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A new method for real radiation at next-to-next-to-leading order
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We propose a new method of computing real emission contributions to hard QCD processes. Our approach
uses sector decomposition of the exclusive final-state phase space to enable extraction of all singularities of the
real emission matrix elements before integration over any kinematic variable. The exact kinematics of the real
emission process are preserved in all regions of phase space. Traditional approaches to extracting singularities
from real emission matrix elements, such as phase space slicing and dipole subtraction, require both the
determination of counterterms for double real emission amplitudes in singular kinematic limits and the inte-
gration of these contributions analytically to cancel the resulting singularities against virtual corrections. Our
method addresses both of these issues. The implementation of constraints on the final-state phase space,
including various jet algorithms, is simple using our approach. We illustrate our methodafsing- jets at
O(a?) as an example.
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I. INTRODUCTION The current state-of-the-art can be illustrated using
e"e —2 jets as an example. Unresolved double real emis-
The future high energy collider physics experimental pro-sion corrections appear for the first time at NNLO. The 2 jet
gram will measure phenomenologically interesting quantitiesross section is currently computed at NNLO by taking the
with an unprecedented precision. To fully utilize these re-difference of theO(aé) ete”— hadrons cross section and
sults, accurate theoretical predictions are required. In particthe e e™ — 3 and 4 jet results at NLO and LO, respectively.
lar, the large value of the strong coupling constagimplies  Only the total 2 jet cross section can be derived using this
that perturbative QCD corrections through next-to-next-totechnique. All information concerning the invariant mass and
leading orderlNNLO) in ag are needed. The calculation of angular distributions of the jets is lost.
NNLO QCD corrections has advanced rapidly in the past The inability to compute the 2 jet cross section directly at
few years. The progress has resulted primarily because of tiéNLO arises from the poor understanding of the singular
realization that the computation of two-loop virtual correc-structure of the double real emission corrections. Infrared
tions can be algorithmically structured and automated. Thesand collinear singularities cancel between virtual and real
advances culminated in the evaluation of two-loop virtualcorrections only after integration over certain kinematic vari-
corrections for -3 and all massless—22 scattering pro- ables makes the d/poles in the real emission contributions
cesses in perturbative QC]. explicit. However, since a primary goal of computing higher
Unfortunately, these calculations have not yet producedrder QCD corrections to scattering processes is to produce
improved theoretical predictions for many observables. Thévlonte Carlo event generators that correctly describe the ki-
computation of infrared-safe quantities requires two addinematics of each partonic event, only a restricted region of
tional ingredients: the real-virtual contributions, which de-the final-state phase space can be integrated over. Only near
note the one-loop corrections to processes with one addthe edges of the available phase space, where two or more
tional parton in the final state, and the real-real contributionspartons become degenerate and combine to form a single jet,
which denote tree-level processes with two additional parean the integration be performed without changing the kine-
tons in the final state. The two components of the real-virtuamatics of the final state. All singularities occur in these lim-
contributions, one-loop virtual corrections and single emis4ts, and they can in principle be extracted and cancelled
sion amplitudes, have both been well studied. However, thaegainst those arising from virtual corrections. Unfortunately,
double emission corrections required for the real-real contrithese singularities overlap; this severely complicates their
butions are relatively unknown; the first steps towards underextraction.
standing them have been taken only recefly]. The existing approaches to computing double real emis-
sion corrections extend methods used to handle single real
emission amplitudes. There are two standard techniques for

*Email address: babis@slac.stanford.edu extracting single real emission singularities: phase space slic-
"Email address: kirill@phys.hawaii.edu ing [6,7] and dipole subtractiof8—10]. Extending these ap-
*Email address: frankp@pha.jhu.edu proaches to double real emission corrections requires two
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non-trivial steps: a determination of the simplified matrix the one-loop virtual corrections te" e~ —qq and the real
elements that approximate the complete double real emissio‘g}m‘,:'siOn procese™ e’—>qag
amplitudes in singular kinematic regions, and an integratio j

. . N We consider first the real emission correctiefe™
of these matrix elements over the unresolved regions of the

multiparticle phase space. The difference of the exact ang”499- The kinematics of the final state is fully described by
approximate matrix elements is by construction finite, andN® invariant massesqq,Sqq, and syy, which satisfy the
can be integrated numerically. The integration of the ap<onstraint
proximate matrix elements over the phase space boundaries

produces the requiredédpoles that cancel against the virtual Sqqt SqgT Sqg= S- (D)

corrections. Both steps must be completed to obtain an

NNLO prediction. Although some progress has recently beefyere sis the center of mass energy squared of the colliding

made[2-5], a functional method for calculating NNLO real gjectron and positron. The three particle phase space can be
emission corrections has not yet been demonstrated; a SUgitten as

stantial effort is still required to obtain phenomenological
results.
We present here a new approach to this problem. We il- J [dq][da][dg](27r)d5(d)(p1+ pz_q_a_ 9)
lustrate our technique by considering the extraction of singu-
larities from 1—4 processes, where the final state particles 1 R, st2e 1
are massless. Our approach is based upon a few ideas. We _ 2 S ANy AN T (1= Nq) NS €
first derive a factorized parametrization of the four particle (4m)32 T(1—e) Jo 17271 v
phase space following a simple procedure. We, then, use sec- 12
tor decomposition11-13 to separate the overlapping diver- X(1=Ap) ' 2
gences which appear in the double real emission matrix ele-
ments. After this separation is performed, the phase spaaghered=4-2¢, [dk]=d® *k/(27)9 *k,, R, is the inte-
singularities can be extracted using standard expansions grated phase space of the two massless particles,
terms of plus distributions. The processes of finding the re-
quired sectors and extracting the singularities are completely
automated. The resulting matrix elements are finite and fully Ro= 1 Qg1
differential, and can be used to create NNLO Monte Carlo 2 (27T)d—2 pd—1"’
event generators. We discuss in some detail the example of
e"e” — hadrons atO(aé), which includes the 2 jet cross
section at NNLO, the three jet cross section at NLO, and th
4 jet cross section at LO. W
The paper is organized as follows. In Sec. Il we introduce _ 2 (4
our method by consideringgte”—2jets at NLO and d
e"e”—3jets at the tree level. We begin our discussion of F(§>
the 2 jet cross section at NNLO in Sec. Il by describing our
parametrization of the four-particle phase space. We also ex- . . ) . .
plain how we use sector decomposition to separate the ovef'€ invariant masses have the following expressions in
lapping singularities that appear in the matrix elements. I{€MS OfA; andA:
Sec. IV we apply our technique to the two most difficult
interferences that appear in the double real emission contri- s;;=s(1—=X,)(1—X1), Sqg=S(1—Ap)\1, Sqg=S\;.
butions. After demonstrating that our method is powerful (5
enough to handle the most complicated scenario, we apply it
to a simple but realistic example in Sec. V: fNedependent | \hat follows we ses=1 for simplicity, and restore the
contribution toe* e~ — hadrons aD(a3). This process con- correct dimensions in final results.
tributes to the 2 jet cross section at NNLO, the 3 jet cross
section at NLO, and the 4 jet cross section at LO. Finally, w
present our conclusions and discuss future prospects in S

©)

gnde is the solid angle ird dimensions,

The matrix element for thq*—>qag process is given by
Gwo diagrams. Upon squaring these and using the expres-
ons for the invariant masses given in Eg), we derive[6]

VI.
5 32(1—¢) 5 o )
Il. THE NLO EXAMPLE IM|*=——(2(1-N)(1=Np) FAS+NT(1—Ny)
NAo(1—N))
We begin by considering thé(ag) contribution to 2
ete”—hadrons, which contains both the NLO correction to €[N+ A= N gho]). ©)

efe”—2jets and the LO contribution te*e™ — 3 jets. Al-

though many of the complexities of the NNLO case are abAfter substituting the expression for the matrix element
sent in this calculation, it illustrates several important fea-squared into the three-particle phase space, we arrive at the
tures of our method. At the partonic level, we must computeexpression
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1 d°or 1 “ o €[In"(\)
d\qdN ) —— “lte_T €
fo 19025, dx, N 65(7\)+§0 i ®
_ ! Rz fldxdx Ah,y) €1 h lus distribution is defined vi
_Wm . 1 2( 1 2) wnere a plus aistripution Is deftined via
X(L=Nq) (1= N5) 25g(N(,\>), 7 1 [In"(n 1 f(N)—f(0
( 1)« 2) “9(N1,N2) (7) fd" )E ) f(>\)=f dxln“(x){ ( ))\ ( )}_ ©
0 i 0

whereg(A1,\,) is a nonsingular function of tha;. The

phase space singularities in the above expression can be ex-
tracted before integration by using the standard decomposBubstituting this decomposition into E¢{), we derive the
tion in terms of plus distributions: following expression for the real emission cross section:

~0(h)  8(Np)
[Nole [Nads

d?or  B4mas  T'(1+e)| Ao\ 1
d)\ld)\z N 3 go (477)d/2

)\1 7\2
+(1— 7) SNy +| 1— ?) O(N1)—(N\y) 5(7\2)}

& €
1 (2—=2x1+AH)IN(1—\y) A

( MLUGSY
2-2 2)n(1—
+()\2_1+( Nt APIN(1-Ap)

A

Ay

)5()\2)
In(\y)
+ )\2

+

A

-3

4] ¥

)50\1)

+

1
A

1

Ao

’772 )\2
— 5 D) +1-g| 1T . (10)

+ +

o is the tree level cross section fw"'e__)qa oo It |52 clear from the eXpI’ESSiOI’lS in EC(S.O) and(ll) that the
=4magyQ?/s. For the calculation of the NLO corrections 1/€” poles cancel whewy and o are combined. The &/
to the 2 jet cross section we also require the virtual correcPOl€s ino require tha(tnslthelxl Oor A, vam(?]?. The jet func-
tions to thee*e~—qq process; we find6] tion becomeg e'theFJ (sqg,squo) or Fy (sqg,o,s_gg) n
these cases, i,e 2 jet configuration is always obtained. The
1/e poles of botho, andog occur in the 2 jet cross section;

doy _ 6477(130_ I'(l+e) they cancel after integrating ovey and\,, as required for
d\,dh, 3 0 (4r)972 infrared safe observables. Dropping the poles,inwe can
write the n jet cross section as an integral over the finite
1 1 2#7* 5 component of the partonic cross sections:

X —?—Z'f' 3 _E 5()\1)5(7\2)

1
(11 o= fo dN1dNF V(s Trinite - (14

We now discuss the calculation of thget cross section;
here,n equals either 2 or 3. We introduce the jet function It is straightforward to check that this correctly reproduces
known 2 and 3 jet cross sections for standard jet functions
FV(Sqa:Sqq:Sa0) = F (1= A ) (1—=Np) A (1—Np)hp).  [14])
3" (Sqa:SagSag) =F3(( 1) 2 2 (21)2) Several important aspects of this result generalize imme-
diately to NNLO calculations. We were able to extract the
Then jet cross section becomes singularities ine without performing any integrations. The
cancellation of the poles i can be checked numerically,
and these terms can then be discarded. We note that by cast-

1
Ugn):f dy\ld)\ngn)(sij)[gog()\l) S(\y) ing the subtraction operations needed for extracting ¢he
0 poles in terms of plus distributions, we have gained the flex-
d d ibility to combine our result with any jet function and with
A ] (13)  any constraint on an infrared safe differential quantity. This
dhidhy  dhgdh, greatly simplifies the calculation of NNLO cross sections.
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Ill. FOUR PARTICLE PHASE SPACE: 1
PARAMETRIZATION AND SECTOR DECOMPOSITION I4=N4JO dX1dN 0N 30N 4dN5S(N 1 — N 7)
We present here our parametrization of the four particle , , , ,
phase space. After deriving the relevant formulas, we discuss X 8(N2=Np) 6(A3=A3) 8(Na=Ng) S(A5—Asg)
the com_plicatio_n_s that_arise when we att_empt to e_xtract phas_e XNy (1=Nq)(1— )\2)]1—25
space singularities using the method discussed in the previ-
ous section. We show how sector decomposition of the phase X[NoN3(L—=N3g)Ng(1—Ny)]" €
space solves these problems, and apply the technique to a e
few examples. X[Ns(1=Ns)] : (21)
We begin with the following expression for the four par- o
ticle phase space: We have extracted the overall normalization
B Jo LCE T0g.1]? (am)e
I4:f [dp ][dp,][dpslldp,](27)° 4T 2 (4m)¥2| | 20-1| (27)2d-2
X 8D (p—py—p—Pa—Pa). (15) I'2(2-26)T(1—2¢)
X (22

. _ _ . o F2(1+e)l'*(1—e)l'3(1/2—¢)
This phase space is described by five independent invariant

masses. A czonvement set {3134752351534:513,524}1 where  The invariant masses have the following expressions in
sij=(pi+pj)° ands;j=(p;+p;+py)°. We split the above (grms of the; (with s=1):

integral into three subintegrals:

Sp3a= N1,
1 \3d-4
zf(ﬂ) f dS,3053408130S,:0813l 11513, (16) Sas= N1\,
where o=l

dy. gd (d) 2 2 S134= Aot A3(1—=N()(1—N\>5),
'1:j d%p1d°Q2340"” (P — P1— Q234 6(P7) 8(Q%34— S234),

(17 S13= \5(S13~S13) +S13, (23)
with
l= f d9p,09Q348D(Qy34— P2~ Q34) 8(P3) (Q54— Saa),

(18) S13= (1= N[ Nah g+ No(1—=N3)(1—\y)

= 2N A 5(1-Ng)hg(1-N)]- (24)
and
Difficulties arise when we substitute the matrix elements
_ 4. 4, 5@ s ) into the four particle phase space and attempt to expand the
I3= | d%psd®p46'™(Qas—P3—Pa)6(P3)8(P2). (19  gxpression using Eq8). We will discuss in Sec. V thé\
contributions toe*e™ —2 jets; the matrix elements for the
double real emission contribution to this process contain de-
nominators of the form $4,5,3:5134. Using Eq.(23), this
becomes

8(Sz34~ Q334 8(S34— Q34) (5134~ Q30) 1 1

X 8(S23— 2P P3) 8(S13— 2P1- Pa). (20) 53452345134: )\%)\2[)\2-%)\3(1—)\1)(1—)\2)]'

We now constrain the integrations over #eby introducing
the following delta functions int@,:

(29

To derive representations of these integrals from whichThe third term in this denominator is singular when e.g. both
the phase space singularities can be conveniently extracted,,\;— 0, but not when only one does. If we combine the
we bring the limits of integration for each integral from O to denominator with the integration measure in E21), and
1 using transformations of the fors;jz)\i(sﬁ—si])Jrsi], attempt to naively expandz’l’f—>—5()\2)/e+ ceey NG €
wheresﬁ denote the maximum and minimum values of the—1—eln(A3)+---, we will find unregulated singularities
corresponding invariant masses. Using the delta functions tas A;—0. The most convenient method for separating the
simplify the integrations, performing the transformation tooverlapping singularities ik, and 5 is sector decomposi-
the variables\;, and including the Jacobidis;; /d\,|, we  tion [11-13. To illustrate this technique, a simple example
arrive at suffices. We consider the integral
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1
I=f dxdyx 1y 17 €(x+y) e, (26)
0

The 1k and 1¥ factors cannot be expanded in plus distribu-
tions, as the logarithms from the expansion»>ofy will
produce singular terms. We split this integral into two parts

1 X
Il=f dxf dyx I ey 1 €(x+y) "€
o Jo

1 y
I2=f dyf dxx 1 ey 1me(x+y) e (27
o Jo

In I, we sety’=y/x, and inl, we setx’ =x/y. Performing
these variable changes, we find

1
l,= f dxdyx 13yl €(1+y) "¢
0

1
I2=J dxdyy 131 €(1+x) . (28)
0

The singularities ik andy are now separated in each inte-
gral, and can be extracted using E§).

PHYSICAL REVIEW D 69, 076010 (2004

1
pa= ,
N VR Y P
1273 2 2 2
: 1
DP= (31
2| 1] 1o 2[4
12 3 2 2

The terms in brackets are now finite in all limits; the denomi-
nators can be combined with the phase space measure, and
the standard decomposition in plus distributions can be used
to extract singularities. Note that the above transformations
must also be performed in the integration measure. After
splitting the integration as in E@29), the measure contains
terms of the form (% \;/2). After sector decomposition,
these become (A;\;/2). If we had not performed this
split, we would have produced terms of the form (1
—\i\j). These are potentially singular whan,\;j—1, and
would require further sector decomposition.

We must discuss two subtleties that can occur when using
the method presented above. The representatiofi, ofie
have derived is convenient for expressions that do not con-
tain s;3 or sy, [see EQ.(23)] in the denominator. In such

One great advantage of this technique is the ease witterms, it is difficult to extract singularities iN,,\3,\4 that
which it can be automated. The rules to determine when appear after integrating ovar. One can always remap the
term requires sector decomposition are simple; if the expresnomenta of the final state particles in a given diagram in

sion becomes singular when tw@@r more variablesx,y
—0, but remains finite when either—0 or y—0, then the
transformations discussed below E@®7) should be per-

such a way thast;, never appears in the denominator. For
those terms that contasy 3, we first bring the limits of the
S13 integration from 0 to 1 using the transformation

formed. Another advantage of sector decomposition is that it

can be applied to fractional powers in addition to denomina-

tors, as illustrated in the example above.

We now discuss the application of this method to the de-

nominator in Eq(25), to show how it works in practice. It is
convenient to first separate the two singularities that can o
cur if x—0 or x—1 by splitting the integration as

1

)

and changing—x’ in the second integration so that 1 is
mapped tox’ =0. Doing so for the three variables;, \,,

1/2 1

dx+ dx,
0 12

dx— (29

C

- ot
~ S13— 543 S
)\5: 13 13713 (32)

Si3—Sps 513’
We then derive the following expression for the four particle
phase space:

~ 1 “
I4:N4f d)\ld)\zd)\gd)\4d)\55()\l_)\5)5()\2_}\&)
0

X S(N3—N) d(Na— N} S(Rs—As')
X[N1(1=Np)(1—Np) ]t 28

andX ; produces eight sectors. We focus on the sector where

originally A1 ,\,,\3<1/2. The denominator has the form

|

We now perform a sector decomposition in the variables

1

e
1__
2

2

N2No| Ao+ Ng| 1— —

and\ 3, using the transformations given below equation Eq.

(27): in sectora we seth,—N\y\3, and in sectob we set

X[Noha(1=Ag)Na(1=Ng) ] TAs(1—Rg)] M2 €
X 13 As)[Sya57a] 2 €

X{(1—N\s)(S)5—S1a) +Spar>". (33

Factors ofs;3 that appear in the denominator are cancelled
by the Jacobian of the nonlinear transformation of 8%),

and the remaining s integration does not produce dangerous
singularities. Therefore, sector decomposition offtfgente—

A3—A3\,. Combining the Jacobian of the variable changegration is never required.

with the denominator, we find the following expressions in
each sector:

One further complication exists. Using the expressions in
Eq. (24), we find
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X(1=Ng)—Nghg 172 (34)
. S . . . FIG. 1. A planar propagator-type diagram contributing to the
This expression is singular on a manifold of points in the +g- <r0ss seF::tion a?NIF\)IL%. yp g g

interior of the phase space. We wish to move these singulari-

ties to the boundary of the integration region. To do so, we . . . . . .
first note that the singularity occurs when implementation of jet functions into our method is simple in

both principle and practice.

Ao(1—Na) We begin by considering the maximally planar propagator
)\4_>)\i:#, (35  integrals which arise from Feynman graphs as the one shown
A3t Aa(1—Ag) in Fig. 1. The sum of all cuts for these diagrams contributes

) ) ) _ ) ) to thee™ e~ total cross section. Here, we examine the under-
this value is always in the integration region. We can theretying scalar integral of these diagrams after we set their nu-

fore split theh 4 integration into two parts, merator to one. The analytic expression for this integral can
be found usingmINCER [15]; it is finite, and therefore its

Jld)‘ _ f}‘id)\ N Jl ~ 36 imaginary part vanishes. The sum of all possible cuts of this

e P A 4 diagram must also vanish. This diagram has three distinct

virtual-virtual cuts: the interference of a two-loop planar ver-

and then bring the integration limits back to 0 and 1. Doingt€X correction toy* —qq with the tree level contribution

so produces two integralif{ andiﬁ, with all singularities diagram together with its complex conjugate, and the square

moved to the boundaries of the integration regions; these ca?\f the one-loop vertex correction to this process. It has four

be extracted using the sector decomposition technique giteal-virtual cuts: two copies of the tree-level contribution to

cussed above. y*—>qag interfered with the vertex correction to this pro-
To summarize, we derive analytic results for the double-cess with the gluon radiated off the opposite quark leg, and
real radiation corrections by following these steps: two copies of its complex conjugate. Finally, it has two real-

We derive a factorized parametrization of the—#  real cuts: the tree-level contribution ¢ —qqgg with both
phase-space as in E@1) or Eq.(33), in terms of kinematic gluons radiated from a single quark line interfered with the
variables which range from 0 to 1. diagram where both gluons are radiated from the opposite

We remove singularities from inside the allowed phase-quark line, together with the complex conjugate of this con-
space region to the boundaries by splitting appropriately théribution.
integrations and mapping them back to {l@gl] interval. The first virtual-virtual term, the two-loop vertex correc-

We then apply sector decomposition to disentangle théion and its complex conjugate, [$6]
overlapping singularities.

Finally, we extract thes poles in terms of plus distribu-
tions. I'(1+e)
(477)(1/2

IV. THE UNITARITY CHECK (37

p=

? (1 4z, 1045 384%)
2\ T T o - T |

26 €2 € S)

Having discussed the four particle phase space and thv(\a/hereR is the two-particle phase space introduced in Sec
technique of sector decomposition, we now illustrate our " 2 d virt ‘? irt Ip trib pt th fth :
method by considering two examples of double real emissiorlr € second virtual-virtual contribution, the square of the
integrals with four propagators. These are the most compligne'IOOp vertex correction, Is
cated phase space integrals that appear-irdlprocesses.
We check our calculation of the double real emission correc-

tions using their contributions to the imaginary parts of V,1)'=
three-loop propagator diagrams. From the optical theorem

we know that the imaginary parts of such diagrams are given

by the sum of all cuts, where all possible com_binations ofThe four real-virtual contributions give
internal propagators are put on-shell. The required cuts also
include real-virtual and virtual-virtual ones. These are simple

to compute, as are the imaginary parts of the propagator
diagrams. We can therefore derive analytic expressions for RVp=
the real-real cuts, which we can compare with the results we

obtain using the methods presented in the previous sections.

The checks we perform in this section involve inclusive in-
tegrations over the real emission phase space, in order to The sum of the above contributions with a minus sign
compare with the imaginary part of the relevant propagatoshould equal the sum of the real-real cuts of this diagram. We
diagrams. We will demonstrate in the next section that theobtain

I'(l+e)

2 (1 27, 4g 48
(47T)d/2 2 .

r(l1+e)\®> [-2 8¢, 20z5 15602
(am¥2] e T 2 e 5

(39
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where a gluon is radiated from each quark line. Since we are
considering only scalar diagrams, the first four cuts give
identical answers.

FIG. 2. A nonplanar propagator-type diagram contributing to the The virtual-virtual cuts sum tp16]

e’e” cross section at NNLO.

F(l+e))2 (2 38¢, 54§3+966g§
2 - .

2 = —————— —
(raxe)’ (1 20 14, 1983 Voo | "2 4 2 e tTs
l@amee] TPlaet 2 e 5 (43
2
_[T(1+e) 05 3-2899+ 16-829+ 107 15 The real-virtual contribution involves the integration of the
B (4r)92 2| 4 €2 € B one-loop box diagram with one leg off-shell. There are two

distinct ways of computing this diagram: either analytically
(40 using e.g. a Mellin-Barnes representation, or numerically us-
éng sector decomposition in a fashion identical to our ap-
proach to the real-real terms. The second method is particu-
larly convenient, as it allows restrictions on the final-state

In terms of the invariant masses introduced in the previou
section, this contribution should be equal to

1 phase space to be imposed easily. We now illustrate this tech-
TSPTHN S
51351345245243 The expression for the one-loop scalar box diagram with

where the factor of two indicates the sum of both real-rea"® external leg off-shell, valid to all orders & is
cuts. This integral involves the invariant mass; its calcu-

lation therefore requires extensive use of sector decomposi- 2 I'(1-€)’T(1+e) 1

tion and the reparametrizatic)rg—ﬂls discussed in the pre- 62(47T)d/2 T'(1-2e¢) st

vious section. Using these techniques, and numerically
integrating the result usingeGAs [17], we obtain

—€ u
(_t) FZl 1,_6,1_6,_g

X
o [Ta+e)? [05 (-08:9.9x10°°
Ry = 2 2| 4 3 e u
(4m) € € +(=8) Fal L-el-e,— ¢
3.2909-0.0018 16.827-0.010 2,

a €2 + € —(—M2)5F21< 1,—6,1—6,—? } (44)
+107.12¢ 0.07) ) (42)  Here,M? is the virtuality of the off-shell leg, and,t,u are
the usual Mandelstam variables. We Bét=1 in what fol-

We have included th&eGAS errors for those terms which lows and chEose the Mandelstamivarlables tosbmqg
=No,  t=Sgg=(1—-Np)N1,  U=Sgg=(1—N)(1—\y),

require nontrivial integrations. The agreement between the_here we have used our notation from Sec. II. The expres-
analytic and the numerical results is better than 0.1% for aIWOn in Eq.(44) must be integrated over thé tHree artFi)cIe
terms considered, and the differences are consistent with th d- X 9 P
integration errors. phase, together with an additional propagataggtoming

We now consider the nonplanar topologies shown in Fig{LOrm thert:nlterf?]rence with it:?gat)reﬁ_ileveln(\j,lar%rirp{ anrd the
2. Once again we focus on the scalar integral which is ob- ee-particle phase space - LIS convenient to pro-

tained from these topologies by setting their numerator tcfoeret(:]énhtysefrglé%ﬂg?ﬂ\év?ghg{ﬁ)'?]g the integral representation

unity. The imaginary part of this integral vanishes; therefore,
we can again verify our calculation of the double real emis-
sion contribution using sector decomposition by checking the I'(l-e) (1
cancellation of all possible cuts. This diagram has two Fa(l-el-ez)= I'(—e) J
virtual-virtual cuts: the interference of the two-loop nonpla-

har vertex correction with the tree Ieve/f*—>qq diagram, we can write the required integrals over the phase space and
and its complex conjugate. It has four real-virtual cuts, eachjo 5 yiliary variable in a form that is directly amenable to

of which involves the one-loop box correction 46 —qdg  sector decomposition. It is then a simple task to numerically
interfered with the tree-level contribution. FinaIIy, it has five Compute the expansion of the real-virtual corrections in pow-
real-real cuts, of three distinct types: two cuts involving theers of e using the techniques described above. The analytic
emission of two gluons off a single quark line interfered with resylt for the real-virtual cut was derived for the purpose of
the emission of two gluons off the opposite quark line; twochecking our calculation based on sector decomposition;
cuts where a radiated gluon splits intogg pair; one cut summing the four cuts, we obtain

t—E—l

odtl—tZ'

(45)
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Ir(1+e))?
np— (47T)d/2
. ( 10+ 1282, . 356(4 1108§§) FIG. 3. An example of alN; dependent diagram at NNLO.
2\ T4 2 B
€ € € ° V. Ny DEPENDENT CONTRIBUTION TO ete™—2,3,4jets

(46) In this section we illustrate our method in a realistic
Requiring the cancellation of all cuts, we derive the fol- NNLO example. We compute tié¢; dependent contributions
lowing analytic expression for the real-real contribution: 0 the 2 jet cross section at NNLO. When we wish to com-
pute jet cross sections, we must include in our matrix ele-
[(1+¢) 2 8 907, 302, 1423 ments a jet function, denoted Wy; in Sec. Il, that deter-
a7 2 - + mines whether a given configuration contains 2, 3, or 4 jets.
(4m) This function takes the invariant masses of all partonic pairs
2 as its arguments. After splitting our result for the double real
8 148.04 363.02 26.84 emission contribution into sectors, the invariant masses take
2 e €2 € A different forms in terms of the\; in each sector. This pre-
(47) sents bookkeeping issues that must be addressed. We prove
here that we can handle this problem by considering a real-
This result should be equal to the following sum of real-realistic example. Taken in conjunction with the calculation in
integrals: the previous section of the most difficult integrals that appear
in e"e"—2 jets, the reader should be convinced of the
gl;m: <—> +4<—> _ (48 ~ Power of our approach. . _
$13512524534 $1351345235234, An example of the diagrams that contribute to tRe
dependent terms &' e” — jets atO(aé) is shown in Fig. 3.
Prhis diagram, together with the remaining contributions

np

et €2 € 5

I'(1+e)
(47T)d/2

Computing the above integrals using sector decompositio

we obtain where the internal bubble is attached to a single quark line,
T(1+e) 2 8 (5.8+6.4x104 contains both v!rtual—wrtual ar_ld real-real cuts.@\(as_) we

=|— o =5~ 5 must also consider the coupling constant renormalization of

(4) € € the O(ayg) result. To present numerical results we must also

choose a jet algorithm; we use thebde algorithm, with a
+77.1+04) . separathn parametg_r= 0.1. . _
The virtual correction only contributes to the two-jet con-
figuration. Therefore, we write

148.06+-0.03 363.03=0.07

62

(49
The result found using sector decomposition is again consis- g, ag\?l 1 11 1 11 269
tent with that found by demanding the cancellation of all —=9j2 f(?) 1853+ @Jr ;( - Eéﬁ @)
cuts, although the numerical precision of the finite piece is
slightly worse. This can be improved with a more sophisti- 5423 13 121 )
cated numerical integration technique. t =3 =0, (50
We therefore conclude that our method can accommodate 1944 27 >4

the most difficult real-real phase space integrals needed for

1—4 processes. We next consider in detail thedependent where the Kronecker delta indicates the restriction to the 2
contributions to thee™e™—2, 3, and 4 jet cross sections. jet cross section. We compute the double real emission using
This example addresses the two remaining issues we muste approach described in the previous sections, and extract
confront to fully validate our method: that jet functions canthe singularities prior to integration over any kinematic vari-
be implemented simply, and that bookkeeping of the sectorables. Implementing the jet algorithm and performing the
(i.e., the expressions for tisg in each sector as a function of integrations over the five-dimensional phase space numeri-
the rescaled\;) can be performed. cally, we obtain

(5.5553-0.0005 X102  0.20369-0.00005 0.4180+0.0005
- 3 - 5 + +4.808+0.003

€ €

2
IR _ [ %5 .
O,O_Nf( 77) (51,2

0.41005-0.00016 5
—dj3 +2.93770.0018 +(1.4561-0.001§ X 10" 6 4| - (51

076010-8
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The O(as) cross section combines the virtual correction The O(«2) contribution to thee™e™ annihilation into had-
and the single real emission. We need this contribution taons is then written as
O(e) to derive its contribution to the NNLO cross section.

. . . o
Using the results in Sec. Il, we derive S %<;s) e (53

oV [ ag The last term comes from the renormalization of the strong
o\ 7 N¢([—1.4597:0.0013-(9.242-0.004 €]5j>  coupling constant in th©(a.) cross section; we need only

keep the— N;/6 term in the beta function. Adding these con-
+[2.4575-0.0012+ (6.11550.003 €]dj3). (52  tributions, we obtain

e €2 €

o® ag\? (2.6+4.6)x10°% (1.4+55x%x10°° (3.1+52)x10°*
Ny 52 + - +1.799+0.003

(—0.5+2.6x10 4

—1.917+0.017 +(1.456+0.002 X 10735, 4] (54)

As we see, the divergences associated with various pieces We have illustrated our approach usiege — jets at
disappear, with small remnants consistent with the integrap(«3) as an example. We have considered the most compli-
tion errors. The cancellation occurs independently for the Zated phase space integrals that appear. We have explicitly
and 3 jet cross sections, as required. Finally, adding togeth@hecked our results for those integrals by performing an in-
the 2, 3, and 4 jet cross sections, we obtain the total hadronigysive numerical integration over the phase space and com-
cross section paring with analyting results obtained by using the unitarity
method. We have also demonstrated that our method is ca-
pable of calculating differential quantities at NNLO by de-
riving the Ny dependent contributions to tH@(a?2) cross
section forete”— jets; this includesete™—2 jets at
52 2 11 a2 ag\? NNLO, e*e” —3 jets at NLO, an.®+e‘ﬂ4jets :j-lt.LO..The

= (§§3— 1—2> f< ) =-0.115 Nf(?> (56) 1/e poles were cancelled numerically, and the finite piece for
the inclusive cross section agrees with results in the litera-
Again, the integration error of the finite piece can be im-ture.
proved with a more sophisticated numerical integration tech- Results for the nom; contributions will be given else-
nique. We conclude that our method can be applied succes@here. We have already presented here the calculation of the

2
: (55)

e

ag
—=(—0.117-0.003 N¢| —
(0] v

which agrees with the known analytic resfdd]:

(0] a

fully to compute differential quantities. most difficult contributions needed for these terms. In addi-
tion, the bookkeeping of the various sector decompositions,
VI. CONCLUSIONS and the numerical integrations, have already been addressed
he

_ . re.
We have presented a new technique for computing double \yhjle a direct application of our formalism to more com-

real emission corrections at NNLO. Our method uses sectQfjicated phase spaces is a viable option, one could also use it
decomposition of the four particle phase space, together With i1y in conjunction with a dipole formalism. Sector de-

an expansion in plus dlstr|but|o.ns_, to extract the phase-spa c%mposition can be applied to the dipoles to extract the 1/
singularities without any analytic integrations, and preserves.

the exact kinematics of the partonic event. The expressionsémgular.ities they contgin, without thg need for an anglytic
for the matrix elements obtained with this approach can b ntegration. The Te.ma'”der can be integrated numerlcally.
used as building blocks for Monte Carlo event generators, S¢Ctor decomposition of the finite terms should also improve
A phenomenologically attractive feature of our method isth® numerical stability of the dipole approach.
that constraints on the final-state phase space, including vari- 1here are several possibilities to develop the method fur-
ous jet algorithms, can be implemented simply. This makes ither. It is interesting to investigate its direct application to
possible to study radiative corrections to quantities of direcl—5 Processes. It is also important for many applications to
experimental relevance. The method is completely autostudy the factorization of the phase space when massive par-
mated, and flexible. It can be applied to any QCD or eleclicles appear in the final state. Although the parametrization
troweak process with massless particles in the final stat@f the phase space is certainly more complicated in those
where the singularities from double-real unresolved radiatiortases, we do not anticipate any significant limitations of the

must be extracted. method. We also expect that the number of required sector

076010-9



ANASTASIOU, MELNIKOV, AND PETRIELLO PHYSICAL REVIEW D69, 076010 (2004
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