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Different couplings of the chemical potential with an identical partition function
in QCD on a lattice
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New couplings of the chemical potential, closer to the continuum, are derived from the transfer matrix
formulation of the partition function of QCD on a lattice. In particular the time splitting of the quark fiafdb
therefore the presence of the temporal gauge fields be avoided in some of these couplings.
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[. INTRODUCTION like to know if there is a formulation which might alleviate
the difficulties met in numerical simulatior4]. Moreover,

The action generally used for QCD on a lattice at finiteone would like to understand why in a perturbative calcula-
baryon density[1] was proposed on heuristic grounds by tion with the Hasenfratz-Karsch Lagrangian one has to col-
Hasenfratz and Karsdi2] and Kogutet al.[3] to avoid the lect all the terms which realize a Polyakov loop to get a
divergence of the free energy which arises when the chemponvanishing contribution, in contrast with the coupling of
cal potential is introduced as in the continuum. In this actionth® continuum. Are we facing a mere lattice artifact or a
the form of the coupling of the chemical potential is based off€ature of deep physical significance? o
the analogy between chemical potential and temporal gauge e have therefore reexamined the derivation of the

field. Therefore the chemical potential is exponentiated lik asgnfratz-Karsch action from t.h(.e transfer matrix. The con-
the temporal gauge field in the temporal link variables, an ection between the action at finite baryon density and the

like these variables it is coupled to the quark fields split m_ransfer matrix is established in the following way. The path

. S ) : 0 baryon density determines the transfer ma-
the time direction. Because of gauge invariance, the chemi—ntegral at zer Y y

| il is theref led also to the t | link rix. Starting from this transfer matrix and introducing the
cal potentia IS there Orﬁ coupie liaso 0 the temporal INKS..pemical potential as the Lagrange multiplier of the baryon
The possibility of other couplings was investigated, charge, one gets a path integral with a new action. But the

but at the end there seemed to be a general consensus abifiy of this action depends on how we pass from the trace of

the need of the time splitting with the consequent presence Gfe transfer matrix to the path integral. The standard way

the temporal links, so that only the form of the function of gjies on the normal ordering of fermionic operat¢at the

the chemical potentiainot necessarily exponentiacan be  creation operators to the left of the annihilation onasd a

to some extent arbitrary]. specific way of inserting the Grassmannian kernel of the

Recently some work6-8] has been done to derive the identity in the tracd11]. Following this way the Hasenfratz-

Hasenfratz-Karsch action from the transfer matrix formula-Karsch action was derivefb—8|. In the present paper we

tion of the partition function. This is a sound starting point in follow the same strategy but a different path, namely we

statistical mechanics of gauge theories because it permitsaaopt the antinormal ordering of fermionic operat@h the

clear identification of physical degrees of freed@®h. The  annihilation operators to the left of the creation onasd a

chemical potential is then introduced as a Lagrange multidifferent insertion of the unity. We then find another coupling

plier in the transfer matrix, but due to the manipulationswithout time splitting and temporal gauge fields. In particular
leading to the path integral it appears in exponential form irfor Kogut-Susskind fermions in the flavor basis, the chemical
the action. These manipulations are also responsible for theotential is not coupled to the gauge fields at all.

time splitting of the fermion fields in the coupling of the  Obviously the quark determinants with the two couplings

chemical potential and therefore for the appearance of thare identical, since they give the same partition function

temporal links in this coupling. (also at finite lattice spacingWe have checked this identity
The results of Ref[6], however, do not confirm that the by putting the quark matrices in one and the same form. It is
coupling of the chemical potential is essentially unique onremarkable that this form provides still another coupling of
the lattice. Indeed Creutz showed in a simple model that théhe chemical potential which involves both the temporal and
time splitting can be avoided in this coupling. Moreover in the spatial links as in QCD in a given baryon se¢fd]. The

the investigation of QCD in a given baryon sector we foundfact that the gauge fields appear in different ways or disap-

that the change in the action which accounts for the projecpear altogether confirms that their presence in this coupling

tion involves both spatial and temporal links0]. is a mere lattice artifact. The identity of the quark determi-
The settlement of this issue is interesting per se in theants can also be exploited to derive some identities for van-
framework of the theoretical foundations of the formalism.ishing chemical potential.

But it is also of practical relevance. For instance, one would The present work can be considered from a different point
of view. The path integral is often used only as a means to
generate a perturbative expansion. In such a case the action

*Email address: palumbof@Inf.infn.it can be that of the continuum. But when one wants to use it in
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a concrete way, to perform analytic or numerical estimatesbers (Dirac, color and flavor indices in the case of QCD
one needs a concrete definition which requires a discretiza&zomprehensively represented by . . . .

tion of time. There are different ways of discretizing, and In the transfer matrix formalism often one has to use
different discretizations are equivalent from the point of viewquantities at a giveEuclidean time x,. For this reason we

of the renormalization group because the corresponding a@dopt a summation convention over spatial coordinates and
tions differ in general by irrelevant operators. But theirintrinsic indices at fixed time. So for instance, for an arbi-
renormalizations are different, and the necessary countetrary matrixM, we will write

terms can be more or less convenient from a practical point
of view. It is therefore desirable to have different discretized
actions with the same partition function at finite temporal
spacing from which to choose the most convenient one for a

given purpose. The problem is of general character. We rem this notation the charge operat@rcan be written
strict ourselves to the definition of the chemical potential, but

6*M<xo>6=X;J Ch Myiy.a(X0)Cy. - ©

our technique can have wider applications, including the O=cfc—d'd. (4)
many-body theory of fermions and bosons. We will comment
on this in our Conclusions. The standard waj/11] to obtain the path integral form of

The paper is organized in the following way. In Sec. Il we Z is to write all the operators in normal order and introduce
describe our alternative procedure and derive a new couplingetween the factors in E@2) the identity[12]
of the chemical potential. In Sec. Il we apply our results to
QCD at finite baryon density with Wilson and Kogut- :f n e+
Susskind fermions. In Sec. IV we evaluate the energy for ! [de"dedd” dd]exp(—c"c—d"d)|ed)(cd], (5)
free fermions. It is obvious that with a different coupling of )
the chemical potential but the same quark determinant th&here the basis vectors are coherent states
free energy must also be the same, but it can be instructive to Ap it
see how this comes about. In Sec. V we show that the cd)=|exp(—cc'—dd"). (6)
Hasenfratz-Karsch action and the present one give one a " " .
the same quark determinant with new couplings of thg]dhec ,¢,d”,d are Grassmann variables. They depend on

chemical potential, and we show how some identities fmlhe “”?e §I|ce where the “!"t operator Is mtroduced_. For the
other indices they are subject to the same convention as the

vanishing chemical potential can be obtained. Finally in Sec; . L .
; creation and annihilation operators. The main property of
VI we present our conclusions. . ) L
coherent states is that they are eigenstates of the annihilation

operators with Grassmannian eigenvalues
Il. ANTINORMAL ORDERING IN THE CHARGE

Let us introduce some definitions. We denote dyythe clcd)=cfcd). )
temporal lattice spacing, by, the number of temporal sites,
by xy the temporal component of the site position veoctor

by T the temperature, by the chemical potential, b§ the

We will follow a slightly different strategy. We write the
exponential of the charge in the following way:

(electric, barya...) charge operator, and B¥{x,) the fer- A
mion transfer matrix. The pure gauge part will be omitted eXKMaOQ):J [dc'dcdd dd]
because it does not play any role in the present problem.
We start from the definition of the grand canonical parti- Xexp(6S—c c—d"d)[cd)(cd (8
tion function according to the time ordered product
where
Z:Tr[ exp(%@ 11 ﬁxo)], (1) 5S=[1—cosh uay)](cTc+d*d)
X0

+sinh(uag)(cc—d*d). (9)
which, using the relatio ~*=ayN,, and assuming the con-

servation of®), is conveniently rewritten as The above expression is obtained by expanding the exponen-

tial of the charge operator, putting all the terms in antinormal
. . form, inserting in each monomial the unity between the set
Z= Tr[ 11 [ﬂxo)exp(,uaOQ)]] . (2)  of annihilation and the set of creation operators and replacing
Xo them by their Grassmannian eigenvalues. For the rightmost
. . ) _ o ~exponential of the charge before taking the trace one has to
T is defined in terms of particle-antiparticle creation- move the creation operators to the left of all the operators
annihilation operators’,d",c,d acting in a Fock space. It appearing under trace.
depends on the time coordinatg only through the depen- After this, the construction of the path integral proceeds in
dence on it of the gauge fields. In fact the creation and anthe standard way, and we get the standard action with the
nihilation operators do not depend ag. They depend on exception of the coupling of the chemical potential where alll
the spatial coordinates and on the internal quantum num- the fields appear at the same time.
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I1l. QCD AT FINITE DENSITY 3

B(x)=1-K 2>, [Uj(x))T{+ T (x0)]
The fermion transfer matrif in the case of QCD can be =

written [11] in terms of an auxiliary operatdF(x,) 3

g - )+
) o Clxo)=35 2 10jl0;00) T =T 0] (xo)].
Tx)) =T T (x0) T(x0+ ), (10 J 13

where 7 is a function of the gauge fields which will be Let us remark that all the above matrices are understood
defined later and=*=1 for Wilson/Kogut-Susskind fermi- to have dimension 2 in Dirac space. The link operators
ons respectivelﬁlo]. This difference in Sign does not reflect U,u(XO) have the standard Wilson Variab|§§(x) as Spatia|
any intrinsic difference, but is only due to the different con- matrix elements
ventions adopted by lacher{11] and Montvay-Munster[5],
which we ma|r1ta|n for ea_Sfy referencg. . [U,u(xo)]x,y: Sy (X). (14)
In our notation the auxiliary operatdi(x,) can be written
We have introduced the translation operat'ﬁfé) with ma-

T(xo)=exfg —c"M(xo)c—d"MT(x0)d] trix elements

X exd dN(xo)c], (11) (TC) sy =Sy xee s (15)

"

where T means transposed. Its form is the same for Wilsor(€,),= J,.,, being the components of the unit vectors. Next
and Kogut-Susskind fermions but the matriddsandN are ~ we define the quark field by the transformation
different in the two cases and will be specified later. o

We must notice that the expression(ix,) was derived c=BY?P{)qa®?, d*=BYP{)qa®? q=q'y, (16)
[11] in the gaugeU,=1 which is not admissible. But it can
be repeated in the gaudé,~1, whereU,=1 with the ex- wherea is the spatial lattice spacing arief;")=2(1+ y,)
ception of a single time slice. The temporal links on this time(but ¢,d are understood to carry only the indices of the non-
slice generate the Gauss constraint, namely the restriction wanishing componenksThe Jacobian of this transformation
gauge invariant states in the trace, which was actually ass the function7 introduced in Eq(10). The partition func-
sumed in the quoted work. Its presence does not interferéon takes the form
with the derivation of the new couplings.

In any case in the construction of the path integral formu- —
lation of QCD at finite baryon density we do not need to fix ZWZJ [dadq]exp(Sw+ dSw). (17)
the gauge, and only to lighten the formalism we plg=1
and reinstatéJ, in the final result. The reader can check thats, is the action with zero chemical potential and Wilson
keepingU, arbitrary in the intermediate steps one arrives atparameter = 1
the same result, provided some care is exercised: for instance

whenU,#1 the expressiort™ (x)c+d™T(x,)d appear- _s (kS @ _
ing in Eq. (11) changes and does not commute wi@hany Sw= = K m [aG) (1 Fy)U,u()a(xte,) rq(xte,)

longer. We anticipate tha{ is Hermitian and alsd/ is Her-
mitian in the gaugéJ,=1.

As already said after use of E@) the construction of the
path integral proceeds in the standard Wi, yielding the
standard action for zero chemical potential pii& To write  \hijle §S,, is the contribution of the chemical potential
the latter in terms of the quark fielgf we must distinguish  \hich is obtained from Eq(9)
the case of Wilson fermions from that of Kogut-Susskind.

X(1=7,)UL(0a(x)]1-a(x)a(x) (18

8Sw= 2, q(xo){[1—cosh uag)]+sinh uap) yo}
Xo

For Wilson fermions we set=1 in Eqg.(10) and assume X B(X0)q(Xg)- (19)

A. Wilson fermions

Mw(Xo) = —In[(2K)¥2B~Y2(x,)],
w(Xo) L(2K) (%o)] The first term indS,, breaks the chiral symmetry, but this is

only a consequence of the breaking by the Wilson term. In-
Nu(%o) =2KB(Xo) ~M2C(%)B(xo) V2, deed we will see that the corresponding term for Kogut-
(12 Susskind fermions does respect the chiral invariance. Notice
the “plus” sign in the exponential of the action, to comply
whereK is the hopping parameter and with Luscher’s convention.
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B. Kogut-Susskind fermions

1 _

Kogut-Susskind fermions will be studied in the flavor ba- Sks=3K 2 400y, ® 1= 7s@1sl,) U () q(xFe,)
sis. The reason is that only in this case is a transfer matrix o
which defines a Hamiltonian known to {i%3]. (In the only —q(X)(y,®1+ 75®t5tM)UL(x—eM)q(x—eM)
other work on the subject of which we are awaid] the
transfer matrix is linear in the creation-annihilation operators
of the quarks, so that the resulting Hamiltonian is highly
nonlocal, containing the logarithms of these operatdrhe
case of the spin diagonal basis can be obtained straightfowhile the chemical potential contribution is obtained from
wardly by a change of basis, but in this way nonminimalEg. (9)
gauge couplings of the type discussed &h are generated.
We think that in their absence, namely for the standard spin

+Za(x)y5®t5t#q(x)+am?(x)}l®}lq(x) (29

diagonal action, there exists no transfer matrix. This need not 8Scs=—K2>, q(x)({[1—cosh nag)]ys®tsto

be a serious shortcoming, because the nonminimal couplings §

are irrelevant from the point of view of the renormalization +sinh(pnag) yo®1H)q(x). (25
group. But our method cannot be used with the standard spin

diagonal action. The factor 16 in front of the action accounts for the fact that

Thex, are now the block coordinates and the gauge fieldshe volume element with Kogut-Susskind fermions is 16
are defined on the block links. We st —1 in Eq.(10) and  times larger than in the Wilson case.
assumg 8]

Mys(Xo)=0 IV. ENERGY DENSITY FOR FREE WILSON FERMIONS
KS\AQ

There is no need to emphasize that the partition function

R with the present action is identical to that of Hasenfratz and

NKS(XO):[ Zl {ys®tst;+ '}’j[Pj( )Uj(Xo)T,m Karsch. Nevertheless we deem it is instructive to compare to
= the “naive” definition to see how the divergences of the

3

() (=) + m latter disappear. For simplicity we will consider only the
—PIT U (o) I+ @1+ ys Wilson case neglecting the mass and the spatial Wilson term.
But notice that we cannot omit also the temporal one, be-

cause otherwise we cannot construct the transfer matrix.
sty (200 Then the quark matrix is
h is th K ter akdthe hoppi Lo
where m is the quark mass parameter a e hopping Q= vyo(ayVo+ o) +agy - V+ iaoDoJF 1-R (26

parameter. In the tensor product thenatrices act on Dirac
indices, while the matricets, = 7; act on flavor indices. The

projection operator®{”) are given by where

1
o 1 = —f(x—
PE;)ZE[H@]i Y, 7s®tst,]. (21) (V.H (%) Za#[f(x+ e, —f(x—e,)]
The quark fieldg is obtained by the transformation (0,0)(x)= a_M[f(X+e“)+ f(x—e,)—2f(x)]

c=4KP{"qa%? (27)
_ — and
d*=4JKP{9a®%  q=qy (22)

L - . =sinh(uay), R=coshiuagy), new definition
whose Jacobian is the functighintroduced in Eq(10). We o=sinh( 1) o)

must remark that here the notation has a slightly different

meaning from the Wilson case,d carry all their 16 flavor- o=pag, R=1, “naive” definition. (28)
Dirac indices so thallk 5 has dimension 16 in this space. The
partition function takes the form We now evaluate the energy dens#lyat zero temperature,

settingapg=a. Normalizing at zero baryon density

Zks= f [dadaexd — 16(Ss+ 8Sks)]- (23

g Fd3szz 7(0 29
= o) 9 [Z(p) —Z(0)], (29
Sks is the Kogut-Susskind action with zero chemical poten-

tial wheres?=3,(1—cosg;) and
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1 (= _ o S equal to the value obtained by the Hasenfratz-Karsch pre-
()= EJ ddol (singo—io)“+s“+(cosqe—R)“]~ scription in the presence of the temporal Wilson tewith-
o out the spatial one

1
- 2\/K2__BZ[1_ O(R=A)]. (30 V. IDENTITY OF THE QUARK DETERMINANT
WITH THE HASENFRATZ-KARSCH
6 is the step function. With the new coupling of the chemical AND THE PRESENT ACTIONS

potential In this section we will prove the identity of the quark

1 determinant with the Hasenfratz-Karsch and the present ac-
R—A= 5[32+ 2(1—coshua))] tions. We think it is worth reporting because it provides us
with a further coupling of the chemical potential. We will
1 then show how identities for vanishing chemical potential
~ E[Sz—(,ua)z] can be derived.
We perform the Grassmann integration in a way which
leads in both cases to one and the same quark determinant.
(31)  Adgain for simplicity we restrict ourselves to Wilson fermions
but the results hold also in the case of Kogut-Susskind. We
start by writing the quark action in a form common to the
two cases

A2_ BZZSZ

1
+_ 2
1 7S

while with the “naive” definition

1
R—A=S[s*~ (ua)’]
S=2, ¢ (X)M . (Xp)C(Xo+1)
Xo

A?—B?=g? 1+£sz— E( a)?+ ()" (32
B 4 2\# 4s% | +d" ()M _(Xo)d(Xg+ 1) + ¢ (Xg)N(X0)d ™ (Xo)
Therefore in the “naive” case the energy density has a qua- +d(Xg)N(X0)(Xg) — a1 ¢ (Xo)C(Xo)
dratic divergencé¢2], while with the new coupling —a_d*(xo)d(Xg), (34)
2
— 4 2
&=z 0k, 33 here

M. =Mexp=un), a~=1 forthe Hasenfratz-Karsch action,
M.=1, a-=coshu+sinhy forthe present action, (35

andM is given by Eq(12). Then we rewriteSas the sum of a term quadratic in the varialésandd™ properly shifted, plus
a term quadratic in the variablesd

S=2) [cF(Xo) = d(X+ 1)MT (xg)N"Y(x0) + @ d(xg)N~(xg) IN(X0)[d ™ (Xo) + N"M c(xo+ 1) — @ N"(xg)c(Xo)]
X0

+d(Xo)N(X)C(Xg) — a4 d(Xo+ 1)MT (Xg)N~1(X0)C(Xo) — - d(Xg)N~1(Xg)M 4 (Xo)C(Xo+ 1)
—d(Xo+ 1ML (xg)N"H(X0)M 1 (Xo)C(Xo+ 1)+ ay a_d(x)N ™~ (Xo)C(Xo). (36)

Now we integrate first ovec™,d™ and then orc,d, getting det{1+N2+NY2T(IMTN-IM, T{HIN2
the determinant
—a NY2TEIMINY2— o N~¥2M , TSNV,

detNdefN+a,a N1+ T{IMIN"IM T(H (38)

—a+T§{)MIN*1— . N~-IM +-|-§)+)}, (37) We note that the presence Nf ! is not dgngerous, because
from the standard form of the determinant we know that
there cannot be divergencies due to zero®ofntroducing

which can be rewritten in the form the values oM. anda.. we get in both cases
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def1+N2+ Nl’zTg_)M *N™IM T(()+)N1/2 cause the physical degrees of freedom are clearly exhibited.
We have then found that such a derivation is not unique, and
—coshu[ NY2T{IM TN~ Y24 N~ V2M TN in addition to the Hasenfratz-Karsch action we can get an-
other coupling of the chemical potential which is closer to
i 1/ - -1/2 —1/2 +)n 2/
+sinhu[NY2TEIM N~ V2= N~V TN Y2 the continuum, since it does not contain time splitting and

(39)  temporal gauge fields. This generalizes the resulf{§pfwe
must emphasize that the fermion determinant is exactly
We remind the reader that in the above equation the matricesqual, at finite lattice spacing, to that of the Hasenfratz-
have dimension 2 in Dirac space and the temporal links mustarsch action. In the course of a check of this identity, we
be reinstated. We see a new coupling of the chemical poterfound a still different coupling, which has some features in
tial which does involve both the temporal and the spatiakommon with the change in the action due to the projection
links. in a given baryon sector.

Finally we observe that a set of functional identities can Needless to say, our results do not constitute progress to-
be obtained by equating the derivatives of the partition funcwards the solution of the sign problem, even though once a
tion with the present action and that of Hasenfratz andsolution will be found, the present formulation might prove
Karsch with respect to the chemical potential at zero chemihelpful. But they can be of practical relevance in other ways.
cal potential. For instance with Wilson fermions by taking Examples are perturbative calculations and the functional

the second derivative we get identities at zero chemical potential reported in Sec. V. More-
_ over the present procedure can be applied to many-body
(a[B+2K(P§IULTE +PEIT UG ) 1a) theories of fermions and bosons and to other interaction

3, = 5 2.3/ 5(+) +) terms. In the standard formulation of the path integral of
+a*((qyoBa)%)+4Ka*([aq(Py'UgTy these theories in fact the fields and their conjugates appear at

split time in all the potential terms. With our form of the
action instead the time splitting can be avoided in the poten-
tial terms which retain their continuum expression. This
VI. CONCLUSION makes the action closer to the continuum, even though the

The motivation of the present work was to go deeper indlscrete form of the kinetic terms cannot be eliminated.
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