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Glueball spectrum based on a rigorous three-dimensional relativistic equation for two-gluon bound
states. I. Derivation of the relativistic equation
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A rigorous three-dimensional relativistic equation satisfied by two-gluon bound states is derived from QCD
with massive gluons. With the gluon fields and the quark fields being expanded in terms of the gluon multipole
fields and the spherical Dirac spinors, respectively, the equation is well established in the angular momentum
representation and hence is very convenient for solving the problem of two-gluon glueball spectra. In particu-
lar, the interaction kernel in the equation is exactly derived and given a closed expression which includes all
the interactions taking place in the two-gluon glueballs. The kernel contains only a few types of Green’s
functions and commutators. Therefore, it is not only easily calculated by the perturbation method, but also
provides a suitable basis for nonperturbative investigations.
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I. INTRODUCTION

It is a prominent feature of quantum chromodynam
~QCD! that, in addition to the quark-gluon interaction, the
are also the interactions between gluons. The self-interac
of gluons suggests that the gluons may form glueballs~the
bound states of gluons! through their interactions@1,2#. This
is an essential prediction which is of decisive significance
testing QCD and, therefore, has been raising great intere
searching for the glueballs in experiment@3–7#. But, there
have been no faithful evidence to be established so far
their existence@8–15#. On the other hand, the property, th
mass spectrum, and the production and decay of the g
balls have extensively been investigated theoretically. M
approaches were proposed to serve such investigations
as the potential model@16–18#, the bag model@19,20#, the
sum rule@21#, the Bethe-Salpeter~BS! equation@22–24# and
lattice simulation@25–30#. However, the theoretical result
given by different approaches are different and even con
dictory with each other@31,32#. This situation is attributed
mainly to the fact that the quark-gluon confinement has
clearly been understood so far. Commonly, it is believed t
the lattice gauge approach would give a more reliable p
diction because the approach is grounded on the first p
ciples of QCD and essentially nonperturbative although c
tain approximations are inevitably made in practic
calculations. In addition, it is widely recognized that the B
equation which is set up on the basis of quantum field the
is a rigorous formalism for the bound state problem@33# and
suitable to study the glueballs@23,24#. Nevertheless, there
are two difficulties in the previous application of this equ
tion. One difficulty arises from the interaction kernel in th
equation. This kernel was not given a closed expressio
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the past although the expression can be derived by the
cedure as demonstrated in a recent publication of one au
of this paper@34#. Ordinarily, the kernel is defined by a sum
of all two-particle irreducible Feynman graphs and can o
be calculated by the perturbation method. Another difficu
is ascribed to the four-dimensional nature of the equation
which the relative time~or the relative energy! is unphysical
and would lead to unphysical solutions@35#. So, many ef-
forts in the past are paid to recast the equation into a th
dimensional one in the instantaneous approximation@36# or
the quasipotential approach@37,38#.

In this paper, we are devoted to deriving a rigorous thr
dimensional relativistic equation satisfied by two-glu
bound states so as to provide a firm basis for further stud
practical application of this equation to calculate the glueb
spectrum will be presented in the next paper. The distinc
features of the equation derived are as follows.~1! The equa-
tion is exactly relativistic, containing all the retardation e
fect in it, unlike the BS equation given in the instantaneo
approximation in which the retardation effect is complete
neglected. The equation is derived in the equal-time form
ism by the consideration that a bound state is spacelike
can exist in the equal-time Lorentz frame. In this frame,
relativistic equation naturally becomes a three-dimensio
one without loss of any rigorism. Moreover, different fro
the BS equation, the three-dimensional equation derived
this paper is a standard eigenequation of Schro¨dinger type. In
the position space, it appears to be first-order differen
equations. In particular, the interaction kernel in the equat
is given a closed expression which is derived by the pro
dure proposed first in Ref.@39# for a two-fermion system and
subsequently demonstrated in Ref.@40# for quark-antiquark
bound states. The kernel derived contains exactly all the
teractions taking place in the bound states and is represe
in terms of only a few types of Green’s functions. Such
kernel cannot only be easily calculated by the perturbat
method, but also is suitable for nonperturbative investin
©2004 The American Physical Society02-1
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tions. ~2! The three-dimensional equation is established
the angular momentum representation. Since a glueball is
state of definite spin and parity, obviously, to investigate
glueballs, it is much more convenient to work in the angu
momentum representation. In order to express the relativ
equation in such a representation, it is necessary to exp
the QCD in the same representation. This can be done
expanding the quantized gluon and quark fields in terms
the gluon multipole fields and the spherical Dirac spino
respectively@41,42#. With these expansions, the vertices
the interaction Hamiltonian can all be given explicit and an
lytical expressions, as will be shown in the next paper. T
achievement is due to that the integrals containing three
four spherical Bessel functions in the vertices are all cal
lated analytically and expressed explicitly. We would like
note that in comparison with the momentum representa
in which every glueball state must be separately constru
according to a certain requirement for the Lorentz and C
transformation properties@24# and the vertices would involve
the gluon polarization vectors which are not convenient
deal with, the angular momentum representation has an
vantage that the glueball state can easily be written out
consistent manner and the QCD vertices exhibit the s
structures much clearly.~3! The relativistic equation is set u
by starting from the QCD with massive gluons. According
the conventional concept of QCD, in order to keep the L
grangian gauge-invariant, the gluons must be massless
the contrary, in most of the previous investigations of t
glueballs, an effective gluon mass was phenomenologic
introduced so as to get reasonable theoretical res
@17,18,23,24#. The gluon mass was supposed to be genera
dynamically from the interaction with the physical vacuu
of the Yang-Mills theory @23# or through strong gluon-
binding force@17#. Apparently, these arguments would not
considered to be stringent and logically consistent with
concept of the ordinary QCD. One of the authors of t
paper in his recent article@43# gave a different reasoning tha
the QCD with massive gluons can, actually, be set up on
principle of gauge-invariance without the need of introdu
ing the Higgs mechanism or the Stu¨ckelberg fields. The es
sential points to achieve this conclusion are~a! the gluon
fields must be viewed as a constrained system in the w
space of vector potentials and the Lorentz condition, a
necessary constraint, must be introduced from the begin
and imposed on the Lagrangian;~b! the gauge-invariance o
a gauge field should be generally examined from the ac
of the field other than from the Lagrangian because the
tion is of more fundamental dynamical meaning than
Lagrangian. Particularly, for a constrained system such as
gluon field, the gauge-invariance should be seen from
action given in the physical space defined by the Lore
condition. This concept is well known in mechanics;~c! in
the physical space, only infinitesimal gauge transformati
are possibly allowed and necessary to be considered.
fact was clarified originally in Ref.@44#. Based on these
points of view, it is easy to prove that the QCD with mass
gluons is gauge-invariant. Moreover, the renormalizabi
and unitarity of the theory have been proved to be no pr
lem @45#.
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The remainder of this paper is arranged as follows. In S
II, the massive QCD and its Lagrangian are briefly describ
Section III is used to formulate the angular momentum r
resentation and give the expansions for vector, spinor
ghost fields in this representation. In Sec. IV, the express
of QCD Hamiltonian in the angular momentum space will
described and discussed. Section V serves to derive
three-dimensional relativistic equation satisfied by the gl
balls. In Sec. VI, we are devoted to derive a closed expr
sion of the interaction kernel included in the relativist
equation. In the last section, some remarks will be made
the Appendix, we present a brief derivation of the spheri
Dirac spinors given in the angular momentum representat

II. QCD LAGRANGIAN WITH MASSIVE GLUONS

In the previous attempt of building up the massive no
Abelian gauge field theory, the following massive Yan
Mills Lagrangian density was chosen to be the starting po
@43,46#:

L52
1

4
FamnFmn

a 1
1

2
m2AamAm

a , ~2.1!

whereAm
a is the vector potential for a gluon field,

Fmn
a 5]mAn

a2]nAm
a 1g fabcAm

b An
c ~2.2!

is the field strength tensor in whichg is the QCD coupling
constant andf abc are the structure constants of color SU~3!
group andm is the gluon mass. The first term in the Lagran
ian is the ordinary Yang-Mills Lagrangian which is gaug
invariant under the whole Lie group and used to determ
the form of interactions among the gluon fields themselv
The second term in the Lagrangian is the mass term whic
not gauge-invariant and only affects the kinematic prope
of the fields. The above Lagrangian itself was ever cons
ered to give a complete description of the massive ga
field dynamics. This consideration is not correct because
Lagrangian is not only not gauge-invariant, but also conta
redundant unphysical degrees of freedom which must
eliminated by introducing a suitable constraint condition.
we know, a massive gauge field has three polarization st
which need only three spatial components of the fo
dimensional vector potentialAm

a to describe them. In
Lorentz-covariant formulation, a full vector potentialAm can
be split into two Lorentz-covariant parts: the transverse v
tor potentialAT

m and the longitudinal vector potentialAL
m

Am5AT
m1AL

m . ~2.3!

Since the Lorentz-covariant transverse vector potentialAT
am

contains three-independent spatial components, it is s
cient to represent the polarization states of a massive glu
whereas the Lorentz-covariant longitudinal vector poten
AL

am appears to be a redundant unphysical variable wh
must be constrained by introducing the Lorentz condition

]mAm
a 50, ~2.4!
2-2
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whose solution is

AL
am50. ~2.5!

With this solution, the massive Yang-Mills Lagrangian m
be expressed in terms of the independent dynamical v
ablesAT

am

L52
1

4
FT

amnFTmn
a 1

1

2
m2AT

amATm
a , ~2.6!

which gives a complete description of the massive glu
field dynamics. If we want to represent the dynamics in
whole space of the full vector potential as described by
massive Yang-Mills Lagrangian in Eq.~2.1!, the massive
gluon field must be treated as a constrained system. In
case, the Lorentz condition in Eq.~2.4!, as a constraint, is
necessarily introduced from the onset and imposed on
Lagrangian in Eq.~2.1! so as to guarantee the redunda
degrees of freedom to be eliminated from the Lagrang
Since the action is of more dynamical significance than
Lagrangian, the gauge-invariance of QCD should gener
be seen from the action given by the Lagrangian in Eq.~2.6!
or the Lagrangian in Eq.~2.1! constrained by the Lorent
condition in Eq.~2.4!. Under the gauge transformations

dAm
a 5Dm

abub, ~2.7!

where

Dm
ab5dab]m2g fabcAm

c . ~2.8!

Noticing the identityf abcAamAm
b 50, it is easy to prove tha

the action given by the Lagrangian in Eq.~2.1! and con-
strained by the Lorentz condition in Eq.~2.4! is gauge-
invariant,

dS5E d4xdL52m2E d4xua]mAm
a 50. ~2.9!

This suggests that the QCD with massive gluons may als
set up on the basis of the gauge-invariance principle.

Now, let us briefly describe quantization of the QCD wi
massive gluons. This quantization was carried out by dif
ent approaches in Ref.@43#. A simpler quantization is per
formed in the Lagrangian path-integral formalism by mea
of the Lagrange undetermined multiplier method which w
shown to be equivalent to the Faddeev-Popov approac
quantization@44#. For this quantization, it is convenient t
generalize the QCD Lagrangian and the Lorentz condition
the following forms:

Ll5c̄$ igm~]m2 igTaAm
a !2m%c2

1

4
FamnFmn

a

1
1

2
m2AamAm

a 2
1

2
a~la!2 ~2.10!

and

]mAm
a 1ala50, ~2.11!
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where for completeness, the quark fields have been inclu
in the Lagrangian in whichc̄ and c stand for the quark
fields, Ta are the color matrices andm is the quark mass
la(x) are the extra functions which will be identified wit
the Lagrange multipliers anda is an arbitrary constant play
ing the role of gauge parameter. According to the gene
procedure for constrained systems, the constraint in
~2.11! may be incorporated into the Lagrangian in Eq.~2.10!
by the Lagrange multiplier method, giving a generalized L
grangian such that

Ll5c̄$ igm~]m2 igTaAm
a !2m%c2

1

4
FamnFmn

a

1
1

2
m2AamAm

a 2
1

2
a~la!21la~]mAm

a 1ala!

5c̄$ igm~]m2 igTaAm
a !2m%c2

1

4
FamnFmn

a

1
1

2
m2AamAm

a 1la]mAm
a 1

1

2
a~la!2. ~2.12!

This Lagrangian is obviously not gauge-invariant. Howev
for building up a correct gauge field theory, it is necessary
require the dynamics of the system, i.e., the action given
the Lagrangian~2.12! to be invariant under the gauge tran
formations denoted in Eqs.~2.7! and ~2.8!. By this require-
ment, noticing the identityf abcAamAm

b 50 and applying the
constraint condition in Eq.~2.11!, we find

dSl52
1

aE d4x]nAn
a~x!]m

„D m
ab~x!ub~x!…50,

~2.13!

where

D m
ab~x!5dab

s2

hx
]m

x 1Dm
ab~x!, ~2.14!

in which s25am2 and Dm
ab(x) was defined in Eq.~2.8!.

From Eq.~2.11! we see (1/a)]nAn
a52laÞ0. Therefore, to

ensure the action to be gauge-invariant, the following c
straint condition on the gauge group is necessary to be
quired

]x
m
„D m

ab~x!ub~x!…50. ~2.15!

These are the coupled equations satisfied by the param
functionsua(x) of the gauge group. Since the Jacobian is n
singular

detMÞ0, ~2.16!

where
2-3
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Mab~x,y!5
d„]x

mD m
ac~x!uc~x!…

dub~y!
U

u50

5dab~hx1s2!d4~x2y!

2g fabc]x
m
„Am

c ~x!d4~x2y!…, ~2.17!

the above equations are solvable and would give a se
solutions which express the parametric functionsua(x) as
functionals of the vector potentialsAm

a (x). The constraint
conditions in Eq.~2.15! may also be incorporated into th
Lagrangian~2.12! by the Lagrange undetermined multiplie
method. In doing this, it is convenient, as usually done,
introduce ghost field variablesCa(x) in such a fashion

ua~x!5jCa~x!, ~2.18!

wherej is an infinitesimal Grassmann’s number. In acc
dance with Eq.~2.18!, the constraint condition in Eq.~2.15!
can be rewritten as

]m~D m
abCb!50, ~2.19!

where the numberj has been dropped. This constraint co
dition usually is called ghost equation. When the condition
Eq. ~2.19! is incorporated into the Lagrangian in Eq.~2.12!
by the Lagrange multiplier method, we obtain a more gen
alized Lagrangian as follows

Ll5c̄$ igm~]m2 igTaAm
a !2m%c2

1

4
FamnFmn

a

1
1

2
m2AamAm

a 1la]mAm
a 1

1

2
a~la!21C̄a]m~D m

abCb!,

~2.20!

whereC̄a(x), acting as Lagrange undetermined multiplie
are the new scalar variables conjugate to the ghost varia
Ca(x).

At present, we are ready to formulate the quantization
the QCD with massive gluons. As we learn from t
Lagrange undetermined multiplier method, the dynami
and constrained variables as well as the Lagrange multip
in the Lagrangian~2.20! can all be treated as free ones, var
ing arbitrarily. Therefore, we are allowed to use this kind
Lagrangian to construct the generating functional of Gree
functions

Z@Jam,h̄,h,j̄a,ja#5
1

NE D~Am
a ,c̄,c,C̄a,Ca,la!

3expH i E d4x@Ll~x!1Jam~x!Am
a ~x!

1c̄h1h̄c1 j̄a~x!Ca~x!

1C̄a~x!ja~x!#J , ~2.21!
07600
of

o

-

-
n

r-

,
les

f

l
rs
-
f
’s

where D(Am
a , . . . ,la) denotes the functional integratio

measure,Jm
a ,h̄,h,j̄a andja are the external sources couple

to the gluon, quark and ghost fields andN is a normalization
constant. Looking at the expression of the Lagrangian~2.20!,
we see the integral overla(x) is of Gaussian-type. Upon
completing the calculation of this integral, we finally arriv
at @43#

Z@Jam,h̄,h,j̄a,ja#

5
1

NE D~Am
a ,c̄,c,C̄a,Ca,!expH i E d4x@Le f f~x!

1Jam~x!Am
a ~x!1c̄h1h̄c1 j̄a~x!Ca~x!

1C̄a~x!ja~x!#J , ~2.22!

where

Le f f5c̄$ igm~]m2 igTaAm
a !2m%c2

1

4
FamnFmn

a

1
1

2
m2AamAm

a 2
1

2a
~]mAm

a !22]mC̄aD m
abCb

~2.23!

is the effective Lagrangian given in the general gauges.
From the generating functional shown in Eqs.~2.22! and

~2.23!, one may derive the free gluon propagator as follow

iD mn
cd ~k!52

idcd

k22m21 i«
Fgmn2~12a!

kmkn

k22s21 i«
G .

~2.24!

It is emphasized that when the gluon mass tends to zero,
propagator together with the effective Lagrangian in E
~2.23! and the generating functional in Eq.~2.22! all imme-
diately go over to the results given in the QCD with massl
gluons.

We would like to point out that the above propagator m
also be derived from the Lagrangian in Eq.~2.23! by the
method of canonical quantization@46#. In doing this, we
need to use the Fourier representation of the free gluon fi
operator@46#

Am
c ~x!5E d3k

~2p!3/2H 1

2v~kW !
(
l51

3

@em
l ~kW !al

c~kW !e2 ikx

1em
l* ~kW !al

c1~kW !eikx#

3
1

2v0~kW !

k̃

m
@a0

c~kW !e2 i k̃x1a0
c1~kW !eik̃x#J ,

~2.25!

wherek5(k0 ,kW ) and k̃5( k̃0 ,kW ) with k0[v(kW )5AkW21m2

and k̃0[v0(kW )5AkW21s2, em
l (kW ) are the polarization vec

tors satisfying the transversity condition

kmem
l ~kW !50, ~2.26!
2-4
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which means that only three spatial components ofem
l (kW ) are

independent and the creation and annihilation opera
al

c(kW ) and al
c1(kW ) (l50,1,2,3) are subject to the followin

commutation relations

@al
c~kW !,al8

d1
~kW8!#52dcdgll8d3~kW2kW8!,

@al
c~kW !,al8

d
~kW8!#5@al

c1~kW !,al8
d1

~kW8!#50.
~2.27!

By making use of the expression in Eq.~2.25! and the above
commutation relations, it is not difficult to derive

iD mn
cd ~x2y!5^0uT$Am

c ~x!An
d~y!%u0&

5E d4k

~2p!4
iD mn

cd ~k!e2 ik(x2y), ~2.28!

whereiD mn
cd (k) is just as that written in Eq.~2.24!.

The propagator in Eq.~2.24! is written in arbitrary
gauges. It has been proved that theS-matrices given by the
QCD with massive gluons is independent of the gauge
rametera @45#. For example, in the tree diagram approxim
tion, noticing the transversity condition denoted in Eq.~2.26!
and the on-shell property of the gluon states, it is easy
verify that thea-dependent term proportional tokmkn in Eq.
~2.24! gives no contribution to theS-matrix elements. This
fact was early pointed out in Ref.@17#. In view of this fact,
we may simply take the Feynman gauge (a51) in practical
calculations. In this gauge, the effective Lagrangian in E
~2.23! becomes

L5L01LI , ~2.29!

where

L05
1

2
An

a~h1m2!Aan1c̄~ igm]m2m!c1C̄a~h1m2!Ca

~2.30!

and

LI52
1

2
g fabc~]mAn

a2]nAm
a !AbmAcn

2
1

4
g2f abcf adeAbmAcnAm

d An
e1c̄gmTacAm

a

1g fabc]mC̄aCbAm
c ~2.31!

are the free and interaction parts of the Lagrangian res
tively. Correspondingly, the gluon propagator in Eq.~2.24! is
reduced to

iD mn
cd ~k!52

idcdgmn

k22m21 i«
. ~2.32!
07600
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III. EXPRESSIONS OF THE QCD FIELDS IN ANGULAR
MOMENTUM REPRESENTATION

The fields in the Lagrangian in Eqs.~2.30! and~2.31! may
be expressed in the angular momentum representatio
terms of the eigenfunctions of total angular momenta for
vector, spinor and scalar fields. These eigenfunctions are
scribed below. For the vector field, the complete set of
eigenfunctions were already found in the literature@41,42#.
They include the scalar multipole fieldAJM

S (kxW ) and the vec-

torial multipole fieldsAW JM
M (kxW ),AW JM

E (kxW ) andAW JM
L (kxW ). They

are displayed in the following:

AJM
S ~kxW !5A2

p
k jJ~kr !YJM~ x̂!,

~3.1!

AW JM
M ~kxW !5

2 i

AJ~J11!
L̂AJM

S ~kxW !

5A2

p
k jJ~kr !YW JJM~ x̂!, ~3.2!

AW JM
E ~kxW !5

1

kAJ~J11!
¹3L̂AJM

S ~kxW !

52 iA2

p

k

A2J11
@AJ jJ11~kr !YW JJ11M~ x̂!

2AJ11 j J21~kr !YW JJ21M~ x̂!#, ~3.3!

AW JM
L ~kxW !5

2 i

k
¹AJM

S ~kxW !

52 iA2

p

k

A2J11
@AJ11 j J11~kr !YW JJ11M~ x̂!

1AJ jJ21~kr !YW JJ21M~ x̂!#, ~3.4!

whereJ,M mark the total angular momentum and its thi
component of the vector field eigenfunction,kW is the momen-
tum of a single particle,k5ukW u, j l(kr) is the l th spherical
Bessel function withr 5uxW u, L̂52 ixW3, is the orbital an-
gular momentum operator andYW JlM( x̂) denotes the vectoria
spherical harmonic function with total angular momentu
JM and orbital angular momentuml 5J21,J,J11. This
function is defined as

YW JlM~ x̂!5(
mq

Clm1q
JM Ylm~ x̂!eWq , ~3.5!

where Clm1q
JM are the Clebsch-Gordan~CG! coefficients,

Ylm( x̂) with x̂5(u,f) are the eigenfunction of orbital angu
lar momentum operatorL̂ andeWq is the eigenfunction of the
spin operator for a vector particle. Since the functions
fined by
2-5
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AW JM~xW !5 j J~kr !YW JlM~ x̂! ~3.6!

and

AJM
0 ~xW !5 j J~kr !YJM~ x̂!, ~3.7!

respectively, satisfy the following equations of motion d
rived from the first term of the Lagrangian in Eq.~2.30!

~h1m2!AW 50 ~3.8!

and

~h1m2!A050, ~3.9!

as we see, the functions in Eqs.~3.1!–~3.4! completely de-
scribe the eigenstates of the total angular momentum f
free massive gluon field~or for a massless gluon field whe
the massm50). Furthermore, as the functionsAW JM

M (kxW ) and

AW JM
E (kxW ) satisfy the transversity condition

,•AW 50 ~3.10!

and are related to each other by

¹3AW JM
M ~kxW !5kAW JM

E ~kxW !, ~3.11!

the AW JM
M (kxW ) is usually called transverse magnetic multipo

field andAW JM
E (kxW ) transverse electric multipole field. Whil

the field AW JM
L (kxW ) is referred to as longitudinal multipol

field because it obeys the condition of longitudinal fields,

3AW 50. It is easy to verify that these vectorial eigenfun
tions meet the orthogonality relation

E d3xAW JM
l ~kxW !AW

J8M 8
l8

~k8xW !5dll8d~k2k8!dJJ8dMM 8,

~3.12!

wherel,l85M ,E,L label the different modes of the mult
pole fields. Similarly, for the scalar multipole field, we ha

E d3xAJM
s ~kxW !A

J8M 8
s

~kxW !5d~k2k8!dJJ8dMM 8.

~3.13!

Therefore, the multipole fields defined in Eqs.~3.1!–~3.4!
may suitably be chosen as the basis functions to establish
angular momentum representation for the gluon fields
gluon field operatorAm

c (x) may be expanded as

A¢ c~x!5 (
lJM

E
0

` dk

A2v
@aJM

cl ~k!AW JM
l ~kxW !e2 ivt

1aJM
cl1

~k!AW JM
l* ~kxW !eivt#, ~3.14!

wherel5M ,E,L,
07600
-

a

-

he
A

A0
c~x!5(

JM
E

0

` dk

A2v
@aJM

cs ~k!AJM
s ~kxW !e2 ivt

1aJM
cs1

~k!AJM
s* ~kxW !eivt#. ~3.15!

The creation and annihilation operators in the above exp
sions satisfy the following commutation relations

@aJM
cl ~k!,aJ8M8

c8l81

~k8!#5d~k2k8!dcc8dll8dJJ8dMM8 ,

@aJM
cl ~k!,aJ8M8

c8l8 ~k8!#5@aJM
cl1~k!,aJ8M8

c8l81

~k8!#50,
~3.16!

@aJM
cs ~k!,aJ8M8

c8s81

~k8!#5d~k2k8!dcc8dJJ8dMM9 ,

@aJM
cs ~k!,aJ8M8

c8s8 ~k8!#5@aJM
cs1~k!,aJ8M8

c8s81

~k8!#50.
~3.17!

From the transformation of a gluon field under the spa
inversion@46#

PA¢ c~ t,xW !P2152A¢ c~ t,2xW !,PAo
c~ t,xW !P215Ao

c~ t,2xW !,
~3.18!

whereP is the space inversion operator and the parity of
multipole fields

AJM
S ~2kxW !5~21!JAJM

S ~kxW !,AW JM
l ~2kxW !

5~21!J1plAW JM
l ~kxW !, ~3.19!

wherepl50 if l5M andpl51 if l5E,L, one may find
from Eqs.~3.14! and ~3.15! the parities of the annihilation
operators

PaJM
cs ~k!P215~21!JaJM

cs ~k!,PaJM
cl ~k!P21

5~21!J111plaJM
cl ~k! ~3.20!

and the same parity for the creation operators. In addit
from the charge conjugation of the gluon fie
CAm

c (t,xW )C2152Am
c (t,xW ), we obtain a minusC-parity for

the operatorsaJM
cl (k) andaJM

cl1(k)

CaJM
cl ~k!C2152aJM

cl ~k!,CaJM
cl1~k!C2152aJM

cl1~k!,
~3.21!

wherel5S,M ,E,L.
Now let us turn to the angular momentum representat

of spinor fields. As shown in the Appendix, this represen
tion may be set up by means of the spherical Dirac spin
These spinors are shown in the following:

uJM
s ~pxW !5S A«1m

2«
uJ

s~pr !VJM
s ~ x̂!

2A«2m

2«
uJ

2s~pr !VJM
2s~ x̂!

D ,

~3.22!
2-6
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vJM
s ~pxW !5~21!J1M1sSA«2m

2E
uJ

2s~pr !VJ2M
2s ~ x̂!

A«1m

2«
uJ

s~pr !VJ2M
s ~ x̂!

D ,

~3.23!

whereJM denote the total angular momentum and its th

component of a free fermion,s561, «5Ap21m2 is the
energy of the fermion in whichm is the mass andpW is the
momentum, p5upW u, VJM

s ( x̂) is the spherical harmonic
spinor defined as

VJM
s ~ x̂!5S sAJ1sS M2

1

2D1
1

2

2J2 l 11
YJ2s/2,M21/2~ x̂!

AJ2sS M1
1

2D1
1

2

2J2s11
YJ2s/2,M11/2~ x̂!

D
~3.24!

anduJ
s(pr) is defined by

uJ
s~pr !5 i J2s/2A2

p
p jJ2s/2~pr !. ~3.25!

The spinorsuJM
s (pxW ) and vJM

s (pxW ) are the eigenstates o
total angular momentum for a fermion. They respectiv
obey the free Dirac equations of positive energy state
negative energy state. Based on the above expressions o
spherical Dirac spinors, it is easy to prove the followi
orthonormality and completeness relations

E d3xuJM
s1

~pxW !uJ8M8
s

~p8xW !5d~p2p8!dJJ8dss8dMM8 ,

E d3xvJM
s1

~pxW !vJ8M8
s8 ~p8xW !5d~p2p8!dJJ8dss8dMM8 ,

E d3xuJM
s1

~pxW !vJ8M8
s8 ~p8xW !5E d3xvJM

s1

~pxW !uJ8M8
s8 ~p8xW !

50, ~3.26!

(
JMs

E
0

`

dp@uJM
s ~pxW !uJM

s1

~pxW8!1vJM
s ~pxW !vJM

s1

~pxW8!#

5d3~xW2xW8!.

Clearly, the free quark field operators may be expanded
terms of the spherical Dirac spinors

c~x!5 (
ssJM

E
0

`

dp@bJM
ss ~p!uJM

s ~pxW !e2 i«t

1dJM
ss1

~p!vJM
s ~pxW !ei«t#, ~3.27!
07600
y
d
the

in

c̄~x!5 (
ssJM

E
0

`

dp@bJM
ss1

~p!ūJM
s ~pxW !ei«t

1dJM
ss ~p!v̄JM

s ~pxW !e2 i«t#, ~3.28!

wheres5(c, f ), c andf are the color and flavor indices for
quark, ūJM

s (pxW )5uJM
s (pxW )1g0 ,v̄JM

s (pxW )5vJM
s (pxW )1g0 and

bJM
ss1

(p),dJM
ss1

(p) and bJM
ss (p),dJM

ss (p) are the creation and
annihilation operators. These operators satisfy the follow
anticommutation relations

$bJM
ss ~p!,bJ8M8

s8s81
~p8!%5d~p2p8!dss8dss8dJJ8dMM8 ,

$dJM
ss ~p!,dJ8M8

s8s81
~p8!%5d~p2p8!dss8dss8dJJ8dMM8 ,

~3.29!

with the other anticommutators being zero.
From the space inversion transformation of the quark fi

@46#

Pc~xW ,t !P215hPg0c~2xW ,t ! ~3.30!

and the relations

g0uJM
s ~2pxW !5~21!J2s/2uJM

s ~pxW !,g0vJM
s ~2pxW !

5~21!J2s/211vJM
s ~pxW !, ~3.31!

it is easy to find from Eqs.~3.27! and~3.28! the parity of the
quark operators such that

Pblm
sl~p!P215hP~21!J2s/2blm

sl~p!,

Pdlm
sl~p!P215hP~21!J1s/211dlm

sl~p!,

Pblm
sl1

~p!P215hP~21!J2s/2blm
sl1

~p!,

Pdlm
sl1

~p!P215hP~21!J1s/211dlm
sl1

~p!, ~3.32!

where the phase factorhP usually is chosen to behP 51.
By noticing the charge conjugation transformations@46#

Bc~x!B 215hCCc̄~x!, ~3.33!

whereC5 ig2g0 and

vJM
s ~pxW !5CūJM

s ~pxW !T,uJM
s ~pxW !5Cv̄JM

s ~pxW !T,
~3.34!

the C-parities of the creation and annihilation operators
easily found from Eqs.~3.27! and ~3.28!

Bblm
sl~p!B 215hCdlm

sl~p!,Bdlm
sl~p!B 215hCblm

sl~p!,

Bblm
sl1

~p!B 215hCdlm
sl1

~p!,Bdlm
sl1

~p!B 215hCblm
sl1

~p!.
~3.35!
2-7
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For the ghost fields, considering their scalar character,
can write their expressions in the angular momentum re
sentation as follows:

Ca~x!5(
JM

E
0

` dk

A2v
@cJM

a ~k!AJM
s ~kxW !e2 ivt

1dJM
a1

~k!AJM
s* ~kxW !eivt#, ~3.36!

C̄a~x!5(
JM

E
0

` dk

A2v
@dJM

a ~k!AJM
s ~kxW !e2 ivt

1cJM
a1

~k!AJM
s* ~kxW !eivt#. ~3.37!

The anticommutation relations for the ghost particle ope
tors in the above are

$cJM
a ~k!,cJ8M8

a81
~k8!%5daa8dJJ8dMM8d~k2k8!,

$dJM
a ~k!,dJ8M8

a81
~k8!%5daa8dJJ8dMM8d~k2k8!,

~3.38!

with the other anticommutators vanishing.

IV. QCD HAMILTONIAN IN ANGULAR MOMENTUM
REPRESENTATION

In this section, we are devoted to discussing the Q
Hamiltonian in the angular momentum representation.
virtue of the expansions given in Eqs.~3.14!, ~3.15!, ~3.27!,
~3.28!, ~3.36! and ~3.37!, it is not difficult to formulate the
Hamiltonian derived from the Lorentz-covariant Lagrangi
written in Eqs.~2.30! and ~2.31!. However, due to presenc
of the field A0(x), the expression of the Hamiltonian
rather complicated. Considering that the fieldA0(x) is un-
physical and will eventually be eliminated from theS-matrix
and the BS equation by the ghost fields as ensured by
unitarity of the theory@45#, for the sake of simplifying the
representation of Hamiltonian, we would rather start with
Lagrangian obtained from the Lagrangian in Eqs.~2.30! and
~2.31! by setting the unphysical fieldsA0(x),C̄a(x) and
Ca(x) to vanish, as was commonly done in the lattice gau
calculations@25–30# and similarly done in Ref.@23# where a
massive QCD Lagrangian taken in the temporal gauge
used for calculating the glueball spectrum in the framew
of BS equation. The Lagrangian we start with is

L5L01LI , ~4.1!

where

L052
1

2
Ai

a~h1m2!Ai
a1c̄~ igm]m2m!c

5
1

2
~Ȧak

a!21
1

2
Ai

a~¹22m2!Ai
a1c̄~ igm]m2m!c

~4.2!
07600
e
e-

-

D
y

he

e

e
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and

LI52
1

2
g fabc~] iAj

a2] jAi
a!Ai

bAj
c

2
1

4
g2f abcf adeAi

bAj
cAi

dAj
e2c̄g iT

acAi
a . ~4.3!

By making use of the canonical variables conjugate toAk
a ,

C andC̄ which are defined by

Pk
a5

]L
]Ȧk

a
5Ak

a ,

Pc5
]L
]ċ

5 i c̄g0,

Pc̄5
]L
]ċ̄

50, ~4.4!

we can write the Hamiltonian density as

H5Pk
aAk

a
•

1Pcc
•

2L

5H01HI , ~4.5!

where

H05
1

2
~Ak

a
•

!22
1

2
Ai

a~¹22m2!Ai
a1c̄~aW •,1bm!c

~4.6!

and

HI52
g

2
f abc~AW a3AW b!•~¹3AW c!

1
1

8
g2f abef cde~AW a3AW b!•~AW c3AW d!1gc̄TagW •AW ac.

~4.7!

The first two terms in Eq.~4.6! denote the energy of free
gluon fields. The second term gives the energy of free qu
fields. In the interaction Hamiltonian density~4.7!, the first,
second and third terms represent the gluon three-line ver
the gluon four-line vertex and quark-gluon vertex resp
tively. It should be noted that the above Hamiltonian includ
not only the transverse fieldAW T , but also the longitudinal
field AW L whose presence can be seen from the constr
condition in Eq.~2.11! because in the case ofA050 anda

51, the condition becomes¹•AW L
c52lÞ0. This is different

from the theory proposed in Ref.@23# where only the trans-
verse field exists.

Now let us derive the expression of the Hamiltonian giv
by the Hamiltonian density shown above in the angular m
2-8
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mentum representation. First, we derive the expression o
free Hamiltonian. On substituting Eqs.~3.14!, ~3.15!, ~3.27!,
~3.28! into Eq. ~4.6!, one may get

H05E d3xH0

5 (
clJM

E
0

`

dkv~kW !aJM
cl1

~k!aJM
cl ~k!1 (

ss lm
E

0

`

dp«~pW !

3@bJM
ss1

~p!bJM
ss ~p!1dJM

ss1

~p!dJM
ss ~p!#. ~4.8!

In later derivations, it is convenient to introduce compa
notations for various indices so as to simplify the expressi
of the operators and formulas. For the gluon field, we de

aJM
clj~k!5H aJM

cl ~k! if j51,

aJM
cl1

~k! if j521,
~4.9!

AW JM
lj ~kxW !5H AW JM

l ~kxW ! if j51,

AW JM
l* ~kxW ! if j521.

~4.10!

Then the commutators in Eqs.~3.16! and ~3.17! can be uni-
fied to write as

@aJM
clj~k!,aJ8M8

c8l8j8~k8!#

5d~k2k8!dcc8dll8dJJ8dMM8sinF ~j2j8!
p

4 G .
~4.11!

Furthermore, we definea[(c,l,J,M ,k,j) in which the j
will be written asja later on. In this notation, the commuta
tor in Eq. ~4.11! will be represented as

@aa ,ab#5nab , ~4.12!

where

nab5d~k2k8!dcc8dll8dJJ8dMM8sinF ~j2j8!
p

4 G
~4.13!

and the expansion in Eq.~3.14! becomes

AW c~x!5(
a

aaAW a~kxW !e2 i javat, ~4.14!

where

(
a

[ (
cl lm

E
0

`

dk,va5Ak21m2, ~4.15!

AW a~kxW !5
1

A2va

AW JM
lj ~kxW !. ~4.16!

For the quark field, with the definition
07600
he

t
s
e

clm
ssh~p!5H blm

ss~p! if h51,

dlm
ss1

~p! if h521,
~4.17!

wlm
sh~pxW !5H ulm

s ~pxW ! if h51,

v lm
s ~pxW ! if h521,

~4.18!

the anticommutators in Eq.~3.29! become

$cJM
ssh~p!,c

J88M8

s8s8h81
~p8!%5d~p2p8!dss8dss8dJJ88dMM8dhh8 .

~4.19!

When we seta5(s,s,l ,m,p,h) in which theh will be writ-
ten asha later on, the above anticommutator can be sim
written as

$ca ,cb
1%5dab , ~4.20!

where

dab[d~p2p8!dss8dss8dJJ88dMM8dhh8 , ~4.21!

and the expansions in Eqs.~3.27! and ~3.28! will be repre-
sented by

c~x!5(
a

cawa~pxW !e2 i ja«at,

c̄~x!5(
a

ca
1w̄a~pxW !ei ja«at, ~4.22!

where

(
a

[ (
sl lm

E
0

`

dp, «a5Ap21m2. ~4.23!

In view of the notations defined above, the free Ham
tonian will compactly be rewritten as follows

H05Hg
01Hq

0 , ~4.24!

Hg
05

1

2 (
ab

vab :aaab :, ~4.25!

Hq
05(

a
ja«a :ca

1ca :, ~4.26!

where the symbol :: denotes the normal product and

vab[v~k!d~k2k8!dcc8dll8dJJ8dMM8~12djj8!.
~4.27!

Next, we derive the expression of the interaction Ham
tonian in the angular momentum representation. In do
this, it is helpful to use the transformations for an operator~a
Hamiltonian, a field operator, a creation or annihilation o
2-9
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erator! among the Heisenberg picture, the Schro¨dinger pic-
ture and the interaction picture

FH~ t !5eiHtFse
2 iHt5eiHte2H0tFI~ t !eiH 0te2 iHt ,

~4.28!

whereFH(t),Fs andFI(t) stand for the operators given in th
Heisenberg, Schro¨dinger and interaction pictures. From E
~4.28!, it is clearly seen thatFs5FH(0)5FI(0) which is
independent of time. According to the relation in Eq.~4.28!,
we only need to write out the interaction Hamiltonian in t
Schrödinger picture~or in the interaction picture!. In this
picture, on inserting the expressions in Eqs.~4.14! and~4.22!
into Eq. ~4.7!, we obtain

HI~0!5E d3xHI~xW ,0!

5 (
abg

A~abg!:aaabag :1 (
abgd

B~abgd!:aaabagad :

1 (
abg

C~abg!:ca
1cbag :, ~4.29!

where

A~abg!52
g

2
f abcE d3x~AW a3AW b!•~,3AW g!,

~4.30!

B~abgd!5
1

8
g2f abef cdeE d3x~AW a3AW b!•~AW g3AW d!

~4.31!

and

C~abg!5gE d3xw̄aTcgW wb•AW g . ~4.32!

By making use of the expressions ofAW a ,w̄a andwb , com-
pleting the integrals overxW and applying the formulas o
angular momentum couplings, one may derive explicit
pressions of the coefficientsA(abg),B(abgd) and
C(abg). The expressions ofA(abg) andB(abgd) will be
given in the next paper. As for the coefficientC(abg), its
expression will be presented later in another publication.

V. THREE-DIMENSIONAL RELATIVISTIC EQUATION
FOR TWO GLUON BOUND STATES

The aim of this section is to derive a rigorous thre
dimensional relativistic equation satisfied by two-glu
bound states. This equation may be derived from the eq
tion satisfied by the following gluon two-time Green’s fun
tions defined in the Heisenberg picture. These Green’s fu
tions include

G~a1b1;g2d2;t12t2!

5^01uT$aa~ t1!ab~ t1!ag
1~ t2!ad

1~ t2!%u02&,
07600
-

-

a-

c-

G~a2b2;g1d1;t12t2!

5^01uT$aa
1~ t1!ab

1~ t1!ag~ t2!ad~ t2!%u02&,

G~a2b1;g2d1;t12t2!

5^01uT$aa
1~ t1!ab~ t1!ag

1~ t2!ad~ t2!%u02&,

G~a1b2;g1d2;t12t2!

5^01uT$aa~ t1!ab
1~ t1!ag~ t2!ad

1~ t2!%u02&,
~5.1!

whereT symbolizes the time-ordered product andu06& de-
note the physical vacuum states defined in the Heisenb
picture. It should be noted that the creation and annihilat
operators in Eq.~5.1! are those defined in Eq.~3.15!. For
later convenience, we will use the notation defined in E
~4.9! for the gluon operators. With this notation, instead
the above Green’s functions, we may start, in a consis
way, from the following Green’s function defined by

G~ab;gd;t12t2!5^01uT$aa~ t1!ab~ t1!ag~ t2!ad~ t2!%u02&,
~5.2!

whereaa can be a creation operator or an annihilation on
On differentiating Eq.~5.2! with respect to timet1, it is

found that

i
]

]t1
G~ab;gd;t12t2!

5 id~ t12t2!S~ab,gd!1^01uTH F S i
]

]t1
aa~ t1! Dab~ t1!

1aa~ t1!S i
]

]t1
ab~ t1! D Gag~ t2!ad~ t2!J u02&, ~5.3!

where

S~ab,gd!5^01u@aa~ t1!ab~ t1!,ag~ t2!ad~ t2!#u02&

5^01u@aaab ,agad#u02& ~5.4!

is time-independent owing to the time displacement sho
in Eq. ~4.28! and the restriction ofd(t12t2). According to
the relation in Eq.~4.28!, we have

i
]

]t
aa~ t !5eiHt@aa ,H#e2 iHt . ~5.5!

Sinceaa in the commutator is independent of time, we m
use the Hamiltonian given in Eqs.~4.24!–~4.26! and ~4.29!
and the commutation relation in Eq.~4.12! to compute the
commutator@aa ,H#. When the result is substituted in Eq
~5.5!, we obtain
2-10
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i
]

]t1
aa~ t1!5(

rs
vrsDasar~ t1!

1(
rst

f 1~rst!Dat :ar~ t1!as~ t1!:

1 (
rstl

f 2~rstl!Dal :ar~ t1!as~ t1!at~ t1!:

1(
rst

f 3~rst!Dat :cr
1~ t1!cs~ t1!:, ~5.6!

whereDas was defined in Eq.~4.13! and the coefficientsf i
are defined by

f 1~rst!5A~rst!1A~rts!1A~trs!,

f 2~rstl!5B~rstl!1B~rslt!1B~rlst!

1B~lrst!, ~5.7!

f 3~rst!5C~rst!.

Clearly, the expression ofi (]/]t1)ab(t1) may be written out
from Eq. ~5.6! by replacinga with b. Inserting this expres-
sion and that given in Eq.~5.6! into Eq. ~5.3!, one may find
an equation of motion obeyed by the Green’s function
noted in Eq.~5.2! such that

i
]

]t1
G~ab;gd;t12t2!

5 id~ t12t2!S~ab,gd!

1(
rsl

vrsDab,slG~rl;gd;t12t2!

1(
rsl

g1~ab;rsl!G1~rsl;gd;t12t2!

1 (
rstl

g2~ab;rstl!G2~rstl;gd;t12t2!

1(
rsl

g3~ab;rsl!G3~rsl;gd;t12t2!, ~5.8!

where

Dab,sl5Dasdbl1Dbsdal ,

g1~ab;rsl!5(
t

f 1~rst!Dab,tl , ~5.9!

g2~ab;rstl!5(
u

f 2~rstu!Dab,ul ,

g3~ab;rsl!5(
t

f 3~rst!Dab,tl , ~5.10!

and the Green functionsGi are defined by
07600
-

G1~rsl;gd;t12t2!5^01uT$:ar~ t1!as~ t1!:

3al~ t1!ag~ t2!ad~ t2!%u02&,

~5.11!

G2~rstu;gd;t12t2!5^01uT$:ar~ t1!as~ t1!at~ t1!:

3au~ t1!ag~ t2!ad~ t2!%u02&,

~5.12!

G3~rsl;gd;t12t2!5^01uT$:cr
1~ t1!cs~ t1!:

3al~ t1!ag~ t2!ad~ t2!%u02&.

~5.13!

By the Fourier transformation

Gi~a, . . . ,d;v!5
1

i E2`

1`

dteivtGi~a, . . . ,d;t !,

~5.14!

the equation in Eq.~5.8! will be of the form in the energy
representation

vG~ab;gd;v!5S~ab,gd!1(
rsl

vrsDab,slG~rl;gd;v!

1(
rsl

g1~ab;rsl!G1~rsl;gd;v!

1 (
rstl

g2~ab;rstl!G2~rstl;gd;v!

1(
rsl

g3~ab;rsl!G3~rsl;gd;v!.

~5.15!

Let us look at the second term on the right-hand side~RHS!
of the above equation. From the definitions ofvrs and
Dab,sl given in Eqs.~4.27!, ~5.9! and ~4.13!, we see, only
whenjrÞjs , thatvrs andDrs are nonvanishing. When we
define

va5H v~k! if ja511,

2v~k! if ja521,
~5.16!

the second term mentioned above gives

(
rsl

vrsDab,slG~rl;gd;v!5~va1vb!G~ab;gd;v!.

~5.17!

Thus Eq.~5.15! can be written as
2-11
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~v2va2vb!G~ab;gd;v!

5S~ab,gd!1(
rsl

g1~ab;rsl!G1~rsl;gd;v!

1 (
rstl

g2~ab;rstl!G2~rstl;gd;v!

1(
rsl

g3~ab;rsl!G3~rsl;gd;v!. ~5.18!

In order to obtain a closed equation, it is necessary~actu-
ally possible! to introduce effective interaction kernelsL i in
such a fashion

(
rsl

g1~ab;rsl!G1~rsl;gd;v!

5(
rs

L1~ab;rs;v!G~rs;gd;v!,

~5.19!

(
rstl

g2~ab;rstl!G2~rstl;gd;v!

5(
rs

L2~ab;rs;v!G~rs;gd;v!,

~5.20!

(
rsl

g3~ab;rsl!G3~rsl;gd;v!

5(
rs

L3~ab;rs;v!G~rs;gd;v!.

~5.21!

With the kernels defined above, Eq.~5.18! becomes

~v2va2vb!G~ab;gd;v!

5S~ab,gd!1(
rs

K~ab;rs;v!G~rs;gd;v!.

~5.22!

This is just the equation satisfied by the Green’s funct
G(ab;gd;v) in which

K~ab;rs;v!5(
i 51

3

L i~ab;rs;v! ~5.23!

is the total interaction kernel.
The equation obeyed by glueball states may be deri

from the above equation with the aid of the Lehmann rep
sentation of the Green’s function. Suppose$un&% form a com-
plete set of glueball states. Noticing the transformation in
~4.28! andHun&5Enun&, we can write
07600
n

d
-

.

G~ab;gd;t12t2!

5(
n

$u~ t12t2!^01uaaabun&^nuagadu02&e2 iEn(t12t2)

1u~ t22t1!^01uagadun&^nuaaabu02&e2 iEn(t22t1)%.

~5.24!

Substituting in Eq.~5.24! the representation of the step fun
tion

u~ t !5
i

2pE dq
e2 iqt

q1 i e
~5.25!

and then performing a Fourier transformation with respec
time, we can get from Eq.~5.24! the Lehmann representatio
such that

G~ab;gd;v!5(
n

Fxab~n!x̄gd~n!

v2En1 i e
2

xgd~n!x̄ab~n!

v1En2 i e
G ,

~5.26!

whereEn is the total energy of a glueball state and

xab~n!5^01uaaabun&, x̄ab~n!5^nuaaabu02&
~5.27!

are the BS amplitudes describing the two-gluon bound sta
On replacing theG(ab;gd;v) in Eq. ~5.22! with its Leh-
mann representation, then multiplying both sides of E
~5.22! with v2En and finally taking the limitv→En , we
eventually arrive at

~En2va2vb!xab~n!5(
rs

K~ab;rs;En!xrs~n!.

~5.28!

This is just the wanted three-dimensional relativistic eq
tion for the two-gluon bound states. It should be pointed
that the above equation actually represents a set of cou
equations which may be written out by settingja in the
index a andjb in the indexb to be61. Each of the equa-
tions is manifestly of Schro¨dinger-type, i.e., a standar
eigenequation. In the next paper, these coupled equat
will be reduced to an equivalent equation satisfied only
the BS amplitude for which the two gluons are in the posit
energy states.

VI. CLOSED EXPRESSION OF THE INTERACTION
KERNEL

In this section, we are devoted to deriving the effecti
interaction kernel appearing in Eq.~5.28! and defined in Eq.
~5.23!, giving a closed expression of it. For this derivatio
we need equations of motion which describe the evolution
the Green’s functionG(ab;gd;t12t2) and those shown in
Eqs.~5.11!–~5.13! with time t2. Taking the derivative of the
Green’s function in Eq.~5.2! with respect tot2, we have
2-12
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i
]

]t2
G~ab;gd;t12t2!

52 id~ t12t2!S~ab,gd!1^01uTH ab~ t1!ab~ t1!

3F S i
]

]t2
ag~ t2! Dad~ t2!1ag~ t2!i

]

]t2
ad~ t2!G J u02&,

~6.1!

where

i
]

]t2
ag~ t2!5(

rs
vrsDlsar~ t2!

1(
rst

f 1~rst!Dgt :ar~ t2!as~ t2!:

1 (
rstl

f 2~rstl!Dgl :ar~ t2!as~ t2!at~ t2!:

1(
rst

f 3~rst!Dgt :cr
1~ t2!cs~ t2!: . ~6.2!

Here the coefficientsf i are the same as represented in E
~5.7!. The expression ofi (]/]t2)ad(t2) can directly be writ-
ten out from Eq.~6.2! by replacingg by d. When this ex-
pression and the one given above are inserted into Eq.~6.1!,
we are led to

i
]

]t2
G~ab;gd;t12t2!

52 id~ t12t2!S~ab,gd!

1(
rsl

vrsDgd,slG~ab;rl;t12t2!

1(
rsl

G1~ab;rsl;t12t2!g1~rsl;gd!

1 (
rstl

G2~ab;rstl;t12t2!g2~rstl;gd!

1(
rsl

G3~ab;rsl;t12t2!g3~rsl;gd!,

~6.3!

whereS(ab,gd) was defined in Eq.~5.4!, the coefficientsgi
are the same as those represented in Eq.~5.10! since the
following equality holds

gi~r, . . . ,l;gd!5gi~gd;r, . . . ,l! ~6.4!

and the Green functionsGi are defined as follows:

G1~ab;rsl;t12t2!5^01uT$aa~ t1!ab~ t1!

3:ar~ t2!as~ t2!:al~ t2!%u02&,
07600
.

G2~ab;rstl;t12t2!

5^01uT$aa~ t1!ab~ t1!:ar~ t2!as~ t2!at~ t2!:al~ t2!%

3u02&, ~6.5!

G3~ab;rsl;t12t2!

5^01uT$aa~ t1!ab~ t1!:cr
1~ t2!cs~ t2!:al~ t2!%u02&.

By the Fourier transformation denoted in Eq.~5.14! and no-
ticing Eq. ~5.17!, we obtain

~v1vg1vd!G~ab;gd;v!

5S~ab,gd!2(
rsl

G1~ab;rsl;v!g1~rsl;gd!

2 (
rstl

G2~ab;rstl;v!g2~rstl;gd!

2(
rsl

G3~ab;rsl;v!g3~rsl;gd!. ~6.6!

According to the same procedure as formulated in E
~6.1!–~6.6!, one can derive the equations of motion obey
by the Green’s functions denoted in Eqs.~5.11!–~5.13!. Be-
cause the same expressions of the different
i (]/]t2)ag(t2) and i (]/]t2)ad(t2) are employed in all the
derivations, the equations of motion for those Green’s fu
tions may immediately be written down by referencing t
equation in Eq.~6.6!. The equation for the Green’s functio
in Eq. ~5.11! is

~v1vg1vd!G1~rsl;gd;v!

5S1~rsl,gd!2(
mnt

G11~rsl;mnt;v!g1~mnt;gd!

2 (
mntk

G12~rsl;mntk;v!g2~mntk;gd!

2(
mnt

G13~rsl;mnt;v!g3~mnt;gd!, ~6.7!

where

S1~rsl,gd!5^01u@ :aras :al ,agad#u02&. ~6.8!

G11(rsl;mnt;v),G12(rsl;mntk;v) and
G13(rsl;mnt;v) are the Fourier transforms of the follow
ing Green’s functions:

G11~rsl;mnt;t12t2!5^01uT$:ar~ t1!as~ t1!:al~ t1!

3:am~ t2!an~ t2!:at~ t2!%u02&,

G12~rsl;mntk;t12t2!5^01uT$:ar~ t1!as~ t1!:al~ t1!

3:am~ t2!an~ t2!at~ t2!:ak~ t2!%

3u02&, ~6.9!
2-13
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G13~rsl;mnt;t12t2!5^01uT$:ar~ t1!as~ t1!:al~ t1!

3:cm
1~ t2!cn~ t2!:at~ t2!%u02&.

For the Green’s function in Eq.~5.12!, we can write

~v1vg1vd!G2~rstl;gd;v!

5S2~rstl,gd!2(
mnu

G21~rstl;mnu;v!g1~mnu;gd!

2 (
mnuk

G22~rstl;mnku;v!g2~mnku;gd!

2(
mnu

G23~rstl;mnu;v!g3~mnu;gd!, ~6.10!

where

S2~rstl,gd!5^01u@ :arasat :al ,agad#u02& ~6.11!

and the Green’s functions on the right-hand side~RHS! of
Eq. ~6.10! are defined as

G21~rstl;mnu;t12t2!5^01uT$:ar~ t1!as~ t1!at~ t1!:al~ t1!

3:am~ t2!an~ t2!:au~ t2!%u02&,

22~rstl;mnku;t12t2!5^01uT$:ar~ t1!as~ t1!at~ t1!:al~ t1!

3:am~ t2!an~ t2!ak~ t2!:au~ t2!%

3u02&, ~6.12!

G23~rstl;mnu;t12t2!5^01uT$:ar~ t1!as~ t1!at~ t1!:al~ t1!

3:cm
1~ t2!cn~ t2!:au~ t2!%u02&.

For the Green’s function in Eq.~5.13!, we have the equation

~v1vg1vd!G3~rsl;gd;v!

5S3~rsl,gd!2(
mnt

G31~rsl;mnt;v!g1~mnt;gd!

2 (
mntk

G32~rsl;mntk;v!g2~mntk;gd!

2(
mnt

G33~rsl;mnt;v!g3~mnt;gd!, ~6.13!

where

S3~rsl,gd!5^01u@ :cr
1cs :al ,agad#u02& ~6.14!

and the Green’s functions on the RHS of Eq.~6.13! are de-
fined by

G31~rsl;mnt;t12t2!5^01uT$:cr
1~ t1!cs~ t1!:al~ t1!

3:am~ t2!an~ t2!:at~ t2!%u02&,
07600
G32~rsl;mntk;t12t2!5^01uT$:cr
1~ t1!cs~ t1!:al~ t1!

3:am~ t2!an~ t2!at~ t2!:ak~ t2!%

3u02&, ~6.15!

G33~rsl;mnt;t12t2!5^01uT$:cr
1~ t1!cs~ t1!:al~ t1!

3:cm
1~ t2!cn~ t2!:at~ t2!%u02&.

Now we are ready to derive the interaction kernels. M
tiplying both sides of Eq.~5.19! with (v1vg1vd) and then
applying Eqs.~6.6! and ~6.7!, we have

(
rs

L1~ab;rs;v!FS~rs,gd!

2(
mnl

G1~rs;mnl;v!g1~mnl;gd!

2 (
mntl

G2~rs;mntl;v!g2~mntl;gd!

2(
mnl

G3~rs;mnl;v!g3~mnl;gd!G
5(

rsl
g1~ab;rsl!FS1~rsl,gd!

2(
mnt

G11~rsl;mnt;v!g1~mnt;gd!

2 (
mntk

G12~rsl;mntk;v!g2~mntk;gd!

2(
mnt

G13~rsl;mnt;v!g3~mnt;gd!G .
~6.16!

In order to obtain the expression of the kern
L1(ab;rs;v) from the above equation, it is necessary
eliminate the kernel in the second, third and fourth terms
the left-hand side~LHS! of the above equation. Considerin
that the Green’s functionG(ab;gd;v), as a matrixG, has
an inverseG21(ab;gd;v), then from Eq.~5.19! we can get

L1~ab;gd;v!5(
rsl

(
mn

g1~ab;rsl!G1~rsl;mn;v!

3G21~mn;gd;v!. ~6.17!

Substituting Eq.~6.17! into the second, third and fourth
terms on the LHS of Eq.~6.16!, then moving these terms t
the RHS of Eq.~6.16! and finally acting on both sides of tha
equation with the inverse of the matrixS(rs,gd) which is
assumed to exist, we eventually arrive at

L1~ab;gd;v!5L1
(1)~ab;gd;v!1L1

(2)~ab;gd;v!

1L1
(3)~ab;gd;v!, ~6.18!
2-14
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where

L1
(1)~ab;gd;v!5(

rsl
(
mn

g1~ab;rsl!

3S1~rsl,mn!S21~mn,gd!,

~6.19!

L1
(2)~ab;gd;v!52(

rsl
(
up

g1~ab;rsl!

3H (
mnt

G11~rsl;mnt;v!g1~mnt;up!

1 (
mntk

G12~rsl;mntk;v!g2~mntk;up!

1(
mnt

G13~rsl;mnt;v!g3~mnt;up!J
3S21~up,gd!, ~6.20!

and

L1
(3)~ab;gd;v!5(

rsl
(
mn

(
ei

(
up

g1~ab;rsl!

3G1~rsl;mn;v!G21~mn;ei;v!

3H(
jhz

G1~ei;jhz;v!g1~jhz;up!

1 (
jhzx

G2~ei;jhzx;v!g2~jhzx;up!

1(
jhz

G3~ei;jhz;v!g3~jhz;up!J
3S21~up,gd!. ~6.21!

By the same method as described above, the ke
L2(ab;gd;v) can be derived from the relation in Eq.~5.20!
by using the equations in Eqs.~6.6! and~6.10!. The result is
as follows

L2~ab;gd;v!5L2
(1)~ab;gd;v!1L2

(2)~ab;gd;v!

1L2
(3)~ab;gd;v!, ~6.22!

where

L2
(1)~ab;gd;v!5 (

rstl
(
mn

g2~ab;rstl!

3S2~rstl;mn;v!S21~mn,gd!,

~6.23!
07600
el

L2
(2)~ab;gd;v!52 (

rstl
(
up

g2~ab;rstl!

3H (
mn«

G21~rstl;mn«;v!g1~mn«;up!

1 (
mn«k

G22~rstl;mn«¸;v!

3g2~mn«¸;up!

2(
mn«

G23~rstl;mn«;v!g3~mn«;up!J
3S21~up,gd!, ~6.24!

and

L2
(3)~ab;gd;v!5 (

rstl
(
mn

(
ei

(
up

g2~ab;rstl!

3G2~rstl;mn;v!G21~mn;ei;v!

3H(
jhz

G1~ei;jhz;v!g1~jhz;up!

1 (
jhzk

G2~ei;jhzx;v!g2~jhzx;up!

1(
jhz

G3~ei;jhz;v!g3~jhz;up!J
3S21~up,gd!. ~6.25!

Analogously, the kernelL3(ab;gd;v) may be derived
from Eqs.~5.21!, ~6.6! and~6.13!. The result is shown below

L3~ab;gd;v!5L3
(1)~ab;gd;v!1L3

(2)~ab;gd;v!

1L3
(3)~ab;gd;v!, ~6.26!

where

L3
(1)~ab;gd;v!5(

rsl
(
mn

g3~ab;rsl!

3S3~rsl,mn!S21~mn,gd!, ~6.27!

L3
(2)~ab;gd;v!52 (

rstl
(
up

g3~ab;rsl!

3H (
mnt

G31~rsl;mnt;v!g1~mnt;up!

1 (
mntk

G32~rsl;mntk;v!

3g2~mntk;up!

1(
mnt

G33~rsl;mnt;v!g3~mnt;up!J
3S21~up,gd!, ~6.28!
2-15
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L3
(3)~ab;gd;v!5(

rsl
(
mn

(
ei

(
up

g3~ab;rsl!

3G3~rsl;mn;v!G21~mn;ei;v!

3H(
jhz

G1~ei;jhz;v!g1~jhz;up!

1 (
jhzk

G2~ei;jhzx;v!g2~jhzx;up!

1(
jhz

G3~ei;jhz;v!g3~jhz;up!J
3S21~up,gd!. ~6.29!

Based on the expressions described in Eqs.~6.18!–~6.29!,
the total kernel can easily be written out. Using the mat
notation for the Green’s functions and the other functio
the kernel is represented as

K5 (
i , j 51

3

L i
( i )

5H (
i 51

3

giSi2 (
i , j 51

3

giGi j gj1 (
i , j 51

3

giGiG
21Gjgj J S21.

~6.30!

This is just the closed expression of the interaction kern
According to the general argument as presented in R
@33,34,39,40#, the third term in the above expression pla
the role of eliminating all the BS reducible~two-particle re-
ducible! diagrams contained in the first two terms. In fa
the relations in Eqs.~5.19!–~5.21! and the following ones

Gjgj5GL j ~6.31!

are inserted into the last term in Eq.~6.30!, and it is seen tha

(
i , j 51

3

giGiG
21Gjgj5 (

i , j 51

3

L iGL j5KGK, ~6.32!

which exhibits the typical structure of the BS reducible p
of the interaction kernel. Therefore, the kernel shown in E
~6.30! is truly BS irreducible, consistent with the conve
tional concept. The equation in Eq.~5.28! and the kernel in
Eq. ~6.30! will be employed, in the next paper, to calcula
the glueball spectrum in the ladder approximation.

VII. CONCLUDING REMARKS

In this paper, the exact three-dimensional relativis
equation for two gluon glueball states and its interaction k
nel have been derived from the QCD with massive gluo
When the gluon mass tends to zero, the equation and
kernel will naturally go over to the ones for the QCD wi
massless gluons. As shown in Eq.~5.28!, the equation de-
rived is a standard eigenvalue equation of Schro¨dinger-type.
In the position space it appears to be a set of first-or
07600
x
,

l.
fs.

,

t
.

c
r-
s.
its

r

differential equations. This kind of equation was given f
fermion systems@39,40#, but never formulated for boson sys
tems in the past. It should be noted that since the equatio
derived in a special equal-time Lorentz frame, it is certain
not Lorentz-covariant even though the equation is rigoro
and includes all the retardation effect in it. In order to deri
a Lorentz-covariant equation, one may start from the fo
time Green’s function

Gabgd~T,t;T8,t8!5^01uT$aa~ t1!ab~ t2!ag~ t3!ad~ t4!%u02&,
~7.1!

where

T5
1

2
~ t11t2!,t5t12t2 ,

T85
1

2
~ t31t4!,t85t32t4 . ~7.2!

Differentiating the above Green’s function with respect tot1
and t2 and employing the expression of the different
i (]/]t1)aa(t1) as shown in Eq.~5.6! and the similar expres
sion for i (]/]t2)ab(t2), one may obtain two equations fo
the Green’s functionGabgd(T,t;T8,t8). Adding the both
equations and subtracting one equation from another, foll
ing the same procedure as formulated in Sec. V, it is eas
derive two equations satisfied by the BS amplitudexab(T,t)
which respectively describe the evolutions of the state w
respect to the center of mass timeT and the relative timet. In
the equal-time frame, owing to the relative time being a
sent, we are left only with the equation with respect to t
center of mass time as given in Sec. V. It is interesting
note that either the equation with respect toT or the equation
with respect tot appears to be a first order differential equ
tion of Schrödinger-type in the position space whose so
tions are determined merely by the initial condition of the B
amplitudes at the time origin. This is an essential feature
the equations mentioned above which is different from
BS equation. The latter equation is a higher order differen
equation and hence, like the Klein-Gordon equation, has
physical solutions with negative norm as pointed out in
previous literature@35#. This is because the solutions of th
BS equation are determined not only by the initial amp
tudes at the time origin, but also by the time differentials
the amplitudes at the time origin.

Another point we would like to note is that unlike th
Dyson-Schwinger equation, the relativistic equation deriv
in this paper is of a closed form. In particular, the interacti
kernel in the equation is given a closed expression. The
pression contains only a few types of Green’s functions a
vacuum expectation values of the operator commutat
They are unambiguously defined in the Heisenberg pict
and each of them can independently be calculated by
perturbation method without concerning other Green’s fu
tions. Especially, the kernel represents all the interacti
taking place in the bound states and, therefore, are suit
for nonperturbative investigations because the Green’s fu
tions and vacuum expectation values of the commutators
2-16
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principle, are able to be evaluated by a certain nonpertu
tive method as suggested by the lattice gauge approach

At last, it would be pointed out that although the equati
in Sec. V and the kernel in Sec. VI are derived in the angu
momentum representation, they are suitable to formulate
equation and the kernel in the momentum representatio
long as the angular momentum quantum numbers in the
dicesa,b, . . . are replaced by the momentum ones. Tha
to say, the equation and the kernel formally remain u
changed in both representations.
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APPENDIX: SPHERICAL SPINORS IN THE ANGULAR
MOMENTUM REPRESENTATION

In this appendix, we intend to give a derivation of th
spherical Dirac spinors which are used, as basis function
establish the angular momentum representation for ferm
fields. It is well known that in the relativistic case, unlike th
helicity, the spin of a free fermion is not a good quantu
number. However, the total angular momentum operato
the fermion commutes with the Hamiltonian. Therefore, it
meaningful to discuss eigenfunctions of the total angular m
mentum which satisfy the Dirac equation. Let us start fro
the positive energy spinorus(pW ) which is the solution to the
Dirac equation (i ]mpm2m)us(pW )50. This spinor is taken to
be @46#

u~pW !5A«1m

2« S ws

sW •pW

«1m
ws

D , ~A1!

which is normalized in such a fashion:us
1(pW )us(pW )51. The

negative energy spinor can be given by the charge conju
tion vs(pW )5Cūs(pW )T. Suppose Ylm( p̂) with p̂5pW /upW u
5(u,w) and ws are the orbital angular momentum and t
spin eigenfunctions, respectively; the total angular mom
tum eigenfunctions may be constructed in the momen
space by the CG coupling

VJM
l ~ p̂!5(

ls
Clm(1/2)s

JM Ylm~ p̂!ws , ~A2!

where s5s/2,s561,l 5J6s/2. Noticing the representa
tion

w1/25S 0

1D , w21/25S 1

0D ~A3!
07600
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-
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-
m

and employing the explicit expressions of the CG coupl
coefficients for different values ofs which may be found in
the textbook, one may derive from Eq.~A2! the expression
as follows:

VJM
s ~ p̂!5S sAJ1s~M2 1

2 !1 1
2

2J2 l 11
YJ2s/2,M21/2~ p̂!

AJ2s~M1 1
2 !1 1

2

2J2s11
YJ2s/2,M11/2~ p̂!

D .

~A4!

By making use of the Dirac spinor in Eq.~A1! and the
eigenfunctions represented in Eq.~A2! or in Eq. ~A4! with
respect to the momentumpW , we may construct the spherica
Dirac spinor in the position space through the following Fo
rier transformation:

uJM
s ~pxW !5E dp̂

eipW •xW

~2p!3/2
pu~pW !VJM

s ~ p̂!. ~A5!

Substituting the expansion

eipW •xW54p(
lm

i l j l~pr !Ylm* ~ p̂!Ylm~ x̂! ~A6!

and the expressions written in Eqs.~A1! and ~A4! into Eq.
~A5!, considering

sW • p̂5S cosu sinue2 iw

sinueiw 2cosu D ~A7!

and

sW • p̂VJM
s ~ p̂!52VJM

2s~ p̂!, ~A8!

which is easily proved by utilizing the familiar recursio
formulas for the spherical harmonic functions, it is not dif
cult to derive the expression shown in Eq.~3.22!. The ex-
pression of the functionvJM

s (pxW ) may be derived by the
charge conjugation denoted in Eq.~3.34!. The result was
written in Eq. ~3.23!. It would be noted that the eigenfunc
tion VJM

s ( x̂) in Eq. ~3.24! which is defined in the position
space and appears in Eqs.~3.22! and ~3.23! is of the same
form as the functionVJM

s ( p̂) in Eq. ~A4! which is defined in
the momentum space.
2-17
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