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Forward modeling of space-borne gravitational wave detectors
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Department of Physics, Montana State University, Bozeman, Montana 59717, USA

~Received 24 November 2003; published 20 April 2004!

Planning is underway for several space-borne gravitational wave observatories to be built in the next 10 to
20 years. Realistic and efficient forward modeling will play a key role in the design and operation of these
observatories. Space-borne interferometric gravitational wave detectors operate very differently from their
ground-based counterparts. Complex orbital motion, virtual interferometry, and finite size effects complicate
the description of space-based systems, while nonlinear control systems complicate the description of ground-
based systems. Here we explore the forward modeling of space-based gravitational wave detectors and intro-
duce an adiabatic approximation to the detector response that significantly extends the range of the standard
low frequency approximation. The adiabatic approximation will aid in the development of data analysis
techniques, and improve the modeling of astrophysical parameter extraction.
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I. INTRODUCTION

Gravitational wave astronomy can be broadly divided in
high and low frequency bands, with the dividing line nea
Hz. Seismic and gravity gradient noise prevent ground-ba
detectors from exploring the low frequency portion of t
spectrum, making this source-rich region the sole preserv
space-based observatories.

Ground- and space-based interferometric gravitatio
wave detectors operate according to the same general
ciples, but differ in their implementation. Ground-based d
tectors, such as the Laser Interferometer Gravitational W
Observatory~LIGO! @1#, operate in the low frequency limit
where the wavelength of the gravitational waves is consid
ably larger than the size of the detector, and most source
only in-band for a fraction of a second. These considerati
simplify the description of the detector response, which m
be well approximated by a quadrupole antenna moving
constant velocity with respect to the gravitational wa
source. However, ground-based interferometers emp
quasi-fixed rather than freely moving test masses, and
output of the detector is given by the response of the con
loop used to keep the interferometer on a dark fringe. T
complicates forward modeling efforts for ground-based
tectors@2# as it makes the detector response non-linear.
situation with space-borne detectors is completely the op
site. Space-based detectors, such as the proposed Las
terferometer Space Antenna~LISA! @3#, will be able to detect
gravitational waves with wavelengths that range from ma
times larger than the interferometer to many times sma
and most sources will be in-band for months or years, so
the detector’s orbital motion will impart amplitude, fre
quency, and phase modulations. These effects give rise
complicated, time-dependent detector response function@4#.
Space-borne detectors typically have large arm-lengths
3109 m for LISA! that vary with time, which prevents them
from operating as traditional interferometers. Instead, the
terferometer signals are produced in software from phase
ferences measured in the detector using a procedure kn
0556-2821/2004/69~8!/082003~14!/$22.50 69 0820
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as time delay interferometry~TDI! @5#. Despite these com
plications, the detector response remains linear, wh
greatly simplifies forward modeling efforts.

Forward modeling plays a key role in the design of a
new scientific instrument, and is especially important wh
the instrument is the first of its kind. Work is now underwa
to produce an end-to-end model of the LISA observatory@6#.
Key ingredients include accurate modeling of the spacec
orbits and photon trajectories~this includes the effects o
gravitational waves!, realistic simulations of the time dela
interferometry used to cancel laser phase noise, and ex
mental characterization of the various noise contributions
good end-to-end model can help to make design trade o
and to avoid costly mistakes. Forward modeling can also
used to develop and test data analysis strategies. While
focus our attention on LISA, our forward model can be us
to study other proposals for space-borne gravitational w
detectors, such as the Big Bang Observatory@7#.

Work on various elements of the LISA end-to-end mod
have been under development for some time. Modeling
the detector response has its roots in the Doppler trackin
spacecraft@8#. Results were initially derived for a static arra
with equal arm lengths@9,10#. Following the discovery of
time delay interferometry@5#, these results were extended
a static array with unequal arm lengths@5,11,12#. The orbital
motion of the array was first incorporated in the low fr
quency limit @13#, and later extended to the full detecto
response@4#. With the full response function in hand, w
have developed an open source software package calledThe
LISA Simulator@14# that takes as its input an arbitrary grav
tational wave and returns as its output the simulated respo
of the LISA observatory. The main purpose ofThe LISA
Simulatoris to aid in the development of data analysis too
@13,15–17#, but its modular design allows it to be extende
into a full end-to-end model. For example, the static mod
ing @18# of the TDI implementation could be incorporate
into The LISA Simulator, as could more realistic spacecra
orbits and experimentally determined noise spectra.

The value of a realistic end-to-end model has already
come apparent with the discovery of flaws in the initial TD
scheme caused by the rotation of the array@19#, time depen-
©2004 The American Physical Society03-1
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dence of the arm lengths@20#, and problems with clock syn
chronization in a moving array@21#. These difficulties re-
quire modification of the TDI variables@19,20,22# and/or
changes in the mission design.

On the other hand, a highly realistic end-to-end simu
tion necessarily consumes a great deal of computer
sources, and delivers a fidelity that exceeds the requirem
of many data analysis efforts. Indeed, when searching a l
parameter space, fidelity must be sacrificed in favor of spe
To this end we have developed an approximation to the
LISA response that extends the low frequency approxima
by two decades. The motion of the array is stroboscopic
rendered into a sequence of stationary states, yielding
adiabatic approximation to the full response. The adiab
approximation allows us to write down a simple analy
expression for the response function in a mixed tim
frequency representation. For sources with a few domin
harmonics, such as low eccentricity, low spin binary syste
at second post-Newtonian order, the adiabatic approxima
provides a fast and accurate method for calculating the L
response.

The outline of this paper is as follows. In Sec. II w
describe the orbits of the interferometer constellation a
describe how various effects enter into the detector respo
In Sec. III we review the expression for the complete
sponse of a space-borne detector.~An alternative derivation
of the full response is given in Appendix B.! In Sec. IV we
show some applications of the general formalism usingThe
LISA Simulator. In Sec. V we explore the limitations of th
low frequency approximation, and in Sec. VI we introdu
the adiabatic approximation and demonstrate its utility.
finish with an application, using the adiabatic approximat
to determine when LISA can detect the time evolution o
binary system. We work in natural units withG5c5h51,
but report all frequencies in Hertz.

II. SPACE-BORNE DETECTORS

A. Orbital effects

The current design of the LISA mission calls for thr
identical spacecraft flying in an equilateral triangular form
tion about the Sun. The center of mass for the constellat
known as the guiding center, is in a circular orbit at 1 A
and 20° behind the Earth. In addition to the guiding cen
motion, the formation will cartwheel in a retrograde motio
with a one year period~see Fig. 1!. The detector motion

FIG. 1. The LISA mission configuration. The dashed line rep
sents the orbit of the guiding center, which has a radius of 1 A
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introduces amplitude~AM !, frequency ~FM!, and phase
modulations ~PM! into the gravitational wave signal
@13,17#. The amplitude modulation is caused by the anten
pattern being swept across the sky. The phase modula
occurs when the differing responses to the two gravitatio
wave polarizations are combined together. The freque
~Doppler! modulation is due to the motion of the detect
relative to the source. Since both the orbital and cartwh
motion have a period of one year, these modulations w
show up as sidebands in the power spectrum separated
the instantaneous carrier frequency by integer values of
modulation frequency,f m51/yr.

To describe the coordinates of the detector we work i
heliocentric, ecliptic coordinate system. In this system
Sun is placed at the origin, thex axis points in the direction
of the vernal equinox, thez axis is parallel to the orbita
angular momentum vector of the Earth, and they axis is
placed in the ecliptic to complete the right-handed coordin
system. Ignoring the influence from other solar system b
ies, the individual LISA spacecraft will follow independen
Keplerian orbits. The triangular formation comes abo
through the judicious selection of initial conditions. In Ap
pendix A we derive the spacecraft positions as a function
time. To second order in the eccentricity, the Cartesian co
dinates of the spacecraft are given by

x~ t !5R cos~a!1
1

2
eR@cos~2a2b!23 cos~b!#

1
1

8
e2R@3 cos~3a22b!210 cos~a!

25 cos~a22b!#

y~ t !5R sin~a!1
1

2
eR@sin~2a2b!23 sin~b!#

1
1

8
e2R@3 sin~3a22b!210 sin~a!

15 sin~a22b!#

z~ t !52A3eRcos~a2b!1A3e2R@cos2~a2b!

12 sin2~a2b!#. ~1!

In the aboveR51 AU. is the radial distance to the guidin
center, e is the eccentricity,a52p f mt1k is the orbital
phase of the guiding center, andb52pn/31l (n50,1,2) is
the relative phase of the spacecraft within the constellat
The parametersk andl give the initial ecliptic longitude and
orientation of the constellation.

Using the above coordinates the instantaneous separa
between spacecraft are found to be

-

3-2
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L12~ t !5LH 11
e

32F15 sinS a2l1
p

6 D2cos@3~a2l!#G J
L12~ t !5LH 12

e

32F15 sinS a2l2
p

6 D1cos@3~a2l!#G J
L23~ t !5LH 12

e

32
@15 cos~a2l!1cos@3~a2l!##J ,

~2!

with L52A3 eR. From this it is seen that to linear order
the eccentricity the detector arms are rigid. By setting
mean arm length equal to those of the LISA baseline,L55
3109 m, the spacecraft orbits are found to have an ecc
tricity of e50.00965, which indicates that the second ord
effects are down by a factor of 100 relative to leading ord

B. Gravitational wave description

An arbitrary gravitational wave traveling in thek̂ direc-
tion can be written as the linear sum of two independ
polarization states,

h~j!5h1~j!e11h3~j!e3, ~3!

where the wave variablej5t2 k̂•x gives the surfaces o
constant phase. The polarization tensors are given by

e15cos~2c!e12sin~2c!e3

e35sin~2c!e11cos~2c!e3, ~4!

where c is the principle polarization angle and the ba
tensorse1 ande3 are expressed in terms of two orthogon
unit vectors,

e15û^ û2 v̂ ^ v̂

e35û^ v̂1 v̂ ^ û. ~5!

These vectors, along with the propagation direction of
gravitational wave, form an orthonormal triad, which may
expressed as a function of the source location on the cele
sphere (u,f),

û5cosu cosf x̂1cosu sinf ŷ2sinu ẑ

v̂5sinf x̂2cosf ŷ

k̂52sinu cosf x̂2sinu sinf ŷ2cosu ẑ. ~6!

The above basis set is defined with respect to the b
center reference frame. For a binary system—the stan
gravitational wave source in the LISA band—it is natural
introduce another basis that is aligned with principle pol
ization axesp̂ and q̂ of the gravitational radiation. The ori
entation of the principle directions is chosen such that th
is ap/2 phase delay between the two polarization states.
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connection between the two basis sets is a rotation by
principle polarization anglec about the shared propagatio
direction k̂.

We model the gravitational waves from a binary syste
according to

h1,3~j!5(
n

h1,3
(n) einC(j) ~7!

where C(j) is the orbital phase. The instantaneous f
quency of thenth gravitational wave harmonic is given by

f n~j!5
n

2p

]C

]t
. ~8!

Unless the binary is highly eccentric or highly relativisti
the dominant emission will be quadrupolar, with frequen
f (j)5 f 2(j), and will be well described by the restricte
post-Newtonian approximation:

h1~j!5
2M@p f ~j!#2/3

DL
~11cos2i !cos 2C~j!

h3~j!52
4M@p f ~j!#2/3

DL
cosi sin 2C~j!. ~9!

HereM is the chirp mass,DL is the luminosity distance, and
i is the inclination of the binary to the line of sight. Highe
post-Newtonian corrections, eccentricity of the orbit, a
spin effects will introduce additional harmonics.

III. DETECTOR RESPONSE: ANALYTICAL

For two spatially separated test particles in free fall, t
effect of a passing gravitational wave is to cause the pro
distance between the masses to vary as a function of t
Finding the detector response reduces to solving for the
propriate timelike and null geodesics in the spacetime w
the metric

ds252~112f!dt21~122f!~dx21dy21dz2!

1hi j dxidxj . ~10!

In the above equationf denotes the Newtonian potential s
up by various bodies in the Solar system andhi j denotes the
time-varying metric perturbation due to gravitational wav
described in the preceding section. The relevant geode
are those of the two spacecraft,xW1(t1), xW2(t2), and the pho-
tons sent from spacecraft 1 to 2,xW n(l). We need to find the
path taken by the photon that leaves spacecraft 1 at timt1
and arrives at spacecraft 2 at timet2, which amounts to a
classic pursuit problem in curved spacetime. The calcula
must take into account a host of factors, some due to
Newtonian potential, and some due to the gravitational wa
During the time taken for the photon to travel between
spacecraft, both effects are small and can be treated inde
dently.
3-3
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RUBBO, CORNISH, AND POUJADE PHYSICAL REVIEW D69, 082003 ~2004!
The Newtonian potential leads to a variety of effects, su
as a Shapiro time delayDL/L;M ( /R, gravitational red-
shift Dn/n;M (L/R2, deflection of light Du;M (L/R2,
and tidal flexingDL/L;M (L2/R3. Each of these effects i
considerably larger than any of the effects caused by
passage of the gravitational wave, and they have to be
tracted before the gravitational wave data analysis beg
The first step in the subtraction relies on us being able
accurately model the orbital phase shifts using the solar
tem ephemeris. The second step in the subtraction emplo
high pass filter to remove the residuals from the orbital
which occur at harmonics of the modulation frequencyf m
51/yr.3.231028 Hz. The orbital effects, and the proce
dure for their removal, should be included in the full end-
end model, even though they do not directly affect the
sponse of the detector to gravitational waves.

The effect of the gravitational wave on the phase shift c
be found by settingf50 in Eq. ~10! and solving the geode
sic equation for the photons and the spacecraft in the me
perturbed by the gravitational wave. There are two equi
lent approaches for finding the phase shift. The first appro
is to find the Doppler shift of the photon emitted by the fi
spacecraft and received by the second. The Doppler sh
then integrated with respect to time to give the phase s
The Doppler derivation is given in Appendix B. The seco
approach is to integrate along the photon’s trajectory to fi
the path length variation caused by the gravitational w
@4#. The expressions given in Appendix B are valid to
orders in the spacecraft velocityv, and to first order in the
gravitational wave strainh. However, as we explained i
Ref. @4#, it is hard to justify keeping terms of ordervh given
that v;1024. It would take a phenomenally bright sourc
with a signal to noise ratio of;105, for thevh cross terms
to be noticeable. Working to leading order inv and h, the
path length variation for a photon propagating from spa
craft i to spacecraftj is given by

d, i j ~ t !5
1

2

r̂ i j ~ t ! ^ r̂ i j ~ t !

12 k̂• r̂ i j ~ t !
:E

j i

j j
h~j!dj, ~11!

wherer̂ i j (t) points from test massi to massj andh(j) is the
gravitational wave tensor in the transverse-traceless ga
The colon here denotes a double contraction,a:b5ai j bi j .

Applying Eq.~11! to a pair of orbiting spacecraft require
the careful evaluation of ther̂ i j (t) unit vectors. This calcu-
lation is complicated by the motion of the spacecraft and
finite speed of light. For a photon emitted from spacecrai
at time t i and received at spacecraftj at time t j the proper
evaluation of the unit vectors is

r̂ i j ~ t i !5
xj~ t j !2xi~ t i !

, i j ~ t i !
. ~12!

The distance the photon travels between spacecraft is g
implicitly through the relationship

, i j ~ t i !5ixj@ t i1, i j ~ t i !#2xi~ t i !i . ~13!
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Here we have used the fact that the reception time is
emission time plus the time of flight for the photon. We c
numerically estimate the magnitude of this point ahead ef
by expanding the photon propagation distance in av/c se-
ries:

, i j ~ t i !5Li j ~ t i !@11 r̂ i j ~ t i !•vj~ t i !1O~v2!#, ~14!

wherevj (t i) is the velocity of spacecraftj and

Li j ~ t i !5ixj~ t i !2xi~ t i !i ~15!

is the instantaneous spacecraft separation. For the LISA
sion with a mean arm length of 53109 m and spacecraf
velocity v'2p f mR'1024, pointing ahead gives a first or
der effect of approximately 105 m. For comparison, the or
bital effects given in Eq.~2! impart a variation in the photon
propagation distance of 107 m.

An arbitrary gravitational wave can be decomposed i
its frequency components:

h~j!5E
2`

`

h̃~ f !e2p i f jd f . ~16!

Such a decomposition allows us to rewrite Eq.~11! in the
form

d, i j ~ t !5, i j ~ t !E
2`

`

D~ f ,t,k̂!:h̃~ f !e2p i f jd f , ~17!

where the one-arm detector tensor is given by

D~ f ,t,k̂!5
1

2
@ r̂ i j ~ t ! ^ r̂ i j ~ t !#T~ f ,t,k̂!, ~18!

and the transfer function is

T~ f ,t,k̂!5sincS f

2 f i j*
@12 k̂• r̂ i j ~ t !# D

3expS i
f

2 f i j*
@12 k̂• r̂ i j ~ t !# D . ~19!

Here f i j* 51/(2p, i j ) is the transfer frequency for theij arm.
The transfer functions arise from the interaction of the gra
tational wave with the detector. For gravitational radiati
whose frequency is greater than the transfer frequency
wave period is less than the light propagation time betw
spacecraft, which leads to a self-cancellation effect
counted for by the transfer functions. Below the transfer f
quency the transfer functions approach unity. This leads
natural division of the LISA bandwidth into high and low
frequency regions, which will be exploited in a later secti
when we approximate the response of the detector.

The connection of Eq.~11! to what is actually measure
depends on the design of the gravitational wave detector.
current proposal for LISA is to have each spacecraft meas
two phase differences, one for each arm. The phase di
enceF i j (t j ), as measured on spacecraftj, is found by com-
3-4
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FORWARD MODELING OF SPACE-BORNE . . . PHYSICAL REVIEW D 69, 082003 ~2004!
paring the phase of the received signal from spacecrai
against the outgoing signal’s phase that is traveling bac
spacecrafti. Inherent in the phase difference measureme
are both the gravitational wave signal and noise contri
tions from laser phase noiseC(t), shot noisens(t), and ac-
celeration noisena(t):

F i j ~ t j !5Cji ~ t i !2Ci j ~ t j !12pn0@ni j
s ~ t j !2ni j

a ~ t j !1nji
a ~ t i !

1d i j ,~ t i !#. ~20!

Here the timet i is implicitly found throught i5t j2, i j (t i).
The subscripts on the noise components indicate the d
tional dependence of that component:Ci j is the laser phase
noise introduced by the laser on spacecraftj that is pointed
toward spacecrafti, ni j

s is the shot noise in the photodetect
on spacecraftj that is receiving a signal from spacecrafti,
andni j

a is the projected acceleration noise from the acce
ometer on spacecraftj in the direction of spacecrafti. The
position noise and path length variation are converted in
phase difference by multiplying by the angular frequency
the laser, 2pn0.

Once the six phase differences are measured, the diffe
interferometer signals can be synthesized. For example
Michelson signal formed by using spacecraft 1 as the ve
craft is

S1~ t !5F12~ t21!1F21~ t !2F13~ t31!2F31~ t !, ~21!

wheret21 and t31 are found from

t215t2,21~ t21!

t315t2,31~ t31!. ~22!

However, due to the relatively large laser phase noise,
Michelson signal will not be a viable option. Instead a nu
ber of so-called TDI signals will be used@5#. These signals
are built by combining time-delayed Michelson signals
such a way as to reduce the overall laser phase noise dow
a level that will not overwhelm the detector’s output. A pa
ticular example of a TDI variable is theX signal @20#:

X~ t !5F12~ t21!1F21~ t !2F13~ t31!2F31~ t !2F12~ t218 !

2F21~ t13!1F13~ t318 !1F31~ t12!, ~23!

where the new timest12, t13, t218 , and t318 are defined
through the implicit relationships

t125t212,12~ t12!

t135t312,13~ t13!

t218 5t132,21~ t218 !

t318 5t122,31~ t318 !. ~24!

By permutations of the indices similar forms for theY andZ
signals can be constructed.
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By writing the response of the detector in a coordina
free manner we are able to apply this formalism to an a
trary space-based mission. All that has to be changed are
spacecraft orbits. It should also be emphasized that the
sponse is calculated entirely in the time domain. In la
sections we develop approximations to the full response
working in a hybrid time/frequency domain. This hybrid a
proach assumes extra information about the sources, w
allows us to develop explicit expressions for the detec
response.

IV. DETECTOR RESPONSE: NUMERICAL

A. Noiseless response

As an application of the equations presented in the pre
ous section, we have simulated the response of the prop
LISA mission.The LISA Simulator@14# is designed to take
an arbitrary gravitational waveform and output the full r
sponse of the detector. To apply the equations we h
elected to work entirely in the heliocentric, ecliptic coord
nate system. Therefore, all times are evaluated in term
solar system barycentric~SSB! time. The conversion to the
detector time is through the standard relationshipdt
5A12v2(t)dt, but since we only work to leading order inv
the distinction is not made.~In practice there will be diffi-
culties in synchronizing the clocks on the spacecraft@21#, but
they do not trouble the simulations.!

The positions of the spacecraft are calculated to sec
order in the eccentricity, Eq.~1!, which includes the leading
order flexing motion of the array. Tidal effects, and thi
order terms in the eccentricity, are neglected for now.

One of the guaranteed sources for the LISA mission is
cataclysmic variable AM Canum Venaticorum~AM CVn!.
This binary star system is comprised of a low mass heli
white dwarf that is transferring material to a more mass
white dwarf by way of Roche lobe overflow. AM CVn’s
orbital frequency of 0.972 mHz and close proximity to th
Earth (;100 pc) make it a good calibration binary for LISA
Shown in Fig. 2 is the simulated response to AM CVn e

FIG. 2. The simulatedX strain spectral density of AM CVn,
demonstrating the induced modulations caused by the motion o
detector about the Sun. For reference, the dotted line is the ave
noise in this region of the spectrum.
3-5
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RUBBO, CORNISH, AND POUJADE PHYSICAL REVIEW D69, 082003 ~2004!
pressed as a strain spectral densityhf( f ). Note that the bary-
center gravitational wave signal will be approximate
monochromatic; however, the motion of LISA introduc
modulations that cause the signal to spread over a rang
frequencies@17#.

Another LISA source, but one whose event rate is poo
known, is the merger of two super-massive black holes. F
ure 3 shows the simulated response of LISA to two 106 M(

black holes coalescing at a redshift ofz51. The observation
tracks the final year before coalescence.

B. Noise

Laser phase noise, photon shot noise, and accelera
noise are expected to be the dominant forms of noise
space-borne detectors. As previously discussed, time d
interferometry is used to reduce the effects of the laser ph
noise to a tolerable level. We assume that the TDI sig
processing is properly implemented, and therefore we
glect laser phase noise in our simulation.

The simulation of the noise is done in the time domain
drawing random numbers at each time step from a Gaus
distribution with unit variance and zero mean. For the wh
photon noise we then scale the random number by the
noise spectral density defined in Ref.@23# (Sps51.0
310222 m2/Hz). For the colored acceleration noise we b
gin by generating a white noise time series scaled by
acceleration noise spectral density (Sacc59.0
310230 m2/s4/Hz), then integrate it twice to arrive at a co
ored time series. The integration introduces af 24 falloff in
the power spectrum that is characteristic of accelera
noise. The results of this procedure for the Michelson sig
are shown in Fig. 4.

Comparing this graph to a standard LISA sensitivity cur
@24#, a number of differences are apparent. The most obv
one is the lack of rise in the high frequency region. This
because the standard sensitivity curve folds the average
tector response into the noise curve. TheSensitivity Curve
Generatorincludes the all sky averaged and polarization a
eraged transfer function, which equals 3/5 at low frequenc

FIG. 3. The Michelson response of LISA to two 106 M( black
holes coalescing atz51 (DL56.63 Gpc). The dotted line is th
average Michelson noise in the detector.
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and grows asf 2 above the transfer frequency. A seconda
difference is in the overall normalization, as theSensitivity
Curve Generatorscales the path length variations by the i
terferometer mean arm length ofL, while we scale the path
length variations by the optical path length of 2L.

To arrive at a simulation of theX noise we combine the
noise elements as dictated by Eq.~23!. Doing so gives the
results displayed in Fig. 5, which agrees with the predic
results. To see this, we start with the analytical expressio
the average Michelson noise curve shown in Fig. 4,

hf
M~ f !5

1

2L H 4Sps18F11cos2S f

f *
D G Sacc

~2p f !4J 1/2

~25!

which is derived in the appendix of Ref.@25#. In the above
f * 51/(2pL) is the mean transfer frequency for an arm
Next, we note that theX signal is formed by differencing two
Michelson signals, one time delayed by roughly twice t
light travel time between spacecraft. Therefore, the noise
enter in theX signal as

FIG. 4. A realization of the Michelson noise for LISA, ex
pressed here as a strain spectral density. The dark line within
noise is a 128 bin rms value, while the rising curve is a stand
LISA sensitivity curve.

FIG. 5. A realization of theX noise for LISA, expressed here a
a strain spectral density. The dark line is a 128 bin rms value for
noise.
3-6
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nX~ t !5nM~ t !2nM~ t22L !, ~26!

which has a Fourier transform of

ñX~ f !5ñM~ f !~12e22i f / f
* ! ~27!

and a power spectral density of

SX~ f !54 sin2S f

f *
DSM~ f !. ~28!

The strain spectral density of theX noise is given by

hf
X~ f !5ASX~ f !

52UsinS f

f *
D Uhf

M~ f !. ~29!

Shown in Fig. 6 is a plot ofhf
X( f ) along with the average

from Fig. 5. Although the derivation of theX noise strain
spectral density assumed constant arm lengths we see
there is excellent agreement between the predicted resul
Eq. ~29! and the simulation, which included the variations
the arms.

Although Eqs.~11!, ~20!, and~23! give the full response
of a space-borne detector, they are analytically difficult
handle and time consuming to evaluate. For this reason
will now explore some approximations to the full respon
that use information about the input waveforms and a s
plified description of the detector. These approximations
only aid in the development of data analysis techniques,
also give a greater insight into the workings of the detec

V. LOW FREQUENCY APPROXIMATION

In Secs. II and III we saw that the full response of
space-borne gravitational wave detector was complicated
the intrinsic arm-length fluctuations, pointing ahead, and
signal cancellation accounted for in the transfer functions.
a first approximation to the response of LISA we will negle
all of these effects. That is, we will work to linear order
the spacecraft positions, evaluate all spacecraft locations

FIG. 6. A comparison of the simulated rmsX noise~dotted! to
the analytical prediction~solid!.
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common time, and set the transfer functions to unity.
should be noted that this approximation was origina
worked out by Cutler@13# and can be viewed as an extensi
of the LIGO response to space-borne detectors. The tran
functionT( f ,t,k̂) can be set equal to unity whenf ! f * . For
the LISA mission, whose bandwidth is 1025 to 1 Hz, the
transfer frequency has a mean value off * 50.00954
'1022 Hz.

In the limit f ! f * and f / ḟ !L the path length variation
~11! reduces to

d, i j ~ t !.
1

2

r̂ i j ~ t ! ^ r̂ i j ~ t !

12 k̂• r̂ i j ~ t !
:h„j~ t !…~j j2j i !

5L@ r̂ i j ~ t ! ^ r̂ i j ~ t !:h„j~ t !…#. ~30!

Working in terms of strains and neglecting noise, the Mic
elson signal from spacecraft 1 is given by

s1~ t !5
d,12~ t22L !1d,21~ t2L !

2L

2
d,13~ t22L !1d,31~ t2L !

2L

.
d,12~ t !1d,21~ t !2d,13~ t !2d,31~ t !

2L
. ~31!

The last line follows from the conditionf ! f * .
Using Eqs. ~3!, ~7!, and ~30! the strain can be re

expressed as

s1~ t !5h1„j1~ t !…F11h3„j1~ t !…F3, ~32!

where

j1~ t !5t2 k̂•x1~ t !

5t1R sinu cos@a~ t !2f# ~33!

is the gravitational wave phase measured at spacecraft 1.
antenna beam pattern factors,F1(t) andF3(t), are given by

F1~ t !5
1

2
@cos~2c!D1~ t !2sin~2c!D3~ t !#

F3~ t !5
1

2
@sin~2c!D1~ t !1cos~2c!D3~ t !#, ~34!

where

D1~ t !5@ r̂ 12~ t ! ^ r̂ 12~ t !2 r̂ 13~ t ! ^ r̂ 13~ t !#:e1

D3~ t !5@ r̂ 12~ t ! ^ r̂ 12~ t !2 r̂ 13~ t ! ^ r̂ 13~ t !#:e3. ~35!

Working to linear order in the eccentricity, the Kepleria
orbits given in Eq.~1! yield
3-7
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D1~ t !5
A3

64
†236 sin2~u!sin@2a~ t !22l#1@3

1cos~2u!#„cos~2f!$9 sin~2l!2sin@4a~ t !22l#%

1sin~2f!$cos@4a~ t !22l#29 cos~2l!%…

24A3 sin~2u!$sin@3a~ t !22l2f#

23 sin@a~ t !22l1f#%‡ ~36!

and

D3~ t !5
1

16
„A3 cos~u!$9 cos~2l22f!2cos@4a~ t !22l

22f#%26 sin~u!$cos@3a~ t !22l2f#

13 cos@a~ t !22l1f#%…. ~37!

Equations~32! to ~37! constitute the analytical formalism fo
the low frequency approximation. These equations are
merically quick to evaluate and can be handled analytica
As a point of reference, the strain presented in Eq.~32! can
be shown to be equivalent~most easily through a numerica
comparison! to that derived by Cutler@13#.

To test the range of validity of this approximation we us
The LISA Simulator~TLS! as a template to calculate th
correlation between the full response and the low freque
approximation~LFA!,

r ~ f !5
^sTLSusLFA&

A^sTLS
2 &^sLFA

2 &
. ~38!

Using fixed random choices for the source location and
entation we systematically varied the gravitational wave f
quency and calculated the correlation at each frequency.
results of this calculation are shown in Fig. 7.

We found that the low frequency approximation has
strong correlation to the true response for frequencies be

FIG. 7. The correlation between the low frequency approxim
tion and the full response of the LISA detector for a monochrom
source. The oscillatory structure at high frequencies is due to
transfer functions introduced by the full response.
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3 mHz, at which point the correlation drops to 95%. T
steep turn down in the correlation as the transfer frequenc
approached is to be expected as the low frequency appr
mation neglects the self-cancellation effects encoded in
transfer functions. The wiggles at higher frequencies are
to the transfer functions present in the full response temp
sTLS . The precise structure of these oscillations depends
the source location through thek̂• r̂ i j (t) dependence in the
transfer functions. However, the turn down at 3 mHz is
cation independent. The location dependence does not
come strongly evident until the correlation value has dropp
to roughly zero.

The significance of a particular correlation value is dep
dent on the signal-to-noise~S/N! ratio of the source. For high
S/N the effects neglected in the approximation will be dete
able. Conversely, for a low S/N one may continue to use
approximation at higher frequencies as the difference wo
not be noticeable.

VI. RIGID ADIABATIC APPROXIMATION

A. Response formalism

The breakdown of the low frequency approximatio
comes about through neglecting the transfer functions. A
second approximation to the LISA response we will no
include the transfer functions, but continue to hold the det
tor rigid by working to leading order in the spacecraft po
tions and evaluating all spacecraft locations at the same
stant of time. Such an approximation has been worked
before for the case of a stationary detector in@25,26#, but
here we extend it to include the motion of the detector.

Physically this approximation can be viewed in the fo
lowing way. At an instant of time we hold the detector fixe
and send photons up and back along the interferometer a
and calculate the phase difference. We then increment
time by a small amount, moving the rigid detector to its ne
position in space, and repeat the process. This sequenc
stationary states is the origin of the term ‘‘adiabatic’’ fo
describing the approximation.

For chirping sources the adiabatic approximation requ
that the frequency evolutionḟ occurs on a time scale lon

compared to the light travel time in the interferometer:f / ḟ
!L. When this condition does not hold the rigid adiaba
approximation is no longer valid and the full response sho
be used. In the limitf / ḟ !L the path length variation~11!
reduces to

d, i j ~j!5L(
n

D~ f n ,t,k̂!:hn~j!, ~39!

where the one-arm detector tensor is given by

D~ f ,t,k̂!5
1

2
@ r̂ i j ~ t ! ^ r̂ i j ~ t !#T~ f ,t,k̂!, ~40!

and the transfer function is

-
c
e

3-8
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T~ f ,t,k̂!5sincS f

2 f *
@12 k̂• r̂ i j ~ t !# D

3expS i
f

2 f *
@12 k̂• r̂ i j ~ t !# D . ~41!

The Michelson signal is given by

s1~ t !5
d,12~ t22L !1d,21~ t2L !

2L

2
d,13~ t22L !1d,31~ t2L !

2L
, ~42!

which may now be expressed as

s1~ t !5(
n

D~ k̂, f n!:hn~j!, ~43!

and the round-trip detector tensor takes the form

D~ k̂, f !5
1

2
@~ â^ â!T~ â• k̂, f !2~ b̂^ b̂!T~ b̂• k̂, f !#, ~44!

and the round-trip transfer function is

T~a• k̂, f !5
1

2
FsincS f ~12â• k̂!

2 f *
D expS 2 i

f

2 f *
~31â• k̂! D

1sincS f ~11â• k̂!

2 f *
D expS 2 i

f

2 f *
~11â• k̂! D G .

~45!

The time-dependent unit vectors,â(t) andb̂(t), are given by

â~ t !5
x2~ t !2x1~ t !

L

b̂~ t !5
x3~ t !2x1~ t !

L
. ~46!

Collectively these equations are the analytical formalism
the rigid adiabatic approximation. As with the low frequen
approximation, the expressions are computationally quic
evaluate and can be easily manipulated analytically.

Figure 8 shows the correlation between the full respo
and the rigid adiabatic approximation for a monochroma
gravitational wave. Note that by including the transfer fun
tions we are able to extend agreement with the full respo
two decades in frequency beyond where the low freque
approximation broke down. The turn down at;0.5 Hz
comes about through neglecting the second order term
the spacecraft positions. As we described in Sec. II A
second order orbital effects are down by two orders of m
nitude in comparison to the linear order. This shows up in
rigid adiabatic approximation through the transfer frequ
cies, which are evaluated for a rigid detector. Normally
transfer frequencies are given by
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f i j* ~ t !5
1

2p, i j ~ t !
, ~47!

but for a rigid detector this reduces to the static formf *
51/(2pL). The extension to higher orders in the orbit
eccentricity can be done. The trade off is that the express
become more complicated since the transfer frequen
would then become functions of time. In turn, this wou
require that each transfer frequency be evaluated along
arm during each time step rather than using one cons
value throughout the entire calculation. Additionally, the no
malization of the unit vectors in Eq.~46! would need to be
evaluated at each step since the arm lengths would vary
function of time via Eq.~2!. Such an approach would b
appropriately called the flexing adiabatic approximati
since the arm lengths would now oscillate in time abou
mean value ofL. Although the expressions would becom
analytically complicated, the numerical evaluation would n
be significantly slower since the additional steps are straig
forward to evaluate.

Figure 9 compares the output ofThe LISA Simulatorto
the rigid adiabatic approximation for a binary system of
termediate mass black holes, each of mass 5000M ( at a
redshift ofz51. The observation covers the final year befo
coalescence. The agreement is excellent. It is worth poin
out that while the raw signal-to-noise ratio at a given fr
quency f, which is defined in terms of the power spectr
density of the sourceSh( f ) and the power spectral density o
the noiseSn( f ),

SNR~ f !5ASh~ f !

Sn~ f !
, ~48!

never exceeds unity for this source, the signal-to-noise r
that can be achieved by coherent integration agains
matched filter@13#,

FIG. 8. The correlation between the rigid adiabatic approxim
tion and the full response of the LISA detector. The turn down
;500 mHz is due to neglecting the higher order effects in
spacecraft positions.
3-9
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SNRWiener5S E 2TSh~ f !d f

Sn~ f ! D 1/2

~49!

is very much greater than unity. During the last year of
spiral, the source shown in Fig. 9 could be detected with
optimally filtered signal-to-noise ratio of over 400.

In a recent paper@27#, Seto used a variant of the rigi
adiabatic approximation to calculate the effects of LISA
finite arm-lengths on the analysis of gravitational wav
from chirping supermassive binary black holes. A compa
son of our rigid adiabatic approximation, which is deriv
from the path length variation, and Seto’s approach, whic
based on the Doppler shift formalism, is given in Append
C.

B. Applications

Utilizing the speed of the rigid adiabatic approximatio
we may investigate various data analysis questions. Here
provide one concrete example by determining when ph
evolution of a binary system due to radiation reaction ne
to be included in the source modeling.

For our calculations we used the restricted po
Newtonian approximation, whereby the gravitational wa
amplitude is calculated to zeroth order while the phase e
lution is calculated to second order@29#. The justification for
this is that LISA will be far more sensitive to the phase th
the amplitude@13#. The lack of additional harmonics of th
orbital period also simplifies the calculation as we only ha
to calculate a single transfer function at each time step.

To quantify the importance of including the evolution
the gravitational wave phase, we calculated the correla
between a monochromatic rigid adiabatic approximation
one in which the phase evolution is included. Figure
shows the correlation for three types of binaries expecte
reside inside our own galaxy: a white dwarf~WD! binary
with mass components 0.5M( , a neutron star~NS! binary

FIG. 9. A comparison of strain spectral densities as calcula
using the rigid adiabatic approximation~dashed! and the full re-
sponse~solid! for a 5000M ( intermediate mass black hole binary
z51. For reference, the dotted line is the average Michelson n
in the detector.
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with masses 1.4M( , and a 10M( black hole with a neutron
star companion.

What we found is that the frequency at which the mon
chromatic signal diverges from one that includes phase e
lution depends on the masses of the binary components.

reason for this comes from the expression forḟ , which con-
tains a mass-dependent coefficient. For the stellar mass b
ries we studied, the drop in the correlation happened to
incide with the breakdown of the low frequenc
approximation. The majority of Milky Way sources have fr
quencies below 3 mHz, and can be modeled as monoc
matic sources using the low frequency approximation. Ho
ever, the majority of theresolvablesources have frequencie
above 3 mHz, and these must be modeled as chirping
tems using either the full detector response or the rigid a
batic approximation.

Another way to represent the same data is to map
initial frequency to the time of coalescence. The results
this calculation are shown in Fig. 11. In this case we see
chirping becomes important for stellar mass sources wit
;105 years of coalescence. As expected, the mapping to
new variable preserves the mass dependence seen in Fig

A final way to represent this data is to set the independ
variable equal to the change in the frequency scaled by a
width, d f 5( f f2 f i)/D f , where for one year of observatio
the bin width isD f 51/yr.3.231028 Hz. Such an approach
is shown in Fig. 12. Unlike with the other representations
the correlation between a monochromatic and coalescing
nal, the results of this calculation are independent of
system’s masses. It is also interesting to note that this re
implies that it will be possible to detect if a source
coalescing or not well within a bin width. This fact is not i
conflict with the Nyquist theorem, which states that t
frequency resolution will not be better than the inverse of
observation time. The reason is that we have additio
information, namely the functional form of the phas

d

se

FIG. 10. The correlation between a monochromatic rigid ad
batic approximation and one that includes a 2PN phase evolu
The solid line represents a WD-WD binary with mass compone
of 0.5M( , the dashed line is for a NS-NS binary with mass
1.4M( , and the dotted line is for a 10M( black hole and a 1.4M(
neutron star binary.
3-10



o

rn
th
t
T
in
d
a
th
fu
gi
ti
fo
e
a-

n
On

ve

f
A

n

e

as

ia
tio

th
-
P
us

FORWARD MODELING OF SPACE-BORNE . . . PHYSICAL REVIEW D 69, 082003 ~2004!
evolution, which is not assumed in deriving Nyquist’s the
rem.

VII. DISCUSSION

We have examined the forward modeling of space-bo
gravitational wave detectors with special emphasis on
LISA observatory. Forward modeling will play two distinc
roles in the development of space-borne observatories.
first is as part of a complete end-to-end model that takes
account every conceivable physical effect, and the secon
as an intermediary between source simulation and d
analysis. Here we have focused on the latter role, and to
end we have studied two simple approximations to the
response, the low frequency approximation and the ri
adiabatic approximation. We found that the rigid adiaba
approximation could be used in place of the full response
a wide range of data analysis projects. For example, the r
tively simple analytic form of the rigid adiabatic approxim

FIG. 11. The correlation between a monochromatic rigid ad
batic approximation and one that includes a 2PN phase evolu
this time expressed in terms of the time to coalescence.

FIG. 12. The correlation as a function of the fractional bin wid
change in the frequency,d f 5( f f2 f i)/D f , between a monochro
matic rigid adiabatic approximation and one that includes a 2
phase evolution. Note that all three types of sources previo
considered are included in this plot.
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tion is well suited to the calculation of Fisher informatio
matrices in studies of astrophysical parameter extraction.
the other hand,The LISA Simulatoris available if we need to
simulate the response to highly relativistic gravitational wa
sources such as the merger of two black holes.
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APPENDIX A: SPACECRAFT POSITIONS

For a constellation of spacecraft in individual Kepleria
orbits with an inclination ofi 5A3e the coordinates of each
spacecraft are given by the expressions

x5r @cos~A3e!cosb cosg2sinb sing#

y5r @cos~A3e!sinb cosg1cosb sing#

z52r sin~A3e!cosg ~A1!

whereb52np/31l (n50,1,2) is the relative orbital phas
of each spacecraft in the constellation,g is the ecliptic lon-
gitude, andr is the standard Keplerian radius

r 5
R~12e2!

11e cosg
. ~A2!

HereR is the semi-major axis of the guiding center and h
an approximate value of 1 AU. See Figs. 13 and 14.

-
n,

N
ly

FIG. 13. The anglek gives the initial ecliptic longitude of the
guiding center.

FIG. 14. As viewed by an observer at the origin,l gives the
initial orientation of the spacecraft constellation.
3-11
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To get the above coordinates as a function of time we fi
note that the ecliptic longitude is related to the eccen
anomalyc by

tanS g

2D5A11e

12e
tanS c

2 D , ~A3!

and the eccentric anomaly is related to the orbital ph
a(t)52pt/T1k via Kepler’s equation

a2b5c2e sinc. ~A4!

Assuming a small eccentricity we may solve Eq.~A4!
through an iterative process where we treat thee sinc term
as being lower order thanc,

cn5a2b1e sincn21 . ~A5!

Through such a procedure we arrive at

c5a2b1e sin~a2b!1e2cos~a2b!sin~a2b!1•••.
~A6!

Substituting this result into Eq.~A3! and expanding to sec
ond order in the eccentricity gives an ecliptic longitude o

g5~a2b!12e sin~a2b!1
5

2
e2cos~a2b!sin~a2b!

1•••. ~A7!

Substituting the ecliptic longitude series into Eq.~A1! and
keeping terms up to ordere2 gives the Cartesian positions o
the spacecraft as functions of time,

x~ t !5R cos~a!1
1

2
Re@cos~2a2b!23 cos~b!#

1
1

8
Re2@3 cos~3a22b!210 cos~a!

25 cos~a22b!#

y~ t !5R sin~a!1
1

2
Re@sin~2a2b!23 sin~b!#

1
1

8
Re2@3 sin~3a22b!210 sin~a!

15 sin~a22b!#

z~ t !52A3 Re cos~a2b!1A3 Re2@cos2~a2b!

12 sin2~a2b!#. ~A8!

These are the desired coordinates of each spacecraft
function of time.
08200
t
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APPENDIX B: DOPPLER STYLE DERIVATION OF THE
FULL RESPONSE

The Doppler shift of a photon emitted by spacecraft 1 a
received by spacecraft 2 can be elegantly derived@8# using
the symmetries of the spacetime~10!. Whenf50 the space-
time admits three Killing vectors,

zW (1)5û, zW (2)5 v̂, zW (3)5] t
W1 k̂. ~B1!

These provide three constants of the motion,zW ( i )•UW , which
along with the normalization conditionUW •UW 50 or UW •UW

521 fully specify UW (l) in terms of some initial four-
velocity UW (0). Writing the metric asgmn5hmn1hmn , we
may express the photon propagation four-vector as

sm5sm2
1

2
hmahabsb, ~B2!

where sW is a null vector in the unperturbed geometr
smsnhmn50. At the time of emission from spacecraft
sW(t1)5sW01dsW1, while at the time of reception at spacecra
2, sW(t2)5sW01dsW2. HeresW0 is parallel to the unit vector con
necting the two spacecraft in the unperturbed spaceti
while dsW1 anddsW2 are perturbations to the path due to len
ing by the gravitational wave. Defining

Dsa5sa~ t2!2sa~ t1!,

Dhab5hab~ t2!2hab~ t1!, ~B3!

we have

sa~ t2!5sa~ t1!1Dsa2
1

2
habDhbgsg

gab~ t2!5gab~ t1!1Dhab ~B4!

which yields

2saDsbhab5sa~ t2!sb~ t2!gab~ t2!2sa~ t1!sb~ t1!gab~ t1!

50. ~B5!

Equations~B1!, ~B3! and ~B5! yield four equations for the
four Dsa:

z ( i )
a Dsbhab52

1

2
s0

az ( i )
b Dhab

s0
aDsbhab50. ~B6!

These can be solved to give, for example,

Dst52
s0

i s0
j Dhi j

2kW•sW
. ~B7!

HerekW→(1,k̂) is the null propagation vector for the gravita
tional wave. The frequencies of the emitted and receiv
3-12
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photons, as measured at spacecraft 1 and spacecraft 2
given byn152UW 1(t1)•sW (t1) andn252UW 2(t2)•sW (t2), re-
spectively. HereUW 1 andUW 2 are the four-velocities of the two
spacecraft. Note then15n0 is the operating frequency of th
laser on board spacecraft 1. Evaluatingn52UW •sW yields

n52g~ t !S st~ t !1v1
i ~ t !sj~ t !h i j 1

1

2
hi j ~ t !v i~ t !s0

j D ~B8!

whereUt5g5dt/dt and thev i are the ordinary three ve
locities of the spacecraft. The spacecraft trajectoriesUW may
be expressed in terms of the unperturbed trajectoriesUW 0 ac-
cording to

Ua5U0
a1ha ihi j U0

j 1Aa, ~B9!

whereAa are constants set by the initial conditions at so
time t. Once the initial conditions for the spacecraft ha
been set, Eqs.~B6!, ~B8! and~B9! give the full Doppler shift
n22n1 at any subsequent time. The expressions simp
considerably if we drop terms of orderv2, vh and higher:

Dn5n22n1.Dst52
s0

i s0
j Dhi j

2kW•sW0

. ~B10!

Converting this into a fractional frequency shift,Dn/n0, and
usings05n0â, whereâ is the unit vector connecting the tw
spacecraft in the background geometry, we have

Dn

n0
5

â^ â:Dh

2~12 k̂•â!
. ~B11!

Integrating the above expression with respect to time yie
the time delay described by Eq.~11!.

APPENDIX C: RECONCILIATION BETWEEN
ALTERNATIVE RIGID ADIBATIC FORMALISMS

According to Eq.~2.2! of Ref. @28#, the relative frequency
shift for a photon traveling from spacecraft 2 to spacecra
can be expressed as

y31~ t !5
1

2
@A1cos~2c12!1 iA3sin~2c12!#~12cosu12!

3@U~ t,1!2U~ t2L,2!#, ~C1!

where the functionU(t,i ) gives the phase of the gravita
tional wave at spacecrafti, u i j is the angle between th
source location on the sky,2 k̂, and the detector armxi
2xj ,

cosu i j 52 k̂• r̂ j i , ~C2!

andc i j is given through the relationship

tanc i j 5
r̂ j i •q̂

r̂ j i • p̂
. ~C3!
08200
are

e

y

s

1

Herep̂ andq̂ are unit vectors along the principle polarizatio
axes of the gravitational wave. The amplitude coefficie
A1 andA3 are given as functions of the orbital inclinatio
anglei and the intrinsic amplitudeA,

A15A~11cos2i !

A352A cosi. ~C4!

By direct substitution of Eqs.~C2!, ~C3!, and ~C4! into the
relative frequency shift we arrive at

y31~ t !5
12~ k̂• r̂ 21!

2

~ r̂ 21• p̂!21~ r̂ 21•q̂!2
$A1@~ r̂ 21• p̂!22~ r̂ 21•q̂!2#

12iA3~ r̂ 21• p̂!~ r̂ 21•q̂!%
U~ t,1!2U~ t2L,2!

2~12 k̂• r̂ 21!
.

~C5!

The overall coefficient

12~ k̂• r̂ 21!
2

~ r̂ 21• p̂!21~ r̂ 21•q̂!2
~C6!

can be shown to equal unity by writing the vectorr̂ i j in terms
of the orthonormal triad$ p̂,q̂,k̂% according to

r̂ i j 5sinu8cosf8p̂1sinu8sinf8q̂1cosu8k̂. ~C7!

To proceed further we note that the gravitational wa
basis tensors can be expressed as functions ofp̂ and q̂,

e15 p̂^ p̂2q̂^ q̂

e35 p̂^ q̂1q̂^ p̂. ~C8!

Using these relationships, it follows that

~ r̂ i j ^ r̂ i j !:e
15~ r̂ i j • p̂!22~ r̂ i j •q̂!2 ~C9!

~ r̂ i j ^ r̂ i j !:e
352~ r̂ i j • p̂!~ r̂ i j •q̂!. ~C10!

Returning to the expression for the relative frequen
shift we now have

y31~ t !5
r̂ 21^ r̂ 21

2~12 k̂• r̂ 21!
:~A1e11 iA3e3!

3@U~ t,1!2U~ t2L,2!#

5
r̂ 21^ r̂ 21:Dh

2~12 k̂• r̂ 21!
, ~C11!

where in the last step we combined the amplitude and ph
functions to form the difference in the gravitational wa
evaluated at each spacecraft. The above results agrees
Eq. ~B11! found in Appendix B.
3-13
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