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A new method for real radiation at next-to-next-to-leading order
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We propose a new method of computing real emission contributions to hard QCD processes. Our approach
uses sector decomposition of the exclusive final-state phase space to enable extraction of all singularities of the
real emission matrix elements before integration over any kinematic variable. The exact kinematics of the real
emission process are preserved in all regions of phase space. Traditional approaches to extracting singularities
from real emission matrix elements, such as phase space slicing and dipole subtraction, require both the
determination of counterterms for double real emission amplitudes in singular kinematic limits and the inte-
gration of these contributions analytically to cancel the resulting singularities against virtual corrections. Our
method addresses both of these issues. The implementation of constraints on the final-state phase space,
including various jet algorithms, is simple using our approach. We illustrate our method usinge1e2→ jets at
O(aS

2) as an example.
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I. INTRODUCTION

The future high energy collider physics experimental p
gram will measure phenomenologically interesting quanti
with an unprecedented precision. To fully utilize these
sults, accurate theoretical predictions are required. In part
lar, the large value of the strong coupling constantaS implies
that perturbative QCD corrections through next-to-next-
leading order~NNLO! in aS are needed. The calculation o
NNLO QCD corrections has advanced rapidly in the p
few years. The progress has resulted primarily because o
realization that the computation of two-loop virtual corre
tions can be algorithmically structured and automated. Th
advances culminated in the evaluation of two-loop virtu
corrections for 1→3 and all massless 2→2 scattering pro-
cesses in perturbative QCD@1#.

Unfortunately, these calculations have not yet produ
improved theoretical predictions for many observables. T
computation of infrared-safe quantities requires two ad
tional ingredients: the real-virtual contributions, which d
note the one-loop corrections to processes with one a
tional parton in the final state, and the real-real contributio
which denote tree-level processes with two additional p
tons in the final state. The two components of the real-virt
contributions, one-loop virtual corrections and single em
sion amplitudes, have both been well studied. However,
double emission corrections required for the real-real con
butions are relatively unknown; the first steps towards und
standing them have been taken only recently@3,4#.
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The current state-of-the-art can be illustrated us
e1e2→2 jets as an example. Unresolved double real em
sion corrections appear for the first time at NNLO. The 2
cross section is currently computed at NNLO by taking t
difference of theO(aS

2) e1e2→ hadrons cross section an
thee1e2→3 and 4 jet results at NLO and LO, respective
Only the total 2 jet cross section can be derived using
technique. All information concerning the invariant mass a
angular distributions of the jets is lost.

The inability to compute the 2 jet cross section directly
NNLO arises from the poor understanding of the singu
structure of the double real emission corrections. Infra
and collinear singularities cancel between virtual and r
corrections only after integration over certain kinematic va
ables makes the 1/e poles in the real emission contribution
explicit. However, since a primary goal of computing high
order QCD corrections to scattering processes is to prod
Monte Carlo event generators that correctly describe the
nematics of each partonic event, only a restricted region
the final-state phase space can be integrated over. Only
the edges of the available phase space, where two or m
partons become degenerate and combine to form a single
can the integration be performed without changing the ki
matics of the final state. All singularities occur in these lim
its, and they can in principle be extracted and cance
against those arising from virtual corrections. Unfortunate
these singularities overlap; this severely complicates th
extraction.

The existing approaches to computing double real em
sion corrections extend methods used to handle single
emission amplitudes. There are two standard techniques
extracting single real emission singularities: phase space
ing @6,7# and dipole subtraction@8–10#. Extending these ap
proaches to double real emission corrections requires
©2004 The American Physical Society10-1
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non-trivial steps: a determination of the simplified mat
elements that approximate the complete double real emis
amplitudes in singular kinematic regions, and an integrat
of these matrix elements over the unresolved regions of
multiparticle phase space. The difference of the exact
approximate matrix elements is by construction finite, a
can be integrated numerically. The integration of the
proximate matrix elements over the phase space bound
produces the required 1/e poles that cancel against the virtu
corrections. Both steps must be completed to obtain
NNLO prediction. Although some progress has recently b
made@2–5#, a functional method for calculating NNLO rea
emission corrections has not yet been demonstrated; a
stantial effort is still required to obtain phenomenologic
results.

We present here a new approach to this problem. We
lustrate our technique by considering the extraction of sin
larities from 1→4 processes, where the final state partic
are massless. Our approach is based upon a few ideas
first derive a factorized parametrization of the four parti
phase space following a simple procedure. We, then, use
tor decomposition@11–13# to separate the overlapping dive
gences which appear in the double real emission matrix
ments. After this separation is performed, the phase sp
singularities can be extracted using standard expansion
terms of plus distributions. The processes of finding the
quired sectors and extracting the singularities are comple
automated. The resulting matrix elements are finite and f
differential, and can be used to create NNLO Monte Ca
event generators. We discuss in some detail the examp
e1e2→ hadrons atO(aS

2), which includes the 2 jet cros
section at NNLO, the three jet cross section at NLO, and
4 jet cross section at LO.

The paper is organized as follows. In Sec. II we introdu
our method by consideringe1e2→2 jets at NLO and
e1e2→3 jets at the tree level. We begin our discussion
the 2 jet cross section at NNLO in Sec. III by describing o
parametrization of the four-particle phase space. We also
plain how we use sector decomposition to separate the o
lapping singularities that appear in the matrix elements
Sec. IV we apply our technique to the two most difficu
interferences that appear in the double real emission co
butions. After demonstrating that our method is power
enough to handle the most complicated scenario, we app
to a simple but realistic example in Sec. V: theNf dependent
contribution toe1e2→ hadrons atO(aS

2). This process con-
tributes to the 2 jet cross section at NNLO, the 3 jet cro
section at NLO, and the 4 jet cross section at LO. Finally,
present our conclusions and discuss future prospects in
VI.

II. THE NLO EXAMPLE

We begin by considering theO(as) contribution to
e1e2→hadrons, which contains both the NLO correction
e1e2→2 jets and the LO contribution toe1e2→3 jets. Al-
though many of the complexities of the NNLO case are
sent in this calculation, it illustrates several important fe
tures of our method. At the partonic level, we must comp
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the one-loop virtual corrections toe1e2→qq̄ and the real
emission processe1e2→qq̄g.

We consider first the real emission correctione1e2

→qq̄g. The kinematics of the final state is fully described
the invariant massessqq̄ ,sqg , and sq̄g , which satisfy the
constraint

sqq̄1sqg1sq̄g5s. ~1!

Here,s is the center of mass energy squared of the collid
electron and positron. The three particle phase space ca
written as

E @dq#@dq̄#@dg#~2p!dd (d)~p11p22q2q̄2g!

5
1

~4p!d/2

R2 s122e

G~12e!
E

0

1

dl1dl2l1
2e~12l1!2el2

2e

3~12l2!122e, ~2!

whered5422e, @dk#5dd21k/(2p)d21k0 , R2 is the inte-
grated phase space of the two massless particles,

R25
1

~2p!d22

Vd21

2d21
, ~3!

andVd is the solid angle ind dimensions,

Vd5
2pd/2

GS d

2D . ~4!

The invariant masses have the following expressions
terms ofl1 andl2 :

sqq̄5s~12l2!~12l1!, sqg5s~12l2!l1 , sq̄g5sl2 .
~5!

In what follows we sets51 for simplicity, and restore the
correct dimensions in final results.

The matrix element for theg* →qq̄g process is given by
two diagrams. Upon squaring these and using the exp
sions for the invariant masses given in Eq.~5!, we derive@6#

uMu25
32~12e!

l1l2~12l2!
„2~12l1!~12l2!1l2

21l1
2~12l2!2

2e@l11l22l1l2#2
…. ~6!

After substituting the expression for the matrix eleme
squared into the three-particle phase space, we arrive a
expression
0-2
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E
0

1

dl1dl2

d2sR

dl1dl2

5
1

~4p!d/2

R2

G~12e!
E

0

1

dl1dl2~l1l2!2e21

3~12l1!2e~12l2!22eg~l1 ,l2!, ~7!

where g(l1 ,l2) is a nonsingular function of thel i . The
phase space singularities in the above expression can b
tracted before integration by using the standard decomp
tion in terms of plus distributions:
s
ec
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, ~8!

where a plus distribution is defined via

E
0

1

dlF lnn~l!

l G
1

f ~l!5E
0

1

dl lnn~l!F f ~l!2 f ~0!

l G . ~9!

Substituting this decomposition into Eq.~7!, we derive the
following expression for the real emission cross section:
d2sR

dl1dl2
5

64pas

3
s0

G~11e!

~4p!d/2 H d~l1!d~l2!

e2
1

1

e F2
d~l1!

@l2#1
2

d~l2!

@l1#1
1S 12

l1

2 D d~l2!1S 12
l2

2 D d~l1!2d~l1!d~l2!G
1Xl1211

1

2

~222l11l1
2!ln~12l1!

l1
2S 12

l1

2 D ln~l1!1F 1

l1
G

1

1F ln~l1!

l1
G

1
Cd~l2!

1Xl2211
~222l21l2

2!ln~12l2!

l2
2S 12

l2

2 D ln~l2!1F 1

l2
G

1

1F ln~l2!

l2
G

1
Cd~l1!

2S 12
l1

2 D F 1

l2
G

1

2S 12
l2

2 D F 1

l1
G

1

1F 1

l1
G

1

F 1

l2
G

1

2
p2

6
d~l1!d~l2!112l1S 12

l2

2 D J . ~10!
e
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s0 is the tree level cross section fore1e2→qq̄: s0

54paEMQq
2/s. For the calculation of the NLO correction

to the 2 jet cross section we also require the virtual corr
tions to thee1e2→qq̄ process; we find@6#

dsV

dl1dl2
5

64pas

3
s0

G~11e!

~4p!d/2

3H 2
1

e2
2

1

2e
1

2p2

3
2

5

2J d~l1!d~l2!.

~11!

We now discuss the calculation of then jet cross section;
here,n equals either 2 or 3. We introduce the jet function

FJ
(n)~sqq̄ ,sqg ,sq̄g!5FJ

(n)
„~12l1!~12l2!,l1~12l2!,l2….

~12!

The n jet cross section becomes

sJ
(n)5E

0

1

dl1dl2FJ
(n)~si j !H sod~l1!d~l2!

1
dsV

dl1dl2
1

dsR

dl1dl2
J . ~13!
-

It is clear from the expressions in Eqs.~10! and~11! that the
1/e2 poles cancel whensV and sR are combined. The 1/e
poles insR require that eitherl1 or l2 vanish. The jet func-
tion becomes eitherFJ

(n)(sqq̄ ,sqg,0) or FJ
(n)(sqq̄,0,sq̄g) in

these cases, i.e., a 2 jet configuration is always obtained. Th
1/e poles of bothsV andsR occur in the 2 jet cross section
they cancel after integrating overl1 andl2 , as required for
infrared safe observables. Dropping the poles ine, we can
write the n jet cross section as an integral over the fin
component of the partonic cross sections:

sJ
(n)5E

0

1

dl1dl2FJ
(n)~si j !s f inite . ~14!

It is straightforward to check that this correctly reproduc
known 2 and 3 jet cross sections for standard jet functi
@14#.

Several important aspects of this result generalize imm
diately to NNLO calculations. We were able to extract t
singularities ine without performing any integrations. Th
cancellation of the poles ine can be checked numerically
and these terms can then be discarded. We note that by
ing the subtraction operations needed for extracting the
poles in terms of plus distributions, we have gained the fl
ibility to combine our result with any jet function and wit
any constraint on an infrared safe differential quantity. T
greatly simplifies the calculation of NNLO cross sections
0-3
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III. FOUR PARTICLE PHASE SPACE:
PARAMETRIZATION AND SECTOR DECOMPOSITION

We present here our parametrization of the four part
phase space. After deriving the relevant formulas, we disc
the complications that arise when we attempt to extract ph
space singularities using the method discussed in the p
ous section. We show how sector decomposition of the ph
space solves these problems, and apply the technique
few examples.

We begin with the following expression for the four pa
ticle phase space:

I45E @dp1#@dp̄2#@dp3#@dp4#~2p!d

3d (d)~p2p12p22p32p4!. ~15!

This phase space is described by five independent inva
masses. A convenient set is$s134,s234,s34,s13,s24%, where
si j 5(pi1pj )

2 and si jk5(pi1pj1pk)
2. We split the above

integral into three subintegrals:

I45S 1

2p D 3d24E ds234ds34ds134ds23ds13I 1I 2I 3 , ~16!

where

I 15E ddp1ddQ234d
(d)~p2p12Q234!d~p1

2!d~Q234
2 2s234!,

~17!

I 25E ddp2ddQ34d
(d)~Q2342p22Q34!d~p2

2!d~Q34
2 2s34!,

~18!

and

I 35E ddp3ddp4d (d)~Q342p32p4!d~p3
2!d~p4

2!. ~19!

We now constrain the integrations over thesi j by introducing
the following delta functions intoI4 :

d~s2342Q234
2 !d~s342Q34

2 !d~s1342Q134
2 !

3d~s2322p2•p3!d~s1322p1•p3!. ~20!

To derive representations of these integrals from wh
the phase space singularities can be conveniently extra
we bring the limits of integration for each integral from 0
1 using transformations of the formsi j 5l i(si j

12si j
2)1si j

2 ,
wheresi j

6 denote the maximum and minimum values of t
corresponding invariant masses. Using the delta function
simplify the integrations, performing the transformation
the variablesl i , and including the Jacobianu]si j /]lku, we
arrive at
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I45N4E
0

1

dl1dl2dl3dl4dl5d~l12l18!

3d~l22l28!d~l32l38!d~l42l48!d~l52l58!

3@l1~12l1!~12l2!#122e

3@l2l3~12l3!l4~12l4!#2e

3@l5~12l5!#21/22e. ~21!

We have extracted the overall normalization

N45R2FG~11e!

~4p!d/2 G 2FVd21

2d21 G 2
~4p!d

~2p!2d22

3
G2~222e!G~122e!

G2~11e!G4~12e!G2~1/22e!
. ~22!

The invariant masses have the following expressions
terms of thel i ~with s51):

s2345l1 ,

s345l1l2 ,

s235l1~12l2!l4 ,

s1345l21l3~12l1!~12l2!,

s135l5~s13
1 2s13

2 !1s13
2 , ~23!

with

s13
6 5~12l1!@l3l41l2~12l3!~12l4!

62Al2l3~12l3!l4~12l4!#. ~24!

Difficulties arise when we substitute the matrix eleme
into the four particle phase space and attempt to expand
expression using Eq.~8!. We will discuss in Sec. V theNf
contributions toe1e2→2 jets; the matrix elements for th
double real emission contribution to this process contain
nominators of the form 1/s34s234s134. Using Eq. ~23!, this
becomes

1

s34s234s134
5

1

l1
2l2@l21l3~12l1!~12l2!#

. ~25!

The third term in this denominator is singular when e.g. b
l2 ,l3→0, but not when only one does. If we combine t
denominator with the integration measure in Eq.~21!, and
attempt to naively expandl2

212e→2d(l2)/e1•••, l3
2e

→12e ln(l3)1•••, we will find unregulated singularities
as l3→0. The most convenient method for separating
overlapping singularities inl2 andl3 is sector decomposi
tion @11–13#. To illustrate this technique, a simple examp
suffices. We consider the integral
0-4
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I 5E
0

1

dxdyx212ey212e~x1y!2e. ~26!

The 1/x and 1/y factors cannot be expanded in plus distrib
tions, as the logarithms from the expansion ofx1y will
produce singular terms. We split this integral into two pa

I 15E
0

1

dxE
0

x

dyx212ey212e~x1y!2e,

I 25E
0

1

dyE
0

y

dxx212ey212e~x1y!2e. ~27!

In I 1 we sety85y/x, and inI 2 we setx85x/y. Performing
these variable changes, we find

I 15E
0

1

dxdyx2123ey212e~11y!2e,

I 25E
0

1

dxdyy2123ex212e~11x!2e. ~28!

The singularities inx andy are now separated in each int
gral, and can be extracted using Eq.~8!.

One great advantage of this technique is the ease
which it can be automated. The rules to determine whe
term requires sector decomposition are simple; if the exp
sion becomes singular when two~or more! variablesx,y
→0, but remains finite when eitherx→0 or y→0, then the
transformations discussed below Eq.~27! should be per-
formed. Another advantage of sector decomposition is th
can be applied to fractional powers in addition to denomi
tors, as illustrated in the example above.

We now discuss the application of this method to the
nominator in Eq.~25!, to show how it works in practice. It is
convenient to first separate the two singularities that can
cur if x→0 or x→1 by splitting the integration as

E
0

1

dx→E
0

1/2

dx1E
1/2

1

dx, ~29!

and changingx→x8 in the second integration so thatx51 is
mapped tox850. Doing so for the three variablesl1 , l2 ,
andl3 produces eight sectors. We focus on the sector wh
originally l1 ,l2 ,l3,1/2. The denominator has the form

D5
1

l1
2l2Fl21l3S 12

l1

2
D S 12

l2

2
D G . ~30!

We now perform a sector decomposition in the variablesl2
andl3 , using the transformations given below equation E
~27!: in sectora we setl2→l2l3 , and in sectorb we set
l3→l3l2 . Combining the Jacobian of the variable chan
with the denominator, we find the following expressions
each sector:
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l1
2l2l3Fl21S 12

l1

2
D S 12

l2l3

2
D G ,

D b5
1

l1
2l2F11l3S 12

l1

2
D S 12

l2

2
D G . ~31!

The terms in brackets are now finite in all limits; the denom
nators can be combined with the phase space measure
the standard decomposition in plus distributions can be u
to extract singularities. Note that the above transformati
must also be performed in the integration measure. A
splitting the integration as in Eq.~29!, the measure contain
terms of the form (12l i /2). After sector decomposition
these become (12l il j /2). If we had not performed this
split, we would have produced terms of the form (
2l il j ). These are potentially singular whenl i ,l j→1, and
would require further sector decomposition.

We must discuss two subtleties that can occur when us
the method presented above. The representation ofI4 we
have derived is convenient for expressions that do not c
tain s13 or s14 @see Eq.~23!# in the denominator. In such
terms, it is difficult to extract singularities inl2 ,l3 ,l4 that
appear after integrating overl5 . One can always remap th
momenta of the final state particles in a given diagram
such a way thats14 never appears in the denominator. F
those terms that contains13, we first bring the limits of the
s13 integration from 0 to 1 using the transformation

l̂55
s132s13

2

s13
1 2s13

2

s13
1

s13
. ~32!

We then derive the following expression for the four partic
phase space:

Î45N4E
0

1

dl1dl2dl3dl4dl̂5d~l12l18!d~l22l28!

3d~l32l38!d~l42l48!d~ l̂52l̂58!

3@l1~12l1!~12l2!#122e

3@l2l3~12l3!l4~12l4!#2e@ l̂5~12l̂5!#21/22e

3s13~ l̂5!@s13
1 s13

2 #21/22e

3$~12l̂5!~s13
1 2s13

2 !1s13
2 %2e. ~33!

Factors ofs13 that appear in the denominator are cancel
by the Jacobian of the nonlinear transformation of Eq.~32!,
and the remainingl̂5 integration does not produce dangero
singularities. Therefore, sector decomposition of thel̂5 inte-
gration is never required.

One further complication exists. Using the expressions
Eq. ~24!, we find
0-5
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@s13
1 s13

2 #21/22e5~12l1!2122eul2~12l3!

3~12l4!2l3l4u2122e. ~34!

This expression is singular on a manifold of points in t
interior of the phase space. We wish to move these singu
ties to the boundary of the integration region. To do so,
first note that the singularity occurs when

l4→l4
s5

l2~12l3!

l31l2~12l3!
; ~35!

this value is always in the integration region. We can the
fore split thel4 integration into two parts,

E
0

1

dl45E
0

l4
s

dl41E
l4

s

1

dl4 , ~36!

and then bring the integration limits back to 0 and 1. Doi
so produces two integrals,Î4

a and Î4
b , with all singularities

moved to the boundaries of the integration regions; these
be extracted using the sector decomposition technique
cussed above.

To summarize, we derive analytic results for the doub
real radiation corrections by following these steps:

We derive a factorized parametrization of the 1→4
phase-space as in Eq.~21! or Eq.~33!, in terms of kinematic
variables which range from 0 to 1.

We remove singularities from inside the allowed pha
space region to the boundaries by splitting appropriately
integrations and mapping them back to the@0,1# interval.

We then apply sector decomposition to disentangle
overlapping singularities.

Finally, we extract thee poles in terms of plus distribu
tions.

IV. THE UNITARITY CHECK

Having discussed the four particle phase space and
technique of sector decomposition, we now illustrate o
method by considering two examples of double real emiss
integrals with four propagators. These are the most com
cated phase space integrals that appear in 1→4 processes
We check our calculation of the double real emission corr
tions using their contributions to the imaginary parts
three-loop propagator diagrams. From the optical theo
we know that the imaginary parts of such diagrams are gi
by the sum of all cuts, where all possible combinations
internal propagators are put on-shell. The required cuts
include real-virtual and virtual-virtual ones. These are sim
to compute, as are the imaginary parts of the propag
diagrams. We can therefore derive analytic expressions
the real-real cuts, which we can compare with the results
obtain using the methods presented in the previous sect
The checks we perform in this section involve inclusive
tegrations over the real emission phase space, in orde
compare with the imaginary part of the relevant propaga
diagrams. We will demonstrate in the next section that
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implementation of jet functions into our method is simple
both principle and practice.

We begin by considering the maximally planar propaga
integrals which arise from Feynman graphs as the one sh
in Fig. 1. The sum of all cuts for these diagrams contribu
to thee1e2 total cross section. Here, we examine the und
lying scalar integral of these diagrams after we set their
merator to one. The analytic expression for this integral c
be found usingMINCER @15#; it is finite, and therefore its
imaginary part vanishes. The sum of all possible cuts of t
diagram must also vanish. This diagram has three dist
virtual-virtual cuts: the interference of a two-loop planar ve
tex correction tog* →qq̄ with the tree level contribution
diagram together with its complex conjugate, and the squ
of the one-loop vertex correction to this process. It has f
real-virtual cuts: two copies of the tree-level contribution
g* →qq̄g interfered with the vertex correction to this pro
cess with the gluon radiated off the opposite quark leg, a
two copies of its complex conjugate. Finally, it has two re
real cuts: the tree-level contribution tog* →qq̄gg with both
gluons radiated from a single quark line interfered with t
diagram where both gluons are radiated from the oppo
quark line, together with the complex conjugate of this co
tribution.

The first virtual-virtual term, the two-loop vertex correc
tion and its complex conjugate, is@16#

Vp5S G~11e!

~4p!d/2 D 2

R2S 1

2e4
2

4z2

e2
1

10z3

e
2

38z2
2

5 D ,

~37!

whereR2 is the two-particle phase space introduced in S
II. The second virtual-virtual contribution, the square of t
one-loop vertex correction, is

Vp
1l5S G~11e!

~4p!d/2 D 2

R2S 1

e4
2

2z2

e2
2

4z3

e
2

4z2
2

5 D . ~38!

The four real-virtual contributions give

RVp5S G~11e!

~4p!d/2 D 2

R2S 22

e4
1

8z2

e2
2

20z3

e
2

156z2
2

5 D .

~39!

The sum of the above contributions with a minus si
should equal the sum of the real-real cuts of this diagram.
obtain

FIG. 1. A planar propagator-type diagram contributing to t
e1e2 cross section at NNLO.
0-6
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Rp5S G~11e!

~4p!d/2 D 2

R2S 1

2e4
2

2z2

e2
1

14z3

e
1

198z2
2

5 D
5S G~11e!

~4p!d/2 D 2

R2S 0.5

e4
2

3.2899

e2
1

16.829

e
1107.15D .

~40!

In terms of the invariant masses introduced in the previ
section, this contribution should be equal to

Rp
num52K 1

s13s134s24s243
L , ~41!

where the factor of two indicates the sum of both real-r
cuts. This integral involves the invariant masss13; its calcu-
lation therefore requires extensive use of sector decomp
tion and the reparametrizationl5→l̂5 discussed in the pre
vious section. Using these techniques, and numeric
integrating the result usingVEGAS @17#, we obtain

Rp
num5S G~11e!

~4p!d/2 D 2

R2S 0.5

e4
1

~20.869.2!31025

e3

2
3.290960.0018

e2
1

16.82760.010

e

1107.1260.07D . ~42!

We have included theVEGAS errors for those terms which
require nontrivial integrations. The agreement between
analytic and the numerical results is better than 0.1% for
terms considered, and the differences are consistent with
integration errors.

We now consider the nonplanar topologies shown in F
2. Once again we focus on the scalar integral which is
tained from these topologies by setting their numerator
unity. The imaginary part of this integral vanishes; therefo
we can again verify our calculation of the double real em
sion contribution using sector decomposition by checking
cancellation of all possible cuts. This diagram has t
virtual-virtual cuts: the interference of the two-loop nonp
nar vertex correction with the tree levelg* →qq̄ diagram,
and its complex conjugate. It has four real-virtual cuts, e
of which involves the one-loop box correction tog* →qq̄g
interfered with the tree-level contribution. Finally, it has fiv
real-real cuts, of three distinct types: two cuts involving t
emission of two gluons off a single quark line interfered w
the emission of two gluons off the opposite quark line; tw
cuts where a radiated gluon splits into aqq̄ pair; one cut

FIG. 2. A nonplanar propagator-type diagram contributing to
e1e2 cross section at NNLO.
07601
s

l

si-

ly

e
ll
he

.
-
o
,
-
e
o

h

where a gluon is radiated from each quark line. Since we
considering only scalar diagrams, the first four cuts g
identical answers.

The virtual-virtual cuts sum to@16#

Vnp5S G~11e!

~4p!d/2 D 2

R2S 2

e4
2

38z2

e2
2

54z3

e
1

966z2
2

5 D .

~43!

The real-virtual contribution involves the integration of th
one-loop box diagram with one leg off-shell. There are tw
distinct ways of computing this diagram: either analytica
using e.g. a Mellin-Barnes representation, or numerically
ing sector decomposition in a fashion identical to our a
proach to the real-real terms. The second method is part
larly convenient, as it allows restrictions on the final-sta
phase space to be imposed easily. We now illustrate this t
nique.

The expression for the one-loop scalar box diagram w
one external leg off-shell, valid to all orders ine, is

B5
2

e2~4p!d/2

G~12e!2G~11e!

G~122e!

1

st

3F ~2t !2eF21S 1,2e,12e,2
u

sD
1~2s!2eF21S 1,2e,12e,2

u

t D
2~2M2!2eF21S 1,2e,12e,2

M2u

st D G . ~44!

Here,M2 is the virtuality of the off-shell leg, ands,t,u are
the usual Mandelstam variables. We setM251 in what fol-
lows and choose the Mandelstam variables to bes5sqq̄
5l2 , t5sq̄g5(12l2)l1 , u5sq̄g5(12l2)(12l1),
where we have used our notation from Sec. II. The expr
sion in Eq. ~44! must be integrated over the three partic
phase, together with an additional propagator 1/sq̄g coming
from the interference with the tree-level diagram, and
three-particle phase space in Eq.~2!. It is convenient to pro-
ceed in the following way. Using the integral representat
for the hypergeometric function,

F21~1,2e,12e,z!5
G~12e!

G~2e!
E

0

1

dt
t2e21

12tz
, ~45!

we can write the required integrals over the phase space
the auxiliary variablet in a form that is directly amenable t
sector decomposition. It is then a simple task to numerica
compute the expansion of the real-virtual corrections in po
ers of e using the techniques described above. The anal
result for the real-virtual cut was derived for the purpose
checking our calculation based on sector decomposit
summing the four cuts, we obtain

e

0-7
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RVnp5S G~11e!

~4p!d/2 D 2

3R2S 2
10

e4
1

128z2

e2
1

356z3

e
2

1108z2
2

5 D .

~46!

Requiring the cancellation of all cuts, we derive the fo
lowing analytic expression for the real-real contribution:

Rnp5S G~11e!

~4p!d/2 D 2

R2S 8

e4
2

90z2

e2
2

302z3

e
1

142z2
2

5 D
5S G~11e!

~4p!d/2 D 2

R2S 8

e4
2

148.04

e2
2

363.02

e
176.84D .

~47!

This result should be equal to the following sum of real-r
integrals:

Rnp
num5 K 1

s13s12s24s34
L 14K 1

s13s134s23s234
L . ~48!

Computing the above integrals using sector decomposit
we obtain

R5S G~11e!

~4p!d/2 D 2

R2S 8

e4
2

~5.866.4!31024

e3

2
148.0660.03

e2
2

363.0360.07

e
177.160.4D .

~49!

The result found using sector decomposition is again con
tent with that found by demanding the cancellation of
cuts, although the numerical precision of the finite piece
slightly worse. This can be improved with a more sophis
cated numerical integration technique.

We therefore conclude that our method can accommo
the most difficult real-real phase space integrals needed
1→4 processes. We next consider in detail theNf dependent
contributions to thee1e2→2, 3, and 4 jet cross section
This example addresses the two remaining issues we m
confront to fully validate our method: that jet functions c
be implemented simply, and that bookkeeping of the sec
~i.e., the expressions for thesi j in each sector as a function o
the rescaledl i) can be performed.
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V. Nf DEPENDENT CONTRIBUTION TO e¿eÀ\2,3,4 jets

In this section we illustrate our method in a realis
NNLO example. We compute theNf dependent contributions
to the 2 jet cross section at NNLO. When we wish to co
pute jet cross sections, we must include in our matrix e
ments a jet function, denoted byFJ in Sec. II, that deter-
mines whether a given configuration contains 2, 3, or 4 je
This function takes the invariant masses of all partonic pa
as its arguments. After splitting our result for the double r
emission contribution into sectors, the invariant masses t
different forms in terms of thel i in each sector. This pre
sents bookkeeping issues that must be addressed. We p
here that we can handle this problem by considering a r
istic example. Taken in conjunction with the calculation
the previous section of the most difficult integrals that app
in e1e2→2 jets, the reader should be convinced of t
power of our approach.

An example of the diagrams that contribute to theNf

dependent terms ofe1e2→ jets atO(aS
2) is shown in Fig. 3.

This diagram, together with the remaining contributio
where the internal bubble is attached to a single quark l
contains both virtual-virtual and real-real cuts. AtO(aS

2) we
must also consider the coupling constant renormalization
the O(aS) result. To present numerical results we must a
choose a jet algorithm; we use theJADE algorithm, with a
separation parametery50.1.

The virtual correction only contributes to the two-jet co
figuration. Therefore, we write

sV

s0
5d j ,2Nf S as

p D 2S 1

18e3
1

11

54e2
1

1

e S 2
11

18
z21

269

324D
1

5423

1944
2

13

27
z32

121

54
z2D , ~50!

where the Kronecker delta indicates the restriction to th
jet cross section. We compute the double real emission u
the approach described in the previous sections, and ex
the singularities prior to integration over any kinematic va
ables. Implementing the jet algorithm and performing t
integrations over the five-dimensional phase space num
cally, we obtain

FIG. 3. An example of anNf dependent diagram at NNLO.
sR

s0
5Nf S as

p D 2S d j ,2F2
~5.555360.0005!31022

e3
2

0.2036960.00005

e2
1

0.418060.0005

e
14.80860.003G

2d j ,3S 0.4100560.00016

e
12.937760.0018D1~1.456160.0018!31023d j ,4D . ~51!
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The O(as) cross section combines the virtual correcti
and the single real emission. We need this contribution
O(e) to derive its contribution to the NNLO cross sectio
Using the results in Sec. II, we derive

s (1)

s0
5S as

p DNf~@21.459760.00132~9.24260.004! e#d j ,2

1@2.457560.00121~6.11560.003! e#d j ,3!. ~52!
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07601
o
The O(as

2) contribution to thee1e2 annihilation into had-
rons is then written as

s (2)5sV1sR2
b0

e S as

p Ds (1). ~53!

The last term comes from the renormalization of the stro
coupling constant in theO(as) cross section; we need onl
keep the2Nf /6 term in the beta function. Adding these co
tributions, we obtain
s (2)

s0
5Nf S as

p D 2Fd j ,2S ~2.664.6!31026

e3
1

~1.465.5!31025

e2
2

~3.165.2!31024

e
11.79960.003D

1d j ,3S ~20.562.6!31024

e
21.91760.017D1~1.45660.002!31023d j ,4G . ~54!
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As we see, the divergences associated with various pi
disappear, with small remnants consistent with the integ
tion errors. The cancellation occurs independently for th
and 3 jet cross sections, as required. Finally, adding toge
the 2, 3, and 4 jet cross sections, we obtain the total hadr
cross section

s (2)

s0
5~20.11760.003!Nf S as

p D 2

, ~55!

which agrees with the known analytic result@14#:

s (2)

s0
5S 2

3
z32

11

12DNf S as

p D 2

520.115 Nf S as

p D 2

. ~56!

Again, the integration error of the finite piece can be i
proved with a more sophisticated numerical integration te
nique. We conclude that our method can be applied succ
fully to compute differential quantities.

VI. CONCLUSIONS

We have presented a new technique for computing dou
real emission corrections at NNLO. Our method uses se
decomposition of the four particle phase space, together
an expansion in plus distributions, to extract the phase-sp
singularities without any analytic integrations, and preser
the exact kinematics of the partonic event. The express
for the matrix elements obtained with this approach can
used as building blocks for Monte Carlo event generator

A phenomenologically attractive feature of our method
that constraints on the final-state phase space, including
ous jet algorithms, can be implemented simply. This make
possible to study radiative corrections to quantities of dir
experimental relevance. The method is completely au
mated, and flexible. It can be applied to any QCD or el
troweak process with massless particles in the final st
where the singularities from double-real unresolved radia
must be extracted.
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We have illustrated our approach usinge1e2→ jets at
O(aS

2) as an example. We have considered the most com
cated phase space integrals that appear. We have expl
checked our results for those integrals by performing an
clusive numerical integration over the phase space and c
paring with analyting results obtained by using the unitar
method. We have also demonstrated that our method is
pable of calculating differential quantities at NNLO by d
riving the Nf dependent contributions to theO(aS

2) cross
section for e1e2→ jets; this includese1e2→2 jets at
NNLO, e1e2→3 jets at NLO, ande1e2→4 jets at LO. The
1/e poles were cancelled numerically, and the finite piece
the inclusive cross section agrees with results in the lite
ture.

Results for the non-Nf contributions will be given else-
where. We have already presented here the calculation o
most difficult contributions needed for these terms. In ad
tion, the bookkeeping of the various sector decompositio
and the numerical integrations, have already been addre
here.

While a direct application of our formalism to more com
plicated phase spaces is a viable option, one could also u
profitably in conjunction with a dipole formalism. Sector d
composition can be applied to the dipoles to extract thee
singularities they contain, without the need for an analy
integration. The remainder can be integrated numerica
Sector decomposition of the finite terms should also impro
the numerical stability of the dipole approach.

There are several possibilities to develop the method
ther. It is interesting to investigate its direct application
1→5 processes. It is also important for many applications
study the factorization of the phase space when massive
ticles appear in the final state. Although the parametrizat
of the phase space is certainly more complicated in th
cases, we do not anticipate any significant limitations of
method. We also expect that the number of required se
0-9
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decompositions will be reduced in the presence of mas
particles.

Our method is a promising new technique for comput
real radiation contributions to NNLO cross sections, and
lows to obtain phenomenological results vital for the futu
of precision high energy physics. We look forward to t
application of our method to many important collider phys
processes.

Note added. While this paper was being completed, a ne
paper appeared which discusses the application of secto
composition to inclusive phase space integrals@18#.
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