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Covariant structure of light-front wave functions and the behavior of hadronic form factors
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We study the analytic structure of light-front wave functions~LFWFs! and its consequences for hadron form
factors using an explicitly Lorentz-invariant formulation of the front form. The normal to the light front is
specified by a general null vectorvm. The LFWFs with definite total angular momentum are eigenstates of a
kinematicangular momentum operator and satisfy all Lorentz symmetries. They are analytic functions of
the invariant mass squared of the constituentsM0

25((km)2 and the light-cone momentum fractionsxi

5ki•v/p•v multiplied by invariants constructed from the spin matrices, polarization vectors, andvm. These
properties are illustrated using known nonperturbative eigensolutions of the Wick-Cutkosky model. We analyze
the LFWFs introduced by Chung and Coester to describe static and low momentum properties of the nucleons.
They correspond to the spin locking of a quark with the spin of its parent nucleon, together with a positive-
energy projection constraint. These extra constraints lead to an anomalous dependence of form factors onQ
rather thanQ2. In contrast, the dependence of LFWFs onM0

2 implies that hadron form factors are analytic
functions ofQ2 in agreement with dispersion theory and perturbative QCD. We show that a model incorpo-
rating the leading-twist perturbative QCD prediction is consistent with recent data for the ratio of proton Pauli
and Dirac form factors.
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I. INTRODUCTION

Light-front wave functions~LFWFs! are the interpolating
functions connecting hadrons to their fundamental quark
gluon degrees of freedom in QCD. Many hadronic obse
ables can be computed directly from these amplitudes.
example, matrix elements of local operators such as sp
like proton form factors, transition form factors such asB

→, n̄p, and generalized parton distributions can be co
puted from the overlap integrals of the LFWFs. The deter
nation of the hadron LFWFs from phenomenological co
straints and from QCD itself is thus a central goal of had
and nuclear physics. In principle, one can solve the hadro
LFWFs directly from fundamental theory using nonperturb
tive methods, such as discretized light-front quantization,
transverse lattice, lattice gauge theory moments, or Be
Salpeter or Dyson-Schwinger techniques. Reviews of n
perturbative light-front methods may be found in Re
@1–3#.

One of the central issues in the analysis of fundame
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hadron structure is the presence of nonzero orbital ang
momentum in the bound-state wave functions. The evide
for a ‘‘spin crisis’’ in the Ellis-Jaffe sum rule signals a sig
nificant orbital contribution in the proton wave functio
@4,5#. The Pauli form factor of nucleons is computed fro
the overlap of LFWFs differing by one unit of orbital angul
momentumDLz561. Thus the fact that the anomalou
magnetic moment of the proton is not zero is an immedi
signal for the presence of nonzero orbital angular momen
in the proton’s LFWFs@6#. It should be noted that orbita
angular momentum is treated explicitly in light-front quan
zation; it includes the orbital contributions induced by re
tivistic effects, such as the spin-orbit effects normally as
ciated with the conventional Dirac spinors.

In this paper we shall show how orbital angular mome
tum is represented by light-front Fock state wave functio
A key tool will be the explicitly Lorentz-invariant formula
tion of the front form~see Ref.@1# for a review and refer-
ences to original papers!. The wave functions are defined a
the light-front planev•x5s, for which the orientation is
determined by the null four-vectorv. Although LFWFs de-
pend on the choice of the light-front quantization directi
v, all observables such as matrix elements of local curr
operators, form factors, and cross sections are light-fr
invariants—they must bev independent. When thev inde-
pendence is violated in approximate calculations, one
©2004 The American Physical Society01-1
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still find the v-independent form factors by separating the
from the current operator matrix elements and omitting
nonphysical,v-dependent contribution@7#. We shall show
that the analytic form of LFWFs with nonzero orbital angu
momentum is then constrained to a specific set of sim
prefactors multiplying the scalar zero orbital angular m
mentum solutions. Knowing the general form of the LFW
can be important for determining the hadron eigenstates f
QCD using variational or other methods.

We begin by noting that eigensolutions of the Beth
Salpeter equation have specific angular momentum as s
fied by the Pauli-Lubanski vector. The corresponding LFW
for an n-particle Fock state evaluated at equal light-fro
time s5v•x can be obtained by integrating the Beth
Salpeter solutions over the corresponding relative light-fr
energies. The resulting LFWFscn

I (xi ,k' i) are functions of
the light-cone momentum fractionsxi and the invariant mas
squared of the constituents

M0
25S (

i 51

n

ki
mD 2

5(
i 51

n Fk'
2 1m2

x G
i

and the light-cone momentum fractionsxi5k•v/p•v, each
multiplying spin-vector and polarization tensor invarian
that can involvevm. The resulting LFWFs for bound state
are eigenstates of a kinematic angular momentum oper
Thus LFWFs satisfy all Lorentz symmetries of the front for
@8#, including boost invariance, and they are proper eig
states of angular momentum.

There is now heightened interest in the analytic form
the nucleon form factors. Recent measurements of the pr
form factors at Jefferson Laboratory@9,10#, using the polar-
ization transfer method, show a surprising result—the ra

GE(Q2)/GM(Q2) falls faster in momentum transferQ2

52q252t than that found using the traditional Rosenblu
separation method. A possible source for this disparity is
QED radiative corrections, since these are more likely
affect the Rosenbluth method@11–13#. For example, the in-
terference of one-photon and two-photon exchange am
tudes and the interference between proton and elec
bremsstrahlung are present in the measured electron-pr
cross section and can complicate the analysis of the en
and angular dependence required for the Rosenbluth se
tion.

If one translates the new polarization transfer resu
for GE and GM to the Pauli and Dirac form factors, th
data appear to suggest the asymptotic beha
QF1(Q2)/F2(Q2);const. In a recent paper, Miller an
Frank @14# have shown that the three-quark model for t
proton LFWF constructed by Chung and Coester~CC! @15#
and extended by Schlumpf@16# leads toQF1(Q2)/F2(Q2)
;const in the range of the Jefferson Laboratory experim
thus providing an apparent explanation of the Jeffer
Laboratory data.

In dispersion theory form factors are analytic functions
q2, with a cut structure reflecting physical thresholds at tim
like q2. This is also apparent from the analytic structure
Feynman amplitudes in perturbation theory. A functional d
07600
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pendence inQ5A2q2 does arise when there is a physic
threshold atq250, as in the case of gravitational@17,18# ~or
axial current! form factors due to the two-photon intermed
ate state; however, this would not be expected to occur
the vector current in QCD.

Chung and Coester@15# introduced their ansatz for th
form of baryon LFWFs in order to describe the static a
low momentum transfer properties of the nucleons. The L
WFs in the CC model have the effect of spin-locking a qua
with the spin of its parent nucleon, together with a positiv
energy projection constraint. As we shall show, if one e
tends these forms to large transverse momentum, the e
constraints lead to an anomalous linear dependence of
WFs in the invariant mass of the constituents and an ano
lous dependence of form factors onQ rather thanQ2. As we
discuss in the Conclusions, the lack of analyticity inQ2 is
related to the breakdown of the crossing properties incor
rated in field theory. The CC constraint may provide a re
sonable model for computing static properties of hadro
but it is not applicable to large momentum transfer obse
ables.

We shall show that form factors computed from the ov
lap of LFWFs are analytic functions ofq2 due to their ana-
lytic dependence on the off-shell light-front energy and t
general form of prefactors associated with nonzero orb
angular momentum. In particular, the general form of t
LFWFs for baryons in QCD leads to a ratio of form facto
F2(Q2)/F1(Q2), which behaves asymptotically as an i
verse power ofQ2 modulo logarithms, in agreement with th
perturbative QCD~PQCD! analysis of Belitsky, Ji, and Yuan
@19#. We also shall show that the form factor ratios obtain
from the nonperturbative solutions to the Wick-Cutkos
model @20,21# have a similar behavior.

It should be noted that the analytic form predicted
perturbative QCD is compatible with the form factor rat
determined by the polarization transfer measurements.
detailed analysis of baryon form factors at largeQ2 based on
perturbative QCD predicts the asymptotic behav
Q2F2(Q2)/F1(Q2); log218/(9b)(Q2/L2), where b511
22nf /3 @19#. This asymptotic logarithmic form can be gen
eralized to include the correctQ250 limit and the cut at the
two-pion threshold in the timelike region. Such a parame
zation is

F2 /F15kp

11~Q2/C1!2logb12~11Q2/4mp
2 !

11~Q2/C2!3logb~11Q2/4mp
2 !

, ~1!

where for simplicity we have ignored the small factor 8/9b,
as do Belitskyet al. For the large-Q2 region of the available
data, this already reduces to the asymptotic form

F2 /F15kp

C2
3

C1
2

log2~Q2/4mp
2 !

Q2
. ~2!

Therefore, the values ofC1 , C2, andb are not tightly con-
strained, except for the combinationC2

3/C1
2. A fit to the

Jefferson Laboratory data yieldsC150.79 GeV2, C2
50.38 GeV2, andb55.1. Thus, as shown in Fig. 1, one ca
1-2
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fit the form factor ratio over the entire measured range w
an analytic form compatible with the predicted perturbat
QCD asymptotic behavior.

The nominal 1/Q2 power-law fall-off of F2(Q2)/F1(Q2)
in perturbative QCD is a consequence of the underlying c
ral structure of the vector interactions in QCD. The fact
ized structure of hard QCD amplitudes predicts hadron
licity conservation@23# at the leading twist and thus th
relative suppression of the Pauli form factor since it is
helicity-flip amplitude. These nominal power-law forms a
also properties of dimensional counting rules@24–26# for
hard scattering amplitudes in QCD. The power-law suppr
sion of F2(Q2)/F1(Q2) is not generally true for Yukawa
theories with scalar gluons or in quark-diquark models of
nucleon based on scalar diquarks since the effective inte
tions violate chirality conservation.

Iachello, Jackson, and Lande@27–29# have introduced a
model for the nucleon form factors based on dimensio
counting and perturbative QCD at high momentum plus
analytic structure due to vector meson intermediate sta
The model gives an excellent phenomenological descrip
of the individual form factors and the form factor ratio me
sured using polarization transfer.

Although the spacelike form factors of a stable hadron
real, the timelike form factors have a phase structure refl
ing the final-state interactions of the outgoing hadrons. T
analytic structure and phases of the form factors in the tim
like regime are connected by dispersion theory to the sp
like regime. Each of the above models predicts a spec
fall-off and phase structure of the form factors froms↔t
crossing to the timelike domain. As noted by Dubnickov
Dubnicka and Rekalo and by Rock@30#, the phase of the
form factor ratioGE /GM of spin-1/2 baryons in the timelike
region can be determined from measurements of the po
ization of one of the produced baryons in the exclusive p
cesse2e1→BB̄, since the single-spin asymmetry normal
the scattering plane requires a nonzero phase difference
tween theGE andGM form factors. As demonstrated in Re

FIG. 1. Perturbative QCD motivated fit to the Jefferson Labo
tory polarization transfer data@9,10#. The parametrization is given
in Eq. ~1!. The dashed line shows the predicted form@22# for time-
like q252Q2.
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@31#, measurements of the proton polarization ine1e2

→pp̄ will strongly discriminate between the analytic form
of the models that have been suggested to fit the pro
GE /GM data in the spacelike region. The single-spin prot
asymmetry is predicted to be large, of the order of seve
tens of percent.

The content of the remainder of the paper is as follow
The general construction of the wave functions appear
through the Fock decomposition of the state vector defi
on the light front v•x50 is explained in Sec. II A. The
angular momentum properties of LFWFs are discussed
Sec. II B. For simplicity, we present the LFWFs for boun
states of scalar fields and for a spin-1/2 system in Yuka
theory, which can serve as a diquark-inspired model fo
three-quark hadron. The consequences of the CC ansat
explored in detail. Section III recasts this discussion in ter
of the standard light-front Fock-state expansion and the
sociated LF spinors. This allows contact to be made w
perturbation theory. The construction of form factors a
their asymptotic behavior are described in Sec. IV. T
LFWF for the valence Fock state is obtained by integrat
the Bethe-Salpeter solutions over the relative light-front
ergies. The expectation that LFWFs are functions ofM0

2,
rather thanM0, is demonstrated in Sec. V. The angular m
mentum properties of LFWFs are illustrated using the kno
nonperturbative eigensolutions of the Wick-Cutkosky mo
for nonzero angular momentum. Section VI presents the
plications for the CC ansatz for a three-quark nucleon st
where we show that the anomalous asymptotic behavio
QF2 /F1;const is a consequence of the extra constraints
the LFWFs imposed by the CC construction. Section V
contains our conclusions, and an appendix collects some
ful definitions and intermediate results.

II. LIGHT-FRONT WAVE FUNCTIONS

A. General construction

The concept of a wave function of a hadron as a comp
ite of relativistic quarks and gluons is naturally formulated
terms of the light-front Fock expansion at fixed light-fro
time, s5x•v @1#. The null four-vectorv determines the
orientation of the light-front plane; the freedom to choosev
provides an explicitly covariant formulation of light-fron
quantization. For a stationary state we can consider a fi
light-front time and sets50.

In this formulation, the eigensolution of a proton, pr
jected on the eigenstates of the free HamiltonianHLC

QCD(g
50), has the expansion

up,l&5 (
n>3

E cl1 , . . . ,ln

l ~k1 , . . . ,kn ,p,vt!

3d (4)S (
j

n

kj2p2vt D 2~v•p!dt

3)
i 51

n
d3ki

~2p!32«ki

al i

† ~kW i !u0&. ~3!

-

1-3
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Here a† is the usual creation operator and«ki
5Ami

21kW i
2.

All the four-momenta are on the corresponding mass sh
kj

25mj
2 , p25M2, (vt)250. The set of light-front Fock-

state wave functionscl1 , . . . ,ln

l (k1 , . . . ,kn ,p,vt) repre-

sents the ensemble of quark and gluon states possible w
the proton is intercepted at the light front. Thel j label the
light-front spin projections of the quarks and gluons alo
the light-front quantization direction. The scalar variablet
controls the off-shell continuation of the wave functio
From the point of view of kinematics, the four-momentu
vt can be considered on equal ground with the particle fo
momentak1 , . . . ,kn ,p. Being expressed through them~by
squaring the equality( j

nkj5p1vt), t reads

t5
M0

22M2

2v•p
,

whereM0
25(( j

nkj )
2. The differenceM02M;t between the

effective massM0 of constituents and their bound state ma
M is just a measure of the off-energy-shell effect.

If the wave functions describe a system with spin co
posed of constituents with spin, they are represented thro
scalar functions multiplied by invariants constructed fro
the spin matrices, polarization vectors, andvm. In general,
the scalar functions depend on a set of scalar products o
four-momentak1 , . . . ,kn ,p,vt with each other. One shoul
choose a set of independent scalar products. A conven
way to choose these variables is the following. We defin

xj5
v•kj

v•p
, Rj5kj2xj p,

where( j 51
n xj51 and( j 51

n Rj5vt, and represent the spatia

part of the four-vectorRj as RW j5RW i j1kW' j , where RW i j is
parallel tovW and kW' j ~with ( j

nkW' j50) is orthogonal tovW .

SinceRj•v5R0 jv02RW i j•vW 50 by definition ofRj , it fol-
lows thatR0 j5uRW i j u, and, hence,kW' j

2 52Rj
2 and kW' i•kW' j5

2Ri•Rj are expressed though the squares and the sc
products of the four-vectorsRj . Hence, they are the Lorent
and rotation invariants. Therefore, the scalar functio
should depend onxj , kW' j

2 , andkW' i•kW' j . In terms of these
variables, the integral in Eq.~3! is transformed as

E . . . d (4)S (
j

n

kj2p2vt D 2~v•p!dt)
i 51

n
d3ki

~2p!32«ki

5E . . . 2dS (
j

n

xj21D d (2)S (
j

n

kW' j D)
i 51

n
d2kW' idxi

16p3xi

.

In this way we find thatc reduces tocl1 , . . . ,ln

l (xj ,kW' j ).

These wave functions are independent of the hadron’s
mentump15p•v and p' , reflecting the kinematical boos
invariance of the front form. All observables must be inva
ant under variation ofvm; as we shall show, this generalize
rotational invariance provides an elegant representation
angular momentum on the light front.
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A scalar bound state of two spinless particles withp2

5(ka1kb)25M2 can be described using the covaria
Bethe-Salpeter functionF(x1 ,x2 ,p), which in momentum
space corresponds toFBS(ka ,kb)5F(q,p), whereq5(ka
2kb)/2. For J50 the Bethe-Salpeter function is a scal
function of the Feynman virtualities withka

m1kb
m5pm.

The explicitly covariant version of light-front dynamic
@1# turns into the standard one at the particular value ofv
5(1,0,0,21). The conjugate direction is defined asz, where
z•v52 andz5(1,0,0,1) in the standard light-front frame
In general, the two-body scalar LFWF can only be a funct
of the corresponding off-shell light-front energy

M0
22M25S (

i

2

ki•z2p•z D ~v•p!52~v•p!t ~4!

and the momentum fractionsxi5ki•v/p•v.
One can identify the corresponding two-parton LFWF

calculating the Fourier transform ofF(x1 ,x2 ,p) with
the argumentsx1 , x2 constrained to a fixed light-fron
time s5v•x, i.e., the transform of the function
F(x1 ,x2 ,p)d(v•x1)d(v•x2). In momentum space it corre
sponds to integration over the minus component of the r
tive momentumk, or in the covariant form@1#

c5
~v•k1!~v•k2!

p~v•p!
E

2`

1`

F~k1bv,p!db. ~5!

The resulting LFWF describes a spin-zero bound state
on-shell partons withka

25ma
2 , kb

25mb
2 .

The main dynamical dependence of a LFWF thus
volves M0

25((ki
m)2, the invariant mass squared of the pa

tons. Since the equation of motion for the LFWF involv
the off-shell LF energyp•z, the natural analytic dependenc
of w is in the variableM0

2, not M0.
It is useful to examine the properties of the LFWF in t

constituent rest frame@32,33#. We will distinguish the four-
vector P m5(ki

m and the bound-state four-momentumpm.
Since there is no conservation law for the minus compone
of momenta, we havez•pÞz•P, and the constituent res
frame (PW 50W ) and the rest frame (pW 50W ) differ from each
other. In the constituent rest frame wherePW 5( ikW i50W , we
can identify

M05P 05(
i

ki
05(

i
AkW i

21mi
2.

It is also convenient to make an identification of the fron
form and the usual instant-form wave functions in this fram

In general, LFWFs are eigenstates of the LF angular m
mentum operator@1,34#

JW52 i @kW3]/]kW #2 i @nW 3]/]nW #1
1

2
sW , ~6!

wherenW is the spatial component ofv in the constituent res
frame (PW 50W ). Although this form is written specifically in
1-4
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the constituent rest frame, it can be generalized to an a
trary frame by a Lorentz boost.

Normally the generators of angular rotations in the
formalism contain interactionsJmn

int , as in the Pauli-Lubansk
formulation; however, the LF angular momentum opera
can also be represented in the kinematical form~6! without
interactions. The key term is the generator of rotations of

LF plane2 i @nW 3]/]nW #, which replaces the interaction term
In four-dimensional form the relation between them rea
@34#

i S vm

]

vn
2vn

]

vm
D up,l&5Jmn

intup,l&. ~7!

The operatori (vm]/vn2vn]/vm) ~or its counterpart2 i @nW

3]/]nW # in the constituent rest frame! appears only in the
explicitly covariant formulation where the dependence onnW
is present. Details can be found in Ref.@1#.

We emphasize that the angular momentum operator in
~6! has general validity in quantum field theory; in particul
we do not need to truncate the Fock space. The angular
mentum operator~6! can be applied to each Fock comp
nent: each operator~for any givenn) acts on the correspond
ing n-body Fock component in Eq.~3!. For example, the
application of the LF angular momentum operator~6! to the
scalar functionw(M0

2 ,x) verifies that it describes aJ50
state.

The validity of the operator~6! can be also verified within
the covariant Bethe-Salpeter formalism as follows. In Sec
we will derive a two-body Fock component wave functio
@see Eq.~51! below# from the Bethe-Salpeter function in th
Wick-Cutkosky model. The latter definitely corresponds to
specific angular momentum (J5L51 in the particular case
considered in Sec. V!. One can check that this LFWF is a
eigenfunction of the operatorsJW2 and Jz , corresponding to
~6! ~omitting the Pauli matrix!. This argument can be gene
alized to the case of arbitrary angular momentum.

B. The Yukawa model

The general form of the LFWF of a spin-1/2 system co
posed of spin-half and spin-zero constituents is given by

c~k1 ,p!5ū~k1!S w11
M v̂

v•p
w2D u~p!, ~8!

wherev5(v0 ,vW ) is the four-vector determining the orien
tation of the light-front planev•x50. Herev̂5vmgm, and
ū(k1) is the conventional Dirac spinor of the spin-half co
stituent, andu(p) is the spinor of the bound state.

The general wave function~8! in Yukawa theory is deter-
mined by two scalar componentsw1 andw2, each a function
of M0

2 andx. In contrast, the wave function corresponding
07600
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the CC ansatz used in Ref.@14# is equivalent1 to the form

c5ckcpū~k1!L1u~p! f 1 , ~9!

where P5k11k2 is the sum of the constituent moment

M05AP 2, ck51/Am1«k, cp51/AM1«p, «k5Am21kW2,

and «p5AM21pW 2 ~for simplicity we assume that constitu
ents have equal massesma5mb5m). The matrixL1 in ~9!
is the projection operator

L15
P̂1M0

2M0
, ~10!

which in the constituent rest frame becomes

L15S 1 0

0 0D . ~11!

Hence, in the constituent rest frame we obtain

ckū~k1!L15x1
†~1,0!, cpL1u~p!5S 1

0D xN , ~12!

with x1 andxN being two-component spinors for constitue
1 and the nucleon, respectively. From~9! we reproduce the
analog of the three-quark CC ansatz used in Ref.@14#, which
is

cs1

s 5x†s1xs f 15ds1s f 1 . ~13!

This should be contrasted with the general form~in the con-
stituent rest frame!

cs1

s 5x†s1S f 11
i

k
@nW 3kW #•sW f 2Dxs, ~14!

wherekW5kW152kW2 and nW 5vW /uvW u in this frame. The addi-
tional f 2 term represents a separate dynamical contribu
with orbital angular momentum, to be contrasted with t
purely kinematical contributions of orbital angular mome
tum from Melosh rotations. The form~14! can be found by
substituting into Eq.~8! the explicit form of the Bjorken-
Drell ~BD! spinors, as given in the constituent frame by E
~A3! of the Appendix. The two functionsf 1 and f 2 are then
determined in terms ofw1 andw2 as

f 15
ckcp

2M0
~M01m!$m~M01m!1M0@xM1~12x!M0#%w1

1
ckcp

M0
M ~M01m!~xM01m!w2 ,

f 25
ckcp

M0
kM~M01M !w22

ckcp

2M0
k~M0

22M2!w1 , ~15!

with x5x151/22kW•nW /M0. The inverse relations read

1Equivalence has been established@35# in the sense that equiva
lent results are obtained for form factors.
1-5
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w15
ckcp

2M0
~M01M ! f 12

ckcp

2M0k
~M01M !~xM01m! f 2 ,

w25
ckcp

4M0M
~M0

22M2! f 11
ckcp

4M0Mk
~M01M !

3$m~M01m!1M0@xM1~12x!M0#% f 2 . ~16!

Note that the wave functionsw1 andw2 are Lorentz scalars
and analytic functions ofM0

2 andx. The derived amplitudes
f 1 and f 2 contain kinematic factors linear inM0 that arise
from the reduction of the covariant form to the Pauli spin
form in the constituent rest frame. The application of the
angular momentum operator~6! to the LFWFs of the Yukawa
theory in Eq.~14! verifies that these wave functions are
fact states withJ51/2, Jz561/2.

In the nonrelativistic limit, whereM52m, M052m, and
x51/2, we get

w15
1

2A2m
f 12

1

kA2
f 2 , w25

1

kA2
f 2 . ~17!

The componentf 2 is of relativistic origin. In the nonrelativ-
istic limit c→` ~herec is the speed of light!, the LF plane
t1z/c50 turns intot50. Any nW dependence in~14! should
then disappear, and this happens iff 2 becomes negligible.

We see that in order to obtain the constrained CC fo
~13! from the general form~8!, one should eliminate, accord
ing to ~12!, the second components of spinors and neglect
second componentf 2 in ~14!. This is natural in a nonrelativ
istic approximation, when both the second components
spinors and the dependence on the light-front orientation
deed disappear. One can use this form of the wave func
to estimate the influence of relativistic effects on the sta
nucleon properties@15#. However, there is no compellin
reason to use the form~13! in the asymptotic relativistic
domain.

The form ~13!, determined by the single componentf 1,
implies a relation betweenw1 and w2 in ~8!. Setting f 2 to
zero in ~16!, we obtain

w15
ckcp

2M0
~M01M ! f 1 ,

w25
ckcp

4M0M
~M0

22M2! f 1 , ~18!

and, hence,

w25
M02M

2M
w1 . ~19!

Since M0 is large for large momenta, we see that in t
asymptotic regime the componentw2 dominates: w2
'M0w1 /(2M ).

Thus the ansatz~13! is equivalent to an assumption th
the componentw2 dominates in~8!. We shall show below
07600
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that this predominance ofw2 overw1, generated by the wave
function ~13!, results in theQF2 /F1→const asymptotic be-
havior.

III. LIGHT-FRONT SPINORS

The discussion of the preceding section can also be g
in terms of a LF Fock-state expansion and the associated
spinors. The LFWF of a hadron with spin projectionJz

56 1
2 is represented by the functioncl1 , . . . ,ln

Jz (xi ,kW' i),

where

ki5~ki
1 ,ki

2 ,kW i'!5S xi P
1,

kW' i
2 1mi

2

xi P
1

,kW i'D ~20!

specifies the momentum of each constituent andl i specifies
its light-front helicity in thez direction. The light-front frac-
tions xi5ki

1/P1 are positive and satisfy( ixi51. We note
thatM0

25( i 51
n @(k' i

2 1mi
2)/xi #5(( iki)

2 is Lorentz invariant,
and the scalar part of the LFWF is a function of onlyxi and
M0

2.
For a spin-1/2 state with two constituents in Yukaw

theory, we writecl
Jz(x,kW')[cl

Jz(xi ,kW' i), where l5l1 is

the helicity of the fermion,x5x1, andkW'5kW1' . ~We use the
subscript 1 for the fermion and 2 for the scalar constitue!
The two-particle Fock state with total momentum (P1,PW')
and spinJz is then given by

uP1,PW'50W' ,Jz&

5E dxd2k'

16p3Ax~12x!
(
l

cl
Jz~x,kW'!uxP1,kW' ,l&.

~21!

The Fock-state ket on the right is defined by

uxP1,kW' ,l&[uk1
15xP1,k2

15~12x!P1;

k1'5kW' ,kW2'52kW' ;l15l& ~22!

and normalized by

^ki8
1,kW i'8 ,l8uki

1 ,kW i' ,l&5)
i 51

2

16p3ki
1d~ki8

12ki
1!

3d~kW i'8 2kW i'!dl8,l . ~23!

The four functionsc61/2
↑ andc61/2

↓ provide a representa
tion of the LFWFs forJz5↑,↓ @17#. The associated spinor
are the LF spinorsuLF @36,2#, which in the hadron rest frame
(pW 50W ) are given by
1-6
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ūLFs1~k1!5
1

A2~k101k1z!
x†s1@m1k101sz~sW •kW1!

2~k102m!sz2sW •kW1#,

uLFs~p!5
1

A2M
S 2M

0 D xs. ~24!

The general form~8! has a simple form in the light-fron
spinor representation. A straightforward calculation gives2

A12xc11/2
↑ ~x,kW'!5S M1

m

x Dw112Mw2 ,

A12xc21/2
↑ ~x,kW'!52

~1kx1 iky!

x
w1 ,

A12xc11/2
↓ ~x,kW'!5

~1kx2 iky!

x
w1 ,

A12xc21/2
↓ ~x,kW'!5S M1

m

x Dw112Mw2 .

~25!

Note that in the perturbative Yukawa model3 one obtains
@17#

w15
g

M22M0
2

, w250. ~26!

In this way we reproduce the wave functions~44! and~46! of
Ref. @17#. The general solution in~25!, which does not re-
quire any assumptions, differs from the perturbative solut
only by the contribution 2Mw2 in the componentsc11/2

↑ and
c21/2

↓ .
In terms of the LF spinor representation, the CC ans

~13! implies particular forms for the components of~25!.
Substituting the expression~19! for w2 into Eqs. ~25!, we
find

A12xc11/2
↑ ~x,kW'!5S M01

m

x Dw1 ,

A12xc21/2
↑ ~x,kW'!52

~1kx1 iky!

x
w1 ,

2The wave function~8! and the one given here are related
follows: c„in (8)…5Ax(12x)c(here). In this expression,kx and
ky are equivalent tok1 andk2, andJz andLz denoteJ3 andL3.

3In the case of perturbative models, a single-particle wave fu

tion cl1

Jz 5AZd2(kW')d(12x)dJzl1
is present, where the normaliza

tion constantZ ensures unit probability. The perturbative Yukaw
model wave functions can be formally differentiated with respec
the boson mass in order to simulate the fall-off of the wave funct
of a composite hadron and eliminate the single-particle Fock c
ponent.
07600
n

tz

A12xc11/2
↓ ~x,kW'!5

~1kx2 iky!

x
w1 ,

A12xc21/2
↓ ~x,kW'!5S M01

m

x Dw1 . ~27!

We see that the CC ansatz in~13! is equivalent to the re-
placementM→M0 in the perturbative LF components give
in Ref. @17#. The anomalous dependence onM0 is the source
of the discrepancy of the ansatz with the asymptotic beha
of the components with different angular momentum proj
tions found in Ref.@37# from a perturbative model based o
the iteration of the one-gluon exchange kernel. The pertur
tive QCD counting rules for the fall-off of hadronic LFWF
@37# and hard scattering exclusive amplitudes@24–26# at
high transverse momentum can also be derived@38,39# with-
out the use of perturbation theory using the conformal pr
erties of the AdS conformal field theory~CFT! correspon-
dence between gauge theory and string theory@40#.

The componentc21/2
↑ corresponds toLz51, and the com-

ponent c11/2
↑ corresponds toLz50. The PQCD analysis

based on the exchange of a gluon gives@37#

c~Lz51!/c~Lz50!5c21/2
↑ /c11/2

↑ ;k'w1 /w2;1/k' ,
~28!

which impliesQ2F2 /F15const@37#. We confirm this in the
next section. On the other hand,~19! or ~27!, corresponding
to the CC ansatz, gives

c~Lz51!/c~Lz50!5c21/2
↑ /c11/2

↑ ;k'w1 /w2;const.
~29!

In turn, the ratio~29! results in the asymptotic behavio
QF2 /F15const, as we will see in the next section.

IV. FORM FACTORS AND THE M 0 DEPENDENCE
OF LIGHT-FRONT WAVE FUNCTIONS

A. Dirac and Pauli form factors

In the case of a spin-1
2 composite system, the Dirac an

Pauli form factorsF1(q2) andF2(q2) are defined by

^P8uJm~0!uP&

5ū~P8!FF1~q2!gm1F2~q2!
i

2M
smaqaGu~P!,

~30!

whereqm5(P82P)m, u(P) is the bound-state spinor, andM
is the mass of the composite system. In the light-front f
malism it is convenient to identify the Dirac and Pauli for
factors from the helicity-conserving and helicity-flip vect
current matrix elements of theJ1 current component@6#

-

o
n
-
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^P1q,↑u
J1~0!

2P1
uP,↑&5F1~q2!, ~31!

^P1q,↑u
J1~0!

2P1
uP,↓&52~q12 iq2!

F2~q2!

2M
. ~32!

We use the standard light-front frame (q65q06q3) where

q5~q1,q2,qW'!5S 0,
2q2

P1
,qW'D ,

P5~P1,P2,PW'!5S P1,
M2

P1
,0W'D , ~33!

andq2522P•q52qW'
2 is the square of the four-momentu

transferred by the photon.
Using Eqs.~31! and ~21! we have

F1~q2!5E d2kW'dx

16p3
@c11/2

↑* ~x,kW'8 !c11/2
↑ ~x,kW'!

1c21/2
↑* ~x,kW'8 !c21/2

↑ ~x,kW'!#, ~34!

where

kW'8 5kW'1~12x!qW' . ~35!

From Eqs.~32! and ~21!, we have

F2~q2!5
22M

~qx2 iqy!
E d2kW'dx

16p3
@c11/2

↑* ~x,kW'8 !c11/2
↓ ~x,kW'!

1c21/2
↑* ~x,kW'8 !c21/2

↓ ~x,kW'!#. ~36!

The individual wave functions are given by~25!; substitution
yields

F1~q2!5
1

16p3E d2k'dx

x2~12x!
H Fx~2mM1xM2!1m21k'

2

2
1

4
~12x!2Q2Gw18w112Mx~m1xM!

3~w18w21w28w1!14M2x2w28w2J , ~37!

F2~q2!5
M

8p3E d2k'dx

x2~12x!
H ~12x!~m1xM!w18w1

22Mx
kW'•qW'

Q2
~w1w282w2w18!

1Mx~12x!~w1w281w2w18!J , ~38!

where thekW' variable has been shifted by2 1
2 (12x)qW' , so

that
07600
w1,25w1,2Xx,kW'2
1

2
~12x!qW'C,

w1,28 5w1,2Xx,kW'1
1

2
~12x!qW'C. ~39!

The required parton invariant massesM0 andM08 are

M0
25

FkW'2
1

2
~12x!qW'G2

1m2

x~12x!
,

M 80
25

FkW'1
1

2
~12x!qW'G2

1m2

x~12x!
. ~40!

Being expressed in terms of the invariant masses, the f
factor integrands contain squares of masses:M0

2 andM 80
2.

One can see that ifw2 is smaller thanw1 or of the order of
w1 for largekW'

2 , the leading terms inF1 arek'
2 and 2 1

4 (1
2x)2Q2. An analytical calculation of the asymptotic beha
ior of the form factors with the power-law wave functio
w15N/(M0

21b2)n shows that these two leading contrib
tions cancel each other. Thus the leading term beco
; logQ2 instead of ;Q2 and the ratioF2 /F1 becomes
;1/log(Q2/m2). The same result is found for pseudosca
coupling, i.e., with the wave function which is obtained b
inserting in~8! the matrixg5. As explained in the Introduc-
tion, the cancellation of the leading term in the Dirac for
factor in the scalar gluon models is related to the violation
chirality conservation.

We summarize in Table I how the asymptotic behavior
the form factor ratio depends on the asymptotic propertie
the LFWFs in the Yukawa model. Since the scalar part of
LFWF is a function ofM0

2 andxi , andc(Lz561) contains
the kx6 iky prefactor,c(Lz51)/c(Lz50) can only be an
odd power ofk' . The third and fourth columns of Table
correspond to the cases of~29! and ~28!, respectively.

The cancellation of the leading power-law contribution
specific to the scalar and pseudoscalar diquark models. In
case of a spin-1/2 system comprising a spin-1/2 quark an
spin-1 diquark, the hadron wave function is determined
general by six independent components. To see the e
coming from the spin-1 diquark, consider a wave function
the one-component form

cs1 ,l~k1 ,k2 ,p!5en*
(l)~k2!ūs1

~k1!gnu~p!w1 . ~41!

TABLE I. The dependence of the asymptotic form of the for
factor ratio on the asymptotic behavior of the LF compone
c(Lz51)/c(Lz50)5c21/2

↑ /c11/2
↑ in the Yukawa model.

c(Lz51)
c(Lz50)

k'
2 k' const 1

k'

1

k'
2

F2

F1

1

Q3

1

Q2

1

Q

1

Q2

1

Q3
1-8
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Hereen
(l)(k2) is the spin-1 polarization vector. The sum ov

polarizations results in the propagator (gnn82k2nk2n8 /m2) in
the form factor calculation. In this model we find for th
form factor ratio

F2

F1
;

log~Q2/m2!

Q2
,

which is close to the fit~2!, differing only by a factor
log(Q2/m2). The same perturbative behavior~up to a coeffi-
cient! also occurs in the asymptotic behavior of the elect
form factor in QED. If a scalar or pseudoscalar coupling
also present, the vector contribution will dominate t
asymptotic behavior. We emphasize that for all three c
plings, both form factors decrease as an integral power ofQ2

@modulo powers of log(Q2/m2)], not as a power ofQ. As
shown in Fig. 1, a fit to the form factor ratio based on pow
of Q2 and powers of logQ2 describes the experimental da
well.

B. Consequences of the CC constraint

The CC ansatzf 250 is equivalent to a quark–scala
diquark model, but with the additional condition~19!. As we
have seen this introduces anomalous terms in the LFW
which are linear inM0. Substitutingw2 from ~19! into Eqs.
~37!, ~38!, we obtain

F1~q2!5
1

32p3E d2k'dx

x2~12x!
@x~12x!~M0

21M 80
2!

12x2M0M0812xm~M01M08!

2~12x!2Q2#w18w1 , ~42!

F2~q2!5
M

16p3E d2k'dx

x2~12x!
F2~12x!m1x~12x!~M0

1M08!2
x2

Q2
~M02M08!2~M01M08!Gw18w1 .

~43!

The same result is of course obtained by direct calcula
with the wave function~9!.

Because of the terms withM0
2, M 80

2, and M0M08 , the
form factorF1 contains the second powerQ2 relative to the
term 2(12x)m in F2, which does not containM0 or M08 .
This occurs independently of whether the cancellation
tweenk'

2 and2 1
4 (12x)2Q2 takes place or not. If it does no

take place, we get an extra contribution to theQ2 power.
This only changes the coefficient ofQ2. Similarly, because
of the term with (M01M08), F2 contains the first power o
Q. This extra factor ofM0 ~and, hence,Q) results in the
nominal asymptotic behavior

QF2

F1
5const. ~44!
07600
n
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We emphasize that this behavior follows from the CC ans
~13! @or f 250 in ~14!#, which in turn, is equivalent to the
relation~19!. After the constraint is imposed, the asympto
behavior ~44! follows without further dynamical assump
tions.

The coefficient functionsw i are in general functions o
M0

2 since in the equations of motion only the quantityM0
2

appears. In the next section this is shown explicitly in t
case of the Wick-Cutkosky model. Explicit calculation of th
form factors, withw15N/(M0

21b2)3.5, as assumed in Ref
@14#, and withw2 fixed by Eq.~19!, qualitatively replicates
the nonconstant, nonintegral asymptotic behavior found
Ref. @14#. Figure 2 shows the result forQF2 /F1, which is
approximately constant for a small range of intermediateQ2

but is well fitted byQ20.25 for largeQ2. Similar results are
obtained with an exponential wave function.

The arguments by Ralstonet al. @41# and Kroll @42#, in
favor of QF2 /F1 being asymptotically constant, reduce to
discussion of the following ratio of wave function matr
elements:

F2

F1
5

^c̄1c0&

Q^bc̄0c0&
. ~45!

@See for example Eq.~5! of Ref. @41# and Eq.~11! of Ref.
@42#.# They arrive at this ratio by including anLz51 wave
function in the contribution toF2, so that there is an overla
with the Lz50 wave function. However, theLz51 wave
function c21/2

↑ also contributes toF1 in an overlap with it-
self, as given above in Eq.~34!. This introduces an additiona
term of orderQ2 in the denominator and makesQ2F2 /F1
asymptotically constant.

FIG. 2. Asymptotic behavior of the form factor ratioQF2 /F1 as
determined from Eqs.~37! and ~38! of the text with w1}@M0

2

1(0.6 GeV)2#23.5 andw2 fixed by Eq.~19!. The constituent mass
is m50.3 GeV, and the bound-state mass isM50.94 GeV. The
choice ofw2 corresponds to the Chung-Coester ansatz and no
nally implies a constant asymptotic behavior for the ratio, but h
is well fit by Q20.25.
1-9
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V. THE WICK-CUTKOSKY MODEL AND M 0
2

DEPENDENCE

The Wick-Cutkosky model is based on the ladder appro
mation to the Bethe-Salpeter~BS! equation inf2x field
theory. The LFWFs in this model for theJ5L50 and J
5L51 bound states have been computed in Ref.@32#. We
shall show below that if the wave function is represented
four-dimensional form, the scalar components depend onM0

2

as expected on general grounds. Indeed, forJ51 the BS
function reads@20,43#

F1l~q,p!5q̃Y1l* S qW̃

q̃
D F1~q,p!, ~46!

F1~q,p!52 i E
21

11 g1~z,M !dz

~m22M2/42q22zp•q2 i e!4
,

whereg1(z,M ) is the spectral function satisfying a specifi
differential equation@20,43#. We will not need the explicit

form of g1. Hereq5(ka2kb)/2, qW̃ 5L21(vW )qW has the sense
of relative momentum in the rest frame given bypW 50W , and
L21(vW ) is the Lorentz boost withvW 5pW /«p . In an arbitrary
frame the spherical function in~46! can be replaced by

q̃Y1l* S qW̃

q̃
D→2A 3

4p
em

(l)~p!qm, ~47!

whereem
(l)(p) is the spin-1 polarization vector.

Using the relation~5! between the LFWF and the B
function and Eq.~47!, we find the LFWF in the form

c1l52A 3

4p
em

(l)~p!cm, cm5kmw11
vm

v•p
w2 , ~48!

where

w15
2g1~122x,M !

3~M0
22M2!3x2~12x!2

,

w252
g1~122x,M !

6~M0
22M2!2x2~12x!2

2
g18~122x,M !

3~M0
22M2!2x~12x!

.

~49!

The prime ing18(z,M ) means differentiation with respect t
z. We see that the componentsw1 andw2 depend onM0

2, as
expected. A similar result holds for theL50 state:

c5
g~122x,M !

2Apx~12x!~M0
22M2!2

, ~50!

whereg(z,M ) is the corresponding spectral function. It do
not depend linearly onM0.

The representation~48! for the Wick-Cutkosky wave
function is analogous to the representation~8! for the
Yukawa model. These results for the LFWFs of the bou
07600
i-

n

d

states of the Wick-Cutkosky model can also be obtained
computing the instant-form wave function and boosting
infinite momentum, as in Weinberg’sPz→` method@44#.

Note that the LFWF~48! in the constituent rest frame ha
the form

c1l~kW ,nW !5 f 1~kW2,nW •kW !kY1l* S kW

k
D 1 f 2~kW2,nW •kW !Y1l* ~nW !,

~51!

where the scalar componentsf 1,2 can be expressed in term
of w1,2 from ~48!. This representation is analogous to t
representation~14! for the Yukawa model. Since the BS
function ~46! describes a state with angular momentumJ
51, the corresponding LFWF~51!, which is derived from
the BS function without any approximation, definitely h
the same angular momentum. It is an eigenfunction of
angular momentum operator~6! ~omitting the spin operator
1
2 sW ).

VI. CONSEQUENCES OF THE CC ANSATZ
FOR THREE-BODY LIGHT-FRONT

WAVE FUNCTIONS

The simplified three-quark LFWF of the nucleons intr
duced by Coester and Chung, and used in Ref.@14# for a
model of the proton form factors, has the same spin struc
as the quark-scalar-diquark model—two quarks form a sp
zero diquark, and the spin of the nucleon is determined
the spin of the third quark. The wave function is symm
trized relative to the permutations of the quarks according
SU(6) flavor-spin symmetry. For example, in the constitue
rest frame, the Pauli-spinor representation of the three-qu
wave function corresponding to the state of zero spin a
zero isospin of the quark pair 12 is

c~12,3!5x (S50)~1,2!xs3

† ds3s
•j (I 50)~1,2!jt3

† dt3t,

wherex (S50)(1,2)5xs1

† isyxs2

† is the spin-zero wave func

tion of the two quarks andj (I 50)(1,2)5jt1

† isyjt2

† is the

isospin-zero wave function. The nucleon spin-isospin wa
function is obtained by symmetrization:

c~1,2,3!5c~12,3!1c~23,1!1c~31,2!.

Using the Fierz identities, we may transform it to the form

c5
1

A72
cS@31~sW 12•sW 3N!~tW12•tW3N!#. ~52!

This form is totally symmetric with respect to spin and iso
pin. We have introduced here the symmetric momentu
dependent partcS . The factors in~52! should be understood
as

1[~xs1

† isyxs2

† !~xs3

† xsN
!,

~sW 12•sW 3N![~xs1

† sW syxs2

† !~xs3

† sW xsN
!,

and similarly for the isospin part. The wave function~52! is
just the ansatz used in Ref.@14#.
1-10
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In the covariant Yukawa model, the general form of the tw
parton LFWF~14! contains two components, in contrast
the one-component CC ansatz~13!. The general form of the
three-quark nucleon wave function contains sixteen com
nents@35# in contrast to the one-component ansatz~52!. Thus
the CC ansatz~52! is even a stronger constraint than in t
two-body Yukawa model.

As in the two-body case~9!, the three-body wave function
~52! can be recast in the four-dimensional form@35#

c5
cS

A72
c1c2c3cN$3@ ū~k1!L1g5Ucū~k2!#

3@ ū~k3!L1uN~p!#2@ ū~k1!L1gmL2Ucū~k2!#

3@ ū~k3!L1gmg5L1uN~p!#~tW12•tW3N!%, ~53!

whereL25(P̂2M0)/2M0 andUc5g2g0 is the charge con-
jugation matrix. The coefficients arec151/Am1«k1

, etc.

The projection operatorL1 is again given by Eq.~10!; how-
ever, the two-body constituent momentum is replaced by
three-body momentum

P5k11k21k3 , M0
25P 2.

In the constituent rest frame, wherePW 50W , we haveP0
5M0, and the wave function~53! reduces to~52!.

The second term in~53! does not contribute to the proto
form factor@35,14#. The first term is factorized. We suppos
that the photon interacts with the third quark. The first fac

@ ū(k1)L1g5Ucū(k2)# is the same forF1 andF2, and, there-
fore, it does not change their ratio. Since only the sec
factor @ ū(k3)L1uN(p)# gives different contributions toF1
andF2, we rewrite the wave function in a factorized form

c}cSū~k3!L1uN~p!. ~54!

This coincides with the CC-constrained Yukawa wave fu
tion ~9!.

The form factor calculation using the three-quark wa
function determined by~52! and ~54! differs from the two-
body calculation in Sec. IV only in the use of three-bo
kinematics. The result is

F1~q2!5
1

2E @x3~12x3!~M0
21M 80

2!12x3
2M0M08

12x3m~M01M08!2~12x3!2Q2#G~1,2,3,Q2!D,

~55!

F2~q2!5ME F2~12x3!m1x3~12x3!~M01M08!

2
x3

2

Q2
~M02M08!2~M01M08!GG~1,2,3,Q2!D.

~56!
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HereD is the three-body phase volume, andG(1,2,3,Q2) is
a function of the variables of all three quarks and ofQ2. We
do not need the explicit form ofG. M0 is the effective three-
body mass, which depends onRW 3'2 1

2 (12x3)qW' , whereas
M08 depends onRW 3'1 1

2 (12x3)qW' . Because of factorization
of the wave function~54!, these formulas~found by direct
calculation! coincide, after evident changes of notation, w
the corresponding expressions~42! and ~43! for the two-
body form factors for the CC ansatz.

At Q2[qW'
2→`, both M08 and M0 tend to Q. For the

leading term we find

F1} . . . Q2,

F2} . . . Q, ~57!

which reproduce the ratioQF1 /F25const. As before, this
asymptotic behavior is a consequence of the specific c
straints on the LFWFs.

On the other hand, we have mentioned in Sec. IV t
scalar and pseudoscalar couplings result in the asymp
ratio F2 /F1;1/log(Q2/m2) and vector coupling inF2 /F1
; log(Q2/m2)/Q2. These couplings are not really related to
hypothesis of predominance of diquarks, but simply rep
sent different spin structures of the nucleon wave functi
The total number of these structures is sixteen@35#. Some of
these other structures, in addition to the vector o
may also contribute to the asymptotic behaviorF2 /F1
; log(Q2/m2)/Q2.

VII. CONCLUSIONS

The explicitly Lorentz-invariant formulation of the fron
form provides a general method for determining the gene
structure of light-front wave functions. We have also us
the fact that the angular momentum of a bound state can
defined covariantly within the Bethe-Salpeter formalism: T
LFWFs for ann-particle Fock state evaluated at equal ligh
front time s5v•x can be obtained by integrating the cov
riant Bethe-Salpeter functions over the corresponding r
tive light-front energies. The resulting LFWFs a
eigenstates of the kinematic angular momentum operator~6!.
The result is that the LFWFs are functions of the invaria
mass squared of the constituentsM0

25((km)2 and the light-
cone momentum fractionsxi5ki•v/p•v, each multiplying
spin-vector and polarization invariants involvingvm, where
v5(v0 ,vW ) is the four-vector determining the orientation
the light-front planev•x50.

We have presented the structure of LFWFs for two- a
three-particle bound states using the explicitly Loren
invariant formulation of the front form@1#. As examples we
have given the explicit form of the LFWFs for spin-0 an
spin-1 eigenstates of the nonperturbative eigensolution
the Wick-Cutkosky model, as well as examples of spin-1
states constructed using perturbation theory. For exam
the LFWF of a spin-1/2 system composed of spin-half a
spin-zero constituents has the general form
1-11
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c~k1 ,p!5ū~k1!S w11
M v̂

v•p
w2D u~p!,

where thew i are functions of the square of the invariant ma
and the light-front momentum fractions. The orbital angu
momentum prefactor in the constituent rest frame is prop
tional to vW 3kW•SW .

An important test of the LF computations is light-fro
invariance—although the LFWFs depend on the choice
the light-front quantization direction, all observables, such
matrix elements of local current operators, form factors, a
cross sections, must be independent ofvm. We have com-
puted the large momentum transfer behavior of the ratio
Pauli and Dirac form factors of the nucleon using the ex
relation for spacelike current matrix elements in terms
LFWFs. The dependence of the invariant mass squared
plies that hadron form factors computed from the over
integrals of LFWFs are analytic functions ofQ2 in agree-
ment with dispersion theory, the PQCD analysis of Belits
Ji, and Yuan@19#, and conformal arguments@39#, as well as
with the form factor ratios obtained using the nonpertur
tive solutions to the Wick-Cutkosky model. We have al
shown that a fit to the Pauli to Dirac form factor ratio inco
porating the predicted perturbative QCD 1/Q2 and logQ2

asymptotic dependence describes the recent Jefferson L
ratory polarization transfer data well. In contrast, we ha
shown that the LFWFs introduced by Chung and Coeste
parametrize the static and low-momentum properties of
nucleons correspond to the spin-locking of a quark with
spin of its parent nucleon, together with a positive-ene
projection constraint. These extra constraints lead to
anomalous linear dependence of the LFWFs on the invar
mass of the constituents and an anomalous dependen
form factors onQ rather thanQ2.

The CC construction of relativistic light-front wave func
tions was introduced to represent the properties of the nu
ons in the low-momentum transfer domain. However, th
are a number of difficulties with extending the CC form
the high-momentum transfer domain:

~1! If one applies the CC ansatz to a bound state o
spin-half quark and a scalar~the Yukawa model!, the quark is
constrained to have the same spin projection as the bo
state nucleon,Sq

z5Sp
z , when one uses the conventional B

spinor representation. Thus the only orbital angular mom
tum allowed by the CC constraint is the kinematical angu
momentum arising from the lower components of the B
spinor. The spin-locked CC constraint does not allow for
full degrees of freedom of a relativistic system.

~2! If one compares the CC ansatz to wave functions g
erated in perturbation theory, the net result is to replace
bound-state massM in the numerator of the LFWFs by th
invariant mass of the constituents

M05A(
i 51

n k' i
2 1mi

2

xi
.

This replacement leads to the anomalous growth of the
LFWF at large transverse momentum. For example, if o
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applies the CC ansatz to the QCD quark splitting functio
the ultraviolet logQ2 behavior ofq(x,Q2) will derive from
two sources: the standard behavior ink' arising from pertur-
bative QCD plus the presence of a termM0

2}k'
2 due to the

CC ansatz. The presence of the latter source would des
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi~DGLAP! evolu-
tion in Q2.

~3! The LFWFs of theJ50 andJ51 bound states can b
obtained explicitly in the Wick-Cutkosky model. The form
factor ratios of the spin-1 system obtained in this nonper
bative analysis is given by a quadraticQ2 dependence and b
logQ2 @21#. The application of the CC ansatz leads to ter
in the wave function that are linear inM0 rather than the
quadratic dependence of the explicit solutions.

~4! In the case of the simple Yukawa theory, the effecti
interaction in the CC model has the formHI

eff5gc̄qLcf
where L is a nonlocal positive-energy projection operat
The presence of the projection operatorL conflicts with the
usual relations obtained from crossing and partic
antiparticle symmetry. For example, consider the electrop
duction amplitudeg* p→q1qq, where, for simplicity, the
qq diquark can be taken as the Yukawa scalarf. The Born
amplitude with quark exchange in thet channel has the form

Mg* p→qf
m

~p•q,t,q2!}
eqūgmu

t2mq
2 c~x,k'!,

where

t2mq
25x~M22M0

2!,

andx5xB j52q2/(2p•q). The CC ansatz introduces a lin
ear term inM0 in the electroproduction amplitude. If we now
uses→t crossing to obtain the processg* q̄→ p̄f, the pres-
ence of a linear term inM0 in the LFWF gives a contribution
to the amplitudeMg* q̄→ p̄f(s,t,q2) which is proportional to
As at fixed momentum transfert. This anomalous Regge
behavior corresponds to fermion exchange in thet channel,
which, however, is not present in this amplitude.

Again, we emphasize that these difficulties concern
extrapolation of the CC ansatz to the asymptotic regi
These problems do not appear in the original work@15#
where the CC ansatz was only applied to static nucleon p
erties and to form factors at relatively small momentu
transfer.

Light-front wave functions are the fundamental amp
tudes that relate hadrons to their fundamental quark
gluon degrees of freedom. We have shown how one can
hibit the general analytic structure of light-front wave fun
tions, including states with nonzero orbital angular mome
tum. A key element of this analysis is the use of the explici
Lorentz-invariant formulation of the front form where th
normal to the light-front is specified by a general null vec
vm. The resulting LFWFs are functionscn(xi ,k' i) of the
invariant mass squared of the constituentsM0

25((km)2 and
the light-cone momentum fractionsxi5ki•v/p•v, which
multiply invariant prefactors constructed from the spin m
trices, polarization vectors, andvm in the case of nonzero
orbital angular momentum. The LFWFs corresponding
1-12
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definite total angular momentum are eigenstates of a k
matic angular momentum operator and satisfy all Lore
symmetries of the front form, including boost invariance. W
have illustrated these properties using known nonpertu
tive eigensolutions of the Wick-Cutkosky model for nonze
angular momentum. The dependence of LFWFs on the
variant mass squared implies that current matrix eleme
and hadron form factors are analytic functions ofQ2 in
agreement with dispersion theory and perturbative QCD.
have also shown that a model incorporating this anal
property and leading-twist perturbative QCD constraints
consistent with recent data for the ratio of proton Pauli a
Dirac form factors determined by the polarization trans
method.
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APPENDIX

We use the conventiona65a06a3, which gives a•b

5 1
2 (a1b21a2b1)2aW'•bW' , and use theg matrices in the

Dirac representation

g05S 1 0

0 21D , gW 5S 0 sW

2sW 0
D . ~A1!

A caret indicates the inner product of a four-vector with t
g matrices, so thatk̂5kmgm.

The solutions ofū(k1) k̂15mū(k1) and p̂u(p)5Mu(p),
in terms of the BD spinors, are given by

ūs1~k1!5u†s1~k1!g05A«k1
1mx†s1S 1,2

sW •k1
W

«k1
1mD ,

us~p!5A«p1MS 1

sW •pW

«p1M
D xs, ~A2!

where xs is a two-component spinor,«k5AkW21m2, and

«p5ApW 21M2. In the constituent rest frame, wherepW 1vW t

5kW11kW250W , we introduce the variableskW , nW , kW1[kW , and
vW 5nW v0. We also find

pW 52vW t52nW
M0

22M2

2M0
, «p5

M0
21M2

2M0
.
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The value oft here was obtained by squaring the equal
p1vt5k11k2, which givest5(M0

22M2)/(2v•p), and
by usingv•p5v•(k11k2)5v0M0. In this way, we find the
BD spinors in the constituent rest frame to be written as

ūs1~k1!5A«k1mx†s1S 1,2
sW •kW

«k1m
D ,

us~p!5
1

A2M0
S M01M

2~M02M !sW •nW
D xs. ~A3!

The factorM v̂/(v•p) in ~8! is transformed as

M v̂

v•p
5

M

M0
~g02nW •gW !5

M

M0
S 1 2nW •sW

nW •sW 21
D .

We also introduce

x5
v•k1

v•p
5

1

2
S 12

nW •kW

«k
D 5

1

2
2

nW •kW

M0
.

Substituting these expressions into Eq.~8!, we reproduce the
wave function~14! with the componentsf 1 , f 2 given by Eqs.
~15!.

The light-front spinor is defined as@36#

uLFs~k!5
1

A2~k01k3!
S k01m1sW •kWs3

~k02m!s31sW •kW
D xs, ~A4!

which gives

ūLFs1~k1!5
1

A2~k1
01k1

3!
x†s1

„k1
01m1s3~sW •kW1!,

2~k1
02m!s32sW •kW1…. ~A5!

The BD and LF spinors are connected by the following u
tary relations~at nW uuz):

S u11/2~p!

u21/2~p!
D 5

1

A2p1~p01M !
S ~p11M ! 2pR

pL ~p11M !
D

3S uLF11/2~p!

uLF21/2~p!
D , ~A6!

S uLF11/2~p!

uLF21/2~p!
D 5

1

A2p1~p01M !
S ~p11M ! pR

2pL ~p11M !
D

3S u11/2~p!

u21/2~p!
D . ~A7!
1-13



.F

tt

cl

ys

rm
.L

t.

i-

ys.

o.
nd
on
S-

ett.

o,

er

BRODSKY, HILLER, HWANG, AND KARMANOV PHYSICAL REVIEW D 69, 076001 ~2004!
@1# J. Carbonell, B. Desplanques, V.A. Karmanov, and J
Mathiot, Phys. Rep.300, 215 ~1998!.

@2# S.J. Brodsky, H.C. Pauli, and S.S. Pinsky, Phys. Rep.301, 299
~1998!.

@3# S. Dalley, Nucl. Phys. B~Proc. Suppl.! 108, 145 ~2002!.
@4# R.L. Jaffe and A. Manohar, Nucl. Phys.B337, 509 ~1990!.
@5# X. Ji, Nucl. Phys. B~Proc. Suppl.! 119, 41 ~2003!.
@6# S.J. Brodsky and S.D. Drell, Phys. Rev. D22, 2236~1980!.
@7# V.A. Karmanov and J.-F. Mathiot, Nucl. Phys.A602, 388

~1996!.
@8# P.A. Dirac, Rev. Mod. Phys.21, 392 ~1949!.
@9# Jefferson Lab Hall A Collaboration, M.K. Joneset al., Phys.

Rev. Lett.84, 1398~2000!.
@10# Jefferson Lab Hall A Collaboration, O. Gayouet al., Phys.

Rev. Lett.88, 092301~2002!.
@11# P.G. Blunden, W. Melnitchouk, and J.A. Tjon, Phys. Rev. Le

91, 142304~2003!.
@12# P.A. Guichon and M. Vanderhaeghen, Phys. Rev. Lett.91,

142303~2003!.
@13# A. Afanasev, S.J. Brodsky, and C.E. Carlson~unpublished!.
@14# G.A. Miller and M.R. Frank, Phys. Rev. C65, 065205~2002!.

See also M.R. Frank, B.K. Jennings, and G.A. Miller,ibid. 54,
920 ~1996!.

@15# P.L. Chung and F. Coester, Phys. Rev. D44, 229 ~1991!.
@16# F. Schlumpf, Phys. Rev. D47, 4114~1993!.
@17# S.J. Brodsky, D.S. Hwang, B.Q. Ma, and I. Schmidt, Nu

Phys.B593, 311 ~2001!.
@18# N.E.J. Bjerrum-Bohr, J.F. Donoghue, and B.R. Holstein, Ph

Rev. D67, 084033~2003!.
@19# A.V. Belitsky, X. Ji, and F. Yuan, Phys. Rev. Lett.91, 092003

~2003!.
@20# G.C. Wick, Phys. Rev.96, 1124 ~1954!; R.E. Cutkosky,ibid.

96, 1135~1954!.
@21# V.A. Karmanov and A.V. Smirnov, Nucl. Phys.A546, 691

~1992!.
@22# For a discussion on the validity of continuing spacelike fo

factors to the timelike region, see, B.V. Geshkenbein, B
Ioffe, and M.A. Shifman, Yad. Fiz.20, 128 ~1974! @Sov. J.
Nucl. Phys.20, 66 ~1975!#.

@23# S.J. Brodsky and G.P. Lepage, Phys. Rev. D24, 2848~1981!.
@24# S.J. Brodsky and G.R. Farrar, Phys. Rev. Lett.31, 1153~1973!.
@25# S.J. Brodsky and G.R. Farrar, Phys. Rev. D11, 1309~1975!.
07600
.

.

.

.

.

@26# V.A. Matveev, R.M. Muradian, and A.N. Tavkhelidze, Let
Nuovo Cimento Soc. Ital. Fis.7, 719 ~1973!.

@27# F. Iachello, A.D. Jackson, and A. Lande, Phys. Lett. B43, 191
~1973!.

@28# M. Gari and W. Krumpelmann, Z. Phys. A322, 689 ~1985!;
Phys. Lett. B173, 10 ~1986!.

@29# E.L. Lomon, Phys. Rev. C66, 045501 ~2002!; 64, 035204
~2001!.

@30# A.Z. Dubnickova, S. Dubnicka, and M.P. Rekalo, Nuovo C
mento A109, 241~1996!; S. Rock, inProceedings of the e1e2

Physics at Intermediate Energies Conference, edited by Diego
Bettoni, eConfC010430, W14 ~2001! @hep-ex/0106084#.

@31# S.J. Brodsky, C.E. Carlson, J.R. Hiller, and D.S. Hwang, Ph
Rev. D ,69, 054022~2004!..

@32# V.A. Karmanov, Nucl. Phys.B166, 378 ~1980!.
@33# S.J. Brodsky, T. Huang, and G.P. Lepage, SLAC Report N

SLAC-PUB-2540; G.P. Lepage, S.J. Brodsky, T. Huang, a
P.B. Mackenzie, Proceedings of the Banff Summer Institute
Particle Physics, Banff, Alberta, Canada, Report No. CLN
82/522, 1981.

@34# V.A. Karmanov, Zh. E´ksp. Teor. Fiz.83, 3 ~1982! @Sov. Phys.
JETP56, 1 ~1982!#.

@35# V.A. Karmanov, Nucl. Phys.A644, 165 ~1998!.
@36# G.P. Lepage and S.J. Brodsky, Phys. Rev. D22, 2157~1980!;

Phys. Lett.87B, 359 ~1979!; Phys. Rev. Lett.43, 545 ~1979!;
43, 1625~E! ~1979!.

@37# X. Ji, J.-P. Ma, and F. Yuan, hep-ph/0304107; Phys. Rev. L
90, 241601~2003!.

@38# J. Polchinski and M.J. Strassler, Phys. Rev. Lett.88, 031601
~2002!.

@39# S.J. Brodsky and G.F. de Teramond, Phys. Lett B582, 211
~2004!.

@40# J.M. Maldacena, Adv. Theor. Math. Phys.2, 231~1998!; Int. J.
Theor. Phys.38, 1113~1999!.

@41# J. Ralston, P. Jain, and R. Buney, inIntersections of Particle
and Nuclear Physics, edited by Z. Parseh and W. Marcian
AIP Conf. Proc. No.549 ~AIP, New York, 2000!, p. 302.

@42# P. Kroll, in Exclusive Processes at High Momentum Transf,
edited by A. Radyushkin and P. Stoler~World Scientific, River
Edge, 2002!, p. 214.

@43# N. Nakanishi, Suppl. Prog. Theor. Phys.43, 1 ~1969!; 95, 1
~1988!.

@44# S. Weinberg, Phys. Rev.150, 1313~1966!.
1-14


