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Thermodynamics of theO„N… nonlinear sigma model in 1¿1 dimensions
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The thermodynamics of theO(N) nonlinear sigma model in 111 dimensions is studied. We calculate the
pressure to next-to-leading order in the 1/N expansion and show that at this order, only the minimum of the
effective potential can be rendered finite by temperature-independent renormalization. To obtain a finite effec-
tive potential away from the minimum requires an arbitrary choice of prescription, which implies that the
temperature dependence is ambiguous. We show that the problem is linked to thermal infrared renormalons.
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I. INTRODUCTION

The O(N) nonlinear sigma model~NLSM! in 111 di-
mensions has been studied extensively at zero temperatu
a toy model for QCD. It is a remarkably rich theory, which
asymptotically free and has a dynamically generated m
gap. It is renormalizable both perturbatively and in the 1N
expansion. Moreover, forN53 it has instanton solutions
Unlike the NLSM in more than two dimensions, where t
theory is no longer renormalizable, there is no spontane
symmetry breaking of the globalO(N) symmetry. This re-
flects the Mermin-Wagner-Coleman theorem@1,2#, which
forbids spontaneous breakdown of a continuous symmetr
a homogeneous system in one spatial dimension at any
perature. Moreover, the model suffers from infrared~IR! di-
vergences in perturbation theory, since the fields are mas
in that case@3#. However, it was conjectured by Elitzur@4#
and shown by David@5# that the infrared divergences canc
in O(N)-invariant correlation functions. In addition, a ma
gap is generated nonperturbatively. In the large-N limit,
which is equivalent to summing all so-called daisy and
perdaisy graphs,m5m exp(22p/g2), whereg is the coupling
constant andm is the renormalization scale.

Dine and Fischler@6# investigated the NLSM in 111
dimensions at finite temperature. They calculated the
energy in perturbation theory and in the large-N limit. In the
weak-coupling expansion, they showed that the two-lo
contribution to the ideal gas vanishes and that the three-
contribution is infrared finite; the latter in fact also vanish
@7#. The leading-order calculation in the 1/N expansion
shows that a thermal mass of orderNg2T arises. This is a
nonperturbative result that shows that one is effectively d
ing with a gas of massive particles.

In this paper, we extend the analysis of Dine and Fisch
to next-to-leading-order~NLO! in the 1/N expansion. At zero
temperature, the effective potential~or equivalently the
Gibbs free energy! has been investigated at this order
Biscari et al. @8#. The 1/N correction to the thermodynami
potential has the interesting feature of containing renorma
singularities. We will show that it cannot in general be ren
malized in a temperature-independent way, except at
minimum as a function ofm2. Away from the minimum, one
0556-2821/2004/69~7!/076006~8!/$22.50 69 0760
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will need to introduce a temperature-dependent prescrip
to deal with the poles in the Borel plane.

Much is known about IR renormalons in theO(N) NLSM
in 111 dimensions@9–13#, but the consequences at fini
temperature have not yet been investigated. Thermal re
malons have been studied by Loewe and Valenzuela@14# in
f4 theory in 311 dimensions. In this theory, one deals wi
ultraviolet ~UV! renormalons only and thus it resembl
QED rather than QCD. They show that the residues of
UV renormalon poles in the Borel plane~which are on the
positive real axis, whereas in QCD they would be on t
negative real axis due to asymptotic freedom, such that t
do not affect the Borel transform@15#! in general are tem-
perature dependent, but the positions of the poles are not
will show that this is also the case for IR renormalons, e
cept at the minimum of the effective potential, where also
residues are temperature independent.

Blaizot et al. @16# have recently studied the Gross-Nev
model in 111 dimensions at finite temperature at NLO in th
1/N expansion. While there are similarities between t
model and the NLSM, such as dynamical mass genera
and asymptotic freedom, no problems related to IR renorm
lons are encountered in Ref.@16# ~see also Ref.@17#!. One
can uniquely define the effective potential at NLO at nonz
temperature.

The paper is organized as follows. In Sec. II, we discu
the NLSM at zero temperature. In Sec. III, we calculate
finite-temperature pressure at NLO. In Sec. IV, we disc
various approximations and compare them with exact
merical results. In Sec. V, we show that one cannot define
off-shell effective potential and this is related to thermal
frared renormalons. In Sec. VI, we summarize and conclu

II. ZERO TEMPERATURE

The Euclidean Lagrangian for the nonlinear sigma mo
is

L5
1

2
~]mF!21

1

2
a~F22Ng22!, ~1!

where the scalar fieldF5(f1 ,f2 , . . . ,fN) forms an
N-component vector anda is a Lagrange multiplier that en
©2004 The American Physical Society06-1
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ANDERSEN, BOER, AND WARRINGA PHYSICAL REVIEW D69, 076006 ~2004!
forces the constraintF2(x)5Ng22. The auxiliary fielda is
now written as the sum of a space-time independent ba
groundm2 and a quantum fluctuating fieldã; a5m21ã.
The Green’s functions ofF require wave function and cou
pling constant renormalization in the 1/N expansion, as dis
cussed by Rim and Weisberger@18# through NLO.

The Lagrangian in Eq.~1! is quadratic in the fieldsF and
the integral overF can therefore be done exactly. One th
obtains~cf. e.g. Ref.@19#!

Z5EDã expH 2
N

2
tr ln@p21m21ã#

1NE
0

b

dtEdxF1

2
m2g221

1

2
ãg22G J , ~2!

whereb51/T, such that at zero temperatureb5`. The next
step is to expand the functional determinant around the c
sical solution ã50 and integrate overã. By scaling ã

→ã/AN, it is seen that this expansion is equivalent to a 1N
expansion.

It is important to realize thatm2 is by definition the
vacuum expectation value ofa, i.e. it is the quantity with
respect to which we will minimize the effective potential
order to obtain the pressure. Beyond leading order in theN
expansionm2 receives divergent contributions. In order
show this, we rewrite the expression form2 in terms ofmf

2 ,
wheremf is defined as the pole of the propagatorDf(P,m)
of F. At NLO, Df(P,m) is given by

Df~P,m!5
Zf

P21m22~1/N!S~P,m!
, ~3!

whereZf is the wave function renormalization constant a

S~P,m!5E d2Q

~2p!2

1

~P1Q!21m2

1

P~Q,m!
~4!

is the self-energy function. Here,P(P,m) is the inverse
propagator forã:

P~P,m!52
1

2
E d2Q

~2p!2

1

Q21m2

1

~P1Q!21m2

52
1

4pP2j
lnS j11

j21D , ~5!

where j5A114m2/P2. Choosing renormalization poin
P252mf

2 , one obtains@20#

mf
2 5m21

m2

N
li S L2

m2D , ~6!

where li(x) is the logarithmic integral,
07600
k-

s-

li ~x!5PE
0

x

dt
1

ln t
. ~7!

Here,L denotes the ultraviolet momentum cutoff andP in-
dicates a principal-value prescription for the integral. So
ing Eq. ~6! for m2, we obtain

m25mf
2 2

mf
2

N
li S L2

mf
2 D . ~8!

In order to have a pole with a residue equal to unity, o
needsZf512(1/N)S8(P,m)uP252m

f
2 , which yields

Zf511
1

N
ln lnS L2

m2D . ~9!

The wave function renormalization Eq.~9! is in accordance
with that obtained by Flyvbjerg@20#. Rim and Weisberger
@18# calculated the wave function renormalization constan
dimensional regularization and it also agrees with Eq.~9! as
can be seen by identifying ln(L2/m2)→2/e whered522e.

The effective potentialV through next-to-leading order in
the 1/N expansion is given by

V5
m2N

2gb
2

2
1

2
NE d2P

~2p!2
ln@P21m2#

2
1

2
E d2P

~2p!2
ln@P~P,m!#, ~10!

where we have added a subscriptb to g to indicate explicitly
that it is the bare coupling constant. Evaluating the integr
in Eq. ~10! using an ultraviolet momentum cutoffL, one
obtains

V5
m2N

2gb
2

2
m2N

8p S 11 ln
L2

m2D 2
1

8p
F ~L212m2!ln ln

L2

m2

2m2li S L2

m2D 12m2S gE212 ln
L2

4m2D G . ~11!

Here and in the subsequent results we have drop
m-independent divergences and terms that vanish in the l
L2→`.

To obtain the pressure, one evaluates the effective po
tial at its minimum. The condition for the minimum is give
by equation

]V
]m2

50. ~12!

Equation~12! is often referred to as a gap equation. Diffe
entiating Eq.~11!, one obtains
6-2
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4p

gb
2

5S 12
2

N
D ln

L2

m2

1
1

N F2 ln ln
L2

m2
2 li S L2

m2D 12gE14 ln 2G . ~13!

To see that Eq.~13! becomes finite after coupling consta
renormalization, we first express it in terms ofmf

2 , using Eq.
~8!:

4p

gb
2

5S 12
2

ND ln
L2

mf
2

1
2

N S ln ln
L2

mf
2

1gE1 ln 4D . ~14!

The renormalization constant forg is denoted byZg2
21 and is

given by

Zg2
21

511
g2

4p
S 12

2

N
D ln

L2

m2 1
1

N

g2

2p
ln ln

L2

m2 . ~15!

Making the substitutiongb
2→Zg2g2(m), we obtain the renor-

malized gap equation:

4p

g2~m!
5S 12

2

N
D ln

m2

mf
2

1
2

N
~gE1 ln 4!. ~16!

The expression Eq.~15! for Zg2
21 is exact ing2(m) up to

order 1/N2 corrections and results in the known NLOb
function @8,18,21#:

b~gb
2!5L

dgb
2

dL
52S 12

2

ND gb
4

2p S 11
1

N

gb
2

2p D , ~17!

b~g2!5m
dg2

dm
52 S 12

2

ND g4

2p
. ~18!

Using the gap equation, one can obtain the value of the
fective potentialV at the minimum, where it equals the pre
sureP. In terms of bare quantities, we obtain

P T5052~N22!
m2

8p
2

1

8p
L2 ln

4p

gb
2

. ~19!

This equation will be used to subtract the pressure at z
temperature from the pressure at finite temperature.

III. FINITE TEMPERATURE

The results at zero temperature are obtained analytic
but at finite temperature this is in general not possib
Therefore, we will investigate the pressure numerica
However, we are able to isolate the ultraviolet divergen
analytically.

The effective potential through next-to-leading order
1/N is now given by
07600
f-

ro

ly,
.
.
s

V5
m2N

2gb
2 2

1

2
NX P ln@P21m2#2

1

2
X P ln@PT~P,m!#,

~20!

where the inverse propagatorPT(P,m) is the finite tempera-
ture version of Eq.~5! and we have defined the sum-integr

X P[T (
p052npT

E dp

2p
. ~21!

Summing over Matsubara frequencies and averaging o
angles,PT(P,m) reduces to

PT~P,m!5E
2`

` dq

Eq
R~P,q!@112n~Eq!#, ~22!

whereEq5Aq21m2 andn(x)5@exp(bx)21#21 is the Bose-
Einstein distribution. The functionR(P,q) is given by

R~P,q!52
1

4p

P212pq

~P212pq!214p0
2Eq

2 . ~23!

The inverse propagator cannot be evaluated analytically
we will evaluate it numerically. For this purpose, it is nece
sary to isolate ultraviolet divergences analytically. As e
pected on general grounds, i.e. from the absence
temperature-dependent ultraviolet divergences, and as
fied numerically, the quantity

F15X P ln PT~P,m!2E d2P

~2p!2
ln PT~P,m!, ~24!

is finite. To calculateF1 we used an Abel-Plana formul
@22#. In order to isolate the divergences we consider the li
p@T, where we can approximate

PT~P,m!'P~P,m!2
1

4p

P2

P414m2p0
2

J1~bm!

[PHE
T ~P,m!, ~25!

whereP(P,m) is given in Eq.~5! and

J1~bm!54E
0

` dq

Eq
n~Eq!. ~26!

In order to split off the prefactor of the logarithm inPT50,

we define P̃(P,m)524pAP2(P214m2)P(P,m). This
gives the following contribution to the free energy:

D152
1

2
E d2P

~2p!2
ln@P214m2#

52
m2

2p S 11 ln
L2

4m2D . ~27!
6-3
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ANDERSEN, BOER, AND WARRINGA PHYSICAL REVIEW D69, 076006 ~2004!
In order to isolate the infinities, we need the large-P behav-

ior of P̃HE
T (P,m):

P̃HE
T ~P,m!5 ln

P2

m̄2
1

2m2

P2 ~11J1!2
4m2p0

2

P4 J11OS m4

P4D ,

~28!

wherem̄25m2 exp(2J1). This yields

E d2P

~2p!2
ln@P̃HE

T ~P,m!#5D21finite terms, ~29!

where

D25
1

4p FL2ln ln
L2

m̄2
2m̄2 li S L2

m̄2D G1
m2

2p
ln ln

L2

m̄2
.

~30!

Finally, we define

F25E d2P

~2p!2
ln@P̃~P,m!#2D2 . ~31!

Again we have checked numerically that the quantityF2 is
finite, demonstrating that we have identified all ultravio
divergences.

By putting everything together, the finite temperature
fective potential becomes

V5
Nm2

2gb
2

2
Nm2

8p S 11 ln
L2

m2D 1
N

8p
T2J0~bm!

2
1

2
~F11D11F21D2!, ~32!

where

J0~bm!5
8

T2E
0

` dqq2

Eq

n~Eq!. ~33!

We again note that we have systematically dropp
m-independent divergences and terms that vanish in the l
L2→`.

The gap equation~12! at nonzero temperature now b
comes

4p

gb
2

5 ln
L2

m̄2
1

1

N F2 ln ln
L2

m̄2
2

dm̄2

dm2
li S L2

m̄2D
22 ln

L2

4m2
14p

d~F11F2!

dm2 G . ~34!

From the fact thatgb
2 is temperature independent, one c

conclude thatm̄2 is also temperature independent at lead
order in the 1/N expansion, when it is a solution to the ga
equation. We will use this fact later on to conclude that
pressure can be renormalized in a temperature-indepen
way.
07600
t

-

d
it

g

e
ent

The calculation of the self-energyS(P,m) at p050 and
p252mf

2 , at finite temperature yields

m25mf
2 2

m̄f
2

N F li S L2

m̄f
2 D 1F3G , ~35!

whereF3 is a finite function that depends on the temperat
as well asmf . Since we usemf merely as a way to expres
the renormalized gap equation in terms of finite quantiti
any choice ofF3 will do and we chooseF350. We have
checked numerically that other choices indeed do not a
the final result for the pressure. Using Eq.~35!, Eq. ~34! now
becomes

4p

gb
2

5 ln
L2

m̄f
2

1
1

N F2 ln ln
L2

m̄f
2

22 ln
L2

4mf
2

14p
d~F11F2!

dmf
2 G .

~36!

To render the gap equation finite, we again only need
make the substitutiongb

2→Zg2g2(m), whereZg2
21 is given by

Eq. ~15!. The renormalized gap equation then becomes

4p

g2~m!
5S 12

2

N
D ln

m2

m̄f
2

1
2

N F J1~bmf!1 ln 412p
d~F11F2!

dmf
2 G . ~37!

Using the gap equation, we obtain the value of the effect
potential at the minimum which is equal to the pressu
Using Eq.~35! and expanding theJ0 andJ1 functions, one
ultimately obtains for the pressure at nonzero tempera
minus the pressure Eq.~19! at zero temperature,

P[P T2P T505
N22

8p
@mf

2 ~0!2mf
2 #

1
N

8p
@T2J0~bmf!1mf

2 J1~bmf!#

1
1

2 Fmf
2

d~F11F2!

dmf
2

2F12F2G , ~38!

whereF1 andF2 are functions ofT2 andmf
2 5mf

2 (T), and
mf

2 (0)5mf
2 (T50). We have numerically evaluated the e

pression for the pressure, after solving Eq.~37! for mf(T).
The result for different values ofN is shown in Fig. 1, for the
arbitrary choiceg2(m5500)510; henceT is given in the
same units asm. As can be shown and seen in the figu
P/NT2 approaches anN-dependent constant~to be evaluated
below! at large temperatures, which forN→` is p/6. More-
over, it approaches zero in the limit of zero temperature
we normalize the pressure, for a given value ofN, to its value
at T5`, we find that the normalized pressure has a v
small dependence onN.
6-4
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IV. HIGH-TEMPERATURE APPROXIMATIONS

In Ref. @23#, Bochkarev and Kapusta consider the nonl
ear sigma model in 311 dimensions, which is nonrenorma
izable, at NLO in the 1/N expansion. Since the result for th
pressure cannot be obtained analytically, they resort t
‘‘high-energy approximation’’~HEA!. We will make the
same approximation and compare it with the exact numer
results obtained in Sec. III.

The idea of the high-energy approximation is that in t
part of PT proportional to the distribution functionn(Eq),
the important contribution comes from the region whe
p0 ,p@q. One can therefore approximate the self-ene
PT(P,m) by its high-energy behavior. In the present ca
this amounts to

PT~P,m!'P~P,m!2
1

4p

P2

~p0
21v1

2 !~p0
21v2

2 !
J1 ,

~39!

where v65Ap21m26m. This expression is identical to
Eq. ~25!. After simply discarding theT50 contribution to
PT(P,m), as done in Ref.@23#, the effective potential is
approximately given by

VHEA5
m2N

2gb
2

2
1

2
NX P ln@P21m2#2

1

2
X P ln P2

1
1

2
X P ln@p0

21v1
2 #1

1

2
X P ln@p0

21v2
2 #.

~40!

The resulting expression for the gap equation is

Ngb
225NX P

1

P21m2 2X P

v1
2

mEp

1

p0
21v1

2

1X P

v2
2

mEp

1

p0
21v2

2
. ~41!

FIG. 1. Pressure as a function of temperature at NLO for diff
ent values ofN.
07600
-
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al

y
,

Again, the gap equation requires coupling constant renorm
ization. In this approximation, the renormalization consta
is

Zg2
21

511
g2

4p
S 12

2

N
D ln

L2

m2 , ~42!

which is consistent with the perturbative renormalizati
constant to leading order ing2. Making the substitutiongb

2

→Zg2g2, we obtain

15
g2

4pN FNJ12K1
12K1

212~N22!ln
m

mG , ~43!

where the functionK1
6 is

K1
6564E

0

`dpv6

mEp
n~v6!. ~44!

Note, however, that the pressure is finite even when we s
stitute the unrenormalized gap equation~41! into Eq. ~40!:

PHEA5
N

8p
@J0T21~J121!m2#1

p

6
T2

2
1

8p
@~K0

11K0
2!T21~K1

11K1
222!m2#,

~45!

where the functionK0
6 is

K0
65

8

T2E
0

` dpp2

Ep

n~v6!. ~46!

From Fig. 2, one can see that the high-energy approxima
underestimates the pressure compared to the exact re
The advantage of an approximation like the high-energy
proximation is that the analytic calculations are simpler a
that it is easier to implement numerically.

- FIG. 2. Pressure as a function of temperature at NLO for diff
ent values of N compared with the high-energy and high
temperature approximations.
6-5
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We suggest a different approximation, which is better th
the high-energy approximation. We will calculate the inve
ã propagatorPT by first integrating over the momentum. W
obtain

PT~P,m!52
1

2b
(

q052npT

1

Am21q0
2

3
P212q0p0

P414q0~q01p0!P214m2p2
. ~47!

In the limit m!T, we can approximatePT(P,m) by
PHT

T (P,m), where we keep only theq050 mode in the sum
Eq. ~47!:

PHT
T ~P,m!52

1

2

1

bm

P2

P414m2p2
. ~48!

Since it follows from the leading order gap equation that
high temperature and for all values of the coupling consta
m!T, we call this approximation the high-temperature~HT!
approximation. By using the result thatP414m2p2 can be
written as @p0

21(p1 im)21m2#@p0
21(p2 im)21m2# and

shifting p→p6 im after taking the logarithm, the function
F1 andF2 can be approximated by

F1'
1

2p
T2J0~bm!2

p

3
T2, F2'0. ~49!

A numerical calculation ofF11F2 shows that form/T
&0.1 this approximation has an error smaller than 10 p
cent. ApproximatingF1 and F2 using the high-energy ap
proximation is less accurate. The result for the pressur
the high-temperature approximation is shown for compari
in Fig. 2 @again forg2(m5500)510].

One can approximate the pressure even further by
panding the functionsJ0 andJ1 in the limit bm→0:

J05
4p2

3
24pbm22S log

bm

4p
1gE2

1

2D ~bm!2

1O„~bm!4
…, ~50!

J15
2p

bm
12S log

bm

4p
1gED1O„~bm!2

…. ~51!

Inserting the approximations given in Eqs.~49! and~51! into
the gap equation~37!, one obtains

bm'pF S 2p

g2~m!
2

ln 4

N D S 11
2

ND2gE2 ln
mb

4p G21

,

~52!

which indicates thatbm;1/lnT for large T. In the limit
m/T→0, we obtain for the high-temperature approximati
of the pressure
07600
n
e

r
t,

r-

in
n

x-

P
NT2

'
p

6
S 12

1

N
D 2S 12

2

N
D m

4T
, ~53!

where the first term is the pressure of a gas of free mass
particles withN21 degrees of freedom.

V. THERMAL RENORMALONS

We have shown that a finite pressure at finite tempera
can be obtained after subtraction of the zero-tempera
pressure and coupling constant renormalization. This ag
with the general expectation that ultraviolet divergences
connected with short-distance physics and therefore inde
dent of the temperature. While we have shown this explic
at NLO in the 1/N expansion, this is not the case for th
effective potential away from its minimum.

In the expression Eq.~11! for the effective potential at
zero temperature, the two contributionsL2 ln ln(L2/m2) and
m2li( L2/m2) cannot be removed usingm-independent
counterterms.1 While this may not be a problem at zero tem
perature, it would certainly become one at finite temperat
whenm becomes a function of temperature. This would im
ply temperature-dependent renormalization, which is not
ceptable. In Ref.@8#, these two divergences are dealt with b
considering the effective potential normalized to its ze
mass value, i.e.VNLO(m)2VNLO(0). This subtraction is ill-
defined due to infrared divergences and therefore one sh
understand it as subtracting the contributions fro
ln@P(P,m)# obtained in the limitP2/m2→` @24#. This is
called the ‘‘perturbative tail.’’ If we denoteP(P,m) in this
limit by P`(P,m), one findsP`(P,m)5 ln(P2/m2)/(4pP2)
and

E d2P

~2p!2 ln@P`~P,m!#5
1

4p FL2 ln ln
L2

m2
2m2li S L2

m2D G ,

~54!

where we have implicitly used the principal-value prescr
tion. In Refs.@8,24,25#, this subtraction is not motivated, bu
we point out that the subtracted contribution is associa
with IR renormalons. As shown in Ref.@11#, the vacuum
expectation value ofa, i.e. m2, is inherently ambiguous
when one tries to separate~in order to subtract! perturbative
contributions proportional toL2 from the nonperturbative
ones proportional tom2 in the limit whereL2@m2. In Ref.
@11#, it was shown that

^0uau0&5mLO
2 1

4pmLO
2

N
E d2P

~2p!2

1

P

]P

]mLO
2

1OS 1

N2D ,

~55!

1Note that the quantityL2 ln ln(L2/m2)2L2 ln ln(L2/m2) ~with m
Þm) diverges asL2→`, whereas ln ln(L2/m2)2ln ln(L2/m2) van-
ishes.
6-6
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where mLO
2 [L2 exp(24p/gb

2) and the 1/N contribution
arises from the tadpole diagram shown in Fig. 3. One
show that this equation is in agreement with the gap equa
~13! if we write m25mLO

2 1mNLO
2 /N.

The part of the integral in Eq.~55! that has the IR renor
malon pole in the Borel plane is in fact the contribution fro
the integrand in the limitP2/m2→`:

EL d2P

~2p!2

1

P`

]P`

]m2
52

1

4p
li S L2

m2D
52

1

4p

L2

m2
e2xEi~x!, ~56!

wherex5 ln(L2/m2). In the limit x→`, the logarithmic inte-
gral has the asymptotic expansion:

e2xEi~x!5 (
n50

` n!

xn11
7 ipe2x

5E
0

`

db
e2bx

12b
7 ipe2x, ~57!

where arg(b)56«. From Eq.~57!, it is clear that there is a
renormalon pole atb51. This shows that whenL→` the
value of^0uau0& is inherently ambiguous at NLO, due to th
freedom in the choice of prescription. David has shown t
this ambiguity also arises in dimensional regularization@10#.

The same problem appears in the calculation of the ef
tive potential, butnot in the gap equation. The latter can b
seen from the last term of Eq.~10!, which contributes to the
gap equation as follows:

1

2

]

]m2
E d2P

~2p!2
ln P5

1

2
E d2P

~2p!2

1

P

]P

]m2
. ~58!

FIG. 3. Tadpole diagram contributing to^a& at next-to-leading

order in 1/N. The wavy line represents theã propagator and the
solid line theF propagator.
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The ambiguity that would arise from this term when remo
ing its perturbative tail@cf. Eq.~56!# cancels in the gap equa
tion ~13! against the one arising inm2 @cf. Eq. ~55!#.

The perturbative tail of the effective potential, i.e. the fir
two terms ofD2 defined in Eq.~30!, corresponds to poles in
the Borel plane atb50 andb51, respectively. Sincem̄2 is
only temperature independent at the minimum~at LO only,
but that is sufficient since we are working at NLO!, the sub-
traction of the perturbative tail will become temperature d
pendent, except at the minimum. Since subtractin
temperature-dependent divergences renders the rema
temperature-dependent terms ambiguous, we refrain f
following this strategy and thus from trying to define a fini
effective potential at finite temperature. In order to avoid a
renormalon ambiguity, we have also not considered obta
ing a finite effective potential or even a finite pressure at z
temperature. However, we have calculated the quantityP T

2P T50, which is free of renormalon ambiguities and is
nite after a temperature-independent coupling constant re
malization.

Finally, we comment on the possible temperature dep
dence of renormalon contributions to^a& and the effective
potential. One can show that Eq.~55! at finite temperature
has exactly the same renormalon contribution, i.e. neither
pole nor the residue become temperature dependent.
ondly, the perturbative tail of the effective potential which
given by the first two terms ofD2, corresponds to poles in
the Borel plane atb50 and b51. The positions of the
renormalon poles are not affected by temperature. Only
residues become temperature dependent, except at the
mum of the potential, as we concluded earlier. The fact t
renormalon pole positions are not affected by temperat
but residues are, is also the case for the thermal ultravi
renormalons inf4 in 311 dimensions studied by the au
thors of Ref.@14#.

VI. SUMMARY AND CONCLUSIONS

To summarize, we have calculated the pressure in
NLSM at finite temperature to NLO in the 1/N expansion.
Our main result is that we obtain an unambiguous, fin
pressure, by subtracting the zero-temperature value of
pressure and renormalization of the coupling constant i
temperature-independent way. This procedure cannot be
ried out away from the minimum of the effective potenti
and we have argued that defining a finite, effective poten
by the subtraction of the so-called perturbative tail, leads
ambiguities associated with IR renormalons. In gene
these become temperature dependent, and this casts dou
the usefulness of defining a finite effective potential.

We have calculated the expression for the pressure a
nite temperature numerically and observe that the 1/N expan-
sion is a meaningful expansion for all temperatures. We h
also investigated the high-energy approximation that w
originally applied to the NLSM in 311 dimensions by Bo-
chkarev and Kapusta. In 111 dimension, where one ca
compare with exact numerical results, we have shown th
underestimates the pressure for all temperatures. We h
6-7
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suggested an improved approximation, the so-called h
temperature approximation. This approximation has the
vantage that it is quite easy to produce numerical results
agrees better with the exact results. At asymptotically h
temperatures the pressure approaches that of a gas ofN21
free massless particles.
-
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h-
d-
nd
h

ACKNOWLEDGMENTS

We would like to thank Jan Smit for useful discussion
H.J.W. thanks Rob Pisarski for a fruitful discussion. The
search of D.B. has been made possible by financial sup
from the Royal Netherlands Academy of Arts and Scienc
ys.
@1# N.D. Mermin and H. Wagner, Phys. Rev. Lett.17, 1133~1966!.
@2# S.R. Coleman, Commun. Math. Phys.31, 259 ~1973!.
@3# J. Zinn-Justin,Quantum Field Theory And Critical Phenom

ena, 3rd ed.~Oxford University Press, Oxford, 1996!.
@4# S. Elitzur, Nucl. Phys.B212, 501 ~1983!.
@5# F. David, Commun. Math. Phys.81, 149 ~1981!.
@6# M. Dine and W. Fischler, Phys. Lett.105B, 207 ~1981!.
@7# J.O. Andersen, D. Boer, and H.J. Warringa~unpublished!.
@8# P. Biscari, M. Campostrini, and P. Rossi, Phys. Lett. B242,

225 ~1990!.
@9# F. David, Nucl. Phys.B209, 433 ~1982!.

@10# F. David, Nucl. Phys.B234, 237 ~1984!.
@11# F. David, Nucl. Phys.B263, 637 ~1986!.
@12# M. Beneke, V.M. Braun, and N. Kivel, Phys. Lett. B443, 308

~1998!.
@13# M. Beneke, Phys. Rep.317, 1 ~1999!.
@14# M. Loewe and C. Valenzuela, Mod. Phys. Lett. A15, 1181
~2000!.

@15# G. ’t Hooft, Under the Spell of the Gauge Principle, Advanced
Series in Mathematical Physics Vol. 19~World Scientific, Sin-
gapore, 1994!, p. 547.

@16# J.P. Blaizot, R. Mendez-Galain, and N. Wschebor, Ann. Ph
~N.Y.! 307, 209 ~2003!.

@17# J.L. Kneur and D. Reynaud, J. High Energy Phys.01, 014
~2003!.

@18# C. Rim and W.I. Weisberger, Phys. Rev. Lett.53, 965 ~1984!.
@19# V.A. Novikov, M.A. Shifman, A.I. Vainshtein, and V.I. Za-

kharov, Phys. Rep.116, 103 ~1984!.
@20# H. Flyvbjerg, Phys. Lett. B245, 533 ~1990!.
@21# J. Orloff and R. Brout, Nucl. Phys.B270, 273 ~1986!.
@22# G. Barton, J. Phys. A14, 1009~1981!; 15, 323 ~1982!.
@23# A. Bochkarev and J. Kapusta, Phys. Rev. D54, 4066~1996!.
@24# M. Campostrini and P. Rossi, Phys. Rev. D45, 618~1992!; 46,

2741~E! ~1992!.
@25# M. Campostrini and P. Rossi, Phys. Lett. B242, 81 ~1990!.
6-8


