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Planning is underway for several space-borne gravitational wave observatories to be built in the next 10 to
20 years. Realistic and efficient forward modeling will play a key role in the design and operation of these
observatories. Space-borne interferometric gravitational wave detectors operate very differently from their
ground-based counterparts. Complex orbital motion, virtual interferometry, and finite size effects complicate
the description of space-based systems, while nonlinear control systems complicate the description of ground-
based systems. Here we explore the forward modeling of space-based gravitational wave detectors and intro-
duce an adiabatic approximation to the detector response that significantly extends the range of the standard
low frequency approximation. The adiabatic approximation will aid in the development of data analysis
techniques, and improve the modeling of astrophysical parameter extraction.
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I. INTRODUCTION as time delay interferometrgTDI) [5]. Despite these com-
plications, the detector response remains linear, which

Gravitational wave astronomy can be broadly divided imogreatly simplifies fp rward modeling effo_rts. .
Forward modeling plays a key role in the design of any

high and low frequency bands, with the dividing line near 1 P . . .
I ) . . ew scientific instrument, and is especially important when
Hz. Seismic and gravity gradient noise prevent ground-base@l : : . o .
detectors from exploring the low frequency portion of the e instrument is the first of its kind. Work is now underway
. X ) ; tp produce an end-to-end model of the LISA observaf6ly

spectrum, making this squrce-nch region the sole preserve ey ingredients include accurate modeling of the spacecraft
space-based observatories. _ _ . orbits and photon trajectorieghis includes the effects of

Ground- and space-based interferometric gravitationay ayitational waves realistic simulations of the time delay
wave detectors operate according to the same general prifherferometry used to cancel laser phase noise, and experi-
ciples, but differ in their implementation. Ground-based deental characterization of the various noise contributions. A
tectors, such as the Laser Interferometer Gravitational Wavgood end-to-end model can help to make design trade offs,
Observatory(LIGO) [1], operate in the low frequency limit, and to avoid costly mistakes. Forward modeling can also be
where the wavelength of the gravitational waves is considersed to develop and test data analysis strategies. While we
ably larger than the size of the detector, and most sources afécus our attention on LISA, our forward model can be used
only in-band for a fraction of a second. These considerationgo study other proposals for space-borne gravitational wave
simplify the description of the detector response, which maydetectors, such as the Big Bang Observafaiy
be well approximated by a quadrupole antenna moving at Work on various elements of the LISA end-to-end model
constant velocity with respect to the gravitational wavehave been under development for some time. Modeling of
source. However, ground-based interferometers emplohe detector response has its roots in the Doppler tracking of
quasi-fixed rather than freely moving test masses, and th@Pacecraff8]. Results were initially derived for a static array
output of the detector is given by the response of the contropith equal arm length$9,10]. Following the discovery of
loop used to keep the interferometer on a dark fringe. Thidime delay interferometr5], these results were extended to
complicates forward modeling efforts for ground-based de? Static array with unequal arm lengt11,13. The orbital
tectors[2] as it makes the detector response non-linear. Thaotion of the array was first incorporated in the low fre-
situation with space-borne detectors is completely the oppcduency limit[13], and later extended to the full detector
site. Space-based detectors, such as the proposed Laser rlﬁgponse[4]. With the full response function in hand, we

. have developed an open source software package celled
terferometer Space AntenialSA) [3], will be able to detect LISA Simulatof14] that takes as its input an arbitrary gravi-

gravitational waves with wavelengths that range from Many ,tional wave and returns as its output the simulated response

times larger than th_e |nt§rferometer to many times smallerOf the LISA observatory. The main purpose Bhe LISA
and most sources will be in-band for months or years, so th

3 ) S . imulatoris to aid in the development of data analysis tools
the detector’s orbital motion will impart amplitude, fre- [13,15-17, but its modular design allows it to be extended
quency, and phase modulations. These effects give rise 0jaig a full end-to-end model. For example, the static model-
complicated, time-dependent detector response funfibn  ng [18] of the TDI implementation could be incorporated
Space-borne detectors typically have large arm-lengths (fto The LISA Simulatgras could more realistic spacecraft
X 10° m for LISA) that vary with time, which prevents them orbits and experimentally determined noise spectra.

from operating as traditional interferometers. Instead, the in- The value of a realistic end-to-end model has already be-
terferometer signals are produced in software from phase diitome apparent with the discovery of flaws in the initial TDI
ferences measured in the detector using a procedure knovetheme caused by the rotation of the afrg§], time depen-
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introduces amplitude(AM), frequency (FM), and phase
modulations (PM) into the gravitational wave signals
[13,17. The amplitude modulation is caused by the antenna
pattern being swept across the sky. The phase modulation
occurs when the differing responses to the two gravitational
wave polarizations are combined together. The frequency
(Dopplen modulation is due to the motion of the detector
relative to the source. Since both the orbital and cartwheel
motion have a period of one year, these modulations will
show up as sidebands in the power spectrum separated from
the instantaneous carrier frequency by integer values of the
modulation frequencyf,,= 1/yr.

dence of the arm lengti&0], and problems with clock syn- h ITO detsgrlbe tlhet coordlggte;s of thte detlectt(;r. we Wtork |;1ha
chronization in a moving arraj21]. These difficulties re- eliocentric, ecliptic coordinate system. In this system the

quire modification of the TDI variablef19,20,23 and/or Sun is placed at the origin, theaxis points in the direction
changes in the mission design. of the vernal equinox, the axis is parallel to the orbital

On the other hand, a highly realistic end-to-end simula-2ngular momentum vector of the Earth, and ihaxis is
tion necessarily consumes a great deal of computer rgllaced in the ecliptic to complete the right-handed coordinate
sources, and delivers a fidelity that exceeds the requiremengystem. Ignoring the influence from other solar system bod-
of many data analysis efforts. Indeed, when searching a larg€s, the individual LISA spacecraft will follow independent
parameter space, fidelity must be sacrificed in favor of speed<eplerian orbits. The triangular formation comes about
To this end we have developed an approximation to the fulthrough the judicious selection of initial conditions. In Ap-
LISA response that extends the low frequency approximatiopendix A we derive the spacecraft positions as a function of
by two decades. The motion of the array is stroboscopicallyime. To second order in the eccentricity, the Cartesian coor-
rendered into a sequence of stationary states, yielding adinates of the spacecraft are given by
adiabatic approximation to the full response. The adiabatic
approximation allows us to write down a simple analytic 1
expression for the response function in a mixed time/ X(t)=Rcoq a)+ EeF{cos(Za—[;%)—S cosp)]
frequency representation. For sources with a few dominant

FIG. 1. The LISA mission configuration. The dashed line repre-
sents the orbit of the guiding center, which has a radius of 1 AU.

harmonics, such as low eccentricity, low spin binary systems 1

at second post-Newtonian order, the adiabatic approximation + gezR[3 cog3a—2p)—10cosa)
provides a fast and accurate method for calculating the LISA

response. —5coga—2p8)]

The outline of this paper is as follows. In Sec. Il we
describe the orbits of the interferometer constellation and
describe how various effects enter into the detector response. .
In Sec. lll we review the expression for the complete re- o . .
sponse of a space-borne detectdn alternative derivation y()=Rsin(a)+ EeF{sm(Za—,B)—S sin(g)]
of the full response is given in Appendix)Bn Sec. IV we
show some applications of the general formalism udihg
LISA Simulator In Sec. V we explore the limitations of the
low frequency approximation, and in Sec. VI we introduce _
the adiabatic approximation and demonstrate its utility. We +5sina—2p)]
finish with an application, using the adiabatic approximation
to determine when LISA can detect the time evolution of a
binary system. We work in natural units with=c=h=1,
but report all frequencies in Hertz.

1
+ §ezR[:s sin3a—2p)—10sina)

2(t)= — \3eRcog a— B) + V3e?R[coL(a— B)

+2 sirf(a—pB)]. (1)
Il. SPACE-BORNE DETECTORS

A. Orbital effects In the aboveR=1 AU. is the radial distance to the guiding

The current design of the LISA mission calls for three center, e is the eccentricity,a=2=ft+« is the orbital
identical spacecraft flying in an equilateral triangular forma-phase of the guiding center, apad=2mwn/3+\ (n=0,1,2) is
tion about the Sun. The center of mass for the constellatiorthe relative phase of the spacecraft within the constellation.
known as the guiding center, is in a circular orbit at 1 AU. The parameters and\ give the initial ecliptic longitude and
and 20° behind the Earth. In addition to the guiding centerorientation of the constellation.
motion, the formation will cartwheel in a retrograde motion  Using the above coordinates the instantaneous separations
with a one year periodsee Fig. 1 The detector motion between spacecraft are found to be
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e T connection between the two basis sets is a rotation by the
Li(t) =Ly 1+ 3|10 Sil’( a-At & —COi3(a—7\)]” principle polarization angles about the shared propagation
directionk.
e . We model the gravitational waves from a binary system
Lqy(t)= L[ 1- 37 15 sir( a—\— 3 +cos{3(a—)\)]“ according to

= (n) QinWw(é)
L23(t)=L[1—332[1500$a—)\)+c0$3(a—)\)]]]’ hy (&) ; h(, elmv( @

2

with L=2/3eR From this it is seen that to linear order in
the eccentricity the detector arms are rigid. By setting the

mean arm length equal to those of the LISA basellne 5 f.(&)= n ﬂ (8)
x10° m, the spacecraft orbits are found to have an eccen- 27 dt

tricity of e=0.00965, which indicates that the second order

effects are down by a factor of 100 relative to leading orderUnless the binary is highly eccentric or highly relativistic,
the dominant emission will be quadrupolar, with frequency

f(&)=1,(£), and will be well described by the restricted
post-Newtonian approximation:

where V(&) is the orbital phase. The instantaneous fre-
quency of thenth gravitational wave harmonic is given by

B. Gravitational wave description

An arbitrary gravitational wave traveling in tHe direc-

tion can be written as the linear sum of two independent 2M[wf(£)]1%°
polarization states, h.(&)= D, (1+cos')cos 2 (§)
h(é)=h *+h o 3
(§)=h,(He +hy(fe 3 AM[mf(£)]2° '
. < hy(§)=———F———cos.sin2¥(§). C)
where the wave variablg=t—k-x gives the surfaces of D,

constant phase. The polarization tensors are given by . ) ] S
Here M is the chirp masd), is the luminosity distance, and

€ =coq2¢)e" —sin(2¢)e” ¢ is the inclination of the binary to the line of sight. Higher
post-Newtonian corrections, eccentricity of the orbit, and
€ =sin(2y)e" +cog2y)e”, (4)  spin effects will introduce additional harmonics.
where ¢ is the principle polarization angle and the basis IIl. DETECTOR RESPONSE: ANALYTICAL
tensorse” ande* are expressed in terms of two orthogonal
unit vectors, For two spatially separated test particles in free fall, the
effect of a passing gravitational wave is to cause the proper
et =URU—0Q0D distance between the masses to vary as a function of time.

Finding the detector response reduces to solving for the ap-
=000 +00U. 5) proprlate_ timelike and null geodesics in the spacetime with
the metric
These vectors, along with the propagation direction of the

—— 2 _ 2 2 2
gravitational wave, form an orthonormal triad, which may be ds’=—(1+2¢)dt*+(1-2¢)(dx*+dy*+dZ?)

expressed as a function of the source location on the celestial + hijdx‘dxj. (10
sphere ¢, ¢),
. . o In the above equatioh denotes the Newtonian potential set
U=c0sf cos¢x+cosb sin ¢y —sin iz up by various bodies in the Solar system dmddenotes the
time-varying metric perturbation due to gravitational waves
v =sin¢X— cospy described in the preceding section. The relevant geodesics
A ) ) ) are those of the two spacecrafi(;), X»(7»), and the pho-
k= —sin 6 cos¢x—sin f sin ¢y — cosoz. (6)  tons sent from spacecraft 1 to2,(\). We need to find the

path taken by the photon that leaves spacecraft 1 at ttime
The above basis set is defined with reSpeCt to the baryand arrives at Spacecraft 2 at t”t@ which amounts to a

center reference frame. For a binary system—the standawglassic pursuit problem in curved spacetime. The calculation
graVitational wave source in the LISA band—it is natural to must take into account a host of factors, some due to the
introduce another basis that is aligned with principle polarnewtonian potential, and some due to the gravitational wave.
ization axesp andq of the gravitational radiation. The ori- During the time taken for the photon to travel between the
entation of the principle directions is chosen such that therspacecraft, both effects are small and can be treated indepen-
is am/2 phase delay between the two polarization states. Thdently.
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The Newtonian potential leads to a variety of effects, suctHere we have used the fact that the reception time is the
as a Shapiro time delaL/L~Mg /R, gravitational red- emission time plus the time of flight for the photon. We can
shift Av/v~MgL/R?, deflection of lightA§~ML/R?, numerically estimate the magnitude of this point ahead effect
and tidal flexingAL/L~M oL?/R3. Each of these effects is by expanding the photon propagation distance /@ se-
considerably larger than any of the effects caused by thees:
passage of the gravitational wave, and they have to be sub- R
tracted before the gravitational wave data analysis begins. €ij(ti)=Lij(ti)[1+rij(ti)~vj(ti)+(9(v2)], (14)

The first step in the subtraction relies on us being able to

accurately model the orbital phase shifts using the solar sygvherev;(t;) is the velocity of spacecrajtand

tem ephemeris. The second step in the subtraction employs a

high pass filter to remove the residuals from the orbital fit, Lij (1) = 1x;(t) =i (t) (19
which occur at harmonics of the modulation frequerfgy
=1/yr=3.2x10 8 Hz. The orbital effects, and the proce-
dure for their removal, should be included in the full end-to-
end model, even though they do not directly affect the re
sponse of the detector to gravitational waves.

The effect of the gravitational wave on the phase shift ca
be found by settingsb=0 in Eq.(10) and solving the geode-
sic equation for the photons and the spacecraft in the metriﬁS
perturbed by the gravitational wave. There are two equiva-
lent approaches for finding the phase shift. The first approach he)

o-]

is the instantaneous spacecraft separation. For the LISA mis-
sion with a mean arm length of>610° m and spacecraft
velocity v~2xf,R~10"4, pointing ahead gives a first or-
der effect of approximately £0m. For comparison, the or-
bital effects given in Eq(2) impart a variation in the photon
ropagation distance of 10n.
An arbitrary gravitational wave can be decomposed into
frequency components:

is to find the Doppler shift of the photon emitted by the first
spacecraft and received by the second. The Doppler shift is
then integrated with respect to time to give the phase shiftS
The Doppler derivation is given in Appendix B. The second
approach is to integrate along the photon’s trajectory to fin
the path length variation caused by the gravitational wave e o _
[4]. The expressions given in Appendix B are valid to all 5€ij(t):€ij(t)f D(f,t,k):h(f)e>™fédf, (17
orders in the spacecraft velocity, and to first order in the o
gravitational wave straih. However, as we explained in
Ref.[4], it is hard to justify keeping terms of ordeh given
thatv~10"“. It would take a phenomenally bright source, 1. ) .
with a signal to noise ratio of-10°, for thevh cross terms D(f,t.k)=s[rj(Her;(H]7f,tk), (18)
to be noticeable. Working to leading order snand h, the
path length variation for a photon propagating from space
crafti to spacecraff is given by

h(f)e? i édf, (16)

uch a decomposition allows us to rewrite Efjl) in the
orm

where the one-arm detector tensor is given by

and the transfer function is

N f - A
1F|](t)®F|l(t) 3 ﬂf,t,k):Sin{ 2f* [1_krlj(t)])

i
Stii(h) == — o h(é)dé, 11 ij
1075 e ) "O% @D y
f IR
- . ) i ) xXexp i —[1-k-rjj(t)] . (19
wherer;;(t) points from test masisto masg andh(¢) is the Zfﬁ
gravitational wave tensor in the transverse-traceless gauge.
The colon here denotes a double contractmb=a"bj; . Heref® =1/(2m¢;;) is the transfer frequency for thparm.

Applying Eq.(11) to a pair of orbiting spacecraft requires The transfer functions arise from the interaction of the gravi-
the careful evaluation of thfelj(t) unit vectors. This calcu- tational wave With_ the detector. For gravitational radiation
lation is complicated by the motion of the spacecraft and thavhose frequency is greater than the transfer frequency the
finite speed of light. For a photon emitted from spacedraft Wave period is less than the light propagation time between
at time't; and received at spacecrgfait timet; the proper spacecraft, which leads to a self-cancellation effect ac-

evaluation of the unit vectors is counted for by the transfer functions. Below the transfer fre-
quency the transfer functions approach unity. This leads to a
A X (t) =% (t;) natural divisio_n of the_ LISA bandwidth intp high and Io_vv
rj(t) = ! é " ) (120  frequency regions, which will be exploited in a later section
ij (t) when we approximate the response of the detector.

) o The connection of Eq(11) to what is actually measured
The distance the photon travels between spacecraft is givefepends on the design of the gravitational wave detector. The

implicitly through the relationship current proposal for LISA is to have each spacecraft measure
two phase differences, one for each arm. The phase differ-
i (t) =[xl ti+ €5 () T=x (1) (13)  encedj;(t;), as measured on spaceciigfis found by com-
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paring the phase of the received signal from spacedcraft

against the outgoing signal's phase that is traveling back to 195 |
spacecrafi. Inherent in the phase difference measurements
are both the gravitational wave signal and noise contribu- 198k
tions from laser phase noig&(t), shot noisen’(t), and ac- %'N
celeration noise?(t): T ool
<
@j;(t)) = Cji (1) — Cyj (1)) + 2mwol nfj () — nfj (1)) + nji(t;) g 204 | [\
\V/
+8,0(t)]. (20 |
207 +

Here the timet; is implicitly found throught; =t;—€;;(t;).
The subscripts on the noise components indicate the direc- -21 : : :
tional dependence of that compone@y; is the laser phase 27115 27itd |o;;2i?)13Hz 27112 271t
noise introduced by the laser on spacecydftat is pointed
toward spacecraft nisj is the shot noise in the photodetector  FIG. 2. The simulatedX strain spectral density of AM CVn,
on spacecraf} that is receiving a signal from spacecraft demonstrating the induced modulations caused by the motion of the
and nﬁ is the projected acceleration noise from the accelerdetector about the Sun. For reference, the dotted line is the average
ometer on spacecraftin the direction of spacecraft The  Noise in this region of the spectrum.
position noise and path length variation are converted into a
phase difference by multiplying by the angular frequency of By writing the response of the detector in a coordinate
the laser, Zrv,. free manner we are able to apply this formalism to an arbi-
Once the six phase differences are measured, the differetrary space-based mission. All that has to be changed are the
interferometer signals can be synthesized. For example, ttgpacecraft orbits. It should also be emphasized that the re-
Michelson signal formed by using spacecraft 1 as the vertegponse is calculated entirely in the time domain. In later
craft is sections we develop approximations to the full response by
working in a hybrid time/frequency domain. This hybrid ap-
S (1) =D oty + Doy(t) —Dyg(tg) — Pgy(t), (21) proach assumes extra information about the sources, which
allows us to develop explicit expressions for the detector
wheret,; andts; are found from response.

to=t—~C2(t2)

IV. DETECTOR RESPONSE: NUMERICAL
tay=t—€3(t39). (22 A. Noiseless response

However, due to the relatively large laser phase noise, the As an application of the equations presented in the previ-
Michelson signal will not be a viable option. Instead a num-0us section, we have simulated the response of the proposed
ber of so-called TDI signals will be usd8]. These signals LISA mission.The LISA Simulatof14] is designed to take

are built by combining time-delayed Michelson signals inan arbitrary gravitational waveform and output the full re-
such a way as to reduce the overall laser phase noise down $§onse of the detector. To apply the equations we have
a level that will not overwhelm the detector’s output. A par- elected to work entirely in the heliocentric, ecliptic coordi-

ticular example of a TDI variable is thé signal[20]: nate system. Therefore, all times are evaluated in terms of
solar system barycentriSSB) time. The conversion to the
X(1) =D 15(tz)) + Dpy(t) = Pg(tay) — Pg(t) — Pty detector time is through the standard relationship
=\/1—v?(t)dt, but since we only work to leading ordergn
— D py(t1) + Pag(tz) + Pag(ts), (23)  the distinction is not madgln practice there will be diffi-

_ ) ’ _ culties in synchronizing the clocks on the spacedi2f, but
where the new times;,, ty3, ty;, andts, are defined they do not trouble the simulations.

through the implicit relationships The positions of the spacecraft are calculated to second

order in the eccentricity, Eq1), which includes the leading

t12=tz1~ €12(t10) order flexing motion of the array. Tidal effects, and third
order terms in the eccentricity, are neglected for now.

t13= a1~ €15(t1y) One of the guaranteed sources for the LISA mission is the
cataclysmic variable AM Canum Venaticoru@AM CVn).

ty1=t13— €21(t5) This binary star system is comprised of a low mass helium
white dwarf that is transferring material to a more massive

ta =t~ €31(t3y). (24)  white dwarf by way of Roche lobe overflow. AM CVn’'s

orbital frequency of 0.972 mHz and close proximity to the
By permutations of the indices similar forms for tfe@ndZ  Earth (~100 pc) make it a good calibration binary for LISA.
signals can be constructed. Shown in Fig. 2 is the simulated response to AM CVn ex-
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FIG. 3. The Michelson response of LISA to two®Bl black FIG. 4. A realization of the Michelson noise for LISA, ex-
holes coalescing at=1 (D =6.63 Gpc). The dotted line is the pressed here as a strain spectral density. The dark line within the
average Michelson noise in the detector. noise is a 128 bin rms value, while the rising curve is a standard

LISA sensitivity curve.

pressed as a strain spectral denhitff). Note that the bary-

center gravitational wave signal will be approximately
monochromatic; however, the motion of LISA introduces
modulations that cause the signal to spread over a range

frequencieg17]. L -
. length variations by the optical path length df .2
Another LISA source, but one whose event rate is poorly 'Igo arrive at a s?;nulatiopn of tﬁé noiseg we combine the

known, is the merger of two super-massive black holes. Fig-

- noise elements as dictated by Eg3). Doing so gives the
ure 3 shows the simulated response of LISA to twé WD, : - . . .
black holes coalescing at a redshiftzzf 1. The observation results displayed in Fig. 5, which agrees with the predicted

tracks the final vear before coalescence results. To see this, we start with the analytical expression of
y : the average Michelson noise curve shown in Fig. 4,

1/2
S
acc ] (25)

and grows ag? above the transfer frequency. A secondary
difference is in the overall normalization, as tBensitivity
%urve Generatoscales the path length variations by the in-
Parferometer mean arm length bf while we scale the path

B. Noise

1+cos7-(fl)

M [ pp—
Laser phase noise, photon shot noise, and acceleration hy(f)= 2|_[4SP5+8 (2mf)

noise are expected to be the dominant forms of noise in
space-borne detectors. As previously discussed, time delayhich is derived in the appendix of R425]. In the above
interferometry is used to reduce the effects of the laser phase =1/(2#L) is the mean transfer frequency for an arm.
noise to a tolerable level. We assume that the TDI signaNext, we note that th¥ signal is formed by differencing two
processing is properly implemented, and therefore we neMichelson signals, one time delayed by roughly twice the
glect laser phase noise in our simulation. light travel time between spacecraft. Therefore, the noise will
The simulation of the noise is done in the time domain byenter in theX signal as
drawing random numbers at each time step from a Gaussian

. . . . . . . '1 T T T T T T T T T
distribution with unit variance and zero mean. For the white >
photon noise we then scale the random number by the sho 1 |
17 + .

noise spectral density defined in Ref23] (S,=1.0
X 10 22 m?/Hz). For the colored acceleration noise we be- 18 & 1
gin by generating a white noise time series scaled by theS -19} -

1/

acceleration noise spectral density S,{=9.0 T 20} .
X 10~ % m?/s*/Hz), then integrate it twice to arrive ata col- = 51 |- ]
ored time series. The integration introduce$ 4 falloff in 8 22t _
the power spectrum that is characteristic of acceleration ~— o3l i
noise. The results of this procedure for the Michelson signal sl |
are shown in Fig. 4. o5

Comparing this graph to a standard LISA sensitivity curve

H H _26 1 1 1 1 1 1 1 1 1
[24], a number of differences are apparent. The most obvious 5 45 4 BE & 95 = -iB 4 08 0

one is the lack of rise in the high frequency region. This is log (f) Hz
because the standard sensitivity curve folds the average de-
tector response into the noise curve. T®ensitivity Curve FIG. 5. A realization of theX noise for LISA, expressed here as

Generatorincludes the all sky averaged and polarization av-a strain spectral density. The dark line is a 128 bin rms value for the
eraged transfer function, which equals 3/5 at low frequenciesoise.
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common time, and set the transfer functions to unity. It
- should be noted that this approximation was originally
worked out by Cutlef13] and can be viewed as an extension
of the LIGO response to space-borne detectors. The transfer

function T(f,t,R) can be set equal to unity whér<f, . For

N ] the LISA mission, whose bandwidth is 10 to 1 Hz, the
= ] transfer frequency has a mean value bf=0.00954
= - ~10"2 Hz.

. In the limit f<f, and f/f<L the path length variation
(11) reduces to

y ~1Fij(t)®Fi,—(t)_h
5 45 -4 35 -3 25 2 -15 -1 05 0 oti(H=5 1-k-ry(t) (€O~ &)
log () Hz o
=L[rjj(@r;(t):h(g(t)]. (30

FIG. 6. A comparison of the simulated rnxXsnoise (dotted to

the analytical predictiorisolid). Working in terms of strains and neglecting noise, the Mich-

elson signal from spacecraft 1 is given by

Ny(t)=ny(t) —ny(t—2L), (26)
which has a Fourier transform of sy(t) = 5612“_2")21 ola(t-L)
= _z _ a—2iflf,
Mx(H)=nm(F)(1=e ) @ Seyo(t—2L)+ 85y (t—L)
and a power spectral density of 2L
[ f 0 15(1) + 6 54(1) — 6€15(1) — € 39(1)
Sx(f)=4 sir? 7 Sm(f). (28) = oL . (3
*
The strain spectral density of thénoise is given by The last line follows from the conditioh<f, .
Using Egs. (3), (7), and (30) the strain can be re-
h(f)=Sx(f) expressed as
f
=2 sin(f— hY'(f). (29) sp(t) =h, (£1(D))F " +hy (£2(1)F™, (32)
*
Shown in Fig. 6 is a plot oh{(f) along with the average where
from Fig. 5. Although the derivation of th¥ noise strain N
spectral density assumed constant arm lengths we see that Eu(t)=t—k-xq(1)
there is excellent agreement between the predicted results of =t+Rsingcog a(t)— ¢] (33)
Eqg. (29 and the simulation, which included the variations in

the ?rhms' h d ive the full is the gravitational wave phase measured at spacecraft 1. The
Although Eqs.(11), (20), and(23) give t € IUll TeSPONS€  4ntenna beam pattern factoFs’, (t) andF*(t), are given by
of a space-borne detector, they are analytically difficult to

handle and time consuming to evaluate. For this reason we 1

will now explore some approximations to the full response  F*(t)=~[cog2¢)D*(t)—sin(2¢)D*(t)]
that use information about the input waveforms and a sim- 2

plified description of the detector. These approximations not

only aid in the development of data analysis techniques, but oo n %
also give a greater insight into the workings of the detector. Fr(t)= E[S'n(zw)D (1) +cog24)D" (1)1, (34)
V. LOW FREQUENCY APPROXIMATION where

In Secs. Il and lll we saw that the full response of a N A A A - .
space-borne gravitational wave detector was complicated by D (D=[rAD)®ra(t) —rig)ert)]:e
the intrinsic arm-length fluctuations, pointing ahead, and the R R R R
signal cancellation accounted for in the transfer functions. As D™ (t)=[r (1) @1 15(t) —r15(t) ®@r,5(1)]:€*. (35
a first approximation to the response of LISA we will neglect
all of these effects. That is, we will work to linear order in Working to linear order in the eccentricity, the Keplerian
the spacecraft positions, evaluate all spacecraft locations atabits given in Eq(1) yield
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S B I 3 mHz, at which point the correlation drops to 95%. The
1 7 steep turn down in the correlation as the transfer frequency is
0.75 _ approached is to be expected as the low frequency approxi-
mation neglects the self-cancellation effects encoded in the
0.5 7] transfer functions. The wiggles at higher frequencies are due
. 025 - to the transfer functions present in the full response template
? 0 | StLs. The precise structure of these oscillations depends on
the source location through thbfij(t) dependence in the
-0.25 7 transfer functions. However, the turn down at 3 mHz is lo-
05 4 cation independent. The location dependence does not be-
075 L ' Iol '001 e o o1 1 come strongly evident until the correlation value has dropped
: . . to roughly zero.
Al e el vl o The significance of a particular correlation value is depen-
1e-05  0.0001  0.001 0.01 0.1 1

dent on the signal-to-noig&/N) ratio of the source. For high
S/N the effects neglected in the approximation will be detect-

FIG. 7. The correlation between the low frequency approxima-able' Conversely, for a low S/N one may continue to use the

tion and the full response of the LISA detector for a monochromalti(,"j‘ppmXima.tion at higher frequencies as the difference would
source. The oscillatory structure at high frequencies is due to th@0t be noticeable.
transfer functions introduced by the full response.

\/_ VI. RIGID ADIABATIC APPROXIMATION
3

D*(t)= a[—36 sirf(@)sin 2a(t) —2\]+[3 A. Response formalism

f Hz

_ ) The breakdown of the low frequency approximation
+c0920)](cog2¢){9 sin2\) —siM4a(t)=2\]}  comes about through neglecting the transfer functions. As a

; _ _ second approximation to the LISA response we will now
+sin(2¢){cod 4a(t)—21]—9 cos2M)}) include the transfer functions, but continue to hold the detec-
—4\/§sir(20){sir[3a(t)—2)\— &) tor rigid by working to leading order in the spacecraft posi-

tions and evaluating all spacecraft locations at the same in-
—3sifa(t)—2\+ ¢]}] (36)  stant of time. Such an approximation has been worked out

before for the case of a stationary detecto{2%,26, but
here we extend it to include the motion of the detector.
Physically this approximation can be viewed in the fol-

D*(t)= i(\@ cog 6){9 cog 2\ — 2¢) — cog 4a(t) — 2\ lowing way. At an instant of time we hold the detector fixed
16 and send photons up and back along the interferometer arms

and

_ A oy and calculate the phase difference. We then increment the
261}~ 6 sin(6){cod 3a(t) — 2\ — ¢] time by a small amount, moving the rigid detector to its new
+3cofa(t)—2\+ ¢1}). (37)  position in space, and repeat the process. This sequence of

stationary states is the origin of the term “adiabatic” for
Equationg32) to (37) constitute the analytical formalism for describing the approximation.
the low frequency approximation. These equations are nu- For chirping sources the adiabatic approximation requires
merically quick to evaluate and can be handled analyticallythat the frequency evolutioh occurs on a time scale long
As a point of reference, the strain presented in B§) can
be shown to be equivaleffinost easily through a numerical
comparison to that derived by Cutlef13].

To test the range of validity of this approximation we used A o
The LISA SimulatofTLS) as a template to calculate the be used. In the limitf/f<L the path length variatioif11)
correlation between the full response and the low frequencjeduces to
approximation(LFA),

compared to the light travel time in the interferometgif
<L. When this condition does not hold the rigid adiabatic
approximation is no longer valid and the full response should

8¢, (€)=L> D(f,,t,k):hy(8), (39)
<STLS|SLFA> n
r(f)= ——. (39

2 2
V(s S L
(Sns)(simm) where the one-arm detector tensor is given by

Using fixed random choices for the source location and ori-
entation we systematically varied the gravitational wave fre- 1. ~ R
quency and calculated the correlation at each frequency. The D(f,t,k)= E[rij(t)®rij(t)]7'(f,t,k), (40
results of this calculation are shown in Fig. 7.
We found that the low frequency approximation has a
strong correlation to the true response for frequencies belownd the transfer function is
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1.05 —

ﬂf,t,R)=sinC<%[1_&}”“)])

1
f A A
xexp(iﬁ[l—k'rij(t)])' 1) 0.95 |- ﬁ ]

The Michelson signal is given by § ool 7 -
o (1) Dadt 2L+ Sb(t=L) 085 |- 0% i .
' 2L 0.96 -
0.8 N -
Ot 3(t—=2L) + o€ (t—L) 0.1 1
2L 0.75 Lol vl Ll Ll i
1e-05  0.0001  0.001 0.01 0.1 1
which may now be expressed as f Hz

R FIG. 8. The correlation between the rigid adiabatic approxima-
51(022 D(k,fn):ha(€), (43 tion and the full response of the LISA detector. The turn down at
" ~500 mHz is due to neglecting the higher order effects in the

and the round-trip detector tensor takes the form spacecraft positions.

“ 1 . . - A A A ~ A 1
D(k,f)=E[(a@a)ﬂa-k,f)—(b@b)?(b.k,f)], (44 fﬁ(t):m, (47)

and the round-trip transfer function is

, G(f(l—é-k)
sSINQG ————

but for a rigid detector this reduces to the static fofgpn

=1/(2mL). The extension to higher orders in the orbital

eccentricity can be done. The trade off is that the expressions

become more complicated since the transfer frequencies
} would then become functions of time. In turn, this would

.1
Takf)=5

2f,
, ({f(1+é~k)) p( _ \

+sing ————|exp —i require that each transfer frequency be evaluated along each
2f4 arm during each time step rather than using one constant

(45  value throughout the entire calculation. Additionally, the nor-

malization of the unit vectors in Eq46) would need to be

The time-dependent unit vectoex(t) andb(t), are given by  evaluated at each step since the arm lengths would vary as a

function of time via Eq.(2). Such an approach would be

f aa
2f*(lJra~k)

- Xo(t) = X4(t) appropriately called the flexing adiabatic approximation
a(t)= L since the arm lengths would now oscillate in time about a
mean value ofL. Although the expressions would become
R Xa(t) = Xy (1) analytically complicated, the numerical evaluation would not
b(t)= — 1 (46) be significantly slower since the additional steps are straight-

forward to evaluate.

Collectively these equations are the analytical formalism forh Fig‘%{f %_cgm_pares the_ out_putfﬁhe IBI.SA Simulatotof :
the rigid adiabatic approximation. As with the low frequency € ”gd', adiabatic ;pp;o;(}lrr;atlon orr] af inary systecrg otin-
approximation, the expressions are computationally quick tgermediate mass black holes, each of mass bROGat a
evaluate and can be easily manipulated analytically. redshift ofz=1. The observation covers the final year before

Figure 8 shows the correlation between the full responsgoalescence. The agreement is excellent. It is worth pointing

and the rigid adiabatic approximation for a monochromaticoUt that while the raw signal-to-noise ratio at a given fre-

gravitational wave. Note that by including the transfer func-duencyf, which is defined in terms of the power spectral
tions we are able to extend agreement with the full responsf€nsity of the sourcg,(f) and the power spectral density of
two decades in frequency beyond where the low frequenci® N0iS€Sn(f),

approximation broke down. The turn down at0.5 Hz

comes about through neglecting the second order terms in Sy(f)
the spacecraft positions. As we described in Sec. Il A the SNR(f)= % (48)
second order orbital effects are down by two orders of mag-

nitude in comparison to the linear order. This shows up in the

rigid adiabatic approximation through the transfer frequennever exceeds unity for this source, the signal-to-noise ratio
cies, which are evaluated for a rigid detector. Normally thethat can be achieved by coherent integration against a
transfer frequencies are given by matched filte{ 13],
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FIG. 9. A comparison of strain spectral densities as calculated FIG. 10. The correlation between a monochromatic rigid adia-
using the rigid adiabatic approximatigqashedl and the full re-  batic approximation and one that includes a 2PN phase evolution.
sponsesolid) for a 5000M ¢, intermediate mass black hole binary at The solid line represents a WD-WD binary with mass components
z=1. For reference, the dotted line is the average Michelson noiséf 0.5My, the dashed line is for a NS-NS binary with masses
in the detector. 1.4M; , and the dotted line is for a 10M/black hole and a 1.4M

neutron star binary.

1/2
2TS1(f)df) 9

SNPWienes( | s

is very much greater than unity. During the last year of in'chromauc signal diverges from one that includes phase evo-
spiral, the source shown in Fig. 9 could be detected with ari 9 9 P

optimally filtered signal-to-noise ratio of over 400. lution depends on the masses of the binary components. The

In a recent pape[27] Seto used a variant of the r|g|d reason for this comes from the eXpreSS|on ﬁpWhICh con-
adiabatic approximation to calculate the effects of LISAstains a mass-dependent coefficient. For the stellar mass bina-
finite arm-lengths on the analysis of gravitational wavesties we studied, the drop in the correlation happened to co-
from chirping supermassive binary black holes. A compari-incide with the breakdown of the low frequency
son of our rigid adiabatic approximation, which is derived approximation. The majority of Milky Way sources have fre-
from the path length variation, and Seto’s approach, which isjuencies below 3 mHz, and can be modeled as monochro-
based on the Doppler shift formalism, is given in Appendixmatic sources using the low frequency approximation. How-
C. ever, the majority of theesolvablesources have frequencies
above 3 mHz, and these must be modeled as chirping sys-
tems using either the full detector response or the rigid adia-
batic approximation.

Utilizing the speed of the rigid adiabatic approximation Another way to represent the same data is to map the
we may investigate various data analysis questions. Here wiaitial frequency to the time of coalescence. The results of
provide one concrete example by determining when phasthis calculation are shown in Fig. 11. In this case we see that
evolution of a binary system due to radiation reaction needshirping becomes important for stellar mass sources within
to be included in the source modeling. ~10° years of coalescence. As expected, the mapping to the

For our calculations we used the restricted posthew variable preserves the mass dependence seen in Fig. 10.
Newtonian approximation, whereby the gravitational wave A final way to represent this data is to set the independent
amplitude is calculated to zeroth order while the phase evovariable equal to the change in the frequency scaled by a bin
lution is calculated to second orde9]. The justification for ~ width, 6f=(f;—f;)/Af, where for one year of observation
this is that LISA will be far more sensitive to the phase thanthe bin width isAf = 1/yr=3.2x 10" Hz. Such an approach
the amplitudg/13]. The lack of additional harmonics of the is shown in Fig. 12. Unlike with the other representations of
orbital period also simplifies the calculation as we only havethe correlation between a monochromatic and coalescing sig-
to calculate a single transfer function at each time step.  nal, the results of this calculation are independent of the

To quantify the importance of including the evolution of system’s masses. It is also interesting to note that this result
the gravitational wave phase, we calculated the correlatioirmplies that it will be possible to detect if a source is
between a monochromatic rigid adiabatic approximation tacoalescing or not well within a bin width. This fact is not in
one in which the phase evolution is included. Figure 10conflict with the Nyquist theorem, which states that the
shows the correlation for three types of binaries expected térequency resolution will not be better than the inverse of the
reside inside our own galaxy: a white dwdkiVD) binary ~ observation time. The reason is that we have additional
with mass components 0.5) a neutron stafNS) binary  information, namely the functional form of the phase

with masses 1.40M, and a 10M, black hole with a neutron
star companion.
What we found is that the frequency at which the mono-

B. Applications

082003-10



FORWARD MODELING OF SPACE-BORHK. .. PHYSICAL REVIEW D 69, 082003 (2004

T T T T TTTT T T T T T T T T LISA

0.8

0.6

=~ 04

0.2

FIG. 13. The anglec gives the initial ecliptic longitude of the

0 guiding center.

...f":.|
105

0.2 - L . . . . .
RPERTIN L ST RTTH PR TITY BRI R tion is well suited to the calculation of Fisher information
10° 10* 10° 10° 107 10® matrices in studies of astrophysical parameter extraction. On
1. years the other handThe LISA Simulatois available if we need to

h lati 0 . _simulate the response to highly relativistic gravitational wave
FIG. 11. T e correlation betwe_en a monochromatic rigid ad_'a'sources such as the merger of two black holes.
batic approximation and one that includes a 2PN phase evolution,

this time expressed in terms of the time to coalescence.
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VII. DISCUSSION
We have examined the forward modeling of space-borne APPENDIX A: SPACECRAFT POSITIONS

gravitational wave detectors with special emphasis on the . L .
LISA observatory. Forward modeling will play two distinct I_:or a const_ella_uon_ of spacecratft in |nd|v_|dua| Keplerian
roles in the development of space-borne observatories. Th(érbItS W't?t an mc;lmatlt())ntﬁi =\3e th(_a coordinates of each
first is as part of a complete end-to-end model that takes intgPaCcecralt are given by the expressions

account every conceivable physical effect, and the second is

as an intermediary between source simulation and data x=r[cog \3e)cosp cosy—sinBsiny]
analysis. Here we have focused on the latter role, and to that
end we have studied two simple approximations to the full y=r[cog \/§e)sinﬁ cosy+cosBsiny]

response, the low frequency approximation and the rigid
adiabatic approximation. We found that the rigid adiabatic
approximation could be used in place of the full response for
a wide range of data analysis projects. For example, the rel%hereﬁ=2nw/3+ X (n=0,1,2) is the relative orbital phase
tively simple analytic form of the rigid adiabatic approxima- of each spacecraft in the ,cc’)nstellatiqnis the ecliptic lon-

gitude, andr is the standard Keplerian radius

z=—r sin( \/§€)COS)/ (A1)

1 —

R(1—€?)

r= 1+ecosy’ (A2)

0.8

0.6

HereR is the semi-major axis of the guiding center and has
an approximate value of 1 AU. See Figs. 13 and 14.

r(¥f)

0.4

0.2

-0.2

0.01 0.1 1 10
o

FIG. 12. The correlation as a function of the fractional bin width
change in the frequencyf=(f;—f;,)/Af, between a monochro-
matic rigid adiabatic approximation and one that includes a 2PN
phase evolution. Note that all three types of sources previously FIG. 14. As viewed by an observer at the orighgives the
considered are included in this plot. initial orientation of the spacecraft constellation.
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To get the above coordinates as a function of time we first APPENDIX B: DOPPLER STYLE DERIVATION OF THE

note that the ecliptic longitude is related to the eccentric FULL RESPONSE
anomalyy by The Doppler shift of a photon emitted by spacecraft 1 and
received by spacecraft 2 can be elegantly deri&dusing
tar(z _ /1+etar<f (A3) the symmetries of the spacetir(i0). When¢=0 the space-
2 l-e 2)’ time admits three Killing vectors,
and the eccentric anomaly is related to the orbital phase Z(l)=fl, Z(z)=5, Z(s)=5;+k. (B1)

a(t)=2xt/T+ k via Kepler's equation .
These provide three constants of the motigg,- U, which

a—B=i¢y—esiny. (A4)  along with the normalization conditiot)-U=0 or U-U
=—1 fully specify G()\) in terms of some initial four-

Assuming a small eccentricity we may solve E@A4)  velocity U(0). Witing the metric asg,,,=7,,+h,,, we
through an iterative process where we treat étsin s term may express the photon propagation four-vector as
as being lower order thau,

1
=gt _ _ pua B
Yp=a—pB+esiny,_;. (A5) oT=STT o Naps” (B2)

Through such a procedure we arrive at where s is a null vector in the unperturbed geometry:
s*s’n,,=0. At the time of emission from spacecraft 1,

y=a—B+esin(a—B)+e’coda—B)sin(a—B)+--. s(ty) =So+ 85,1, while at the time of reception at spacecraft
(AB) 2, 5(t,)=sy+ 55,. Heres, is parallel to the unit vector con-
necting the two spacecraft in the unperturbed spacetime,

while 551 and 552 are perturbations to the path due to lens-
ing by the gravitational wave. Defining

Substituting this result into EA3) and expanding to sec-
ond order in the eccentricity gives an ecliptic longitude of

As*=s%(ty) —s*(ty),

Ahgg=h,g(ta) —h,s(ty), (B3)

y=(a—B)+2esin(a— L)+ gezcos{a—ﬁ)sin(a—ﬂ)

+oe (A7)
we have
Substituting the ecliptic longitude series into E41) and 1
keeping terms up to order gives the Cartesian positions of o%(ty) = o(t;) + As*— = p*PA hg,S?
the spacecraft as functions of time, 2 7

1 Gap(t2) =0ap(ty) +Ahyg (B4)

X(t)=Rcogq a)+ ERe[cos(Za—,B)—B cog )] which yields
+ % ReZ[g cog3a—2B)—10cosa) 23“A5ﬁ77ap= a’(t2) Uﬁ(tz)gaﬁ(tz) —o%(ty) O'B(tl)gaﬁ(tl)
=0. (B5)

—5coga—28)]
Equations(B1), (B3) and (B5) yield four equations for the
1 four As®:
y(t)=Rsin(a)+ ERe[sin(Za—,B)—B sin(B)] .
1 LA 1ap=— 5504()ANg
+3 R 3 sin3a—28)— 10 sin a)

sgAsPn,=0. (B6)
+5siNa—2p)]
These can be solved to give, for example,
2(t)=— 3 Re cosa— B) + 3 R&[cog(a— B) sushAh;;
. Ast=————". B7
+2 sirt(a—pB)]. (A8) 2k-s (B7)

These are the desired coordinates of each spacecraft asHarek— (1) is the null propagation vector for the gravita-
function of time. tional wave. The frequencies of the emitted and received
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photons, as measured at spacecraft 1 and spacecraft 2, 348rep andq are unit vectors along the principle polarization
given by v, = —01(t1)~&(t1) and vzz—Oz(tz)-é(tz), re- axes of the gravitational wave. The amplitude coefficients
spectively. HerdJ; andU, are the four-velocities of the two A+ andA, are given as functions of the orbital inclination
spacecraft. Note the, = v, is the operating frequency of the angle: and the intrinsic amplitudé,

laser on board spacecraft 1. Evaluating —U - o yields A, = A(1+cod)

v=—9(1) St(t)+vil(t)sj(t)77ij+%hij(t)vi(t)s{) (B9) Ax=2Acost. (C9

By direct substitution of EqsC2), (C3), and(C4) into the

t— A — i P
whereU'= y=dt/dr and thev' are the ordinary three ve- relative frequency shift we arrive at

locities of the spacecraft. The spacecraft trajectolﬂemay

be expressed in terms of the unperturbed trajectdu?i@ac— 1—(k-r)?

i )= 55 {A[(Tor P)2—(21-9)?
cording to Yai(t) (o p)2+(r21~q)2{ +[(ra-p) = (ra-q)°]

Ue=Ug+ nh;Uh+Aq, (B9) L UMtD-U(-L2)
N i . +2IA (o1 p)(ro- A} == -
whereA® are constants set by the initial conditions at some 2(1—Kk-ry)
time t. Once the initial conditions for the spacecraft have

been set, EqEB6), (B8) and(B9) give the full Doppler shift )
v,— vy at any subsequent time. The expressions simplifyrne overall coefficient
considerably if we drop terms of ordef, vh and higher:
o 1— (k-5
 shshAh _Llera)® (C6)
Av=v,—r=As'=— ———. (B10) (F21-P)%+(r21-Q)°
2k- s

can be shown to equal unity by writing the veciqrin terms

Converting this into a fractional frequency shifty/v,, and P ]
of the orthonormal triadp,q,k} according to

usings,= voa, wherea is the unit vector connecting the two

spacecraft in the background geometry, we have Fij —sin6’cose' p+sind’sing' 4+ coso’k.  (C7)

Av_ a®a:Ah

= (B11) To proceed further we note that the gravitational wave
Yo 2(1-k-a) basis tensors can be expressed as functiogsaiidq,
Integrating the above expression with respect to time yields € =pep—q®q
the time delay described by E(L1).
X=poq+qop.
APPENDIX C: RECONCILIATION BETWEEN € ~p2qrqep (C8)
ALTERNATIVE RIGID ADIBATIC FORMALISMS Using these relationships, it follows that

According to Eq.(2.2) of Ref.[28], the relative frequency ~ A b n Aa A,
shift for a photon traveling from spacecraft 2 to spacecraft 1 (rij@rij):e =(rij-p)*=(ri-q) (C9)
can be expressed as

. (rj®r): € =2(r;-p)(ryj-q). (C10
y31(t)=E[A+COE{21//12)+iAXSin(Zlfllz)](l_CosalZ) Returning to the expression for the relative frequency
shift we now have
xX[U(t,1)-U(t-L,2)], (CY
. o . ra®ra b %
where the functionU(t,i) gives the phase of the gravita- VYai(t)= —————F=—:(A € +iAs€")
tional wave at spacecraft 6;; is the angle between the 2(1-k-rpy)
source location on the sky-k, and the detector arm; x[U(t,1)—U(t—L,2)]
X A .
r,1®r,1:Ah
S == = C11
cosf;;=—k-rj, (C2 21—k 10 (C1y

andy; is given through the relationship where in the last step we combined the amplitude and phase

functions to form the difference in the gravitational wave
(C3) evaluated at each spacecraft. The above results agrees with
Eq. (B11) found in Appendix B.
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