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Chiral condensate of lattice QCD with massless quarks from the probability distribution function
method
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We apply the probability distribution function method to the study of chiral properties of QCD with quarks
in the exact massless limit. A relation among the chiral condensate, the zeros of the Bessel function, and the
eigenvalue of the Dirac operator is also given. The chiral condensate in this limit can be measured with a small
number of eigenvalues of the massless Dirac operator and without any ambiguous mass extrapolation. The
results for SW3) gauge theory with quenched Kogut-Susskind quarks on tAdatice are shown.
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[. INTRODUCTION mass extrapolation depends strongly on the mass range to
extrapolate, and the fitting function mentioned above.

One cannot completely understand the physics of hadrons In Ref. [3], an alternative, the probability distribution
without understanding the QCD vacuum, the main propertiegunction (p.d.f) method, was proposed to investigate sponta-
of which are confinement and spontaneous chiral-symmetrgieous chiral-symmetry breakirigThis method has been
breaking, characterized by the nonvanishing chiral condentested in the Schwinger modg], and applied to the study
sate in the masslegghiral) limit. Suppose the quarks are of the spontaneou® and CT symmetry breakind6] and
degenerate. The chiral condensate per flavor is theta-vacuume-like systenig] as well as the phase transition

of SU(2) lattice gauge theory at finite densii§].
. 1 In this paper, we will further explore the p.d.f. method by
()= W(Tm*l), (1) applying it to SU3) lattice gauge theory with Kogut-
¢ SusskindKS) fermions. The rest of the paper is organized as
follows. In Sec. Il, we elaborate the idea of the p.d.f. method
where N.=3 is the number of colorsy is the number of and derive some relations between the eigenvalues of the
lattice sites, and is the fermionic matrix. The trace is taken Dirac operator and chiral condensate. In Sec. I, we present

in the color, spin, and position space. the results from numerical simulations.
On a finite lattice, however, the direct computation of the
chiral condensate from a chiral symmetric action leads to II. p.d.f. OF THE CHIRAL CONDENSATE

<E¢/>|m:020, even though there would be spontaneous . )
chiral-symmetry breaking in the infinite volume limit. In L€t us characterize each vacuum statexbgnd the chiral

standard lattice simulations, one has to add a mass ter@ondensate bf{@_fﬂ)a. The p.d.f. of the chiral condensate in
s, myy to the action and calculatégy) at some set of the Gibbs state is defined by

nonzero bare fermion mass and then extrapolat@/y) to _
the massless limit by means of some modeled fitting func- P(c)=2 W, 8(c—{ih),), 2
tions (e.g., linear function, polynomial, or logarithmic cor- “

rectionsg. Unfortunately, such a process might not be We"with w, the weight to get the vacuum state P(c) is the

gjrztlgﬁg’e?(r;?nz?gectxlfmvxiesllltl(gg/v?/z \é(\e/iré/ec:]l(tfgrent results. Hereprobability to get the value for the chiral condensate from

(@) QED in 4 dimensions. Noncompact lattice QED expe-a randomly chosen vacuum state. If there is exact chiral sym-

riences a second order chiral phase transition at finite Somrgetry in the ground staté(c) = (c). If chiral symmetry is

bare coupling constarg, where the chiral condensate van- spontaneously brokerk(c) will be a more complex func-
ping I tion. Therefore, from the shape of the functi®fc) com-

ishes. The cr|t!cal cogolmg and crlltlcal index de.:terml.ned byputed in the configurations generated by a chisghmetric
am extrapolation of( y4) are ambiguous. Detailed discus- ¢tion with exacm=0, one can qualitatively judge whether
sions can be found in Ref1]. _ chiral symmetry is spontaneously broken.

(b) The one-flavor massless Schwinger model. In the con- |, qiantum field theory with fermions, chiral-symmetry
tinuum, as is analytically knowr#)con~0.16e, wheree  breaking is dominated by the properties of the fermion fields
is the electric charge. Unfortunately, a more careful s{@y
indicates the value of the chiral condensate computed by———

10ne can find an analogue in statistical physics, e.g., in the analy-
sis of spin glassept,5]. However, to our knowledge, it is the first
*Email address: stslxg@zsu.edu.cn time in Ref.[3] such an idea has been applied to first principle
"Mailing address. quantum field theory, i.e., lattice gauge theory with fermions.
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under global chiral transformatiaft— exp(a-7ys) ¢, with = ~ 1 iq
the generator of the chiral symmetry group. From E), P(9)= ZJ [dU]det A— W' exp(— S)
one can define the p.d.f. of the chiral condensate for a single
fi ioky: i
gauge configuratiot de{A—il)
— 1 — zlf [du]¢exp(—s +IndetA)
f [dylldylexn(—S) 3| e =y 2 H)v(x) Z detA ? ’
C
Py(c)= — , ©)
f [dy]dy]exp—Sp) wherel is the identity matrix. Generally, a fermionic matrix
(3) A can be decomposed as

where in “S,(x)#(x),” summation over color, spin, and A=mI+il. (10

position indices is implied. _ _ N _ .
One can also define the p.d.f. for all gauge configuration®enoting\; the jth positive eigenvalue of, the determi-
nants in Eq.(9) are

! > () )>> 4) NeV/2
X X s c
NV * detA= _Hl (\NZ+m?),
=

P(c):<5(c—

where the expectation valug - -)" is computed with the

integration measure associated with the partition function i NcV/2 g%+ 2imgN.vV
def A— =11 [\N+mle —————
— c IR (NeV)?
z- [ [dgdyIaVIexs -9 ap
Substituting them into Eq9), one obtains
zf [dUJexp(—Sy+Indetd), (5)
B 1
with A the fermionic matrix. Pla)= Zf [dUJexp(—SyFIndeta)
To study the chiral properties quantitatively, it is more
convenient to employ the Fourier transformed p.d.f. Nﬁ’z g+ 2imgN.V
X 1-————
- » =1 (NV)2(N\f+m?)
Pu<q>=f dcexp(—ige)Py(c) () - L
- ¢ q-+2imgN.V
=\ I 1=~ s—-]). (12
and =1 (NcV)“(Nj+m*)

_ o _ From Eq.(12), we derive relations Eq(16) and Eq.(21)
P(Q)ZJ dcexp(—iqc)P(c). (7)  between the chiral condensate and the eigenmodes of the
o Dirac operator.

Inserting Eq.(4) into Eq. (7), one obtains
A. First relation

YR o According to the definition7), the Fourier transformed
Pl f_mdcexp( qc)P(c) p.d.f. of the chiral condensate can also be written as
1 — —~ oo
:Zj [dy]ldy][dU]exp(—Sq—S) P(q)=f_mdcexp(—iq0)P(C)
3 . 1 J— © 1 —_—
xf_xdcexp(—lqc)ﬁ(c— NV 2 lﬂ(X)lﬂ(X)) f dcexp(—iqc)<5(c— Y] > ¢¢)>
_ 1 WA |q
= zf [dy]ldy][dU] =<exp( RS Ew) > 19
xex;{ —sg+XZy J(X)( Ayy—i qugx,y '!f(y)}- Its derivative with respect tq atq=0 is
() aP(q) |1 —
| o ﬁq‘ =—|<NVE ww>. (14
Integrating out the fermion fields, E¢) becomes a4 l4=0 ct o x
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On the other hand, using EL2), the derivative ofP(q) TABLE |. First 40 zeros ofl;.
with respect tag atq=0 is 200)

IP(q) _ < 1 NCEV/Z 2m > 15 1 2.4048

— | =! - 2 5.5200

9 |_q NV =1 AF+m? 2 o 0540

. 4 11.7920

Comparing Eqgs(14) and (15), we have p 14.9310

N 1 [Nev2 o 5 6 18.0710

= — ). 16 7 21.2120

() ch< JZ 7\,-2+m2> (10 8 24.3530

9 27.4940

In the derivation, we have not used the specific properties of 10 30.6346

lattice fermion formulation, just the standard one in the lit- 1 33.7758

erature. The disadvantage is that to get the chiral condensate 12 36.9171

in the chiral limit limy,_olimy_.(), it requires am ex- 13 40.0584

trapolation, since #¢)|,-o=0 on a finite lattice. As men- 14 43.1998

tioned above, the result depends on the choice of the fitting 15 46.3412

function, in particular near the chiral phase transition. It also 16 49.4826

requires the calculation of all eigenvalues of the Dirac op- 17 52.6241

erator. When the lattice volume is large, the computational 18 55.7655

task is huge and not so feasible. From Ekf), one can also 19 58.9070

derive the so-called Banks-Casher formula 20 62.0485

_ 21 65.1900

lim lim () = lim 7(p(N)), 17 22 68.3315

MmOV 0 23 71.4730

which is also frequently used in the literature. Hexa ) is gg ;33;22
the eigenvalue density. This formula means that the eigen- :

values relevant for chiral-symmetry breaking go to zero in 26 80.8976

the infinite volume limit. The disadvantage is that on a finite 27 84.0391

lattice, p(0)=0, it requires a.—0 extrapolation using some 28 87.1806

modeled fitting function. Only in the infinite volume limit 29 90.3222

does the number of the eigenvalues approaching zero di- 30 93.4637

verge, so thap(0)+0. 31 96.6053

32 99.7468

B. Second relation 33 102.8884

34 106.0299

In a theory with continuous () chiral symmetry(exactly 35 109.1715

when m=0), the vacuum is characterized by an angle 36 112.3131

e[ —, 7] and the chiral condensate can be parametrized as 37 115.4546

(Yih) o= cocosa, wherecy is the amplitude of the chiral con- 38 118.5962

densate corresponding to the spontaneously broken continu- 39 121.7377

ous U1) symmetry. According to the definitiof2), the p.d.f. 40 124.8793

of the chiral condensate is

P(C)lm-0= 2 W, S(c=(4).) Bl o= f deexp—iqe)P(c)

1 (=

T on Wdaa(c—cocosm = % ldaf:dcﬁ(c—cocow)exq—iqc)
1
g el - %f da expl — iqCocosa) = Jo(dCo),
0, c<—Cy Or c>cCgp. ! (19
The Fourier transformed p.d.f. is then wherel, is the zeroth order Bessel function of the first kind.
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From above derivation, one sees that the p.d.f. depends on

the symmetry group of the theory.
In the chiral limit, Eq.(12) becomes

NcV/2 q 2
ﬁ(q>|m0=< 1 (1—(NCVM) )> (20

By computing the second derivative of H§O) with respect

to g, and comparing it to the second derivativeJg{qcy),
we have the following sum rule:

o 4 NcV/i2 1
lim lim () =co= lim \/N§v2< El P>’ (22)

I
m—0V—co V—o 1= j

PHYSICAL REVIEW D 69, 076012 (2004
q=NVA(U), j=1,...N.V/2, (24)

Performing similar procedures when deriving Eq9),
one has foP(q)|m-o

Pu(@)|m=0=Jo[aCo(U)]. (25)

This equation is equal to zero at

I I
q_CO(U)’ j=1,... 00, (26)

wherez(j) is thejth zero ofJy. In Table I, the first 40 zeros

which agrees with the result from chiral perturbation theoryof Jo are provided.

[9] and chiral random matrix theofyl0]. The advantage is

For V>1, Eq.(24) should agree with Eq26) so that

that no\ extrapolation is necessary. The disadvantage is that
all the eigenvalues of the massless Dirac operator have to be z(j)

calculated as in Eq16). WhenV is large, the computational
task is huge and not so feasible. Also, a very large lattice is

required to get stable and consistent results.

C. Third relation

One can perform similar analysis for the p.d.f. of the chi-
ral condensate for a single configuration, defined in B)y.
The Fourier transformed p.d.f. for this gauge configuration

Eq. (6) is then

Pu@= | deexa—iaopy(o

NV/2 2 -
¢ q°+2imgN;V
=11 [1- . (22
i1 (NoV)2(NP(U) +m?)
In the chiral limit, it becomes
NGV/2 q 2
Pu(®)|m=0= H 1- NCT](U)) } (23

This equation is equal to zero at

B = 2.5469

co(U)= 1,... . (27)

NoVA,(U)* 1™

co(U) is the amplitude of the chiral condensate for configu-
ration U. Averaging it over gauge configurations with fermi-
ons, we obtain

o= z(j) )1
(J)—<Co(U)>—N—CV e (28)

Neither m nor A extrapolation is necessary. In the chiral-
symmetry breaking phase, a plateau @fjj) = const will de-
velop, from which the chiral condensate in the chiral limit
can be extracted.

The relation between eigenmodes and chiral-symmetry
breaking is clear: if chiral symmetry is spontaneously bro-
ken, i.e., co(U)#0, according to Eqgs(27) and (28), \;
should scale ag(j)/V. In the infinite volume limitV— o,
the eigenvalues relevant for chiral-symmetry breaking are
those going to zero as\1/ which is consistent with Banks
and Casher.

The advantage of Eq298) is that to extract the value of
C(j) from a plateau, only a few smallest eigenvalues are

0.2 T T T T

0.18 -

0.16

<
<

FIG. 1. (y4)/4 as a function ofm for B

1 KD D DD N N P N =2.5469 using Eq(16). The dotted line is a lin-
0.14 - N ear fit of the data to the chiral limit.
0.12 4
01 1 { L !
0 0.02 0.04 0.06 0.08 0.1
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B = 2.5469

0.2 T T T T T T T

FIG. 2. C(j)/4 as a function ofj for B
=2.5469 using Eq(28). The dotted line stands

0.14 7 for the mean value of data in the plateau.
0.12 + |
01 1 1 1 1 1 ] 1
0 5 10 15 20 25 30 35 40
J

needed for this calculation. Of course, finite size analysisvhere=2N./g?. In the chiral limitm=0, a U1) subgroup

Iimm_kolimVMC(%//): limy_...C(j) remains to be done, as in Of the continuous chiral symmetry exists, i.8,is invariant
all approaches. under the following transformation:

P(x)—exia(—1) a2 ]y (x),
lIl. RESULTS IN QCD WITH KS QUARKS

The most interesting application of this method is QCD. PX) = p(x)exdia(—1)arx e ], (30

Here we would like to present the first data for SUlattice

gauge theory with KS fermions, which has the actién All simulations are done on th&=10" lattice in the

=S, + S guenched S(B) case. The pure S3) gauge fields are up-
g dated using the Cabibbo-Marinari quasiheat bath algorithm,
B followed by some over-relaxation sweeps. 100—400 indepen-
Sg=— N- zp: Re Ti(U), dent configurations are used for the measurements.
C

Figure 1 shows the data fcé%ﬂ} at a stronger coupling
B=2.5469 using Eq(16). A linear function is also used to

Si=2>, P(X)Ay (), extrapolate the data ofiyy) at nonzero fermion mass
Yy €[0.005,0.] to the chiral limit. Figure 2 shows the result of
+ N C(j) for the sameB using Eq.(28); there is a nice plateau
Up=U,0U,(x+ U ,(x+2)U,(x), for j €[15,40. The linear extrapolation result from E(.6)
is consistent with the mean value of Eg8) in the plateau.

: The results at a weaker couplifgy=5.6263 are shown in

Axy= m‘SX’erMZ*l E”#(X)[U#(X) Oxy-pn Figs. 3 and 4. One sees there is a little change in the slope
: R when using Eq(16) to calculate{¢) and the extrapolated
= U, (X= ) Sxy+ 1l value atm=0. In comparison, there is a wide plateau for
C(j) using Eg.(28). But both approaches still give consis-
7, (X)=(—1) et TXu-a (29  tent results.
0 = 5.6263
0.07 . T 1 x )
e
0.06 - o @ S
e
0.05 | e - _
v ) Q_.~9 FIG. 3. (¢¢)/4 as a function ofm for 8
1 o =5.6263 using Eq(16). The dotted line is a lin-
0.04 w o . ear fit of the data to the chiral limit.
0.03 - .
0.02 ] L ] !
0 0.02 0.04 0.06 0.08 0.1
m
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B3 = 5.6263
0.07 T T T T T T T
0.06 —% -
0.05 | n . . .
i) FIG. 4. C(j)/4 as a function ofj for B
4 =5.6263 using Eq(28). The dotted line stands

0.04 for mean value of data in the plateau.
0.03 _
0.02 1 L | i 1 1 1

0 5 10 15 20 25 30 35 40

. approach to other fermion formulations, e.g., overlap fermi-
In conclusion, we have shown how the p.d.f. method forons or domain wall fermions.

obtaining the chiral condensate in the exact chiral limit

works in lattice QCD with quenched KS quarks. There are ACKNOWLEDGMENTS
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