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Thermodynamics of the O(N) nonlinear sigma model in H1 dimensions
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The thermodynamics of th©(N) nonlinear sigma model in-41 dimensions is studied. We calculate the
pressure to next-to-leading order in thélgxpansion and show that at this order, only the minimum of the
effective potential can be rendered finite by temperature-independent renormalization. To obtain a finite effec-
tive potential away from the minimum requires an arbitrary choice of prescription, which implies that the
temperature dependence is ambiguous. We show that the problem is linked to thermal infrared renormalons.
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[. INTRODUCTION will need to introduce a temperature-dependent prescription
to deal with the poles in the Borel plane.
The O(N) nonlinear sigma mode(NLSM) in 1+1 di- Much is known about IR renormalons in t@{N) NLSM

mensions has been studied extensively at zero temperatureiasl+1 dimensiong9-13], but the consequences at finite
a toy model for QCD. It is a remarkably rich theory, which is temperature have not yet been investigated. Thermal renor-
asymptotically free and has a dynamically generated masmalons have been studied by Loewe and ValenzListhin
gap. It is renormalizable both perturbatively and in th 1/ ¢* theory in 3+1 dimensions. In this theory, one deals with
expansion. Moreover, foN=3 it has instanton solutions. ultraviolet (UV) renormalons only and thus it resembles
Unlike the NLSM in more than two dimensions, where the QED rather than QCD. They show that the residues of the
theory is no longer renormalizable, there is no spontaneoudV renormalon poles in the Borel plar@hich are on the
symmetry breaking of the glob&@(N) symmetry. This re- positive real axis, whereas in QCD they would be on the
flects the Mermin-Wagner-Coleman theordm?2], which  negative real axis due to asymptotic freedom, such that they
forbids spontaneous breakdown of a continuous symmetry ido not affect the Borel transforiil5]) in general are tem-
a homogeneous system in one spatial dimension at any terperature dependent, but the positions of the poles are not. We
perature. Moreover, the model suffers from infrafél) di-  will show that this is also the case for IR renormalons, ex-
vergences in perturbation theory, since the fields are masslesept at the minimum of the effective potential, where also the
in that casq3]. However, it was conjectured by Elitz{] ~ residues are temperature independent.
and shown by David5] that the infrared divergences cancel  Blaizot et al. [16] have recently studied the Gross-Neveu
in O(N)-invariant correlation functions. In addition, a mass model in 1 dimensions at finite temperature at NLO in the
gap is generated nonperturbatively. In the lakydimit, 1/N expansion. While there are similarities between this
which is equivalent to summing all so-called daisy and susmodel and the NLSM, such as dynamical mass generation
perdaisy graphsn= u exp(—27/g?), whereg is the coupling  and asymptotic freedom, no problems related to IR renorma-
constant angk is the renormalization scale. lons are encountered in Rgfl6] (see also Refl17]). One

Dine and Fischlef6] investigated the NLSM in £1  can uniquely define the effective potential at NLO at nonzero
dimensions at finite temperature. They calculated the freéeémperature.
energy in perturbation theory and in the lafgdimit. In the The paper is organized as follows. In Sec. Il, we discuss
weak-coupling expansion, they showed that the two-looghe NLSM at zero temperature. In Sec. lll, we calculate the
contribution to the ideal gas vanishes and that the three-loofthite-temperature pressure at NLO. In Sec. IV, we discuss
contribution is infrared finite; the latter in fact also vanishesvarious approximations and compare them with exact nu-
[7]. The leading-order calculation in the NL/expansion merical results. In Sec. V, we show that one cannot define an
shows that a thermal mass of ordeg?T arises. This is a Off-shell effective potential and this is related to thermal in-
nonperturbative result that shows that one is effectively dealfrared renormalons. In Sec. VI, we summarize and conclude.
ing with a gas of massive patrticles.

In this paper, we extend the analysis of Dine and Fischler Il. ZERO TEMPERATURE
to next-to-leading-ordeiNLO) in the 1N expansion. At zero
temperature, the effective potentigbr equivalently the
Gibbs free energyhas been investigated at this order by

The Euclidean Lagrangian for the nonlinear sigma model

Biscari et al. [8]. The 1N correction to the thermodynamic 1 5 5 72

potential has the interesting feature of containing renormalon L= E(aﬂcl)) + 50‘(@ —-Ng ™), )
singularities. We will show that it cannot in general be renor-

malized in a temperature-independent way, except at itsvhere the scalar fieldd=(¢1,d5, ...,hy) forms an

minimum as a function of?. Away from the minimum, one N-component vector and is a Lagrange multiplier that en-
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forces the constrainb?(x)=Ng~ 2. The auxiliary fielda is X
now written as the sum of a space-time independent back- "(X)=77J0 dt
groundm? and a quantum fluctuating field; o=m?+a.

The Green'’s functions ob require wave function and cou- Here A denotes the ultraviolet momentum cutoff aBdn-

pling constant renormalization in theNLexpansion, as dis- gicates a principal-value prescription for the integral. Solv-
cussed by Rim and Weisbergd] through NLO. ing Eq. (6) for m?, we obtain

The Lagrangian in Eq1) is quadratic in the field$ and

1

Int’ @)

the integral overd can therefore be done exactly. One then m2 [ A2
obtains(cf. e.g. Ref[19]) m?=m2— —2i _) ®)

N m2

N ¢

Z= JD“ exp[ - Etrln[p2+m2+a] In order to have a pole with a residue equal to unity, one
needsZ¢=1—(1/N)2’(P,m)|pz:_m§, which yields

fﬁdfd12—2 Sag? 2 )

+Nor X5 mg +§ag , (2 L A2
Z,=1+—Inin| — 9

whereB=1/T, such that at zero temperatyse=c. The next M

step is to expand the functional determinant around the clas-
sical solutionw=0 and integrate oven. By scaling}} The wave function renormalization E(P) is in accordance
with that obtained by Flyvbjerg20]. Rim and Weisberger
[18] calculated the wave function renormalization constant in
dimensional regularization and it also agrees with j.as
can be seen by identifying IN®/u?)—2/e whered=2—e.

The effective potential’ through next-to-leading order in
the 1N expansion is given by

—al N, it is seen that this expansion is equivalent toMd 1/
expansion.

It is important to realize thatn?® is by definition the
vacuum expectation value af, i.e. it is the quantity with
respect to which we will minimize the effective potential in
order to obtain the pressure. Beyond leading order in tNe 1/
expansionm? receives divergent contributions. In order to

show this, we rewrite the expression fof in terms ofm? m’N 1 o*P
: ; ¢ V=———= f In[ P2+ m?]
wherem,, is defined as the pole of the propagals(P,m) Zgﬁ 2 (27)2
of ®. At NLO, D ,4(P,m) is given by
1f i IN[IT(P,m) (10
Z -z n ,m) |,
D 4(P,m)= 2 (3) 2) (2m)? P

P24+ m2—(LUN)S(P,m)’

where we have added a subsciib g to indicate explicitly
that it is the bare coupling constant. Evaluating the integrals
in Eqg. (10) using an ultraviolet momentum cutoff, one

whereZ,, is the wave function renormalization constant and

d’Q 1 1 ;
E(P,m)zf 7 obtains
(2m)2 (P+Q)2+m? I1(Q,m)
m’N  m?N A% 1 , , A?
is the self-energy function. HerdI(P,m) is the inverse V= 297 Y. l+|n§ e (A%+2m )Inlnﬁ
propagator fora:
A? A?
2 —m?li| — | +2m?| yg—1—-In—||. 11
1 d’Q 1 1 I(m2 Ye 4m2” (13)
I(p,m=-- 2, 2 2, 2
2) (27)2Q°+m* (P+Q)°+m _
Here and in the subsequent results we have dropped
mrindependent divergences and terms that vanish in the limit
- ; n(ﬂ (5) A% oo,
47P2g \E-1) To obtain the pressure, one evaluates the effective poten-

tial at its minimum. The condition for the minimum is given
where ¢=1+4m?/P?. Choosing renormalization point by equation
P2=—mj, one obtaing20]

av
m? [ A2 —=0. (12
m2=m?+ —Ili| —|, (6) gm?
N | m2
Equation(12) is often referred to as a gap equation. Differ-
where li(x) is the logarithmic integral, entiating Eq.(11), one obtains
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4o 2\ A2 m’N 1 1
— =[1-Z|In— V=—s =N PIn[PZerZ]——ipIn[HT(P,m)],
9 N/ m2 20, 2 2
(20)
1 A? A? . - . .
+—|2Inln——li| — | +2ye+4In2|. (13 where the inverse propagatdr (P, m) is the finite tempera-
N m2 m2 . ture version of Eq(5) and we have defined the sum-integral

To see that Eq(13) becomes finite after coupling constant

renormalization, we first express it in termsmj), using Eq.
(8):

2\ A? A?
= 1—N |nm—(2ﬁ+ﬁ Inlnm—é+yE+In4

4

(14
gs

The renormalization constant fgris denoted b32;21 and is
given by

2

L9
Zgz =1+ E

A% 1 @? A2
In—+——|n|n—2.
N 27 M

2
1— —

N (15

PE

Making the substitutiony;— Z,2g%(x), we obtain the renor-
malized gap equation:

(21)

dp

=T 3 [2

ip p():%'l’)TT 277

Summing over Matsubara frequencies and averaging over
angles,IIT(P,m) reduces to

HT(P,m):f £ R(P.Q)[1+2n(E)], (22)
|

whereE,= g2+ m? andn(x) =[exp(8x)—1] ! is the Bose-
Einstein distribution. The functioR(P,q) is given by

1 P2+2pq
R(P,q)=—— :
Pa==7 (P2+2pq)?+4p3ES

(23

The inverse propagator cannot be evaluated analytically, so
we will evaluate it numerically. For this purpose, it is neces-

A7 2\ w? 2 sary to isolate ultraviolet divergences analytically. As ex-
> =1-— In—2+—(yE+In 4). (16) pected on general grounds, i.e. from the absence of
9°(u) N my, N temperature-dependent ultraviolet divergences, and as veri-

The expression Eq(15) for ng21 is exact ing?(u) up to

fied numerically, the quantity

order 1N? corrections and results in the known NL® . d’P .
function[8,18,21: FlziP InTI (P,m)—J SInIL(P.m),  (24)
(27
, dgp 2\ gy (. 10 e
B(@)=A——=—|1-—| =|1+ = —|, (17 is finite. To calculateF; we used an Abel-Plana formula
dA N/ 2m N 2 [22]. In order to isolate the divergences we consider the limit
p>T, where we can approximate
5, 99 2\ 9’ 18
B(g)—ﬂm—— N2 (18 1 p2

Using the gap equation, one can obtain the value of the ef-
fective potential) at the minimum, where it equals the pres-

" (P,m~II(P,m)— —

————J:(Bm)
A P44+ 4mPp}

sureP. In terms of bare quantities, we obtain =II{(P,m), (25)
m2 1 . wherell(P,m) is given in Eq.(5) and
PT=0=—(N-2)———A?%In—. (19
87 8w o2 = dq
b Ji(Bm)=4 . E—n(Eq). (26)
q

This equation will be used to subtract the pressure at zero

temperature from the pressure at finite temperature.

Ill. FINITE TEMPERATURE

In order to split off the prefactor of the logarithm I "=°,

we define II(P,m)= —47yP3(P2+4m?)II(P,m). This

gives the following contribution to the free energy:

The results at zero temperature are obtained analytically, 1 2p
but at finite temperature this is in general not possible. Dl:——f In[ P2+ 4m?]
Therefore, we will investigate the pressure numerically. 2J) (2m)?
However, we are able to isolate the ultraviolet divergences
analytically. m2 A2
The effective potential through next-to-leading order in =——|14+In— (27
1/N is now given by 277( 4m?
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In order to isolate the infinities, we need the lagdsehav-
ior of TI[,g(P,m):

- P2 2m? am?pj m*
M e(P,m)=In= +F(1+Jl)——4\]1+(9 ik
m
(28)
wherem?=m? exp(—J,). This yields
*P
f In[TI[(P,m)]=D,+finite terms,  (29)
(2m)?
where
1 A% [ A? m? A2
D,=—/| A?2InIn——-m?li | — | [+ —InIn—.
a m2 m2 2 m2
(30)
Finally, we define
P
F2=f In[TT(P,m)]—D,. (31
(2m)?

Again we have checked numerically that the quarfityis

finite, demonstrating that we have identified all ultraviolet

divergences.

By putting everything together, the finite temperature ef-

fective potential becomes

Nm?> Nm? A? N
V=——>———|1+Ih— + —T2Jo(Bm)
Zgb 8 m 8
1
_§(F1+D1+F2+D2), (32)
where
8 (= dgqg?
Jo(ﬁm)=§ E—n(Eq)- (33

q

We again note that we have systematically dropped
mrindependent divergences and terms that vanish in the limit

A%,
The gap equatiorf12) at nonzero temperature now be-
comes
4 A2 A2 dm? [ A2
—=I—=—+—(2InIn=-—Ii| =
gg  m? m?  dm? \m?
A? d(F1+Fy)
—21In +47 . (39
4m? dm?

PHYSICAL REVIEW D69, 076006 (2004

The calculation of the self-energy(P,m) at p,=0 and

p’=— m(zﬁ, at finite temperature yields
, AZ
m?=m3 — N li +F,l, (35
m,

whereF 3 is a finite function that depends on the temperature
as well asm,,. Since we usen, merely as a way to express
the renormalized gap equation in terms of finite quantities,
any choice ofF3; will do and we choosd-;=0. We have
checked numerically that other choices indeed do not alter
the final result for the pressure. Using E85), Eq. (34) now
becomes

4w A% 1 A? A? d(F1+F,)
—=In—+—|2InIn—=—-21n +4 .
g m; m;, 4mj, dms,

(36)

To render the gap equation finite, we again only need to
make the substitutiog? — Z,29?(), WhereZg_z1 is given by
Eq. (15). The renormalized gap equation then becomes

A 2 w?
1-— Inr2
9() N my,
2 dF{+F,) 37
+—| Ju(Bmy+na+2m———|. (3
N dm?,

Using the gap equation, we obtain the value of the effective
potential at the minimum which is equal to the pressure.
Using Eq.(35) and expanding thé, and J; functions, one
ultimately obtains for the pressure at nonzero temperature
minus the pressure E¢L9) at zero temperature,

PEPT—PT:(’:E[mfﬁ(O)—mé]

N
+ E[TZJowm) +m3J1(Bmy)]

1 dF{+F,)
Tl Pt SR

¢

(38

WhereFl and F, are functions off? and m¢ m¢(T) and
m¢(0) m (T 0). We have numerically evaluated the ex-
pression for the pressure, after solving E8j7) for m,(T).
The result for different values & is shown in Fig. 1, for the
arbitrary choiceg?(=500)=10; henceT is given in the
same units ag:.. As can be shown and seen in the figure,

From the fact thagj is temperature independent, one canp/NT? approaches aN-dependent constaftb be evaluated
conclude tham? is also temperature independent at leadingbelow) at large temperatures, which fdr— o is 7/6. More-
order in the IN expansion, when it is a solution to the gap over, it approaches zero in the limit of zero temperature. If
equation. We will use this fact later on to conclude that thewe normalize the pressure, for a given valudpfo its value
pressure can be renormalized in a temperature-independeait T=c, we find that the normalized pressure has a very

way.

small dependence ON.
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FIG. 1. Pressure as a function of temperature at NLO for differ-

FIG. 2. Pressure as a function of temperature at NLO for differ-
ent values olN.

ent values of N compared with the high-energy and high-

temperature approximations.
IV. HIGH-TEMPERATURE APPROXIMATIONS

In Ref. [23], Bochkarev and Kapusta consider the nonlin-Again, the gap equation requires coupling constant renormal-
ear sigma model in 81 dimensions, which is nonrenormal- ization. In this approximation, the renormalization constant
izable, at NLO in the M expansion. Since the result for the S
pressure cannot be obtained analytically, they resort to a
“high-energy approximation”(HEA). We will make the
same approximation and compare it with the exact numerical
results obtained in Sec. Ill.

The idsa of the high-energy approximation is that in theyhich is consistent with the perturbative renormalization
part of I1" proportional to the distribution function(Eg),  ¢onstant to leading order ig%. Making the substitutiory?
the important contribution comes from the region whereHZ »g2, we obtain

g 1

Po.P>q. One can therefore approximate the self-energy
I1T(P,m) by its high-energy behavior. In the present case,

2\ AZ2
1-—|In— 42
N (42)

2

this amounts to 1:% NJl—Kj—K;+2(N—2)|n% , (43
T - p? where the functiork; is
H (Pam)%H(Pim)_4— 2 2 2 2 ‘]la 1
T (pot wi)(pgt o)
(39 Ki—+4focdpw+ ”
e R O (44

where w. =+p?+m?+m. This expression is identical to
Eq. (25). After simply discarding theT=0 contribution to  Note, however, that the pressure is finite even when we sub-

II'(P,m), as done in Ref[23], the effective potential is stitute the unrenormalized gap equati@) into Eq. (40):
approximately given by

N 2 29, T2
,PHEAZE[‘]OT +(J1—1)m ]+ ET

m’N 1 1
Viea=———=N_tp |n[P2+m2]——ip In P2
295 2 2 1
- 8—[(K3+ Ko) T2+ (K{ +Ky —2)m?],
1 2 2 1 2 2 "
+ o mipg+ ol 1+ o pg+ 0?1 45)

(400 where the functiorK, is

The resulting expression for the gap equation is . 8 (= dpp?
Ko== N(w-). (46)
TJo Ep
5 1 o 1
nenge ¥ | | -
Y P p2im? " mE, p2+w? From Fig. 2, one can see that the high-energy approximation
underestimates the pressure compared to the exact result.

w? 1 The advantage of an approximation like the high-energy ap-
+j: ME. 2. 2" (41) proximation is that the analytic calculations are simpler and

ME po+ o< that it is easier to implement numerically.
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We suggest a different approximation, which is better than P n 1 2\ m
the high-energy approximation. We will calculate the inverse - = _( . ( 1— _) — (53
« propagatof1” by first integrating over the momentum. We NT2 6 N N/ 4T
obtain
where the first term is the pressure of a gas of free massless
1 1 particles withN—1 degrees of freedom.
n'Pm=-— > —
2,8 qo=2n7T \/m2+ q(2)
V. THERMAL RENORMALONS
P2+ 2q,po - -
% (47) We have shown that a finite pressure at finite temperature

P*+4qo(do+ po) P*+4m?p?

In the limit m<T, we can approximatdl™(P,m) by
HLT(P,m), where we keep only the;=0 mode in the sum
Eq. (47):

11 p?
I/ (P,m)=—-—

_ . (48)
2 M p4+4m?p?

can be obtained after subtraction of the zero-temperature
pressure and coupling constant renormalization. This agrees
with the general expectation that ultraviolet divergences are
connected with short-distance physics and therefore indepen-
dent of the temperature. While we have shown this explicitly
at NLO in the 1N expansion, this is not the case for the
effective potential away from its minimum.

In the expression Eql) for the effective potential at
zero temperature, the two contributiong In In(A%n?) and
m2li( A%2/m?) cannot be removed usingr-independent

Since it follows from the leading order gap equation that forcounterterms.While this may not be a problem at zero tem-
high temperature and for all values of the coupling constantperature, it would certainly become one at finite temperature

m<T, we call this approximation the high-temperat(irs)
approximation. By using the result thRf*+4m?p? can be
written as [p3+ (p+im)2+m?][p3+ (p—im)?+m?] and

shifting p— p=xim after taking the logarithm, the functions

F, andF, can be approximated by

1 ™
Fi~5—T2Jo(Bm)— 3 T%  Fp~0.

5 (49

A numerical calculation ofF;+F, shows that form/T

whenm becomes a function of temperature. This would im-
ply temperature-dependent renormalization, which is not ac-
ceptable. In Ref(8], these two divergences are dealt with by
considering the effective potential normalized to its zero-
mass value, i.eVy o(m) —Vno(0). This subtraction is ill-
defined due to infrared divergences and therefore one should
understand it as subtracting the contributions from
In[II(P,m)] obtained in the limitP?/m?—o [24]. This is
called the “perturbative tail.” If we denotél(P,m) in this

limit by II..(P,m), one findsIl..(P,m)=In(P¥m)/(47P?)

=<0.1 this approximation has an error smaller than 10 perand

cent. ApproximatingF, and F, using the high-energy ap-
proximation is less accurate. The result for the pressure in . 42p 1
the high-temperature approximation is shown for comparison J’

in Fig. 2[again forg?(u=500)=10].

One can approximate the pressure even further by ex-

panding the functiong, andJ, in the limit Bm—0:

JOZ T—477/3m—2 |OQE+ YE— E (,Gm)

+0((BM)Y), (50
J =2—7T+2 Iog'g—m+ +0O((BmM)?) (51)
1~ Bm 4 'E '

Inserting the approximations given in E¢49) and(51) into
the gap equatio37), one obtains

27 In4 2 up
o R e

-1
Lm=~

’

(52

which indicates thai8m~1/InT for large T. In the limit

A? A?
A2Inln——-mali| —

NP M= — il .

(54)

where we have implicitly used the principal-value prescrip-
tion. In Refs.[8,24,25, this subtraction is not motivated, but
we point out that the subtracted contribution is associated
with IR renormalons. As shown in Ref11], the vacuum
expectation value ofy, i.e. m?, is inherently ambiguous,
when one tries to separafi@ order to subtragtperturbative
contributions proportional to\? from the nonperturbative
ones proportional tan? in the limit whereA?>m?. In Ref.
[11], it was shown that

47TmEOJ‘

(0]@|0y=m{o+ N

N2
(55

?2P 1 4l (1)

— +0
(2m)2 11 om?,

INote that the quantity\? In In(AZm?)—AZ In In(A%?) (with u

m/T—0, we obtain for the high-temperature approximation=m) diverges as\?—, whereas In Ing%m?)—In In(A%x?) van-

of the pressure

ishes.
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The ambiguity that would arise from this term when remov-
ing its perturbative tailcf. Eq.(56)] cancels in the gap equa-
tion (13) against the one arising im? [cf. Eq. (55)].

The perturbative tail of the effective potential, i.e. the first
two terms ofD, defined in Eq(30), corresponds to poles in

the Borel plane ab=0 andb=1, respectively. Sincen’ is

only temperature independent at the minim(ah LO only,

but that is sufficient since we are working at NJ,Ghe sub-

traction of the perturbative tail will become temperature de-

pendent, except at the minimum. Since subtracting

temperature-dependent divergences renders the remaining

FIG. 3. Tadpole diagram contributing {er) at next-to-leading temperature-dependent terms ambiguous, we refrain from

order in 1N. The wavy line represents the propagator and the following this strategy and thus from trying to define a finite
solid line the® propagator. effective potential at finite temperature. In order to avoid any

renormalon ambiguity, we have also not considered obtain-

ing a finite effective potential or even a finite pressure at zero
where mEOEAZ exp(—4w/gﬁ) and the 1IN contribution temperature. However, we have calculated the quafitity
arises from the tadpole diagram shown in Fig. 3. One cam P '~ °, which is free of renormalon ambiguities and is fi-
show that this equation is in agreement with the gap equatioRite after a temperature-independent coupling constant renor-

(13) if we write m?= mEO+ mﬁ,_O/N. mali_zation. _

The part of the integral in E¢55) that has the IR renor- Finally, we comment on.the_ possible temperature qlepen-
malon pole in the Borel plane is in fact the contribution from dence of renormalon contributions {a) and the effective
the integrand in the limiP?/m?— o: potential. One can show that E(R5) at finite temperature

has exactly the same renormalon contribution, i.e. neither the
pole nor the residue become temperature dependent. Sec-
JA d?P 1 oIl 1 (AZ) ondly, the perturbative tail of the effective potential which is

given by the first two terms oD,, corresponds to poles in
the Borel plane ab=0 andb=1. The positions of the
renormalon poles are not affected by temperature. Only the

2

(27)? H_w Iam> 4 \m

1 A2 residues become temperature dependent, except at the mini-
= — e ¥Ei(x) (56)  mum of the potential, as we concluded earlier. The fact that
AT m? renormalon pole positions are not affected by temperature,

but residues are, is also the case for the thermal ultraviolet
renormalons ing* in 3+1 dimensions studied by the au-
wherex=In(A%n?). In the limitx— o, the logarithmic inte-  thors of Ref[14].
gral has the asymptotic expansion:

- ol VI. SUMMARY AND CONCLUSIONS
e*XEi(x)zz —Fime * To summarize, we have calculated the pressure in the
n=0 x"*1 NLSM at finite temperature to NLO in the N/expansion.
Our main result is that we obtain an unambiguous, finite
w g bx pressure, by subtracting the zero-temperature value of the
= fo dbl—b Fime %, (57)  pressure and renormalization of the coupling constant in a

temperature-independent way. This procedure cannot be car-
ried out away from the minimum of the effective potential
where argb) = +&. From Eq.(57), it is clear that there is a and we have argued that defining a finite, effective potential
renormalon pole ab=1. This shows that wheA —« the by the subtraction of the so-called perturbative tail, leads to
value of(0|a|0) is inherently ambiguous at NLO, due to the ambiguities associated with IR renormalons. In general,
freedom in the choice of prescription. David has shown thathese become temperature dependent, and this casts doubt on
this ambiguity also arises in dimensional regularizafibd].  the usefulness of defining a finite effective potential.

The same problem appears in the calculation of the effec- We have calculated the expression for the pressure at fi-
tive potential, butot in the gap equation. The latter can be nite temperature numerically and observe that tiNeepan-
seen from the last term of E(LO), which contributes to the  sion is a meaningful expansion for all temperatures. We have

gap equation as follows: also investigated the high-energy approximation that was
originally applied to the NLSM in 31 dimensions by Bo-
1 9 &P 1 *P 1 411 chkarev and Kapusta. In+11 dimension, where one can
- InTl=— J ———. (59 compare with exact numerical results, we have shown that it
2 om? J (2m)? 2 J (2m)2 I om? underestimates the pressure for all temperatures. We have
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