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Chiral condensate of lattice QCD with massless quarks from the probability distribution function
method
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We apply the probability distribution function method to the study of chiral properties of QCD with quarks
in the exact massless limit. A relation among the chiral condensate, the zeros of the Bessel function, and the
eigenvalue of the Dirac operator is also given. The chiral condensate in this limit can be measured with a small
number of eigenvalues of the massless Dirac operator and without any ambiguous mass extrapolation. The
results for SU~3! gauge theory with quenched Kogut-Susskind quarks on the 104 lattice are shown.
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I. INTRODUCTION

One cannot completely understand the physics of had
without understanding the QCD vacuum, the main proper
of which are confinement and spontaneous chiral-symm
breaking, characterized by the nonvanishing chiral cond
sate in the massless~chiral! limit. Suppose the quarks ar
degenerate. The chiral condensate per flavor is

^c̄c&5
1

NcV
^Tr D21&, ~1!

where Nc53 is the number of colors,V is the number of
lattice sites, andD is the fermionic matrix. The trace is take
in the color, spin, and position space.

On a finite lattice, however, the direct computation of t
chiral condensate from a chiral symmetric action leads

^c̄c&um5050, even though there would be spontaneo
chiral-symmetry breaking in the infinite volume limit. I
standard lattice simulations, one has to add a mass
(xmc̄c to the action and calculatêc̄c& at some set of
nonzero bare fermion massm, and then extrapolatêc̄c& to
the massless limit by means of some modeled fitting fu
tions ~e.g., linear function, polynomial, or logarithmic co
rections!. Unfortunately, such a process might not be w
justified, and sometimes it gives very different results. H
are two examples of well known evidence.

~a! QED in 4 dimensions. Noncompact lattice QED exp
riences a second order chiral phase transition at finite s
bare coupling constantg, where the chiral condensate va
ishes. The critical coupling and critical index determined
a m extrapolation of̂ c̄c& are ambiguous. Detailed discu
sions can be found in Ref.@1#.

~b! The one-flavor massless Schwinger model. In the c
tinuum, as is analytically known,̂c̄c&cont'0.16e, wheree
is the electric charge. Unfortunately, a more careful study@2#
indicates the value of the chiral condensate computed
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mass extrapolation depends strongly on the mass rang
extrapolate, and the fitting function mentioned above.

In Ref. @3#, an alternative, the probability distributio
function ~p.d.f.! method, was proposed to investigate spon
neous chiral-symmetry breaking.1 This method has been
tested in the Schwinger model@3#, and applied to the study
of the spontaneousP and CT symmetry breaking@6# and
theta-vacuum-like systems@7# as well as the phase transitio
of SU~2! lattice gauge theory at finite density@8#.

In this paper, we will further explore the p.d.f. method b
applying it to SU~3! lattice gauge theory with Kogut
Susskind~KS! fermions. The rest of the paper is organized
follows. In Sec. II, we elaborate the idea of the p.d.f. meth
and derive some relations between the eigenvalues of
Dirac operator and chiral condensate. In Sec. III, we pres
the results from numerical simulations.

II. p.d.f. OF THE CHIRAL CONDENSATE

Let us characterize each vacuum state bya and the chiral
condensate bŷc̄c&a . The p.d.f. of the chiral condensate
the Gibbs state is defined by

P~c!5(
a

wad~c2^c̄c&a!, ~2!

with wa the weight to get the vacuum statea. P(c) is the
probability to get the valuec for the chiral condensate from
a randomly chosen vacuum state. If there is exact chiral s
metry in the ground state,P(c)5d(c). If chiral symmetry is
spontaneously broken,P(c) will be a more complex func-
tion. Therefore, from the shape of the functionP(c) com-
puted in the configurations generated by a chiralsymmetric
action with exactm50, one can qualitatively judge whethe
chiral symmetry is spontaneously broken.

In quantum field theory with fermions, chiral-symmet
breaking is dominated by the properties of the fermion fie

1One can find an analogue in statistical physics, e.g., in the an
sis of spin glasses@4,5#. However, to our knowledge, it is the firs
time in Ref. @3# such an idea has been applied to first princip
quantum field theory, i.e., lattice gauge theory with fermions.
©2004 The American Physical Society12-1
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under global chiral transformationc→exp(ia"tg5)c, with t
the generator of the chiral symmetry group. From Eq.~2!,
one can define the p.d.f. of the chiral condensate for a sin
gauge configurationU:

PU~c!5

E @dc̄#@dc#exp~2Sf !dFc2
1

NcV
(

x
c̄~x!c~x!G

E @dc̄#@dc#exp~2Sf !

,

~3!

where in ‘‘(xc̄(x)c(x), ’’ summation over color, spin, and
position indices is implied.

One can also define the p.d.f. for all gauge configurati

P~c!5K dS c2
1

NcV
(

x
c̄~x!c~x! D L , ~4!

where the expectation value ‘‘^•••& ’’ is computed with the
integration measure associated with the partition function

Z5E @dc̄#@dc#@dU#exp~2S!

5E @dU#exp~2Sg1 ln detD!, ~5!

with D the fermionic matrix.
To study the chiral properties quantitatively, it is mo

convenient to employ the Fourier transformed p.d.f.

P̃U~q!5E
2`

`

dc exp~2 iqc!PU~c! ~6!

and

P̃~q!5E
2`

`

dc exp~2 iqc!P~c!. ~7!

Inserting Eq.~4! into Eq. ~7!, one obtains

P̃~q!5E
2`

`

dc exp~2 iqc!P~c!

5
1

ZE @dc̄#@dc#@dU#exp~2Sg2Sf !

3E
2`

`

dc exp~2 iqc!dS c2
1

NcV
(

x
c̄~x!c~x! D

5
1

ZE @dc̄#@dc#@dU#

3expF2Sg1(
x,y

c̄~x!S Dx,y2 i
q

NcV
dx,yDc~y!G .

~8!

Integrating out the fermion fields, Eq.~8! becomes
07601
le

s

P̃~q!5
1

ZE @dU#detS D2
iq

NcV
I Dexp~2Sg!

5
1

ZE @dU#

detS D2
iq

NcV
I D

detD
exp~2Sg1 ln detD!,

~9!

whereI is the identity matrix. Generally, a fermionic matri
D can be decomposed as

D5mI1 iG. ~10!

Denotingl j the j th positive eigenvalue ofG, the determi-
nants in Eq.~9! are

detD5 )
j 51

NcV/2

~l j
21m2!,

detS D2
iq

NcV
I D 5 )

j 51

NcV/2 S l j
21m22

q212imqNcV

~NcV!2 D .

~11!

Substituting them into Eq.~9!, one obtains

P̃~q!5
1

Z
E @dU#exp~2Sg1 ln detD!

3 )
j 51

NcV/2 S 12
q212imqNcV

~NcV!2~l j
21m2!

D
5K )

j 51

NcV/2 S 12
q212imqNcV

~NcV!2~l j
21m2!

D L . ~12!

From Eq. ~12!, we derive relations Eq.~16! and Eq.~21!
between the chiral condensate and the eigenmodes of
Dirac operator.

A. First relation

According to the definition~7!, the Fourier transformed
p.d.f. of the chiral condensate can also be written as

P̃~q!5E
2`

`

dc exp~2 iqc!P~c!

E
2`

`

dc exp~2 iqc!K dS c2
1

NcV
(

x
c̄c D L

5K expS 2
iq

NcV
(

x
c̄c D L . ~13!

Its derivative with respect toq at q50 is

] P̃~q!

]q
U

q50

52 i K 1

NcV
(

x
c̄cL . ~14!
2-2
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On the other hand, using Eq.~12!, the derivative ofP̃(q)
with respect toq at q50 is

] P̃~q!

]q
U

q50

52 i K 1

NcV
(
j 51

NcV/2 2m

l j
21m2L . ~15!

Comparing Eqs.~14! and ~15!, we have

^c̄c&5
1

NcV
K (

j 51

NcV/2 2m

l j
21m2L . ~16!

In the derivation, we have not used the specific propertie
lattice fermion formulation, just the standard one in the
erature. The disadvantage is that to get the chiral conden
in the chiral limit limm→0limV→`^c̄c&, it requires am ex-
trapolation, sincê c̄c&um5050 on a finite lattice. As men-
tioned above, the result depends on the choice of the fit
function, in particular near the chiral phase transition. It a
requires the calculation of all eigenvalues of the Dirac o
erator. When the lattice volume is large, the computatio
task is huge and not so feasible. From Eq.~16!, one can also
derive the so-called Banks-Casher formula

lim
m→0

lim
V→`

^c̄c&5 lim
l→0

p^r~l!&, ~17!

which is also frequently used in the literature. Herer(l) is
the eigenvalue density. This formula means that the eig
values relevant for chiral-symmetry breaking go to zero
the infinite volume limit. The disadvantage is that on a fin
lattice,r(0)50, it requires al→0 extrapolation using som
modeled fitting function. Only in the infinite volume limi
does the number of the eigenvalues approaching zero
verge, so thatr(0)Þ0.

B. Second relation

In a theory with continuous U~1! chiral symmetry~exactly
when m50), the vacuum is characterized by an anglea
P@2p,p# and the chiral condensate can be parametrize

^c̄c&a5c0cosa, wherec0 is the amplitude of the chiral con
densate corresponding to the spontaneously broken con
ous U~1! symmetry. According to the definition~2!, the p.d.f.
of the chiral condensate is

P~c!um505(
a

wad~c2^c̄c&a!

5
1

2p
E

2p

p

dad~c2c0cosa!

5H 1

pAc0
22c2

, cP@2c0 ,c0#,

0, c,2c0 or c.c0 .

~18!

The Fourier transformed p.d.f. is then
07601
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P̃~q!um505E
2`

`

dc exp~2 iqc!P~c!

5
1

2pE2p

p

daE
2`

`

dcd~c2c0cosa!exp~2 iqc!

5
1

2pE2p

p

da exp~2 iqc0cosa!5J0~qc0!,

~19!

whereJ0 is the zeroth order Bessel function of the first kin

TABLE I. First 40 zeros ofJ0 .

j z( j )

1 2.4048
2 5.5200
3 8.6540
4 11.7920
5 14.9310
6 18.0710
7 21.2120
8 24.3530
9 27.4940

10 30.6346
11 33.7758
12 36.9171
13 40.0584
14 43.1998
15 46.3412
16 49.4826
17 52.6241
18 55.7655
19 58.9070
20 62.0485
21 65.1900
22 68.3315
23 71.4730
24 74.6145
25 77.7562
26 80.8976
27 84.0391
28 87.1806
29 90.3222
30 93.4637
31 96.6053
32 99.7468
33 102.8884
34 106.0299
35 109.1715
36 112.3131
37 115.4546
38 118.5962
39 121.7377
40 124.8793
2-3
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From above derivation, one sees that the p.d.f. depend
the symmetry group of the theory.

In the chiral limit, Eq.~12! becomes

P̃~q!um505K )
j 51

NcV/2 S 12 S q

NcVl j
D 2D L . ~20!

By computing the second derivative of Eq.~20! with respect
to q, and comparing it to the second derivative ofJ0(qc0),
we have the following sum rule:

lim
m→0

lim
V→`

^c̄c&5c05 lim
V→`

A 4

Nc
2V2 K (

j 51

NcV/2 1

l j
2L , ~21!

which agrees with the result from chiral perturbation theo
@9# and chiral random matrix theory@10#. The advantage is
that nol extrapolation is necessary. The disadvantage is
all the eigenvalues of the massless Dirac operator have t
calculated as in Eq.~16!. WhenV is large, the computationa
task is huge and not so feasible. Also, a very large lattic
required to get stable and consistent results.

C. Third relation

One can perform similar analysis for the p.d.f. of the c
ral condensate for a single configuration, defined in Eq.~3!.
The Fourier transformed p.d.f. for this gauge configurat
Eq. ~6! is then

P̃U~q!5E
2`

`

dc exp~2 iqc!PU~c!

5 )
j 51

NcV/2 S 12
q212imqNcV

~NcV!2~l j
2~U !1m2!

D . ~22!

In the chiral limit, it becomes

P̃U~q!um505 )
j 51

NcV/2 F12S q

NcVl j~U ! D
2G . ~23!

This equation is equal to zero at
07601
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q5NcVl j~U !, j 51, . . . ,NcV/2. ~24!

Performing similar procedures when deriving Eq.~19!,
one has forP̃U(q)um50

P̃U~q!um505J0@qc0~U !#. ~25!

This equation is equal to zero at

q5
z~ j !

c0~U !
, j 51, . . . ,̀ , ~26!

wherez( j ) is the j th zero ofJ0 . In Table I, the first 40 zeros
of J0 are provided.

For V@1, Eq. ~24! should agree with Eq.~26! so that

c0~U !5
z~ j !

NcVl j~U !
, j 51, . . . ,̀ . ~27!

c0(U) is the amplitude of the chiral condensate for config
ration U. Averaging it over gauge configurations with ferm
ons, we obtain

C~ j !5^c0~U !&5
z~ j !

NcV
K 1

l j
L . ~28!

Neither m nor l extrapolation is necessary. In the chira
symmetry breaking phase, a plateau forC( j )5const will de-
velop, from which the chiral condensate in the chiral lim
can be extracted.

The relation between eigenmodes and chiral-symme
breaking is clear: if chiral symmetry is spontaneously b
ken, i.e., c0(U)[” 0, according to Eqs.~27! and ~28!, l j
should scale asz( j )/V. In the infinite volume limitV→`,
the eigenvalues relevant for chiral-symmetry breaking
those going to zero as 1/V, which is consistent with Banks
and Casher.

The advantage of Eq.~28! is that to extract the value o
C( j ) from a plateau, only a few smallest eigenvalues
FIG. 1. ^c̄c&/4 as a function ofm for b
52.5469 using Eq.~16!. The dotted line is a lin-
ear fit of the data to the chiral limit.
2-4
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FIG. 2. C( j )/4 as a function ofj for b
52.5469 using Eq.~28!. The dotted line stands
for the mean value of data in the plateau.
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needed for this calculation. Of course, finite size analy
limm→0limV→`^c̄c&5 limV→`C( j ) remains to be done, as i
all approaches.

III. RESULTS IN QCD WITH KS QUARKS

The most interesting application of this method is QC
Here we would like to present the first data for SU~3! lattice
gauge theory with KS fermions, which has the actionS
5Sg1Sf :

Sg52
b

Nc
(

p
Re Tr~Up!,

Sf5(
x,y

c̄~x!Dx,yc~y!,

Up5Um~x!Un~x1m!Um
† ~x1n!Un

†~x!,

Dx,y5mdx,y1 (
m51

4
1

2
hm~x!@Um~x!dx,y2m̂

2Um
† ~x2m̂ !dx,y1m̂#,

hm~x!5~21!x11x21•••1xm21, ~29!
07601
is

.

whereb52Nc /g2. In the chiral limitm50, a U~1! subgroup
of the continuous chiral symmetry exists, i.e.,Sf is invariant
under the following transformation:

c~x!→exp@ ia~21!x11x21x31x4#c~x!,

c̄~x!→c̄~x!exp@ ia~21!x11x21x31x4#. ~30!

All simulations are done on theV5104 lattice in the
quenched SU~3! case. The pure SU~3! gauge fields are up
dated using the Cabibbo-Marinari quasiheat bath algorith
followed by some over-relaxation sweeps. 100–400 indep
dent configurations are used for the measurements.

Figure 1 shows the data for^c̄c& at a stronger coupling
b52.5469 using Eq.~16!. A linear function is also used to
extrapolate the data of̂c̄c& at nonzero fermion massm
P@0.005,0.1# to the chiral limit. Figure 2 shows the result o
C( j ) for the sameb using Eq.~28!; there is a nice plateau
for j P@15,40#. The linear extrapolation result from Eq.~16!
is consistent with the mean value of Eq.~28! in the plateau.

The results at a weaker couplingb55.6263 are shown in
Figs. 3 and 4. One sees there is a little change in the s
when using Eq.~16! to calculatê c̄c& and the extrapolated
value atm50. In comparison, there is a wide plateau f
C( j ) using Eq.~28!. But both approaches still give consis
tent results.
FIG. 3. ^c̄c&/4 as a function ofm for b
55.6263 using Eq.~16!. The dotted line is a lin-
ear fit of the data to the chiral limit.
2-5
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FIG. 4. C( j )/4 as a function ofj for b
55.6263 using Eq.~28!. The dotted line stands
for mean value of data in the plateau.
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In conclusion, we have shown how the p.d.f. method
obtaining the chiral condensate in the exact chiral lim
works in lattice QCD with quenched KS quarks. There a
several advantages in using relation~28!: only calculations
of a small set of eigenvalues of the massless Dirac oper
are necessary; there is no need form or l extrapolation. This
might be an alternative efficient method for investigating
spontaneous chiral-symmetry breaking in lattice QCD.
would also be very interesting to see application of t
,
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approach to other fermion formulations, e.g., overlap ferm
ons or domain wall fermions.
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