The related multipole potentialyy ,, Eq. (17), for a single (28)—(30) of Sec. II B. In that section we also observed that
Fourier harmonic ®,(r)=Re(A&k ") follow from Egs. for adiabatic perturbations all the velocity potentialsare

(63), (64) and Eq.(22) in footnote 7 as equal, up to O(7%/\?) corrections, to the momentum-
averaged velocity potential. Then, by Eqs(28),(19),

sin(kr)
kr

slo. d_ "% & (65 .4
ko I=1la— kl k- ( ) 7T,,=1—5U (T<)\)- (66)

a

The evolution equations for the perturbations of other spe€Combining this with Egs.(33),(29)—(30),(35) we find a
cies also have simple analytic solutions when the gravitaclosed equation
tional potentials are time independent. We do not write these
solutions here because the linear perturbation dynamics in
the matter era has been thoroughly studied in the past, and
neutrinos, while relativistic, do not modify it. Of course, the
power spectra of perturbations in the matter era are affecte : S
by neutrinos through the change of the effective initial con- 9. _1(a) with the sqlld I|ne_. . .
ditions for the modes that entered the horizon prior to matter Given the neutrino anisotropic stress potentg), the

domination. We discuss this modification of CMB and mattersuperhorlzon value of the v_eIo_cny potentu_aban be calcu-
power spectra in Sec. V. lated from Eq(66). The gravitational potential® and¥ are

then obtained from Eqs(33),(24). The potentials corre-
sponding to theN,=3 numerical solution of Eq(67) are
plotted in Fig. 1b) with the solid lines.

Thel=2 multipolesd, , of the phase space distributions ~ We observe that, first, coincidentally, the Newtonian po-
for the nonrelativistic CDM and baryons are negligible in thetential ® is almost unchanged during the radiation-matter
linear regime. They are also small for CMB photons, isotro-transition if N,~3. Second, when radiation is dynamically
pized by scattering prior to hydrogen recombination. Thesignificant, the sumd + W is smaller in a universe with a
integral solution for the multipoles of free-streaming par-larger effective number of neutrinos. This sum governs the
ticles, Eq.(21) in footnote Il A, shows that for neutrinos on propagation of CMB photons, as seen from Ef. with c2
superhorizon scaled ,~ ¢, . Particularly, the neutrino an- = 1. The following analytical analysis quantifies these obser-
isotropic stress potentiat, = %dzw is of the order ofr?f,. vations.

. . 4 4
7TV+2H7TV+ §7V7TV:1_5gin (T<)\) (67)

:és nondecaying numerical solution fof,=3 is plotted in
i

C. Superhorizon scales
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In the radiation era # =1/, y"=2R,/7%, and the ¢ '~ . e — : 2
growing mode solution of Eq67) is O : 2= : 8
208 | 05} .. Aoty 7 -/
5 | L '3
(I’,T@)\):L ng . (68) - 06 :deOOUpIing - 0 _._,__:__‘,_,41’:',/
v 15+ 4Ry 3 0 02 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
r a) r b)

Hence, from Eqs(66),(33),(24), FIG. 2. The functiond ,, f4, fy, and the combination 2,

1 20 —fy that appear in th®©(R,) order of superhorizon perturbation
q)(r,1-<)\)= ( 'n),

(69) evolution, as considered in the main text. The evolution variaide

1+ iR defined by Eq(51). The radiation density domination corresponds
15 7 tor—1, the matter density domination te-0.
w14 ER PN (70) (R,—0)_ 2 .(r) 24in (76
5 Ty 15 3
Relation(70) between the potentials in the radiation era was h
previously derived in Ref(57]. where
In the matter era  (™=2/7r and they,, term in Eq.
(67) is negligible. Then 1(3-r2 2r2nr
f.(r)== + .
S| 1-r  (1-r)?
72 2¢,
(m,7<N) _ _ ~>in (71)
v 25 3

The functionf _(r) is plotted in Fig. 2a). Its radiation ¢
—1) and matter (—0) era limits are 1 ang correspond-
ingly. In Fig. 1(a we compare the leading order solution
3 W(VR”O)ITZ, dotted curve, with the previously found numeri-
‘D(m”@):‘l'(m”@‘):g(in? (72 cal solution forN,=3.
To determine th®©(R,) terms in the gravitational poten-
cf. Eq. (61). tials, we rewrite Eqs(66),(67) as

In the intermediate regime E@67) has no simple exact
solution. But the physics of the superhorizon perturbation 1 6R,r?
dynamics in the presence of neutrino anisotropic stress can —z(aZU)'Zim— 7
be studied analytically by expanding the solution in the pow- a
ers ofR,. The calculations in the zeroth and the first orders
are straightforward and are given below. where we substituted the res@#?) for y,. The O(R,) so-

In the zeroth order, i.e., when the neutrino fractRpis  lution for the velocity potential is obtained by using the
negligible, the gravitational potentiath and ¥ are equal. O(1) solution(76) for o, on the right-hand side of E¢77).
Then using Eqgs(33),(29) and remembering that on the su- After its integration,
perhorizon scaled= —3¢;, we have

and we obtain the conventional result

T,, (77)

47
1 u=u®—0— %fuR,ﬂ— O(R?), (79)
— (@R =g, (73
a
with
This relation is easily integrated wherof Eq. (51) is taken
for the evolution variable: 3r2[ (2-n)f,—1
fu(r)=—=|5————+1-r1|.
Ry T(6F3r+r?) 00" @A-n
U= s fin- (74
Hence, by Eqs(29),(30),
The gravitational potentials then follow from E@9) as
8¢
2 3\ oy P=pR—0— =2F R +0O(R?),
HR~0) = (R,—~0)— i 9 . 2§'”_ (75) 45 (R,
10 2 2] 3
This fluid limit solution, known in more lengthy forms be- T =pR—0) ¢ 4§infq,RV+ O(R?), (79)
fore from Ref.[60], is plotted in Fig. 1b) with the dotted 45 .

line. The anisotropic stress potentia) of a trace amount of
neutrinos can be found by the integration of E@®),(74) as  where
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(82

3r2f,—fy {(T7—0K)=¢in,

fe(r)=2-nf,, fqo(r)= 2
where(;, is ak-independent constant, we see from Egfl)

All the functionsf,, fq, andfy tend to 1 in the radiation that
era limitr—1, and to 0 in the matter era limit—=0. f4(r)
andfy(r) are plotted with solid curves in Fig(l3).

The dashed lines in Fig(ll) show the sums of the leading
and subleading terms in the analytic solutidi8) with R, [ Sp(x) denotes the Dirac delta functigriThus the consid-
set to its standard value 0.408, correspondindNie=-3.04.  ered Green’s function describes the linear evolution of a
As seen from the plots, th@(R,) approximations describe sheetlike curvature perturbation that was created on the
the main features of the numerical solutions rather well. Thavhole planex=0 and is independent of theandz coordi-
splitting, about 11% smaller than predicted, between the ponates.
tentials ¥ and ® in the radiation era corresponds to a The initial ratios of the perturbations for different species
4R,/15~11% smaller actual value of the anisotropic stressshould be specified as well. In our analysis the initial condi-
7, than is given by the leading order formui@6) [cf. Fig.  tions are assumed adiabatic, but the Green’s function method
1(a@)]. can be generalized to incorporate an admixture of isocurva-

By Egs. (9),(14), both after the photon decoupling and ture perturbations. The right-hand side of E8p) could also
when the baryon loading is negligible prior to the decou-be chosen a#\(ik)" whereA is constant anah is assumed

{(7—=0X) = {indp(X). (83

pling, the photon dynamics is affected only by the sdm
+W. This sum depends on the neutrino abundance as

I(DP+W) 4%
TR, 45 [2fe(r)—fy(r)]+O(R,).

(80)

4

The combination 24— fy is plotted in Fig. 2Zb) with the
dash-dotted line. It vanishes at=0.55, corresponding to

natural. The resulting Green’s functions would also be ini-
tially localized, with lim._oZ(7,x) =A5%(x). These initial
conditions are even or odd with respect to the parity trans-
formationx— — X if nis even or odd correspondingly. If the
initial conditions for the relative species perturbations have
the same parity, this parity will be preserved for alllt is
convenient to imposeveninitial conditions, as implied by
Eq. (83), for adiabatic perturbations anadd for isocurva-

ala,=6.0, and has a small negative value at smaller redture ones.

shifts.
The photon density perturbatiod, on superhorizon
scales remains constant and independemn® @ind ¥V evolu-

We discuss only the “growing” mode Green’s functions,
corresponding to growing Fourier modes in E§1). The
decaying solutions of the evolution equations are irrelevant if

tion. Thus on the scales entering the particle horizon at théhe primordial perturbations were generated medfigldings
redshiftsz=z.6 (for w,=0.14 and 3 neutrinos, these scalesbefore the sc_ales of our mter_est entered the horizon. _
exceed the acoustic horizon at recombination threefold or 'he following two observations prove extremely handy in
more the potential variation and the ISW effect induced bycalcglatlng the Gregn’s function. First, applylng the inverse
it in the CMB temperature anisotropy are little affected by Fourier transformation to Eq81) and settingk to 0, one
neutrino perturbations. Even more so, the background anfinds the foIIowmg simple connection between the mtegra! of
the adiabatic perturbations of relativistic species play no rolé Green’s function over all the space and the superhorizon
in the late ISW effect, caused by the global potential decayFourier modes of the same variable:

during the universe transition from matter to dark energy

domination. By this time, their energy density is dynamically (84)

irrelevant.

IV. STUDYING RADIATION ERA WITH GREEN’S
FUNCTIONS

fjxdxg( 7,X)={(7,k—0),

or an analogous relation for any other perturbation variable.
As it was shown in Sec. Il B, for adiabatic perturbations the

right-hand side of a sum rule such as E84) is time inde-
pendent for the curvature or density perturbatién®, d,,
5a, or df,. It vanishes for the growing adiabatic perturba-
tions of all thel >0 multipole potentials. In the radiation era,
Ythe k—0 limit for any other perturbation, i.e., involving
ravitational potentials, is trivially calculable for any neu-
ino density from the results of Sec. Il C.

Second, the adiabatic Green'’s functions with even initial
conditions(83) identically vanish beyond the particle hori-
zon of the original perturbationx|>r, for all the consid-
ered perturbation variables in the Newtonian gauge, includ-
ing the potentials® and W. This result is proven in
Appendix B. This is a nontrivial statement, taking into ac-
count that thd =1 multipole and gravitational potentials are

The evolution of cosmological perturbations in the linear
regime may be studied by superposing perturbative solution
(Green’s functionsthat are localized in real space. It is con-
venient to consider the Green’s functions that vary with onl
one spatial coordinatgs6], say x. They are related to the
Fourier space perturbation modes by one-dimensional FOL?F
rier transformation. For example, for the curvature perturba-
tion ¢Z,

+eedk .
anm=f —e®¢(1,k). (81

o 27T
Normalizing the Fourier modes to

083002-12



SIGNATURES OF RELATIVISTIC NEUTRINOS INCMB . . . PHYSICAL REVIEW D 69, 083002 (2004

not locally measurable physical quantities and their dynamwhere 6 is the Heaviside step function. In the matter dra
ics is not necessarily causal. =V =0;,6p(X), 0;,=P;,/3, and the Fourier transform of
the above formula reproduces the modes of ©§).

A. Green'’s functions for phase space distributions

Neutrinos and decoupled photons are described by their B. Neutrino distributions

distributions f ,(7,r,q,n) in the phase space,g=qn). A In theradiation era the evolution equatior{§5)—(58) can
scalar perturbation off, that does not depend onandz  be converted from partial into ordinary differential equations
coordinates must also be independentngfand n,: &f,  Wwith respect to a dimensionless variable

= 6f (7. X,0,u), where u=n,. For ultrarelativistic free-

streaming particles, the energy-averaged distribution Y= f_ (90)
D.(7,x,u), Egs.(13),(11), satisfies the transport equation T

Do+ uVD,=—3uV(¥+®d), (85) Indeed, the growing modes of such perturbationd asD, ,
@, or ¥ during radiation domination have the forh{r,k)
whereV=4/dx [cf. Eq. (14)]. The corresponding multipole =f(k7). The corresponding Green’s functioes. Eq. (81)],

potentialsd, ,(7,x), Eq.(17), equal scale as
ol 1du 1— 1—
(=1)'Vid o= fﬁ — Pi(#)Da(n). (86) P(rx)=—@(x), W(rx)=_W(x),
. - . 1 1
To illustrate the application of Green’s functions to neu- d,(7,x)= ;d,/(X), D,(r,x,u)=-D,(x,;u). (92

trino dynamics, we first consider the free streaming of mass-
less particles in a time-independent gravitational potential, a ) . L .
is thtlao case in the matter er[z)a Sec. I?I B. The tranpsport equd: Il the first or second partial derivatives of a function
tion satisfied by the effective temperature Green’s functiorf (7:X)=f(x)/ 7 are completey derivatives, which we de-
O%f(7.x,u)=1D,+®+W¥, Eq.(62), becomes note by primes, times some power af

. . (fN\1] 2 _f17.2
®gﬁ+ﬂv®§ﬁ:0- (87) :li— (if) /7 , Vf—f /T_,
. f=(x%)"17%, Vi=—(xf)"I7
Given the initial conditions®5'(0x,u)=0;,5p(x), it is e = 3

O 7,%, 1) =0 Sp(X— 7). (88)  The powers ofr can be canceled out of all the terms in the
evolution equationg55)—(58). For future reference, let us
The multipole potentialsy, , corresponding td,=3(@S"  note that
—® —) follow immediately from Eq.(86). Remembering

the definition of the Legendre polynomials f(7,k)= fmdxe*ik”(f_()(). (93)
1 d'(p?-1) .
Pi(u)= m d—Ml We define
. b+ V-0
we find b, = > @_ET, (94)
3®inTI71 !

O(7=[x[) =38o(P+W), The gravitational potentiad> _ is sourced directly by neu-
trino anisotropic stress as described by &§). On the other
(89 hand, the motion of photons in the radiation era and of neu-
trinos, Eqgs.(55),(56), is affected byd , only.
Applying the differentiation ruleg92) to the neutrino

0oy gravitationally interactingerfect fluidsthe linear evolution transport formulg(85), we obtain an easily integrable equa-
of the Newtonian gravitational potentials turns out to be causal, aggn

can be shown by generalizing the formalism of R&6] to arbi-
trary fluids. This is not true in general. As a simple counterexample,
consider an absolutelielastic collision atx=0 of two identical
sheets of ultrarelativistic particles that are orthogonal toxtlaeis
and move toward each other with opposite velocities. At the mo-
ment of the collision the system anisotropic stress-a0 disap- _ _
pears. This change® — ® instantly throughout all the space. (x—m)D,=6ud, . (96)

la=
2|+1|!

[(x—u)D,] =6ud’, . (95)

Since the Green’s functions vanish fioy| > 1,
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, in units 2§in/(31:)

+

Lo

FIG. 3. (a) Adiabatic Green’s functions for neutrir(solid) and

photon(dashed number density perturbations in the radiation era.

The neutrino fractiorR,, of the radiation density is assumed infini-
tesimal.(b) Adiabatic Green’s functions for the gravitational poten-
tials ®.=(V*=d)/2 in the radiation era. The solid and dashed
curves are the sums of tr@(RS) andO(R,) terms for three neu-
trino species. The dotted line 8, =® for R,—0.

Equation(96) does not constrai®, at y= . It is satisfied
by

_ 6 _
Dv<x,m=py<u)5D<x—m+ﬁwx) 97)

with any functionp,(u). [Even whend . and so the right-
hand side of Eq(85) are identically zero, there are nonzero
D,
Minkowski spacel.

The functionp,(u) in Eq. (97) must be fixed by the ini-
tial conditions. Considering thek— 0 limit of relation (93)
and remembering Eq398), for any|u|<1 we find

1
f_ldXDv(Xqu):Dy(Tk‘)OnM):_3§in- (98)

Substituting the solutiorf97) into the left-hand side of the
above identity,

6u —
25,00

X~ M 99

1
Pu(1)=—3Cin— f dx
For the multipoles
_ 1 dM _
Du,y(X)Eﬁl?H(u)Dy(x,M)

Eqgs.(97),(99) give

_ 1
D, (x)=-3 Eé’inp|()()
+fl dy’ 5+(X’)XP|(X)/+CI_)+(X)X'P|(X')
-1 X' —x
X 0(1—|x|). (100

In Fig.i(a) the sglid line shows the neutrino density pertur-
bation Dy ,(x)=d,(x) that is obtained from this equation

and the potentiab ., in the limit R,—0, Eqg.(109), when the
integrals in Eq(100 are easily taken.

PHYSICAL REVIEW D69, 083002 (2004

TABLE I. The integrals of singular generalized functions. Ad-
ditional valid formulas are obtained by simultaneously multiplying
the expressions on the left and on the right by ggng).

2
f(x) def(X)
X1
1 %2
=12, —
(x—a) n(X*a)n .
é In|x—a||§i
X2
Injx—a , |n|xfa|+ﬁ
(x—a)"*?! n(x—a)" "
In|x—a 1020 i
o 5In?x a||Xl

C. A note on generalized functions

The expressions under the integrals in E@9) or Eq.
(100 are singular afy’ = y. The value of the integrals de-

solutions that describe free-streaming neutrinos inpends on how the singularity is treated during the integra-

tion. Physically, this ambiguity corresponds to resolving the
last, divergent, term in Eq(97) outside of an intervaly

e[u—e€;,n+ €] and approximating thé®, , structure in-
side the interval by the firsg-function term in Eq(97). The
most direct approach is to take the integral Cauchy principal
values, implyinge; = e,—0.

Soon we will encounter the integrals of even more diver-
gent expressions, such ®s? or X~ 2In x, for which even the
Cauchy principal value does not exist. Nevertheless, we can
proceed with their meaningful calculation if all the singular
expressions are understood gsneralized functionsA de-
tailed mathematical treatment of the latter can be found in
Ref. [80]. The physical meaning of these calculations is
clarified by the following two theorems. The first one states
that any generalized function is a finite order generalized
derivative of a continuous functior;the second that differ-
entiation of a generalized functidiix) multiplies its Fourier
components (k) by ik. Green’s functions can be formally
defined as Fourier integrals of perturbation modes, (Bf).
Generalized functions provide a consistent, elegant formal-
ism for their manipulation even when the integrals diverge in
the Riemann’s sense. One could avoid the divergences by
working only with sufficiently smooth potentials of singular
real space perturbations, e.g., considerdngnstead ofSp
«V2d, on small scales. But the use of generalized Green’s
functions simplifies and streamlines the calculations.

Table | gives the definite integrals of several singular
functions, interpreted as generalized functions. This table is

o be precise, any finite order derivative of a continuous func-
tion f(x) with |f| bounded agx|—« by a finite power of|x|
defines a generalized function and, conversely, any generalized
function can be presented as such a derivative.
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TABLE Il. The Fourier transforms of singular generalized functions. The derivation of these results can
be found in Ref[80]. The values ofis(n), the logarithmic derivative of the gamma function, for a natural
argument follow recursively fromy(n+1)=1/n+(n) and ¢(1)=— vy, wherey=0.5772 is Euler’s con-
stant. In every case, shifting the transformed function argument by a coas@tisplayed in the first and
third lines, multiplies the Fourier image gy '2¢.

— Tede oo o
f(x)=f E(ié“’xf(so) f(¢):f_ dye X (x)
& (xy—a),n=0,1,2... (ig)e ia¢
sgnx —
%
(x—a)™", n=1,2,... —E;_I)l; " sgnepeiae
-n 2(_i)n_1 n-1
X sgx, n=1.2,... BT A
1
In|x| —wm+275(<p)}
XNl n=1.2,... - Erl—)lﬁqonflsgnqo[lnlqolwn)]
(-t n-1 21 /
¥ "sgny Infx|, n=1,2, ... oo ® {[Inlg|— () P— 57"~ (N}

easily understood by noting that the generalized functions&Jsing Egs.(92), we obtain a relation that can be integrated
corresponding to the expressions on the left are defined amce trivially, giving
the derivatives of the less singular expressions on the right.
Of course, the generalized integration agrees with the con-
ventional one on any interval on which the Riemann integral
exists.

Table Il lists the Fourier transforms of singular general-The general solution of the above equation is
ized functions. It is useful to remember that the Fourier im-

1\ — _ _
X 3| PLH (-1~ 2y, =0. (103

age of an even real function is even and real and of an odd +(x —const-F_(y), (104)
real function is odd and imaginary. , 1
X3
D. Gravitational potentials
Now we turn to the linearized Einstein equations and (X v’ x'?-1 (v
solve them consistently with the dynamical equations for the F-()= X 12 X (105
relativistic matter. First, we differentiate E¢58) twice to X'%- _>
obtain 3
CI_D’LIZRVSZVV, (101) The integration constant on the right-hand side of @§4)

is unambiguously defined for ajf if only we specify how
the integral in the second equation is understood )or
where we applied the last of Eqél9). The perturbation > —1/,/3, when the integration path encounters singularities

D,,(x) on the right-hand side is given in terms of the po- aty'= il{ﬁ. As discussc_ad in the prece_ding subsection, we
ten’tiala by Eq. (100 with =2 treat the singular expression under the integral as a general-
+ : — & .

Second, we note that for adiabatic perturbations in thézed function. Then, given a certafh” , one can integrate
radiation erasp/ Sp=1/3. Then we can easily eliminate all the singular terms using Table I. _

the matter perturbations from Einstein equations The constant in Eq(104) may differ among they inter-
(A42),(A44),(A45) to find vals (—o0,—11/3), (—=1/y3,14/3), and (14/3,). For ex-
ample, ifR,=0 then®_=0, F_(x)=0 and®_,(x) van-
) L L ishes for| x|>1/y/3 but not for| x| <1/y/3 [cf. Eq.(109]. As

v Sv2 V) Al d) — shown in Appendix B, with the initial conditions that are

v 3V v 3V e+ 7(3\P+q)) 0. (102 adiabatic and satisfy E¢83), the metric must remain unper-
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turbed beyond the particle horizdry|=1. From this we - 1
immediately conclude that consD in the interval d,= p75D( [x|— —) +
(—o,—1/y/3). Taking into account tha_(y=1)=0 be- V3
cause®’ (y) is odd, we see that the constant also vanishes

for x=1/y/3. Denoting the value of the constant in the inter-
val (—1/y/3,14/3) by pe, We thus have

20,
T
X— 3

(112

The de_Ita function prefactop,, is fixed by the condition
J11dxd,(x)=d(kr—0)=—3¢;,, giving

_ 1 1 o
<D+(X)=( ) pcpo([ IXI)—F—(X) . o= ot | e (113
(108) ? ) Xz_%

pe May be calculated from the resu({®9),(70) for superho-

rizon Fourier modes in the radiation era that give The prefactomp,, can be related to the constay,, ap-

pearing in Eq.(106), by applying the “Poisson law{57).

1 When Eq.(57) is considered as a relation among the Green’s
L 1+ gRV 20 fynctions, th(_a on_ly delta—function_singularity appearing on i'Fs
f dx(3+(x):—_”‘_ (107) right-hand side is the one provided by the photon density
- 1+ 2R 3 perturbation (112). As for the left-hand side, whera’
157 =d, +®_, the only delta function comes from the double

derivative of the term ¢?>— %) pe 8(1/y/3—|x|) in Eq. (106).
In the following subsection we obtain another, equivalent bufThe equality of these contributions requires
easier to apply, condition fixingg .
The system of the mtegro -differential equatida®1) and Pp=— \/§(1— R,)P, - (1149
(105), (106) for the pair @ . D' ) can be solved by itera-
tions starting from the solution in the limir,— 0. The latter
is

Substituting Eq(106) in Eq. (113 and eliminatingpg with
the relation above, we obtain

oR—0=q, (109 (115

1 |3 1
Py=T 2R |2%n~ fﬁldXF_(x) :

Calculating pg, from the last two equations is somewhat
2 ﬁ N easier than from Eq107).
Now we have all the analytic tools to analyze how neu-

as immediately follows from E¢101) and Eqs(106), (107). trinos affect CMB perturbations. The evolution of metric per-

Note that the Fourier transfor(®3) of the last Green’s func- tur:bati(r)]nsmr/]ithout dneu'Frinosis gjvefn bY E?csil(108),f(109).
tion matches the well known potential modes in a tightly ' N€n the photon density Green's function follows from Egs.

coupled radiation fluid: (112,(115 as

—(R — 3\/gé/in 1 1
o °>=—(§—X2) ( X (109

1 1
sin cos g0 = -
(D(R _’O)( k) 2§|n< (’DS 2“05) , (110) d‘y 3§|n \/—0( \/— |X| D |X| \/§> .
@3 3 116
with o =k/ /3. Its Fourier transfornt93) leads to the photon density Fourier

The next iteration step, giving the potentials @(R,) modes in the radiation era:
order, is performed in Appendix C. Figuréh® shows the

zeroth 0rder<I>+ (dotted and the O(R,) corrected(I)+ d(RﬁO)(T K= -3¢, (2 Singg
(solid) and® (dashed potentials forN ,=3.04. 4 ’ "

— cos<ps) , (117

S

with ¢s=k7/+/3. In particular, without neutrinos the photon
density modes oscillate under the acoustic horizeg(1)

The Green’s function for the photon density perturbationas a purep, cosine.
can be easily found in terms of the gravitational potential The predictions for both the phase and the amplitude of

E. Neutrino effect on CMB perturbations

&, . From EQqs.(55),(92) we obtain the photon mode oscillations differ when the gravity of neu-
trino perturbations is taken into account. The oscillations of
2_ 1 T _od the Fourier modes on subhorizon scales are described by the
d,=20, (111 . ) : ;
3 singular terms in the real-space Green's functions. For the

photon density(112) these are thes-function and f
The general solution of this equation is +1/y/3)~* singularities aty= =+ 1/y/3:
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Our analytical result$121),(122) can be compared with
the numerical fifB7) of Ref.[2], giving for the photon over-
density in the radiation era

N0, Theory d(yHS flt)(7',k)~
N,= 1, Theory, O(R)

9V (7k—0)coses  3{inCoSes
4 — N,=3, Theory, O(R,) 201+ —RV)

1+ 4 R ) |
- CMBFAST 5 157
1 (123

4 6 0 200 400 600 800 1000
ke /3% n a) ke b)

i _ This formula misses the phase shift due to neutrino pertur-
FIG. 4. (&) Numerically calculated photon number density per- yaions but describes the decrease of the oscillation ampli-

turbationd,, in the radiation era for zero and three neutrino SpeCieStude with the increase of neutrino fraction remarkably well
N, (dotg versus the theoretical predicti¢hl?) for N,=0 (dashed In the O(R,) order it coincides with the resultl22) by
12

and its rescaled and phase shifted asymptotic ftirg1),(122) for better that 1%.

N,=3 (thd)' (b) S'm"a_r comparison for the.dark matter density Although the primordial magnitude of the cosmological
perturbationd, and N,=0,1,3. The theoretical predictions are turbati . ble direct] detect th
given by Eqs(127)—(129). In all the cases th@(R,z,) terms in the  PE" u.r ations 1S unmeasurablé direc y’. one (.:an. etect the
; amplitude change of the CMB acoustic oscillations, pre-
analytical formulas are neglected. . . -
dicted by the first of Eqs(122), by comparing CMB and
dark matter density fluctuations. The latter, however, are

— 1 2r hemselves affected by neutrinos. In the next secti find
d —p.5 N LA 118 themselves affected by neutrinos. In the next section we fin
A0 =Py | Ixl J3 , 1 (118 the leading,O(R,), corrections to the CDM density pertur-
X3 bation modes entering the horizon in the radiation era.
where F. Neutrino effect on CDM perturbations
ry=<3+(1/\/§) (119 The evolution of the CDM coordinate density perturba-

tion d. is given by Eq.(8). In the radiation era it becomes

and the ellipsis stands for more regular terms. The Fourier 1
transform of Eq(118) follows from the first and third lines de+ —d.= V2. (124
of Table Il, wheren is set to 0 and 1, as T

d,(7,k)=2(p,coses—r,m\3 sinpg) +O(@g 1). Using the CDM Green’s function ansatiz(7,x)=d.(x)/7
(120 and the differentiation rule®@2), canceling the common fac-
tors 14#°, and integrating the resulting equation once trivi-

A nonzero phase shift with respect to the gosscillations is ally, we find

generated whenever,#0. By Eq.(119) this can happen for
adiabatic perturbations if only some perturbations propagate
fasterthan the sound speed in the photon fluid, and thus are
able to generate metric perturbations beyond the acoustic ho- ] ] o ]
rizon. This is the case for the neutrino perturbations, propaln Appendix C we show that in the,— 0 limit and with the
gating with the speed of light, Fig(8. adiabatic initial conditions this equation gives fp# 0

The values ofp, andr,, in Eq. (118 are calculated in
O(R,) order in Appendix C. With its result&C6) and (C7), —(R,—0) 1 1
the mode(120) can be presented as d =3¢ V3 Xl 0| =—Ixl|. (129

V3

(X?de)' — xdo=®". (125

- . -1
d)’( T’k)_3§|n(1+A7)COS(QDS+ 5QD)+O(‘PS ), (121 In Fourier space

where 1 _
sin
d " r k== 6§m( nost =g ciest =7,
Ps
(127)

A,~=—0.268R,+O(R?),

6¢=0.19127R,+ O(R?). (122
with o=k7//3.
As demonstrated in Fig.(d), our theoretical predictions are A finite neutrino fraction of the radiation energy density
in excellent agreement with numerical calculations for ther, affects the gravitational potential on the right-hand side of
radiation era, at the redshift=10", obtained withcMBFAST Eg. (124 and so the matter density perturbatidp. On

[42]. scales well inside the acoustic horizops&1), when the
The numerical calculations show that tB¥R?) correc- potential term in Eq(124) can be dropped, the general so-
tions contribute ta\ , and §¢ less than 10% wheN ,~3. lution for CDM Fourier modes should be of the form
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1 . baryons behind photons in imperfectly coupled photon-
de(7,K)==6in(1+Ac)| INps+ y— §+5c) +0(¢s 7). baryon plasma. While these effects are minor, the damping
(128 coefficient equal$81]

The values of the integration constarks and 5c are deter- _ 7(7) 14
mined by the mode dynamics during the horizon entry and T4(7)= 6 1= 151+Ry) + (1+R;)? . (132
are sensitive to the gravity of neutrino perturbations. The real
space calculations in Appendix C give that where
A,=0.229R,+O(R?),
To(7)= (133

aNe0 Thompson

oc=—0.632R,+O(R?). (129
The above result forry and Eq.(130 are valid while 7

The density perturbatiofl28),(129 in O(R,) order is com-  <min(1k,7). The damping increases substantiallg]
pared with the radiation eraz{ 10") cMBFAST calculations  within the CMB last scattering surface, where the imperfect
in Fig. 4b). Whenkr>1, theO(R,) analytical results un- fluid approximations fail.
derpredictd; variation forN, change from 0 to 1 by 11.6% The general solution of Eq130) can be obtained for
and from 0 to 3 by 23%. Since in the second cBsehanges  subhorizon Fourier modeks>1, using the WKB approxi-
by 2.1 times more than in the first one, the twofold increasenation [45,82. For the monopole of the photon effective
in the relative error is consistent with the origin of this de-temperature perturbation
viation from theO(Ri) corrections.

eﬁ:m_l_\lf—ld B I (134)
V. NEUTRINO SIGNATURES IN CMB AND MATTER 0y Ty T3 ’
SPECTRA
. It gives

Decoupled neutrinos affect observable cosmological
probes both by the gravity of theperturbationsand by the e,kzxg
change of the cosmological expansion rate due to the contri- ®8ﬁﬁA—l,4005{ kS+dp)—R,®, (139
bution of the neutrindbackgroundto the universe energy ' (1+Rp)

density. The first effect is prominent when cosmological per-
turbation modes enter the horizon in the radiation era. Thavhere the size of the acoustic horiz8rand the Silk damp-
corresponding modifications of the photon and CDM perturing lengthxs equal
bations were found in the previous section. The perturbations
remain to be propagated to the later epochs and related to _ |7 / 20 |7 ,
observable statistical power spectra. These tasks are ad- S(T)_fo cdr’, XS(T)_J; a7 (136
dressed in the current section.
The solution(135),(136) takes into account that on subhori-

A. CMB power spectra zon scales the photon-baryon fluid and neutrinos contribute
_ negligibly to the gravitational potentiatB andW¥, primarily
1. Theory overview generated by CDM. Hence, these potentials do not vary sub-
While photons are tightly coupled, their number densitystantially over a single period of acoustic oscillations. It also
perturbationd,, satisfies the equation assumes thaty<1/k, which is a necessary condition for the
validity of Eqgs.(130 and(132).
. HR, - 22 5 5 The photon-baryon plasma velocity potential, affecting
dyt 17 Rbdy_CsV d,=274V°d,+ V7 &+ 1R, the CMB anisotropy through the Doppler effect, is easily
(1309  found from Eq.(4). For Fourier modes,
It follows from Eq. (7) applied to the photon-baryon fluid d, 3®gf£/ A3 e ¥ kSt 50
i u,=——=-— = si ,
with Y K2 K2 kK (1+ Ry) ¥ ¢
o dpy 1 (137
Pyb ( b) where the last two equalities are valid within the approxima-
tions that were applied to the WKB resiit35).
_ 3pp a(7) [ wp The present CMB temperature anisotropy observed in the
Rp( T)=4—py20-610—,3 0.0 (13D girectionp,
~ % |
i ; 24 ; 8T(n) - -
[45]: The Silk damplng term QdV dylln Eq. (130 owes its E@(n)sz 2 @, Yim(N), (139
origin to both partial photon diffusion and the lagging of T =0 m=—I
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can be written as the line-of-sight integfdi2] sponding Bessel functions vanish exponentially when their
argumenk(7o— 7)=Krg is less thar, given|>1. Thus the
related to the acoustic oscillations constituentCpfare es-
sentially affected by only the modes that enter the horizon
well before the radiation-matter equality & 74/S(7e)

()= Tod 50 _uin 4Ol
(n)= o 19(0q,—v,ni+Q"nin;)

+9(P+)], (i (139  ~230, with 7, given by Eq.(49) and the WMAP best fit
parameter$46].
Here, for scalar perturba’tion@)(‘ﬁﬁy is given by Eq.(134), ) N 44
s L 0y ' . trino sianat )
U!y_ _Vl'uy, and' QI] — (VIVJ _ %5”?2)(], Wherg a, .neg“_ eutrino signatures an egeneracies
gible during the tight coupling, is a linear combinationmof For the modes that enter the horizon in the radiation era,

and multipole potentials that describe photon polarizationboth the WKB solution(135),(136) and the radiation era so-
The perturbationﬁgf;, u,, andq are evaluated along the lution (121) should be valid over a positive time interval
line of sightr () =(r,— 7)n, assuming the observer is posi- 1K< T<Te. Then the comparison of Eq135, whereR,,
tioned at the origin. The “integral visibility functiong(r) is ~ and X are negligible in the radiation era, with formulas
the probability for a CMB photon to propagate unscattered134),(121) shows that in Eq(139

from time 7 to the present timey: (a) the phase shifoe is given by Eq.(122);

(b) the integration constarft equals
F{ o d7’
g(r)=exg — f .
m 7(7")
] ) ) o The Fourier modes of plasma velocity potent{aB7) ac-
Expanding the expression under the line-of-sight integralire the same phase shift and same multiplicative change of
(139 over Fourier harmonics in a flat universe, we have  phe amplitude relative to the neutrinoless case.

The phase shift of the photon acoustic oscillations on sub-
horizon scalegsannotbe produced from adiabatic primordial
fluctuations by any dynamics involving only the photon-

(141 baryon plasma and nonrelativistic species. This is seen easily
in real space by noting that the acoustic oscillations corre-

The transfer functioff ¢ in the above equation is constructed spond to small-scale, appearing singular on the Hubble scale,
from the perturbation Fourier modes, normalized §yr  features in the photon Green’s function. We found in Sec.
—0k)=1, as IV E that in the radiation dominated universe where no per-

turbations can propagate faster than the acoustic speed the
S only such features would be the delta-function spikes in Eq.

+9(P+V). (116 atx=* /3.
(142 The spikes would continue propagating away from the
perturbation origin with the speed(7) of Eq. (131) past the

Given that for primordial fluctuationg ,(k)Z% (k")) radiation era until the recombination, as, by the general

=(27r)35(D3)(k—k’)P§(k) and that a plane harmonic equivalence principle, thei'r local acoustic; dynamics could
not be altered by the gravity of perturbations of other spe-

(140 A={in(1+A,). (144

~ 0 d3k ) -
= - 7 i(o—7)n-kK
O(n) fo de (277)3§m(k)T(~)(7',|<)e :

d #? 1
O +u,—+q| —+2k2
0,y Y (?Tg 3

To(r.k)=g P

; H 200 ~v* (O ain-X
prOJeth Aont.o a spherical one a$d®Q;Yn(n)e ~ cies. By the time of recombination, the singular part of the
=4mYin(X)i'ji(X), the CMB temperature autocorrelation photon density Green’s function would have the form

function CJ] '=(|®,,|?) becomes
, dy,sind 7:X) =D (7) 8p(|X| = S(7)). (145

2 70
CTTZEJ kzdkF’g(k)‘ fo drTe(7,K)jilk(mo—7)]| . The amplitudeD(7) depends on the expansion rate of the
(143 photon background. The Cf;llculations of REB6] in real
space show thaD(7)xe ¥*§/(1+R,)¥. The singularity
When CMB polarization or other cosmological anisotropiess,(|x|—S) becomes 2 cok§ in Fourier space, i.e., without
are accessible, additional two-point correlations can be comeutrinos we would recover the oscillating part of the WKB
sidered, such a€FF or C[F for the linear polarization com-  solution (135 with s¢=0.
ponentE generated by scalar perturbatiof&3]. The ob- Although the observed period @, oscillations depends
served CMB polarization can be expressed similarly to Eqon a number of cosmological parameters, such «gs
(139 as a line-of-sight integrdl50] over the perturbations =Q.h? w,=Q,h? or the totalQ), the oscillation phase,
that source the photon polarization. Likewise, the correideally, can be extracted independently of the period. In prac-
spondingC,’s are given by alk integral of the product of the tice, caution is required. Indeed, even in the neutrinoless
power spectrunP (k) and two time convolutions of pertur- model the location of the acoustic peaksdpis not exactly
bation variables wittj,[ k(79— 7)] or its derivatives. proportional to the wave numbéde of the extrema of the
Any contribution to the correlation functior, from the  effective temperature transfer functiéh35). This is caused
time of last scattering is characterized #s% 7y. The corre- by a variety of effects, listed in Sec. 8.3.2 of R¥4]. Most
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of them vanish in thé— oo limit but only as negative powers
of I and are still sufficiently important to modify quantitative
predictions forC, phase even dt~3000. Two of the effects
remain finite for arbitrarily higH. First, the Bessel function
in Eq. (143, or a similar equation for polarization, is expo-
nentially cut off forI>kr, wherer=r7,—r1, 4o in the flat
model. But(]j,|?) decreases slowly, by a power law, for

PHYSICAL REVIEW D69, 083002 (2004

with the power spectral indems=d In P,/(dInk)+4 and its
running ink, especially for only a limited number of ob-
served peak§34].

Second, the scaling (A 7)2 is directly applicable only if
one compares the models in which the photon subhorizon
dynamics is identical in angular and redshift coordinttes
since the radiation era until the present. Here is the list of the

<kr. As a consequence, an extremum of the temperaturdimensionless quantities that characterize the cosmological

perturbation transfer functiofi35 at a certairk contributes
most to theC,; with | somewhatessthankr. This shiftsC,
peaks toward lowen’s: |, pea=[ 71/S(7, ged [(N— ¢br),
with ¢,>0. Fortunately, the corresponding shift, for C;'"
approaches a model-independent constant value[ 848
Second, the phase @ oscillations is obscured by the rapid
decrease o€, magnitude fol =10° due to the Silk damping

and smoothing of the anisotropies by the nonzero width of
the last scattering surface. Nevertheless, the numerical analy-

background expansion and the local photon-baryon
dynamics®® (1) The ratio of the universe expansion rates at
any redshiftz and at the presentd(z)/H,. It shows how
distances are mapped to anglez:k(h)—I. It also affects

the photon and baryon perturbation dynamics, considered in
the dimensionless variablelz= —H(z)dr andHydx. This
ratio

H(z)/Ho=[Qp(2)/p(0)+(1—Q)/a?]*? (146

sis of Sec. VI shows the robustness of the phase under the

change of any standard parameter other than the neutririg specified by today’s total density paramet@r=Q,,
density. The phase shift signature enables one to constrairt(),.,Q,,, the redshift of the radiation-matter equality 1

N, tightly when a sufficiently largé interval is accessible.

+Zeq= Pmo/ pr o, and the dark energy “equation of state”

The rescaling of the photon-baryon oscillation amplitudewydz) =pge/pge- (2) The ratio of baryon and photon densi-

by 1+A,<1 fork>1/5(7,) causes the same rescaling of all

ties, py/p.,, controlling the photon-baryon plasma dynamics.

the photon phase space density and polarization multipole$3) The ratio of the photon free-flight time,(7), Eq. (132,
which develop during the decoupling. The nonoscillatingto the particle horizon size. This ratio determines the inte-
part of the gravitational potentials, also affecting the CMBgral visibility function g(z), Eg. (140, and the important

anisotropy by Eqs(135 and (139), is, however, generated

Silk damping scale, Eq136).

by CDM density perturbations and rescales differently, by ~The present photon densipy, o is well constrained by the

1+A.>1, Sec. IV F. In thesquareof the transfer function
in Eq. (143 some terms oscillate ik with the periodAk
=7/S. They come from and only from the product of two
oscillating perturbations and must involve the factor (1
+A7)2<1. There are terms that oscillate with the period

Ak=2mx/S. They are produced by the cross product of the
oscillating photon and nonoscillating CDM generated contri-

butions and thus get multiplied by (1A,)(1+A.), which
by Egs.(122),(129 is very close to 1. It is hard to find a
similar factor for the sum of nonoscillating terms without a
detailed calculation. These terms consist of both the CDM
CDM contributions, scaling as (AA.)?, and the nonoscil-
lating parts of y-y terms from squares like (cq$?=3
+30s 2, scaling as (A )2

Thus we expect that fde>r/S(7.) =~ 230 the acoustic 0s-
cillations of theC,’s aredecreasedy the gravity of neutrino
perturbations by the factor ﬁAy)z. But the magnitude of

COBE measurement of CMB temperature 2.7Z6002 K
[74]. It is expected to redshift predictably as,=(1
+Z)4p%0 deep into the radiation era. The total radiation den-
sity depends oM, asp,=p,(1+«,), wherea,=0.2N,,,

Eq. (44). Given this, two models with differerid,, will have

the same ratiosp,/p, and H(z)/H, and the related
PmolpPro=2Zeqt 1, if these models have the same
=Q0ph?%, Q, Q,, andwg(z), but their Hubble constants
scale ahx 1+ «,,.

The two top panels in Fig. 5 show the relative change
6C,/C, for CMB temperature and polarization spectra under
N, variation from 2.5 to 3.5. The solid curves correspond to
preserving the parametets,, =1, Q,,, wge=—1, and
h/\1+«a,, as described above, as well as the primordial
power spectrum and the primordial helium fraction
=pue/pp- As seen from the plots, the model with a larger
N, has noticeably stronger damping on small scales. Indeed,
for a fixed ionization fractionx;=n./ny>n./wy, where

the C, oscillations depends on other physical quantities a%,,=(1-Y)w, specifies the primordial hydrogen density,

well.
First of all, on the primordial power spectruRy(k). In

the ratio

principle, this unknown could be excluded by comparing the———
CMB anisotropies with the matter density perturbations. The 12, ,yiverse with larger neutrino density expands faster, at least in

latter scale differently undeN, variation, as seen in Sec.

the radiation era. The corresponding photon temperature must,

IVIF and in the next subsection. However, given the largeperefore, decrease faster in the time coordinate.
experimental error on the matter perturbations, a better 13y il ignore the ratigy, /p,, Somewhat relevant to CMB. As

method to excludé, is to compare the height of the initial

seen in the next subsection, this ratio is very important for matter

acoustic peaks, entering the horizon closer to the matter e@olution. But it affects CMB anisotropies rather mildly, through
and hence less affected by neutrino perturbations, to theée nonoscillating CDM potential term in E¢L35) or through the
height of the subsequent peaks. This signature is degenerat®B lensing by matter structure.
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o T T 0.05 prrrr T obvious that the after such a rescaling = coincides in both
o 3 ok 3 models during the recombination, whegviolently changes
-0.05 3 2 with time. Despite the complicated nature of recombination,
b o b E g ~0-05 ¢ E the physical mechanism that is primarily responsiblesfor
F ] -0.1 | 3 evolution around the peak of the photon visibility functign
-0.15 F - 3 ] does lead to degeneratg(z) and so degenerate./ .
E T At the redshifts 1408z=800, which are of the most
-0.2 10002000 moon {000 7000 5006 interest, the dominating process leading to H recombination
1 1 to the ground statesdlis the suppresseds2-1s+ y+ vy de-
cay. Faster transitions toslwith the emission of a single
8.1, prmmym T oy AN R ERES ERLEES EARES photon do not create more hydrogen in the ground state be-
0.08 |- = L . cause the emitted resonance photon soon ionizes or excites
0.06 [ 3 01f . another H atom in the ground state. Using the approxima-
¢ 0.04 ERES § ] tions of Ref[86] (see Ref[87] for a recent reviey one can
“© - - - | &) . .
0.02 b E 0.05 [ ] find .the rate ofx, .change by assuming t.hat due to thg over-
TR & C ] cooling of the universe from the delay in recombination the
G l-' | | E 0 | | 3 fraction of all the excited H atoms is negligible compara-
—0pE ey 1000 2000 3000 tively to the concentration oH in the ground statexig

—
o

k [h/Mpc] ] =n.,s/ny and to Xe. Then Xqs Xe=1, hence dxy
= —dx.. The change ix;5 is mainly due to the spontaneous
FIG. 5. The relative change iG] (top lef), C[F (top right,  decay Z—1s+y+y with the lifetime A=8.2s:
matter density perturbatiofy,(k/h) (bottom lefy, andC{™ (bottom  dx,./dt=AXx,s. (The photoexcitation 4— 2s is negligible
right) whenN,, varies from 2.5 to 3.5. The solid curves show the when z< 1300) Xe decreases |rep recombination and in-
changes when all the other parameters, listed in Sec. V1, are fixegreases in hydrogen photoionization. With realistic approxi-
'Ih"he top tv(\go panells alsgllihé)w the change_lfltq)r f(ljxed (;ecomb'nat'o'?nations[86], one findsdx,/dt=— axXeXpNy+ BXas, where
istory and equivalent Silk dampinglotted. The dotted curve on X,=Xe, and @ and 8 at a given CMB temperature, deter-
the bottom left panel gives the changedi whenwy/wm is held — ineq by the redshift, are independent of cosmological pa-
fixed. rameters. The elimination ok,; from the equality of
dx;s/dt and —dx./dt yields
Te 1 h
—= (147)

= o«
T TaNgO Thompson Xe(1—Y) ®WHO Thompson dXe al

dt ~ B+AS

XpNi - (148

increases wittN,, asho 1+ «,.

The full conformal equivalence of the photon subhorizonWhen both d/dt=—(1+2z)H(z)d/dzch and nyec(1
dynamics can be straightforwardly implemented in numeri-—Y)w, vary in proportion toy1+ «,, as discussed above,
cal calculations. The dotted curves on the top panels of Figeq. (148 predicts that the functior(z) is unchanged, as is
5 show 6C,/C, when the global cosmological parametersthe last ratio in Eq(147).
vary as before but the numerically integrated equations in  Numerical calculations show that this conclusion holds
both models use the samg/ 7 and the same integral visibil- very well after the end of helium recombination at
ity function g(z). The remainingC, change for the modes =1500. For a variation o, from 2.5 to 3.5 and the corre-
I>200, entering the horizon before the radiation-mattersponding adjustment of by'* —0.051, the ionization frac-
equality, is uniform power suppression and a constant phasgn x, changes at most by 0.5%, and even twice as little
shift, as predicted for the effects of neutrino perturbations,yiihin the peak of the photon visibility functiog. (For com-
The shiftl—1+ 6l in the numerical calculations is only 80% parison, without the adjustment of helium abundance, the
of the expectedl =Alpedp/m=4.6, for the period of the  change ofx, reaches 6% within the visibility peakAt
acoustic oscillationsAlpe;=300 from Ref.[85] and d¢  2000<7z=<5000, when helium is singly ionized, the decrease
evaluated from the radiation era result E§22). Likewise,  of the helium density decreases the total number of free elec-
the power suppression is somewhat less than the radiatiqfyns by about 2%, and more at higher redshifts, when the
era predictions(1+A,)?~—4.8%, with A, given by the  gecond helium electron unbounds. But the related increase of
leading term in Eq(122). These discrepancies are caused byine silk damping scale, Eq&L32),(136), is insignificant, and

the residual effect of the large-scale relativistic correctione effect is quite negligible fodg/dz. The changesC, /C,
[see the first term in Eq117)], non-negligible matter density

during the horizon entry, an@(R?) corrections in Eq(122).

As suggested by Eq147), the ratior /7 in the compared  145grophysical constraints on the primordial helium abundance
models could be matched by varying the hehum abundancgary among groups and span a range0.238+ 0.010 (2r), Refs.
Y. Apparently, when all the helium has recombined but theg_1q; review in[88]. Taking this prior,Y needs to be considered
hydrogen remains fully ionizedx¢=1), the quantity(147)  as a free parameter in a CMB analysis only for the accuracies
remains constant i¥ varies as (+ Y)xhx 1+ «,. Itisless |AN,|<0.4.
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0 cation of the ISW effect by neutrino anisotropic stress does
E = e not play a major role as a neutrino signature in CMB. Spe-
;}0-05 NAVEY cifically, on large scales| €l peaf3=70) the ISW effect

IR becomes insensitive to perturbations of relativistic neutrinos.
\

0 1000 2000 3000 o 1000 2000 3000
| |

oy
Vg

B. Matter power spectrum

FIG. 6. The relative change i@] " (left) andCEE (right) for N, . . . .
variation from 2.5 to 3.5 and the adjustment of the helium abun- The growth of the acoustic perturbations in the tightly

danceY by —0.051 (solid). It is compared with the change from couplgd photon-baryon fluid is hazlteg by photon pressure,
rescalingC’'s by —4.8% and shifting them to smalléis by 6l described in 59(7)_by th? term—CSV qy_' WhereCS_?' 172
=3.7 (dashedl before recombination. Likewise, relativistic neutrinos and
CMB photons after their decoupling are stabilized against
for TT andEE spectra under the considered variation is seemyravitational collapse by the effective pressure, described by
from Flg 6 (SOlld “ne). It is Compared with the theoretical the same term Witba: 1/\/5, due to the Ve|ocity dispersion.
reconstruction(dashed ling obtained by shiftingC, by 6l |n addition, as noted in the introduction, the perturbation
=0.8Alpead@/ 7=3.7 and rescaling it bys(1+A,)>  modes of free-streaming particles on subhorizon scales decay
=—4.8%. The plots show that th¥ adjustment removes by “directional” damping. Assuming the dark energy too
most of the damping seen in Fig. 5. does not strongly cluster on small scales, only CDM and
The approximate conformal degeneracy of CMB dynam-after recombination baryons can cluster sufficiently to gen-
ics among the models witchangeddynamical time and erate non-negligible gravitational potential inside the subho-
|ength scales should be distingUiShEd from the well knOWr}'izon_ On subhorizon scales qug) S|mp||f|es to V2

degeneracy of primary CMB anisotropies under any varia—= yd. Then Eqs(7),(24) applied to nonrelativistic species
tion of H(z) for z<z, ¢ that preserves the angular diameteryith negligible pressurect=0) give

distance to the last scattering surf4é8]. The latter degen-
eracy is generally violated by the late ISW effect. The one . . )
found is respected by ISW but is somewhat violated by the dytHdy= X yndym (subhorizon. (149
gravity of matter perturbationgésee footnote 13 and, of m:Cp=0
course, by the gravity of neutrino perturbations.

The internal CMB dynamics is shown to be conformally
invariant in an increment dfl,, if the helium abundanc¥ is
decreasecsAY/AN,=—0.05. In contrast, the standard big

. L. 4
bang .nucl:ISeosyntheS|s e predmtmpreased He universe until the recombination while baryons are tightly
production.®> Indeed, for AN,>0 the universe expands coupled to CMB

fgster and fewer neutrons d_eca_y by th_e time it cools suffi- (2) Decoupling of the baryons from CMB and joining the
ciently to allow their conversion into helium. Of course, one - iter gravitational collapse ag§~1090.

should not presuma priori that the ratio of neutrino and (3) Growth of the pressureless CDM-baryon matter per-
p_hoton_ energy densmes_ IS preser_ved since the r]uc'eosymhﬁfrbations through the subsequent universe evolution, af-
sis until the matter era, i.e., thitt, in BBN and CMB phys- Fected by dark energy and, possibly, global curvature.

'g:/lgred equal_. BUtl i thet% argBT\?t’ thdg tnc:jn—deg\;aéneNracy 0 Equation(128) for CDM density perturbations in the ra-
ynamics along the -predicted curve(N,) diation era on subhorizon scales can be presented as
makes it easier to spot the discrepancy.

Neutrino perturbations can affect the gravitational poten-
(150

One can distinguish the following stages of the linear matter
perturbation growth from their entry of the horizon in the
radiation era to the present.

(1) Growth of CDM perturbations in the radiation-matter

tials even after the photon decoupling if radiation is still a d(C’*KT)(T,k):—6§in(1+Ac) A+In
significant component of the total energy density. When the
gravitational potentials are time dependent, there is a contri-
bution to the CMB anisotropy139 that depends on the \yhereA is the same function ofh for all k andR, :
line-of-sight integral of ®+¥, the so-called integrated

Sachs-Wolfe effect. However, as discussed in Sec. Il C, for 7h 1 o

superhorizon modes the derivativgé® +¥)/dR, changes A(Th)=|n<ﬁ> +y—5 (radiationera. (151
insignificantly after recombination in the standard models

with matter radiation equality a~3000. Thus the modifi-

15k
(+C)ﬁ

At later times the matter density perturbation must be of the
form

The sensitivity of the BBN yield ofHe and D/H to variation of
N, and y=ng/n, aboutN,=3 and the WMAP[13] “best fit" dm(7,K)=—=68in(1+A¢)
value 7~6.1x 10" 1%is roughly

AY )% 0.013  0.01)( AN, whereA and B depend onrh and on the cosmological pa-
Aln(D/H)) 10.14 -1.6 Alngy rameters affecting the background evolution at low redshift.
(based on the numerical results from Réfsl,89,90). We argue that throughout linear evolutidrandB are inde-

k
A+BIn| (1+5¢) -

] , (152
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pendent of the mode wave numberand of R,, provided withheld from gravitational collapse by the photon pressure.
that the compared models agree(,, in Q,, and in the The other reason is a greater dilution of the growing CDM
background effective equation of state(z)=p/p. This perturbations by almost unperturbed baryons when the latter
would immediately follow from the linearity of the evolution finally decouple from photons.

with the initial conditions(150 in the radiation era if the It is apparently impossible to change the neutrino density
equations of matter dynamics in terms of the dimensionlespreserving all of the parametess,/w,, w,, andg. If one
variable 7Hy> 7h coincide. The latter is manifestly so by variesR, while keeping z.= /o, and w, fixed, to
Eqgs.(149),(42) for stages 1 and 3 of the three stages of lineaminimize the changes in CMB spectra, then the param@ter
matter clustering identified above. As for stage 2, the scalevill vary. For example 8 decreases by approximately 41%
andR, invariances of the dynamics are violated by the smalfor N, change from 0 to 3, and by 14% fof, variation by
oscillations of the baryon density and velocity at the decou-l around its standard value 3.04. This is yet another source
pling due to the acoustic oscillations in CMRB]. However,  of breaking the degeneracies betwé¢nand the other cos-
this effect becomes negligible at sufficiently small scales bemological parameters. The significance@¥ariation for the
cause of the Silk damping. Hence we assume that the bargrowth of matter perturbations is evident from comparing the
ons decouple with initially negligible density and velocity dotted (fixed Q, and Q,) and solid (fixed w, and Q,)
perturbations. Then all the stages of the matter evolution areurves in Fig. 5.

scale andR, invariant. Then, from Eq(152), the matter

density perturbation modek,(z,k,R,) can be obtained from VI]. FORECASTS FOR FUTURE EXPERIMENTS
the modes in the mod@lwith R,—0 and the identicaf) ,,, . ) ) )
Q,, andw(z) as In this section we use numerical solutions framBrAST

and apply them to predict the precision to whidh can be

k (R,—0) k constrained from future experiments. We follow the basic

du| 2,3, Ry | =1+ A0y | 2,(1+80) 1), approach of Ref[91]: we evaluate the standard error in a
(153  cosmological parametey asAs; = (a %){/?, wherea is the

Fisher matrix
where for the considered small scales, entering the horizon in

the radiation eraA. and oc are given by Eq(129). Pl oy Ay 0C)

This effect of neutrino perturbations on the matter density @i = Z XEY ECOV HCF 'CIY)E- (159
(dotted curve on the left bottom panel of Fig.i5 too small ' ' !
to provide by its own a useful information abdif fromthe  Here, Cov'! is the inverse of the covariance matri,are
available cosmological probes. A realistic data analysis conthe unconstrained cosmological parameters, ¥nd stand
straining the abundance of ultra-relativistic neutrinos shouldor the observable power spectra. We limit the analysis to
also include CMB data. However, the variations of CMB cMmB spectraTT, EE, TE, and lensing convergence power
spectra witiN,,, Sec. V A, are less contaminated by neutrinospectrumxx as measured from CMB itself. For eatone
unrelated physics ifw,=Q,h?, rather than(l,, is fixed. has to invert the covariance matrix and sum oMeand Y.
Likewise, the big bang nucleosynthesis constraigsand  The derivatives were calculated by finite differences. The
not{),. Thus it is more practical to consider the variation of step was usually taken to be about 5% of the value of each
matter density modes witN,, in the direction of the maximal parameter and symmetric around the pivot point at the best-

CMB and BBN degeneracies—under a fixeg. fitted WMAP model, Ref[13].
The magnitude of matter perturbations after the radiation An experiment is fully characterized by its sky coverage
era is sensitive to the parameter fsy, temperature, polarization, and convergence instrument

(or reconstructionnoisew;*, wpt, andw,* and by the
w 2
Po__ %o (154  beam smearing window functidB, 2=g'('*D%/(81n2) ith

PetPp @m 0, measuring the width of the beam. For example, the cova-

e.g., Ref.[2], which is currently estimated as 0:4p.01  fance element foff Tis given by
[13]. One reason for this sensitivity is the slower growth of

CDM perturbations prior to the recombination in the model Cov((A:|TT,(A:|TT):

in which a larger fractior3 of the nonrelativistic matter is (214 Df gy

(Cl"+wr'B, 92 (159

The full covariance matrix for the CMB power spectra is
given in Ref.[92]. For the lensing convergence noise spec-
lrum we take the values from the maximum likelihood
method developed in Ref93], which gives the lowest re-
construction noise. In addition, we impose a maximiyg,
) =3000 cutoff on all the spectra and we do not include the
m(‘“‘Te) +7_Z 1H(a) (2 [ H@) information from higherl. The justification for this is that
V3 2| 2aedHo Jo Ho scattering off moving electrons during and after reionization
where d;,= —3Z;,. Analytical, albeit more complicated, expres- leads to an additional component in the CMB that cannot be
sions also exist for non-negligible baryon densizy82). separated from the CMB on the basis of frequency informa-

1%n the models with dark matter, cosmological constant, globa
curvature, but negligible neutrino and baryon densities, ¢y, /p.
<1), the linear matter density perturbation well after the radiation
era on the small scales is
-3
de=d,,
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TABLE lIl. Standard deviations oM, as expected from Planck, ACT, PlareRCT, and CMBPOL
using temperature data on(yT) and added polarizationT(T+ TE+ EE). The primordial helium abundance
Y is consideredh priori unconstrained for the last column results and fixed by independent measurements in
the preceding two columns. Adding weak lensing convergence as reconstructed fromTOMB E+ EE
+ k) does not significantly improve the bounds, even assuming polarization information is available.

Experiment fay b wy M2 wp M2 AN, AN, AN, (freeY)
(uK arcmin)  (uK arcmin) TT TT+TE+EE TT+TE+EE

Planck 0.8 7 40 56 0.6 0.20 0.24
ACT 0.01 1.7 3 4 1 0.47 0.9

ACT+ Planck 0.4 0.18 0.24
CMBPOL 0.8 4 1 1.4 0.12 0.05 0.09

tion. This component is rather uncertain since it receiveglitional constraints on the convergence power spectrum as
contributions from perturbative and nonlinear structures, asxtracted from the nongaussianities in CMB; we ignore this
well as from the patchiness in ionizing fraction. It is ex- additional information herg.We use the basis functions
pected to be significantly less important for polarization, saIC[/ds; as defined by these parameters, but we also explore
our approach may be conservative for polarization sensitiv@ny possible numerical instabilities due to the variation in the

experiments. angular scale of the acoustic horizon, which is affected by
In our analysis we use parameters for several future exvariations in several of the pargmeters.x
periments. While WMAP constraints dw, are not yet com- Figure 5 shows thé&\, derivatives ofC;" for X=TT, EE,

petitive with the nucleosynthesis limits, Planck satellite will kx, and of the matter fluctuatiod,,. The derivatives of
improve the sensitivity of WMAP by an order of magnitude. CMB spectra with lensing are plotted, but the unlensed ones
In parallel, there will be ground-based experiments, suth as are qualitatively similar and the wiggles are not due to lens-
SPT or the proposédl ACT, that will extend Planck to [ng but due to the phase shitthe lensed derivatives were
smaller angular scales. Whether or not they will be polarizatSed in the Fisher matrix analysighe solid curves on the
tion sensitive remains to be determined, so we explore botfy! PlOts show theN, derivatives with the other parameters

possibilities. Finally, we also explore the prospects of an am- ept f_|xed. As discussed In previous sections, Chang'f‘g _the
effective number of neutrinos changes not only the initial

bitious high-resolution, low-noise satellite dedicated to PO"hhase and amplitude of the acoustic oscillations but also the

'a?”za“"” (CMBPOL), which will be able to measure .W'th angular scales of the acoustic horizon and oscillation damp-
high accuracy not only CMB temperature and polarization

if adding information from more local probes, such as WeakHal unchanged at every redshift.

lensing, can further reduce the uncertainties. _ The modification of CMB spectra due to the change in the
We explore 11 parameters in our analysis. Thesgngylar scale of acoustic oscillations is described by multi-
are {om/w;,wp, @, massive Ny, desWae: Treions P Ns Mg, Y. plicative rescaling — (1—0.002AN,)I. By itself, it is de-
The first one is proportional to the ratio of matter density togenerate with other effects that change the angular acoustic
radiation density(photons plus neutrings the second to scale, such as variation @fy.. The combined effect of the
proper baryon density, and the third to the proper density ofdditive and multiplicative phase shifts is such that the phase
massive neutrinod) 4 is the dark energy density relative to shifts cancel exactly dt~ 1500, but not at other values bf
the critical densitywye is its effective constant equation of For the temperature anisotropies, the phase shift is barely
statepge/ pges Treion IS the reionization optical deptl®, is the  visible since temperature oscillations are weaker due to the
amplitude of curvature power spectrumkat 0.05/Mpc, and  competing effects from density and velocity terms. They are
ns andn.=dng/dInk are the scalar spectral index and its further suppressed by lensing. For polarization, which has
running atk=0.05/Mpc. We do the analysis for both fixed more prominent acoustic oscillations, the phase shift remains
and unconstrained helium abundance visible and can be clearly distinguished from the change in
We ignore tensor perturbations since their contribution isangular size of the acoustic horizon. This suggests that po-
limited to large scales, where neutrinos do not play a majofarization information is crucial in extracting neutrino signa-
role. We also ignoreBB power spectrum, which is useful ture. Quantitative analysis in Table Il confirms that. Note
primarily as a tracer of tensor€On small scales it can be a thatdC,/JN, approach zero at low There is no significant
useful tracer of matter power spectrum and can provide adieutrino dependent contribution coming from the integrated
Sachs-Wolfe term at low, as discussed in Secs. Il C and

V A.
Yhttp://astro.uchicago.edu/spt/ In Fig. 7 we show the derivatives &, ' and CFF with
Bhttp://www.hep.upenn.edu/angelica/act/act.html respect to some of the other parameters. The displayed de-
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0.4 is in contrast to other parameters such as massive neutrinos,
for which lensing information significantly improves the
. G2 bounds[94].
¥ s Unless the astrophysical constraints on the primordial he-
‘Eg lium abundancey will improve by an order of magnitude,
—0.2 should be included in the list of unknown cosmological pa-
rameters for the accuracies of the orderAdf,~10"1. On
0.4 the other hand, if we assume that the neutrino fraction of the
radiation is unchanged between BBN and recombination and
there are no significant/v asymmetries then BBN tightly

0.4 limits the helium fraction, toAY~10 2 or better[11,17.

02 For this reason, we performed the parameter prognosis with
o and without theY parameter. As found in Sec. V A, an ad-
S justment of Y can compensate the changes in the acoustic
) and damping scales due to neutrino density but it preserves

-0.2 the phase shift signature due to the gravity of neutrino per-
turbations. Correspondingly, the CMB limits d¥, some-

|
e
~

what broaden but remain tight even with the unknown value
of Y. Interestingly, the CMB data itself can be used to con-
o T e _ straint theprimordial helium abundance independently of the
FIG. 7. The derivatives o,  (top) and Cr= (bottom with  5strophysical measurements and the related systematic un-
respect tavy, (solid, red, wy/w, (dotted, black dns/dInk (short-  certainties. For the considered CMBPOL experiment with

dashed, cyann, (long dashed, blueandY (dotted-dashed, grebn 0 hojarization data included we find Y) =0.005 from the
All were shifted to match the angular scale of acoustic horizon. ThisClvIB alone

explains the lack of oscillations when varyiag,/ w, or Y. Varying

w, changes the amplitude of the oscillations, so adjusting the an-
gular scale does not make their change vanish. Note that the varia- VIlI. CONCLUSIONS
tion in Y appears as a change in damping length.

In this paper we study analytically the evolution of cos-
mological perturbations in the presence of ultra-relativistic
rivative are forop,/w,, wp, Ns, dns/dInk, andY and they  neutrinos. While dynamical equations for cosmological per-
are taken by keeping the angular scale of the acoustic horturbations have been known for a wh[lg,57,95-97, their
zon constant. Other derivatives are trivial and we do no@nalytical solutions exist only in a handful of cases and are
show them here: the amplitude and reionization optical depthestricted to the fluid description. The best known examples,
only rescale the amplitude, while dark energy density and itg.g., Ref[60], are the solutions for CDM and photon-baryon
equation of state only change the angular scale of the acouptasma in the matter and radiation eras or in the subhorizon
tic horizon and make no effect after this change is taken outlimit, and for superhorizon metric perturbations. In contrast,
Massive neutrinos have a minor effect on CMB over theneutrinos cannot be modeled by a fluid and their phase space
range of interest. It is evident that none of these can mimidistribution should be considered.
the additive phase shift generated by neutrinos. This signa- Most of the recent publications abandoned the analytic
ture thus uniquely identifies the presence of neutrinos in thepproaches and relied on numerical results from Boltzmann
context of adiabatic initial conditions. integrator codes. While, in principle, there is nothing wrong

If matter power spectrum information is available, onewith this, analytic solutions often lead to deeper understand-
can exploit the fact that while neutrino perturbatissigp- ing of the problem that can reveal the new directions of
press CMB anisotropies, theyenhancethe matter power exploration. They sharpen the focus on the features that are
spectrum, Figs. 4 and 5. F&N,=1 at a fixedwy,, k/h unigue and cannot be mimicked by the variation of other
=1 Mpc !, andz=0 this givesAP,,/P,~0.12, of which parameters. Care must be exercised when performing nu-
0.02 is due to neutrinos alone and the rest to the variation aherical analysis and parameter forecasting for future experi-
wp/ oy, as discussed in Sec. V B. At the same time, thements. The computational errors must be well controlled,
CMB power spectra are suppressed by 1598000 ifYis  otherwise they can lead to artificial breaking of degeneracies.
fixed. Whether or not this is a useful method to break then addition, the parameter space of forecasting is often small
degeneracies depends on the accuracy with which mattend with the addition of new parameters new degeneracies
power spectrum can be extracted. We performed the analysisay open up. For example, while so far only simple param-
for the experiments in Table Ill assuming weak lensing in-eterization of the primordial power spectrum have been ex-
formation as can be extracted from the CMB itself. A Fisherplored, one could consider its more general parameterization,
matrix analysis with lensing reconstructed convergencéncluding the running of the slope, its running, etc., as free
power spectrum using minimum variance maximum likeli- parameters. In this case analytic solutions can provide a bet-
hood errord 93] fails to improve significantly the accuracy ter understanding of whether the limits on a given parameter
onN,, even with the polarization information, which allows are robust against adding new parameters.
for a better reconstruction of the convergence spectrum. This We obtain analytic perturbative ip,/p, solutions for
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cosmological perturbations in the presence of ultrarelativisti@amplitude of the CMB modes entering the horizon in the
neutrinos. Much of the success is due the following resultradiation era. A changdN,=1 leads toAC,;/C,;~—0.04.
equally useful for fluid models. We find that a simple redefi-Since the CMB modes entering in the matter era and not
nition of the independent dynamical variables that is consisexperiencing the suppression are limited to large scales,
tent with their classical interpretation and preserves them owhere sampling variance is large, this effect by itself cannot
small scales, eliminates all the time derivatives of the nonbe extracted with high precision. However, neutrino pertur-
dynamical metric perturbations from the evolution equationsations amplify the CDM modes entering the horizon in the
in the Newtonian gauge. The resulting description of cosmoradiation era. The effect is further enhanced by the fact that
logical perturbations acquires the advantages of an initiayhile CMB physics is more sensitive to the ratiag /o,
value Cauchy’s problem while remains formulated in theandwm/wr, Specifying the acoustic dynamics and the back-
Newtonian gauge, which is fully fixed and is especially suit-ground evolution, matter fluctuations are also sensitive to the

able for describing the physics of CMB. Moreover, it tUmMSs yatig ¢, /@, which, if fixing the natural CMB variables,

out that even in_th_e solvable_ fluid models _the solutions for.gnnot be held fixed under varyirg, . This changes the
matter or radiation density perturbationgcf. Egs.

: . . . present matter fluctuation spectrum on small scales by
(117_)3(127)] appear.far simpler in the redefined variables. InAPm/Pm~O.12 forAN, =1, of which 0.04 is due to neutri-
addition, these variables are generally constant on superhg- -
fizon scales. nos e_md the rest te,/ w,, variation. _

While most of the previous literature has focused on Fous It is unclear how accurately can this effect be extracted
rier space analysis, we also consider perturbation Greenféom "?Ca' probes of Iarg.e scgle structgre, such as gala_xy
functions in real spacks5,56. The latter become indispens- clustermg and yveak lensing, since nonhnea_r evolution w.|II
able for the analytical study of neutrino perturbations. TheycomPplicate or, in the case of galaxy clustering, prevent its
also allow one to prove quickly that without neutrinos the determination on small scales. Weak Iensilng of CMB_ traces
cosine form of the acoustic density oscillations in the radia/Matter fluctuations on larger scales and higher redshifts than
tion eracannotbe modified by the gravitational feedback any other method. It may be the optimal tool to use here
processes. since nonlinear reconstruction methods using the nongauss-

We use the zero, in the powers @f/p, , order solutions ian information, especially from polarization Qa‘:ta3,9£ﬂ,
for neutrino perturbations to derive the analytic expression§an achieve high signal to noise on the projected conver-
for the CMB and matter density fluctuations in the lineardence power spectrum. However, from the Fisher matrix
order. We show that these first order solutions are for thé@nalysis we find that lensing of CMB cannot improve the
most part sufficient for a quantitative interpretation of nu-limits from primary CMB and its polarization significantly.
merical solutions. Finally, we use the full numerical solutions _ Finally, N, variation changes the relativistic energy den-
from CMBFAST to derive parameter forecasts for variousSity and thus changes the relation between the expansion
planned experiments. The presented methods can be straigfctor and time. This leads to a change in the proper size of
forwardly extended to other applications such as tensof€ acoustic horizon and so in its angular size, which deter-
modes and massive neutrinos. We plan to address some BHnes the positions of acoustic peaks. The angular size of the
these in future work. horizon, however, is degenerate with other parameters, such

The distinctive cosmological features of ultrarelativistic & those changing the angular diameter distance to recombi-
neutrinos are due to their free streaming at the speed of lighfation. The change of the expansion time scales also modi-
The free streaming creates neutrino anisotropic stress, pefes the recombination process, the visibility function, and
turbing Newtonian metric even for superhorizon modes. Inthe angular damping scale. The effect on the CMB power
real space, it also leads to perturbing the photon-baryo§Pectrum can be significant, reaching 15% power suppres-
plasma beyond the acoustic horizon of a primordial perturSion atl=3000 forAN,=1, Fig. 5. However, this can be
bation. In Fourier space this manifests itself as the phasBlimicked by different primordial helium abundance: a
shift in the acoustic oscillations that is generated at horizothange ofAN,=0.1 is compensated hyY=—5x10"2. If
crossing. This phase shift is unique in the sense that foEMB data is used to constrams/n, at BBN then the stan-
adiabatic perturbations no nonrelativistic or fluid matter cardard BBN limits onY are already at the level dfY=<10"°
generate it. The effect changes the phase additively and col1,14, suggesting thaY can be assumed fixed. These limits
responds ta\| ~ —4 for AN,=1. In contrast, any change in are not applicable in the models where the photon entropy
the angular scale of acoustic horizon acts as multiplicativéhanges between BBN and CMB decoupling or in nonstand-
rescalingl —«al. The two shifts are only degenerate at aard BBN models withv/v asymmetries or particle decays.
single | and can be distinguished in general, Fig. 5. The In summary, the effects of ultrarelativistic neutrinos on
effect is more visible in polarization, which has sharperCMB and matter power spectrum are generally small. This is
acoustic peaks relative to temperature anisotropy, where thghy only weak limits on the neutrino background density
density and velocity contributions to ti@® oscillations par- have been placed from the available observations. On the
tially cancel. As a result, the precision of determining theother hand, neutrinos give rise to unique effects which exist
effective number of neutrino species can be improved draen small scales and are thus less limited by sampling vari-
matically if polarization information is included. ance. As a consequence, future CMB experiments should be

Phase shift is not the only signature of neutrinos in CMB.able to improve the limits significantly. While Planck will be
The free streaming neutrinos also suppress the oscillatioable to determiné\, with a standard deviation 0.24, or 0.20
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if Yis constrained, a dedicated CMB polarization experimentwherep=—T°,.

should improve this bound even further, reaching accuracy In the unperturbed universe,

levels of 0.09 withoutY constraint, or 0.05 ifY is con- 0 0 _ _

strained. This will allow one to test the details of neutrino Ta0="Pas Tai=0, Ty;=6jpa- (AS5)

decoupling and the scenarios giving rise to a nonstandard . . . . -
number of neutrino species. Assuming that the species pressprgis uniquely specified

locally by the species energy densjiy, we introduce
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APPENDIX A: COSMOLOGICAL DYNAMICS CiE B = (5_p = 2 xaC§. (A9)
Given mutually noninteracting, except than gravitation- p P/ adiab 2

ally, groups of cosmological speciés}, one can definé for Here
each group an energy-momentum teriBpf that satisfies the
local conservation lawT4".,=0. The total energy- _ PatPa
momentum tensor Xa=" o (A10)

are species enthalpy abundances, satisfyigg,=1.
It will prove useful to introduce “reduced” enthalpy back-
ground densities
sources space-time curvature perturbations, as described by 5
the Einstein equation®,,,— 39,,R=87GT,,. Ya=4mGa(patPa), (A11)

T =2 T4 (A1)
a

1. Background y=4wGak(p+p)=2, Va. (A12)
We study cosmological perturbations relative to a spa- :
tially homogeneous and isotropic model with the metric  From definition(A10) and the Friedmann equatidA4),

dSZZaZ(T)(—dTZ‘l' ’yijdXide). (AZ) Ya=Xa?¥, 7:3(1+W)(H2+ K)/2 (A13)

The spatial part of the background metric may be written as  Finally, we give the rate of change of some of the above
quantities with respect to the conformal timeEnergy con-

2 servation requires

Ldxidxi= +r2dQ2. A3
Yij 1_Kr2 (A3)

pa=—3H(pa+Pa), (A14)

For most applications of this paper, except for the late timel-his and the Friedmann equations give
evolution of the matter perturbations, the background curva-

ture K can be neglected. In this case we takge=6;; . . 1d2%a ArGa2

The background expansion rate with respect to the con- =So2-" 3 (p+3p)
formal time 7 is denoted byH{=a/a=aH. By the Fried- adt
mann equation, it equals 1+ 3w
=-— (H2+K). (A15)
8mGa’
H?= p—K, (Ad)
3 By Egs.(A9),(A14),
w=3H(1+w)(w—c2). (A16)

°The definition isT4"(x)=(2/V—g) 8S,/69,,.,(x), whereS, are
the terms of the action that describe the speaies By Egs. (A7), (A9), and(Al14),
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Ya=—H(1+3c?)y,, y=—H(1+3c?)y. (Al7)

From the last two equations we also see that

|

2. Matter perturbations

Ya
Y

a

) - 3H(CZ—C2) X4 (A18)

We parametrizd 5, perturbations by thearticle number
overdensity® 8,=én,/n,, the peculiar velocity vectos},
and the anisotropic stress perturbatidj :

TgOZ —(patdpa), Opa=(patPa)a,

Tgi:(pa+ Pa)Via (A19)
T4 = 8 (Pat 3pa) + (pat Pl TTL;=0.
In scalar modes the three-vectarg and three-tensorH; i

are derivatives of scalar velocity potentiaig,

via= "~ Vila, (A20)
and anisotropic stress potentiatg,
i 3 i 1 iv2
Hajzz VVJ-—§5]-V P (AZl)

With the normalization(A21), ViV]-Hg:V“Tra. The poten-
tials 7, are related to some of the alternative variables use
to describe anisotropic stress as- — V21 for the variable
of Ref.[57] andIl=—(3/2)(1+ p/p) V2w for Ref.[60].

For the perturbations in the total energy-momentum ten
sorT#,, parametrized analogously to E¢#.19),

522 Xa0a UZE XaUa, 77:2 XaTa,
a a a
(A22)

wherex, were defined in Eq(A10).

3. Metric and gauges

Under a reparametrization of spacetime coordinate
(gauge transformation

T=1+87(7,r), X=x+X(7r), (A23)
the perturbation variables transform as
5a= 0.+ 3HSET, Uy=U,— 87, ma=m,. (A24)

Note that the following quantities are gauge invariafy:
+3Hu,, Or 8,— O, OF Ug— Uy.

The perturbed metric of space-time can be parameterized

as

2OMany authors uses, for the energyoverdensitydp,/p,= (1
+Ww,) 8,, in our notations.

PHYSICAL REVIEW D69, 083002 (2004

ds?=a?(7)[(—1-2A)dr?*-2B;drdXx +(1—2H,)dr?

—2H;;dx'dx], (A25)

Whereﬁ:EO. For scalar modes, the three-vecByrand the

three-tensoﬁi j can be written as spatial derivatives of scalar
functions:

1
Bi= —5;V2>X.

3 (A26)

Vib, Hj=|V'V-

The metric perturbations transform under the gauge transfor-
mation (A23) as

A=A- 67— Hér, (A27)
B,=B,—V.o7+ X, (A28)
HL=H,_+H57+%Vi6xi, (A29)
= — 1 1
H;=H;+E(V'5xj+vjax')—§5;vk5xk. (A30)
For scalar perturbations with
%=V, 6\
H'le potentiald and y in Eq. (A26) transform as
b=b—87+56N, Y=x+0\. (A31)

In the conformal Newtoniar{longitudina) gauge the gauge
conditions on scalar perturbations &8’=0 andy\)=0.
For brevity, we refer to this gauge as “Newtonian.” Defining
d=AMN and¥=HM we arrive at the metric of Eq1).

In the synchronougyauge one setd®=0 andB®=0.
The observers who are at rest in the synchronous gauge are
free falling in the gravitational field and their locally mea-
sured proper time sets the coordinate time. By E481),
the gauge transformation from the synchronous to the New-
onian gauge isdt=— x®,6N=—x®. Hence, from Egs.
%AZ?),(A29), the Newtonian potentials are related to the sca-
lar metric perturbations in the synchronous gauge as

N . . 1
D=y +Hx®, \p:H<LS>—HX<S>—§v2X<S>. (A32)

For the reverse transformation from the Newtonian to the
synchronous gauge, by Eq#27),(A31), §7(x) and o\ (X)
are any functions satisfying
S+ HSET=D, OS\=6r. (A33)
The initial valuesér(r,,r) and 6\(7,,r) can be chosen
arbitrarily, corresponding to the residual gauge freedom of
the synchronous gauge. The metric perturbations in the syn-
chronous gauge are obtained as
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1 S —y2 ]
HE=Ww+Hor+ ZV20h, xO=on.  (A34) 0a=V Ua T3V,

2 2
. . Uy=Cs0,— XaUsT+V +&d A4l
In the spatially flatgauge the scalar perturbations of the a”%a%™ Xa¥aT ¥V Ta (Ad1)

spatial part of the metric are absth‘(;f)Ep andy!"=0. By (for the scalar mode where y,=H(1—3c3) is the Hubble
Egs.(A29),(A31), this gauge has no residual gauge freedomdrag rate for the species The evolution of the anisotropic

It is obtained from the Newtonian gauge wilit=—W/H,  gyess potentiadr, is determined by the internal dynamics of
oN=0. In terms of the Newtonian potentials, the scalar mety,o species.

ric perturbations in the spatially flat gauge are The linearized Einstein equations in Newtonian gauge,
Refs.[57,99, are easily reduced to

A=+ v+

L AW v
—) , b(N=—. (A35) _
H H V2 — 3H(V + HD) = v3, (A42)
The comovinggauge is defined as the gauge in which the .

scalar components of the tofaf vanishesu(®=0. By Eq. ¥ +HO=yu, (A43)

(A24), the transformation from Newtonian to the comoving

gauge is achieved withr=u®™). For the second gauge con- s s 0D 2

dition, fixing 8x' in Eq. (A23), it is convenient to choose Y+H(2Y+P)-3wH ¢_75_p§+ YVom, (A44)

x'©=0. Thenéx'=0. By Eq. (A29), the spatial curvature

potential in the comoving gauge is related to the Newtonian

gauge variables as V—d=3ym, (A45)
R=HO=w+Hu, (A36)  where y is introduced by Eqs(A12),(A13) and the back-

ground is assumed spatially flat. If for all the speciis,
For the remaining scalar metric perturbations Eqgs.=c2sp, then (8p/6p)8=3 x,C26.. By Egs.(A42),(A43),
(A27),(A31) give

V20 =556, (A46)
ACO=p—yMN—HuMN — p@=—y™N  (A37)

where 59=3,x,6 is the averaged particle number den-
By the following Eq.(A43) and Eq.(A13), the “comoving  sity perturbation in th&eomovinggauge,
curvature”R can be easily transformed into its conventional

form 6= 5,+3Hu. (A47)
2 ) b. Synchronous gauge
R=W+ 3(1+w) O H) (A38) In Appendix B we refer to the evolution equations in the

synchronous gauge. In this gauge the energy and momentum
The uniform densitygauge corresponds to the condition conservation equations give
5W=0. Hence, Eq(A24), it is obtained from the Newton-
ian gauge withs7=— 6N)/(3H). Taking =0 to be the 89 =v2u®+3HO
second gauge condition, one finds that the three-curvature

otentialH, in the uniform density gauge is :
P L y gaug U =280 — xaul® +v2m,. (A48)
ng(LU):q;_Eg(N)_ (A39) The c_:orrespor)ding linearized Einstein equations, e.g., Ref.
3 [57], in a spatially flat background are
By the Einstein equation®\42),(A43), the curvature pertur- 1 _
bations in the comoving, uniform density, and Newtonian V2 H(LS)—§V2X(S))—3HH(LS)=y6(S), (A49)
gauges are related as
v2y HEe_ Loz o (A50)
R:§+3—y. (A40) L 3 X=Y ’
) o . .. . op 1
4. Conservation and Einstein equations HE+HAG =y 5—+ 3 5, (A51)
P

a. Newtonian gauge

The dynamics of the species density and velocity pertur-

; : 1
(©) | HO - Zy2,09) | = —
bations follows from the conservation lal,”.,=0 as X7 2HX (HL BV X ) Sym. (A52)
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5. Dynamics in phase space component with any wave numbkipresents a nonzero non-
Six variables specify the coordinates of a particle in phasé€caying adiabatic mode. . .
space at a given time. For them, following Re3,57], we . Wg assume t'hat a}ll the scalar pertprbatlons_of matter dis-
take the comoving coordinates of the particieand the co- tributions, cIaSS|caI_ fields, or the metric tensor in our syst'em
moving momenta can be parameterized by a sum of three-scalar functions
(matter potentialsacted by polynomials of; . This is easily
gi=ap, (A53) achieved for classical fields that are scalars, vectors, or ten-

sors of a higher integer rank. Complications would arise for
wherep; are the proper momenta measured by a comovingpinor and other noninteger spin fields. However, being fer-
observer, who is at rest with respect to the coordinate framemions, such fields cannot support coherent semiclassical ex-
For a particle with a mass), the momenta that are canoni- citations. Without sacrifice of generality, we require that the
cally conjugate to the variables are Pj=m,dx /\—ds’> polynomials of V; are homogeneou$=0,1, etc., degree

=(1—4)q;. polynomials that transform under spatial rotations as irreduc-
The particle density in phase space is specified by théle tensors of the rank We treat all the dynamical degrees
canonical phase-space distributitg{r‘,Pj ,7): of freedom, whether they are dynamical “coordinates” or
_ _ “velocities,” on equal footing, implying the Hamiltonian for-
dNg=f,(r',P;,7)d%'d*P, (A54)  mulation of the system classical dynamics in the coordinate

. . . .. time of the chosen gauge.
for every species of particles and their states of polarization \ye set the Green’s function initial conditions at a spatial

a. The energy-momentum tensor of the Speeés given in gjice of an infinitesimal thickness at a coordinate time
the Newtonian gauge by the following simple expression up..q " \yhich is eventually sent to zero. Within this slice we
to the first order of cosmological perturbation thef8y57]: impose the Newtonian gauge conditidns0 and y=0 on

u the scalar metric potentiald26). We require that, in the
T,laLV:J dspi&fav (A55) Newtonian gauge, all the matter distribution or field pertur-
0 bation potentialsinitially vanish for |x|> 7;,. (The Green’s
functions considered in this paper are homogeneous in the
with p°= —p,=/(g/a)?+m? andp'=p;=q;/a. Belowwe normal tox spatial directionsy andz, Sec. V) Inside the
drop the species label when referring to any sort of par- interval |x|<r,, to be specific, we set all the=1 matter

ticles in general. distribution potentials atr, to zero and adjust the initial
The evolution of the phase-space distributions obeys theonditions for classical fields, if any are present, so that
Boltzmann equation: u(7i,) =0. (Then the metric on the initial spatial slice satis-
fies the comoving gauge condition as well. The spatial slices
cof ot ot [ of in the Newtonian and comoving gauges will, in general, dif-
ftr ?”Lq% nia_n,_ a_T)c' (A56)  fer for r>r;,.) At the time 7, by Eq.(23)
wheref is considered as a function of the coordinatksq V2W —3yW=yd. (BY)

=|q;|, ni=q;/q, and 7. The right-hand side of EqA56) N

describes the change of the phase-space density due to par-Let us demand thaW (7, ,x)=(1/7,)¥o(X/7i,) Where

ticle collisions. Linearizing the Boltzmann equation relative W,(x) is an arbitrarily choservenfunction thatvanishes

to an unperturbed background phase space distribufion, o, |x|>1 and that has a nonzero integral oy from

=f+ of, in the Newtonian gauge one finfis7] —1 to 1. Then the coordinate “particle number” density per-

i turbationd(r;,,x) should be given by the right-hand side of
-G . € o : Eq. (B1). The corresponding proper number density pertur-

(of) + ;Vi(éf)"_QE(“P_ aniViq)) =(f)c—(Hc, bation 8 at 7, is

(A57)

1
where e= /g% +a’m?. 5=d+3¥= ;Vzllf. (B2)

APPENDIX B: LOCALITY OF ADIABATIC GREEN'S

FUNCTIONS We set all the species initial densities and the initial condi-

tions for classical fields so that( 7, ,x) = (1/y) V2 and all

In this appendix for any “reasonable” cosmological sys- the other matter potentials aezenand vanishfor IX|>7in -
tem we construct the perturbation Green’s functions in thafor interacting species, the separation of the total energy-
all the scalar gravitational and matter distribution potentialsnomentum tensof#” into T4” and so the definition of the
are identically zero in the Newtonian or synchronous gaugespecies density perturbatio®g may be ambiguous. In this
beyond the Green’s function particle horizbd>7. We ar-  case, we take any of the possible definitions. In the limit
gue that the perturbations formed with these Green’s funcs,—0 all of them lead to the physically identical adiabatic
tions by their convolution with any smooth kernel are adia-Green’s functions. If any of the matter potentials or fields
batic, as defined in footnote 8. A Green’s function Fourierremain unfixed, we take them unperturbedratfor all x.
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The motivation for these initial conditions is to construct horizon of the original perturbation. This means thif
an initially localized almost “pure” curvature perturbation. V2, [cf. Eq. (A26)], Vu®, V27, etc., are zero fofx|
For anyr;,>0, the curvature perturbation must be generated>r. We argue that the potentiaj¢®, u(®, =, etc., them-
by some nonzero matter disturbance. The above procedugglves are also zero fox|> 7. As an illustration, let us con-

attempts to restrict the required matter inhomogeneity so thaalider the Euler's equation deXE —VXU that in the synchro-
in the limit 7;,/A— 0 only curvature appears to be perturbed. 5 s gauge reads

Indeed, after the convolution of the constructed Green’s

function with a primordial fluctuation fieldA(x) that is VU =V[c289—H(1—3c2)u®+ V2 B5
smooth on the comoving scales below saxe0, the num- X ACu H w ). (B9
ber density perturbation of any species7gt by Eq. (B1)

The gradient in this and the similar equations can be dropped
tends to

after we definethe expressions under the gradients to be
V2 (x—x') eqqa] 'at a certaix, vyhich may 'depe.nq orr. Consistent
lim (8(x))=lim f dxX'A(X') ——— definition of the potentials is obtainedxf, is chosen outside
Y of the perturbation horizon; suppose,(7)<— 7. Since a
2 sufficiently high spatial derivative of every synchronous
1 _ ) Vv A(X) . . . L.
:( J qurO(X)) lim . (B3) gauge potentlal gives a perturbation of some matter distribu-
-1 T, tion or a metric tensor component and thus, by above, van-
ishes forx<<— 7, the potentials themselves can be chosen to
The last limit vanishes ag>/\2. Since the other initial mat- vanish in that interval for al. We prove that the potentials
ter distributions are chosen unperturbed, they remain unpethen also vanish fox> r.

Tin—0 Tin—0

turbed after the smoothing. However, thg— 0 limits of the Let {f,} be multipole potentials for some matter distribu-
smoothed comoving curvature perturbati®="W¥+7Hu as  tion perturbationF(r,n), which may depend on other, not
well as the variablg'= —d/3 at 7, are nonzero: displayed, phase-space or internal coordinates,

1 — 3

. L _ . v

m (R0))= fim (£00) ( f_ldx%m)A(x). Fri=3, <—1>'<2|+1>P|(”V
(B4)

Given the locality of the Green’s function, which is proved Wherei runs over the spatial coordinatesy, andz We
next, and the initially vanishing smoothed matter perturbaSUPPOSE that the distribution perturbation dynamics can be
tions, we argue at the end of Sec. I B that the smoothed€scribed as

perturbationg’ and’R remain constant while<\. The Fou-

v'f,, (B6)

rier transformation is a convolution with the kern&(x) F(r,n)=(local in space functional of perturbation fieJds
=exp(—ikx). Therefore, it gives nondecaying nonzero curva- (B7)

. 1 . -
ture perturbation mode®4), as long ag - ;dxWo is chosen  The functional on the right-hand side is linear in the linear
different from zero. order of perturbation theory. Multiplying both sides of Eq.

The smoothed density perturbati¢(x)) will remain as
small asO(7?/\?) for 7,<7<\ in the comoving gauge,
where it is always related t& by Eq. (A46). In other
gauges, including the Newtonian, the proper density pertur- nv A v
bation (8(x)) and other proper matter perturbations do not f d2QaY|m(ﬁ)P|<¥) = —Ylm(—) (B8)
need to vanish forr,<7<<\. For example, the species v 2l+1 v
proper density and velocity perturbations are given by Eg. )

(A24), whered is the time lapse between the comoving andon the left-hand side of EqB7) we find f, times a homo-
the considered gauges. geneousn-degree polynomial;,(Vx,Vy,V;). The polyno-

Now we prove that in a synchronous gauge and the semials {Qm}1,— | transform under spatial rotations ¥g, .
initial conditions at 7, all the matter and gravitational Since all the perturbation potentials are defined to be three-
Green’s functions remain zero fot> 7, beyond the particle scalars,V; are the only gquantities that may appear on the
horizon |x|>7. The coordinate transformation® and 8x; right-hand side and that transform non-trivially under spatial
=V, o\ from the Newtonian to the synchronous gauge can beotations. Therefore, after the convolution with,(n), ev-
chosen so thabr(r,)=0 and o\ (7,)=0 for all x. Then, ery term on the right-hand side of the linear equatiB)
from Eqs.(A33), 87(r;,) = ®(7,) andSh(7,)=0. Equation must contain the same polynomi@,(Vy,V,,V,) that ap-
(A34) gives that the synchronous gauge potenti#{8 and  pears on the left-hand side. Putting=0 and applying the
x® and their first time derivatives vanish af, for |x| resulting evolution equation to thg- and zindependent
> 7,,. Same is true for the transformed initial perturbationsGreen’s functions, we find\{)'f, on the left and at least
of all the matter distributions and their rates of change.  derivativesV, in every term on the right-hand side. After

Causality requires that in the synchronous gauge the maintegrations overdx with zero initial values ak<<— 7 we
ter and the metric remain unperturbed beyond the particléind an equation of the form

(B7) by a spherical function,,(n), integrating over the
solid angled?Q);, and applying the identity
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f,(r)=(local in space functional of scalar potentials J3(1-R,)[3 1
(B9) Po=—"7-5r |2%n" 71dXF7(X)

The corresponding equations for the system of photon-
baryon and CDM fluids and ultrarelativistic neutrinos, stud-in this appendix we use them to calculate4R,) order the
ied in the main text, are Eqé4),(5),(20). The scalar potential prefactors at the singular terms in the photon and CDM den-
evolution can be generalized to describe photon-baryon Thjty Green's functions. Up to smaD(R?) corrections, this
ompson scattering and photon polarization as shown in th?ields the density modes on subhorizon scales.
Appendix of Ref.[56]. The evolution of the synchronous The quantityd’ in O(R,) order is obtained by substitut-

metric potentialsH®, y®, and y(® can as well be pre- . : — .
: : ing the zeroth order solution fob, , Eq. (109, into the
sented in the fornB9) using Eqs(A49),(AS0),(AS2). gight-hand side of Eq(C1). The substitution gives

Thus the dynamics of all the potentials in the synchronou
gauge can be reduced to an initial value Cauchy problem.
The initial conditions at-= 7;,, were chosen even. Assuming o' = Ry§m{ [12.(x)—1osgnx]16(1—]|x|)
the dynamical equations are invariant undes —x inver-
sion, the resulting solution of the Cauchy problem will re-
main even for all-. Hence, the potential values fgr> 7 are
equal to those ak<—r, i.e., vanish in the synchronous
gauge.

The reverse transformation to the Newtonian gauge isvhere
achieved with 87=—x® and s\=—x(® (see Appendix

: (C4

+0(R?),

1
—[|2(X)_|059n)(]9(ﬁ_|)(|)

A3). These functions have been proved to vanish outside of | (x)=9 1, 7 2. 1) (3)(2_1)3I X+ 1/\/5‘

the horizon. Therefore, all the matter multipole potentials in ! X X|2X 718X T g 43 x—113|

the Newtonian gauge and the gravitational potendaland (C5)

W, related to the synchronous metric perturbations by Egs. \/_

(A32), also vanish fofx|> 7. 33 1+x
l2(x)= T(l—)(z) 2x(3x*+1)—(3x*+1)In T |

APPENDIX C: O(R,) ORDER CALCULATIONS
IN THE RADIATION ERA

1 2
1. Gravitational potentials lo=11(1)=I 2( ﬁ) =2- ﬁ In(2+ \/5)'
In Secs. IV D-IV E we derived integro-differential equa-
tions satisfied by the potentiafB..= (V¥ +®)/2 during ra- 2. Photon singularities
diation domination. We can rewrite these equations, Egs.

(101),(100) and (106),(105),(114) (115 as The magnitude of the photon density acoustic spke

Eqg. (115, can be calculated analytically using tRe defi-
nition (C3) and the above expression fdr’ . For this we

— 3
O (x)=R, Efinx(l—xz) 6(1—|xl|) employed the symbolic calculation programMathematica
(http://www.wolfram.com. The resulting expression turns
¥ 1 out rather lengthy but is easily evaluated to
-6 J dy’ f dx”
-1 -1 3 )
p,= Egin[1—0.268?Rv+ O(RY) 1. (Co)

XCI_>+(X")X’Pz(x')+<1_>+(x’)x”P2(x”)
XH_X/

The residue ,, as defined by Eq(118), follows from Egs.
(112),(106) as

(C1

and ry:du(%) =szv('—f§—%)zo.165@mRy. (c7)

1
pqﬁ(ﬁ‘M) —-F_(x)

, (C2  Substitution of the found values in E¢L20) leads to the
results(121),(122.

— 1
<I>+(X)=(X2— 5)

with
3. CDM singularities
X X’Z— 1 Now we proceed to the calculation of the neutrino correc-
F_o(x)= dX'ﬁCD’—(X’)' (C3  tionsA, andsc in the CDM density perturbatio(128). The
- X’z_ _> equation for the radiation era CDM Green’s functi@r25
3 gives
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— 1—
(xdo)' = ;<D "+ Pe1dp(X)- (CY)
Integra_ting this expression, fixing.; by the requirement

that yd. is an odd function that vanishes p¢/>1, and
dividing the result byy, we obtain

_ [% G(1)

dc= X _W}0(1_|X|)+pc5D(X)- (C9)

where

PHYSICAL REVIEW D 69, 083002 (2004

In the R,— 0 limit, with the potentialg108), (109),

X3, |xl=

G 9(x) = =3¢ (C14

sgnx. |x|=

@l Gle

ThenGRv—0(1)=—-3¢,, and

1 1
qRO— - 3§in( J3- m) 0( —=- |x|> +Pedp(x),

xdy ®'(x
G(X)EJ o 2 (C10 3

0 X (C1H
The initial condition f*,dyd.= —3¢;, fixes the new con- Where by Eq(C1D)
Stantp, as p9=3¢,(1+In3). (C16

1 G G(1

pC=—3§m—f dx[(—)()—(—)}. Fourier transforming Eq(C15),(C16), where the singular
-1 X [x] function 1/x| can be transformed using Table I, we obtain

the CDM density perturbation modd27). Of course, the
The dy integral of G(1)/|x|, which would be infinite in radiation era,R,—0 Fourier mode could be obtained di-
Riemann sense, is equal to 0 in the sense of generalizeéctly in k space by integrating the evolution equatid24).
function integration(see Table)l Hence, Now we consider how the CDM density perturbation
changes when neutrinos are added.
D= — 31— fl dxG(x) Although the analytical calculation of the integrals in Egs.
¢ noJor ox (C10,(C1)) in the O(R,) order may be possible, it does not
appear easy. On the other hand, the numerical evaluation of
The CDM density perturbation modes in the radiation erahe absolutely convergent integrals in Eq€10),(C11),
are given by the Fourier components of the Green’s functiorgiven the potential$C5),(106), is straightforward and yields
(C9). In the radiation era for adiabatic initial conditions the

(C1)

potentiald_)(x), generated by the photon and neutrino per- G(1)=-3¢{;[1+0.229R,+ O(Rﬁ)], (C19)
turbations, is regular g¢=0 and even. Hence, the function
G(x) in Eq. (C10 is regular aty=0 and odd, ands(x)/x N 2
is also regular at the origin. The subhorizdarg 1) values Pe=3{in[1+In3+1.74R,+O(R,)]. (C18
of the CDM Fourier modes are fully specified by the singular
terms in Eq.(C9), which are proportional to ¥l and  then forA, andc in Egs.(C12, (C13
6p(x). From Table Il we find that
. A=—6[1+0.229R,+O(R?)],
de(7,K)=A(In ps+C)+O(eg ), (C12
1
with ps=k7//3 and c=y—5—0632R,+ O(R?). (C19
In3 - _ (R,—~0)_
A=2G(1), c=y+ o2 Pc (€13 The corresponding values fax.=A:/A; 1 and éc

2 T26(1)

=c—c(R—0 are used in Sec. IV F, Eq129).
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