PHYSICAL REVIEW D 69, 082005 (2004

LISA capture sources: Approximate waveforms, signal-to-noise ratios,
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Captures of stellar-mass compact obje@®s by massive ¢ 10fM ) black holeSMBHSs) are potentially
an important source for LISA, the proposed space-based gravitational{@&Ve detector. The orbits of the
inspiraling COs are highly complicated; they can remain rather eccentric up until the final plunge, and display
extreme versions of relativistic perihelion precession and Lense-Thirring precession of the orbital plane. The
amplitudes of the strongest GW signals are expected to be roughly an order of magnitude smaller than LISA's
instrumental noise, but in principlée., with sufficient computing powgthe GW signals can be disentangled
from the noise by matched filtering. The associated template waveforms are not yet in hand, but theorists will
very likely be able to provide them before LISA launches. Here we introduce a family of approximate
(post-Newtoniaih capture waveforms, given ifmearly) analytic form, for use in advancing LISA studies until
more accurate versions are available. Our model waveforms include most of the key qualitative features of true
waveforms, and cover the full space of capture-event param@tehsding orbital eccentricity and the MBH’s
spin). Here we use our approximate waveformgijeestimate the relative contributions of different harmonics
(of the orbital frequencyto the total signal-to-noise ratio, aifid) estimate the accuracy with which LISA will
be able to extract the physical parameters of the capture event from the measured waveform. For a typical
source(a 1M CO captured by a f01, MBH at a signal-to-noise ratio of 30we find that LISA can
determine the MBH and CO masses to within a fractional error 20~ *, measure&s/M? (whereSandM are
the MBH’s mass and spjrto within ~10 4, and determine the location to the source on the sky to within
~10"2 stradians.
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[. INTRODUCTION and it seems very likely that sufficiently-accurate template
waveformswill be available before LISA's planned launch in
Captures of stellar-mass compact obje@©9 by mas- ~2011.
sive (~10PM) black holes(MBHs) in galactic nuclei rep- Nevertheless, there are many theoretical issues related to

resent an important potential source for the Laser Interferomcaptures that must be addressed ebeforesufficiently ac-

eter Space Antenné(lJSA)' the proposed Space-based curate _templ_ates are in ha-nd, as the final LlSA mission specs
gravitational-wave(GW) detector[1]. The capture orbits, are being driven substantially by the requirement that LISA
which can remain rather eccentric right up to the finalPe Sensitive enough to see captufese the LISA Science
plunge, display extreme versions of relativistic perihelioniequ'r?mems Document at theSA Sources and Data
precession and Lense-Thirring precesdiog., precession of .”a'y.s's tearrweb_s[te[S]). Among the most pressing ques-
the orbital plane due to the spin of the MBHas well as tions is hoyv to efficiently search _throqgh the data for capture
orbital decay. Ryar{2] has illustrated how the measured signals. Given the large dimensionality of the_ space of_ca_p-
waveforms can effectively map out the spacetime geometrmre waveforms, ar)d the Igngth and complexny_of the indi-
close 1o the MBH Yidual template signals, it is clear that straightforward

R . indi h h d b atched filtering—using a huge set of templates that cover
ate e§t|mates Indicate that t € strqngest etectabifarameter space like a net—would require vastly more com-
sources will beD~1 Gpc from us[3], implying the mea-

- - X putational power than is practical. Instead, we need to de-
sured GW strain amplitud(t) will be roughly an order of  ye|op suboptimal alternatives to coherent match filtering and

magnitude smaller than the strain amplitutlg) due to de- to estimate the sensitivity of LISAwvhen using these
tector noise. Nevertheless, because the capture waveforfethods

will be “visible” to LISA for ~10° cycles, in principle(i.e., This is the first in a series of papers designed to address
with infinite computing powerit should be possible to dig such data analysis problems, for LISA capture sources. Here
these signals out of the noise using matched filtering. Whilave introduce a family of relatively simple inspiral wave-
until now, theorists have not been able to calculate capturéorms, given in nearly analytic forfi.e., up to solutions of
waveforms with the accuracy required for matched filtering,ordinary differential equation€ODES], that should roughly
great progress has been made on this problem in recent yeapproximate the true waveforms and that include their key
(see the recent review by Poisgel} and references thergin  qualitative features. Because our approximate waveforms are
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given in (nearly analytic form, we can generate vast num- A few details of our analysis are left to the Appendices. In
bers of templates extremely fast—a feature that we expect tAppendix A we derive a simple expression for the contribu-
be crucial in performing Monte Carlo studies of search techtion to the pericenter precession from the spin of the MBH,
niques. and show its equivalence to the standard result. Appendix B

Our capture waveforms are based on the lowest-ordeEompares the magnitudes of the various PN terms in our
quadrupolar waveforms for eccentric-orbit binaries derivecPrbital evolution equations. Since the near-plunge capture
by Peters and Matthew$], but the orbits are corrected to orbits are h|gh_ly relativistic, higher-order terms are compa-
include the effects of pericenter precession, Lense-Thirring@ble in magnitude to the lower-order ones, as one would
precession, and inspiral from radiation reactiaii calcu- €xpect. Estimates of_ the magmtudes of eff_ects related to the
lated using post-NewtoniafPN) formulag. Our waveforms ~CO’s spin are given in Appendix C. The spin of the CO may
have the right dimensionalitiexcept that in practice we will have marginally important effects on the templatfes rap-
neglect the spin of the Cand the same qualitative features idly rotating CO$, but for simplicity we leave these out of
as the true waveforms, excefid they do not exhibit the the rest of our analysigThey could be put back in rather
extreme “zoom-whirl” behavior of true fully-relativistic €asily) . _ _
waveforms just prior to plungg7,8], and (ii) they approxi- Ir_1 Ia'_[er papers will turn to the problem_ that is the main
mate as constant the anglebetween the CO’s orbital angu- motlyatlon for this work: designing a practical glgorlthm for
lar momentum and the MBH’s spin, whereas the correct evodigging capture waveforms out of the LISA noise. There we
lution would show a small secular change\inHowever, we ~ Will use our approximate waveforms to estimate the
do not expect these twomissing effects to be very impor- sp_heme’s sensitivity, compared to an optimal search with in-
tant for our purpose, since, again, the latter is sialleast ~ finite computing power. . _
for circular orbits[9]), while extreme zoom-whirl behavior Our index notation is the following. Indices for vectors _
occurs only for rather eccentric orbits extremely close to@Nd tensors on parameter space are chosen from the begin-
plunge.[The number of “whirls” per “zoom” grows only as Mg of the'Latm alphabeta(,b,c, ce ) \ectors and tensors
—In(p—pJ as the orbit's semi-latus rectumapproaches the ©ON three-dlmensmnal space h_a_ve indices chosen from the
plunge valueps [7,8], and so stretches of waveform exhibit- Middle of the Latin alphabeti(j.k, ...), and runover
ing extreme zoom-whirl behavior will likely contribute only 1,2,3; their indices are raised and lowered with the flat
a very small fraction of the total signal-to-noise ra@NR).] ~ 3-Metric, 7;; . We use Greek indicesa(p, ... ), running

In this paper, we use our approximate waveforms to tak@nly over I,11, to label the two independent gravitational
a first cut at estimating the accuracy with which LISA shouldwaveforms that LISA effectively generategsNo four-
be able to extract the capture source’s physical parameterdimensional, spacetime indices occur in this paper.
including its distance and location on the sky, the masses of Throughout this paper we use units in whiéh=c=1.
both bodies, and the spin of the MBH. We also illustrate in
detail the relative contributions of different harmonio$the Il. SUMMARY OF PREVIOUS AND ONGOING
orbital frequency to the total SNR of the waveform. For THEORETICAL WORK
these calculations, besides using approximate waveforms, we
also use a low-frequency approximation to the LISA re- Most, if not all, nucleated galaxies harbor MBHs in their
sponse function and an approximate version of the Fisheicenterd12,13. The MBH's gravity dominates the local stel-
matrix inner product. Since our methods are so approximatdar dynamics within a cusp radiug=M/o?, whereM is the
the results should be considered illustrative rather than déMBH mass ando. is the one-dimensional velocity disper-
finitive. sion of stars inside the cusp. A typical MBH witM

The plan of this paper is as follows. In Sec. II, to put the=10°M¢ would haver.~1 pc. The total mass of stars in-
present work in context, we briefly summarize the previousside the cusp is typically of order the MBH m&s. Cap-
literature on this topic and indicate the several areas of activtures occur when two stars in the cusp undergo a close en-
theoretical research. In Sec. Ill we present our approximategounter, sending one of them into the “loss cone.” These are
(nearly analytic waveforms. Our scheme for incorporating orbits that pass sufficiently close to the MBH that the times-
the LISA response function and the noise closely followscale on which the CO tends to spiral into the MBH due to
Cutler[10], but we give enough detail that the reader couldgravitational radiation reaction is shorter than the time scale
easily employ the response function detailed in Cornish an@n which the CO is scattered back out by other stars.
Rubbo[11] (which is more accurate at high frequengies Because LISAs sensitivity band is centered fat3
Section IV provides a brief review of signal analysis, partly X 102 Hz, the MBHs most “visible” to LISA are those
to explain our conventions. In Sec. V we display plots show-with massM ~10°M, . To avoid tidal disruption, while be-
ing the relative contributions of different harmonics to theing close enough to the MBH to emit GWs in the LISA
total SNR. We show that, even for relatively modest finalfrequency band, the captured star must be either a white
eccentricity, the higher harmonics contribute significantly.dwarf (WD), neutron staNS), black hole(BH), or a very
Finally, in Sec. VI, we present estimates of how accurateljjow mass main-sequence sthMMS) [3].
LISA can determine the physical parameters of capture sys- Early estimates of capture rates and LISA SNRs were
tems. We emphasize that our treatment is highly modulamade by Hils and Bendéd 4], who considered the capture
allowing for simple improvements of the various approxima-of 1M objects. More recent rate estimaf&$ suggest that,
tions. while the total capture rate is dominated by LMMSs and
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WDs, LISAs detection rate should be dominated by capturesntegrate (roughly, using a pencil and ruledp/de back-

of ~10M BHs. This is partly because the BHs, being morewards(in time) from plunge top/M =12. We then used the
massive, can be “seen” to greater distance, and partly betowest-order post-Newtonian resy] dp/de=(12/19)(p/
cause two-body relaxation enhances the density of BH8)(1+Ze?)/(1+ %2e?) to continue the integration back-
nearer the MBH[15]. (Two-body stellar collisions tend t0 wards toe=1.0]

equalize kinetic energies, causing heavier stars to sink to the gased on Freitag's Monte Carlo simulation of capture
center of the cusp. events in our GalaxyFig. 1 of [18]), we then estimate that

The first extended look at data analysis for capture, | ; ;
. A ghly half the captures of-10M BHs (which, again,
sources was taken by Finn and Thoftié]. They simplified hould dominate LISAS detectionQratshouId havee, <o

the problem by restricting to the case of circular, equatoria .
orbits, but for this case they were able to calculate the correcTO'z' Note that a year or two before the final plunge the

relativistic orbits and waveforms, and they showed how thﬁeacr;eerr]t{rl](;tge of ?:gr}llzzfr;;edsixvllgig? ;a;:g, be significantly
LSO - 0y

LISA SNR accumulates over the last year of inspiral— _
during which typically~10° GW cycles are emitted—for a Capture sources_are_unhke some other L_ISA.sou(e@,
lactic WD-WD binaries or MBH-MBH binaries at high

range of CO masses and MBH masses and spins. Their plog&!actic V - - )
illustrate the salient fact that, typically, the entire last year off€dshift, in that they may lie quite near the margin of de-
inspiral contributes significantly to the SNR. This is becausetectability, given LISAs current design specificatior®ut
one year before plunge, the CO is already quite close to tha@nother way, a modest change in the height or location of the
MBH. Indeed, we shall see below that considerable signalnoise floor may determine whether or not these sources are
to-noise can accumulate eveeforethe final year. detected. Since detecting capture sources is very high prior-
A more realistic treatment of the capture problem mustty for LISA, it has been a high priority for LISA's Sources
incorporate the facts thdt) capture orbits will generally be and Data Analysis tearfi“Working Group 1" (WG1)] to
nonequatoriali.e., the CQO'’s orbital angular momentum will make as much progress as possible studying capture sources
not be aligned with the spin of the MBHand (ii) a fair  before finalizing the LISA desighl9]. This motivates cur-
fraction of the inspiraling orbits will remain moderately ec- rent research on several fronts, including workijJamprove
centric right up until the final plunge. The latter fact may estimates for event rates and for the distribution of source
seem SUrpriSing, since it is well known that gravitational ra-parameters(especia”y masses and initial pericenter dis-
diation reaction tends to circularize orbits rather efficiehtly. tancey; (ii) solve the radiation reaction problem to determine
The point, however, is that when the COs enter the 0SS congne true orbit, and construct the corresponding waveforms;
their orbits are initiallyextremelyeccentric: 1- e~ 10 (iii ) investigate what science can be done with these sources
—103, typically, while t.he initial perlcgntgr dlsFance |s.0nly (both astrophysics and tests of fundamental physits)
rp,ini™~8—100M [18]. Given the CO's initial trajectory, just nderstand the limits on capture detection due to “source
after scattering into the loss cone, we would like to calculatggnfysion,” i.e., the background “noise” caused Iogher,
the eccentricity at the last stable orb#,so. For nonspin- ynresolved capture sources; afd construct strategies to
ning MBHSs, at least, this is straightforward. We find that gig the capture waveforms out of the instrumental and con-

€ s0>0.1 if 1y in=20.0M, € 0>0.2 for ry;ni=12.8M,  fysjon noise. The present work addresses issii@snd (iv)
ande so>0.3 forrp i=9.2V. [These estimates were ob- aphove, while later papers will address problém
tained as follows. In the test particle limit, lef andr, be Parameter estimation with LISj&learly bearing on above

the turning points(pericenter and apocenteof the radial  issye iii)] has been looked at systematically for WD-WD
motion, wherer is the standard radial coordinate in pinaries by Peterseiret al. [20] and Cutler[10], and for
Schwarzschild. Defing ande by ry(=r,)=p/(1+e) and  mergers of MBH pairs by CutlgrL0] and Vecchig21]. No
ro=p/(1—e). Plunge occurs ap/M=6+2e 50 [7]. Then  comparable analysis has yet been done for capture sources.

Pinit IS given by For captures, some initial estimates of parameter estimation
accuracy were made by Poiss@2] and Ryan[2] (the lat-
1 r1 dp , . . . D
Pt /M =6+ 26 sot — e (1)  ter's main interest being to test alternative gravitation theo-
MJe sode ries). However, both Poisson and Ryan used extremely sim-

plifying approximations: they both took the inspiral orbits to
(Of course, the upper limit in the integral should actually bepe circular and equatoria priori (effectively reducing the
slightly less than 1.0—sag=0.99995—but since the inte- number of unknown system parameters, while leaving unin-
grand is smooth as—1.0, it makes no practical difference yestigated the significance of perihelion precession and
if we simply approximate the upper limit as 1.0he deriva- | ense-Thirring precession for parameter extragtioand
tive dp/de=p/e due to radiation reaction was calculated they did not incorporate in their signal models the amplitude
numerically by Cutler, Kennefick, and Poissaf for orbits ~ and phase modulations that arise from LISA’s orbital motion
near the horizon. We used the results from Fig. J@fto  (which LISA will use to determine the source positioBy

comparison, our treatment is far more realistic. While our

results are also approximate, we believe they should at least

1Except very close to plunge, where the very strong-field potentiagive correct order-of-magnitude estimates of LISA's param-

tends to decrease the rate of circularization, and may even reversder estimation accuracfwhile it seems doubtful that the
the sign ofde/dt—cf. [7,17). earlier estimates can be trusted even at that Jevel
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Ill. OUR MODEL INSPIRAL WAVEFORM based on which we then define the two polarization basis

We approximate the CO-MBH system as being, at anytensors

instant, a Newtonian-orbit binary emitting a Peters-Matthews
(i.e., lowest order, quadrupo)avaveform. We then use post-

Newtonian(PN) equations to secularly evolve the parameters « A aa
of the orbit. In particular, we include orbital decay from ra- Hij (D=piq; +aip; - ©)

diation reaction, pericenter precession, and Lense-Thirrin I .
precession of the orbital plane. The modulation of the wave?rhe general GW strain field at the detector can then be writ-

form’s amplitude and phase due to Lense-Thirring precessioF1en as
Eas been describgth the context pf circular-orbit binari¢s hij(t)=A+(t)H§(t)+AX(t)H§(t), (4)

y Apostolatoset al. [23]. The motion of the LISA detector
introduces additional modulations; our handling of theseyhereA™(t) andA*(t) are the amplitudes of the two polar-
closely follows that of Cutlef10]. Cutler’s treatment does jzations.
not account for the decrease in LISA's sensitivity at frequen-
ciesf=10 mHz (where the GW wavelength is smaller than
the detector’s armlength-an effect recently accounted for S ) )
by Cornish and Rubbfl11]. It would be straightforward to N the quadrupole approximation, the metric perturbation
repeat our analysis using the Cornish and Rubbo formalisnfar from the source is givefin the “transverse-traceless”
However, since most of the SNR for astophysically-relevangauge by [25]
capture sources will accumulate at frequencies below 1
~10 mHz, we expect our high-frequency approximation hij =(2/D)< PP — EP” Pkl) ki (5)
will have only a modest impact on the results.

We emphasize that our treatment is highly modular. E.g., . . L
while our choice of physical variables is a slight generaliza-VN€reD s the distance to the source, the projection operator
tion of the variables used ifi23] and [10], it would be Pij is given byP;;=#;—nin;, andl" is the second time
straightforward to re-write our waveforms using a parametri-derivative of the inertia tensor. In this paper we work in the
zation along the lines of Buonanno, Chen, and Vallisfg4]  limit of small mass ratiou/M<1, whereux andM are the
(hereaﬂer, BC\)’, who found a particu|ar|y convenient way masses of the CO and MBH, respectively. In this limit, the
of parametrizing circular-orbit binaries with spifit seems inertia tensor is just’ (t)= uri(t)ri(t), wherer is the posi-
the BCV parametrization should be readily extendible to ection vector of the CO with respect to the MBH.
centric orbits). Similarly, it would be straightforward for us Consider now a CO-MBH system described as a Newton-
to treat the LISA noise and response function along the linegan binary, with semi-major axia, eccentricitye, and orbital
of Cornish and Rubb§11]. We do not implement either of frequencyy=(27M) }(M/a)¥2. Let &, and &, be ortho-
importance, and because our work was already well undefhe orbital ellipse, respectively. Since the orbit is plamér,

Hﬁ(t)Ebiﬁj—&i&j,

B. Peters-Mathews waveforms

way when they became available. has only 3 independent components, 12, andl?? and as
the motion is periodic, we can expreks as a sum of har-
A. Principal axes monics of the orbital frequency: 1"== 1} .

In this paper, we adopt a mixed notation for spatial vec- Ve next denote

tors, sometimes labelling them with spatial indices 1
(i,j,k, ...), butsometimes suppressing the indices and in- a,=-(11-1%3,
stead using the standard-31 vector notation: an over-arrow 2
(as inA) to represent a vectoA-B to represent a scalar
(“dot” ) product, andA X B to represent the vectdtcross”)

product. An overhatas inn) will indicate that a vector is 1.1y wa
normalized, i.e., has unit length. We trust our meaning will CHEE(In +159. (6)
always be clear, despite this mixed notation.

Let n be the unit vector pointing from the detector to the Peters and Matthews showgg] that

source, and Ielf.(t) be the unit vector along the CQO’s orbital
angular momentum. We find it convenient to work ittime-

varying wave frame defined with respect ftnandIA_(t). We +2eJ,,1(ne)—J,o(neyjcog nd(t)],
define unit vectorp andq by

—j12
b,=1.7,

a,=—nA[J,_»(ne)—2ed,_1(ne)+(2/n)J,(ne)

b,=—nA(1-e*)YqJ,_,(ne)—2J,(ne)
+Jn+2(ne)]sinn®(t)],

q=pxn, 2) c,=2AJ,(ne)cognd(t)], (7)

p=(nxL)/|nxL]|,
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e h (t)=iE[F*(t)N(tHFX(t)AX(t)] (14)
A=(27vM)?y, ) on D2 « " et

J, are Bessel functions of the first kind, adel(t) is the HereA; *(t) are the two polarization coefficiengiven, in

mean anomaly(measured from pericenferFor a strictly  our model, by Eq(10) abovd, the factor\/3/2 accounts for

Newtonian binary we have the fact that the actual angle between LISA arms is 60°
rather than 90°, an& "™ are the “antenna pattern” func-
(1) =27v(t—to) + Do, ©  tions, reading 23,27
where®,, is the mean anomaly a§. Decomposing Eq(4) L1
into n-harmonic contributions and using E€f), one then Fr=5(1+ cos #)cog 2¢)cog 2¢))
easily obtains explicit expressions for theharmonic com-
ponents of the two polarization coefficients'=3,A" and —cosésin(2¢)sin(2y),

A =Z.A, . They are

1 |
A =—[1+(L-7)?][agcoq2y) — bysin(2y)] Fi'=5(1+cosf)cos2¢)sin(2y)

+[1—(I:-ﬁ)2]cn, +cosfsin(2¢)cog2y), (153
. L1 .
AX=2(L-n)[b,cog2y) +a,sin(2y)], (10) Fii =5 (1+cos6)sin(2¢)cog 2y)
where y is an azimuthal angle measuring the direction of +cosfd cog2¢)sin(2y),
pericenter ~ with  respect to x=[—n+L(L-n)]/[1 L
—(L-n)3¥2 Fii= E(l+c0§0)sin(2¢)sin(21,b)
C. LISA's response function —cosf cog2¢)cog2¢). (15b)

With its three arms, LISA functions as a pair of two-arm
detectors, outputting two orthogonal signals. Lget},15 be
unit vectors, each along one of LISAs three arms, and.let
be LISAs average arm length. Let alk(t) be the length of
thei’th arm when LISA measures an incident GW, and de
note sL,(t)=L;(t)—L. We refer to the two-arm detector
formed by arms 1 and 2 as “detector |.” The strain amplitude
in this detector is given by

In these expressionsf(¢) is the source’s sky location in a
detector-based coordinate system ana the “polarization
angle” describing the orientation of the “apparent ellipse”
drawn by the projection of the orbit on the sky—see Fig. 1 in
"Ref. [23] and the explicit relatiorf17) given below.

It is more convenient to express the above response func-
tion in terms of angles defined not in the rotating, detector-
based system, but rather in a fixed, ecliptic-based coordinate
system. The angleg, ¢ are related tods, ps—the source

hy(t)=[6L4(t)— 6L,(1)]/L= Ehij(t)(l'llll—l'zllz). location in an ecliptic-based system—through
(1) 1 \/5 B
The second, orthogonal signal is then given[bg] cose(t) = 5 Cosfs™ 7S|n95005{ ot 2m(UT) = ds].
hyj (1) =314 8L (t) + SL,(t) —25L3(1) /L B(t)=ap+2m(t/T)
1 S o i Y _
23 2 Sinfssin ¢o+ 2m(t/T) — b
For GW wavelengths much larger than the LISA arm length, (16)

h,(t) and h,(t) coincide with the two “Michelson vari- _ o

ables” [26], describing the responses of a pair of WhereT=1 year andg,,a, are constant angles specifying,

two-arm/90° detectors. We can then wiiitgt) andh,(t) as respectively, the orbital and rotational phase of the detector

a sum ovem-harmonic contributions, att=0. (See Cutlef10] for a complete definition of these
angles; note, though, that the anglg=0 in this paper is
referred to asyy=0 in Cutler[10].)

ha(t):; Nen(t)  (a=111), (13 Next, we express the polarization anglein terms of

fs,¢s and 6, ,¢ —the direction of the CO’s orbital angular

where momentum,ﬁ(t), in the ecliptic-based system. We have
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1 3 _
tany= > cosé, — 7sin 0, cog ¢po+2m(t/T)— ¢ ] —cos(t)[ cosh, cosfs+ sin O Sin Ocos ¢ — ¢ps) |
1 3 _
Esin 0, SinOssin( p — dg) — > cog ¢+ 27t/ T)(cosh, Sin Hssin pg— cOSHSIN G, Sing| )

V3
ey Sin( ¢pg+ 27t/ T)(€0SHSSIN B, COSP| — COSH, SiN OCOSPs) |- (17)

For concreteness we shall hereafter talg= ap=0, but  Sin 6, (t)cose, (t)=Sin #xCOSp,COSN
one could specify any other value as appropriate.

Note that the angle8, , ¢, are not constant, sinde pre-
cesses about the MBH's spin directi®n Let 6, , ¢y be the tsinggsink sina(t),
direction ofS in the ecliptic-based systeftK” standing for
“Kerr” ); let also\ be the anglebetweenALand S, and a(t)

—C0S¢KCOSHKSINA cosa(t)

sin @ (t)sing (1) =sin 6k Sin ¢ COS\

be an azimuthal angl@n the orbital plangthat measures the — 5in ¢ COSOSIN cosa(t)
precession of. around S Specifically, let _ cosdysink sina(t). 19
- z—Scosf Sxz _ -
L =Scos\ + WKsin)\ cosat —— Sin\ sina, D. The pericenter angley
“ : (18) As mentioned above, the angjethat appears in Eq$10)

measures the direction of pericenter with respect to
x=[—n+L(L-n)]/[1—(L-n)2]¥2 With this definition, y

is neither purely extrinsic nor purely intrinsidn the termi-
nology of BCV, “intrinsic” parameters describe the system
without reference to the location or orientation of the ob-
€0s6| (t)=c0oshkCOS\ + sin fcSin\ cosa(t), server) We will find it convenient to introduce a somewhat

where z is a unit vector normal to the ecliptic. Then the
anglesd, (t), ¢, (t) are given in terms obx , ¢k, A, a(t) as

TABLE I. Summary of physical parameters and their meaning. The anglespg) and (Ox , o) are

associated with a spherical coordinate system attached to the ecijpﬁod S are unit vectors in the
directions of the orbital angular momentum and the MBH'’s spin, respectively. For further details see Fig. 1
and the description in the text.

A° to to is time where orbital frequency sweeps through
fiducial value(e.g., 1 mHz

Al Inu (In of) CO’s mass

\? InM (In of) MBH’s mass

A3 S/IM?2 magnitude of(specifig spin angular momentum of

MBH

A € e(ty), wheree(t) is the orbital eccentricity

\® Yo Y(to), wherey(t) is the angle(in orbital plane
between x S and pericenter

A® (ON d(tg), whered(t) is the mean anomaly

N Ms=COSbg (cosine of the source direction’s polar angle

A8 bs azimuthal direction to source

N’ COSA L-S(=const)

A0 Qg a(ty), wherea(t) is the azimuthal direction df

(in the orbital plang

A k= COSb (cosine of the polar angle of MBH’s spin

A2 dr azimuthal direction of MBH’s spin

B In(u/D) (In of) CO’s mass divided by distance to source
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.. cosfs—S-Ncosby
L-n=S-ncos\+ - SiN\ cosa
sin 6
(Sxz)n o
Wsm sina, (29
or, equivalently,
L-n=cos0scosh, +sin hssin 6, cos ps— ¢, ).  (25)

Note that the time variation d&- n is very small in the ex-
treme mass-ratio case considered here: this quantity is con-
stant to better thanv(,u/M)(S/MZ) (see Appendlx CIn

our model we shall approxmatS—and henceS: n—as
strictly constant.

the masses of the MBH and the CO, respectively. The axes labeled

X-y-z represent a Cartesian systdrased on ecliptic coordinates

(the Earth’s motion around the Sun is in the x-y plariéhe spin§
of the MBH is parametrized by its magnitu&and the two angular
coordinate¥y , ¢k , defined(in the standard mannebased on the

systemx-y-z. I:(t) represents thdtime-varying orbital angular
momentum; its direction is parametrized by fleenstant anglex

betweerL andS, and by an azimuthal angte(t) (not shown in the
figure). The angley(t) is the (intrinsic) direction of pericenter, as

measured with respect toxS. Finally, ®(t) denotes the mean
anomaly of the orbit, i.e., the average orbital phase with respect to

the direction of pericenter.

different convention for the zero point of this angle: We shall

define’y to be the direction of pericenter with respectl:to
xS, Then’y is a purely intrinsic quantity.
Clearly, y andy are related by

y=7+8, (20)
where 8 is the angle fronx=[L(L-n)—n] to (Lx9). Itis
straightforward to show tha® is given by

cos\L-n—S:n

sinB= — ,
sin\[1—(L-n)?]*2
n-(SxL)
cospB= (21)

sin\[1—(L-n)2]¥2

To evaluateB(t) in practice, we shall need the following

relations:
S-N=C0SACOSO + Sin OsSin O CoL bs— i),  (22)
n-(Sx L)=sinfcsin ¢ — bs)SIN\ cosa
S-ncosfc—cosfs .
. sinA sina, (23
Sin O
and

E. Parameter space

The two-body system is described by 17 parameters. The
spin of the CO can be marginally relevasee Appendix G
but in this paper we shall ignore it, leaving us with 14 pa-
rameters. We shall denote a vector in the 14D parameter
space bya? (a=0,...,13). We choose our parameters as
follows:
AN=(\O, ...

A =[toln 1, INM,SIM?, €5, %70,Po. us

=C0S0s, ¢bs,COSN, g, ik =COSHy , P, IN(u/D)].
(26)

Heret, is a time parameter that allows us to specify “when”
the inspiral occurs—we shall generally chodgeo be the
instant of time when thdradial) orbital frequency sweeps
through some fiducial valug, (typically, we shall choose,

of order 1 mHz, u and M are the masses of the CO and
MBH, respectively, andS is the magnitude of the MBH's
spin angular momenturfso 0<S/M2<1). The parameters
€, 7o, and @, describe, respectively, the eccentricity, the
direction of the pericenter within the orbital plane, and the

mean anomaly—all at timg,. More specifically, we take,

to be the anglgiin the plane of the orbjtfrom LxS to
pericenter, and, as usuab,, to be the mean anomaly with
respect to pericenter passage. The paramegera(t=tg)
[wherea(t) is defined in Eq(18)] describes the direction of

L aroundS atty. The angles {5, ¢s) are the direction to the
source, in ecliptic-based coordinatesi ( ¢x) represent the

directionS of the MBH's spin(approximated as Constariln
ecllptlc -based coordinates; ands the angle betweeh and

S (also approximated as constinFinally, D is the distance
to the source.

2In reality, radiation reaction will impose a small time variation in
\; however, this variation is known to be very smaee Ref[9])
and we shall ignore it here. When a model of the time-variation of
\ is eventually at hand, it would be trivial to generalize our treat-
ment to incorporate it: one would just need an equatiordfoidt,
and in the parameter list would be replaced by ,—the value of
\ at timet,.
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The various parameters and their meaning are summapond to the freedom to translate the same binary in space
rized in Table I. Figure 1 illustrates the various angles in-and time, and the three parametetg, ¢, and a, are
volved in our parametrization. basically Euler angles that specify the orientation of the orbit

Note for simplicity we are treating the background spaceith respect to the observéat ty). The intrinsic parameters
time as Minkowski space, not Robertson-Walker. To correchre the ones that control the detailed dynamical evolution of
this, for a source at redshidf requires only the simple frans- the system, without reference to the observer's location or
lation: M—M(1+2), u—u(l+z), S=S(1+2)>, D  grientation. In our parametrization, the seven intrinsic pa-

—D_, whereD, is the “luminosity distance{28]. rameters are I, InM, SIM2, Cos\, &y, 7o, and®,. BCV

The parameters can be divided into “intrinsic” and “ex- bservedin th ntext of circular-orbit binaries with spin
trinsic” parameters, following BCV. Extrinsic parameters re- obsefrvedun the context of circuar-o a es“ sp ”
that extrinsic parameters are generally much “cheaper” to

fer to the observer’s position or orientation, or to the zero L
of-time on the observer's watch. There are seven extrinsic®2Ch over than intrinsic parameters. We shall make good

parameters: the four parametags us, ¢s, andD corre-  US€ of this important observation in further papers.

F. Orbital evolution equations

We evolved(t), v(t), ¥(t), e(t), anda(t) using the following PN formulas:

do
E—Zﬂ'v, (27)
dv 96 _
= —— (wIM3)(27M )Y 1—e?) Y[ 1+ (73/24e?+ (37/96e*](1—e?)
t 10w
+(27Mp)?9(1273/336— (2561/224e°— (3885/128e* — (13147/5376e°]
—(27Mv)(SIM?)cosh (1—e?) Y9 (73/12 + (1211/24e?+ (3143/96e* + (65/64€°]}, (28)
%=6wv(2wyM)2’3(1—e2)—1 1+ %(ZWVM )23(1—e?)1(26— 15¢?)
— 127w cosA(SIM?)(2mMv)(1—e?) %72, (29
Z—f= - %(M/Mz)(l—ez)_m(ZwM v)93
X | (304+121e?)(1—e?)(1+12(27M 1v)?3) — 5i6(27r|v| 1)?3((8)(16705 +(12)(9082e?—2521%%)
+e(u/M?)(SIM?)cosh (27M v) 31— e?) %[ (1364/5 + (5032/15e+ (263/10e*], (30)
da
H=4WV(S/M2)(27TM v)(1—e?) %2 (3D

Equations(28), (29), and(30) are from Junker and Scfea [29], except(i) the second line of Eq29) is from Brumberd 30]
(cf. our Appendix A, and the last term in Eq28)—the terms=S/M?—is from Ryan[31]. Equation(31) is from Barker and
O’Connell[32]. The dissipative termdv/dt andde/dt are given accurately through 3.5PN ordiee., one order higher than
2.5PN order, where radiation reaction first becomes maniteBhe nondissipative equations, fdry/dt and de/dt, are
accurate through 2PN order.

3The currently undetermined term in the 3.5PN express[eee[33], in particular Eqs(12)—(14) thereir] does not show up in our
calculation, since here we are ignoring terms that are higher-order in the masg/fsitio

“In fact, the equations fody/dt andda/dt are missing terms proportional t&/(M?2)2, which, according to usual “order counting” are
classified as 2PN. However, this usual counting is misleading when the central object is a spinning BH: Because BHs are ultracompact, their
spins are smaller than suggested by the usual counting, and the missing-i®th?)? have, in fact, the same magnitude as 3PN terms.
Similarly, the terms=(S/M?) in Egs.(29) and(31) can be viewed as effectively 1.5PN terms.
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6h
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FIG. 2. Sample equatorial orbits: Showi#eft to right, respectively are 20 minutes, 1 hour, and 6 hours-long samples of the CO’s
trajectory just before approaching the LS®,Y() is a Cartesian coordinate system in the orkiggjuatorial plane, centered at the MBH. The
axes give the distance in units of the MBH’s m&&sThis sequence of plots shows a case with a very small LSO eccenteieify,05. The
other physical parameters are set as follows: CO’s masslOM ; MBH’s mass:M =10°M, ; MBH’s spin magnitudeS=M?2.

In solving the above time-evolution equations, the initial Note that, in our treatment, pericenter precession and
values(at timeto) of @, v, y, e and« are just the param- Lense-Thirring precession have no effect on the intrinsic sig-
eters®y, v, ¥o, €0, andayg nal (the signal in a frame that rotates with the sysiesince

We emphasize again that our treatment is highly modularV€ @ways use the Peters-Matthews “lowest-order” wave-
The PN expressions in Eq@8)—(31) could be replaced with forms. The effect of these motions is simply to rotate the

improved ones as soon as higher-order PN expressions alp'én_ary system with respec_t to_ the detector_. This relativ_e ro-
available. Also, one might wish to improve these evolutiont@tion modulates the polarization angle{which appears in
equations using values from look-up tables, or results fronthe response functiorfs, " (t)] since s depends or., and
numerical studies of the orbital evolution in Kesuch as it affects the amplitude#\*"* since the latter depend on
in [9]). L-n andy.
Figures 2—6 show some sample orbits and waveforms,
G. Doppler phase modulation obtained from employing the above algorithm. Figures 7 and

Doppler phase modulation due to LISAs orbital motion 8 demonstrate the evolution of orbits in the eccentricity-
becomes important for integration times longer than a feerequency plane.
weeks. We incorporate this effect by shifting the ph&g¢),

according to IV. FORMALISM OF SIGNAL ANALYSIS
D This section briefly reviews the basic formulas of signal
PO+, (32 analysis, with application to LISA. We follow closely the
where treatment of Cutlef10]. In particular, our analysis is strictly

valid only in the low-frequency regime, where the light-
®P(t)=2mv(t)Rsinfsco§ 27 (t/T)— pg]. (33  travel-time up and down one arm is much less than the gravi-
tational wave period(However, we expect it to be a reason-

HereR=1 AU=499.00478 sec. able approximation at higher frequencies as well.
As discussed above, LISA functions as a pair of two-arm,
H. Putting the pieces together Michelson detectors, which we label | and Il. The output
from these two detectors can be represented by the vector

The algorithm for constructing our approximate Wave'sa(t) (with a=1,11). In what follows it will be convenient

form is then: Fix some fiducial frequency, and choose 4 \york with the Fourier transform of the signal; the conven-
waveform parameters td,In u,In M,SM?€y,%,90,C086s,  tion we use is

¢s,COS\,ry,C0Sb , ¢ ,D). Solve the ODEsS(27)—(31) for

D(t), v(t), Y(t), e(t), a(t). Calculated, (), (t) using ~ _ o mift

Eqgs.(19) and then obtains(t) from Eq.(17). Calculatey(t) Sa(f)= _we oDt (34
from y(t) using Egs.(20) and (21). Usee(t) and u(t) to

calculatea,(t),b,(t),c,(t) in Egs.(7), remembering to in- Now, the outpuss,(t) is the sum of incident gravitational

clude the Doppler modulation vian®(t)—n[®(t)  wavesh,(t) and instrumental noise,(t). For simplicity we
+®P(1)], in the manner of Eqg32) and(33). Calculate the assume thati) the noise is stationary and Gaussiéin, the
amplitude coefficientsA™ and the antenna pattern func- noise in detectors | and Il is uncorrelated, &iig the noise
tions F** using Egs.(10) and (15), respectively. Then fi- spectral densityS,(f) is the same in the two detectors.
nally calculateh,(t) (for @=1,11) using Eqs(14) and(13).  “Gaussianity” means that each Fourier componeptf) has
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FIG. 3. Same as in Fig. 2, for a trajectory with LSO eccentrieity0.3.

a Gaussian probability distribution. The combination of as- For a given incident gravitational wave, different realiza-
sumptions(ii) and (iii) is expressed by the relation tions of the noise will give rise to somewhat different best-fit
parameters. However, for large SNR, the best-fit parameters
will have a Gaussian distribution centered on the correct val-
ues. Specifically, lek? be the “true” values of the physical
parameters, and lat*+ S\2 be the best fit parameters in the
presence of some realization of the noise. Then for large

SNR, the parameter-estimation erréis® have the Gaussian
robability distribution

-~ o~ 1
(Ma(HNg(F)*) =5 0(F=1)8(F) S, (39

where “( )" denotes the “expectation value” an&,(f) is

the (single-sidedl noise spectral densitfor each detector.
Under the assumptions of stationarity and Gaussianity, w

have a natural definition of the inner product on the vecto

space of signalg34]: p(oN3) = Ne—(U2)Tapoh2a\° (40)
(plq)EZZ fo [5Z(f)aa(f)+5a(f)a§(f)]/ s, (f)df, It;;arel“ab is the so-calledrisher information matrixdefined
(36)
oh| oh
wherep,(t) andq,(t) are any two signals. One can show, Fa=| —| | (41)
based on this definition, that the inner product of pure noise INT[ IN

n with any signal is a random variable with zero mean and . \/7 . o
unit variance. In particular, the probability for the noise to @nd\=vdet(I'/2m) is the appropriate normalization factor.
have some realization, is just For large SNR, the variance-covariance matrix is given by

p(n=ng) e~ (Nolno)’2 37 (ON3SNPy=(I' 1P+ O(SNR) L. (42)

We defineAN3=(5\25\2)2 (the repeated index isot be-
ing summed hepe The uncertainty in the source’s angular
position,AQg (a solid anglg is given by[10]°

Thus, if the actual incident waveformlis the probability of
measuring a signa in the detector output is proportional to
e (s-Nls=N’2 Correspondingly, given a measured sigsal
the gravitational wavefornh that “best fits” the data is the AQe=27V(ApugA $s)2—(Susdps)>. (43)
one that minimizes the quantitys{ h|s—h).

The SNR for an incident waveforrh filtered by a per- The second term in brackets in E¢3) accounts for the fact

fectly matched templat& =h is that errors inug and ¢s will in general be correlated, so that
the “error box” on the sky is elliptical in general, not circu-

SNRCh]= (hlh) 39 lar. The 2 factor on the right-hand sid&®HS) of Eq. (43) is
~ rmgh|n)’ our convention; with this definition, the probability that the

source liesoutside an (appropriately shapederror ellipse
where rmsh|n) is the rms value for an ensemble of realiza- enclosing solid angla Q) is e 2%*4%s_|n the same way, the
tions of the detector noise). From the definition(36) it  error ellipse for the spin directio®Q, is given by
follows [34] that for any two signalp,(t) andq,(t), the
expectation value ofgn)(q|n) is just (p|g). In particular, AQy =27\ (A pgA i) — (S Sebi) 2. (44)
we have rmdi|n)=(h|h)*2, and hence the SNR of the de-
tection is approximately given by just

Note Eq.(3.7) of [10] is erroneous. However, the results quoted
SNR h]= (h|h)1’2. (39 in that paper are based on the correct expression(43j here.
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FIG. 4. Same as in Fig. 2, for a trajectory with LSO eccentrieity0.6.

The actual inner product, Eq36), is formulated in the orbits. Unlike in the circular-orbit case, where the contribu-
frequency domain. For a white noifee., S,(f) =const], the tion from the n=2 harmonic always dominates the SNR,
inner product is equivalent o *= [ “ . p.(t)q.(t)dt, by  eccentric orbits have their emitted powand contribution to
Parseval's theorem. Motivated by this formula, we shallSNR) distributed among highen-harmonics. One of the
adopt the following approximate version of the inner productgoals of this section is to explore this mode distribution, for
in calculating the Fisher matrix: First, we define the “noise-realistic values of the orbital eccentricity.
weighted” waveform

A. LISA noise model

A — 1/2
h“(t)=; ha (/S (Fn(1)), (49 LISA's noise has three components: instrumental noise,
confusion noise from short-period galactic binaries, and con-
where we take fusion noise from extragalactic binaries. Our treatment of
fo(t)=nw(t)+ y(t)/ . (46)  these three sources follows Hughkg5], though we use
somewhat different estimates for the sizes of the three pieces.
Then we approximate the covariance matrix, El), as For LISAs instrumental noiseS;*(f), we use the fol-
lowing analytic fit by Finn and Thorngl6],” based on the
r,—23 JTﬂaﬁa(t)é’bﬁa(t)dt. a7) noise budget given in the LISA Pre-Phase A Repait
a 0

SPS(f)=1.22x10" 5 4+ 2.12x 10" 4
That is, we simply reweight each harmonic by the square +1.22¢x10° 32 Hz ! (48)
root of the inverse spectral density of the noise, and thereaf- '
ter treat the noise as if it were white. .

The decision to sef,(t)=n[»(t)+(2n)(y(t)/2m)] is  where the frequencfis to be given in Hz.
something of a compromise: The radial orbital frequency is Next we turn to WD confusion noise. Any isotropic back-
v, the azimuthal orbital frequency igt) + (y/2w), and the  ground of indistinguishable GW sources represéfus the
fully correct waveforms will contain harmonics of both. Our purpose of analyzingther source$ a noise source with
“compromise” approximates the signal as harmonicswof spectral density36]
+(2/n)(y/24r), which lies between the radial and azimuthal
frequencie$and is the “correct” choice for circular motion 3
(in which case th@=2 harmonic dominates the GW output, onfrey O -3
and only the azimuthal piece enters the waveform S(h= 57-r]c pellow 1), 49

V. SNR ESTIMATES . . .
wherepCEBHél(STr) is the critical energy density needed to

Our analysis of the SNR buildup follows, basically, that of close the universéassuming it is matter-dominateénd
Finn and Thornd16]. The main advance here is, of course, Qgw=(p.) “tdpsw/d(In f) is the energy density in gravita-
the fact that we consider realistically eccentric orbits,tional waves(expressed as a fraction of the closure depsity
whereas Finn and Thorne confined their analysis to circular

"To obtain this expression, we used the expression given at the
SExcept for then=1 harmonic, which, however, contributes very beginning of p. 8 of Ref[16], where for[hgﬁ,i-,yl yr(f)]2 we used the
little to the GW signal and to the overall SNR—cf. the plots in Figs. expression given in footno{d4] therein, and folA f we have taken
9-14 below. 1/1 yr.
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FIG. 5. Sample waveforms. Shown is the response funttjft) (as defined in the texduring the last minutes before the final plunge.
The three panels show cases with LSO eccentricity 0, 0.3, andedt5o right, respectively The other physical parameters are set as
follows: CO's mass;u=10My; MBH's mass:M=10°M ; MBH'’s spin magnitude:S=M?; Angle between MBH’s spin and orbital
angular momentumx = 30°.

per logarithmic frequency interval.For the extragalactic st gal f) — min{ nSt(f)/exp( T N/df),
WD background, Farmer and Phinngg77] estimate that, for % = mssio
f near 1 mHz,Qaw(f)=3.6x 107 1(/10"2 Hz)?? [at H, SPE() + PR} (52

=70 km/(sec Mpc)], so
Here dN/df is the number density of galactic white dwarf
~7I3 binaries per unit GW frequenc¥,missionis the LISA mission
) Hz 1 (50) lifetime (so Af=1/Tission is the bin size of the discretely
Fourier transformed dataand « is the average number of
frequency bins that are “lost{for the purpose of analyzing
Note Eq.(50) is not a good fit toSt 9 for f=10 2 Hz, Other sourceswhen each galactic b_inary is f_itted out (s
where mergers cause the spectrum to decrease more sharph’,fger than one because LISA's motion effectively smears the
However, at such high frequencies, instrumental noise domisignal from each binary over several frequency pirt$e
nates the total noise in any case, so for our purposes tHECtor exp(- Ty i,AN/df) is therefore the fraction of “un-
extrapolation of Eq(50) to high frequencies is harmless. ~ corrupted” bins, where instrumental noise still dominates.
A recent calculation of the galactic confusion backgroundFor dN/df we adopt the estimafe35]
by Nelemant al.[38] yields anQ %), that is 5.0< 10" times

larger thanQ &9 (near 1 mHx [37] thereforé dN 1 Hz\ 113
E=2><1o*3 Hz ! - (53

ex gal_ < — 47
S 9a-4.2x 10 (1HZ

—7/3
) Hz 1. (51)

gal — 45
Sp(f)=2.1X10 ( 0

1 Hz

This is larger than instrumental noise in the range
~10 *-102Hz. However, at frequencies f=3

x 10" 3 Hz, galactic sources are sufficiently sparse, in fre-
guency space, that one expects to be able to “fit them out” of
the data. An estimate of the resulting nois¢35§]

8Note the RHS of our Eq(49) is a factor? as large as the RHS in
Eqg. (3.4) in [36]; this difference arises simply because the angle
between any two LISA arms is/3 (instead of ther/2 for LIGO’s
armg, and sir(/3)=3/4.

Note our prefactor 2410 *% is a factor~25 lower than the
prefactor cited in Hugh€el$85], based on his private communication
with S. Phinney. This large discrepancy seems to be the product o —10 0'5 : 1‘5 - 2‘5 3 3'5 y
the following two factors. First, it was based on the estimate of ' " t(hours) ’

Q3% by Webbink and Hafi39], which is ~3 times larger than the

result of Nelemant al. [38]. Second, it contained a factor 20/3 FIG. 6. A longer waveform segment shows amplitude modula-
error due to a misunderstanding of Phinney’s normalization conventions due to precession of the orbital plai€he physical param-
tion. eters are set here as in the left panel of Fig. 5.
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X100 . . . . . different, we setf () equal tonw(t)+ y(t)/7. Assuming
the contributions from the various harmonics to be approxi-
. 1/10° mately orthogonal, we may approximate the SNR from a
T ' single synthetic 2-arm Michelson detectalenoted here by
: SNR) as

N
T

hen(fn)
2 _ c,n\’'n

where “(...)sa” means “sky average,” i.e., average over
all source directionsthe factor 5 in the denominator results
from this averaging The characteristic amplitude f, is
given, following Finn and Thorn& by

hen=(wD) *V2E,/f,, (56)

i i
0.1 0.2 0.3 0.4 05 0.6 0.7
eccentricity

orbital frequency (Hz)
e

whereE,, is the power radiated to infinity by GWs at fre-
FIG. 7. Evolution of orbits in our model, for a system composedquencyf,,. To lowest order, this is

of a IM, CO inspiralling into a 16M (nonspinning MBH. The

dashed line represents the last stable dif#O). Each of the solid _ 32

lines shows thev-e trajectory of a system with given initial data E,=—u’M 4/3(2771})10/3g(n7e), (57)
(the orhit evolves in time “from bottom to top” The four dots 5

plotted along each trajectory indicate, from bottom to top, the state

of the system 10, 5, 2, and 1 years before the LSO. whereg(n,e) is given by[6]

and take KT,;ilssionz 1.5/yr (corresponding toT issiorr=3 VI n* 2
andk~4.5[40]). To obtain thetotal LISA noise, we justadd  9(n,e)= o Jn-2(ne)—2ed, 1(ne)+ HJn(ne)
to Eq. (52) the contribution from the extragalatic confusion

2

background, Eq(50): (1-€’)[J, 2(ne)
+ —€ n-2(N€

+2eJ,1(ne)—Jpa2(ne)

Sh(f) =S 9 f) + 52X 9% f). (54)

4
_ 24 2
B. SNR estimates for inspiral orbits 2Jn(ne€)+Jn:2(n€)]"+ 3n2[Jn(ne)] } (58)

For a Keplerian orbit, the source is strictly periodic and
hence the GWs are at harmoniis=nv of the orbital fre-  In this section, our major motivation is to investigate the
guency. However, as discussed in Sec. IV, to partially comeffect of nonzero eccentricity. For this reason, we ignore the
pensate for the fact that the radial and azimuthal periods areffect of the MBH’s spin—effectively assuming the MBH is

Schwarzschild.
25X 10 . . ' ' ’ ’ . The curves in Figs. 9—14 show the buildup of SNR with
: : : : : time, for each harmonic. As is customary in the LISA litera-

ture, our plots actually give SNR-the SNR from a single
2-arm Michelson; the actual LISA SNR buildup will be a
factor ~ /2 times larger. The curves are derived as follows.
We use our PN Eq930) and (28) (with S set to zerp to

1% their SNR estimates, Finn and Thorfts] tend to consider
the quantityh ., (in their notation, the “modified” characteristic
amplitude, introduced to account for the reduction in the GW signal
near the plunge, where the available bandwidth becomes very
small. Here we rather considéx, ., itself: This quantity has the
convenient characteristic that when integrated against the frequency
: : 5 [through Eq.(55)] it yields the SNR(squareg@l An estimate of the
o i ; i i i i ; i SNR based on the plots given [i6], which show the modified
A - - amplitudesh/, ., rather tharh, , itself, actually takes into account
twice the effect of the final plunge: The fact that the frequency

FIG. 8. Same as in Fig. 7, for a D, CO inspiralling into a  changes rapidly near the plunge is already accounted for in the

10°M o MBH. definition ofh .,, just above Eq(2.2) therein.

orbital frequency (Hz)
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wM=10/10°
(LS0)=0.3
LSO-10yrs)=0.77
LSO)=1.65 mHz

e(
v
v(LSO-10yrs)=0.23 mHz

10°

f (Hz)

FIG. 9. GW signal from a 10, CO spiralling into anonspin-
ning) 10°M,, MBH at D=1 Gpc: case where eccentricity at the
last stable orbit(LSO) is e 5o=0.3. The curve labeled S
shows LISAs sky-averaged instrumental noise Ieh&nﬂ?‘(f). The
dashed line is an estimate of LISA's overall noise levg|(f),
including the effect of stochastic-background “confusion” due to
WD binaries(both galactic and extra-galackicThe convex curves
show the amplitudes ,, of the first 10n-harmonics of the GW
signal, over the last 10 years of evolution prior to the final plunge.
Along each of these curves we marked 3 dots, indicatiram left

PHYSICAL REVIEW D 69, 082005 (2004

107"

wM=1/108

¢(LS0)=0.3
e(LSO-10yrs)=0.46
v(LSO)=1.65 mHz
v(LSO-10yrs)=0.94 mHz

Y S\nstwoni
~

\
\
\
: \
\

n=2
\
N

f (Hz) "
FIG. 10. Same as in Fig. 9, but for inspiral of 81, CO into a
106M@ MBH. The orbital eccentricity 10, 5, 2, and 1 years before
plunge is 0.46, 0.40, 0.35, and 0.32, respectively. The orbital fre-
quencyr 10, 5, 2, and 1 years before plunge is 0.94, 1.16, 1.39, and
1.51 mHz, respectively. The frequency at the LSO is 1.65 mHz.

so using the curves one can “integrate by eye” to estimate
the contribution to the SNR from each harmonic, and to de-
tectwhen(i.e., how long before the final plungenost of the
contribution is accumulated.

to right) the GW amplitude 5, 2, and 1 years before the plunge. The Here are some points to pay attention to when examining

orbital eccentricity 10, 5, 2, and 1 years before plunge is 0.77, 0.6
0.54, and 0.46, respectively. The orbital frequency 10, 5, 2, and
years before plunge is 0.23, 0.41, 0.70, and 0.94 mHz, respectivel
The frequency at the LSO is 1.65 mHz.

evolve e(t) and »(t) forward in time, up to the point when
the CO plunges over the top of the effective potential barrie
For a point particle in Schwarzschild, the plunge occurs a
amin=M(6+2e)(1—e?) ! [7], so we set

Vmax=(2M) " (1—e?)/(6+ 2€)]%2 (59)
We denote bye; the “final” value of e, i.e., the value ok
when v reaches the plunge frequeney,,,. Then, for each
harmonicn we use our solutiokv(t),e(t)} along with Egs.
(56), (57), and(58) to determineh, ,(f).

The upper “signal” curves in Figs. 9—14 shaw ,(t) for
each n; we “cut off” each curve at f,na=NVnax
+ 7 Y(vmax.€). Marks along each curve indicatérom
right to left) one, two, five, and ten years before the final
plunge. The Ilower “noise” curve depicts h,(f)
=[5fS,(f)]*? the rms noise amplitude per logarithmic fre-
quency intervalthe factor of 5 comes from sky-averaging;
Finn and Thorng16] defineSy(f) =5S,,(f)]. For compari-
son, the instrumental contribution, h"*(f)=[5f,
X Ssi(f.)1¥2 is also plotted. With these conventions, the
contribution to the SNR from each harmonic is

(SNR)2= J (hen/hp)2d(Inf), (60)

1

r

he SNR plots in Figs. 9-14:

Systems with MBH’s mass of 10° are ideally “located”
th the LISA band. Systems withM =10 radiate at frequen-
cies where WD confusion noise would likely obscure the
capture signal.

Systems withM~10° at D=1 Gpc are detectable with
§NF§ of ~5(u/1M ), assuming 1 year of signal integration.

w/M=10/107

e(LS0)=0.3
e(LSO-10yrs)=0.324
v(LS0)=0.165 mHz
v(LSO-10yrs)=0.151 mHz

—19

e

f (Hz)

FIG. 11. Same as in Fig. 9, but for inspiral of aMg@ CO into
a 10M, MBH. The orbital eccentricity 10, 5, 2, and 1 years before
plunge is 0.324, 0.313, 0.305, and 0.303, respectively. The orbital
frequency 10, 5, 2, and 1 years before plunge is 0.151, 0.158, 0.162,
and 0.164 mHz, respectively. The frequency at the LSO is 0.165
mHz.

082005-14
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—19

107 w/M=10/10° | wWM=10/10°

e(LSO)=0 ¢(LS0)=0.5
v(LSO)=2.20 mHz ned e(LSO-10yrs)=0.88
n=2 v(LSO-10yrs)=0.58 mHz 5 v(LSO)=1.13 mHz
Z v(LSO-10yrs)=0.15 mHz

S
N inst+conf
X

\Sinsi+oonf
~

10 10° 10
fii=) f (Hz)

_FIG' 12. GW signal from a JM_Q co spi_ralling into a_1(nonj- FIG. 14. GW signal from a 1@, CO spiralling into a 16M
spinning 10°M» MBH: case of a circular orbitcompare with Fig.  \1pp- case where eccentricity at the last stable orbiiso=0.5.

4 of Finn and Thorne Notation is the same as in Fig. 9. Note that \qtation is the same as in Fig. 9. The orbital eccentricity 10, 5, 2,

ii‘ our model, a CO in a circular orbit emits GW only into the 54 1 years before plunge is 0.88, 0.81, 0.71, and 0.64, respectively.
=2 harmonic. The orbital frequency 10, 5, 2, and 1 years beforerng ohita) frequency 10, 5, 2, and 1 years before plunge is 0.151,

plunge is 0.58, 0'74' 0.99, and 1.22 mHz, respectively. The fre0.265, 0.490, and 0.678 mHz, respectively. The frequency at the
quency at the LSO is 2.20 mHz. LSO is 1.13 mHz

Combining both synthetic Michelsons, and for two years ofy) .+ \een 10 and 1 years prior to plunge can easily exceed the
integration, LISA's SNR is~10(u/1Mg). contribution from the last year.

As expected, the higher the orbital eccentricity, the more g |55t effect may be further visualized by looking at the
SNR is contributed by hign-harmonics. Ate;so=0.3, the {444 amount of energy radiated in GW up to a titarior to
contribution fromn=3,4 is equally important to that ai 5 nge  as a function df This is demonstrated in Fig. 15 for
=2. At e 50=0.5, the dominant contribution comes @t 5 ass ratio of (1M ,)/(10°M ) and for a variety of LSO

=4, and one needs to sum the contributions of at least gqcenricities. For this plot, we used the leading-order ex-
dozen modes in order to properly estimate the overall SNRy assion given 6] for the total power radiated from all

A related point: For 18 MBHs and~1Mg COs, the 1 _harmonics:
last year prior to plunge contributes only a small fraction of
the potential SNR. Even for- 10M COs, the contribution _ 32
E(t)= g(ull\/l)2[27TV(t)l\/l]m’Tl—e(t)z]‘”2

107"

2 ;1[”;2,;’:1,?? X[1+4(73/24€%(t)+(37/96e*(t)]. (61
e(LSO-10yrs)=0.378 . .
s V(LS0)=2.06 mHz The percentage of energy radiated up to titheut of the
ko AR IR e total energy radiated during the capture, is then calculated
through

fLso.

f E(t")dt’

t

%E(t)=| 1————— | X100. (62)

fLso.
J E(t")dt’

The results are striking: For a 9, MBH and a 1M,
CO, about half the total GW energy is released earlier than
10 years before the final plunge; for avt, CO, half the
energy is emitted already 100 years before plunge. Most of
FIG. 13. Same as in Fig. 9, except that the LSO eccentricity idhis energy is released in the LISA band, in short “spurts” as
taken to be 0.1. The orbital eccentricity 10, 5, 2, and 1 years beforéhe CO passes close to the MBH. This provides a vivid dem-
plunge is 0.38, 0.30, 0.22, and 0.18, respectively. The orbital freonstration of the potential “threat” imposed by self-
quency 10, 5, 2, and 1 years before plunge is 0.49, 0.67, 0.94, argpbnfusion. A systematic analysis of this issue will be pre-
1.17 mHz, respectively. The frequency at the LSO is 2.06 mHz. sented elsewhere.

107 107 107
f (Hz)
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ic') 50 % ~ inst+conf
g = M=2.6-10° M. ==
E 42 S _20 n=0.06 Msun
@ <10 ¢ D=8 kpc

30 ¢(LS0)=0.02 25

(LSO-1 Myrs)=0.43 -
» ¢(LSO-10 Myrs)=0.80 \n=
0 .
-21
107 ¢ on=10
10¢ Il L 1 1 L 5 ‘_4 I_g
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years to LSO (Hz)
. - in- *
FIG. 15. Percentage of energy radiatedt of the total energy FIG. 16. SNR for a low-mass main-sequence star at Sgro*.

radiated in GW to infinity during the entire capture progess a indicates th(_a SNR accumulated over 2 years of obser_va_tion when
function of the time left to the final plunge. The CO and MBH the system is T0years before plunges, O, O, and * similarly
masses are M, and 16M,, respectively. This plot was gener- correspond to 19 2x10°, 5x1C°, and 10 years before plunge,
ated using Eq(62) with E approximated using E461). Note how respectively.
large the time scale is for energy to be emitted in GW by the
CO-MBH system, compared to LISA mission time 2 years. [(f,'df,/dt)x2 yr], so the height of the marked point
above the noise curve now gives SNR accumulated over 2
Finally, recall that all of our results regarding SNR valuesyears of observation. The marked points correspond to 2-yr
should be regarded as ballpark estimates rather than definitgbservations carried out 105x 10°, 2x 10°, 1¢f, and 16
due to the many approximations made here. Here is a sunyears before plunge, respectivelfictually, there is no
mary of the various approximations involve@) we incor-  “plunge,” as the low-mass star is tidally disrupted at least
porate an approximate model of LISAs instrumental noise,~ 50 yrs before plunge would occur, but we can ignore that
which is inaccurate at the high-frequency efid; we model  for this analysis.
the source using PN evolution and quadrupole emission— For a signal coming fyears before plunge, we find a
both approximations being worse, again, at high frequencieg-yr SNR of ~ 11 (the square root of the sum of the squares
(iii ) we assume a nonrotating MBKly) we assume the con- of the contributions from all modgsA two-year observation
tributions from the varioust-modes to the SNR are un- only 10° years before plunge would yield SNR55. These
coupled; andv) we assume that an ideal, coherent matchedsNR values are a factor-4 times smaller than the values
filtering search is carried out over the entire observation pegptainable from Fig. 1 of Frietagtl] (when the 1-yr results
riod. Nevertheless, we believe our results amply illustrate thgye gives there are scaled up to two ygabsit still support
importance of higher harmonics and of searches with multithe idea that this is a potentially observable source. As Fre-
year Integration times. itag points ouf41], tidal heating could possiblgunder pes-
simistic assumptiongisrupt the low-mass star sometime be-
C. SNR for a low-mass main-sequence star at Sgr A* tween 16 and 10 years prior to plunge, so the higher SNR

Freitag[18,41] recently pointed out that LISA might be value must be treated with some caution.
able to detect a few-0.1M  main-sequence stars captured
by the MBH at the center of our own galaxy. The strongest VI. PARAMETER ESTIMATION
such source will still have-1Cf years to go before plunge,
and so will currently be at the low end of the LISA frequency . .
range, but because it is so close to us, Freitag estimated that For our parameter-accuracy estimates we wrote a simple

it could still yield a SNR as high as~100. We have re- num_erical COde’. basz_ad gn the following prescription. .
examined this estimate, using the example from Fig. 1 in P|ck_a spec!ﬂc poinA® In parameter space. We _f(_)und I
Freitag [41], in which z=0.0Mg, M=2.6x 10°My, D convenient to first prescribe ayalue for the eccentricity at the
=8 kpc, ande=0.8 at ten million years prior to plunge. The LSO, eso; then get the assomated LSO frequency using, for
results are shown in Fig. 16. Since for the galactic sourcec"mpl'c'ty’ the Schwarzschild valfg]

considered here, there is practically no frequency evolution —(2aM) Y (1—e2.)/(6+ 2e 3/2. 63
during the observation time, our convention in Fig. 16 differs viso= (2mM) Lsoll( Lso 75 (63
somewhat from those in Figs. 9-14. As in Figs. 9-14, the

different curves correspond to the contributions from differ-and finally obtaine, and v, by integrating the evolution
ent harmonics, but here we pldi;, times the factor equations of Sec. lll F one year back in time. The parameter

A. Numerical implementation
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TABLE Il. Parameter accuracy estimates for inspiral ofMJ CO onto a 16M 5 MBH at SNR=30 (based on data collected during the
last year of inspiral Shown are results for various values of the MBH’s spin magnittided the final eccentricitg so. The rest of the

parameters are set as follovig=t, 50— (1/2) yr (middle of integration, }0:0, ®y=0, 5=7/4, ps=0, \=7/6, ay=0, 6= /8, and
¢K: 0

SIM? 0.1 0.1 0.1 0.5 0.5 0.5 1 1 1 1

€Lso 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.4 0.5
A(In M) 2.3x10°% 1.1x10°° 2.0x10°° 6.9x10°% 1.3x10°% 1.8x10°° 9.2x10* 1.3x10°° 2.0x10°% 6.5x10°°
A(SIM?)  25x10°% 1.3x10°* 3.0x10°* 3.6x10°*% 85x10°* 1.7x10°% 1.0x10°% 2.1x10°° 6.3x10°% 1.3x10 2
A(In w) 1.0x10°% 3.2x10°% 1.7x10°% 3.9x10°% 2.2x10% 4.0x10°° 3.4x10 % 6.0x10* 7.4x10° % 5.4x10 2
A(ep) 7.1x10°% 2.7x10°% 5.0x10* 7.6x10°% 4.4x10* 82x10 % 1.2x10°% 86x10 4 3.0x10 % 9.7x10°°
A(cos\) 6.2x10°2 3.1x102 6.5x10°2 3.6x10°% 7.9x10°° 1.4x10 2 25x10°° 4.8x10°% 1.3x10°2 2.3x10°?
A(Qy) 1.3x10°% 9.4x10 % 3.4x10°% 1.4x10°% 9.8x10°*% 3.7x10°% 1.6x10 % 9.4x104 7.8x10* 4.2x10°4
A(Qy) 59x10°2 6.4x10°2 8.7X10°2 54x10 2 5.1x10°2 49x10 2 5.3x10°2 5.0x10 2 5.1x10 2 5.3x10?
A(y) 5.6<10°' 9.7<10°' 3.1x10°' 54x10°' 89x10°' 3.1x10°' 4.6x107° 35x10°' 51x10°' 3.8<107*
A(Dy) 41x10°1 8.8x10°! 7.9x10°2 4.2x10°! 9.3x10! 8.1x10 2 5.8x10"° 1.8x10 ! 5.6x10°' 3.0x10°?!
A(a) 6.2x10°1 57x10°! 54x10! 6.2x10! 58x10! 55x10! 9.7x10! 59x10! 57x10! 56x101
AlIn(u/D)] 2.2x10°' 4.0x10 2 7.1x10°2 2.2x10 ' 3.8x10% 6.4x102 3.7x10 2 8.2x10°2 3.9x10 %2 4.2x10°2
A(to)vo 8.0x1072 1.5X10°! 1.4x102 84x10°2 1.6x10* 1.5x10°2 1.0x10™° 3.6x10°2 9.5x10° 2 4.8x10°2

to is set to be in the middle of the integration time. Namely,plicit, and one is required to take the derivatives numerically.

the integration is carried out froity,;=ty,— (1/2) yr tot, 5o
=ty+(1/2) yr.
For that point, calculate the-modesh, (t) andh ,(t)

We found it convenien{and accurate enougho take all
derivatives numerically.
Calculate all elements of the Fisher mattiy,, using Eq.

of Eq. (14), for the last year of inspiral, as described in Sec.(47).

[Il. The number of modes one has to take into account varies Use Eq.(42) to calculate the measurement error for each
with the prescribed LSO eccentricity. We determined thisof the parameters:

number by requiring that the relative error in the final Fisher

matrix components due to omission of higlmemodes is not

greater than-10 8. At e 5o=0.5 this meant summing over

ANA= (T T)aa

(65

~20 modes. Note that at the'th mode, the 1-year long (no summation ovea on the RHS. ObtainAQg and AQy
function h,, contains a huge number of wave cycles—using Eqs.(43) and (44). To invert the Fisher matrix, we
roughly ~10°n. The time resolution has been set such thaiysed a numerical subroutine baseddyauss) of Ref.[42].

each wave cycle is sampled at least 10 timesnARO, this
meant a time resolution of about 5 seconds.

For each relevant, use Eq(54) to calculate LISA'a noise
S,(f,). Then sum over modes using E@5) to obtain the
“noise-weighted” waveformdh, (t) andh(t).

Calculate the SNR through Ed39), using the time-
domain approximation for the inner product:

LSO~

SNR=2 > t h2(t)dt.

=TI J iy

(64)

Calculate the 18 2 derivativesizh,=oh,,/d\2. We take

Finally, multiply each of the varioua\? by SNR/30.
This, in effect, normalizes the distance to the source such
that the SNR becomes 3@oughly the SNR output from a
3M, CO captured by a T\, atD=1 Gpc).

B. Results for 1-yr integrations

Although in Sec. V we stressed the importance of the
signal-to-noise built up in the last several years prior to
plunge, in this section, due to limitations of computer
memory and speed, we restrict ourselves to waveforms com-
ing from the last year of inspiral. In essence, in this section
we pretend that LISA is “off-line” prior tot go—1 yr,
wheret, 5g is the instant of plunge.

these derivatives numerically, throughh,(A\2—\?2 We present our results from inverting the Fisher matrix
+ 5)\61/2)_}':] ()\aﬂ)\a_ 8)\a/2)]/5)\a (fOf each 2 for MBH mass of 1GM@, CO masses OfM@ and 1(:M®,
—\0 )\fé)' Namely, for each derivative we calculate the and a range of values of the MBH spin and the orbital ec-

waveform twice, with the relevant parameter shifted by
+ O\?/2. The shiftoA? is set such that the resulting relative

error in the Fisher-matrix elements #5107 8. [The depen-

centricity at the LSO. The rest of the parameters have been
set as follows:tg=t, 50— (1/2) yr (middle of integration

'y0=0, CDO=0, 05=7T/4, ¢S=0, )\=’7T/6, a0=0, 6’K

dence of the waveform in some of the parameters is such the /8, and$yx=0. Again, the anglegh, and a, specifying
derivatives can, in principle, be taken analytically. For someLISA's position and orientation dt, are set to zero. Tables Il
other parameterdike e, or ®,) the dependence is less ex- and Il give the results. We expect that the measurement

082005-17



L. BARACK AND C. CUTLER

PHYSICAL REVIEW D 69, 082005 (2004

TABLE lIl. Parameter extraction accuracy for inspiral of &ML CO onto a 18M 5 MBH at SNR=30 (based on data collected during
the last year of inspiral Shown are results for various values of the MBH'’s spin magnifided the final eccentricitg so. The rest of the

parameters are set as follovig=t, 50— (1/2) yr (middle of integration, }0:0, D=0, s=7/4, ps=0, A\=7/6, ay=0, 6= /8, and

é=0.

SIM? 0.1 0.1 0.1 0.5 0.5 0.5 1 1 1

eLso 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5
A(In M) 2.6x107% 56x10°* 53x10°° 2.7x107* 9.2x10°% 7.7x10°° 2.8x10°% 25x10°* 1.5x10°4
A(SIM?) 3.6x10°° 79x10° 45x10° 1.3x10*% 6.3x10% 51x10° 26x10* 3.7x10* 2.6x10*
A(In ) 6.8x10°° 1.5x10°% 7.4x10°° 6.8x10° 9.2x10° 1.0x10“% 6.1x10° 9.1x10° 1.0x10°3
A(ep) 6.3x10°° 1.3x10°*4 29x10°° 85x107° 2.8x10°% 32x10°° 1.2x10% 1.1x10% 1.6x10°*
A(cos\) 6.0x10° % 1.7x102 1.3x10°% 1.3x10°® 58x10°° 24x10“% 65x10“% 84x10* 4.7x10°*
A(Qy) 1.8x10°% 1.7x10°% 7.9x10% 20x10°% 1.7x10°% 7.6x10°% 21x10°°® 1.1x10°% 6.7x10°*
A(Qy) 56x10°2 53x102 4.7x102 55x10°2 51x102 47x102? 56x102 51x102 4.8x102
A(y) 40<10°"  6.3x10°" 3.8x10°' 1.0x107° 6.1x10°" 3.9x10°' 9.3x10°' 34x10°' 3.9x107*
A(Dy) 2.6x10°Y 6.7x10r 22x10! 1.4x10"° 75x10! 27x10°! 15x10'° 1.7x10! 3.3x10°!
A(a) 6.2x10! 58x10! 55x10! 6.3x10' 59x10! 56x10! 6.4x10! 59x10! 59x10°?
AlIn(w/D)]  8.7x10°2 3.8x102 3.7x102 3.8x10°? 3.7x102 3.7x102 3.8x102 7.0x10°? 3.7x10?
A(to)vo 45x10°%2 1.1x10' 3.3x102 23x10' 1.3x10' 4.4x102%2 25x10!' 3.2x10? 55x10°?

accuracies for intrinsic parameters will not depend very senverify the last statement by examining tHa x,In(x/D)] mi-
sitively on the source’s position and orientation, but that thenor of I' "1: We have

measurement accuracies for extrinsic paramet@g.,
LISAs angular resolution will depend rather more sensi-
tively on the actual values of these angl€khis was found
to be the case in LISA measurements of MBH-MBH coales-
cences[21], and we have also been able to verify it, to a

(F_l)ln D,In D:(F—l)ln(M/D),ln(le)+(F—l)ln w,n p

_ Z(F_l)ln ,u,ln(,u/D),

limited extent, in the LISA capture case.

Summarizing the results in Table lll, for the case of a
10M, BH spiraling into a 16M, MBH, the measurement

accuracies for the seven intrinsic parameters arery

roughly) A(InM)~2x10 4,

A(In w)~10"4,

A(SIM?)

~107%, A(cosA\)~10"3, Aey~10"% and A Py~AYy,

~0.5.

Comparing Tables Il and lll (M5 vs 1M, CO), we see
A(In M), A(In w), A(SIM?), A(cos)\), andAe, are all typi-
cally about an order of magnitude smaller for thevilh) CO

and since typical values areI'(%)NwPMnWD)_10-4
(T~ YHymwinr_107° and )" #"wD 107 we find that

indeedA (In D)=~A[In(«/D)].) Finally, as a check, it is easy

to see thatA[In(uw/D)] must be greater than SNR=0.033
(since the signal amplitude is linear /D), which is in-

deed satisfied in every column of our tables.

C. Comparison with other results in the literature

Our angular resolution results can be compared to results
by Cutler and Vecchi$43] on LISA's angular resolution for

case(again, for fixed SNR and fixed 1-yr integration time Monochromatic sources. For a monochromatic sogrce.with
This general trend of better accuracy for higher CO mass i§gw=3 MHz and SNR-30, LISAs angular resolution is
not hard to understand. First, singe<u, it is clear that typ|cally_AQS~5><10_ (estimated bY mterpola_tlng be-
I should scale roughly like w2, so A(In ) tween Figs. 2 and 3 if43], after rescaling those figures to
Tl o L e SNR=30), which is only a factor~2 smaller than our result
=[((I""H"# M+ should scale roughly ag™*. Similarly, . ;
o _ for capture sources. Since capture sources have twice as
the derivative g, uN,(t) has size of ordem ()dinu®(t)  many unknown parameters as monochromatic souftés
(during most of the integration timeand it is clear from o515 7 it is clear that LISAs angular resolution must be
Egs. (27), (28) that the typical size ofg, y®(t) scales \yorse for the formenat the same SNR but the “good
roughly like . The magnitudes ofgy2h,(t), deoaha(t),

> q news” is that this degradation appears to be quite modest,
andde h,(t) also scale roughly linearly witp,, for the same  pased on our limited sample.

reason. Hence, it is reasonable to expect that errors in these Our results on the mass and spin determination accuracy
five intrinsic variables should scale roughly like *. can be compared to previous results by Rjy2Zlrand Poisson

We next turn to the extrinsic parameters. Our few ex-[22]. Ryan's waveforms are based on PN evolution equations
amples suggest that LISA's angular resolution for capturdsimilar to ours, while Poisson’s are based on a Taylor ex-
sources isAQ~10" 2 radians, while the MBH spin direc- pansion of the waveform phase near plunge, with expansion
tion can be determined to withinQ,~5x10 2. We find  coefficients obtained from numerical solution of the Teukol-
A[In(u/D)]~5x10 "2, typically. Since  A(Inw) sky equation. Both these authors consider only circular,
<A[In(u/D)], it is clear thatA (In D)~5X10"? too. (We may  equatorial orbits(so e,=0 and cos.\=1.0, a priori). Both
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TABLE IV. Parameter extraction accuracy for a low-mass main-sequence star at Sgr A*. We adsutex 10°M o, x=0.068Vlo,
and data integration lasting years We also assume the star is observed a million years befor@hberetical plunge, just before tidal
effects become important. Each column of the table refers to a different choice of the MBH'’s spin, orbital ecceraricitirequency at
the time of observation. The other parameters are set as follpyrs0, ©,=0, 6s=1.66749(true value for Sgr A¥, ¢s=0, \=7/6,
ao=0, 6x=m/8, and¢=0. Most of the values given in the table result from inverting the full, X14)D Fisher matrix. The values for
AQ obtained by inverting the 211 minor that excludes the CO’s mgssand the two sky-location coordinatég and ¢ 5 (whose precise
values are known for Sgr A*are given in parenthesg$or all other parameters, using the known sky paosition did not significantly improve
measurement accuragy.

SIM? 0.1 0.1 0.1 0.5 0.5 0.5 1 1 1
e 0.10 0.43 0.80 0.10 0.43 0.80 0.10 0.43 0.80
vo(MmHz) 0.044 0.035 0.013 0.044 0.035 0.013 0.044 0.035 0.013
SNR 19.8 29.9 26.4 19.0 28.3 25.7 18.8 28.4 29.7

A(In M) 3.7x10°% 3.6x10%2 21x10!' 59x10°° 3.8x10°2 21x10°' 1.0x1072 3.8x10°% 2.1x10°?
A(SIM?)  25x10°% 19x10°% 6.9x10°% 32x10°% 25x10° 51x10°% 9.6x10°% 6.8x10% 9.9x10°°
A(In w) 6.1x10"3  4.0x10'3® 45x10'® 6.4x10"° 4.3x10"® 4.6x10"® 6.5x10"° 4.2x10"®  4.1x10"3

A(ep) 1.2x10°2 24x10°2 3.3x10°2 1.3x10°2 25x102 3.3x102 1.3x102 25x102 3.2x10 2
A(cos\) 321072 1.8x102 2.0x102 26x102 17102 1.8x102 2.6x102 1.7x10°2 1.6x10°2
A(Qy) 3.1x10°?2 9.4x10°% 1.1x10°%2 2.0x102% 7.6x10% 7.0x10% 2.0x102 7.9x10°% 7.1x10°%
A(Qy) 31x10°2 1.1x102% 1.0x102? 1.9x102 75x10° 6.2x10°% 2.0x102 8.0x10° 7.5x10°°

(1.1x1073) (5.1x107%) (6.4x107%) (1.2x107%) (4.6x10°%) (4.2x10°%) (1.2x10°3) (4.9x1073) (4.8x107%)
A7) 1.6<10""  36x10°' 25x10°' 15x10"' 35x10°' 23x10°'  1.3x10"' 3.1x10°' 2.1x10°*
A(Do) 2.0x1072 3.6x10"° 1.7x107° 2.0x10'? 3.8x10'° 1.7x10"° 2.1x10"? 3.8x10"° 1.6x107°
A(ag) 1.8x10°Y 7.6x10°2 65102 7.4x10°' 7.2x1072 6.3x10°2 15x107° 7.8x10°% 7.4x10?

A[In(uw/D)] 8.0x10°2 7.8x10°2 2.6x10°! 7.1x102% 7.8x102% 2.6x10! 7.1x102? 7.7x10°2 25x10°!
A(to) vo 3.1x10"t  6.0x10! 29x10! 3.2x10"! 6.3x10! 2.9x10' 3.2x10"' 6.3x10°' 2.8x10°1

simplify the calculation further by ignoring the waveform results are most usefully compared to those in column 1 of
modulation caused by LISAs motiofso they effectively our tables(i.e., e,=0.1 andS/M?=0.1). Our estimates of
pretend LISA is fixed at the center of our solar systeamd  mass-determination accuracy are within roughly an order of
by restricting attention to the waveform generated by just anagnitude of those quoted by Ryan and Poisson, and in fact
single pair of LISA's arms. Thus, their waveforms are deter-lie between them/[Poisson does not quote a result for
mined by only 5 parameters: an overall amplitude and phase\ (In w), but we can still compare our results directly to his
the two masses, an8/M?2. (Clearly, these simplifications by using
were intended to make the Fisher matrix calculation essen-
tially identical to the corresponding calculation for LIGO (Dhinminr=(r=hnmney o=ttt
measurements of binary black hole coalescepces. — (I~ bynminm (66)

The fact that Ryan and Poisson effectively “toss out” '

most of the unknown parameters obviously tends to decreasghich givesA 7=3.0x 10~* for our casd. Our A(S/M?) is
the calculated error bars for the included parameters. On the 1 times smaller than Ryan's and50 times smaller than

other hand, their highly simplified waveforms obviously pgisson's. We guess this is because in Ryan's and Poisson’s
carry much less information than the true waveforms, Wh'ch/vaveforms the MBH spin affects only the orbital phase
tend to have the opposite effeck priori, it would seem  yhereas in the true waveforms the spin also controls the
difficult to guess whether the net effect of their approXima-| ense Thirring precession rateleading them to overesti-

tions s to underestimate or overestimaigin M), A(Inu),  mate the covariance of the spin with the two mass param-
andA(S/M<). Therefore, unfortunately, their work does not siars and hence to overestimates/M?).

seem to provide a useful check on ours. Nevertheless, Ryan’s
and Poisson’s papers were an interesting first cut at the pa-
rameter estimation problem, and it seems interesting to com-
pare our results to theirs.

For a 1M, CO and 16M, MBH, Ryan[2] obtains(at Finally, it is interesting to consider the parameter extrac-
SNR=30): A(INnM)=1.8x10"%, A(Inu)=1.9x10 % and tion accuracy for captures of LMMSs at the center of the
A(S/IM?)=4.9x10 *. For the same masses and SNR, PoisMilky Way—the type of source whose anticipated SNR we
son [22] states the resultd (In M)=6.7x10"°, A(S/M?) discussed at the end of Sec. V. In Table IV we consider a few
=1.7x10"3, and A(In 7)=1.8x10"3, where 7= pu/M. possible low-frequency orbits of a 08I, CO around the
Since both Ryan and Poisson consider only the egse0 2.6X 10°M , MBH at the known distance and sky location of
and evaluate the Fisher matrix at the paBiM?=0, their ~ Sgr A*. We take B=7.9 kpc[44] and 5= 1.66749; the value

D. Parameter extraction for a low-mass main-sequence
star at Sgr A*
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for ¢ is picked arbitrarily, since the orbital location of the accurate for LMMS captures in our galaxy, since these in-
detector during the observation is unknown. The columnsspirals are viewed at a very early statfee orbits considered
with eccentricity 0.43 and frequency 0.0035 mHz correspondn Table IV have their pericenters a20M), and most of

to the orbit whose SNR output has been discussed atiove the SNR comes from frequencies in the range
Fig. 16; alsof41]), and assume the observation is madé 10 10™“~10"° Hz.

years prior to plunge¢just before tidal forces play an impor-

tant role. In other columns we consider other possible val- VIl. CONCLUSIONS, CAVEATS, AND FUTURE WORK

ues of the eccentricity, frequency, and MBH's spin. In calcu-
lating the Fisher matrix, we assumed a data integration timg .

of 2 years. _ _ _ swering some LISA data analysis questions, for such realistic
Most of the values in the table result from inverting the 55es.

full, 14D Fisher matrix. We find that the sky location of the  The figures in Sec. V illustrate how the LISA SNR builds
source can be determined to within0.01 steradians. Unfor- up over time for eccentric orbit@ssuming there, for sim-
tunately, the distancP to the source is entirely degenerate plicity, that the MBH is nonspinning These figures show
with the CO’s mass, and the latter cannot be determined bghat, for~10M ., COs captured by- 10°M ., MBHSs, the last
itself from the GW signal[This is as expected, since the few years of inspiral can all contribute significantly to the
accumulated effect of radiation reaction on the waveformsNR; for ~1M . COs, the last few decades can be signifi-
phase, after observation tim€,,c~1 yr, is merelyA¢  cant. Clearly, these long waveforms will increase the compu-
NTrﬁ-ngN wang/(]_Oﬁ yr)~102, for f~10“Hz] tational burden on matched-filtering detection schemes, and
Hence, the distance to the galactic center cannot be detefill exacerbate the self-confusion problem, since eccentric-
mined by the GW signal alone. However, in case where ®rbit inspirals can deliver significant GW energy into the
detected GW signal appears to come from a capture at Sg4SA band many years before they become individually de-
A* (as its sky position is consistent with the galactic centeitectable. . )

and itsf is extremely smaJl one could use the value & The tables in Sec._ Vi represent our attempt to estimate
known from astronomical measurements, in order to deter=/SAS parameter estimation accuracy, for captures. For a
mine the CO's masg. (Recent studies of stellar dynamics YPical source@ 1M CO captured by a fWIZ@ MBH at

and RR Lyrae stars have specifiddo within 4%[44]). The ~ SNR of 30 we find thaté‘(lln M),A(In M)'A(S“Y's)’ andAe,
relative error in will then be approximatelA[In(wD)], or ~ Will all 92 roughly ~10°%, while As~10"* and AQ¢
roughly 10%. ~5X10 “. Due to computational limitations, those results

Once a source is confirmed to be at the galactic center, war® based on measurements from only the final year prior to
may eliminate the sky locatiof)s (known exactly for Sgr plunge. We naturally expect the measurement errors to d_e-
A*) from the search, in order to improve the accuracy inCréase when one considers waveforms lasting the entire

determining the other parameters. We may also eliminate thgngth of the LISA mission. In this Sense, the numbers above
CO's massu from the parameter listwhile keeping represent rough upper limits to L_ISAs measurement accu-
w/D)—again, because radiation reaction is negligible for"aCY- On the other hand, these estimates are based on a small

this source. sample of hand-picked points in parameter space. In the fu-
ture we will improve these estimates by doing several-year

To estimate the effect of this extra information on param-, ) )
eter extraction, we inverted the 11D minor of the Fisher ma/Ntégrations and a full Monte Carlo sampling of parameter

trix obtained by excluding the rows and columns associategP2ce: Of course, our PN waveforms are probably not very
with us, ¢s, and Inu. We found that this produces only a accurate for COs very close to the plunge, but still the above

negligible improvement in measurement accuracy for the res‘?StI'_Tsﬁeﬁ are the best tg)lneshavallabllced 10 LMMS
of the parameters, except for the MBH spin’s directiaf) « as a reasonable chance of detecting S cap-

decreases by a factor1.5-3. These improved values of tured by the MBH afc the center of our own galaxy. I.n this
AQy are given in the table as well, set off by parentheses.case’ the sources will be detected 0° yrs before the final
The more interesting results of Table IV concern the in-PlUNge. when our PN waveforms and our low-frequency ap-

trinsic parameters of the galactic hole. We estimate that thgroximation to LIS.AS response funct|on_should. both be
mass of the central MBKas well as the orbital eccentricjty more rehable: We find that., Ina two-ygar |_ntegrat|on, LIS{-\
could be determined to within relative errer4x 10 2 to CO.UId d6te_r”?'”e the r‘gagnltude ";‘“d direction of ozur MBH's
2x 1071, i.e., comparable to or better than what is achievec?P'" © within A(S/M*)~5X10"* and A€} ~10 o and
today using astrometric methods. More impressive is the gdneasure the mass of the infalling star to withiri0%.
termination of the MBH’s spin from the GW waveform to
within ~0.005(in units of M?). It is hard for us to imagine
an alternative method that would allow such an accurate
measurement of the spin of the MBH at the Milky Way’s C.C.'s work was partly supported by NASA grants
center. NAG5-4093 and NAG5-12834. L.B.'s work was supported
Finally, we point out that two approximations we have by the Marie Curie Fund of the European Community pro-
made—using PN equations of motion and a low-frequencygram IHP-MCIF-99-1 under contract number HPMF-CT-
approximation to LISA's response—should be really quite2000-00851; by NSF Grant NSF-PHY-014032&udu” );

Realistic capture orbits will be nonequatorial and some-
at eccentric, in general. We have made a first cut at an-
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- i
APPENDIX A: LENSE-THIRRING COMPONENT p=(cosp) "d(sing)/dt, (A7)

OF THE PERICENTER PRECESSION which, substituting for sif and cos3 from Eq.(21), yields

At 1PN order, the piece of=dy/dt proportional toSis

. [1-(L-n)?]*2
[30] B=—FT—F"—7"—
~ n-(SXL)
. L-n . a o
¥|xs=—————(L-ncosh—S-n)a s . A
1—(L-n)? COSA(L-n) (cosAL-n—S-n)(L-n)(L-n)
X +
—8mv(SIM2)cos\(27M ) (1—€?) 732 (Al) [1—(L-n)?]*2 [1—(L-n)?]3?

) A8
wherea=da/dt is given in Eq.(31). [To derive this equa- A8)

tion, use Eq.(4.4.45 of Brumberg[30], together with his
Egs.(4.4.4] and(4.4.33, and along with the definitions in
Egs.(1.1.6—(1.10.10 therein]

Using now the evolution equation far, Iiz aSxL, the last
expression reduces to the RHS of EA6). This proves Eq.
) . . (A5), and hence EqAS3) is proved.

The expression(Al) s somewhett complicatedand We note Eq(A3) can also be seen as a special case of Eq.
worse, badly behaved ds approaches) due to the usual (A1), obtained by setting equal toS in the latter. Finally,

convention of definingy as the angle fromk=[L(L-N)  we also note that the term
—n]/(1—(L-n)®»*2 to pericenter. In the terminology of

BCV [24], y is neither wholly an intrinsic variable, nor an L-n ~ o
extrinsic one; it is of a mixed type. As explained in Sec. Il — - (L-ncosh=S-n)a (A9)
it is preferrable to introduce a pericenter angle that is defined 1-(L-n)

purely intrinsically (i.e., without reference to the observer . _ _ o
Accordingly, we define} as the angle fronf. xS to the in Eq. (A1) for y is premsely_the time derivative of.what has
A r ~ been referred to in Ref23] (in the context of quasi-circular
direction of pericenter. They and y are related by orbit9) as the “Thomas precession phasEThe term(A9) is
- precisely the RHS of Eq28) in [23].] We see here that this
Y=yt8, (A2)

“Thomas precession” term is really just thdx S piece” of
where3 is given by Eq.(21). Not only is% wholly intrinsic, the t)AerlE:en.ter ?recessnﬁwhne the remainder of EqAL) is
but we claim it also obeys a simpléand better behaved the “L-S piece”].

evolution equation, Eq29):
APPENDIX B: RELATIVE MAGNITUDES OF PN

Y|ws=—12mv coSN(SIM?)(2mMv)(1—e?) 32 CONTRIBUTIONS

A3
A3 Our goal here is to gauge the suitability of the PN formu-

The purpose of this Appendix is to prove this claim; i.e.,las we use in evolving the CO's orbit within our modElgs.
we show that Brumberg’'s EqA1) is indeed equivalent to (27)—(30)]. The part of the inspiral relevant for detection by

our Egs.(A3) and (A2). LISA takes place entirely within the highly relativistic region
Since it is obvious from the definitions that right next to the horizon, a regime where the validity of the
PN expansion is normally to be suspected. Accordingly, we
Yo= Yo+ Bo. (A4) do not expect our PN expressions to show any convergence;
we do wish to make sure, though, that truncating the PN
what we need to prove is that expansion as in Eq$27)—(30) does not lead to a pathologi-
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FIG. 17. Relative magnitudes of the various PN terms. The plots compare the contributiofisoer left pane| e (upper right pang|

and'y (bottom panelfrom the various terms in the PN expressig28)—(30), when the CO is at its last stable orbit. The various terms are
of comparable magnitude, as expected in this “worse case.” Note, though, that so lepga9.6, the evolution of the orbital parameters

at this order is free of potential pathologigie “outspiral” ( »<0), or a negative pericenter advance<(0)].

APPENDIX C: ESTIMATING THE EFFECT
OF THE CO’S SPIN

cal, unphysical evolution within the range of parameters rel-
evant for our analysis.

In Fig. 17 we compare the magnitudes of the contribu- . . . >
tions from the various PN expansion terms to each of the In this appeﬁndm we_refer to the.spm of the MBH 8
and denote bys, the spin of the CQin the rest of the paper

time derivativesy, e, andy. We consider the “worse case,” C .= .
Y the MBH'’s spin is denoted as simp§). We present simple

in which the CO has just reached the last stable @LH$O) . - . )

and is about to plunge into the MBH. For simplicity, we take €Stimates of the effects &, on the orbital evolution, show-
(27Mv) so=[(1—€2)/(6+2¢€)], which is the value for a N9 that, at any instant, these are smaller than the effects of
nonrotating MBH. S; by an amount of order g/M)(x»/x1), where x;

As expected, the various PN terms are of comparable=|S,|/M2 and y,=|S,|/u2. This implies that over the
magnitudes. Nevertheless, our evolution equations do najourse of the last-1 yr of inspiral, the presence of the CO’s
develop pathologies, so long as the LSO eccentricity is nospin modifies the accumulated orbital phase and precession
too high. In particular, the orbital frequency increases monoangles by a few radians at most.
tonically (no “outspiral”!) and the eccentricity decreases Clearly y;<1. Theoretical upper limits ory, are: x»
monotonically (the orbit circularizes throughout the entire <1 when the CO is a BHy,=<2 for a 1.M NS; andy,
evolution. =<5 for a uniformly rotating, 0.1 WD [45]. We do not
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we find in nature are typically spinning at well below these _, .(,,/M)N,,, radians, wheré\,,, is the number of orbits
maximum possible rates. Most known pulsars ha¥e  quring the integration time. Henca,y is of order one radian

~103-10 2 (recycled pulsars being the major excepfion oy Yo~ 1 and typical valuegy/M ~10"° and N~ 10°,
and it appears that WDs typically haye~ 102 [46].

Our estimates here are based on low-order, post-
Newtonian equations for circular-orbit binaries. Of course,

the capture orbits of interest to us can be moderately eccen- we next estimate how, affects the Lense-Thirring pre-
tric in the L_ISA band, and they are_sufficiently close to thecession. Our estimates are based on the following post-
MBH that higher-order post-Newtonian terms can be companewtonian precessional equations given by Apostolatos
rable in size to the lower-order terms that we do include. West g, [23], which were obtained by averaging the spin-orbit,
expect that these higher-order PN terms, and mogification§pin_spin, and radiation reaction torquéa! calculated to

for e#0, would modify our estimates on the effectsfby  lowest nontrivial post-Newtonian ordeover one complete
factors of order unity, but we anticipate that our PN estimate®rbit:

at least give the order of magnitude.

3. Effect of §2 on él and L

Two other recent works that consider the effect of the O i 23 4+ ﬂ» <[
CO'’s spin on the capture waveform are by H4al] and E e ZMSZ
Burko [48].
31 . .. L ... 3up%(M\¥
1. Effect of L-S, and S,-S, terms on the waveform phase ) r_3[(sz' L)Si+ (S-S )X L= 5 r|r L
For circular orbits, letw=27v+ ¥ be the angular fre- (C3)
quency of the CO around the MBH. Defining to be the
accumulated orbital phase from timeto t;, o2, . 11, 3. .. .
S,= r_3Lxsl+r_3 ESZ—E(SZ-L)L xS, (C4)
ty o)
\I’=f wdt=J —do, (Cy
f i @ . 3 M_. _ 1[1. 3 _ _.] .
Kidder [49] finds that the change in the orbital phaliedue 2 213 =« 2 F 13| %17 3 (Srbb XS (€5

to nonzerosS, is
[Actually, Egs.(C3)—(C5) are a simplified version of Egs.

125 . . B 3 (118—(119 in Apostolatoset al,, differing by fractional cor-
A\P:XZZ_%(L'SZ)[(M“”) P (Mawy) 27 rections of ordemu/M.]
Two results that follow from Eq9.C3)—(C5) are: (i) the
n 12358 & D605 S[.¢ two spin magnitudesS;| and|S,|, are constants of the mo-
XiXa| 153¢1 %2 153¢ 51k S . . 2o eoa
tion; and(ii) the total angular momentund=S;+L+S,, is
X[(Mw) YB—(Mw;) Y3]+0(u/M). (C2)  also constantexceptfor the orbital momentum that is radi-
ated away:
[Actually, Eq.(C2) refers to the case where the dot products ) o
ﬂ-éz, L-S;, andS;-S, are constantge.g., the case where j: _ 3_2'“_ M) [ (C6)
these three angular momenta are all perfectly aligned or an- 5 rir

tialigned, so there is no Lense-Thirring precesgidtor the
realistic case, wheré and S, undergo significant Lense- Therefore, AJ—the total change inJ over the observed
Thirring precession, these dot products would be replaced biispiral—has magnitude of ordgAL|~ (uM).

appropriately weighted time averagesor our case of in- Combining this with the fact that the magnitudesSyf,
spiral orbits near plunge antk(t;) of order a year, we have - = . .

[(Mw;) %= (Mo R]~1-2 and [(Mw) 28 L, andS, are roughly in the ratio

—(Mw¢)~?3]~3-10. Therefore, whery, and y; are of . ,

order one AW is at most a few radians, whiN¢ itself is of |S1l:IL]:|Sol ~ xa: e/ M xo( /M) (C7)
order 16.

(ie.,|Si|>|L|>|S,]), one easily sees that the yearly change
R in the direction ofS; can be of OI’dED(Il(,u/M) radians at
The S, contribution tody/dt is given (to lowest non-  most, no matter hov, andL evolve. Thus our approxima-

trivial PN ordey by Brumberg[30], in his Eqgs.(4.4.41 and . . i . .
(4.4.45. We doD ngt reproduc?tg th]ose equa?ior(ls her]()a but justt'on of treatingS, as fixed, used throughout, remains valid

note that the relevant terms afer low eccentricity of order ~ When we include the effects &. A
x2(/M)(M/1)*2w and y; xo(/M)(M/r)?w, respectively. Finally, we consider the motion df. ForS,=0, we have

2. Effect of S, on pericenter precessiondy/dt
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seen thatl. simply precesses arourf| at ratea given by 4. Conclusion

Eq. (31). Because the terms inaE(paS) involving S, are all If the CO’s angular momentum is close to maxinfiat.,
smaller than the dominant (Z)S, X L term by an amount of  within a factor of a few, then the CO’s spin is marginally
order x,(u/M) or (x2/x1)(u/M), they represent a small relevant for the dynamics over time scales of the order of a
perturbation on the simple precession picture, which caryear. However, if the CO is not rapidly rotating, or if one is
clearly be absorbed into a time-varyirgthe angle between just searching for short stretchdasting ~2 weeks of the

‘Sl and |‘_) and a perturbed precession rate These extra waveforms in the datée.g., as the first step of a hierarchical
. 2 search, then the CO’s spin can be safely neglectéeor

terms in L are of order y,(u/M)(M/r)¥%w and  sych short stretches, in addition to the fact that the waveform

x1X2(#/M)(M/r)?w, respectively—the same as for t8  phase errors from neglectir§, are much less than one ra-
terms indy/dt—and so again integrate up to a yearly differ- dian, it seems likely that these errors can be partially com-
ence of order one radian at most. pensated for by errors in the other physical parameters.
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