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LISA capture sources: Approximate waveforms, signal-to-noise ratios,
and parameter estimation accuracy
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Captures of stellar-mass compact objects~COs! by massive (;106M () black holes~MBHs! are potentially
an important source for LISA, the proposed space-based gravitational-wave~GW! detector. The orbits of the
inspiraling COs are highly complicated; they can remain rather eccentric up until the final plunge, and display
extreme versions of relativistic perihelion precession and Lense-Thirring precession of the orbital plane. The
amplitudes of the strongest GW signals are expected to be roughly an order of magnitude smaller than LISA’s
instrumental noise, but in principle~i.e., with sufficient computing power! the GW signals can be disentangled
from the noise by matched filtering. The associated template waveforms are not yet in hand, but theorists will
very likely be able to provide them before LISA launches. Here we introduce a family of approximate
~post-Newtonian! capture waveforms, given in~nearly! analytic form, for use in advancing LISA studies until
more accurate versions are available. Our model waveforms include most of the key qualitative features of true
waveforms, and cover the full space of capture-event parameters~including orbital eccentricity and the MBH’s
spin!. Here we use our approximate waveforms to~i! estimate the relative contributions of different harmonics
~of the orbital frequency! to the total signal-to-noise ratio, and~ii ! estimate the accuracy with which LISA will
be able to extract the physical parameters of the capture event from the measured waveform. For a typical
source~a 10M ( CO captured by a 106M ( MBH at a signal-to-noise ratio of 30!, we find that LISA can
determine the MBH and CO masses to within a fractional error of;1024, measureS/M2 ~whereSandM are
the MBH’s mass and spin! to within ;1024, and determine the location to the source on the sky to within
;1023 stradians.

DOI: 10.1103/PhysRevD.69.082005 PACS number~s!: 04.80.Nn, 04.25.Nx, 04.30.Db, 04.80.Cc
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I. INTRODUCTION

Captures of stellar-mass compact objects~COs! by mas-
sive (;106M () black holes~MBHs! in galactic nuclei rep-
resent an important potential source for the Laser Interfer
eter Space Antenna~LISA!, the proposed space-base
gravitational-wave~GW! detector @1#. The capture orbits
which can remain rather eccentric right up to the fin
plunge, display extreme versions of relativistic periheli
precession and Lense-Thirring precession~i.e., precession of
the orbital plane due to the spin of the MBH!, as well as
orbital decay. Ryan@2# has illustrated how the measure
waveforms can effectively map out the spacetime geom
close to the MBH.

Rate estimates indicate that the strongest detect
sources will beD;1 Gpc from us@3#, implying the mea-
sured GW strain amplitudeh(t) will be roughly an order of
magnitude smaller than the strain amplituden(t) due to de-
tector noise. Nevertheless, because the capture wave
will be ‘‘visible’’ to LISA for ;105 cycles, in principle~i.e.,
with infinite computing power! it should be possible to dig
these signals out of the noise using matched filtering. W
until now, theorists have not been able to calculate cap
waveforms with the accuracy required for matched filterin
great progress has been made on this problem in recent y
~see the recent review by Poisson@4# and references therein!,
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and it seems very likely that sufficiently-accurate templ
waveformswill be available before LISA’s planned launch
;2011.

Nevertheless, there are many theoretical issues relate
captures that must be addressed evenbeforesufficiently ac-
curate templates are in hand, as the final LISA mission sp
are being driven substantially by the requirement that LI
be sensitive enough to see captures~see the LISA Science
Requirements Document at theLISA Sources and Data
Analysis teamwebsite@5#!. Among the most pressing ques
tions is how to efficiently search through the data for capt
signals. Given the large dimensionality of the space of c
ture waveforms, and the length and complexity of the in
vidual template signals, it is clear that straightforwa
matched filtering—using a huge set of templates that co
parameter space like a net—would require vastly more co
putational power than is practical. Instead, we need to
velop suboptimal alternatives to coherent match filtering a
to estimate the sensitivity of LISAwhen using these
methods.

This is the first in a series of papers designed to add
such data analysis problems, for LISA capture sources. H
we introduce a family of relatively simple inspiral wave
forms, given in nearly analytic form@i.e., up to solutions of
ordinary differential equations~ODEs!#, that should roughly
approximate the true waveforms and that include their k
qualitative features. Because our approximate waveforms
©2004 The American Physical Society05-1
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L. BARACK AND C. CUTLER PHYSICAL REVIEW D 69, 082005 ~2004!
given in ~nearly! analytic form, we can generate vast num
bers of templates extremely fast—a feature that we expe
be crucial in performing Monte Carlo studies of search te
niques.

Our capture waveforms are based on the lowest-or
quadrupolar waveforms for eccentric-orbit binaries deriv
by Peters and Matthews@6#, but the orbits are corrected t
include the effects of pericenter precession, Lense-Thirr
precession, and inspiral from radiation reaction@all calcu-
lated using post-Newtonian~PN! formulas#. Our waveforms
have the right dimensionality~except that in practice we wil
neglect the spin of the CO! and the same qualitative feature
as the true waveforms, except~i! they do not exhibit the
extreme ‘‘zoom-whirl’’ behavior of true fully-relativistic
waveforms just prior to plunge@7,8#, and ~ii ! they approxi-
mate as constant the anglel between the CO’s orbital angu
lar momentum and the MBH’s spin, whereas the correct e
lution would show a small secular change inl. However, we
do not expect these two~missing! effects to be very impor-
tant for our purpose, since, again, the latter is small~at least
for circular orbits@9#!, while extreme zoom-whirl behavio
occurs only for rather eccentric orbits extremely close
plunge.@The number of ‘‘whirls’’ per ‘‘zoom’’ grows only as
2 ln(p2ps) as the orbit’s semi-latus rectump approaches the
plunge valueps @7,8#, and so stretches of waveform exhib
ing extreme zoom-whirl behavior will likely contribute onl
a very small fraction of the total signal-to-noise ratio~SNR!.#

In this paper, we use our approximate waveforms to t
a first cut at estimating the accuracy with which LISA shou
be able to extract the capture source’s physical parame
including its distance and location on the sky, the masse
both bodies, and the spin of the MBH. We also illustrate
detail the relative contributions of different harmonics~of the
orbital frequency! to the total SNR of the waveform. Fo
these calculations, besides using approximate waveforms
also use a low-frequency approximation to the LISA
sponse function and an approximate version of the Fis
matrix inner product. Since our methods are so approxim
the results should be considered illustrative rather than
finitive.

The plan of this paper is as follows. In Sec. II, to put t
present work in context, we briefly summarize the previo
literature on this topic and indicate the several areas of ac
theoretical research. In Sec. III we present our approxim
~nearly! analytic waveforms. Our scheme for incorporati
the LISA response function and the noise closely follo
Cutler @10#, but we give enough detail that the reader cou
easily employ the response function detailed in Cornish
Rubbo @11# ~which is more accurate at high frequencie!.
Section IV provides a brief review of signal analysis, par
to explain our conventions. In Sec. V we display plots sho
ing the relative contributions of different harmonics to t
total SNR. We show that, even for relatively modest fin
eccentricity, the higher harmonics contribute significan
Finally, in Sec. VI, we present estimates of how accurat
LISA can determine the physical parameters of capture
tems. We emphasize that our treatment is highly modu
allowing for simple improvements of the various approxim
tions.
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A few details of our analysis are left to the Appendices.
Appendix A we derive a simple expression for the contrib
tion to the pericenter precession from the spin of the MB
and show its equivalence to the standard result. Append
compares the magnitudes of the various PN terms in
orbital evolution equations. Since the near-plunge capt
orbits are highly relativistic, higher-order terms are comp
rable in magnitude to the lower-order ones, as one wo
expect. Estimates of the magnitudes of effects related to
CO’s spin are given in Appendix C. The spin of the CO m
have marginally important effects on the templates~for rap-
idly rotating COs!, but for simplicity we leave these out o
the rest of our analysis.~They could be put back in rathe
easily.!

In later papers will turn to the problem that is the ma
motivation for this work: designing a practical algorithm fo
digging capture waveforms out of the LISA noise. There
will use our approximate waveforms to estimate t
scheme’s sensitivity, compared to an optimal search with
finite computing power.

Our index notation is the following. Indices for vecto
and tensors on parameter space are chosen from the b
ning of the Latin alphabet (a,b,c, . . . ). Vectors and tensors
on three-dimensional space have indices chosen from
middle of the Latin alphabet (i , j ,k, . . . ), and runover
1,2,3; their indices are raised and lowered with the
3-metric, h i j . We use Greek indices (a,b, . . . ), running
only over I ,II , to label the two independent gravitation
waveforms that LISA effectively generates.~No four-
dimensional, spacetime indices occur in this paper.!

Throughout this paper we use units in whichG5c51.

II. SUMMARY OF PREVIOUS AND ONGOING
THEORETICAL WORK

Most, if not all, nucleated galaxies harbor MBHs in the
centers@12,13#. The MBH’s gravity dominates the local ste
lar dynamics within a cusp radiusr c5M /sc

2 , whereM is the
MBH mass andsc is the one-dimensional velocity dispe
sion of stars inside the cusp. A typical MBH withM
5106M ( would haver c;1 pc. The total mass of stars in
side the cusp is typically of order the MBH mass@3#. Cap-
tures occur when two stars in the cusp undergo a close
counter, sending one of them into the ‘‘loss cone.’’ These
orbits that pass sufficiently close to the MBH that the time
cale on which the CO tends to spiral into the MBH due
gravitational radiation reaction is shorter than the time sc
on which the CO is scattered back out by other stars.

Because LISA’s sensitivity band is centered atf ;3
31023 Hz, the MBHs most ‘‘visible’’ to LISA are those
with massM;106M ( . To avoid tidal disruption, while be-
ing close enough to the MBH to emit GWs in the LIS
frequency band, the captured star must be either a w
dwarf ~WD!, neutron star~NS!, black hole~BH!, or a very
low mass main-sequence star~LMMS! @3#.

Early estimates of capture rates and LISA SNRs w
made by Hils and Bender@14#, who considered the captur
of 1M ( objects. More recent rate estimates@3# suggest that,
while the total capture rate is dominated by LMMSs a
5-2
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LISA CAPTURE SOURCES: APPROXIMATE . . . PHYSICAL REVIEW D 69, 082005 ~2004!
WDs, LISA’s detection rate should be dominated by captu
of ;10M ( BHs. This is partly because the BHs, being mo
massive, can be ‘‘seen’’ to greater distance, and partly
cause two-body relaxation enhances the density of B
nearer the MBH@15#. ~Two-body stellar collisions tend to
equalize kinetic energies, causing heavier stars to sink to
center of the cusp.!

The first extended look at data analysis for capt
sources was taken by Finn and Thorne@16#. They simplified
the problem by restricting to the case of circular, equato
orbits, but for this case they were able to calculate the cor
relativistic orbits and waveforms, and they showed how
LISA SNR accumulates over the last year of inspiral
during which typically;105 GW cycles are emitted—for a
range of CO masses and MBH masses and spins. Their
illustrate the salient fact that, typically, the entire last year
inspiral contributes significantly to the SNR. This is becau
one year before plunge, the CO is already quite close to
MBH. Indeed, we shall see below that considerable sign
to-noise can accumulate evenbeforethe final year.

A more realistic treatment of the capture problem m
incorporate the facts that~i! capture orbits will generally be
nonequatorial~i.e., the CO’s orbital angular momentum wi
not be aligned with the spin of the MBH!, and ~ii ! a fair
fraction of the inspiraling orbits will remain moderately e
centric right up until the final plunge. The latter fact ma
seem surprising, since it is well known that gravitational
diation reaction tends to circularize orbits rather efficientl1

The point, however, is that when the COs enter the loss c
their orbits are initiallyextremelyeccentric: 12einit;1026

21023, typically, while the initial pericenter distance is on
r p, init;82100M @18#. Given the CO’s initial trajectory, jus
after scattering into the loss cone, we would like to calcul
the eccentricity at the last stable orbit,eLSO. For nonspin-
ning MBHs, at least, this is straightforward. We find th
eLSO.0.1 if r p, init&20.0M , eLSO.0.2 for r p, init&12.8M ,
and eLSO.0.3 for r p, init&9.2M . @These estimates were ob
tained as follows. In the test particle limit, letr 1 and r 2 be
the turning points~pericenter and apocenter! of the radial
motion, where r is the standard radial coordinate
Schwarzschild. Definep and e by r 1([r p)5p/(11e) and
r 25p/(12e). Plunge occurs atp/M5612eLSO @7#. Then
pinit is given by

pinit /M5612eLSO1
1

ME
eLSO

1 dp

de
de. ~1!

~Of course, the upper limit in the integral should actually
slightly less than 1.0—say,e50.99995—but since the inte
grand is smooth ase→1.0, it makes no practical differenc
if we simply approximate the upper limit as 1.0.! The deriva-
tive dp/de5 ṗ/ė due to radiation reaction was calculate
numerically by Cutler, Kennefick, and Poisson@7# for orbits
near the horizon. We used the results from Fig. 1 of@7# to

1Except very close to plunge, where the very strong-field poten
tends to decrease the rate of circularization, and may even rev
the sign ofde/dt—cf. @7,17#.
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integrate~roughly, using a pencil and ruler! dp/de back-
wards~in time! from plunge top/M512. We then used the
lowest-order post-Newtonian result@6# dp/de5(12/19)(p/
e)(11 7

8 e2)/(11 121
304e2) to continue the integration back

wards toe51.0.#
Based on Freitag’s Monte Carlo simulation of captu

events in our Galaxy~Fig. 1 of @18#!, we then estimate tha
roughly half the captures of;10M ( BHs ~which, again,
should dominate LISA’s detection rate! should haveeLSO

*0.2. Note that a year or two before the final plunge t
eccentricity of such captures will, in fact, be significant
larger thaneLSO ~as illustrated in Figs. 7, 8!.

Capture sources are unlike some other LISA sources~e.g.,
galactic WD-WD binaries or MBH-MBH binaries at hig
redshift!, in that they may lie quite near the margin of d
tectability, given LISA’s current design specifications.~Put
another way, a modest change in the height or location of
noise floor may determine whether or not these sources
detected.! Since detecting capture sources is very high pri
ity for LISA, it has been a high priority for LISA’s Source
and Data Analysis team@‘‘Working Group 1’’ ~WG1!# to
make as much progress as possible studying capture so
before finalizing the LISA design@19#. This motivates cur-
rent research on several fronts, including work to~i! improve
estimates for event rates and for the distribution of sou
parameters~especially masses and initial pericenter d
tances!; ~ii ! solve the radiation reaction problem to determi
the true orbit, and construct the corresponding wavefor
~iii ! investigate what science can be done with these sou
~both astrophysics and tests of fundamental physics!; ~iv!
understand the limits on capture detection due to ‘‘sou
confusion,’’ i.e., the background ‘‘noise’’ caused byother,
unresolved capture sources; and~v! construct strategies to
dig the capture waveforms out of the instrumental and c
fusion noise. The present work addresses issues~iii ! and~iv!
above, while later papers will address problem~v!.

Parameter estimation with LISA@clearly bearing on above
issue ~iii !# has been looked at systematically for WD-W
binaries by Peterseimet al. @20# and Cutler@10#, and for
mergers of MBH pairs by Cutler@10# and Vecchio@21#. No
comparable analysis has yet been done for capture sou
For captures, some initial estimates of parameter estima
accuracy were made by Poisson@22# and Ryan@2# ~the lat-
ter’s main interest being to test alternative gravitation th
ries!. However, both Poisson and Ryan used extremely s
plifying approximations: they both took the inspiral orbits
be circular and equatoriala priori ~effectively reducing the
number of unknown system parameters, while leaving un
vestigated the significance of perihelion precession
Lense-Thirring precession for parameter extraction!, and
they did not incorporate in their signal models the amplitu
and phase modulations that arise from LISA’s orbital moti
~which LISA will use to determine the source position!. By
comparison, our treatment is far more realistic. While o
results are also approximate, we believe they should at l
give correct order-of-magnitude estimates of LISA’s para
eter estimation accuracy~while it seems doubtful that the
earlier estimates can be trusted even at that level!.

l
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III. OUR MODEL INSPIRAL WAVEFORM

We approximate the CO-MBH system as being, at a
instant, a Newtonian-orbit binary emitting a Peters-Matthe
~i.e., lowest order, quadrupolar! waveform. We then use pos
Newtonian~PN! equations to secularly evolve the paramet
of the orbit. In particular, we include orbital decay from r
diation reaction, pericenter precession, and Lense-Thir
precession of the orbital plane. The modulation of the wa
form’s amplitude and phase due to Lense-Thirring preces
has been described~in the context of circular-orbit binaries!
by Apostolatoset al. @23#. The motion of the LISA detecto
introduces additional modulations; our handling of the
closely follows that of Cutler@10#. Cutler’s treatment does
not account for the decrease in LISA’s sensitivity at frequ
cies f *10 mHz ~where the GW wavelength is smaller tha
the detector’s armlength!—an effect recently accounted fo
by Cornish and Rubbo@11#. It would be straightforward to
repeat our analysis using the Cornish and Rubbo formali
However, since most of the SNR for astophysically-relev
capture sources will accumulate at frequencies be
;10 mHz, we expect our high-frequency approximati
will have only a modest impact on the results.

We emphasize that our treatment is highly modular. E
while our choice of physical variables is a slight generali
tion of the variables used in@23# and @10#, it would be
straightforward to re-write our waveforms using a parame
zation along the lines of Buonanno, Chen, and Vallisneri@24#
~hereafter, BCV!, who found a particularly convenient wa
of parametrizing circular-orbit binaries with spin.~It seems
the BCV parametrization should be readily extendible to
centric orbits.! Similarly, it would be straightforward for us
to treat the LISA noise and response function along the li
of Cornish and Rubbo@11#. We do not implement either o
these treatments here because they did not seem of cr
importance, and because our work was already well un
way when they became available.

A. Principal axes

In this paper, we adopt a mixed notation for spatial ve
tors, sometimes labelling them with spatial indic
( i , j ,k, . . . ), butsometimes suppressing the indices and
stead using the standard 32d vector notation: an over-arrow
~as in AW ) to represent a vector,AW •BW to represent a scala
~‘‘dot’’ ! product, andAW 3BW to represent the vector~‘‘cross’’ !
product. An overhat~as in n̂) will indicate that a vector is
normalized, i.e., has unit length. We trust our meaning w
always be clear, despite this mixed notation.

Let n̂ be the unit vector pointing from the detector to t

source, and letL̂(t) be the unit vector along the CO’s orbita
angular momentum. We find it convenient to work in a~time-

varying! wave frame defined with respect ton̂ andL̂(t). We
define unit vectorsp̂ and q̂ by

p̂[~ n̂3L̂ !/un̂3L̂u,

q̂[ p̂3n̂, ~2!
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based on which we then define the two polarization ba
tensors

Hi j
1~ t ![ p̂i p̂ j2q̂i q̂ j ,

Hi j
3~ t ![ p̂i q̂ j1q̂i p̂ j . ~3!

The general GW strain field at the detector can then be w
ten as

hi j ~ t !5A1~ t !Hi j
1~ t !1A3~ t !Hi j

3~ t !, ~4!

whereA1(t) andA3(t) are the amplitudes of the two pola
izations.

B. Peters-Mathews waveforms

In the quadrupole approximation, the metric perturbat
far from the source is given~in the ‘‘transverse-traceless
gauge! by @25#

hi j 5~2/D !S PikPjl 2
1

2
Pi j PklD Ï kl ~5!

whereD is the distance to the source, the projection opera
Pi j is given by Pi j [h i j 2n̂i n̂ j , and Ï i j is the second time
derivative of the inertia tensor. In this paper we work in t
limit of small mass ratio,m/M!1, wherem andM are the
masses of the CO and MBH, respectively. In this limit, t
inertia tensor is justI i j (t)5mr i(t)r j (t), whererW is the posi-
tion vector of the CO with respect to the MBH.

Consider now a CO-MBH system described as a Newt
ian binary, with semi-major axisa, eccentricitye, and orbital
frequencyn5(2pM )21(M /a)3/2. Let ê1 and ê2 be ortho-
normal vectors pointing along the major and minor axes
the orbital ellipse, respectively. Since the orbit is planar,I i j

has only 3 independent components:I 11, I 21, andI 22, and as
the motion is periodic, we can expressI i j as a sum of har-
monics of the orbital frequencyn: I i j 5(nI n

i j .
We next denote

an[
1

2
~ Ï n

112 Ï n
22!,

bn[ Ï n
12,

cn[
1

2
~ Ï n

111 Ï n
22!. ~6!

Peters and Matthews showed@6# that

an52nA@Jn22~ne!22eJn21~ne!1~2/n!Jn~ne!

12eJn11~ne!2Jn12~ne!#cos@nF~ t !#,

bn52nA~12e2!1/2@Jn22~ne!22Jn~ne!

1Jn12~ne!#sin@nF~ t !#,

cn52AJn~ne!cos@nF~ t !#, ~7!
5-4
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LISA CAPTURE SOURCES: APPROXIMATE . . . PHYSICAL REVIEW D 69, 082005 ~2004!
where

A[~2pnM !2/3m, ~8!

Jn are Bessel functions of the first kind, andF(t) is the
mean anomaly~measured from pericenter!. For a strictly
Newtonian binary we have

F~ t !52pn~ t2t0!1F0 , ~9!

whereF0 is the mean anomaly att0. Decomposing Eq.~4!
into n-harmonic contributions and using Eq.~5!, one then
easily obtains explicit expressions for then-harmonic com-
ponents of the two polarization coefficients,A1[(nAn

1 and
A2[(nAn

2 . They are

An
152@11~ L̂•n̂!2#@ancos~2g!2bnsin~2g!#

1@12~ L̂•n̂!2#cn ,

An
352~ L̂•n̂!@bncos~2g!1ansin~2g!#, ~10!

where g is an azimuthal angle measuring the direction

pericenter with respect to x̂[@2n̂1L̂(L̂•n̂)#/@1

2(L̂•n̂)2#1/2.

C. LISA’s response function

With its three arms, LISA functions as a pair of two-ar
detectors, outputting two orthogonal signals. Letl 1

i ,l 2
i ,l 3

i be
unit vectors, each along one of LISA’s three arms, and leL
be LISA’s average arm length. Let alsoLi(t) be the length of
the i ’th arm when LISA measures an incident GW, and d
note dL1(t)[Li(t)2L. We refer to the two-arm detecto
formed by arms 1 and 2 as ‘‘detector I.’’ The strain amplitu
in this detector is given by

hI~ t ![@dL1~ t !2dL2~ t !#/L5
1

2
hi j ~ t !~ l 1

i l 1
j 2 l 2

i l 2
j !.

~11!

The second, orthogonal signal is then given by@10#

hII ~ t !5321/2@dL1~ t !1dL2~ t !22dL3~ t !#/L

5
1

2A3
hi j ~ t !~ l 1

i l 1
j 1 l 2

i l 2
j 22l 3

i l 3
j !. ~12!

For GW wavelengths much larger than the LISA arm leng
hI(t) and hII (t) coincide with the two ‘‘Michelson vari-
ables’’ @26#, describing the responses of a pair
two-arm/90° detectors. We can then writehI(t) andhII (t) as
a sum overn-harmonic contributions,

ha~ t !5(
n

ha,n~ t ! ~a5I ,II !, ~13!

where
08200
f

-

,

ha,n~ t !5
1

D

A3

2
@Fa

1~ t !An
1~ t !1Fa

3~ t !An
3~ t !#. ~14!

HereAn
1,3(t) are the two polarization coefficients@given, in

our model, by Eq.~10! above#, the factorA3/2 accounts for
the fact that the actual angle between LISA arms is 6
rather than 90°, andFa

1,3 are the ‘‘antenna pattern’’ func
tions, reading@23,27#

FI
15

1

2
~11cos2u!cos~2f!cos~2c!

2cosu sin~2f!sin~2c!,

FI
35

1

2
~11cos2u!cos~2f!sin~2c!

1cosu sin~2f!cos~2c!, ~15a!

FII
15

1

2
~11cos2u!sin~2f!cos~2c!

1cosu cos~2f!sin~2c!,

FII
35

1

2
~11cos2u!sin~2f!sin~2c!

2cosu cos~2f!cos~2c!. ~15b!

In these expressions, (u,f) is the source’s sky location in a
detector-based coordinate system andc is the ‘‘polarization
angle’’ describing the orientation of the ‘‘apparent ellips
drawn by the projection of the orbit on the sky—see Fig. 1
Ref. @23# and the explicit relation~17! given below.

It is more convenient to express the above response fu
tion in terms of angles defined not in the rotating, detect
based system, but rather in a fixed, ecliptic-based coordi
system. The anglesu,f are related touS ,fS—the source
location in an ecliptic-based system—through

cosu~ t !5
1

2
cosuS2

A3

2
sinuScos@f̄012p~ t/T!2fS#,

f~ t !5ā012p~ t/T!

1tan21FA3 cosuS1sinuScos@f̄012p~ t/T!2fS#

2 sinuSsin@f̄012p~ t/T!2fS#
G ,

~16!

whereT51 year andf̄0 ,ā0 are constant angles specifying
respectively, the orbital and rotational phase of the dete
at t50. ~See Cutler@10# for a complete definition of these
angles; note, though, that the angleā050 in this paper is
referred to asa050 in Cutler @10#.!

Next, we express the polarization anglec in terms of
uS ,fS anduL ,fL—the direction of the CO’s orbital angula

momentum,L̂(t), in the ecliptic-based system. We have
5-5
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tanc5H 1

2
cosuL2

A3

2
sinuLcos@f̄012p~ t/T!2fL#2cosu~ t !@cosuLcosuS1sinuLsinuScos~fL2fS!#J Y

F1

2
sinuLsinuSsin~fL2fS!2

A3

2
cos~f̄012pt/T!~cosuLsinuSsinfS2cosuSsinuLsinfL!

2
A3

2
sin~f̄012pt/T!~cosuSsinuLcosfL2cosuLsinuScosfS!G . ~17!
e

to

m
b-

at
For concreteness we shall hereafter takef̄05ā050, but
one could specify any other value as appropriate.

Note that the anglesuL ,fL are not constant, sinceL̂ pre-

cesses about the MBH’s spin directionŜ. Let uK ,fK be the

direction ofSW in the ecliptic-based system~‘‘K’’ standing for

‘‘Kerr’’ !; let alsol be the anglebetween Lˆ andŜ, anda(t)
be an azimuthal angle~in the orbital plane! that measures the

precession ofL̂ around Ŝ: Specifically, let

L̂5Ŝcosl1
ẑ2ŜcosuK

sinuK
sinl cosa1

Ŝ3 ẑ

sinuK
sinl sina,

~18!

where ẑ is a unit vector normal to the ecliptic. Then th
anglesuL(t),fL(t) are given in terms ofuK , fK , l, a(t) as

cosuL~ t !5cosuKcosl1sinuKsinl cosa~ t !,
08200
sinuL~ t !cosfL~ t !5sinuKcosfKcosl

2cosfKcosuKsinl cosa~ t !

1sinfKsinl sina~ t !,

sinuL~ t !sinfL~ t !5sinuKsinfKcosl

2sinfKcosuKsinl cosa~ t !

2cosfKsinl sina~ t !. ~19!

D. The pericenter angleg̃

As mentioned above, the angleg that appears in Eqs.~10!
measures the direction of pericenter with respect

x̂[@2n̂1L̂(L̂•n̂)#/@12(L̂•n̂)2#1/2. With this definition,g
is neither purely extrinsic nor purely intrinsic.~In the termi-
nology of BCV, ‘‘intrinsic’’ parameters describe the syste
without reference to the location or orientation of the o
server.! We will find it convenient to introduce a somewh
Fig. 1
TABLE I. Summary of physical parameters and their meaning. The angles (uS ,fS) and (uK ,fK) are

associated with a spherical coordinate system attached to the ecliptic.L̂ and Ŝ are unit vectors in the
directions of the orbital angular momentum and the MBH’s spin, respectively. For further details see
and the description in the text.

l0 t0 t0 is time where orbital frequency sweeps through
fiducial value~e.g., 1 mHz!

l1 ln m (ln of! CO’s mass
l2 ln M (ln of! MBH’s mass
l3 S/M2 magnitude of~specific! spin angular momentum of

MBH
l4 e0 e(t0), wheree(t) is the orbital eccentricity
l5

g̃0 g̃(t0), whereg̃(t) is the angle~in orbital plane!

betweenL̂3Ŝ and pericenter
l6 F0 F(t0), whereF(t) is the mean anomaly
l7 mS[cosuS ~cosine of! the source direction’s polar angle
l8 fS azimuthal direction to source
l9 cosl L̂•Ŝ(5const)
l10 a0 a(t0), wherea(t) is the azimuthal direction ofL̂

~in the orbital plane!
l11 mK[cosuK ~cosine of! the polar angle of MBH’s spin
l12 fK azimuthal direction of MBH’s spin
l13 ln(m/D) (ln of! CO’s mass divided by distance to source
5-6
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LISA CAPTURE SOURCES: APPROXIMATE . . . PHYSICAL REVIEW D 69, 082005 ~2004!
different convention for the zero point of this angle: We sh

define g̃ to be the direction of pericenter with respect toL̂

3Ŝ. Theng̃ is a purely intrinsic quantity.
Clearly,g and g̃ are related by

g5g̃1b, ~20!

whereb is the angle fromx̂}@ L̂(L̂•n̂)2n̂# to (L̂3Ŝ). It is
straightforward to show thatb is given by

sinb5
coslL̂•n̂2Ŝ•n̂

sinl@12~ L̂•n̂!2#1/2
,

cosb5
n̂•~Ŝ3L̂ !

sinl@12~ L̂•n̂!2#1/2
. ~21!

To evaluateb(t) in practice, we shall need the followin
relations:

Ŝ•n̂5cosuScosuK1sinuSsinuKcos~fS2fK!, ~22!

n̂•~Ŝ3L̂ !5sinuSsin~fK2fS!sinl cosa

1
Ŝ•n̂ cosuK2cosuS

sinuK
sinl sina, ~23!

and

FIG. 1. The MBH-CO system: setup and notation.M andm are
the masses of the MBH and the CO, respectively. The axes lab
x-y-z represent a Cartesian systembased on ecliptic coordinate

~the Earth’s motion around the Sun is in the x-y plane!. The spinSW

of the MBH is parametrized by its magnitudeSand the two angular
coordinatesuK ,fK , defined~in the standard manner! based on the

systemx-y-z. LW (t) represents the~time-varying! orbital angular
momentum; its direction is parametrized by the~constant! anglel

betweenLW andSW , and by an azimuthal anglea(t) ~not shown in the

figure!. The angleg̃(t) is the ~intrinsic! direction of pericenter, as

measured with respect toLW 3SW . Finally, F(t) denotes the mean
anomaly of the orbit, i.e., the average orbital phase with respec
the direction of pericenter.
08200
l

L̂•n̂5Ŝ•n̂ cosl1
cosuS2Ŝ•n̂cosuK

sinuK
sinl cosa

1
~Ŝ3 z̄!•n̂

sinuK
sinl sina, ~24!

or, equivalently,

L̂•n̂5cosuScosuL1sinuSsinuLcos~fS2fL!. ~25!

Note that the time variation ofŜ•n̂ is very small in the ex-
treme mass-ratio case considered here: this quantity is
stant to better than;(m/M )(S/M2) ~see Appendix C!. In

our model we shall approximateŜ—and henceŜ•n̂—as
strictly constant.

E. Parameter space

The two-body system is described by 17 parameters.
spin of the CO can be marginally relevant~see Appendix C!,
but in this paper we shall ignore it, leaving us with 14 p
rameters. We shall denote a vector in the 14D param
space byla (a50, . . .,13). We choose our parameters
follows:

la[~l0, . . . ,l13!5@ t0ln m, ln M ,S/M2,e0 ,g̃0 ,F0 ,mS

[cosuS ,fS ,cosl,a0 ,mK[cosuK ,fK , ln~m/D !#.

~26!

Heret0 is a time parameter that allows us to specify ‘‘when
the inspiral occurs—we shall generally chooset0 to be the
instant of time when the~radial! orbital frequency sweeps
through some fiducial valuen0 ~typically, we shall choosen0
of order 1 mHz!, m and M are the masses of the CO an
MBH, respectively, andS is the magnitude of the MBH’s
spin angular momentum~so 0<S/M2<1). The parameters
e0 , g̃0, and F0 describe, respectively, the eccentricity, th
direction of the pericenter within the orbital plane, and t
mean anomaly—all at timet0. More specifically, we takeg̃0

to be the angle~in the plane of the orbit! from L̂3Ŝ to
pericenter, and, as usual,F0 to be the mean anomaly with
respect to pericenter passage. The parametera0[a(t5t0)
@wherea(t) is defined in Eq.~18!# describes the direction o

L̂ aroundŜ at t0. The angles (uS ,fS) are the direction to the
source, in ecliptic-based coordinates; (uK ,fK) represent the

directionŜ of the MBH’s spin~approximated as constant! in

ecliptic-based coordinates; andl is the angle betweenL̂ and

Ŝ ~also approximated as constant2!. Finally, D is the distance
to the source.

2In reality, radiation reaction will impose a small time variation
l; however, this variation is known to be very small~see Ref.@9#!
and we shall ignore it here. When a model of the time-variation
l is eventually at hand, it would be trivial to generalize our tre
ment to incorporate it: one would just need an equation fordl/dt,
and in the parameter listl would be replaced byl0—the value of
l at time t0.

ed

to
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L. BARACK AND C. CUTLER PHYSICAL REVIEW D 69, 082005 ~2004!
The various parameters and their meaning are sum
rized in Table I. Figure 1 illustrates the various angles
volved in our parametrization.

Note for simplicity we are treating the background spa
time as Minkowski space, not Robertson-Walker. To corr
this, for a source at redshiftz, requires only the simple trans
lation: M→M (11z), m→m(11z), S→S(11z)2, D
→DL , whereDL is the ‘‘luminosity distance’’@28#.

The parameters can be divided into ‘‘intrinsic’’ and ‘‘ex
trinsic’’ parameters, following BCV. Extrinsic parameters r
fer to the observer’s position or orientation, or to the ze
of-time on the observer’s watch. There are seven extrin
parameters: the four parameterst0 , mS , fS , and D corre-
08200
a-
-

-
t

-
ic

spond to the freedom to translate the same binary in sp
and time, and the three parametersmK , fK , and a0 are
basically Euler angles that specify the orientation of the o
with respect to the observer~at t0). The intrinsic parameters
are the ones that control the detailed dynamical evolution
the system, without reference to the observer’s location
orientation. In our parametrization, the seven intrinsic p

rameters are lnm, ln M, S/M2, cosl, e0 , g̃0, andF0. BCV
observed~in the context of circular-orbit binaries with spin!
that extrinsic parameters are generally much ‘‘cheaper’’
search over than intrinsic parameters. We shall make g
use of this important observation in further papers.
e
pact, their

s.
F. Orbital evolution equations

We evolveF(t), n(t), g̃(t), e(t), anda(t) using the following PN formulas:

dF

dt
52pn, ~27!

dn

dt
5

96

10p
~m/M3!~2pMn!11/3~12e2!29/2$@11~73/24!e21~37/96!e4#~12e2!

1~2pMn!2/3@~1273/336!2~2561/224!e22~3885/128!e42~13147/5376!e6#

2~2pMn!~S/M2!cosl~12e2!21/2@~73/12!1~1211/24!e21~3143/96!e41~65/64!e6#%, ~28!

dg̃

dt
56pn~2pnM !2/3~12e2!21F11

1

4
~2pnM !2/3~12e2!21~26215e2!G

212pn cosl~S/M2!~2pMn!~12e2!23/2, ~29!

de

dt
52

e

15
~m/M2!~12e2!27/2~2pMn!8/3

3F ~3041121e2!~12e2!~1112~2pMn!2/3!2
1

56
~2pMn!2/3~~8!~16705!1~12!~9082!e2225211e4!G

1e~m/M2!~S/M2!cosl~2pMn!11/3~12e2!24@~1364/5!1~5032/15!e21~263/10!e4#, ~30!

da

dt
54pn~S/M2!~2pMn!~12e2!23/2. ~31!

Equations~28!, ~29!, and~30! are from Junker and Scha¨fer @29#, except~i! the second line of Eq.~29! is from Brumberg@30#
~cf. our Appendix A!, and the last term in Eq.~28!—the term}S/M2—is from Ryan@31#. Equation~31! is from Barker and
O’Connell @32#. The dissipative termsdn/dt andde/dt are given accurately through 3.5PN order~i.e., one order higher than
2.5PN order, where radiation reaction first becomes manifest!.3 The nondissipative equations, fordg̃/dt and da/dt, are
accurate through 2PN order.4

3The currently undetermined term in the 3.5PN expressions@see@33#, in particular Eqs.~12!–~14! therein# does not show up in our
calculation, since here we are ignoring terms that are higher-order in the mass ratiom/M .

4In fact, the equations fordg̃/dt andda/dt are missing terms proportional to (S/M2)2, which, according to usual ‘‘order counting’’ ar
classified as 2PN. However, this usual counting is misleading when the central object is a spinning BH: Because BHs are ultracom
spins are smaller than suggested by the usual counting, and the missing terms}(S/M2)2 have, in fact, the same magnitude as 3PN term
Similarly, the terms}(S/M2) in Eqs.~29! and ~31! can be viewed as effectively 1.5PN terms.
5-8
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FIG. 2. Sample equatorial orbits: Shown~left to right, respectively! are 20 minutes, 1 hour, and 6 hours-long samples of the C
trajectory just before approaching the LSO. (x,y) is a Cartesian coordinate system in the orbital~equatorial! plane, centered at the MBH. Th
axes give the distance in units of the MBH’s massM. This sequence of plots shows a case with a very small LSO eccentricity,e50.05. The
other physical parameters are set as follows: CO’s mass:m510M ( ; MBH’s mass:M5106M ( ; MBH’s spin magnitude:S5M2.
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In solving the above time-evolution equations, the init
values~at time t0) of F, n, g̃, e, anda are just the param
etersF0 , n0 , g̃0 , e0, anda0.

We emphasize again that our treatment is highly modu
The PN expressions in Eqs.~28!–~31! could be replaced with
improved ones as soon as higher-order PN expressions
available. Also, one might wish to improve these evoluti
equations using values from look-up tables, or results fr
numerical studies of the orbital evolution in Kerr~such as
in @9#!.

G. Doppler phase modulation

Doppler phase modulation due to LISA’s orbital motio
becomes important for integration times longer than a f
weeks. We incorporate this effect by shifting the phaseF(t),
according to

F~ t !→F~ t !1FD~ t !, ~32!

where

FD~ t !52pn~ t !R sinuScos@2p~ t/T!2fS#. ~33!

HereR[1 AU5499.00478 sec.

H. Putting the pieces together

The algorithm for constructing our approximate wav
form is then: Fix some fiducial frequencyn0 and choose
waveform parameters (t0 ,ln m,ln M,S/M2,e0,g̃0,F0,cosuS,
fS,cosl,a0,cosuK ,fK ,D). Solve the ODEs~27!–~31! for
F(t), n(t), g̃(t), e(t), a(t). CalculateuL(t),fL(t) using
Eqs.~19! and then obtainc(t) from Eq.~17!. Calculateg(t)
from g̃(t) using Eqs.~20! and ~21!. Use e(t) and n(t) to
calculatean(t),bn(t),cn(t) in Eqs. ~7!, remembering to in-
clude the Doppler modulation vianF(t)→n@F(t)
1FD(t)#, in the manner of Eqs.~32! and~33!. Calculate the
amplitude coefficientsAn

1,3 and the antenna pattern fun
tions Fa

1,3 using Eqs.~10! and ~15!, respectively. Then fi-
nally calculateha(t) ~for a5I ,II ) using Eqs.~14! and~13!.
08200
l

r:

are

-

Note that, in our treatment, pericenter precession
Lense-Thirring precession have no effect on the intrinsic s
nal ~the signal in a frame that rotates with the system!, since
we always use the Peters-Matthews ‘‘lowest-order’’ wav
forms. The effect of these motions is simply to rotate t
binary system with respect to the detector. This relative
tation modulates the polarization anglec @which appears in

the response functionsFa
1,3(t)] sincec depends onL̂, and

it affects the amplitudesA1,3 since the latter depend o

L̂•n̂ andg.
Figures 2–6 show some sample orbits and wavefor

obtained from employing the above algorithm. Figures 7 a
8 demonstrate the evolution of orbits in the eccentrici
frequency plane.

IV. FORMALISM OF SIGNAL ANALYSIS

This section briefly reviews the basic formulas of sign
analysis, with application to LISA. We follow closely th
treatment of Cutler@10#. In particular, our analysis is strictly
valid only in the low-frequency regime, where the ligh
travel-time up and down one arm is much less than the gr
tational wave period.~However, we expect it to be a reaso
able approximation at higher frequencies as well.!

As discussed above, LISA functions as a pair of two-ar
Michelson detectors, which we label I and II. The outp
from these two detectors can be represented by the ve
sa(t) ~with a5I ,II ). In what follows it will be convenient
to work with the Fourier transform of the signal; the conve
tion we use is

s̃a~ f ![E
2`

`

e2p i f tsa~ t !dt. ~34!

Now, the outputsa(t) is the sum of incident gravitationa
wavesha(t) and instrumental noisena(t). For simplicity we
assume that~i! the noise is stationary and Gaussian,~ii ! the
noise in detectors I and II is uncorrelated, and~iii ! the noise
spectral densitySh( f ) is the same in the two detector
‘‘Gaussianity’’ means that each Fourier componentña( f ) has
5-9
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FIG. 3. Same as in Fig. 2, for a trajectory with LSO eccentricitye50.3.
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a Gaussian probability distribution. The combination of a
sumptions~ii ! and ~iii ! is expressed by the relation

^ña~ f !ñb~ f 8!* &5
1

2
d~ f 2 f 8!Sn~ f !dab , ~35!

where ‘‘̂ & ’’ denotes the ‘‘expectation value’’ andSn( f ) is
the ~single-sided! noise spectral densityfor each detector.

Under the assumptions of stationarity and Gaussianity,
have a natural definition of the inner product on the vec
space of signals@34#:

~puq![2(
a

E
0

`

@ p̃a* ~ f !q̃a~ f !1 p̃a~ f !q̃a* ~ f !#Y Sn~ f !d f ,

~36!

wherepa(t) and qa(t) are any two signals. One can sho
based on this definition, that the inner product of pure no
n with any signal is a random variable with zero mean a
unit variance. In particular, the probability for the noise
have some realizationn0 is just

p~n5n0!}e2(n0un0)/2. ~37!

Thus, if the actual incident waveform ish, the probability of
measuring a signals in the detector output is proportional t
e2(s2hus2h)/2. Correspondingly, given a measured signals,
the gravitational waveformh that ‘‘best fits’’ the data is the
one that minimizes the quantity (s2hus2h).

The SNR for an incident waveformh filtered by a per-
fectly matched templateT5h is

SNR@h#[
~huh!

rms~hun!
, ~38!

where rms(hun) is the rms value for an ensemble of realiz
tions of the detector noise,n. From the definition~36! it
follows @34# that for any two signalspa(t) and qa(t), the
expectation value of (pun)(qun) is just (puq). In particular,
we have rms(hun)5(huh)1/2, and hence the SNR of the de
tection is approximately given by just

SNR@h#5~huh!1/2. ~39!
08200
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For a given incident gravitational wave, different realiz
tions of the noise will give rise to somewhat different best
parameters. However, for large SNR, the best-fit parame
will have a Gaussian distribution centered on the correct v
ues. Specifically, letl̃a be the ‘‘true’’ values of the physica
parameters, and letl̃a1dla be the best fit parameters in th
presence of some realization of the noise. Then for la
SNR, the parameter-estimation errorsdla have the Gaussian
probability distribution

p~dla!5Ne2(1/2)Gabdladlb
. ~40!

HereGab is the so-calledFisher information matrix, defined
by

Gab[S ]h

]la
U ]h

]lbD , ~41!

andN5Adet(G/2p) is the appropriate normalization facto
For large SNR, the variance-covariance matrix is given b

^dladlb&5~G21!ab1O~SNR!21. ~42!

We defineDla[^dladla&1/2 ~the repeated index isnot be-
ing summed here!. The uncertainty in the source’s angul
position,DVS ~a solid angle!, is given by@10#5

DVS52pA~DmSDfS!22^dmSdfS&
2. ~43!

The second term in brackets in Eq.~43! accounts for the fact
that errors inmS andfS will in general be correlated, so tha
the ‘‘error box’’ on the sky is elliptical in general, not circu
lar. The 2p factor on the right-hand side~RHS! of Eq. ~43! is
our convention; with this definition, the probability that th
source liesoutside an ~appropriately shaped! error ellipse
enclosing solid angleDV is e2DV/DVS. In the same way, the
error ellipse for the spin direction,DVK , is given by

DVK52pA~DmKDfK!22^dmKdfK&2. ~44!

5Note Eq.~3.7! of @10# is erroneous. However, the results quot
in that paper are based on the correct expression, Eq.~43! here.
5-10
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FIG. 4. Same as in Fig. 2, for a trajectory with LSO eccentricitye50.6.
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The actual inner product, Eq.~36!, is formulated in the
frequency domain. For a white noise@i.e.,Sn( f )5const], the
inner product is equivalent to 2Sn

21(a*2`
` pa(t)qa(t)dt, by

Parseval’s theorem. Motivated by this formula, we sh
adopt the following approximate version of the inner prod
in calculating the Fisher matrix: First, we define the ‘‘nois
weighted’’ waveform

ĥa~ t ![(
n

ha,n~ t !/Sh
1/2~ f n~ t !!, ~45!

where we take

f n~ t !5nn~ t !1g8 ~ t !/p. ~46!

Then we approximate the covariance matrix, Eq.~41!, as

Gab52(
a

E
0

T

]aĥa~ t !]bĥa~ t !dt. ~47!

That is, we simply reweight each harmonic by the squ
root of the inverse spectral density of the noise, and ther
ter treat the noise as if it were white.

The decision to setf n(t)5n@n(t)1(2/n)(g8 (t)/2p)# is
something of a compromise: The radial orbital frequency
n, the azimuthal orbital frequency isn(t)1(g8 /2p), and the
fully correct waveforms will contain harmonics of both. O
‘‘compromise’’ approximates the signal as harmonics ofn
1(2/n)(g8 /2p), which lies between the radial and azimuth
frequencies6 and is the ‘‘correct’’ choice for circular motion
~in which case then52 harmonic dominates the GW outpu
and only the azimuthal piece enters the waveform!.

V. SNR ESTIMATES

Our analysis of the SNR buildup follows, basically, that
Finn and Thorne@16#. The main advance here is, of cours
the fact that we consider realistically eccentric orbi
whereas Finn and Thorne confined their analysis to circ

6Except for then51 harmonic, which, however, contributes ve
little to the GW signal and to the overall SNR—cf. the plots in Fig
9–14 below.
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orbits. Unlike in the circular-orbit case, where the contrib
tion from the n52 harmonic always dominates the SNR
eccentric orbits have their emitted power~and contribution to
SNR! distributed among highern-harmonics. One of the
goals of this section is to explore this mode distribution,
realistic values of the orbital eccentricity.

A. LISA noise model

LISA’s noise has three components: instrumental no
confusion noise from short-period galactic binaries, and c
fusion noise from extragalactic binaries. Our treatment
these three sources follows Hughes@35#, though we use
somewhat different estimates for the sizes of the three pie

For LISA’s instrumental noise,Sh
inst( f ), we use the fol-

lowing analytic fit by Finn and Thorne@16#,7 based on the
noise budget given in the LISA Pre-Phase A Report@1#:

Sh
inst~ f !51.22310251f 2412.12310241

11.22310237f 2 Hz21, ~48!

where the frequencyf is to be given in Hz.
Next we turn to WD confusion noise. Any isotropic bac

ground of indistinguishable GW sources represents~for the
purpose of analyzingother sources! a noise source with
spectral density@36#

Sh
conf~ f !5

3

5p
f 23rcVGW~ f !, ~49!

whererc[3H0
2/(8p) is the critical energy density needed

close the universe~assuming it is matter-dominated! and
VGW[(rc)

21drGW /d(ln f) is the energy density in gravita
tional waves~expressed as a fraction of the closure dens!

.

7To obtain this expression, we used the expression given at
beginning of p. 8 of Ref.@16#, where for@hSN5,1 yr

SA ( f )#2 we used the
expression given in footnote@44# therein, and forD f we have taken
1/1 yr.
5-11
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FIG. 5. Sample waveforms. Shown is the response functionhI(t) ~as defined in the text! during the last minutes before the final plung
The three panels show cases with LSO eccentricity 0, 0.3, and 0.5~left to right, respectively!. The other physical parameters are set
follows: CO’s mass:m510M ( ; MBH’s mass:M5106M ( ; MBH’s spin magnitude:S5M2; Angle between MBH’s spin and orbita
angular momentum:l530°.
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per logarithmic frequency interval.8 For the extragalactic
WD background, Farmer and Phinney@37# estimate that, for
f near 1 mHz,VGW( f )53.6310212( f /1023 Hz)2/3 @at H0
570 km/(sec Mpc)], so

Sh
ex gal54.2310247S f

1 HzD
27/3

Hz21. ~50!

Note Eq. ~50! is not a good fit toSh
ex gal for f *1022 Hz,

where mergers cause the spectrum to decrease more sh
However, at such high frequencies, instrumental noise do
nates the total noise in any case, so for our purposes
extrapolation of Eq.~50! to high frequencies is harmless.

A recent calculation of the galactic confusion backgrou
by Nelemanset al. @38# yields anVGW

gal that is 5.03101 times
larger thanVGW

ex gal ~near 1 mHz! @37#; therefore9

Sh
gal~ f !52.1310245S f

1 HzD
27/3

Hz21. ~51!

This is larger than instrumental noise in the ran
;1024–1022 Hz. However, at frequencies f *3
31023 Hz, galactic sources are sufficiently sparse, in f
quency space, that one expects to be able to ‘‘fit them out
the data. An estimate of the resulting noise is@35#

8Note the RHS of our Eq.~49! is a factor3
4 as large as the RHS in

Eq. ~3.4! in @36#; this difference arises simply because the an
between any two LISA arms isp/3 ~instead of thep/2 for LIGO’s
arms!, and sin2(p/3)53/4.

9Note our prefactor 2.1310245 is a factor;25 lower than the
prefactor cited in Hughes@35#, based on his private communicatio
with S. Phinney. This large discrepancy seems to be the produ
the following two factors. First, it was based on the estimate
VGW

gal by Webbink and Han@39#, which is;3 times larger than the
result of Nelemanset al. @38#. Second, it contained a factor 20/
error due to a misunderstanding of Phinney’s normalization conv
tion.
08200
ply.
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Sh
inst1gal~ f !5min$Sh

inst~ f !/exp~2kTmission
21 dN/d f !,

Sh
inst~ f !1Sh

gal~ f !%. ~52!

Here dN/d f is the number density of galactic white dwa
binaries per unit GW frequency,Tmission is the LISA mission
lifetime ~so D f 51/Tmission is the bin size of the discretely
Fourier transformed data!, and k is the average number o
frequency bins that are ‘‘lost’’~for the purpose of analyzing
other sources! when each galactic binary is fitted out (k is
larger than one because LISA’s motion effectively smears
signal from each binary over several frequency bins!. The
factor exp(2kTmission

21 dN/d f) is therefore the fraction of ‘‘un-
corrupted’’ bins, where instrumental noise still dominate
For dN/d f we adopt the estimate@35#

dN

d f
5231023 Hz21S 1 Hz

f
D 11/3

, ~53!

e

of
f

n-
FIG. 6. A longer waveform segment shows amplitude modu

tions due to precession of the orbital plane.~The physical param-
eters are set here as in the left panel of Fig. 5.!
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LISA CAPTURE SOURCES: APPROXIMATE . . . PHYSICAL REVIEW D 69, 082005 ~2004!
and takekTmission
21 51.5/yr ~corresponding toTmission'3 yr

andk'4.5 @40#!. To obtain thetotal LISA noise, we just add
to Eq. ~52! the contribution from the extragalatic confusio
background, Eq.~50!:

Sh~ f !5Sh
inst1gal~ f !1Sh

ex gal~ f !. ~54!

B. SNR estimates for inspiral orbits

For a Keplerian orbit, the source is strictly periodic a
hence the GWs are at harmonicsf n[nn of the orbital fre-
quency. However, as discussed in Sec. IV, to partially co
pensate for the fact that the radial and azimuthal periods

FIG. 7. Evolution of orbits in our model, for a system compos
of a 1M ( CO inspiralling into a 106M ( ~nonspinning! MBH. The
dashed line represents the last stable orbit~LSO!. Each of the solid
lines shows then-e trajectory of a system with given initial dat
~the orbit evolves in time ‘‘from bottom to top’’!. The four dots
plotted along each trajectory indicate, from bottom to top, the s
of the system 10, 5, 2, and 1 years before the LSO.

FIG. 8. Same as in Fig. 7, for a 10M ( CO inspiralling into a
106M ( MBH.
08200
-
re

different, we setf n(t) equal tonn(t)1g8 (t)/p. Assuming
the contributions from the various harmonics to be appro
mately orthogonal, we may approximate the SNR from
single synthetic 2-arm Michelson detector~denoted here by
SNRI) as

^SNRI
2&SA5SnE hc,n

2 ~ f n!

5 f nSh~ f n!
d~ ln f !, ~55!

where ‘‘̂ . . . &SA’’ means ‘‘sky average,’’ i.e., average ove
all source directions~the factor 5 in the denominator resul
from this averaging!. The characteristic amplitude hc,n is
given, following Finn and Thorne,10 by

hc,n5~pD !21A2Ėn / ḟ n, ~56!

where Ėn is the power radiated to infinity by GWs at fre
quencyf n . To lowest order, this is

Ėn5
32

5
m2M4/3~2pn!10/3g~n,e!, ~57!

whereg(n,e) is given by@6#

g~n,e!5
n4

32H FJn22~ne!22eJn21~ne!1
2

n
Jn~ne!

12eJn11~ne!2Jn12~ne!G2

1~12e2!@Jn22~ne!

22Jn~ne!1Jn12~ne!#21
4

3n2
@Jn~ne!#2J . ~58!

In this section, our major motivation is to investigate t
effect of nonzero eccentricity. For this reason, we ignore
effect of the MBH’s spin—effectively assuming the MBH
Schwarzschild.

The curves in Figs. 9–14 show the buildup of SNR w
time, for each harmonic. As is customary in the LISA liter
ture, our plots actually give SNRI—the SNR from a single
2-arm Michelson; the actual LISA SNR buildup will be
factor ;A2 times larger. The curves are derived as follow
We use our PN Eqs.~30! and ~28! ~with S set to zero! to

10In their SNR estimates, Finn and Thorne@16# tend to consider
the quantityhc,m8 ~in their notation!, the ‘‘modified’’ characteristic
amplitude, introduced to account for the reduction in the GW sig
near the plunge, where the available bandwidth becomes
small. Here we rather considerhc,m itself: This quantity has the
convenient characteristic that when integrated against the frequ
@through Eq.~55!# it yields the SNR~squared!. An estimate of the
SNR based on the plots given in@16#, which show the modified
amplitudeshc,m8 rather thanhc,m itself, actually takes into accoun
twice the effect of the final plunge: The fact that the frequen
changes rapidly near the plunge is already accounted for in
definition of hc,m , just above Eq.~2.2! therein.

te
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L. BARACK AND C. CUTLER PHYSICAL REVIEW D 69, 082005 ~2004!
evolvee(t) andn(t) forward in time, up to the point when
the CO plunges over the top of the effective potential barr
For a point particle in Schwarzschild, the plunge occurs
amin5M (612e)(12e2)21 @7#, so we set

nmax5~2pM !21@~12e2!/~612e!#3/2. ~59!

We denote byef the ‘‘final’’ value of e, i.e., the value ofe
when n reaches the plunge frequencynmax. Then, for each
harmonicn we use our solution$n(t),e(t)% along with Eqs.
~56!, ~57!, and~58! to determinehc,n( f n).

The upper ‘‘signal’’ curves in Figs. 9–14 showhc,n(t) for
each n; we ‘‘cut off’’ each curve at f n,max5nnmax
1p21g8 (nmax,ef). Marks along each curve indicate~from
right to left! one, two, five, and ten years before the fin
plunge. The lower ‘‘noise’’ curve depicts hn( f )
[@5 f Sh( f )#1/2, the rms noise amplitude per logarithmic fr
quency interval@the factor of 5 comes from sky-averagin
Finn and Thorne@16# defineSh

SA( f )55Sh( f )]. For compari-
son, the instrumental contribution, hn

inst( f )[@5 f n

3Sh
inst( f n)#1/2, is also plotted. With these conventions, t

contribution to the SNR from each harmonic is

~SNRI!n
25E ~hc,n /hn!2d~ ln f !, ~60!

FIG. 9. GW signal from a 10M ( CO spiralling into a~nonspin-
ning! 106M ( MBH at D51 Gpc: case where eccentricity at th
last stable orbit~LSO! is eLSO50.3. The curve labeled ‘‘Sinst’’
shows LISA’s sky-averaged instrumental noise level,hn

inst( f ). The
dashed line is an estimate of LISA’s overall noise level,hn( f ),
including the effect of stochastic-background ‘‘confusion’’ due
WD binaries~both galactic and extra-galactic!. The convex curves
show the amplitudeshc,n of the first 10n-harmonics of the GW
signal, over the last 10 years of evolution prior to the final plun
Along each of these curves we marked 3 dots, indicating~from left
to right! the GW amplitude 5, 2, and 1 years before the plunge. T
orbital eccentricity 10, 5, 2, and 1 years before plunge is 0.77, 0
0.54, and 0.46, respectively. The orbital frequency 10, 5, 2, an
years before plunge is 0.23, 0.41, 0.70, and 0.94 mHz, respecti
The frequency at the LSO is 1.65 mHz.
08200
r.
t

l

so using the curves one can ‘‘integrate by eye’’ to estim
the contribution to the SNR from each harmonic, and to
tectwhen~i.e., how long before the final plunge! most of the
contribution is accumulated.

Here are some points to pay attention to when examin
the SNR plots in Figs. 9–14:

Systems with MBH’s mass of;106 are ideally ‘‘located’’
in the LISA band. Systems withM5107 radiate at frequen-
cies where WD confusion noise would likely obscure t
capture signal.

Systems withM'106 at D51 Gpc are detectable with
SNRI of ;5(m/1M (), assuming 1 year of signal integratio

FIG. 10. Same as in Fig. 9, but for inspiral of a 1M ( CO into a
106M ( MBH. The orbital eccentricity 10, 5, 2, and 1 years befo
plunge is 0.46, 0.40, 0.35, and 0.32, respectively. The orbital
quencyn 10, 5, 2, and 1 years before plunge is 0.94, 1.16, 1.39,
1.51 mHz, respectively. The frequency at the LSO is 1.65 mHz

FIG. 11. Same as in Fig. 9, but for inspiral of a 10M ( CO into
a 107M ( MBH. The orbital eccentricity 10, 5, 2, and 1 years befo
plunge is 0.324, 0.313, 0.305, and 0.303, respectively. The orb
frequency 10, 5, 2, and 1 years before plunge is 0.151, 0.158, 0.
and 0.164 mHz, respectively. The frequency at the LSO is 0.
mHz.
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Combining both synthetic Michelsons, and for two years
integration, LISA’s SNR is;10(m/1M ().

As expected, the higher the orbital eccentricity, the m
SNR is contributed by highn-harmonics. AteLSO50.3, the
contribution fromn53,4 is equally important to that ofn
52. At eLSO50.5, the dominant contribution comes atn
54, and one needs to sum the contributions of at lea
dozen modes in order to properly estimate the overall SN

A related point: For 106M ( MBHs and;1M ( COs, the
last year prior to plunge contributes only a small fraction
the potential SNR. Even for;10M ( COs, the contribution

FIG. 12. GW signal from a 10M ( CO spiralling into a~non-
spinning! 106M ( MBH: case of a circular orbit~compare with Fig.
4 of Finn and Thorne!. Notation is the same as in Fig. 9. Note th
in our model, a CO in a circular orbit emits GW only into then
52 harmonic. The orbital frequency 10, 5, 2, and 1 years be
plunge is 0.58, 0.74, 0.99, and 1.22 mHz, respectively. The
quency at the LSO is 2.20 mHz.

FIG. 13. Same as in Fig. 9, except that the LSO eccentricit
taken to be 0.1. The orbital eccentricity 10, 5, 2, and 1 years be
plunge is 0.38, 0.30, 0.22, and 0.18, respectively. The orbital
quency 10, 5, 2, and 1 years before plunge is 0.49, 0.67, 0.94,
1.17 mHz, respectively. The frequency at the LSO is 2.06 mHz
08200
f

e

a
.

f

between 10 and 1 years prior to plunge can easily exceed
contribution from the last year.

The last effect may be further visualized by looking at t
total amount of energy radiated in GW up to a timet prior to
plunge, as a function oft. This is demonstrated in Fig. 15 fo
a mass ratio of (10M ()/(106M () and for a variety of LSO
eccentricities. For this plot, we used the leading-order
pression given in@6# for the total power radiated from al
n-harmonics:

Ė~ t !5
32

5
~m/M !2@2pn~ t !M #10/3@12e~ t !2#27/2

3@11~73/24!e2~ t !1~37/96!e4~ t !#. ~61!

The percentage of energy radiated up to timet, out of the
total energy radiated during the capture, is then calcula
through

%Erad~ t !5S 12

E
t

tLSO
Ė~ t8!dt8

E
2`

tLSO
Ė~ t8!dt8

D 3100. ~62!

The results are striking: For a 106M ( MBH and a 10M (

CO, about half the total GW energy is released earlier th
10 years before the final plunge; for a 1M ( CO, half the
energy is emitted already 100 years before plunge. Mos
this energy is released in the LISA band, in short ‘‘spurts’’
the CO passes close to the MBH. This provides a vivid de
onstration of the potential ‘‘threat’’ imposed by sel
confusion. A systematic analysis of this issue will be p
sented elsewhere.

e
-

is
re
-
nd

FIG. 14. GW signal from a 10M ( CO spiralling into a 106M (

MBH: case where eccentricity at the last stable orbit iseLSO50.5.
Notation is the same as in Fig. 9. The orbital eccentricity 10, 5
and 1 years before plunge is 0.88, 0.81, 0.71, and 0.64, respect
The orbital frequency 10, 5, 2, and 1 years before plunge is 0.1
0.265, 0.490, and 0.678 mHz, respectively. The frequency at
LSO is 1.13 mHz.
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Finally, recall that all of our results regarding SNR valu
should be regarded as ballpark estimates rather than defi
due to the many approximations made here. Here is a s
mary of the various approximations involved:~i! we incor-
porate an approximate model of LISA’s instrumental noi
which is inaccurate at the high-frequency end;~ii ! we model
the source using PN evolution and quadrupole emissio
both approximations being worse, again, at high frequenc
~iii ! we assume a nonrotating MBH;~iv! we assume the con
tributions from the variousn-modes to the SNR are un
coupled; and~v! we assume that an ideal, coherent match
filtering search is carried out over the entire observation
riod. Nevertheless, we believe our results amply illustrate
importance of higher harmonics and of searches with mu
year integration times.

C. SNR for a low-mass main-sequence star at Sgr A*

Freitag @18,41# recently pointed out that LISA might b
able to detect a few;0.1M ( main-sequence stars captur
by the MBH at the center of our own galaxy. The strong
such source will still have;106 years to go before plunge
and so will currently be at the low end of the LISA frequen
range, but because it is so close to us, Freitag estimated
it could still yield a SNRI as high as;100. We have re-
examined this estimate, using the example from Fig. 1
Freitag @41#, in which m50.06M ( , M52.63106M ( , D
58 kpc, ande50.8 at ten million years prior to plunge. Th
results are shown in Fig. 16. Since for the galactic sou
considered here, there is practically no frequency evolu
during the observation time, our convention in Fig. 16 diffe
somewhat from those in Figs. 9–14. As in Figs. 9–14,
different curves correspond to the contributions from diff
ent harmonics, but here we plothc,n times the factor

FIG. 15. Percentage of energy radiated~out of the total energy
radiated in GW to infinity during the entire capture process! as a
function of the time left to the final plunge. The CO and MB
masses are 10M ( and 106M ( , respectively. This plot was gene

ated using Eq.~62! with Ė approximated using Eq.~61!. Note how
large the time scale is for energy to be emitted in GW by
CO-MBH system, compared to LISA mission time (;2 years!.
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21d fn /dt)32 yr#, so the height of the marked poin

above the noise curve now gives SNR accumulated ove
years of observation. The marked points correspond to 2
observations carried out 107, 53106, 23106, 106, and 105

years before plunge, respectively.~Actually, there is no
‘‘plunge,’’ as the low-mass star is tidally disrupted at lea
;50 yrs before plunge would occur, but we can ignore t
for this analysis.!

For a signal coming 106 years before plunge, we find
2-yr SNRI of ;11 ~the square root of the sum of the squar
of the contributions from all modes!. A two-year observation
only 105 years before plunge would yield SNRI'55. These
SNRI values are a factor;4 times smaller than the value
obtainable from Fig. 1 of Frietag@41# ~when the 1-yr results
he gives there are scaled up to two years!, but still support
the idea that this is a potentially observable source. As F
itag points out@41#, tidal heating could possibly~under pes-
simistic assumptions! disrupt the low-mass star sometime b
tween 106 and 105 years prior to plunge, so the higher SNRI
value must be treated with some caution.

VI. PARAMETER ESTIMATION

A. Numerical implementation

For our parameter-accuracy estimates we wrote a sim
numerical code, based on the following prescription.

Pick a specific pointla in parameter space. We found
convenient to first prescribe a value for the eccentricity at
LSO,eLSO; then get the associated LSO frequency using,
simplicity, the Schwarzschild value@7#

nLSO5~2pM !21@~12eLSO
2 !/~612eLSO!#3/2; ~63!

and finally obtaine0 and n0 by integrating the evolution
equations of Sec. III F one year back in time. The parame

e

FIG. 16. SNR for a low-mass main-sequence star at Sgr A*.L
indicates the SNR accumulated over 2 years of observation w
the system is 105 years before plunge.n, h, s, and * similarly
correspond to 106, 23106, 53106, and 107 years before plunge
respectively.
5-16
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TABLE II. Parameter accuracy estimates for inspiral of a 1M ( CO onto a 106M ( MBH at SNR530 ~based on data collected during th
last year of inspiral!. Shown are results for various values of the MBH’s spin magnitudeS and the final eccentricityeLSO. The rest of the

parameters are set as follows:t05tLSO2(1/2) yr ~middle of integration!, g̃050, F050, uS5p/4, fS50, l5p/6, a050, uK5p/8, and
fK50.

S/M2 0.1 0.1 0.1 0.5 0.5 0.5 1 1 1 1
eLSO 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.4 0.5

D(ln M) 2.331023 1.131023 2.031023 6.931024 1.331023 1.831023 9.231024 1.331023 2.031023 6.531023

D(S/M2) 2.531024 1.331024 3.031024 3.631024 8.531024 1.731023 1.031023 2.131023 6.331023 1.331022

D(ln m) 1.031023 3.231024 1.731023 3.931024 2.231024 4.031023 3.431024 6.031024 7.431023 5.431022

D(e0) 7.131024 2.731024 5.031024 7.631024 4.431024 8.231024 1.231023 8.631024 3.031023 9.731023

D(cosl) 6.231022 3.131022 6.531022 3.631023 7.931023 1.431022 2.531023 4.831023 1.331022 2.331022

D(Vs) 1.331023 9.431024 3.431024 1.431023 9.831024 3.731024 1.631023 9.431024 7.831024 4.231024

D(VK) 5.931022 6.431022 8.731022 5.431022 5.131022 4.931022 5.331022 5.031022 5.131022 5.331022

D(g̃0) 5.631021 9.731021 3.131021 5.431021 8.931021 3.131021 4.631010 3.531021 5.131021 3.831021

D(F0) 4.131021 8.831021 7.931022 4.231021 9.331021 8.131022 5.831010 1.831021 5.631021 3.031021

D(a0) 6.231021 5.731021 5.431021 6.231021 5.831021 5.531021 9.731021 5.931021 5.731021 5.631021

D@ ln(m/D)# 2.231021 4.031022 7.131022 2.231021 3.831022 6.431022 3.731022 8.231022 3.931022 4.231022

D(t0)n0 8.031022 1.531021 1.431022 8.431022 1.631021 1.531022 1.031010 3.631022 9.531022 4.831022
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t0 is set to be in the middle of the integration time. Name
the integration is carried out fromt init[t02(1/2) yr to tLSO
[t01(1/2) yr.

For that point, calculate then-modeshI ,n(t) andhII ,n(t)
of Eq. ~14!, for the last year of inspiral, as described in Se
III. The number of modes one has to take into account va
with the prescribed LSO eccentricity. We determined t
number by requiring that the relative error in the final Fish
matrix components due to omission of higher-n modes is not
greater than;1026. At eLSO50.5 this meant summing ove
;20 modes. Note that at then’th mode, the 1-year long
function ha,n contains a huge number of wave cycles
roughly ;105n. The time resolution has been set such t
each wave cycle is sampled at least 10 times. Atn520, this
meant a time resolution of about 5 seconds.

For each relevantn, use Eq.~54! to calculate LISA’a noise
Sn( f n). Then sum over modes using Eq.~45! to obtain the
‘‘noise-weighted’’ waveformsĥI(t) and ĥII (t).

Calculate the SNR through Eq.~39!, using the time-
domain approximation for the inner product:

SNR252 (
a5I ,II

E
t init

tLSO
ĥa

2~ t !dt. ~64!

Calculate the 1332 derivatives]aĥa[]ĥa /]la. We take
these derivatives numerically, through@ ĥa(la→la

1dla/2)2ĥa(la→la2dla/2)#/dla ~for each la

5l0, . . . ,l13). Namely, for each derivative we calculate th
waveform twice, with the relevant parameter shifted
6dla/2. The shiftdla is set such that the resulting relativ
error in the Fisher-matrix elements is&1026. @The depen-
dence of the waveform in some of the parameters is such
derivatives can, in principle, be taken analytically. For so
other parameters~like e0 or F0) the dependence is less e
08200
,

.
s

s
r

t

he
e

plicit, and one is required to take the derivatives numerica
We found it convenient~and accurate enough! to take all
derivatives numerically.#

Calculate all elements of the Fisher matrixGab , using Eq.
~47!.

Use Eq.~42! to calculate the measurement error for ea
of the parameters:

Dla5A~G21!aa ~65!

~no summation overa on the RHS!. ObtainDVS andDVK
using Eqs.~43! and ~44!. To invert the Fisher matrix, we
used a numerical subroutine based ondgaussj~! of Ref. @42#.

Finally, multiply each of the variousDla by SNR/30.
This, in effect, normalizes the distance to the source s
that the SNR becomes 30~roughly the SNR output from a
3M ( CO captured by a 106M ( at D51 Gpc).

B. Results for 1-yr integrations

Although in Sec. V we stressed the importance of t
signal-to-noise built up in the last several years prior
plunge, in this section, due to limitations of comput
memory and speed, we restrict ourselves to waveforms c
ing from the last year of inspiral. In essence, in this sect
we pretend that LISA is ‘‘off-line’’ prior to tLSO21 yr,
wheretLSO is the instant of plunge.

We present our results from inverting the Fisher mat
for MBH mass of 106M ( , CO masses of 1M ( and 10M ( ,
and a range of values of the MBH spin and the orbital
centricity at the LSO. The rest of the parameters have b
set as follows:t05tLSO2(1/2) yr ~middle of integration!,
g̃050, F050, uS5p/4, fS50, l5p/6, a050, uK

5p/8, andfK50. Again, the anglesf̄0 and ā0 specifying
LISA’s position and orientation att0 are set to zero. Tables I
and III give the results. We expect that the measurem
5-17
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TABLE III. Parameter extraction accuracy for inspiral of a 10M ( CO onto a 106M ( MBH at SNR530 ~based on data collected durin
the last year of inspiral!. Shown are results for various values of the MBH’s spin magnitudeSand the final eccentricityeLSO. The rest of the

parameters are set as follows:t05tLSO2(1/2) yr ~middle of integration!, g̃050, F050, uS5p/4, fS50, l5p/6, a050, uK5p/8, and
fK50.

S/M2 0.1 0.1 0.1 0.5 0.5 0.5 1 1 1
eLSO 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

D(ln M) 2.631024 5.631024 5.331025 2.731024 9.231024 7.731025 2.831024 2.531024 1.531024

D(S/M2) 3.631025 7.931025 4.531025 1.331024 6.331024 5.131025 2.631024 3.731024 2.631024

D(ln m) 6.831025 1.531024 7.431025 6.831025 9.231025 1.031024 6.131025 9.131025 1.031023

D(e0) 6.331025 1.331024 2.931025 8.531025 2.831024 3.231025 1.231024 1.131024 1.631024

D(cosl) 6.031023 1.731022 1.331023 1.331023 5.831023 2.431024 6.531024 8.431024 4.731024

D(Vs) 1.831023 1.731023 7.931024 2.031023 1.731023 7.631024 2.131023 1.131023 6.731024

D(VK) 5.631022 5.331022 4.731022 5.531022 5.131022 4.731022 5.631022 5.131022 4.831022

D(g̃0) 4.031021 6.331021 3.831021 1.031010 6.131021 3.931021 9.331021 3.431021 3.931021

D(F0) 2.631021 6.731021 2.231021 1.431010 7.531021 2.731021 1.531010 1.731021 3.331021

D(a0) 6.231021 5.831021 5.531021 6.331021 5.931021 5.631021 6.431021 5.931021 5.931021

D@ ln(m/D)# 8.731022 3.831022 3.731022 3.831022 3.731022 3.731022 3.831022 7.031022 3.731022

D(t0)n0 4.531022 1.131021 3.331022 2.331021 1.331021 4.431022 2.531021 3.231022 5.531022
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accuracies for intrinsic parameters will not depend very s
sitively on the source’s position and orientation, but that
measurement accuracies for extrinsic parameters~e.g.,
LISA’s angular resolution! will depend rather more sens
tively on the actual values of these angles.~This was found
to be the case in LISA measurements of MBH-MBH coal
cences@21#, and we have also been able to verify it, to
limited extent, in the LISA capture case.!

Summarizing the results in Table III, for the case of
10M ( BH spiraling into a 106M ( MBH, the measuremen
accuracies for the seven intrinsic parameters are~very
roughly! D(ln M);231024, D(ln m);1024, D(S/M2)

;1024, D(cosl);1023, De0;1024, and D F0;Dg̃0

;0.5.
Comparing Tables II and III (1M ( vs 10M ( CO!, we see

D(ln M), D(ln m), D(S/M2), D(cosl), andDe0 are all typi-
cally about an order of magnitude smaller for the 10M ( CO
case~again, for fixed SNR and fixed 1-yr integration time!.
This general trend of better accuracy for higher CO mas

not hard to understand. First, sinceṅ}m, it is clear that
G ln m ln m should scale roughly like m2, so D(ln m)
[@(G21)ln m ln m#1/2 should scale roughly asm21. Similarly,
the derivative] ln Mha(t) has size of orderha(t)] ln MF(t)
~during most of the integration time!, and it is clear from
Eqs. ~27!, ~28! that the typical size of] ln MF(t) scales
roughly like m. The magnitudes of]S/M2ha(t), ]coslha(t),
and]e0

ha(t) also scale roughly linearly withm, for the same
reason. Hence, it is reasonable to expect that errors in t
five intrinsic variables should scale roughly likem21.

We next turn to the extrinsic parameters. Our few e
amples suggest that LISA’s angular resolution for capt
sources isDVs;1023 radians, while the MBH spin direc
tion can be determined to withinDVK;531022. We find
D@ ln(m/D)#;531022, typically. Since D(ln m)
!D@ln(m/D)#, it is clear thatD(ln D);531022 too. „We may
08200
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verify the last statement by examining the@ ln m,ln(m/D)# mi-
nor of G21: We have

~G21! ln D, ln D5~G21! ln(m/D), ln(m/D)1~G21! ln m, ln m

22~G21! ln m, ln(m/D),

and since typical values are (G21) ln(m/D),ln(m/D);1024,
(G21) ln m,ln m;1029, and (G21) ln m,ln(m/D);1029, we find that
indeedD(ln D)'D@ln(m/D)#.… Finally, as a check, it is eas
to see thatD@ ln(m/D)# must be greater than SNR2150.033
~since the signal amplitude is linear inm/D), which is in-
deed satisfied in every column of our tables.

C. Comparison with other results in the literature

Our angular resolution results can be compared to res
by Cutler and Vecchio@43# on LISA’s angular resolution for
monochromatic sources. For a monochromatic source w
f gw53 mHz and SNR530, LISA’s angular resolution is
typically DVs;531024 ~estimated by interpolating be
tween Figs. 2 and 3 in@43#, after rescaling those figures t
SNR530!, which is only a factor;2 smaller than our resul
for capture sources. Since capture sources have twic
many unknown parameters as monochromatic sources~14
versus 7!, it is clear that LISA’s angular resolution must b
worse for the former~at the same SNR!, but the ‘‘good
news’’ is that this degradation appears to be quite mod
based on our limited sample.

Our results on the mass and spin determination accu
can be compared to previous results by Ryan@2# and Poisson
@22#. Ryan’s waveforms are based on PN evolution equati
~similar to ours!, while Poisson’s are based on a Taylor e
pansion of the waveform phase near plunge, with expans
coefficients obtained from numerical solution of the Teuk
sky equation. Both these authors consider only circu
equatorial orbits~so e050 and cosl51.0, a priori!. Both
5-18
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TABLE IV. Parameter extraction accuracy for a low-mass main-sequence star at Sgr A*. We assumeM52.63106M ( , m50.06M ( ,
and data integration lasting2 years. We also assume the star is observed a million years before the~theoretical! plunge, just before tidal
effects become important. Each column of the table refers to a different choice of the MBH’s spin, orbital eccentricitye and frequencyn at

the time of observation. The other parameters are set as follows:g̃050, F050, uS51.66749~true value for Sgr A*!, fS50, l5p/6,
a050, uK5p/8, andfK50. Most of the values given in the table result from inverting the full, (14314)D Fisher matrix. The values fo
DVK obtained by inverting the 11311 minor that excludes the CO’s massm and the two sky-location coordinatesuS andfS ~whose precise
values are known for Sgr A*! are given in parentheses.~For all other parameters, using the known sky position did not significantly impr
measurement accuracy.!

S/M2 0.1 0.1 0.1 0.5 0.5 0.5 1 1 1
e 0.10 0.43 0.80 0.10 0.43 0.80 0.10 0.43 0.80

n0(mHz) 0.044 0.035 0.013 0.044 0.035 0.013 0.044 0.035 0.013
SNR 19.8 29.9 26.4 19.0 28.3 25.7 18.8 28.4 29.7

D(ln M) 3.731023 3.631022 2.131021 5.931023 3.831022 2.131021 1.031022 3.831022 2.131021

D(S/M2) 2.531023 1.931023 6.931023 3.231023 2.531023 5.131023 9.631023 6.831023 9.931023

D(ln m) 6.131013 4.031013 4.531013 6.431013 4.331013 4.631013 6.531013 4.231013 4.131013

D(e0) 1.231022 2.431022 3.331022 1.331022 2.531022 3.331022 1.331022 2.531022 3.231022

D(cosl) 3.231022 1.831022 2.031022 2.631022 1.731022 1.831022 2.631022 1.731022 1.631022

D(Vs) 3.131022 9.431023 1.131022 2.031022 7.631023 7.031023 2.031022 7.931023 7.131023

D(VK) 3.131022 1.131022 1.031022 1.931022 7.531023 6.231023 2.031022 8.031023 7.531023

(1.131022) (5.131023) (6.431023) (1.231022) (4.631023) (4.231023) (1.231022) (4.931023) (4.831023)

D(g̃0) 1.631011 3.631021 2.531021 1.531011 3.531021 2.331021 1.331011 3.131021 2.131021

D(F0) 2.031012 3.631010 1.731010 2.031012 3.831010 1.731010 2.131012 3.831010 1.631010

D(a0) 1.831021 7.631022 6.531022 7.431021 7.231022 6.331022 1.531010 7.831022 7.431022

D@ ln(m/D)# 8.031022 7.831022 2.631021 7.131022 7.831022 2.631021 7.131022 7.731022 2.531021

D(t0)n0 3.131011 6.031021 2.931021 3.231011 6.331021 2.931021 3.231011 6.331021 2.831021
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simplify the calculation further by ignoring the wavefor
modulation caused by LISA’s motion~so they effectively
pretend LISA is fixed at the center of our solar system!, and
by restricting attention to the waveform generated by jus
single pair of LISA’s arms. Thus, their waveforms are det
mined by only 5 parameters: an overall amplitude and ph
the two masses, andS/M2. ~Clearly, these simplifications
were intended to make the Fisher matrix calculation ess
tially identical to the corresponding calculation for LIG
measurements of binary black hole coalescences.!

The fact that Ryan and Poisson effectively ‘‘toss ou
most of the unknown parameters obviously tends to decre
the calculated error bars for the included parameters. On
other hand, their highly simplified waveforms obvious
carry much less information than the true waveforms, wh
tend to have the opposite effect.A priori, it would seem
difficult to guess whether the net effect of their approxim
tions is to underestimate or overestimateD(ln M), D(ln m),
andD(S/M2). Therefore, unfortunately, their work does n
seem to provide a useful check on ours. Nevertheless, Ry
and Poisson’s papers were an interesting first cut at the
rameter estimation problem, and it seems interesting to c
pare our results to theirs.

For a 10M ( CO and 106M ( MBH, Ryan @2# obtains~at
SNR530!: D(ln M)51.831024, D(ln m)51.931025, and
D(S/M2)54.931024. For the same masses and SNR, Po
son @22# states the resultsD(ln M)56.731025, D(S/M2)
51.731023, and D(ln h)51.831023, where h[m/M .
Since both Ryan and Poisson consider only the casee050
and evaluate the Fisher matrix at the pointS/M250, their
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results are most usefully compared to those in column 1
our tables~i.e., e050.1 andS/M250.1). Our estimates o
mass-determination accuracy are within roughly an orde
magnitude of those quoted by Ryan and Poisson, and in
lie between them.@Poisson does not quote a result f
D(ln m), but we can still compare our results directly to h
by using

~G21! ln h, ln h5~G21! ln m, ln m1~G21! ln M , ln M

22~G21! ln m, ln M, ~66!

which givesDh53.031024 for our case.# Our D(S/M2) is
;10 times smaller than Ryan’s and;50 times smaller than
Poisson’s. We guess this is because in Ryan’s and Poiss
waveforms the MBH spin affects only the orbital pha
~whereas in the true waveforms the spin also controls
Lense-Thirring precession rate!, leading them to overesti
mate the covariance of the spin with the two mass para
eters, and hence to overestimateD(S/M2).

D. Parameter extraction for a low-mass main-sequence
star at Sgr A*

Finally, it is interesting to consider the parameter extra
tion accuracy for captures of LMMSs at the center of t
Milky Way—the type of source whose anticipated SNR w
discussed at the end of Sec. V. In Table IV we consider a
possible low-frequency orbits of a 0.06M ( CO around the
2.63106M ( MBH at the known distance and sky location
Sgr A*. We take D57.9 kpc@44# anduS51.66749; the value
5-19
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L. BARACK AND C. CUTLER PHYSICAL REVIEW D 69, 082005 ~2004!
for fS is picked arbitrarily, since the orbital location of th
detector during the observation is unknown. The colum
with eccentricity 0.43 and frequency 0.0035 mHz correspo
to the orbit whose SNR output has been discussed abov~in
Fig. 16; also@41#!, and assume the observation is made 16

years prior to plunge~just before tidal forces play an impor
tant role!. In other columns we consider other possible v
ues of the eccentricity, frequency, and MBH’s spin. In calc
lating the Fisher matrix, we assumed a data integration t
of 2 years.

Most of the values in the table result from inverting t
full, 14D Fisher matrix. We find that the sky location of th
source can be determined to within;0.01 steradians. Unfor
tunately, the distanceD to the source is entirely degenera
with the CO’s mass, and the latter cannot be determined
itself from the GW signal.@This is as expected, since th
accumulated effect of radiation reaction on the wavefo
phase, after observation timeTobs;1 yr, is merely Df

;p ḟ Tobs
2 ;p f Tobs

2 /(106 yr);1022, for f ;1024 Hz.#
Hence, the distance to the galactic center cannot be d
mined by the GW signal alone. However, in case wher
detected GW signal appears to come from a capture at
A* ~as its sky position is consistent with the galactic cen
and its ḟ is extremely small!, one could use the value ofD
known from astronomical measurements, in order to de
mine the CO’s massm. ~Recent studies of stellar dynamic
and RR Lyrae stars have specifiedD to within 4% @44#!. The
relative error inm will then be approximatelyD@ ln(m/D)#, or
roughly 10%.

Once a source is confirmed to be at the galactic center
may eliminate the sky locationVS ~known exactly for Sgr
A* ! from the search, in order to improve the accuracy
determining the other parameters. We may also eliminate
CO’s mass m from the parameter list~while keeping
m/D)—again, because radiation reaction is negligible
this source.

To estimate the effect of this extra information on para
eter extraction, we inverted the 11D minor of the Fisher m
trix obtained by excluding the rows and columns associa
with mS , fS , and lnm. We found that this produces only
negligible improvement in measurement accuracy for the
of the parameters, except for the MBH spin’s direction;DVK
decreases by a factor;1.5–3. These improved values o
DVK are given in the table as well, set off by parenthese

The more interesting results of Table IV concern the
trinsic parameters of the galactic hole. We estimate that
mass of the central MBH~as well as the orbital eccentricity!
could be determined to within relative error;431023 to
231021, i.e., comparable to or better than what is achiev
today using astrometric methods. More impressive is the
termination of the MBH’s spin from the GW waveform t
within ;0.005~in units of M2). It is hard for us to imagine
an alternative method that would allow such an accur
measurement of the spin of the MBH at the Milky Way
center.

Finally, we point out that two approximations we ha
made—using PN equations of motion and a low-freque
approximation to LISA’s response—should be really qu
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accurate for LMMS captures in our galaxy, since these
spirals are viewed at a very early stage~the orbits considered
in Table IV have their pericenters at*20M ), and most of
the SNR comes from frequencies in the ran
1024–1023 Hz.

VII. CONCLUSIONS, CAVEATS, AND FUTURE WORK

Realistic capture orbits will be nonequatorial and som
what eccentric, in general. We have made a first cut at
swering some LISA data analysis questions, for such reali
cases.

The figures in Sec. V illustrate how the LISA SNR build
up over time for eccentric orbits~assuming there, for sim
plicity, that the MBH is nonspinning!. These figures show
that, for;10M ( COs captured by;106M ( MBHs, the last
few years of inspiral can all contribute significantly to th
SNR; for ;1M ( COs, the last few decades can be sign
cant. Clearly, these long waveforms will increase the com
tational burden on matched-filtering detection schemes,
will exacerbate the self-confusion problem, since eccent
orbit inspirals can deliver significant GW energy into th
LISA band many years before they become individually d
tectable.

The tables in Sec. VI represent our attempt to estim
LISA’s parameter estimation accuracy, for captures. Fo
typical source~a 10M ( CO captured by a 106M ( MBH at
SNR of 30! we find thatD(ln M),D(ln m),D(S/M2), andDe0
will all be roughly ;1024, while DVS;1023 and DVK
;531022. Due to computational limitations, those resu
are based on measurements from only the final year prio
plunge. We naturally expect the measurement errors to
crease when one considers waveforms lasting the en
length of the LISA mission. In this sense, the numbers ab
represent rough upper limits to LISA’s measurement ac
racy. On the other hand, these estimates are based on a
sample of hand-picked points in parameter space. In the
ture we will improve these estimates by doing several-y
integrations and a full Monte Carlo sampling of parame
space. Of course, our PN waveforms are probably not v
accurate for COs very close to the plunge, but still the ab
estimates are the best ones available.

LISA has a reasonable chance of detecting LMMSs c
tured by the MBH at the center of our own galaxy. In th
case, the sources will be detected;106 yrs before the final
plunge, when our PN waveforms and our low-frequency
proximation to LISA’s response function should both
more reliable. We find that, in a two-year integration, LIS
could determine the magnitude and direction of our MBH
spin to within D(S/M2);531023 and DVK;1022, and
measure the mass of the infalling star to within;10%.
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APPENDIX A: LENSE-THIRRING COMPONENT
OF THE PERICENTER PRECESSION

At 1PN order, the piece ofġ[dg/dt proportional toS is
@30#

ġu}S5
L̂•n̂

12~ L̂•n̂!2
~ L̂•n̂ cosl2Ŝ•n̂!ȧ

28pn~S/M2!cosl~2pMn!~12e2!23/2, ~A1!

whereȧ[da/dt is given in Eq.~31!. @To derive this equa-
tion, use Eq.~4.4.45! of Brumberg@30#, together with his
Eqs.~4.4.41! and ~4.4.33!, and along with the definitions in
Eqs.~1.1.6!–~1.10.10! therein.#

The expression~A1! is somewhat complicated~and

worse, badly behaved asL̂ approachesn̂) due to the usua

convention of definingg as the angle fromx̂[@ L̂(L̂•n̂)

2n̂#/„12(L̂•n̂)2
…

1/2 to pericenter. In the terminology o
BCV @24#, g is neither wholly an intrinsic variable, nor a
extrinsic one; it is of a mixed type. As explained in Sec. I
it is preferrable to introduce a pericenter angle that is defi
purely intrinsically~i.e., without reference to the observe!.

Accordingly, we defineg̃ as the angle fromL̂3Ŝ to the
direction of pericenter. Theng and g̃ are related by

g5g̃1b, ~A2!

whereb is given by Eq.~21!. Not only is g̃ wholly intrinsic,
but we claim it also obeys a simpler~and better behaved!
evolution equation, Eq.~29!:

g8 u}S5212pn cosl~S/M2!~2pMn!~12e2!23/2.
~A3!

The purpose of this Appendix is to prove this claim; i.
we show that Brumberg’s Eq.~A1! is indeed equivalent to
our Eqs.~A3! and ~A2!.

Since it is obvious from the definitions that

g05g̃01b0 , ~A4!

what we need to prove is that
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ḃ5ġ2g8 . ~A5!

From Eqs.~A1!, ~A3!, and ~31!, and noting thatġ and g8
differ only in their piece}S, the RHS of Eq.~A5! becomes

ġ2g8 5
L̂•n̂

12~ L̂•n̂!2
~ L̂•n̂ cosl2Ŝ•n̂!ȧ1coslȧ

5
cosl2~ L̂•n̂!~Ŝ•n̂!

12~ L̂•n̂!2
ȧ. ~A6!

The left-hand side~LHS! of Eq. ~A5! can be written as

ḃ5~cosb!21d~sinb!/dt, ~A7!

which, substituting for sinb and cosb from Eq. ~21!, yields

ḃ5
@12~ L̂•n̂!2#1/2

n̂•~Ŝ3L̂ !

3H cosl~ L̇̂•n̂!

@12~ L̂•n̂!2#1/2
1

~coslL̂•n̂2Ŝ•n̂!~ L̂•n̂!~ L̇̂•n̂!

@12~ L̂•n̂!2#3/2
J .

~A8!

Using now the evolution equation forL̂, L̇̂5ȧŜ3L̂, the last
expression reduces to the RHS of Eq.~A6!. This proves Eq.
~A5!, and hence Eq.~A3! is proved.

We note Eq.~A3! can also be seen as a special case of

~A1!, obtained by settingn̂ equal toŜ in the latter. Finally,
we also note that the term

L̂•n̂

12~ L̂•n̂!2
~ L̂•n̂ cosl2Ŝ•n̂!ȧ ~A9!

in Eq. ~A1! for ġ is precisely the time derivative of what ha
been referred to in Ref.@23# ~in the context of quasi-circula
orbits! as the ‘‘Thomas precession phase.’’@The term~A9! is
precisely the RHS of Eq.~28! in @23#.# We see here that this

‘‘Thomas precession’’ term is really just the ‘‘L̂3Ŝ piece’’ of
the pericenter precession@while the remainder of Eq.~A1! is

the ‘‘L̂•Ŝ piece’’#.

APPENDIX B: RELATIVE MAGNITUDES OF PN
CONTRIBUTIONS

Our goal here is to gauge the suitability of the PN form
las we use in evolving the CO’s orbit within our model@Eqs.
~27!–~30!#. The part of the inspiral relevant for detection b
LISA takes place entirely within the highly relativistic regio
right next to the horizon, a regime where the validity of t
PN expansion is normally to be suspected. Accordingly,
do not expect our PN expressions to show any converge
we do wish to make sure, though, that truncating the
expansion as in Eqs.~27!–~30! does not lead to a patholog
5-21
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FIG. 17. Relative magnitudes of the various PN terms. The plots compare the contributions toṅ ~upper left panel!, ė ~upper right panel!,

andġ ~bottom panel! from the various terms in the PN expressions~28!–~30!, when the CO is at its last stable orbit. The various terms
of comparable magnitude, as expected in this ‘‘worse case.’’ Note, though, that so long aseLSO&0.6, the evolution of the orbital paramete

at this order is free of potential pathologies@like ‘‘outspiral’’ ( ṅ,0), or a negative pericenter advance (g8 ,0)].
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cal, unphysical evolution within the range of parameters
evant for our analysis.

In Fig. 17 we compare the magnitudes of the contrib
tions from the various PN expansion terms to each of

time derivativesṅ, ė, andg̃̇. We consider the ‘‘worse case,
in which the CO has just reached the last stable orbit~LSO!
and is about to plunge into the MBH. For simplicity, we ta
(2pMn)LSO5@(12e2)/(612e)#, which is the value for a
nonrotating MBH.

As expected, the various PN terms are of compara
magnitudes. Nevertheless, our evolution equations do
develop pathologies, so long as the LSO eccentricity is
too high. In particular, the orbital frequency increases mo
tonically ~no ‘‘outspiral’’! ! and the eccentricity decrease
monotonically~the orbit circularizes! throughout the entire
evolution.
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APPENDIX C: ESTIMATING THE EFFECT
OF THE CO’S SPIN

In this appendix we refer to the spin of the MBH asSW 1,

and denote bySW 2 the spin of the CO~in the rest of the pape

the MBH’s spin is denoted as simplySW ). We present simple

estimates of the effects ofSW 2 on the orbital evolution, show-
ing that, at any instant, these are smaller than the effect

SW 1 by an amount of order (m/M )(x2 /x1), where x1

[uSW 1u/M2 and x2[uSW 2u/m2. This implies that over the
course of the last;1 yr of inspiral, the presence of the CO
spin modifies the accumulated orbital phase and preces
angles by a few radians at most.

Clearly x1,1. Theoretical upper limits onx2 are: x2
,1 when the CO is a BH;x2&2 for a 1.4M ( NS; andx2
&5 for a uniformly rotating, 0.5M ( WD @45#. We do not
5-22



D
se

n

os
se
ce
he
pa
W
io

te

he

ct

e
a

-

ju

-
ost-
tos
it,

.

-

-

ge

-

lid
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know the spin of any stellar-mass BH, but the NSs and W
we find in nature are typically spinning at well below the
maximum possible rates. Most known pulsars havex2
;102321022 ~recycled pulsars being the major exceptio!,
and it appears that WDs typically havex2;1022 @46#.

Our estimates here are based on low-order, p
Newtonian equations for circular-orbit binaries. Of cour
the capture orbits of interest to us can be moderately ec
tric in the LISA band, and they are sufficiently close to t
MBH that higher-order post-Newtonian terms can be com
rable in size to the lower-order terms that we do include.
expect that these higher-order PN terms, and modificat

for eÞ0, would modify our estimates on the effects ofSW 2 by
factors of order unity, but we anticipate that our PN estima
at least give the order of magnitude.

Two other recent works that consider the effect of t
CO’s spin on the capture waveform are by Hartl@47# and
Burko @48#.

1. Effect of L¢ "S¢ 2 and S¢ 1"S¢ 2 terms on the waveform phase

For circular orbits, letv[2pn1g8 be the angular fre-
quency of the CO around the MBH. DefiningC to be the
accumulated orbital phase from timet i to t f ,

C5E
t i

t f
vdt5E

v i

v f v

v̇
dv, ~C1!

Kidder @49# finds that the change in the orbital phaseC due

to nonzeroSW 2 is

DC5x2

125

256
~ L̂•Ŝ2!@~Mv i !

22/32~Mv f !
22/3#

1x1x2S 1235

1536
Ŝ1•Ŝ22

3605

1536
L̂•Ŝ1L̂•Ŝ2D

3@~Mv i !
21/32~Mv f !

21/3#1O~m/M !. ~C2!

@Actually, Eq.~C2! refers to the case where the dot produ

L̂•Ŝ2 , L̂•Ŝ1, and Ŝ1•Ŝ2 are constants~e.g., the case wher
these three angular momenta are all perfectly aligned or
tialigned, so there is no Lense-Thirring precession!. For the

realistic case, whereL̂ and Ŝ2 undergo significant Lense
Thirring precession, these dot products would be replaced
appropriately weighted time averages.# For our case of in-
spiral orbits near plunge and (t f2t i) of order a year, we have
@(Mv i)

21/32(Mv f)
21/3#;122 and @(Mv i)

22/3

2(Mv f)
22/3#;3210. Therefore, whenx2 and x1 are of

order one,DC is at most a few radians, whileC itself is of
order 106.

2. Effect of S2 on pericenter precession,dgÕdt

The SW 2 contribution todg/dt is given ~to lowest non-
trivial PN order! by Brumberg@30#, in his Eqs.~4.4.41! and
~4.4.45!. We do not reproduce those equations here, but
note that the relevant terms are~for low eccentricity! of order
x2(m/M )(M /r )3/2v andx1x2(m/M )(M /r )2v, respectively.
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Therefore, the integrated effect ofSW 2 on g is Dg
;x2(m/M )Norb radians, whereNorb is the number of orbits
during the integration time. Hence,Dg is of order one radian
for x2;1 and typical valuesm/M;1025 andNorb;105.

3. Effect of S¢ 2 on Ŝ1 and L̂

We next estimate howSW 2 affects the Lense-Thirring pre
cession. Our estimates are based on the following p
Newtonian precessional equations given by Apostola
et al. @23#, which were obtained by averaging the spin-orb
spin-spin, and radiation reaction torques~all calculated to
lowest nontrivial post-Newtonian order! over one complete
orbit:

LẆ 5
1

r 3F2SW 11
3M

2m
SW 2G3LW

2
3

2

1

r 3 @~SW 2•L̂ !SW 11~SW 1•L̂ !SW 2#3L̂2
32

5

m2

r
S M

r
D 5/2

L̂,

~C3!

SẆ 15
2

r 3LW 3SW 11
1

r 3 F1

2
SW 22

3

2
~SW 2•L̂ !L̂G3SW 1 , ~C4!

SẆ 25
3

2r 3

M

m
LW 3SW 21

1

r 3 F1

2
SW 12

3

2
~SW 1•L̂ !L̂G3SW 2 . ~C5!

@Actually, Eqs.~C3!–~C5! are a simplified version of Eqs
~11a!–~11c! in Apostolatoset al., differing by fractional cor-
rections of orderm/M .#

Two results that follow from Eqs.~C3!–~C5! are: ~i! the

two spin magnitudes,uSW 1u anduSW 2u, are constants of the mo

tion; and~ii ! the total angular momentum,JW5SW 11LW 1SW 2, is
also constant,exceptfor the orbital momentum that is radi
ated away:

JẆ52
32

5

m2

r S M

r D 5/2

L̂. ~C6!

Therefore,DJW—the total change inJW over the observed

inspiral—has magnitude of orderuDLW u;(mM ).

Combining this with the fact that the magnitudes ofSW 1 ,

LW , andSW 2 are roughly in the ratio

uSW 1u:uLW u:uSW 2u;x1 :m/M :x2~m/M !2 ~C7!

~i.e., uSW 1u@uLW u@uSW 2u), one easily sees that the yearly chan

in the direction ofSW 1 can be of orderx1
21(m/M ) radians at

most, no matter howŜ2 and L̂ evolve. Thus our approxima

tion of treatingŜ1 as fixed, used throughout, remains va

when we include the effects ofSW 2.

Finally, we consider the motion ofL̂. ForSW 250, we have
5-23
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seen thatLW simply precesses aroundSW 1 at rateȧ given by

Eq. ~31!. Because the terms in Eq.~C3! involving SW 2 are all

smaller than the dominant (2/r 3)SW 13LW term by an amount of
order x2(m/M ) or (x2 /x1)(m/M ), they represent a sma
perturbation on the simple precession picture, which
clearly be absorbed into a time-varyingl ~the angle between

Ŝ1 and L̂) and a perturbed precession rateȧ. These extra

terms in L̇̂ are of order x2(m/M )(M /r )3/2v and

x1x2(m/M )(M /r )2v, respectively—the same as for theSW 2

terms indg/dt—and so again integrate up to a yearly diffe
ence of order one radian at most.
-

s

. D

ns

tu

rn

08200
n

4. Conclusion

If the CO’s angular momentum is close to maximal~i.e.,
within a factor of a few!, then the CO’s spin is marginally
relevant for the dynamics over time scales of the order o
year. However, if the CO is not rapidly rotating, or if one
just searching for short stretches~lasting ;2 weeks! of the
waveforms in the data~e.g., as the first step of a hierarchic
search!, then the CO’s spin can be safely neglected.~For
such short stretches, in addition to the fact that the wavefo

phase errors from neglectingSW 2 are much less than one ra
dian, it seems likely that these errors can be partially co
pensated for by errors in the other physical parameters.!
D

-

s

. D

As-

l

i-
of

n-
-

l

en,
@1# K. Danzmannet al., LISA- Laser Interferometer Space An
tenna, Pre-Phase A Report, Max-Planck-Institut fu¨r Quan-
tenoptic, Report MPQ 233, 1998.

@2# F.D. Ryan, Phys. Rev. D56, 1845~1997!.
@3# S. Sigurdsson and M.J. Rees, Mon. Not. R. Astron. Soc.284,

318 ~1997!; S. Sigurdsson, Class. Quantum Grav.14, 1425
~1997!; M. Freitag,ibid. 18, 4033~2001!.

@4# E. Poisson, gr-qc/0306052.
@5# http://www.tapir.caltech.edu/listwg1/
@6# P.C. Peters and J. Mathews, Phys. Rev.131, 435 ~1963!; P.C.

Peters, Phys. Rev.136, B1224~1964!.
@7# C. Cutler, D. Kennefick, and E. Poisson, Phys. Rev. D50, 3816

~1994!.
@8# K. Glampedakis and D. Kennefick, Phys. Rev. D66, 044002

~2002!.
@9# S.A. Hughes, Phys. Rev. D61, 084004~2000!.

@10# C. Cutler, Phys. Rev. D57, 7089~1998!.
@11# N.J. Cornish and L.J. Rubbo, Phys. Rev. D67, 022001~2003!;

67, 029905~E! ~2003!.
@12# D. Richstoneet al., Nature~London! 395, A14 ~1998!.
@13# J. Kormendy and K. Gebhardt, inProceedings of 20th Texa

Symposium on Relativistic Astrophysics, edited by H. Martel
and J. C. Wheeler~AIP, New York, 2002!, astro-ph/0105230.

@14# D. Hils and P.L. Bender, Astrophys. J. Lett.445, L7 ~1995!.
@15# E. S. Phinney~unpublished!.
@16# L.S. Finn and K.S. Thorne, Phys. Rev. D62, 124021~2000!.
@17# K. Glampedakis, S.A. Hughes, and D. Kennefick, Phys. Rev

66, 064005~2002!.
@18# M. Freitag, Astrophys. J. Lett.583, L21 ~2003!.
@19# Members of WG1 communicate through regular teleco

Progress reports are posted on the WG1 website, Ref.@5#.
@20# M. Peterseim, O. Jennrich, and K. Danzmann, Class. Quan

Grav.13, 279 ~1996!.
@21# A. Vecchio, astro-ph/0304051.
@22# E. Poisson, Phys. Rev. D54, 5939~1996!.
@23# T. Apostolatos, C. Cutler, G.J. Sussman, and K.S. Tho

Phys. Rev. D49, 6274~1994!.
@24# A. Buonanno, Y. Chen, and M. Vallisneri, Phys. Rev. D67,

024016~2003!.
@25# C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation

~Freeman, San Francisco, 1973!, Chap. 33.
.

m

e,

@26# M. Tinto, F.B. Estabrook, and J.W. Armstrong, Phys. Rev.
65, 082003~2002!.

@27# K.S. Thorne, in300 Years of Gravitation, edited by S.W.
Hawking and W. Israel~Cambridge University Press, Cam
bridge, England, 1987!, pp. 330–458.
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