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Glueball spectrum based on a rigorous three-dimensional relativistic equation for two-gluon bound
states. |. Derivation of the relativistic equation
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A rigorous three-dimensional relativistic equation satisfied by two-gluon bound states is derived from QCD
with massive gluons. With the gluon fields and the quark fields being expanded in terms of the gluon multipole
fields and the spherical Dirac spinors, respectively, the equation is well established in the angular momentum
representation and hence is very convenient for solving the problem of two-gluon glueball spectra. In particu-
lar, the interaction kernel in the equation is exactly derived and given a closed expression which includes all
the interactions taking place in the two-gluon glueballs. The kernel contains only a few types of Green’s
functions and commutators. Therefore, it is not only easily calculated by the perturbation method, but also
provides a suitable basis for nonperturbative investigations.
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[. INTRODUCTION the past although the expression can be derived by the pro-
cedure as demonstrated in a recent publication of one author
It is a prominent feature of quantum chromodynamicsof this papel34]. Ordinarily, the kernel is defined by a sum

(QCD) that, in addition to the quark-gluon interaction, there of all two-particle irreducible Feynman graphs and can only
are also the interactions between gluons. The self-interactiobe calculated by the perturbation method. Another difficulty
of gluons suggests that the gluons may form gluebidtie  is ascribed to the four-dimensional nature of the equation in
bound states of g|uom$hrough their interaction@_,z]_ This which the relative timéor the relative_ energys UnphySicaI
is an essential prediction which is of decisive significance fo@d would lead to unphysical solutiofi85]. So, many ef-
testing QCD and, therefore, has been raising great interest Q7S in the past are paid to recast the equation into a three-
searching for the glueballs in experimd7]. But, there ~dimensional one in the instantaneous approximaltgs} or
have been no faithful evidence to be established so far foﬁhe quq3|potent|al approa¢h7,38. - .
their existencg8-15. On the other hand, the property, the . In th[s paper, we are devoteq to denymg a rigorous three-
rass spectum, and the procucton and cecay of the o137l el edalon satsfed by woguer,
balls have extensively been investigated th_eoretl_call_y. Mamé actical application of this equation to calculate the glueball
approaches were proposed to serve such investigations su

. ectrum will be presented in the next paper. The distinctive
as the potential mod¢ll6-1§, the bag mode[19,20, the features of the equation derived are as follo@$.The equa-

sum rule[21], the Bethe-SalpetdBS) equation22-24 and  jon js exactly relativistic, containing all the retardation ef-
lattice simulation[25—-30. However, the theoretical results ¢oct in it, unlike the BS equation given in the instantaneous
given by different approaches are different and even contragpproximation in which the retardation effect is completely
dictory with each othef31,32. This situation is attributed neglected. The equation is derived in the equal-time formal-
mainly to the fact that the quark-gluon confinement has nofsm by the consideration that a bound state is spacelike and
clearly been understood so far. Commonly, it is believed thatan exist in the equal-time Lorentz frame. In this frame, the
the lattice gauge approach would give a more reliable prerelativistic equation naturally becomes a three-dimensional
diction because the approach is grounded on the first prirene without loss of any rigorism. Moreover, different from
ciples of QCD and essentially nonperturbative although certhe BS equation, the three-dimensional equation derived in
tain approximations are inevitably made in practicalthis paper is a standard eigenequation of Sdimger type. In
calculations. In addition, it is widely recognized that the BSthe position space, it appears to be first-order differential
equation which is set up on the basis of quantum field theorgquations. In particular, the interaction kernel in the equation
is a rigorous formalism for the bound state problgg8] and is given a closed expression which is derived by the proce-
suitable to study the glueball23,24]. Nevertheless, there dure proposed first in Reff39] for a two-fermion system and
are two difficulties in the previous application of this equa-subsequently demonstrated in Ref0] for quark-antiquark
tion. One difficulty arises from the interaction kernel in the bound states. The kernel derived contains exactly all the in-
equation. This kernel was not given a closed expression iteractions taking place in the bound states and is represented
in terms of only a few types of Green’s functions. Such a
kernel cannot only be easily calculated by the perturbation
*Corresponding author. Email address: junchens@public.cc.jl.cnmethod, but also is suitable for nonperturbative investiga-
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tions. (2) The three-dimensional equation is established in The remainder of this paper is arranged as follows. In Sec.
the angular momentum representation. Since a glueball is thg the massive QCD and its Lagrangian are briefly described.
state of definite spin and parity, obviously, to investigate theSection Il is used to formulate the angular momentum rep-
glueballs, it is much more convenient to work in the angulaﬁesentﬁ}tlon gnd give the expansions for vector, spinor gnd
momentum representation. In order to express the relativistighost fields in this representation. In Sec. IV, the expression
equation in such a representation, it is necessary to expre§s QCD Hamiltonian in the angular momentum space will be
the QCD in the same representation. This can be done b?]escrlbed and discussed. Section V serves to derive the
expanding the quantized gluon and quark fields in terms ofrée-dimensional relativistic equation satisfied by the glue-
the gluon multipole fields and the spherical Dirac spinorsPalls: In Sec. VI, we are devoted to derive a closed expres-
respectively[41,47. With these expansions, the vertices in SION of the interaction kernel included in the relativistic
the interaction Hamiltonian can all be given explicit and ana-auation. In the last section, some remarks will be made. In
lytical expressions, as will be shown in the next paper. Thidh® Appendix, we present a brief derivation of the spherical

achievement is due to that the integrals containing three angdi'¢ SPinors given in the angular momentum representation.
four spherical Bessel functions in the vertices are all calcu-

lated analytically and expressed explicitly. We would like to ~ 1l. QCD LAGRANGIAN WITH MASSIVE GLUONS

note that in comparison with the momentum representation

in which every glueball state must be separately constructe belian gauge field theory, the following massive Yang-

according t(.) a certam.requwement for t'he Lorentz.and cT Mills Lagrangian density was chosen to be the starting point
transformation propertig®24] and the vertices would involve 0[43 46;

the gluon polarization vectors which are not convenient t

deal with, the angular momentum representation has an ad- 1 1

vantage that the glueball state can easily be written out in a L=——F3F2 + — 12A3A2 (2.1
consistent manner and the QCD vertices exhibit the spin 4 w2 g

structures much clearly3) The relativistic equation is set up
by starting from the QCD with massive gluons. According to
the conventional concept of QCD, in order to keep the La-
grangian gauge-invariant, the gluons must be massless. On
tr;ﬁeg;ﬂtsra% Ie?ffg::?ij[e Oflutx g:;"so\l;vzsmvﬁ:::%?;f:;OOfiCtgl? is the field strength tensor in whidpis the QCD coupling
9 ' 9 P gicaly onstant and@°¢ are the structure constants of color sy

introduced so as to get reasonable theoretical result@roup andu is the gluon mass. The first term in the Lagrang-

[17,18,23,24, The gluon mass was supposed to be generatelan is the ordinary Yang-Mills Lagrangian which is gauge-
dynamically from the interaction with the physical vacuum. X y g-Mil grang gauge
invariant under the whole Lie group and used to determine

of the Yang-Mills theory[23] or through strong gluon- the form of interactions among the gluon fields themselves
binding force{ 17]. Apparently, these arguments would not beThe second term in the Lagrangian is the mass term which is

considered to be stringent and logically consistent with thenot auge-invariant and onlv affects the kinematic propert
concept of the ordinary QCD. One of the authors of thisof thge figlds The above Layran ian itself was everpco%sid)(
paper in his recent article&3] gave a different reasoning that : grang

the QCD with massive gluons can, actually, be set up on th red to giV(_a a co_mplete'descriptipn of the massive gauge
principle of gauge-invariance without the need of introduc- ield dynamics. This consideration is not correct because the

ing the Higgs mechanism or the Skelberg fields. The es- Lagrangian is not only not gauge-invariant, but also contains
: : : : . ) redundant unphysical degrees of freedom which must be

sential points to achieve this conclusion deg the gluon L ) . . . .

fields must be viewed as a constrained system in the wholgl'mmated by mtrgducmg a s_unable constraint cc_)nd!uon. As

space of vector potentials and the Lorentz condition, as € know, a massive gauge f'e.ld has three polarization states

necessary constraint, must be introduced from the beginnin\é\’.hICh needl Onl){[ threet Sﬁ)_aﬁ! (f[omgonerjtt)s ?{L the flour—

and imposed on the Lagrangiai) the gauge-invariance of Imensional vec ?r pol entia Mf I:) escribe tj{:fm' n

a gauge field should be generally examined from the actiOIlTorent.z-.covarlant ormulation, a fu vect.or potentat can

of the field other than from the Lagrangian because the act_)e split m_to two Lorentz-cov_arla_nt parts: the trans_,verse vec-

tion is of more fundamental dynamical meaning than thelOf PotentialAr and the longitudinal vector potential’

Lagrangian. Particularly, for a constrained system such as the e At A

gluon field, the gauge-invariance should be seen from its Af=ATHAL. 23

action given in the physical space defined by the Lorentz )

condition. This concept is well known in mechani¢sy in ~ >ince the Lorentz-covariant transverse vector potenfsl

the physical space, only infinitesimal gauge transformation§ontains three-independent spatial components, it is suffi-

are possibly allowed and necessary to be considered. Thidént to represent the polarization states of a massive gluon,

fact was clarified originally in Ref[44]. Based on these whereas the Lorentz-covariant longitudinal vector potential

points of view, it is easy to prove that the QCD with massiveAL” appears to be a redundant unphysical variable which

gluons is gauge-invariant. Moreover, the renormalizabilitymust be constrained by introducing the Lorentz condition

and unitarity of the theory have been proved to be no prob- a
lem [45]. H*A,=0, (2.9

In the previous attempt of building up the massive non-

WhereAZ is the vector potential for a gluon field,

F,=d,A3=3d,A%+g faPeAP AC (2.2)
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whose solution is where for completeness, the quark fields have been included

in the Lagrangian in whichy and ¢ stand for the quark
fields, T are the color matrices anah is the quark mass,

With this solution, the massive Yang-Mills Lagrangian may)‘ (x) are the extra functions which will be identified with

be expressed in terms of the independent dynamical varfn€ Lagrange multipliers andl is an arbitrary constant play-
ablesAdx ing the role of gauge parameter. According to the general
a

procedure for constrained systems, the constraint in Eq.
1 (2.12) may be incorporated into the Lagrangian in E10
L=— ZF$MVF$MV+ EMZA?‘A?#, (2.6) by the Lagrange multiplier method, giving a generalized La-
grangian such that
which gives a complete description of the massive gluon
field dynamics. If we want to represent the dynamics in the —. Cara area
whole space of the full vector potential as described by the ~ £x= ¥ v*(9,—1gT AL) —miy— 2 F¥7F,
massive Yang-Mills Lagrangian in Ed2.1), the massive
gluon field must be treated as a constrained system. In this
case, the Lorentz condition in E¢R.4), as a constraint, is
necessarily introduced from the onset and imposed on the
Lagrangian in Eg(2.1) so as to guarantee the redundant
dggrees of frgedpm to be eliminat_ed frgm_t_he Lagrangian. =J{i7“(a —igT3A2) —m} y— EFa,wFa
Since the action is of more dynamical significance than the K’ " 4 my
Lagrangian, the gauge-invariance of QCD should generally 1 1
be seen from the action given by the Lagrangian in @c) + = puZAAR L NBGEAR + g (\B)2, (2.12
or the Lagrangian in Eq(2.1) constrained by the Lorentz 2 : ko2
condition in Eq.(2.4). Under the gauge transformations

AR=0, (2.5

1 2paupd 1 ay2 a/ qgupd a
+§,u, A AM—Ea(A )SHNA(HAL+ a®)

a ab b This Lagrangian is obviously not gauge-invariant. However,
6A,=D, 0" (2.7 for building up a correct gauge field theory, it is necessary to
require the dynamics of the system, i.e., the action given by
the Lagrangiar(2.12) to be invariant under the gauge trans-
DaP= 52bg _ g fabeAC 2.9 formations denoted in Eq$2.7) and (2.8). By this require-
" " " ment, noticing the identityabcAa"AZ=0 and applying the
Noticing the identityf2*°A®*A® =0, it is easy to prove that constraint condition in Eq(2.11), we find
the action given by the Lagrangian in E.1) and con-

strained by the Lorentz condition in E@2.4) is gauge- 1 4 a ab b
invariant, 65, =— ;j d*xa"AL(x)9*(D,(x) 6°(x)) =0,

where

(2.13
5S= f d*xéL=—u? f d*x629*A’ =0. (2.9
where

This suggests that the QCD with massive gluons may also be
set up on the basis of the gauge-invariance principle. ab b a? « ab
Now, let us briefly describe quantization of the QCD with D (x)=6 D_’?ﬁ DL (), (2.14
massive gluons. This quantization was carried out by differ- *
ent approaches in Ref43]. A simpler quantization is per- . . ab . .
formed in the Lagrangian path-integral formalism by meang” which o?=ap? and D} (XV) was dgfmed in Eq(2.8).
of the Lagrange undetermined multiplier method which wag "0 Ed.(2.1D we see (14)d"A,= —\"#0. Therefore, to
shown to be equivalent to the Faddeev-Popov approach &nSure the action to be gauge-invariant, the following con-
quantization[44]. For this quantization, it is convenient to Straint condition on the gauge group is necessary to be re-
generalize the QCD Lagrangian and the Lorentz condition t&luired
the following forms:
. F(D2P(x) 6°(x))=0. (2.19
— P 1 apay _ _ _Eampvga
L= Iy (0,m1gToR,) —mpg = g P, These are the coupled equations satisfied by the parametric
1 1 functions6?(x) of the gauge group. Since the Jacobian is not
+ 5 WPAMAL = S a(\®)? (210  singular

and detM #0, (2.16
AL+ aN?=0, (21)  where
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X (LD 3(x) 65(x)) where D(A7, ... A% denotes the functional integration
M#(x,y) = b measure,]i 7,1, €2 and £ are the external sources coupled
56°(y) 0=0 to the gluon, quark and ghost fields aNds a normalization
constant. Looking at the expression of the Lagrang2aR0),
= 6200, + 0?) 64 (x—y) we see the integral ovex?(x) is of Gaussian-type. Upon
abe . completing the calculation of this integral, we finally arrive
— g (AL (x) 8*(x—Y)), (217 at[43]

the above equations are solvable and would give a set of  Z[J%, 7,7,

solutions which express the parametric functiatiéx) as 1

funct?qnals'of the vector potentialﬁi(x). The con;traint :Nf D(Ai,a z/f,Ea,Ca,)exp[ij d*X[ Lo(X)
conditions in Eq.(2.19 may also be incorporated into the

Lagrangian(2.12 by the Lagrange undetermined multiplier

au a IR | a
method. In doing this, it is convenient, as usually done, to FIFOOAL) gt i+ E00CHxX)

introduce ghost field variablegg?(x) in such a fashion _
+CAX)E ], (2.22
6%(x) = £C3(x), (2.19
where
where ¢ is an infinitesimal Grassmann’s number. In accor- . 1
dance with I_Eq(2.18), the constraint condition in E¢2.15 Loti= i y“(a#—igTaAZ)—m}z,b— ZFaMVsz
can be rewritten as
1 1 _

*(D}’C") =0, (219 + 5 WEAMAL = S (9 A,) P = #CPDCP

where the numbeg has been dropped. This constraint con- (2.23

dition usually is called ghost equation. When the condition ing o effective Lagrangian given in the general gauges.
Eq. (2.19 is incorporated into the Lagrangian in EQ.12 From the generating functional shown in E¢g-22 and

alized Lagrangian as follows

D% (k) i 6cd (1—a) KK,

i =g, (1—a) 55—

wr K- p2rie| O o2 tie
(2.24

It is emphasized that when the gluon mass tends to zero, this

propagator together with the effective Lagrangian in Eq.

(2.23 and the generating functional in E@®.22 all imme-
(2.20 diately go over to the results given in the QCD with massless

_ gluons.

whereC%(x), acting as Lagrange undetermined multipliers,  \we would like to point out that the above propagator may

are the new scalar variables conjugate to the ghost variablegso be derived from the Lagrangian in E§.23 by the

C4(x). method of canonical quantizatig@6]. In doing this, we

At present, we are ready to formulate the quantization oheed to use the Fourier representation of the free gluon field
the QCD with massive gluons. As we learn from the operator{46]

Lagrange undetermined multiplier method, the dynamical
and constrained variables as well as the Lagrange multipliers AS(X) f d3k [ 1
X =
M

— . 1
Ly=y{i '}’M((?M—IgTaAZ)— m}r— ZFaMVF;aw

1 1 _
+ 5 MPAAL + N2A + S a(\?)?+ CP9H(D;,CP),

3
in the Lagrangiari2.20 can all be treated as free ones, vary- > [epkyaf(ke ™

(5. 3312 )
ing arbitrarily. Therefore, we are allowed to use this kind of (2m) 20(k) x=1
Lagrangian to construct the generating functional of Green'’s + M (K)ast (k) k]
functions a »
Ko o
— - 1 B — X - —[af(k)e " +ag (ke ]y,
2[0% 7,887 5 | DAL FTACPNY) 24(K)

(2.29

XeXp[if AL\ (0 +I(N)ALX)  wherek=(ko,K) andk=(Ko,K) with ko= w(K)= K2+ u2
— == and ko= wo(K) = VK2 + o2, e;‘L(IZ) are the polarization vec-
tdnt Pt E)CHX) tors satisfying the transversity condition

+5a(><)§a(x)]], (2.21) k“e), (k) =0, (2.26
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which means that only three spatial components)gk) are !l EXPRESSIONS OF THE QCD FIELDS IN ANGULAR
independent and the creation and annihilation operators MOMENTUM REPRESENTATION

al(k) andaS* (k) (A=0,1,2,3) are subject to the following  The fields in the Lagrangian in Eq.30 and(2.31) may

commutatlon relations be expressed in the angular momentum representation in
terms of the eigenfunctions of total angular momenta for the
[ax(k) 4Tk ]= — 8% $3(k—K"), vector, spinor and scalar fields. These eigenfunctions are de-

scribed below. For the vector field, the complete set of the
eigenfunctions were already found in the literat{4d,42.

2.27) They include the scalar multipole fieAﬁM(ki) and the vec-
‘ torial multipole fieldsAl,(kx), A5, (kx) andAb,,(kx). They

By making use of the expression in E@.25 and the above e displayed in the following:

commutation relations, it is not difficult to derive

[a(K), &, (K")]=[a5" (K).&}, (K")]=0.

2
ASu(kx =\ﬁk' Kr)Y 3u(X),
iD(x—y)=(0|T{AS () AY(y)}|0) (k) =\ —Kjs(kn) Y m(x)

(3.9
d*k
=f o) ZiDSS (ke Ky (2,28 o -
™ A (kX) = ———=L A7, (kX
JM( ) J(J+1) JM( )
WherelDCd(k) is just as that written in Eq2.24). >
The propagator in Eq(2.24 is written in arbitrary \[kjj(kr)YJJM(A) (3.2

gauges. It has been proved that Bienatrices given by the

QCD with massive gluons is independent of the gauge pa-

rametera [45]. For example, in the tree diagram approxima- .. . 1 P

tion, noticing the transversity condition denoted in E2j26) Asu(kx)= mv X LAZW(kX)

and the on-shell property of the gluon states, it is easy to

verify that thea-dependent term proportional kg,k,, in Eq. 2k

(2.24 gives no contribution to th&matrix elements. This =—i \/> [\/_Jﬁl(kr Y 334 1m(X)
fact was early pointed out in Reff17]. In view of this fact, TN2I+

we may simply take the Feynman gauge=(1) in practical _— - -
calculations. In this gauge, the effective Lagrangian in Eq. NI+ 15-a (kN Yo5-1m(X) ], 3.3
(2.23 becomes

Al(kx) = VAJM(kX)

£:£0+ ,C| ’ (229
where =i \/z « [VI+1j 41 (KD Y30 1m(X)
m™\2J+1
1 —. — R .
EOZEAi(D+M2)Aav+ Yliy"a,—m)y+CHO+pu?)C + )52 1(KN Y- 1 ()], (3.9
(230 whereJ,M mark the total angular momentum and its third

and component of the vector field eigenfunctidnis the momen-
tum of a single particlek=|k|, j,(kr) is thelth spherical
Bessel function withr=|x|, L=—ixx V is the orbital an-

1
—_ = abc a__ a buacy R .
4 2 gFH A, = 9 A)ATA gular momentum operator anty(x) denotes the vectorial

1 spherical harmonic function with total angular momentum
_ Zg2fabcgadepnbupcvpd pe o pay Al JM and orbital angular momentudh=J—1,J,J+1. This
49 At YR, function is defined as

+gfabeoCcachAC (2.31) L .
: Yam(0=2, CinaqYin(X)8, (3.9
are the free and interaction parts of the Lagrangian respec-

tively. Correspondingly, the gluon propagator in E824 is  \yhere Clmlq are the Clebsch-GordanCG) coefficients,

reduced to Yim(X) with x= (6, $) are the eigenfunction of orbital angu-
scd lar momentum operatdr ande, is the eigenfunction of the
D%y — 2 Gur spin operator for a vector particle. Since the functions de-
iD (k) —. (2.32 _
kK?— u’+ie fined by
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Asn(X)=]5(KN) Y g (X) (3.6 .
AG(x)= 2 f \/—[aJM )ASu(kx)je™ !
and
L X +a88 (KA, (kx)e't]. (3.15
Ad(X) =] 5(KN) Y 3(X), (3.7
The creation and annihilation operators in the above expan-
respectively, satisfy the following equations of motion de-sions satisfy the following commutation relations
rived from the first term of the Lagrangian in EQ.30 L
[aSh(K), a5,y (K')]= 8(k—K') 8o Sunr 35 Syama »

(O+u?)A=0 (3.9
and [aJM( ) J/M/(k )] [agk/r(k) a;]’M’(k )] 0
(3.1
(D+M2)AO:01 (3.9 c’s'
[aSy(k), aJ,M,(k )]=6(k—=K")Scer 833 Spmr »
as we see, the functions in Eq8.1)—(3.4) completely de-
scribe the eigenstates of the total angular momentum for a = rges (1) 5€'s" ()7 acS* (K ac/s'+ K')1=0.
free massive gluon fielor for a massless gluon field when [aama(k).ay a0, (K] = 2w (), 25 (K')] (3.17

the mass.=0). Furthermore, as the functioAg},(kx) and

E\\I]EM(k)‘(’) satisfy the transversity condition From the transformation of a gluon field under the space

inversion[46]

V-A=0 @10 pAc(t,x)P 1= —A%(t,~X),PAY(t, )P I=AY(t,~X),
and are related to each other by (3.18
) ) ) ) whereP is the space inversion operator and the parity of the
V x AW (kx) = kA5, (kx), (3.1)  multipole fields

I S LI 1VIAS (L3 AN (L3
the AW, (kx) is usually called transverse magnetic multipole Asn(—kx) = (= 1)"Agu(kx), Azu(—kx)

field andA:\EM(k%) transverse electric multipole field. While =(— 1) ™A} (kX), (3.19
the field AEM(kx) is referred to as longitudinal multipole

field because it obeys the condition of longitudinal fields ~Wherem, =0 if \=M andm, =1 if \=E,L, one may find
xA=0. It is easy to verify that these vectorial eigenfunc-Tom EQs.(3.14 and (3.15 the parities of the annihilation
tions meet the orthogonality relation operators

, PaSh (k)P 1= (—1)%a5y(k),PaSh(k)P 1
- > >\ 1= !
f dExASM(K)AT (K X) =8y, S(k—K ) 835 Sy’

=(—1)"" MaGy(k) (3.20
(3.12
and the same parity for the creation operators. In addition,

where\,\"=M,E,L label the different modes of the multi- from the charge conjugation of the gluon field

pole fields. Similarly, for the scalar multipole field, we have CA(t, X)C 1= —AS °(t, X), we obtain a minusC-parity for

the operatorSiJM(k) andaS),’ (k)

3UAS LI\ AS N L ) )
J xS 0= K3 Caghy(k)C 1=~ (K), CaSy' (K1C 1=~ (K),
(3.13 (3.21)

Therefore, the multipole fields defined in Eq8.1)—(3.4  WhereA=S,M,E,L. _
may suitably be chosen as the basis functions to establish the Now let us turn to the angular momentum representation
angular momentum representation for the gluon fields. A0f spinor fields. As shown in the Appendix, this representa-

gluon field operatoA®(x) may be expanded as tion may be set up by means of the spherical Dirac spinors.
a These spinors are shown in the following:
. = dk
AC = J k A k “lot e+m o o (3
=2 | Jz—[am( )ASu(kx)e V5 U5 (P Q%)
S\ ok S uf]TM(pX): 1
+alh (K)AN (kx)e't], (3.14 e—m __ o
o (10 Aou( ] - 2e (Pr)&2ym(X)
whereA=M,E,L, (3.22
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[e—m __ RN
2E Uy 7(pr)Q;(x)
e+m ~ '

VS ug(pn Qg (%)

(3.23 wheres=(c, f) c andf are the color and flavor indices for a

where JM denote the total angular momentum and its third 9487 “JM(pX) uS(PX) " 0,0 5m(PX) =v5u(pX) * o and

So So So
component of a free fermiorg=*+1, e=+p?+m? is the bJM (P), dJ'V' (p) and b3y (p),djyu(p) are the_ creation and_
L N > annihilation operators. These operators satisfy the following
energy of the fermion in whiclmn is the mass ang is the

- N ) ~anticommutation relations
momentum, p=|p|, QJu(x) is the spherical harmonic
spinor defined as

PHYSICAL REVIEW D569, 076002 (2004

go0= 3 [ dpib; (piugpire
ng(p;):(_l)J+M+a

+d55(p)vm(px)e ], (3.29

{bIn(p), bjr‘,\r/.r+(p,)}:5(p_p/)5ss’5aa'5JJ'5MM"

1 1
\/‘]+U(M_§ *t3 R {d3(p), dj,‘,\r/l,+(p )}=8(p=P") 855 Oy 033 Sam’
o o 53111 Y- gizm—12AX) (3.29
Qamx)= 1 with the other anticommutators being zero.
J—o| M+ > + > From the space inversion transformation of the quark field
X Y- orom+12AX) [46]
(329 PY(X, P~ = 76"~ X.1) (330
anduj(pr) is defined by and the relations
2 o — o o o o
Ug(pr):iJ_U/Z\/;ij—alz(pr)- (3.29 YoUSu(—PX)=(=1)"""2ugu(px), y°v Su( = px)

— ( _ 1)J—0'/2+1

(3.3

is easy to find from Eq9.3.27) and(3.28 the parity of the
uark operators such that

The spinorquM(p;() and vJM(pi) are the eigenstates of v3m(PX),
total angular momentum for a fermion. They respectwely
obey the free Dirac equations of positive energy state ancé
negative energy state. Based on the above expressions of t

spherical Dirac spinors, it is easy to prove the following

orthonormality and completeness relations
o2y o ’
| XU 00U (070 = D= D) 8051 B
fng‘)S’m(Di)v?Mr(p’i)=5(|0—D’)%a'ﬁmrmmr,
3y,,0°" o\, o ro) — 3, 0" 2y, 0 1y
d>xuf(pX)v Ty (P X)= | d v iy(PX)U], . (P'X)
=0, (3.26

»d fo DL UG (PRI (PX') + 05p (PRI Gon(PX)]

JMo

= B3(x—x").

bim(P)P ™= 7p(—1)"""bi(p),
Pdin(p) P~ = 7p(— 1) "2 1di(p),
n (PYP 1= mp(—1)7 i (p),

Pdfnf(p)P*l: 7p(— 1) 721N () (3.32

where the phase factojp usually is chosen to bep =1.
By noticing the charge conjugation transformati¢Aé]

By(x)B ™= 5cC(x),

whereC=iv?° and

(3.33

v (PX) = CUJ(PX) T, Ugu(PX) = Co u(pX) T,
(3.39

Clearly, the free quark field operators may be expanded ithe C-parities of the creation and annihilation operators are

terms of the spherical Dirac spinors
w0= 3 | dpib(p)ug(poe
sacJM JO

+d35, (Pviu(pRe, (3.27)

easily found from Eqs(3.27) and(3.28
Bbin(p)B = ncdin(p), Bdim(p) B = ncbin(p),

(), BA (p)B 1= 5cb (p).

(3.39

+ —
Boi, (p)B = ncdiy,
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For the ghost fields, considering their scalar character, wand
can write their expressions in the angular momentum repre-

. _ 1
sentation as follows: L=— ngabC(aiAJa_ a,—A;”‘)A?AjC

[CJM(k)AJM(kX)e_th

JMJ\/_

1 _
= O FOEAATATAT - gy TRYAT. (4.3

a S* Lo\ i ot
+ (AT (ke ], (3.39 By making use of the canonical variables conjugaté\fo
¥ andW¥ which are defined by
C¥(x)=, fm i[oﬁ‘ (K)AS,,(kx)e~ 't
M Jo 20 M M 2 0L A2
N . _ - k: - = s
+ (K Ay (kx)e' 1. (3.37 A,
The anticommutation relations for the ghost particle opera- .- %:iZ 0
tors in the above are » Yo
{CﬁM(k)vcﬁ'h;'(k,)}:5aa’5JJ’5MM’5(k_k,)y oL
M,=—=0, (4.4)
' J
{850(K), 054y (K )= a3 Buanar k=K', ¥

(339 we can write the Hamiltonian density as

with the other anticommutators vanishing. . ‘
H=TI;AR+ 1,4~ L
IV. QCD HAMILTONIAN IN ANGULAR MOMENTUM
REPRESENTATION = Ho+H, , (4.5

In this section, we are devoted to discussing the QCD
Hamiltonian in the angular momentum representation. By
virtue of the expansions given in Eq8.14), (3.15, (3.27), .
(3.28), (3.36 and (3.37), it is not difficult to formulate the H :E(Aa)z_ EAT“(VZ
Hamiltonian derived from the Lorentz-covariant Lagrangian K 2"
written in Egs.(2.30 and(2.31). However, due to presence (4.6
of the field A%(x), the expression of the Hamiltonian is
rather complicated. Considering that the figf(x) is un-  and
physical and will eventually be eliminated from tBematrix
and the BS equation by the ghost fields as ensured by theH - gfabC(AaXAb).(VXAC)
unitarity of the theory[45], for the sake of simplifying the 2
representation of Hamiltonian, we would rather start with the

where

— A+ Y(a-V + pm)y

Lagrangian obtained from the Lagrangian in E@s30 and + —g2fabefede Aax Ay (ACX AY)+ gy T2y A2y
(2.31) by setting the unphysical field&°(x),C3(x) and 8
C?(x) to vanish, as was commonly done in the lattice gauge 4.7

calculationd 25—30 and similarly done in Ref.23] where a
massive QCD Lagrangian taken in the temporal gauge washe first two terms in Eq(4.6) denote the energy of free
used for calculating the glueball spectrum in the frameworkgluon fields. The second term gives the energy of free quark
of BS equation. The Lagrangian we start with is fields. In the interaction Hamiltonian densi#.7), the first,
second and third terms represent the gluon three-line vertex,
L=Lo+ L, (4.1  the gluon four-line vertex and quark-gluon vertex respec-
tively. It should be noted that the above Hamiltonian includes
where not only the transverse field;, but also the longitudinal
1 field A, whose presence can be seen from the constraint
Lo=— EA?(D+M2)A?+ Wiy, —m)y condition in Eq.(Z.lD becausi in the case A_P.—O _anda
=1, the condition becomés- A/ = —\#0. This is different
1. 1 _ from the theory proposed in R€23] where only the trans-
= E(Aa‘,;‘)2+ EA;”‘(Vz—,uz)A?+ p(iy*d,—m) verse field exists. _ -
Now let us derive the expression of the Hamiltonian given
(4.2 by the Hamiltonian density shown above in the angular mo-
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mentum representation. First, we derive the expression of the

free Hamiltonian. On substituting Eg8.14), (3.15), (3.27),
(3.28 into Eq. (4.6), one may get

HO= f d3XH0

j:dk“’(k)aJM (k)aJM(k)+ 2 dps(p)

CAIM

X[ b3, (p)b u(p)+d3y, (p)d u(P) 1. (4.9

In later derivations, it is convenient to introduce compact

PHYSICAL REVIEW D569, 076002 (2004

bin(p) if =1,
S77(p) = 4.1
GO ooy it g, 417

oo uf(px) if =1,

wi(pX)= L
" vim(px) if =1,

(4.18

the anticommutators in E¢3.29 become
{ST(P).C5, 77 (P} = 8(P—P") Ss5 8y 833" Sarar 8.y -

(4.19

notations for various indices so as to simplify the expressions
of the operators and formulas. For the gluon field, we definavhen we setx=(s,o,l,m,p, ) in which the» will be writ-

one alw(k) if =1,
ajy (k)= 2 (k) i E=—1, (4.9
[ AN (kx) if E=1,
Aﬁfn(km:{aii”( o
Adu(kx) if &=—1.
(4.10

Then the commutators in Eg&3.16 and(3.17) can be uni-
fied to write as

[ (0.2 (k')
' H ’ m
:5(k_k )5CC75)\)\753J!5MM!S|n (g_f )Z .
(4.11

Furthermore, we define=(c,\,J,M,k, &) in which the ¢
will be written as¢,, later on. In this notation, the commuta-
tor in Eq. (4.12) will be represented as

[a,,35]=A g, (4.12
where
! 1 ! ™
A o= 8(K=K") 8ccr Oyn1 833 OumSiN (§—§ )Z
(4.13
and the expansion in E¢3.14 becomes
AS(X)=2, a,A.(kx)e  Eaval, (4.14
where
> =2 | dkw.= K+ pu?, (4.15
a cAlm JO
.1
Aq(kx) = A5 (k%) (4.16

For the quark field, with the definition

ten asy,, later on, the above anticommutator can be simply
written as

{CoiCa}=0up (4.20

where

B0p=0(P—P") 053 85 833" Sumt 8y (4.21)

and the expansions in Eg&.27) and (3.28 will be repre-
sented by

P(X)= D, CuW,(px)e Easal

Y(X)=2 chw,(px)e!tatal, (4.22

where

JVp2+m?.

f dp, e, (4.23
a s)\lm

In view of the notations defined above, the free Hamil-
tonian will compactly be rewritten as follows

HO=Hg+Hg, (4.29
3 2 Wap Rl (4.29
= £4EaiCiCyl, (4.26

where the symbol :: denotes the normal product and
waﬂEw(k)ﬁ(k—k’)5CC,5M,5M/5MM,(l—5§§,).
(4.27)

Next, we derive the expression of the interaction Hamil-
tonian in the angular momentum representation. In doing
this, it is helpful to use the transformations for an operéor
Hamiltonian, a field operator, a creation or annihilation op-
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erato) among the Heisenberg picture, the Sdinger pic- Gla By e iti—ty)
ture and the interaction picture
FH(t):ethFsefth_elHte HOtFl(t)eiHOtefth, :<0+|T{a::(tl)a;;(tl)ay(tz)ag(tz)H07>,
(4.28

. . Gla By 65t1—ty)
whereFy(t),Fs andF,(t) stand for the operators given in the
Heisenberg, Schoinger and interaction pictures. From Eq.

—/0t + + -
(4.28, it is clearly seen thaF,=F,(0)=F,(0) which is =(07[T{a, (t)as(ty)a, (t)ax(t2)}07),
independent of time. According to the relation in E4.28),
we only need to write out the interaction Hamiltonian in the Gla®B ;v 6 ;t—ty)
Schralinger picture(or in the interaction pictupe In this
picture, on inserting the expressions in E@s14) and(4.22 =(0"|Tla.(that (t)a(t,)al (1) 0~
R Ee. (A7) o o (07| T{au(t)a; (t)a,(t2)a; (t)}07), 51
H|(0)=f d3xH, (x,0) where T symbolizes the time-ordered product ad) de-

note the physical vacuum states defined in the Heisenberg
picture. It should be noted that the creation and annihilation
=2 A(aBy):a,ag,: + 2 B(aByd):a,aza,3;s:  operators in Eq(5.1) are those defined in Ed3.15. For

By later convenience, we will use the notation defined in Eq.
(4.9 for the gluon operators. With this notation, instead of
+ % C(“B"}’):C;Cﬁay:y (4.29  the above Green’s functions, we may start, in a consistent
apy

way, from the following Green’s function defined by

where
G(aB;ysti—ty)=(0"|T{a,(ty)as(ty)a,(ty)asty)}| 3;)21)

AlaBy)=— gfab‘:f d*x(A,XAg) - (VXA,),
(4.30 wherea, can be a creation operator or an annihilation one.
On differentiating Eq.(5.2) with respect to time, it is

1 . . found that
B(aByd)= §ngabefwmf dBx(A,XAp) - (A, XAy)

(4.3 iiG(a,B;)’&tl_tz)
ity

and
. J
_ R =i6(t,—t5)S(ap, 75)+<0+|T{ ( at, a,(t1) |as(ty)
C(a,By)=gJ d3xw, Tywg- A, . (4.32
a —

By making use of the expressions &f, ,w,, andw,, com- +a“(tl)< aﬁ(tl) (t 2)a5(t2)] 07, .3
pleting the integrals ovek and applying the formulas of
angular momentum couplings, one may derive explicit ex\where
pressions of the coefficientsA(aBy),B(aByd) and
C_(aﬂy). The expressions &(aBy) andB_(c_z,Byb‘) will l:_)e S(aB,y8) =(0"|[ayl (tpag(ty),a,(ty)as(tz)][07)
given in the next paper. As for the coefficie@{aBy), its . B
expression will be presented later in another publication. =(0 |[aaaﬁ,a7a5]|0 ) (5.4
V. THREE-DIMENSIONAL RELATIVISTIC EQUATION is time-independent OWing to the time displacement shown

EFOR TWO GLUON BOUND STATES in Eq (42& and the restriction Oﬁ(tl_tz). According to

the relation in Eq(4.28, we have
The aim of this section is to derive a rigorous three-

dimensional relativistic equation satisfied by two-gluon 9 ' '

bound states. This equation may be derived from the equa- i—a,(t)=eM[a,,H]e ™, (5.5
tion satisfied by the following gluon two-time Green’s func- o

tions defined in the Heisenberg picture. These Green’s func-

tions include Sincea, in the commutator is independent of time, we may
use the Hamiltonian given in Eq&4.24)—(4.26 and (4.29
Gla™ B y 6 ;ti—ty) and the commutation relation in E¢4.12) to compute the
. . . B commutator{ a, ,H]. When the result is substituted in Eq.
=(0"|T{au(t1)ag(ty)a, (tr)a; (t2)}[07), (5.5), we obtain
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Gi(pok; y8iti— o) =(07[T{:a,(t1)ay(ty):
Xa(ty)a,(ty)as(tx)}07),
(5.11)

. d
|£aa(tl) = % pr'AaUap(tl)

+2 f1(pam)A ., a,(t)ay(ty):

poT

Go(po78;y8t1—15) =(07|T{:a,(t1)a,(ty)a(ty):

* &, Teo)Aa g t)as(t)adty): X ay(11)a,(t2)a12)}[07),
(5.12
+2 fa(pom)Au G ()G (t):, (5.
poT
Ga(pak; y8ity—tp) =(0[T{:c, (t)Cy(ty):
whereA ., was defined in Eq(4.13 and the coefficients; _
are defined by Xa)\(tl)ay(tZ)as(tZ)Ho >
(5.13
filpor)=A(por)+A(pro)+A(Tpo),
fo(pa\)=B(po\)+B(pah1)+B(pho7) By the Fourier transformation
+B(\po7), (5.7 N

1 o .
Gi(a, ...,5;w)=i—f dte'“'Gi(a, . ..,51),

fa(por)=C(poT). - (5.14

Clearly, the expression o{d/dt;)as(t,) may be written out

from Eq. (5.6) by replacinga with 8. Inserting this expres- th tion in Ea(5.8 will be of the f in th

sion and that given in E(5.6) into Eq. (5.3), one may find re?)rggg?lt;ir:)r a(5.8) will be of the form in the energy
an equation of motion obeyed by the Green’s function de-

noted in Eq.(5.2) such that

P wG(aB;y80)=S(aB,y0)+ 2 ©,eAapnG(p\;y5;w)
iEG(aﬁ;‘)’&tl_tz) poX
1

=i 8(t;—ty)S(aB, y5) +% 91(aB;poN)Gy(po; y8;w)
+% @B ap,nG(PN; Y811~ 1) + Y gy(aB;pot\)Gy(pa\;yS)
poTN
+p20)\ gi(aB;paN)Gi(pak;ysiti—t,) +I;')\ Ua(aB;paN)Ga(po;ys w).
(5.19

+ Kgz(aﬁ;pcf’r)\)Gz(pwh;75;t1—t2)

poT
Let us look at the second term on the right-hand $RIE€S)
+ 2, 93(a@B;poN)Gs(pok;yoiti—ty), (5.8  of the above equation. From the definitions @f,, and
por Aqpo Qiven in Egs.(4.27), (5.9) and (4.13, we see, only
when¢,#§,, thatw,, andA ,, are nonvanishing. When we

where define
AaB,U)\:Aa05BX+A505a)\1 .
w(k) if &,=+1,
w,= . (5.1
gi(aBipoN)=2 f1(pam)dapn s (5.9 —olk) it g=-1,
the second term mentioned above gives
9o @Bipo™) =2, fa(po76)Aup o
E}\ 0,58 45\ G(PN; Y6 0) = (0,1 0p)G(aB; yd;w).
po
ga3(aBipoN) =2 fa(pam)dapn (5.10 (5.17)
and the Green functionS; are defined by Thus Eq.(5.195 can be written as
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(0—w,~0)G(aB;yd o) G(ap;yoiti—ty)
=S(apB,vd) +‘%\ 01(aB;poN)Gi(pa\;vS,w) = zn: {9(t1—t2)<0+|aaa3|n><n|aya§|O’)e’iEn(tl’tz)

+0(t,—t1)(0"|a,asn)(n|a,as/ 0™ )e Enltaty,
+ 3 ga(aBipah)Golpoh;y5io) (t2=t1)(0" |a,a5/n)(nfa,a5/0") (l 5
poT .

+ ga(aB;poN)Ga(po;y8,w). (5.19  Substituting in Eq(5.24) the representation of the step func-
paoN tion
In order to obtain a closed equation, it is necessacju- i e iat
ally possible} to introduce effective interaction kernels in o(t)= EJ dqq+ie (5.29
such a fashion

and then performing a Fourier transformation with respect to

> g1(@B;poN)Gi(pok;ys: o) time, we can get from Edq5.24) the Lehmann representation
pOA such that
_ o . Xap(M XM Xys(N) Xap(M)
=2, A po,w)G(po;yo,w), ;YO w)= — — -
2, Ai(apipoia)Glpoiysi) Glapiyoiw)=2 | = ImE 5=~ TNE S |
(5.19 (5.29

2 (ap: NGl NI whereE, is the total energy of a glueball state and
)\gza PO T 20lPOTA,YO,w

poT

Xap(N)=(0"[a,850),  xap(n)=(n|a,as0")

=2 Ay(aB;poiw)G(pa;ys; ), _ -
po are the BS amplitudes describing the two-gluon bound states.
(520 on replacing theG(aB;yd;w) in Eq. (5.22 with its Leh-
mann representation, then multiplying both sides of Eqg.
HoN)G Ny (5.22 with w—E,, and finally taking the limito—E,,, we
,;cx Gs(afipah)Galpoiysie) eventually arrive at

=2 Az(aB;po;0)G(po;ysw). (En_wa_wﬁ)Xaﬁ(n)zz K(aB;paEn)x,e(n).
po po
(5.21) (5.28
With the kernels defined above, E&.18 becomes This is just the wanted three-dimensional relativistic equa-
tion for the two-gluon bound states. It should be pointed out
(0—0,—wg)G(ap;ys o) that the above equation actually represents a set of coupled
equations which may be written out by settigg in the
=S(aB,v8)+ > K Do 0)G(pa v ). index a and¢g in the indexp to be = 1. Each of the equa-
(aB.y9) % (aBipaiw)Clpoiydiw) tions is manifestly of Schinger-type, i.e., a standard

eigenequation. In the next paper, these coupled equations

(522 will be reduced to an equivalent equation satisfied only by
This is just the equation satisfied by the Green’s functiortn€ BS a;n;t)lltude for which the two gluons are in the positive
G(aB; v o) in which energy states.
3 VI. CLOSED EXPRESSION OF THE INTERACTION
K(aﬂipv;w)=zl Ai(aB;po;w) (5.23 KERNEL
=
In this section, we are devoted to deriving the effective
is the total interaction kernel. interaction kernel appearing in E(p.28 and defined in Eq.

The equation obeyed by glueball states may be deriveb.23), giving a closed expression of it. For this derivation,
from the above equation with the aid of the Lehmann reprewe need equations of motion which describe the evolution of
sentation of the Green'’s function. Suppé&®)} form a com-  the Green’s functiorG(a8;yd;t;—t,) and those shown in
plete set of glueball states. Noticing the transformation in EqEgs.(5.11)—(5.13 with time t,. Taking the derivative of the
(4.28 andH|n)=E,|n), we can write Green’s function in Eq(5.2) with respect ta,, we have
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F
i—G(aB;ydit1—t,)

at,
:_i5(t1_t2)s(aﬁ!7§)+<o+|Traﬁ(tl)aﬁ(tl)
. . d _
X |£ay(t2) ag(t2)+ay(t2)|£a5(t2)“|0 )
(6.2)
where

.0
'Ezav(tz) = % ®po A8y (t2)

+2 f1(pom)A,ia,(t2)a,(t):

poT

+ ZA fo(pamh)A,, 1 (tr)a,(ty)alty):

poT

+2 fa(pom)A, 16 (t)C (). (6.2

poT

PHYSICAL REVIEW D569, 076002 (2004

GalaB;poth;ti—ty)
=(0"[T{au(ty)ag(ty):a,(tr)a,(t)a(ts):a(tz)}
x|07), (6.9
Ga(aB;pok;t;—ty)
=(0"[T{a,(t1)ag(tr):c, (to)c,(t2):ay(t2)}07).

By the Fourier transformation denoted in E§.14 and no-
ticing Eq. (5.17), we obtain

(0t w,+ws)G(aB; vy w)

=S(aB,yd) - 2 Gi(aB;po\;w)gi(paX;yd)
po

— \ Gyo(aB;poT\;w)ds(poT\;yd)

poT

—2 Gs(aB;po\;w)ga(pok;yd). (6.6
po.

According to the same procedure as formulated in Egs.
(6.1)—(6.6), one can derive the equations of motion obeyed

Here the coefficients; are the same as represented in Eqspy the Green’s functions denoted in E¢5.11)—(5.13. Be-

(5.7). The expression aif(d/dt,)as(t,) can directly be writ-
ten out from Eq.(6.2) by replacingy by 8. When this ex-
pression and the one given above are inserted intd &),
we are led to

0
iaTZG(a,B;Y&tl_tz)
=—i0(t;—12)S(ap,yd)

+ z}\ wpUAyE,U)\G(aB;p)\;tl_tZ)
po

+§ Gi(aBipoNiti—t)gi(pok;ys)
po

+ 2 GylaB;poThity—t,)ga(poTh; yd)

poTN

+§ Ga(aB;pok;ti—t2)gs(pak;yd),
po

(6.3

whereS(a 8, y5) was defined in Eq5.4), the coefficients;
are the same as those represented in (Bd.O since the
following equality holds

gi(p, - - N ¥O)=0i(¥Sip, ... N) (6.4)

and the Green functionS; are defined as follows:
Ga(@B;pok;ti—ty) =(07[T{a,(t1)a(ty)
X:a,(tp)a,(ty):a,(t2)}07),

cause the same expressions of the
i(alaty)a,(ty) andi(d/dty)ast,) are employed in all the

derivations, the equations of motion for those Green'’s func-
tions may immediately be written down by referencing the

equation in Eq(6.6). The equation for the Green’s function
in Eq.(5.1)) is

(0t 0, +0s)Gi(po\;ys w)

=Sy(poN,y8) — 2, Gui(poh; uvT,w)gy(uv;ys)
A%

— > G pok; uv7i; )G wrTk; ¥6)

MVTK

— 2, Guapo\; prT,@)ga( urT; ¥9), 6.7
%
where
Si(poN,y8)=(0"[[:a,a,:8,,a,85]|07). (6.9
GiilpoN;uvr,0),Gipo\; uv7r;w) and

Gis(po\;uvT,w) are the Fourier transforms of the follow-
ing Green’s functions:

Gu(poh; vty —t) =(07|T{:a,(t))a,(ty):a\(ty)
X:a,(tp)a,(tp):a(tp)}07),
G pok; urrr;t;—t))=(0"|T{:a,(t1)a,(t;):a(ty)

X :aﬂ(tz)ay(tz)af(tZ) : aK(tZ)}
x]07), (6.9
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Gia(pok; urrity—ty) =(07[T{:a,(t)as(ty):ay(ty) Gad pok;uvriit;—tp) =(07|T{:c; (t1)c,(ty):an(ty)
X:C, (t2)C,(t):a(t2)}07). X:a,(t)a,(ty)a(ty):aty)}
For the Green’s function in Eq5.12), we can write x|07), (6.19
(0t w,+0s5)Ga(poT\;ys ) Gadpoh; ur7ity—t) =(0"[T{:c, (t1)c,(t1):a\(t1)

X:c, (t2)C,(tz):a(t2)}]07).

=S)(po7\,¥8) — > Gou(pa7\;wv6;w)gs(uvb;ys) :
pro Now we are ready to derive the interaction kernels. Mul-

tiplying both sides of Eq(5.19 with (0 + w,+ w,) and then

- Eg Goo poTN; w0, 0) Qo v 6; ¥ 8) applying Eqs(6.6) and (6.7), we have
nvbk
—E Gog(poT\; uvl;w)gs(uvo;yo), (6.10 % Ay(aBipo; o) S(po,yé)
nvl
where — > Gi(po; wvN;w)ga(ww\;yd)
JTE2N
Sy(porh,y8)=(0"|[:a,a,a,:a,,8,85]|07) (6.11)

— > Gy(poiuvrh;w)ga(uvr\;yd)
and the Green’s functions on the right-hand s{g&1S of mvTA
Eq. (6.10 are defined as
. - Gs(pa:wk;w)gska;y&)}
Go(poTh;uvl;t;—t;)=(0 |T{:ap(tl)ao'(tl)aT(tl):a}\(tl) KA

X :aﬂ(tz)ay(tz)Iaa(tz)}|07>v = 2 gl(aﬁ;pa-)\){sl(po-)\’ )
pOoN
GodpoT\;uvk it —t,)=(0" |T{:ap(tl)ao'(tl)a7(t1):a)\(tl)
X :aﬂ(tz)a,,(tz)a,((tz):ae(tz)} - ET Gu(poh;puv; w)g]_(,LLVT; )
x[07), (6.12

— X Gidpoh;uvTi; )Gy pvrK; yd)
MVTK

Goapamh; urv ity —t,) =(0"|T{:a,(t))a,(ty)a,(ty):a\(ty)

X3C;(tz)cy(t2)3ae(t2)}|Oi)- —ET Gis(po\;uvr,w)gs(uvt, vo)|.
For the Green'’s function in E45.13, we have the equation (6.16
(0+w,+ws)Gs(pok;ys w) In order to obtain the expression of the kernel
Ai(apB;po;w) from the above equation, it is necessary to
=Spoh 01~ 3 Gaprniuvrl(urryy) | SMIEE e ke e secord, i and outh s on

that the Green’s functio®(aB;vd; w), as a matrixG, has
= Gaf poh: urri ©)go urTK; ¥5) an inverseG~(apB; y8; ), then from Eq(5.19 we can get

MVTK

S Gl pon: v 0)gal w78, 61y MleBrie) 2 E 91(aBipoN)Gy(pok; uv;w)
Y A%
XG Y uv;ysv). (6.17
where
Substituting Eq.(6.17) into the second, third and fourth
53(p0k,75)=<0+|[IC;CUZa)\ ,a,a5][07) (6.14  termson the LHS of Eq6.16), then moving these terms to
the RHS of Eq(6.16 and finally acting on both sides of that

and the Green’s functions on the RHS of £6.13 are de- €quation with the inverse of the matr§(po, y5) which is

fined by assumed to exist, we eventually arrive at
Galpoki urriti—t) =(07[T{:c, (t1)C,(te):a(ty) Ai(eBiydiw)=AD(aB; v 0)+ AP (ap;y50)
X:18,(t5)a,(t):a(t2)}{07), + AP (aBiysiw), (6.18
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where

AM(aB;y80)= ; EV g1(aB;paN)

XSi(pok,uv)S M uv,ys),
(6.19

AP (aB;y8;0)= —% % gi(aB;paN)

x{ > Gu(po\;uvr;0)gy(pyT; 6)

nvT

+ 2 G poN;uvrK, w)0o( nvTK; 01r)

MVTK

+2 Gugpo\; uvT0)gs(uv; 67)

nvT

xS Yo, v6), (6.20
and
AP aBiysio)=2 2 2 2 diaBipod)
oN uv €. O
XGy(poh;uv,0)G Y uv e, w)

X gg Gy(ew;én;w)91(End; 0m)
+ D GoleEnlx;)gax(Enlx; 6m)
Enlx

+§2ﬂ Ga(et;End;0)gs(Eng; Om)

XS YO, v5). (6.21)

By the same method as described above, the kernel

A,(aB;vS;w) can be derived from the relation in E&.20

by using the equations in Eg&6.6) and(6.10. The result is

as follows
As(aB;y8;w)=AP(aB;ys;w)+ AP (aB;y8 w)
+ A8 aB;ys;w), (6.22
where

AP (ap;ysw)= E 2 ga(aB;pa\)

poTA

XSy(poT\; uv;0)S N uv,vs),

(6.23
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2 E 9a(@B;poTh)

poTA

AP (aB;y8w)=

X{ 2 Goy(poT\; uve;w)gy(uve; o)

z

+ 2 Gy poT\; uvex,w)

HVEK

X go(puvesx; 0m)

— 2 Godparh; uve;w)gs(uve; o)

HVE

XS Y0, y5), (6.24)

and

AP aBysiw)= 2 2 > 2 9a(@B;poT\)

poTN pv €L Om

X Go(poh; pv;0)G N uv; el o)

X 62% Gi(et;énd;0)91(éng; 0m)

+ D, Gylew;énlxi)gaEnlx; 0m)

Endr
+§EM Gaeu;End; w)gs(énd; 07)

XS YO, y5). (6.25

Analogously, the kernel ;(aB;yd;w) may be derived
from Eqgs.(5.21), (6.6) and(6.13. The result is shown below

As(aB;ys;w)=AP(aB;y80)+ AP (aB;ys o)

+AP (aB;y6;w), (6.26)
where
A aB;ys )= E 2 gs(aB;por)
XSy(po,uv)S Hur,ys), (6.2

AP(aB;ys0)=— 2, 2 gs(aB;po)

poTN O

X{ > Gay(poh;uvrw)gy(pvr; O)

ot
+ > Gafpok;urri;w)
prTi
Xgo(uvrk; 07r)
+2 Gl ok wrTiw)ga(wr T )

XS~ (0w, y6), (6.28

076002-15



J.-C. SU AND J.-X. CHEN PHYSICAL REVIEW 39, 076002 (2004

differential equations. This kind of equation was given for

3 . . . .

A§ )(045’175.(0):2}\ > > 92 gz(aB;po\) fermion system§39,40, but never formulated for boson sys-
poR pyoe om tems in the past. It should be noted that since the equation is
XGa(poh;uv,0)G Y uv e, w) derived in a special equal-time Lorentz frame, it is certainly

not Lorentz-covariant even though the equation is rigorous
and includes all the retardation effect in it. In order to derive

« . . . _ _
g‘g Calenend;0)9i(éng; 0m) a Lorentz-covariant equation, one may start from the four-

time Green’s function

+ g%,( GZ(GL; f”]g)(,w)gz(fﬂf)(, 077) Gaﬁyﬁ(Trt;T, ,t,): <0+ |T{a~a(t1)aﬁ(tZ)ay(tS)aﬁ(t4)}|O(;>i)

+§E% Ga(es;En;w)gs(énd; 0) where

XS Y 0w, v6). 6.29 1
(6m.70) (629 T=§(t1+t2),t=t1—t2,
Based on the expressions described in E§4.9—(6.29),
the total kernel can easily be written out. Using the matrix 1
notation for the Green’s functions and the other functions, T == (tg+t,),t' =t3—t,. (7.2)
the kernel is represented as 2

3 Differentiating the above Green’s function with respectto
K=Y AD and t, and employing the expression of the differential
i(d9/aty)a,(t;) as shown in Eq(5.6) and the similar expres-
3 3 3 sion fori(d/dt;)as(t,), one may obtain two equations for
={> 9S- > 9:Gijg;+ > 9GG 1Gg;S " the Green's functionG,z,+(T,t;T',t"). Adding the both
=1 ij=1 =1 equations and subtracting one equation from another, follow-
(6.30 ing the same procedure as formulated in Sec. V, it is easy to
derive two equations satisfied by the BS amplitydg(T,t)
This is just the closed expression of the interaction kernelwhich respectively describe the evolutions of the state with
According to the general argument as presented in Refgéespect to the center of mass tiiand the relative timé In
[33,34,39,40) the third term in the above expression playsthe equal-time frame, owing to the relative time being ab-
the role of eliminating all the BS reduciblévo-particle re-  sent, we are left only with the equation with respect to the
ducible diagrams contained in the first two terms. In fact, center of mass time as given in Sec. V. It is interesting to
the relations in Eqs(5.19—(5.21) and the following ones note that either the equation with respecftor the equation
with respect ta appears to be a first order differential equa-
Gjg;=GA; (6.3)  tion of Schralinger-type in the position space whose solu-
tions are determined merely by the initial condition of the BS
are inserted into the last term in E§.30, and itis seen that amplitudes at the time origin. This is an essential feature of
3 3 the equations mentioned above which is different from the
1 . B BS equation. The latter equation is a higher order differential
iJzzl 9iGiG Gigi_izl AiGA;=KGK, (6.32 equation and hence, like the Klein-Gordon equation, has un-
physical solutions with negative norm as pointed out in the
which exhibits the typical structure of the BS reducible partprevious literaturg35]. This is because the solutions of the
of the interaction kernel. Therefore, the kernel shown in EqBS equation are determined not only by the initial ampli-
(6.30 is truly BS irreducible, consistent with the conven- tudes at the time origin, but also by the time differentials of
tional concept. The equation in E¢p.28 and the kernel in  the amplitudes at the time origin.
Eq. (6.30 will be employed, in the next paper, to calculate ~ Another point we would like to note is that unlike the

the glueball spectrum in the ladder approximation. Dyson-Schwinger equation, the relativistic equation derived
in this paper is of a closed form. In particular, the interaction
VIl. CONCLUDING REMARKS kernel in the equation is given a closed expression. The ex-

pression contains only a few types of Green'’s functions and

In this paper, the exact three-dimensional relativisticvacuum expectation values of the operator commutators.
equation for two gluon glueball states and its interaction kerThey are unambiguously defined in the Heisenberg picture
nel have been derived from the QCD with massive gluonsand each of them can independently be calculated by the
When the gluon mass tends to zero, the equation and iserturbation method without concerning other Green'’s func-
kernel will naturally go over to the ones for the QCD with tions. Especially, the kernel represents all the interactions
massless gluons. As shown in E&.28, the equation de- taking place in the bound states and, therefore, are suitable
rived is a standard eigenvalue equation of Sdhwger-type. for nonperturbative investigations because the Green’s func-
In the position space it appears to be a set of first-ordetions and vacuum expectation values of the commutators, in

076002-16



GLUEBALL SPECTRUM BASED ONA ... . I. ... PHYSICAL REVIEW D569, 076002 (2004

principle, are able to be evaluated by a certain nonperturbaand employing the explicit expressions of the CG coupling

tive method as suggested by the lattice gauge approach. coefficients for different values af which may be found in
At last, it would be pointed out that although the equationthe textbook, one may derive from E@2) the expression

in Sec. V and the kernel in Sec. VI are derived in the angulaas follows:

momentum representation, they are suitable to formulate the

equation and the kernel in the momentum representation as

long as the angular momentum quantum numbers in the in-

dicesa, 3, ... are replaced by the momentum ones. That is Jto(M— 1)+ 1

to say, the equation and the kernel formally remain un- o

changed in both representations. 2)-1+1

Q3u(p)
J—o(M+ )+ 3 .
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Y- aram—12P)

By making use of the Dirac spinor in E¢A1l) and the
eigenfunctions represented in E@2) or in Eq. (A4) with
APPENDIX: SPHERICAL SPINORS IN THE ANGULAR respect to the momentuﬁ} we may construct the spherical
MOMENTUM REPRESENTATION Dirac spinor in the position space through the following Fou-

In this appendix, we intend to give a derivation of the fer transformation:

spherical Dirac spinors which are used, as basis functions, to

establish the angular momentum representation for fermion - -
fields. It is well known that in the relativistic case, unlike the
helicity, the spin of a free fermion is not a good quantum UG (PX) = j p )3/2'pU(P)QJ|v|(P) (A5)
number. However, the total angular momentum operator of

the fermion commutes with the Hamiltonian. Therefore, it is

meaningful to discuss eigenfunctions of the total angular moSubstituting the expansion

mentum which satisfy the Dirac equation. Let us start from

the positive energy spinary(p) which is the solution to the

Dirac equation i(&“pﬂ—m)us(ﬁ)=0. This spinor is taken to elP- ><—4772 i (pr) Y (D)Y|m(X) (AB)
be[46]

and the expressions written in Eq#&1) and (A4) into Eq.

A = m . (A5), considering
u(P)=vV—>; 5 p : (AL)

e+m”s . cosf singe ¢
ag- p:

singe'®  —cosh (A7)

which is normalized in such a fashion! (p)ug(p)=1. The

negative energy spinor can be given by the charge conjuga-

tion v(P)=Cuy(p). Suppose Yi(p) with p=p/|p| "

=(0,¢) and ¢4 are the orbital angular momentum and the

spin eigenfunctions, respectively; the total angular momen- S A oA g

tLljom eigenfunctions maypbe co?w/structed in thge momentum o-pQiu(p)=—Qu(p), (A8)
space by the CG coupling

which is easily proved by utilizing the familiar recursion
formulas for the spherical harmonic functions, it is not diffi-
Qh(P)=2 it 1Yim(P) @, (A2)  cult to derive the expression shown in H§.22. The ex-
's pression of the function §,,(px) may be derived by the
charge conjugation denoted in E.34). The result was
where s=0/2,0=+*1]=J*¢/2. Noticing the representa- ritten in Eq.(3.23. It would be noted that the eigenfunc-
tion tion Q‘}M(;() in Eq. (3.24) which is defined in the position
space and appears in Eq8.22 and (3.23 is of the same
form as the functiorﬂ‘J’M(f)) in Eq. (A4) which is defined in
the momentum space.

1
, 90—1/2:< ) (A3)
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