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Covariant structure of light-front wave functions and the behavior of hadronic form factors
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We study the analytic structure of light-front wave functighEWFs) and its consequences for hadron form
factors using an explicitly Lorentz-invariant formulation of the front form. The normal to the light front is
specified by a general null vectar*. The LFWFs with definite total angular momentum are eigenstates of a
kinematicangular momentum operator and satisfy all Lorentz symmetries. They are analytic functions of
the invariant mass squared of the constituenvtt§=(2k")2 and the light-cone momentum fractions
=k;- w/p- @ multiplied by invariants constructed from the spin matrices, polarization vectorsp&n@hese
properties are illustrated using known nonperturbative eigensolutions of the Wick-Cutkosky model. We analyze
the LFWFs introduced by Chung and Coester to describe static and low momentum properties of the nucleons.
They correspond to the spin locking of a quark with the spin of its parent nucleon, together with a positive-
energy projection constraint. These extra constraints lead to an anomalous dependence of form f&gtors on
rather thanQ?. In contrast, the dependence of LFWFs Mrﬁ implies that hadron form factors are analytic
functions ofQ? in agreement with dispersion theory and perturbative QCD. We show that a model incorpo-
rating the leading-twist perturbative QCD prediction is consistent with recent data for the ratio of proton Pauli
and Dirac form factors.

DOI: 10.1103/PhysRevD.69.076001 PACS nunt$erl11.10.St, 11.25.Sq, 11.80.Cr, 12.38.Aw

[. INTRODUCTION hadron structure is the presence of nonzero orbital angular
momentum in the bound-state wave functions. The evidence
Light-front wave functiongLFWFs) are the interpolating for a “spin crisis” in the Ellis-Jaffe sum rule signals a sig-
functions connecting hadrons to their fundamental quark angificant orbital contribution in the proton wave function
gluon degrees of freedom in QCD. Many hadronic observ{4,5]. The Pauli form factor of nucleons is computed from
ables can be computed directly from these amplitudes. Fahe overlap of LFWFs differing by one unit of orbital angular
example, matrix elements of local operators such as SPacehomentumAL,=+1. Thus the fact that the anomalous
Iike_proton form faCtorS, transition form factors such Bs magnetic moment of the proton is not zero is an immediate
— v, and generalized parton distributions can be comsignal for the presence of nonzero orbital angular momentum
puted from the overlap integrals of the LFWFs. The determidin the proton's LFWFg6]. It should be noted that orbital
nation of the hadron LFWFs from phenomenological con-angular momentum is treated explicitly in light-front quanti-
straints and from QCD itself is thus a central goal of hadroreation; it includes the orbital contributions induced by rela-
and nuclear physics. In principle, one can solve the hadronitivistic effects, such as the spin-orbit effects normally asso-
LFWFs directly from fundamental theory using nonperturba-ciated with the conventional Dirac spinors.
tive methods, such as discretized light-front quantization, the In this paper we shall show how orbital angular momen-
transverse lattice, lattice gauge theory moments, or Betheéum is represented by light-front Fock state wave functions.
Salpeter or Dyson-Schwinger techniques. Reviews of nonA key tool will be the explicitly Lorentz-invariant formula-
perturbative light-front methods may be found in Refs.tion of the front form(see Ref[1] for a review and refer-
[1-3]. ences to original papersThe wave functions are defined at
One of the central issues in the analysis of fundamentathe light-front planew-x=o, for which the orientation is
determined by the null four-vectas. Although LFWFs de-
pend on the choice of the light-front quantization direction
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still find the w-independent form factors by separating thempendence iQ=/—q? does arise when there is a physical
from the current operator matrix elements and omitting thethreshold atj>=0, as in the case of gravitationd7,18 (or
nonphysical,w-dependent contributiofi7]. We shall show axial current form factors due to the two-photon intermedi-
that the analytic form of LFWFs with nonzero orbital angular ate state; however, this would not be expected to occur for
momentum is then constrained to a specific set of simplehe vector current in QCD.
prefactors multiplying the scalar zero orbital angular mo- Chung and Coestdrl5] introduced their ansatz for the
mentum solutions. Knowing the general form of the LFWFsform of baryon LFWFs in order to describe the static and
can be important for determining the hadron eigenstates frofow momentum transfer properties of the nucleons. The LF-
QCD using variational or other methods. WFs in the CC model have the effect of spin-locking a quark
We begin by noting that eigensolutions of the Bethe-with the spin of its parent nucleon, together with a positive-
Salpeter equation have specific angular momentum as spe@nergy projection constraint. As we shall show, if one ex-
fied by the Pauli-Lubanski vector. The corresponding LFWFtends these forms to large transverse momentum, the extra
for an n-particle Fock state evaluated at equal light-frontconstraints lead to an anomalous linear dependence of LF-
time o=w-x can be obtained by integrating the Bethe-WFs in the invariant mass of the constituents and an anoma-
Salpeter solutions over the corresponding relative light-frontous dependence of form factors Qrather tharQ?. As we
energies. The resulting LFWH,BL(xi k. ;) are functions of discuss in the Conclusions, the lack of analyticityQRs is
the light-cone momentum fractioms and the invariant mass related to the breakdown of the crossing properties incorpo-
squared of the constituents rated in field theory. The CC constraint may provide a rea-
sonable model for computing static properties of hadrons,

n 20 N2 but it is not applicable to large momentum transfer observ-
M?):(E ki") = = ables.
=1 =1 X We shall show that form factors computed from the over-

lap of LFWFs are analytic functions @f due to their ana-
and the light-cone momentum fractiors=k- w/p- w, each lytic dependence on the off-shell light-front energy and the
multiplying spin-vector and polarization tensor invariantsgeneral form of prefactors associated with nonzero orbital
that can involvew*. The resulting LFWFs for bound states angular momentum. In particular, the general form of the
are eigenstates of a kinematic angular momentum operatdtFWFs for baryons in QCD leads to a ratio of form factors
Thus LFWFs satisfy all Lorentz symmetries of the front form F,(Q?)/F(Q?), which behaves asymptotically as an in-
[8], including boost invariance, and they are proper eigenverse power ofQ?> modulo logarithms, in agreement with the
states of angular momentum. perturbative QCOPQCD analysis of Belitsky, Ji, and Yuan

There is now heightened interest in the analytic form of[19]. We also shall show that the form factor ratios obtained
the nucleon form factors. Recent measurements of the protdnom the nonperturbative solutions to the Wick-Cutkosky
form factors at Jefferson Laboratof9,10], using the polar- model[20,21 have a similar behavior.
ization transfer method, show a surprising result—the ratio. It should be noted that the analytic form predicted by

Ge(Q?)/Gy(Q?) falls faster in momentum transfép?  perturbative QCD is compatible with the form factor ratio
= —q?= —t than that found using the traditional Rosenbluthdetermined by the polarization transfer measurements. The
separation method. A possible source for this disparity is theletailed analysis of baryon form factors at la@&based on
QED radiative corrections, since these are more likely toperturbative QCD predicts the asymptotic behavior
affect the Rosenbluth methdd1-13. For example, the in-  Q2F,(Q?)/F1(Q?) ~log® ¥~ (Q?%/A?), where B=11
terference of one-photon and two-photon exchange ampli—2n;/3 [19]. This asymptotic logarithmic form can be gen-
tudes and the interference between proton and electroeralized to include the correQ?=0 limit and the cut at the
bremsstrahlung are present in the measured electron-prottwo-pion threshold in the timelike region. Such a parametri-
cross section and can complicate the analysis of the energation is
and angular dependence required for the Rosenbluth separa-
tion. - 1+(Q?%Cy)%log®2(1+ Q%/4m?)

If one translates the new polarization transfer results 2IF1=Kp > 3 b CYPRCINEL
for Gg and Gy, to the Pauli and Dirac form factors, the 1+(Q%C2)"log"(1+Q%/4m7,)
data appear to suggest the asymptotic behavio\gv
QF1(Q?/F,(Q?) ~const. In a recent paper, Miler and
Frank[14] have shown that the three-quark model for the
proton LFWF constructed by Chung and Coesfe€) [15]
and extended by Schlumpi6] leads toQF;(Q?)/F,(Q?) 3| 2 ~2a 2

: / C3 log“(Q</4m:)
~const in the range of the Jefferson Laboratory experiment, FolFi1=kp— -
thus providing an apparent explanation of the Jefferson Cf Q?
Laboratory data.

In dispersion theory form factors are analytic functions of Therefore, the values &,, C,, andb are not tightly con-
g2, with a cut structure reflecting physical thresholds at time-strained, except for the combinatidd3/C2. A fit to the
like g2. This is also apparent from the analytic structure ofJefferson Laboratory data yield<,;=0.79 GeV¥, C,
Feynman amplitudes in perturbation theory. A functional de-=0.38 Ge\f, andb=5.1. Thus, as shown in Fig. 1, one can

()

here for simplicity we have ignored the small factor 8/9
as do Belitskyet al. For the largeQ? region of the available
data, this already reduces to the asymptotic form

2
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22 5 [31], measurements of the proton polarization efie”
2.0 Y —pp will strongly discriminate between the analytic forms
1.8_5 \\\ of the models that have been suggested to fit the proton
E T Ge /Gy, data in the spacelike region. The single-spin proton
o 1'6_5 ~~~~~~~~~~~~~ asymmetry is predicted to be large, of the order of several
= 14 tens of percent.
Lo 3 The content of the remainder of the paper is as follows.
e} 3 The general construction of the wave functions appearing
_ 1'0_5 through the Fock decomposition of the state vector defined
0.8 on the light frontw-x=0 is explained in Sec. Il A. The
0.6 3 angular momentum properties of LFWFs are discussed in
04 N N — Sec. Il B. For simplicity, we present the LFWFs for bound

states of scalar fields and for a spin-1/2 system in Yukawa
theory, which can serve as a diquark-inspired model for a
|Q?| (GeV?) three-quark hadron. The consequences of the CC ansatz are
explored in detail. Section Ill recasts this discussion in terms
of the standard light-front Fock-state expansion and the as-
sociated LF spinors. This allows contact to be made with
perturbation theory. The construction of form factors and
their asymptotic behavior are described in Sec. IV. The
LFWF for the valence Fock state is obtained by integrating
fit the form factor ratio over the entire measured range withthe Bethe-Salpeter solutions over the relative light-front en-
an analytic form compatible with the predicted perturbativeegies. The expectation that LFWFs are functionsMd,
QCD asymptotic b?hawor. ) ) rather thanM, is demonstrated in Sec. V. The angular mo-

_ The nominal 1Q” power-law fall-off of F5(Q%)/F1(Q°)  mentum properties of LFWFs are illustrated using the known
in perturbative QCD is a consequence of the underlying chionperturbative eigensolutions of the Wick-Cutkosky model
ral structure of the vector interactions in QCD. The factor-fo; nonzero angular momentum. Section VI presents the im-
ized structure of hard QCD amplitudes predicts hadron hepjications for the CC ansatz for a three-quark nucleon state,
licity conservation[23] at the leading twist and thus the yhere we show that the anomalous asymptotic behavior of
relative suppression of the Pauli form factor since it is aQF,/F,~const is a consequence of the extra constraints on
helicity-flip amplitude. These nominal power-law forms are {he"| FWFs imposed by the CC construction. Section VII

also properties of dimensional counting rulg%-2§ for  contains our conclusions, and an appendix collects some use-
hard scattering amplitudes in QCD. The power-law suppresy, definitions and intermediate results.
sion of F,(Q?)/F,(Q?) is not generally true for Yukawa

theories with scalar gluons or in quark-diquark models of the
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FIG. 1. Perturbative QCD motivated fit to the Jefferson Labora-
tory polarization transfer dat®,10]. The parametrization is given
in Eq. (1). The dashed line shows the predicted fd28] for time-
like g%=— Q2.

nucleon based on scalar diquarks since the effective interac- Il. LIGHT-ERONT WAVE FEUNCTIONS
tions violate chirality conservation. _
lachello, Jackson, and Land27—29 have introduced a A. General construction

model for the nucleon form factors based on dimensional The concept of a wave function of a hadron as a compos-
counting and perturbative QCD at high momentum plus thete of relativistic quarks and gluons is naturally formulated in
analytic structure due to vector meson intermediate stateserms of the light-front Fock expansion at fixed light-front
The model gives an excellent phenomenological descriptiofime, o=x-w [1]. The null four-vectorew determines the
of the individual form factors and the form factor ratio mea- orientation of the light-front plane; the freedom to choese
sured using polarization transfer. provides an explicitly covariant formulation of light-front
Although the spacelike form factors of a stable hadron argyuantization. For a stationary state we can consider a fixed
real, the timelike form factors have a phase structure reflectight-front time and set-=0.

ing the final-state interactions of the outgoing hadrons. The |n this formulation, the eigensolution of a proton, pro-
analytic structure and phases of the form factors in the timejected on the eigenstates of the free Hamiltoni®S (g
like regime are connected by dispersion theory to the space- o) nas the expansion

like regime. Each of the above models predicts a specific

fall-off and phase structure of the form factors frawm-t N

crossing to the timelike domain. As noted by Dubnickova, |p,>\>=n§3 f L An(kl' -+ Kn,p,07)

Dubnicka and Rekalo and by Ro¢BO], the phase of the

form factor ratioGg /Gy, of spin-1/2 baryons in the timelike n

region can be determined from measurements of the polar- xs®| > kj—p—wT)Z(w- p)dr

ization of one of the produced baryons in the exclusive pro- :

cesse” e’ —BB, since the single-spin asymmetry normal to d3k; -

the scattering plane requires a nonzero phase difference be- ><i71 maxi(ki)|o>- (©)]
= "

tween theGg andGy, form factors. As demonstrated in Ref.
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Herea' is the usual creation operator asg = m?+Kk?>. A scalar bound state of two spinless particles \Apﬁ\
' =(ky+kp)?=M? can be described using the covariant

All the four-momenta are on the corresponding mass shellsB the-Saloeter functiod hich | i
K=m?, p2=M2, (w7)2=0. The set of light-front Fock- cine-Salpeter functior>(x, x5, p), which in momentum

{ i IW ve functionsi K K renr space corresponds gg(ka,ky)=P(q,p), whereq=(k,
state wave functionsyy, ., (Ki, ... Kn,p,07) €Pre= _k.,)/2. For J=0 the Bethe-Salpeter function is a scalar
sents the ensemble of quark and gluon states possible Whefction of the Feynman virtualities Witk + k= p~.

the proton is intercepted at the light front. The label the The explicitly covariant version of light-front dynamics
light-front spin projections of the quarks and gluons along[1] tyrns into the standard one at the particular valugoof
the light-front quantization direction. The scalar variable =(1,0,0—-1). The conjugate direction is defined @swhere
controls the off-shell continuation of the wave function. §~w1=,2 and £=(1,0,0,1) in the standard light-front frame.

From the point of view of kinematics, the four-momentum |, general, the two-body scalar LFWF can only be a function
o7 can be considered on equal ground with the particle fourys the corresponding off-shell light-front energy
momentaky, ... k,,p. Being expressed through thefiy

squaring the equalityi?ka p+wt), Treads

2

Mg—MZZ 2]: ki.g_p.g)(w-p)=2(w'p)7' (4

MZ—M?
2w-p

and the momentum fractions=Kk;- w/p- .

whereM§= (E?kj)z. The differenceVi,— M ~  between the One can identify the corresponding two-parton LFWF by

effective masdV of constituents and their bound state masscalculatmg the Fourier transform ofb(x;,x;,p) with

M is just a measure of the off-energy-shell effect. the argumentsx;, X, constrained to a fixed light-front

If the wave functions describe a system with spin com-imeé o=w-X, ie., the transform of the function

posed of constituents with spin, they are represented throug(ﬁ(xl’XZ’p). 5(“")(1.) o(w-Xp). In momentum space It corre-
scalar functions multiplied by invariants constructed froms_ponds to integration over the minus component of the rela-
the spin matrices, polarization vectors, anfl. In general, V€ momenturrk, or in the covariant fornjl]

the scalar functions depend on a set of scalar products of the (0-Ky)(@-ky)

four-moment&,, . .. K, ,p,o7 with each other. One should _ (@R Rer )
choose a set of independent scalar products. A convenient m(w-p)
way to choose these variables is the following. We define

4o
| Tokspopas ®

The resulting LFWF describes a spin-zero bound state of
w-kK; on-shell partons withki=m2, k3=m?.
- Rj=kj—x;p, The main dynamical dependence of a LFWF thus in-
volves M3=(=k*)?, the invariant mass squared of the par-
whereX[_;x;=1 and=]_,R;=wr, and represent the spatial tons. Since the equation of motion for the LFWF involves
part of the four-vectoR; as ﬁjzﬁnjﬂij . where ﬁHJ is the o_ff-;hell LF energy ~2§, the natural analytic dependence
parallel tow andK, ; (with 'K, ;=0) is orthogonal taw. ~ Of ¢ IS in the variableMg, notM,. _
SinceR; - w=Rojwo—Rj; =0 by definition ofR;, it fol. 'S useul 10 f";;";‘n”é;”293t§ev‘\3/;°5v‘fl{t:;;ﬁ]f the LEWE in the
A 2, ) bl ,33. guish the four
lows thatRo; =[Ry;|, and, hencek?;=—Rj" andk,;-k ;= vector P#=3k* and the bound-state four-momenty.

—R;-R; are expressed though the squares and the scalgfice there is no conservation law for the minus components
products of the four-vector®; . Hence, they are the Lorentz momenta, we have-p+¢-P, and the constituent rest

and rotation invariants. Therefore, the scalar functionsframe (P=0) and the rest framefi=0) differ from each

should depend om;, k¥;, andk, -k, ;. In terms of these . S o
variables, the integral in Ed3) is transformed as other. In the constituent rest frame whepe==;k;=0, we

Xj=—"2",
-p

can identify
n n dgk
L8O Y ki—p-w7|2(w-p)dr] ] ——— 72

J (; i~ P a)T) (w-p) Til;ll (277)328ki MO:,PO:Z kiozzi: ki2+mi2-

n n " 92K . . . e
:f 250> x-1]6@ S kI dk,dx; It is also convenient to make an identification of the front-
T T T ) 16m3x; form and the usual instant-form wave functions in this frame.
In general, LFWFs are eigenstates of the LF angular mo-

In this way we find thaty reduces toy ., (x;,k ;). ~ mentum operatof1,34]

These wave functions are independent of the hadron’s mo- 1

mentump =p-w andp, , reflecting the kinematical boost J=—i[kxalok]—i[nXalon]+ =, (6)
invariance of the front form. All observables must be invari- 2

ant under variation of&*; as we shall show, this generalized R

rotational invariance provides an elegant representation ofheren is the spatial component @i in the constituent rest
angular momentum on the light front. frame (P=0). Although this form is written specifically in
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the constituent rest frame, it can be generalized to an arbthe CC ansatz used in Réfl4] is equivalent to the form
trary frame by a Lorentz boost.

Normally the generators of angular rotations in the LF p=crCpu(ky) A u(p)fy, 9
. . . . nt . . .
formalism contain interactiond}, , as in the Pauli-Lubanski where P=k,+k, is the sum of the constituent momenta,

formulation; however, the LF angular momentum operator,, — = —— @ ——— [ 5 =
can also be represented in the kinematical f¢@nwithout Mo=VP% C=1mter Cp=1M+ep, &= Vm +k%,

. . . : — JIm2s 2 i -
interactions. The key term is the generator of rotations of thénd p=VM*+p< (for simplicity we assume that constitu-
ents have equal masseg=m,=m). The matrixA , in (9)

LF plane—i[nXd/dn], which replaces the interaction term. sis the projection operator

In four-dimensional form the relation between them read

[34] P+M,
A= M, (10
a a _ ich i -
i(wuw__wvw_) |pa)\>:~]',ff;|p,>\). @) which in the constituent rest frame becomes
v # 10
A= . 11
+ (0 0 (11)
The operatoi(v,d/w,~ w,dlw,) (Or its counterpart-iln  pance in the constituent rest frame we obtain
X dlgn] in the constituent rest frameppears only in the
.. . . > o 1
explicitly covariant formulation where the dependencenon _t _
is present. Details can be found in RET]. Uk A+=x1(1,0, cpAu(p) 0/ XN (12)

We emphasize that the angular momentum operator in Eq. ) ) ]
(6) has general validity in quantum field theory; in particular, With x1 and xy being two-component spinors for constituent
we do not need to truncate the Fock space. The angular md-and the nucleon, respectively. Fra§) we reproduce the
nent: each operatdfor any givenn) acts on the correspond- S
ing n-body Fock component in Eq3). For example, the o tor of — s010f 13
application of the LF angular momentum operdir to the Vo =X xh r 13
scalar functiong(M3,x) verifies that it describes 8=0  This should be contrasted with the general faimthe con-

state. _ stituent rest frame
The validity of the operatof6) can be also verified within

the covariant Bethe-Salpeter formalism as follows. In Sec. V
we will derive a two-body Fock component wave function
[see Eq(51) below] from the Bethe-Salpeter function in the o _ o
Wick-Cutkosky model. The latter definitely corresponds to awherek=k;= —k, andn=w/|w| in this frame. The addi-
specific angular momentund €L =1 in the particular case tional f, term represents a separate dynamical contribution
considered in Sec. V One can check that this LFWF is an with orbital angular momentum, to be contrasted with the
eigenfunction of the operatod andJ,, corresponding to Purely kinematical contributions of orbital angular momen-
(6) (omitting the Pauli matrix This argument can be gener- tum from Melosh rotations. The forii4) can be found by

alized to the case of arbitrary angular momentum. substituting into Eq.8) the explicit form of the Bjorken-
Drell (BD) spinors, as given in the constituent frame by Eq.

(A3) of the Appendix. The two functionk; andf, are then

.
Yo, = X" fo+ L [nxK]-of | X7, (14)

B. The Yukawa model determined in terms op; and ¢, as
The general form of the LFWF of a spin-1/2 system com- CkCp
posed of spin-half and spin-zero constituents is given by 1= NO(M°+ M){M(Mo+m)+Mg[XM+(1=x)Mo]} e,
— M CkCp
P(ky,p)=u(ky)| 1+ w__p€02 u(p), (8 +M—OM(Mo+m)(XMo+m)€Dzy
CkCp CCp 12 pa2

- fo=——kM(My+M)p,— =——k(M§g—M"*) @1, (15

where w=(wg,®) is the four-vector determining the orien- -~ Mo (Mo ¥27 2M, (Ms 1

tation of the light-front planev-x=0. Here[o=wﬂy“, and
u(ky) is the conventional Dirac spinor of the spin-half con- with x=x,=1/2—Kk-n/M,. The inverse relations read
stituent, andu(p) is the spinor of the bound state.

The general wave functiof8) in Yukawa theory is deter-
mined by two scalar componentg and¢,, each a function 1Equivalence has been establisi&8] in the sense that equiva-
of Mg andx. In contrast, the wave function corresponding tolent results are obtained for form factors.
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that this predominance af, over ¢,, generated by the wave

CkC CkC
1= 2Mp (Mo+M)fy— 5o pk(Mo+M)(XMo+ m)f,, function (13), results in theQF,/F,— const asymptotic be-
° 0 havior.
_ %G 2_ a2 CkCp
P27 AMM (Mo=M5) Ty + 4|\/|0|\/||<('V'0Jr M) IIl. LIGHT-FRONT SPINORS
X{M(Mo+m)+ Mo XM+ (1—XxX)Mg]}f,. (16) The discussion of the preceding section can also be given

in terms of a LF Fock-state expansion and the associated LF
Note that the wave functions; and ¢, are Lorentz scalars Spinors. The LFWF of a hadron with spin projectidn

and analytic functions ok 3 andx. The derived amplitudes ==+1 is represented by the functior)/iZ \ (X KD,
f, and f, contain kinematic factors linear iM, that arise  \ypere e "

from the reduction of the covariant form to the Pauli spinor

form in the constituent rest frame. The application of the LF R

angular momentum operat() to the LFWFs of the Yukawa PR N kfi + miz .

theory in Eq.(14) verifies that these wave functions are in ki=(ki" ki ki) =| xP™, P i (20

fact states with)=1/2, J,= +1/2.

In the nonrelativistic limit, wherdd =2m, My=2m, and B ] -
specifies the momentum of each constituent apdpecifies

x=1/2, we get SPE Sy ath .
its light-front helicity in thez direction. The light-front frac-
1 1 1 tions x;=k;"/P* are positive and satisf;x;=1. We note
<pl=ﬁf1—m 2, ¢2=mf2. (17)  thatMZ=3"_,[(K?;+md)/x]=(Zk;)? is Lorentz invariant,
m and the scalar part of the LFWF is a function of orlyand
2

0

The component, is of relativistic origin. In the nonrelativ- For a spin-1/2 state with two constituents in Yukawa

istic limit c— (herec is the speed of light the LF plane R I IR L
t+2z/c=0 turns intot=0. Any n dependence ifl4) should theory,. We write (X',kl)_(’//” (x ’kf')’ yvhere)x—)xl 'S
then disappear, and this happens.ifoecomes negligible.  the helicity of the fermionx=x,, andk, =k, . (We use the
We see that in order to obtain the constrained CC forrsubscript 1 for the fermion and 2 for the scalar constityent.
(13) from the general forng8), one should eliminate, accord- The two-particle Fock state with total momentud™(,P, )
ing to (12), the second components of spinors and neglect thend spind, is then given by
second componerit, in (14). This is natural in a nonrelativ-
istic approximation, when both the second components of P B =6 J )
spinors and the dependence on the light-front orientation in- LT
deed disappear. One can use this form of the wave function dxcPk, L )
to estimate the influence of relativistic effects on the static —f T > (XK [XPT KGN,
nucleon propertie§15]. However, there is no compelling 167°yx(1—x) A
reason to use the forril3) in the asymptotic relativistic (21)
domain.
The form (13), determined by the single componeint
implies a relation betweew,; and ¢, in (8). Settingf, to
zero in(16), we obtain

The Fock-state ket on the right is defined by

IXP* K, \)Y=|ki =xP* ki =(1-x)P*;
CkC
#1= 7, Mot M)fy,

kllzlzl,lzﬂz—lzi;)H:)\} (22
Cka
2= ZMIoM (Mg—M?)fy, (18  and normalized by
and, hence, R R 2
(ki kN Kk =TT 167% ok T =k
hﬂo——hﬂ (1€» i=1
P2="o\ 1 P1- T
2M X oKl —Ki)dn. (23
Since M is large for large momenta, we see that in the . . | )
asymptotic regime the componen, dominates: ¢, The four functions).. ,;, and ¢~ ,, provide a representa-
~Moe1/(2M). tion of the LFWFs forJ,=1,] [17]. The associated spinors

Thus the ansat¢l3) is equivalent to an assumption that are the LF spinors’-" [36,2], which in the hadron rest frame
the componentp, dominates in(8). We shall show below (p=0) are given by
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o 1 .. R (+ky—iky)
utFoL(ky) = —— " m+ kot o(o-k V1-xy XK )= ——¢1,
(ky) 2(k10+k12)X [ 10T 0( 1) + X
~ (kyo=m)o,— - ky], ~ m
VI=xylx K ) =| Mo+ | 1. (27)
utF 1 [2M )
(p)= == M\ 0 X’ (24)

We see that the CC ansatz (h3) is equivalent to the re-

The general form8) has a simple form in the light-front PlacemenM — My in the perturbative LF components given

spinor representation. A straightforward calculation gives in Ref.[17]. The anomalous dependenceldg is the source
of the discrepancy of the ansatz with the asymptotic behavior

| . m of the components with different angular momentum projec-
VI=Xiap(X k) =| M+ =1 +2M e, tions found in Ref[37] from a perturbative model based on
the iteration of the one-gluon exchange kernel. The perturba-
. (+ ket iky) tive QCD counting rules for the fall-off of hadronic LFWFs
VI=xyl (6 k ) =— —— ¢, [37] and hard scattering exclusive amplitudezt—-26 at
X high transverse momentum can also be der[\38J39 with-
(+k,—iky) out the use of perturbation theory using the conformal prop-
\/ﬁlﬂﬁl/z(xylzi): — X Yo, erties of the AdS conformal field theoCFT) correspon-
X dence between gauge theory and string th¢46y.
The component 12 COrresponds th,=1, and the com-
VI=xypt g%,k )= . m o1+ 2Me,. ponent ¢!, ,,, corresponds td_,=0. The PQCD analysis
X (25 based on the exchange of a gluon gi{8g]
Note that in the perturbative Yukawa motlehe obtains P(L=D1p(L,=0)=¢" Wl 1~k @1/~ 1K, ,
[17] (28)
quL, ©,=0. (26)  which impliesQ?F,/F,=const[37]. We confirm this in the
M2— MS next section. On the other hand,9) or (27), corresponding

. ) to the CC ansatz, gives
In this way we reproduce the wave functiadg) and(46) of

Ref. [17]. The general solution it25), which does not re- T T
quire any assumptions, differs from the perturbative solution #(Lz=1)/¢(L;=0)=4_ 1,/ thy1,~K, @1/ @~ const.
only by the contribution ®1 ¢, in the componentsg/, 12 and (29
Pl
In terms of the LF spinor representation, the CC ansatin turn, the ratio(29) results in the asymptotic behavior
(13) implies particular forms for the components &5). QF,/F;=const, as we will see in the next section.
Substituting the expressiofi9) for ¢, into Egs.(25), we
find
IV. FORM FACTORS AND THE M, DEPENDENCE

\/— 1 _ m OF LIGHT-FRONT WAVE FUNCTIONS
1-x XK, )=| Mg+ — ,
VX k) X 1 A. Dirac and Pauli form factors
(+k, +ik,) In the case of a spig-composite system, the Dirac and
Jl—x:/;ll,z(x,lﬂ): - #@1, Pauli form factorsF,(q?) andF,(qg?) are defined by

(P’]3%(0)[P)

>The wave function(8) and the one given here are related as
follows: #(in (8))= Vx(1—Xx)¢(here). In this expressiork, and
k, are equivalent t&" andk?, andJ, andL, denoteJ® andL?.

3In the case of perturbative models, a single-particle wave func-
tion zp = \/—52(k )6(1—x) 6, A is present, where the normaliza-
tion constantZ ensures unit probablllty The perturbative Yukawa Whereq“= (P’ —P)*, u(P) is the bound-state spinor, aii
model wave functions can be formally differentiated with respect tolS the mass of the composite system. In the light-front for-
the boson mass in order to simulate the fall-off of the wave functionmalism it is convenient to identify the Dirac and Pauli form
of a composite hadron and eliminate the single-particle Fock comfactors from the helicity-conserving and helicity-flip vector
ponent. current matrix elements of th&" current componeni6]

:Rw>1m%w+am%—vW%uwx

(30
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J+(o

(P+a, TI —|P,1)=F1(g?), (3D)

+( . Fz(qz)
—ig?)——— .

(P+q, TI IPl>— %) oM (32)

We use the standard light-front framg*(=q°+ q°) where
. -q° .
q:(q+’q_yQL):(0,F,ql>,

2
P=(P*,P",P )=(F>+ M5 ) (33
’ AR 1P+1 S ]

andg’=—2P-q= —ﬁf is the square of the four-momentum

transferred by the photon.
Using Eqgs.(31) and(21) we have

ok, d
Fa(g?)= f

+ lﬂl*l/z(X:'Zi)lﬂT—1/2(Xa'ZL)],

[¢+ KD (%K)

(34)
where

k| =k, +(1-x)q, . (35
From Egs.(32) and(21), we have

—2M
(QX_iqy)

ok, dx
1672

Fa(g?) = [¢+1/2(X!EJ/_)¢£-1/2(X'|ZJ_)

+ ol OGK D gt (%K) T (36)

The individual wave functions are given k85); substitution
yields

Faa)=
14 1673

1
- Z(l—x)ZQz}cpigoﬁ 2Mx(m+xM)

X(2mM+xM?) + m?+k?

d2k, dx [
x2(1—X)

X (@12t @rp1) +AMXP0)0, 1, (37
2

Fal?)= g |

8m3) x*(1—x)

(1=x)(M+xM)e;e1

> -

k
—2Mx— gi

(e102— @201)

+MX(1=X)(p15+ 902901)}. (398

where thelzL variable has been shifted by(1-x)q, , so
that

PHYSICAL REVIEW D 69, 076001 (2004

TABLE I. The dependence of the asymptotic form of the form
factor ratio on the asymptotlc behavior of the LF components
W(L,=1) (L, =0)=y' ¢ 1, in the Yukawa model.

WL.=1) k2 k. const 1 1

#(L,=0) Ky k2

F2 1 1 1 1 1

Fa Q? Q@ Q Qe  Q
P12~ ¢1 2( (1 X)QL)a

. 1 .
®12= <P1,2(Xak¢+ 5(1—X)(h)- (39

The required parton invariant masddg and Mg, are

1 2
ki —5(1=x)aq, m?
M2_
0 X(1—Xx) ’
1 2
ki +5(1=x)0a. +m?
M'2= (40)

X(1—X)

Being expressed in terms of the invariant masses, the form
factor integrands contain squares of massé§:andM’3.
One can see that if, is smaller thanp, or of the order of

o, for largek?, the leading terms ifr; arek? and — (1
—x)?Q?. An analytical calculation of the asymptotic behav-
ior of the form factors with the power-law wave function
¢1=N/(M§+,32)” shows that these two leading contribu-
tions cancel each other. Thus the leading term becomes
~log@? instead of ~Q? and the ratioF,/F; becomes

~ 1/log(@*n?). The same result is found for pseudoscalar
coupling, i.e., with the wave function which is obtained by
inserting in(8) the matrixys. As explained in the Introduc-
tion, the cancellation of the leading term in the Dirac form
factor in the scalar gluon models is related to the violation of
chirality conservation.

We summarize in Table | how the asymptotic behavior of
the form factor ratio depends on the asymptotic properties of
the LFWFs in the Yukawa model. Since the scalar part of the
LFWEF is a function oﬂvIS andx;, andy(L,=*1) contains
the ky*ik, prefactor, #(L,=1)/¢(L,=0) can only be an
odd power ofk, . The third and fourth columns of Table |
correspond to the cases @9) and(28), respectively.

The cancellation of the leading power-law contribution is
specific to the scalar and pseudoscalar diquark models. In the
case of a spin-1/2 system comprising a spin-1/2 quark and a
spin-1 diquark, the hadron wave function is determined in
general by six independent components. To see the effect
coming from the spin-1 diquark, consider a wave function in
the one-component form

Vo, 2 (K1 ko, p)=eE M(ko)u, (k) y"u(p) ;. (41)
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Heree(})(kz) is the spin-1 polarization vector. The sum over 1.2
polarizations results in the propagatar, (: — kK, /1?) in

the form factor calculation. In this model we find for the 1.0 1
form factor ratio —
% 08
F, log(Q%m?) 9
F, 0 , Y 0.6
L 0.4
which is close to the fit(2), differing only by a factor <& ™~
log(Q%n?). The same perturbative behavi@p to a coeffi- 0z

ciend also occurs in the asymptotic behavior of the electron
form factor in QED. If a scalar or pseudoscalar coupling is
also present, the vector contribution will dominate the - 20 0 0 o0 100
asymptotic behavior. We emphasize that for all three cou- 5 o

plings, both form factors decrease as an integral pow&?of Q*(GeV?)

[mOdU'9 powers O_f IogDZ/mz)], not as a power oRQ. As FIG. 2. Asymptotic behavior of the form factor raf@F, /F, as
shown in Fig. 1, afit to the form factor ratio based on powerSyetermined from Eqs(37) and (38) of the text with ;<[ M2
of Q% and powers of lo®” describes the experimental data +(0.6 GeVY] 3% and ¢, fixed by Eq.(19). The constituent mass
well. is m=0.3 GeV, and the bound-state massMs=0.94 GeV. The
choice of ¢, corresponds to the Chung-Coester ansatz and nomi-
B. Consequences of the CC constraint nally implies a constant asymptotic behavior for the ratio, but here

. . is well fit by Q%25
The CC ansatZ,=0 is equivalent to a quark—scalar- 's well fit by Q

diguark model, but with the additional conditidh9). As we
have seen this introduces anomalous terms in the LFWF&Ve emphasize that this behavior follows from the CC ansatz
which are linear inM,. Substitutinge, from (19) into Egs.  (13) [or f,=0 in (14)], which in turn, is equivalent to the

(37), (38), we obtain relation(19). After the constraint is imposed, the asymptotic

behavior (44) follows without further dynamical assump-

5 1 d?k, dx s tions.
Fi(g%)= > 3f 21 )[X(l—X)(Mo+M 0 The coefficient functionsp; are in general functions of
& X(1=x MS since in the equations of motion only the quamMé

+2x2MM§+2xm(M o+ M) appears. In the next section this is shown explicitly in the
case of the Wick-Cutkosky model. Explicit calculation of the

—(1-x)2Q%¢1 01, (42 form factors, withg,=N/(M3+ 8%)%5, as assumed in Ref.

[14], and with ¢, fixed by Eq.(19), qualitatively replicates
the nonconstant, nonintegral asymptotic behavior found in
2(1-x)m+x(1=x) (Mg Ref.[14]. Figure 2 shows the result f@F,/F,, which is
approximately constant for a small range of intermed@te
but is well fitted byQ %2 for large Q2. Similar results are
©1P1- obtained with an exponential wave function.
The arguments by Ralstoet al. [41] and Kroll [42], in
(43) fa_lvor of_Q F,/F, being asympto_tically constant, r_educe toa
discussion of the following ratio of wave function matrix
The same result is of course obtained by direct calculatioglements:
with the wave function(9).
Because of the terms witM3, M’3, and MoM{, the B
form factorF, contains the second pow€? relative to the Fy (Yr1b0)
term 2(1-x)m in F,, which does not contaiiv, or M. F_l: m'
This occurs independently of whether the cancellation be-
tweenk? and— +(1—x)2Q? takes place or not. If it does not
take place, we get an extra contribution to 1 power. [See for example Eq5) of Ref. [41] and Eq.(11) of Ref.
This only cha_nges the coefficient o;fz_. Simila_rly, because [42].] They arrive at this ratio by including an,=1 wave
of the term with Mo+ M), F, contains the first power of gnction in the contribution té,, so that there is an overlap
Q. This extra factor ofM, (and, henceQ) results in the  \ith the L,=0 wave function. However, the,=1 wave

M f d2k, dx

Fod)= 10 x2(1—x)

2
X
+M6)_§(M0_M6)2(M0+M6)

(45

nominal asymptotic behavior function ¢ ,,, also contributes td, in an overlap with it-
E self, as given above in E€B4). This introduces an additional
&zconst_ (44  term of orderQ? in the denominator and make¥’F/F,
Fi asymptotically constant.
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V. THE WICK-CUTKOSKY MODEL AND M} states of the Wick-Cutkosky model can also be obtained by
DEPENDENCE computing the instant-form wave function and boosting to

) . .infinite momentum, as in WeinbergR,—«~ method[44].
The Wick-Cutkosky model is based on the_ladger approxi- - Note that the LFWR48) in the constituent rest frame has
mation to the Bethe-SalpetdBS) equation in¢“x field  ine form

theory. The LFWFs in this model for thé=L=0 andJ

=L=1 bound states have been computed in R&2]. We . . K e .

shall show below that if the wave function is represented in ¥ (K,n)=f1(k?n-k)kY3, K +f,(k%n-k) Y5, (n),
four-dimensional form, the scalar components depentfign (51)

as expected on general grounds. Indeed,Jerl the BS

function read$20,43 where the scalar componerits, can be expressed in terms

of ¢;, from (48). This representation is analogous to the
representation14) for the Yukawa model. Since the BS
®1(q,p), (46)  function (46) describes a state with angular momentdm
=1, the corresponding LFWF51), which is derived from
the BS function without any approximation, definitely has

=

®4,(q,p) :aYIx

[t g1(z,M)dz the same angular momentum. It is an eigenfunction of the
®1(q,p)= i VY ngular momentum r mitting th in rator
1 (M= M%4—2—zp-q—ie)* angular momentum operat¢8) (omitting the spin operato
>
20).
whereg4(z,M) is the spectral function satisfying a specific
differential equatior20,43. We will not need the explicit VI. CONSEQUENCES OF THE CC ANSATZ

FOR THREE-BODY LIGHT-FRONT

form of g;. Hereq=(k,—k)/2, g=L~1(v)q has the sense WAVE FUNCTIONS

of relative momentum in the rest frame given py: 0, and

L~(v) is the Lorentz boost witlw =p/e,. In an arbitrary
frame the spherical function i@6) can be replaced by

The simplified three-quark LFWF of the nucleons intro-
duced by Coester and Chung, and used in R&f] for a
model of the proton form factors, has the same spin structure

= as the quark-scalar-diquark model—two quarks form a spin-
Gy q L /ie(x)(p)qﬂ a7 zero diquark, and the spin of the nucleon is determined by
I q Qo H ' the spin of the third quark. The wave function is symme-
trized relative to the permutations of the quarks according to
whereeﬁ)(p) is the spin-1 polarization vector. SU(6) flavor-spin symmetry. For example, in the constituent
Using the relation(5) between the LFWF and the BS rest frame, the Pauli-spinor representation of the three-quark
function and Eq(47), we find the LFWF in the form wave function corresponding to the state of zero spin and
zero isospin of the quark pair 12 is
3 ot
==\ g e (PP, UKot e, (48) (12,3 =x"(1,2)x;,077- 71,9 €] 57,
Where where)((s‘:o)(l,Z)z)(llicry)(l2 is the spin-zero wave func-
tion of the two quarks and!'=%(1,2)= §Ili ayglz is the
@1= 291(1—2x,M) isospin-zero wave function. The nucleon spin-isospin wave
! 3(M2—M?)3x3(1-x)?’ function is obtained by symmetrization:
1,2,3 = (12,3 + 4(23,) + (31,2.
i 012 M) 41— 2xM) $(1,2,3)= (12,3 + (23D + (31,2
©2 6(MS— M2)2x%(1—x)2 3(M§—M2)2x(1—x)' Using the Fierz identities, we may transform it to the form

(49

1 - o I
=—¢yd 3+ (00 Tip° T . 52
The prime ing;(z,M) means differentiation with respect to v \/7—2%[ (712 730) (712 Ton) ] (52

z. We see that the componengts and ¢, depend orMS, as

expected. A similar result holds for the=0 state: This form is totally symmetric with respect to spin and isos-

pin. We have introduced here the symmetric momentum-
dependent panfs. The factors in52) should be understood

g(1-2x,M) (50 as

T 2Jmx(1-x)(M2—M?)2’

1=(x} o) ) (X0 Xy,
whereg(z,M) is the corresponding spectral function. It does
not depend linearly oM (12 Gon) = (X G ) (XD G Xe):
The representatior(48) for the Wick-Cutkosky wave ! S
function is analogous to the representati(® for the  and similarly for the isospin part. The wave functits®) is
Yukawa model. These results for the LFWFs of the boundust the ansatz used in R¢fl4].
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In the covariant Yukawa model, the general form of the two-HereD is the three-body phase volume, aB¢1,2,3Q?) is
parton LFWF(14) contains two components, in contrast to a function of the variables of all three quarks andQt We
the one-component CC ansdfiZ3). The general form of the do not need the explicit form d&. M, is the effective three-
three-quark nucleon wave function contains sixteen compobody mass, which depends tﬁzﬂ—%(l—xg)&l , Whereas
nentg 35] in contra;t to the one-component an_s(az). Thlus M depends orlﬁsL +1(1—xa) i Because of factorization
the CC ansat#52) is even a stronger constraint than in the of the wave function54), these formulagfound by direct

two-body Yukawa model. ~ calculation coincide, after evident changes of notation, with
As in the two-body cas€9), the three-body wave function the corresponding expressio42) and (43) for the two-
(52) can be recast in the four-dimensional fof85] body form factors for the CC ansatz.

" At QZ———ﬁf—>w, both M{ and M, tend to Q. For the
__7s o, T, leading term we find
= C1CoC3Cn{3[u(ky) A Ucu(k

1 /—72123N{[(1) +vsUcu(ky)]

— — — Fioc...Q7%
X[uka) A yun(p)]—[uky) Ay y*A _Ucu(kz)]

X[u(Ka)A 4, vsA  Un(P)1( 710 Tan)}s (53 Fox...Q, (57)

whereA _=(P—M;)/2Mq andU = y, 7, is the charge con-  \which reproduce the rati®@F, /F,=const. As before, this
jugation matrix. The coefficients are;=1/\/m+e, , etc.  asymptotic behavior is a consequence of the specific con-
The projection operatok ., is again given by Eq(10); how-  straints on the LFWFs.

ever, the two-body constituent momentum is replaced by the On the other hand, we have mentioned in Sec. IV that

three-body momentum scalar and pseudoscalar couplings result in the asymptotic
ratio F,/F,~ 1/log(Q¥n?) and vector coupling inF,/F;
P=k;+ko+ks, Mj=P2. ~1og(Q?mP)/IQ?. These couplings are not really related to a

o hypothesis of predominance of diquarks, but simply repre-

In the constituent rest frame, whef@=0, we haveP,  sent different spin structures of the nucleon wave function.
=My, and the wave functiob3) reduces tq52). The total number of these structures is sixtE&H. Some of

The second term i63) does not contribute to the proton these other structures, in addition to the vector one,
form factor[35,14. The first term is factorized. We suppose may also contribute to the asymptotic behavies/F;
that the photon interacts with the third quark. The first factor~log(Q%n?)/Q?.
[u(ky)A | ysU.u(k,)] is the same foF,; andF,, and, there-
fore, it does not change their ratio. Since only the second
factor [u(ks) A Lun(p)] gives different contributions té

andF,, we rewrite the wave function in a factorized form The explicitly Lorentz-invariant formulation of the front
form provides a general method for determining the general

o ¢Sﬂ(k3) A un(p). (54) structure of light-front wave functions. We have also used
the fact that the angular momentum of a bound state can be
This coincides with the CC-constrained Yukawa wave func-defined covariantly within the Bethe-Salpeter formalism: The
tion (9). LFWFs for ann-particle Fock state evaluated at equal light-
The form factor calculation using the three-quark wavefront time o= w-x can be obtained by integrating the cova-
function determined by52) and (54) differs from the two- riant Bethe-Salpeter functions over the corresponding rela-
body calculation in Sec. IV only in the use of three-bodytive light-front energies. The resulting LFWFs are
kinematics. The result is eigenstates of the kinematic angular momentum ope(éfor
The result is that the LFWFs are functions of the invariant
mass squared of the constitueMéz(Ek“)2 and the light-
cone momentum fractions =k;- w/p- w, each multiplying
, 2 ) spin-vector and polarization invariants involviag‘, where
T2XM(Mo+Mo) —(1-x3)°Q7]G(1,2,3Q7)D, w=(wq,w) is the four-vector determining the orientation of
(55)  the light-front planew-x=0.
We have presented the structure of LFWFs for two- and
three-particle bound states using the explicitly Lorentz-

VII. CONCLUSIONS

|:(2=1 1—X3)(M24+M'2)+2x2M oM/
1(99) 5 [X3(1=X3)(Mg+M'g)+2x3MoMg

Fo(g%)=M J 2(1—X3)m+X3(1—x%3)(Mg+ M) invariant formulation of the front formil]. As examples we
have given the explicit form of the LFWFs for spin-0 and
) spin-1 eigenstates of the nonperturbative eigensolutions of
X3 the Wick-Cutkosky model, as well as examples of spin-1/2

G(1,2,3Q%)D.

_ — M2 ' . ;
QZ(MO Mo)*(Mo+Mo) states constructed using perturbation theory. For example,
the LFWF of a spin-1/2 system composed of spin-half and

(56) spin-zero constituents has the general form
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applies the CC ansatz to the QCD quark splitting function,
u(p), the ultraviolet logQ? behavior ofq(x,Q?) will derive from
two sources: the standard behaviokinarising from pertur-

: 2
where thep; are functions of the square of the invariant massbat've QCD plus the presence of a teMﬁxki due to the

; ; ; CC ansatz. The presence of the latter source would destroy
and the light-front momentum fractions. The orbital angular ; . ; : .
momentum prefactor in the constituent rest frame is propor?é’r':?:]“gfr'(;”bOV"-'paIOV'A“are'|"Pa”9(DGLAP) evolu-
tional o wx k-S. . - (3) The LFWFs of thel=0 andJ=1 bound states can be
_An important test of the LF computations is I|ght-f_ront btained explicitly in the Wick-Cutkosky model. The form
;?]valne;]r;(}e—?lthou?h E[he I(‘j'.:W't:.S depl)lengl on tgle Cho'cﬁ Otactor ratios of the spin-1 system obtained in this nonpertur-
matrix elements of local cuITent opérators, form faciors, an g 21AYSIS s given by a uadraé dependence and by

L 1 2 H 1

cross sections, must be independenttt We have com- _ogQ [21]. The application of the CC ansatz leads to terms

. . the wave function that are linear Wl rather than the
pute(_j the Ia_rge momentum transfer behavior qf the ratio Ogluadratic dependence of the explicit solutions.
Pauli and Dirac form factors of the nucleon using the exact (4) In the case of the simple Yukawa theory, the effective
relation for spacelike current matrix elements in terms of o o —

LFWFs. The dependence of the invariant mass squared inf0t€raction in the CC model has the fori"=gyA ¢
plies that hadron form factors computed from the overlapVheré A is a nonlocal positive-energy projection operator.
integrals of LFWFs are analytic functions Gf2 in agree- The presence of the p.r0]eCtI0n operazlbrcpnfllcts with thg
ment with dispersion theory, the PQCD analysis of Belitsky,uSual relations obtained from crossing and particle-
Ji, and Yuar[19], and conformal argumeni89), as well as antlpartlcle symmetry. For example, conS|der the_ glectropro-
with the form factor ratios obtained using the nonperturba-duction amplitudey* p—q-+qq, where, for simplicity, the
tive solutions to the Wick-Cutkosky model. We have alsodd diquark can be taken as the Yukawa scajarThe Born
shown that a fit to the Pauli to Dirac form factor ratio incor- @mplitude with quark exchange in thehannel has the form
porating the predicted perturbative QCDQE/ and lodd? —

asymptotic dependence describes the recent Jefferson Labo- M# (p-q,t,q?)= €Uy W(xK,)

ratory polarization transfer data well. In contrast, we have yrp—agtt t—qu e

shown that the LFWFs introduced by Chung and Coester to

parametrize the static and low-momentum properties of thé/here

nucleons correspond to the spin-locking of a quark with the t—m2=x(M2—M2)

spin of its parent nucleon, together with a positive-energy q o

projection constraint. These extra constraints lead to aandx=xBj=—q2/(2p-q). The CC ansatz introduces a lin-
anomalous linear dependence of the LFWFs on the invariardar term inM, in the electroproduction amplitude. If we now
mass of the constituents and an anomalous dependence of.o ¢ crossing to obtain the PfoceséaHEb, the pres-

2
formhfactors onQ rather tr}ar? L liaht-f ; ence of a linear term iM in the LFWF gives a contribution
The CC construction of relativistic light-front wave func- to the amplitudeM 5. E,;(S,t,qz) which is proportional to

tions was introduced to represent the properties of the nucle\-/g at fixed momgr:?trm transfer This anomalous Regge
ons in the low-momentum transfer domain. However, ther :

e ) . $ehavior corresponds to fermion exchange inttlehannel,
are a number of difficulties with exjgndmg the CC form to which, however, is not present in this amplitude.
the high-momentum transfer domain:

(1) If one applies the CC ansatz to a bound state of aeXAgaln, we emphasize that these difficulties concern the

spin-half quark and a scaléhe Yukawa mod@] the quark is trapolation of the CC ansatz to the asymptotic region.

trained to h h . act the b These problems do not appear in the original wéi]
constraine OZ avze € same spin projection as the bOURG, a6 the CC ansatz was only applied to static nucleon prop-
state nucleonS,=S;, when one uses the conventional BD

i : ) erties and to form factors at relatively small momentum
spinor representation. Thus the only orbital angular momeng.;nsfer.

tum allowed by the CC constraint is the kinematical angular Light-front wave functions are the fundamental ampli-
momentum arising from the lower components of the BDy,qeg that relate hadrons to their fundamental quark and
spinor. The spin-locked CC constraint does not allow for thegluon degrees of freedom. We have shown how one can ex-
full degrees of freedom of a relativistic system. hibit the general analytic structure of light-front wave func-
(2) If one compares the CC ansatz to wave functions gengons 'including states with nonzero orbital angular momen-

erated in perturbation theory, the net result is to replace thg,,, ‘A ey element of this analysis is the use of the explicitly
bound-state masil in the numerator of the LFWFs by the | qrentz.invariant formulation of the front form where the
invariant mass of the constituents normal to the light-front is specified by a general null vector
o*. The resulting LFWFs are functiong,(x; ,k,;) of the
i invariant mass squared of the constituehvlitéz(ik“)2 and
=X the light-cone momentum fractiong=k;- w/p-w, which
multiply invariant prefactors constructed from the spin ma-
This replacement leads to the anomalous growth of the C@ices, polarization vectors, ang* in the case of nonzero
LFWF at large transverse momentum. For example, if onerbital angular momentum. The LFWFs corresponding to

ep) = k)| @3+
ke, p)=u(ky)| @1 w__p<P2
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definite total angular momentum are eigenstates of a kineéfhe value ofr here was obtained by squaring the equality
matic angular momentum operator and satisfy all Lorentp+ w7r=k;+k,, which gives T=(M§—M2)/(2w~p), and
symmetries of the front form, including boost invariance. Weby usingew - p= - (k;+ k,) = woM,. In this way, we find the
have illustrated these properties using known nonperturbaD spinors in the constituent rest frame to be written as

tive eigensolutions of the Wick-Cutkosky model for nonzero
angular momentum. The dependence of LFWFs on the in-
variant mass squared implies that current matrix elements
and hadron form factors are analytic functions @f in
agreement with dispersion theory and perturbative QCD. We
have also shown that a model incorporating this analytic
property and leading-twist perturbative QCD constraints is
consistent with recent data for the ratio of proton Pauli and
Dirac form factors determined by the polarization transfer
method.
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_ ok
Wi(ke) = Vo my 3| 1,- ),
1 M0+M
ul(p)= —— I A3
= =] o) (A3)

The factorM &/(w-p) in (8) is transformed as

M&,_M( Q»)_M 1 -no
wp Mg Y T Molne -1 )
We also introduce
n-k

Substituting these expressions into E8), we reproduce the

wave function(14) with the component$, ,f, given by Egs.

APPENDIX

We use the conventiom™=a’+a%, which givesa-b

=1(a*b +a b*)—a, b, , and use they matrices in the

(15).

The light-front spinor is defined d86]

Dirac representation WPk = 1 ( Ko+m+o-Ko® )X" (Ad)
A V2(k%+K3) | (K0—m)od+ -k~
o 1 O - 0 o
Y _(0 _1)’ 7’—(_& 0)- (A1) which gives
A caret indicates the inner product of a four-vector with the _ 1 .
y matrices, so thak=k, y*. u-Fo(k,) = mf‘”(k% m+a(o-ky),

The solutions ofu(k,)k;=mu(k;) and pu(p)=Mu(p),
in terms of the BD spinors, are given by

_ o-ky
o —_To 0_ to _ 1
U7t (ky) =u'?t(ky) y = e Fmy 7 1, 8k1+m>’
1
u’(p)=vep,+M| o-p |x° (A2)
8p+|\/|

where x? is a two-component spinog,= VK2+m?, and
Vp2+M2. In the constituent rest frame, whepe- o
1+k,=0, we introduce the variablels, n, k;=k, and
=nNnw,. We also find

€p

~

ISPl

.. _M3-M?
p——wr——nz—Mo,

M3+ M2
=0
T 2M,

|

—(K3-m)a®—a-Kky). (A5)

The BD and LF spinors are connected by the following uni-
tary relations(at n||z):

(pt+M)  —pR
p- (p"+M)

(u+1/2(p)>_ 1
U 2p (p0+ M)
( uLF+l/2(p))

L‘ILF71/2( p)

(AB)

(p™+M) pR

uLF+l/2(p) - 1
- -p-  (pt+M)

uLF—llz(p) /—2p+(p°+M)

(u+1/2(p))
“luzp) )

(A7)
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