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Different couplings of the chemical potential with an identical partition function
in QCD on a lattice
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INFN–Laboratori Nazionali di Frascati, P.O. Box 13, I-00044 Frascati, Italy

~Received 25 October 2002; revised manuscript received 11 December 2003; published 29 April 2004!

New couplings of the chemical potential, closer to the continuum, are derived from the transfer matrix
formulation of the partition function of QCD on a lattice. In particular the time splitting of the quark fields~and
therefore the presence of the temporal gauge fields! can be avoided in some of these couplings.
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I. INTRODUCTION

The action generally used for QCD on a lattice at fin
baryon density@1# was proposed on heuristic grounds
Hasenfratz and Karsch@2# and Kogutet al. @3# to avoid the
divergence of the free energy which arises when the che
cal potential is introduced as in the continuum. In this act
the form of the coupling of the chemical potential is based
the analogy between chemical potential and temporal ga
field. Therefore the chemical potential is exponentiated l
the temporal gauge field in the temporal link variables, a
like these variables it is coupled to the quark fields split
the time direction. Because of gauge invariance, the che
cal potential is therefore coupled also to the temporal lin

The possibility of other couplings was investigated@4#,
but at the end there seemed to be a general consensus
the need of the time splitting with the consequent presenc
the temporal links, so that only the form of the function
the chemical potential~not necessarily exponential!, can be
to some extent arbitrary@5#.

Recently some work@6–8# has been done to derive th
Hasenfratz-Karsch action from the transfer matrix formu
tion of the partition function. This is a sound starting point
statistical mechanics of gauge theories because it perm
clear identification of physical degrees of freedom@9#. The
chemical potential is then introduced as a Lagrange mu
plier in the transfer matrix, but due to the manipulatio
leading to the path integral it appears in exponential form
the action. These manipulations are also responsible for
time splitting of the fermion fields in the coupling of th
chemical potential and therefore for the appearance of
temporal links in this coupling.

The results of Ref.@6#, however, do not confirm that th
coupling of the chemical potential is essentially unique
the lattice. Indeed Creutz showed in a simple model that
time splitting can be avoided in this coupling. Moreover
the investigation of QCD in a given baryon sector we fou
that the change in the action which accounts for the pro
tion involves both spatial and temporal links@10#.

The settlement of this issue is interesting per se in
framework of the theoretical foundations of the formalis
But it is also of practical relevance. For instance, one wo
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like to know if there is a formulation which might alleviat
the difficulties met in numerical simulations@1#. Moreover,
one would like to understand why in a perturbative calcu
tion with the Hasenfratz-Karsch Lagrangian one has to c
lect all the terms which realize a Polyakov loop to get
nonvanishing contribution, in contrast with the coupling
the continuum. Are we facing a mere lattice artifact or
feature of deep physical significance?

We have therefore reexamined the derivation of
Hasenfratz-Karsch action from the transfer matrix. The c
nection between the action at finite baryon density and
transfer matrix is established in the following way. The pa
integral at zero baryon density determines the transfer
trix. Starting from this transfer matrix and introducing th
chemical potential as the Lagrange multiplier of the bary
charge, one gets a path integral with a new action. But
form of this action depends on how we pass from the trace
the transfer matrix to the path integral. The standard w
relies on the normal ordering of fermionic operators~all the
creation operators to the left of the annihilation ones! and a
specific way of inserting the Grassmannian kernel of
identity in the trace@11#. Following this way the Hasenfratz
Karsch action was derived@6–8#. In the present paper we
follow the same strategy but a different path, namely
adopt the antinormal ordering of fermionic operators~all the
annihilation operators to the left of the creation ones! and a
different insertion of the unity. We then find another coupli
without time splitting and temporal gauge fields. In particu
for Kogut-Susskind fermions in the flavor basis, the chemi
potential is not coupled to the gauge fields at all.

Obviously the quark determinants with the two couplin
are identical, since they give the same partition funct
~also at finite lattice spacing!. We have checked this identit
by putting the quark matrices in one and the same form. I
remarkable that this form provides still another coupling
the chemical potential which involves both the temporal a
the spatial links as in QCD in a given baryon sector@10#. The
fact that the gauge fields appear in different ways or dis
pear altogether confirms that their presence in this coup
is a mere lattice artifact. The identity of the quark determ
nants can also be exploited to derive some identities for v
ishing chemical potential.

The present work can be considered from a different po
of view. The path integral is often used only as a means
generate a perturbative expansion. In such a case the a
can be that of the continuum. But when one wants to use
©2004 The American Physical Society08-1
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a concrete way, to perform analytic or numerical estima
one needs a concrete definition which requires a discre
tion of time. There are different ways of discretizing, a
different discretizations are equivalent from the point of vie
of the renormalization group because the corresponding
tions differ in general by irrelevant operators. But the
renormalizations are different, and the necessary coun
terms can be more or less convenient from a practical p
of view. It is therefore desirable to have different discretiz
actions with the same partition function at finite tempo
spacing from which to choose the most convenient one fo
given purpose. The problem is of general character. We
strict ourselves to the definition of the chemical potential,
our technique can have wider applications, including
many-body theory of fermions and bosons. We will comm
on this in our Conclusions.

The paper is organized in the following way. In Sec. II w
describe our alternative procedure and derive a new coup
of the chemical potential. In Sec. III we apply our results
QCD at finite baryon density with Wilson and Kogu
Susskind fermions. In Sec. IV we evaluate the energy
free fermions. It is obvious that with a different coupling
the chemical potential but the same quark determinant
free energy must also be the same, but it can be instructiv
see how this comes about. In Sec. V we show that
Hasenfratz-Karsch action and the present one give one
the same quark determinant with new couplings of
chemical potential, and we show how some identities
vanishing chemical potential can be obtained. Finally in S
VI we present our conclusions.

II. ANTINORMAL ORDERING IN THE CHARGE

Let us introduce some definitions. We denote bya0 the
temporal lattice spacing, byN0 the number of temporal sites
by x0 the temporal component of the site position vectorx,
by T the temperature, bym the chemical potential, byQ̂ the
~electric, baryon . . .! charge operator, and byT̂(x0) the fer-
mion transfer matrix. The pure gauge part will be omitt
because it does not play any role in the present problem

We start from the definition of the grand canonical pa
tion function according to the time ordered product

Z5TrH expS m

T
Q̂D)

x0

T̂~x0!J , ~1!

which, using the relationT215a0N0, and assuming the con
servation ofQ̂, is conveniently rewritten as

Z5TrH)
x0

@ T̂~x0!exp~ma0Q̂!#J . ~2!

T̂ is defined in terms of particle-antiparticle creatio
annihilation operatorsĉ†,d̂†,ĉ,d̂ acting in a Fock space. I
depends on the time coordinatex0 only through the depen
dence on it of the gauge fields. In fact the creation and
nihilation operators do not depend onx0. They depend on
the spatial coordinatesx and on the internal quantum num
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bers ~Dirac, color and flavor indices in the case of QCD!,
comprehensively represented byI ,J . . . .

In the transfer matrix formalism often one has to u
quantities at a given~Euclidean! time x0. For this reason we
adopt a summation convention over spatial coordinates
intrinsic indices at fixed time. So for instance, for an ar
trary matrixM, we will write

ĉ†M ~x0!ĉ5 (
x,y,I ,J

ĉx,I
† M x,I ;y,J~x0!ĉy,J . ~3!

In this notation the charge operatorQ̂ can be written

Q̂5 ĉ†ĉ2d̂†d̂. ~4!

The standard way@11# to obtain the path integral form o
Z is to write all the operators in normal order and introdu
between the factors in Eq.~2! the identity@12#

15E @dc1dcdd1dd#exp~2c1c2d1d!ucd&^cdu, ~5!

where the basis vectors are coherent states

ucd&5uexp~2cĉ†2dd̂†!&. ~6!

The c1,c,d1,d are Grassmann variables. They depend
the time slice where the unit operator is introduced. For
other indices they are subject to the same convention as
creation and annihilation operators. The main property
coherent states is that they are eigenstates of the annihila
operators with Grassmannian eigenvalues

ĉucd&5cucd&. ~7!

We will follow a slightly different strategy. We write the
exponential of the charge in the following way:

exp~ma0Q̂!5E @dc1dcdd1dd#

3exp~dS2c1c2d1d!ucd&^cdu ~8!

where

dS5@12cosh~ma0!#~c1c1d1d!

1sinh~ma0!~c1c2d1d!. ~9!

The above expression is obtained by expanding the expo
tial of the charge operator, putting all the terms in antinorm
form, inserting in each monomial the unity between the
of annihilation and the set of creation operators and replac
them by their Grassmannian eigenvalues. For the rightm
exponential of the charge before taking the trace one ha
move the creation operators to the left of all the operat
appearing under trace.

After this, the construction of the path integral proceeds
the standard way, and we get the standard action with
exception of the coupling of the chemical potential where
the fields appear at the same time.
8-2
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III. QCD AT FINITE DENSITY

The fermion transfer matrixT̂ in the case of QCD can b
written @11# in terms of an auxiliary operatorT̂(x0)

T̂~x0!5J 21T̂†~x0!T̂~x01s!, ~10!

where J is a function of the gauge fields which will b
defined later ands561 for Wilson/Kogut-Susskind fermi-
ons respectively@10#. This difference in sign does not refle
any intrinsic difference, but is only due to the different co
ventions adopted by Lu¨scher@11# and Montvay-Mu¨nster@5#,
which we maintain for easy reference.

In our notation the auxiliary operatorT̂(x0) can be written

T̂~x0!5exp@2 ĉ†M ~x0!ĉ2d̂†MT~x0!d̂#

3exp@ d̂N~x0!ĉ#, ~11!

whereT means transposed. Its form is the same for Wils
and Kogut-Susskind fermions but the matricesM andN are
different in the two cases and will be specified later.

We must notice that the expression ofT̂(x0) was derived
@11# in the gaugeU051 which is not admissible. But it can
be repeated in the gaugeU0;1, whereU051 with the ex-
ception of a single time slice. The temporal links on this tim
slice generate the Gauss constraint, namely the restrictio
gauge invariant states in the trace, which was actually
sumed in the quoted work. Its presence does not inter
with the derivation of the new couplings.

In any case in the construction of the path integral form
lation of QCD at finite baryon density we do not need to
the gauge, and only to lighten the formalism we putU051
and reinstateU0 in the final result. The reader can check th
keepingU0 arbitrary in the intermediate steps one arrives
the same result, provided some care is exercised: for inst
whenU0Þ1 the expressionĉ†M (x0) ĉ1d̂†MT(x0)d̂ appear-
ing in Eq. ~11! changes and does not commute withQ̂ any
longer. We anticipate thatN is Hermitian and alsoM is Her-
mitian in the gaugeU051.

As already said after use of Eq.~8! the construction of the
path integral proceeds in the standard way@11#, yielding the
standard action for zero chemical potential plusdS. To write
the latter in terms of the quark fieldq we must distinguish
the case of Wilson fermions from that of Kogut-Susskind

A. Wilson fermions

For Wilson fermions we sets51 in Eq. ~10! and assume

MW~x0!52 ln@~2K !1/2B21/2~x0!#,

NW~x0!52KB~x0!21/2C~x0!B~x0!21/2,
~12!

whereK is the hopping parameter and
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B~x0!512K(
j 51

3

@Û j~x0!Tj
(1)1Tj

(2)Û j
1~x0!#

C~x0!5
1

2 (
j 51

3

is j@Û j~x0!Tj
(1)2Tj

(2)Û j
1~x0!#.

~13!

Let us remark that all the above matrices are underst
to have dimension 2 in Dirac space. The link operat
Ûm(x0) have the standard Wilson variablesUm(x) as spatial
matrix elements

@Ûm~x0!#x,y5dx,yUm~x!. ~14!

We have introduced the translation operatorsTj
(6) with ma-

trix elements

~Tm
(6)!x,y5dy,x6em

, ~15!

(em)n5dm,n being the components of the unit vectors. Ne
we define the quark fieldq by the transformation

c5B1/2P0
(1)qa3/2, d15B1/2P0

(2)qa3/2, q̄5q†g0 ~16!

where a is the spatial lattice spacing andP0
(6)5 1

2 (16g0)
~but c,d are understood to carry only the indices of the no
vanishing components!. The Jacobian of this transformatio
is the functionJ introduced in Eq.~10!. The partition func-
tion takes the form

ZW5E @dq̄dq#exp~SW1dSW!. ~17!

SW is the action with zero chemical potential and Wilso
parameterr 51

SW5(
x

H K(
m

@ q̄~x!~11gm!Um~x!q~x1em!1q̄~x1em!

3~12gm!Um
† ~x!q~x!#2q̄~x!q~x!J ~18!

while dSW is the contribution of the chemical potentia
which is obtained from Eq.~9!

dSW5(
x0

q̄~x0!$@12cosh~ma0!#1sinh~ma0!g0%

3B~x0!q~x0!. ~19!

The first term indSW breaks the chiral symmetry, but this
only a consequence of the breaking by the Wilson term.
deed we will see that the corresponding term for Kog
Susskind fermions does respect the chiral invariance. No
the ‘‘plus’’ sign in the exponential of the action, to comp
with Lüscher’s convention.
8-3
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B. Kogut-Susskind fermions

Kogut-Susskind fermions will be studied in the flavor b
sis. The reason is that only in this case is a transfer ma
which defines a Hamiltonian known to us@13#. ~In the only
other work on the subject of which we are aware@14# the
transfer matrix is linear in the creation-annihilation operat
of the quarks, so that the resulting Hamiltonian is high
nonlocal, containing the logarithms of these operators.! The
case of the spin diagonal basis can be obtained straigh
wardly by a change of basis, but in this way nonminim
gauge couplings of the type discussed in@8# are generated
We think that in their absence, namely for the standard s
diagonal action, there exists no transfer matrix. This need
be a serious shortcoming, because the nonminimal coupl
are irrelevant from the point of view of the renormalizatio
group. But our method cannot be used with the standard
diagonal action.

Thexm are now the block coordinates and the gauge fie
are defined on the block links. We sets521 in Eq.~10! and
assume@8#

MKS~x0!50

NKS~x0!5H (
j 51

3

$g5^ t5t j1g j@Pj
(2)Û j~x0!Tj

(1)

2Pj
(1)Tj

(2)Û j
1~x0!#%1

m

K
1^ 11g5

^ t5t0J , ~20!

where m is the quark mass parameter andK the hopping
parameter. In the tensor product theg-matrices act on Dirac
indices, while the matricestm5gm

T act on flavor indices. The
projection operatorsPm

(6) are given by

Pm
(6)5

1

2
@1^ 16gmg5^ t5tm#. ~21!

The quark fieldq is obtained by the transformation

c54AKP0
(1)qa3/2,

d154AKP0
(2)qa3/2, q̄5q†g0 ~22!

whose Jacobian is the functionJ introduced in Eq.~10!. We
must remark that here the notation has a slightly differ
meaning from the Wilson case.c,d carry all their 16 flavor-
Dirac indices so thatNKS has dimension 16 in this space. Th
partition function takes the form

ZKS5E @dq̄dq#exp@216~SKS1dSKS!#. ~23!

SKS is the Kogut-Susskind action with zero chemical pote
tial
07450
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1
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KH(

x
q̄~x!~gm ^ 12g5^ t5tm!Um~x!q~x1em!

2q̄~x!~gm ^ 11g5^ t5tm!Um
† ~x2em!q~x2em!

12q̄~x!g5^ t5tmq~x!1amq̄~x!1^ 1q~x!J ~24!

while the chemical potential contribution is obtained fro
Eq. ~9!

dSKS52K(
x

q̄~x!„$@12cosh~ma0!#g5^ t5t0

1sinh~ma0!g0^ 1%…q~x!. ~25!

The factor 16 in front of the action accounts for the fact th
the volume element with Kogut-Susskind fermions is
times larger than in the Wilson case.

IV. ENERGY DENSITY FOR FREE WILSON FERMIONS

There is no need to emphasize that the partition funct
with the present action is identical to that of Hasenfratz a
Karsch. Nevertheless we deem it is instructive to compar
the ‘‘naive’’ definition to see how the divergences of th
latter disappear. For simplicity we will consider only th
Wilson case neglecting the mass and the spatial Wilson te
But notice that we cannot omit also the temporal one,
cause otherwise we cannot construct the transfer ma
Then the quark matrix is

Q5g0~a0¹01s!1a0g•¹1
1

2
a0

2h0112R ~26!

where

~¹m f !~x!5
1

2am
@ f ~x1em!2 f ~x2em!#

~hm f !~x!5
1

am
@ f ~x1em!1 f ~x2em!22 f ~x!#

~27!

and

s5sinh~ma0!, R5cosh~ma0!, new definition

s5ma0 , R51, ‘‘naive’’ definition. ~28!

We now evaluate the energy densityE at zero temperature
settinga05a. Normalizing at zero baryon density

E52
1

2p3a4E
2p

p

d3qs2@I~m!2I~0!#, ~29!

wheres25( j (12cosqj) and
8-4
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I~m!5
1

2pE2p

p

dq0@~sinq02 is!21s21~cosq02R!2#21

5
1

2AA22B2
@12u~R2A!#. ~30!

u is the step function. With the new coupling of the chemic
potential

R2A5
1

2
@s212~12cosh~ma!!#

;
1

2
@s22~ma!2#

A22B25s2F11
1

4
s2G ~31!

while with the ‘‘naive’’ definition

R2A5
1

2
@s22~ma!2#

A22B25s2F11
1

4
s22

1

2
~ma!21

~ma!4

4s2 G . ~32!

Therefore in the ‘‘naive’’ case the energy density has a q
dratic divergence@2#, while with the new coupling

E5
2

p2 m4u~m2!, ~33!
07450
l

-

equal to the value obtained by the Hasenfratz-Karsch p
scription in the presence of the temporal Wilson term~with-
out the spatial one!.

V. IDENTITY OF THE QUARK DETERMINANT
WITH THE HASENFRATZ-KARSCH

AND THE PRESENT ACTIONS

In this section we will prove the identity of the quar
determinant with the Hasenfratz-Karsch and the present
tions. We think it is worth reporting because it provides
with a further coupling of the chemical potential. We w
then show how identities for vanishing chemical potent
can be derived.

We perform the Grassmann integration in a way wh
leads in both cases to one and the same quark determi
Again for simplicity we restrict ourselves to Wilson fermion
but the results hold also in the case of Kogut-Susskind.
start by writing the quark action in a form common to th
two cases

S5(
x0

c1~x0!M 1~x0!c~x011!

1d1~x0!M 2~x0!d~x011!1c1~x0!N~x0!d1~x0!

1d~x0!N~x0!c~x0!2a1c1~x0!c~x0!

2a2d1~x0!d~x0!, ~34!

where
M 65M exp~6m!, a651 for the Hasenfratz-Karsch action,

M 651, a65coshm7sinhm for the present action, ~35!

andM is given by Eq.~12!. Then we rewriteSas the sum of a term quadratic in the variablesc1 andd1 properly shifted, plus
a term quadratic in the variablesc,d

S5(
x0

@c1~x0!2d~x011!M 2
T ~x0!N21~x0!1a2d~x0!N21~x0!#N~x0!@d1~x0!1N21M 1c~x011!2a2N21~x0!c~x0!#

1d~x0!N~x0!c~x0!2a1d~x011!M 2
T ~x0!N21~x0!c~x0!2a2d~x0!N21~x0!M 1~x0!c~x011!

2d~x011!M 2
T ~x0!N21~x0!M 1~x0!c~x011!1a1a2d~x0!N21~x0!c~x0!. ~36!
e
at
Now we integrate first overc1,d1 and then onc,d, getting
the determinant

detNdet$N1a1a2N211T0
(2)M 2

T N21M 1T0
(1)

2a1T0
(2)M 2

T N212a2N21M 1T0
(1)%, ~37!

which can be rewritten in the form
det$11N21N1/2T0
(2)M 2

T N21M 1T0
(1)N1/2

2a1N1/2T0
(2)M 2

T N21/22a2N21/2M 1T0
(1)N1/2%.

~38!

We note that the presence ofN21 is not dangerous, becaus
from the standard form of the determinant we know th
there cannot be divergencies due to zeros ofN. Introducing
the values ofM 6 anda6 we get in both cases
8-5
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det$11N21N1/2T0
(2)M 1N21MT0

(1)N1/2

2coshm@N1/2T0
(2)M 1N21/21N21/2MT0

(1)N1/2#

1sinhm@N1/2T0
(2)M 1N21/22N21/2MT0

(1)N1/2#%.

~39!

We remind the reader that in the above equation the matr
have dimension 2 in Dirac space and the temporal links m
be reinstated. We see a new coupling of the chemical po
tial which does involve both the temporal and the spa
links.

Finally we observe that a set of functional identities c
be obtained by equating the derivatives of the partition fu
tion with the present action and that of Hasenfratz a
Karsch with respect to the chemical potential at zero che
cal potential. For instance with Wilson fermions by takin
the second derivative we get

^q̄@B12K~P0
(1)U0T0

(1)1P0
(2)T0

(2)U0
1!#q&

1a3^~ q̄g0Bq!2&14K2a3^@ q̄~P0
(1)U0T0

(1)

2P0
(2)T0

(2)U0
1!q#2&50. ~40!

VI. CONCLUSION

The motivation of the present work was to go deeper
the foundations of the formalism of QCD at finite baryo
density. We reconsidered the derivation of the path integ
from the transfer matrix formalism, which is a sound starti
point when doing statistical mechanics in gauge theories
,
,
, J
.

Ch

J

07450
es
st
n-
l

-
d
i-

n

al

e-

cause the physical degrees of freedom are clearly exhib
We have then found that such a derivation is not unique,
in addition to the Hasenfratz-Karsch action we can get
other coupling of the chemical potential which is closer
the continuum, since it does not contain time splitting a
temporal gauge fields. This generalizes the results of@6#. We
must emphasize that the fermion determinant is exa
equal, at finite lattice spacing, to that of the Hasenfra
Karsch action. In the course of a check of this identity,
found a still different coupling, which has some features
common with the change in the action due to the project
in a given baryon sector.

Needless to say, our results do not constitute progress
wards the solution of the sign problem, even though onc
solution will be found, the present formulation might prov
helpful. But they can be of practical relevance in other wa
Examples are perturbative calculations and the functio
identities at zero chemical potential reported in Sec. V. Mo
over the present procedure can be applied to many-b
theories of fermions and bosons and to other interac
terms. In the standard formulation of the path integral
these theories in fact the fields and their conjugates appe
split time in all the potential terms. With our form of th
action instead the time splitting can be avoided in the pot
tial terms which retain their continuum expression. Th
makes the action closer to the continuum, even though
discrete form of the kinetic terms cannot be eliminated.
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