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Coulomb energy, remnant symmetry, and the phases of non-Abelian gauge theories
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We show that the confining property of the one-gluon propagator, in the Coulomb gauge, is linked to the
unbroken realization of a remnant gauge symmetry which exists in this gauge. An order parameter for the
remnant gauge symmetry is introduced, and its behavior is investigated in a variety of models via numerical
simulations. We find that the color-Coulomb potential, associated with the gluon propagator, grows linearly
with distance both in the confined and—surprisingly—in the high-temperature deconfined phase of pure Yang-
Mills theory. We also find a remnant symmetry-breaking transition iri2s\dauge-Higgs theory which com-
pletely isolates the Higgs region from tleseudaconfinement region of the phase diagram. This transition
exists despite the absence, pointed out long ago by Fradkin and Shenker, of a genuine thermodynamic phase
transition separating the two regions.
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I. INTRODUCTION (2) Pure SU2) gauge theory, in the confined and the high-
temperature deconfined phases.
It is well known that the phase transition from a confined(3) SU(2) gauge-Higgs theory, with the Higgs field in the
to an unconfined phase in a non-Abelian gauge theory is fundamental representation.
associated with the breaking of global center symmetry. If §4) Compact four-dimensional QED (QER
nontrivial center symmetry exists and is unbroken, then
Polyakov line expectation values are zero, and as a conse- In the first, second, and fourth theories the action has a
quence the free energy of a static color charge is infinite iontrivial global center symmetry, which may be broken
an infinite volume. But the confined phase may be associategPontaneously in some range of couplings or temperature. In
with other global symmetries as well. In this article we will the third case center symmetry is explicitly broken, and the
focus on the remnant gauge symmetry which is found afte@Symptotic string tension vanishes at all couplings. By study-
imposing the Coulomb gauge. What is interesting about thiéhd these different cases, we can explore to what extent rem-
symmetry is that its unbroken realization implies the exis-N@nt symmetry breaking is correlated with center symmetry
tence of a confining color-Coulomb potential, and this in turn®r€aking, and whether the confining Coulomb potential is
is a necessargbut not sufficient condition for confinement. always ass_oma}ted W'th. a confining static quark poten.nal.
The color-Coulomb potential arises from the energy of the This article is organized as follows. In Sec. Il we mtrq-

longitudinal color-electric field in Coulomb gauge, and cor—duce th? remnant symmetry order parameter, and re_late It to
responds diagrammatically to instantaneous dressed ong‘—e Conf'”'f‘g propgrtles of the, coIor-Coqumb potential. We
gluon exchange between static sources. We have previous 0 examiné gcallng QF cou With 5. Sectlo_n Il concerns
studied this potential numerically in pure lattice Yang-Mills € gauge-adjoint Higgs model, where we find perfect corre-

theory at zero temperature, and found that the potential risegPondence between remnant symmetry and center symmetry
linearly with color charge separatiofL,2], albeit with a breaking. But this correspondence is lost already in pure

: : P S : Yang-Mills theory at high temperature, studied in Sec. IV,
string tensiono ¢, Which is significantly highefby about a . .
factor of 3[2]) than the string tensiom of the static quark where we find that Coulomb confinement and unbroken rem-

potential. In this article we introduce an order parameter fof?ant symmetry persist in the deconfined phase. A possible

remnant gauge symmetry breaking and study its behavior, p_Ianatlon Of_ this phe_nomenon IS d|s_cu_ssed. In Sec. V we
well as the behavior of the color-Coulomb potential, in theEVIEW the Grlpov confmer_nent scenario in Qoulomb gauge
following cases ' and show that it accords with the vortex dominance scenario,

by gauge transforming from the maximal center gauge to the
(1) SU(2) gauge-Higgs theory, with the Higgs field in the minimal Coulomb gauge. In Sec. VI we present our results
adjoint representation. for the gauge-fundamental Higgs model, where the gauge-
Higgs interaction breaks global center symmetry explicitly.
In this case we find very clear numerical evidence of a rem-

*Electronic address: greensit@stars.sfsu.edu nant symmetry-breaking transition which is unaccompanied
"Electronic address: stefan.olejnik@savba.sk by a true thermodynamic phase transition, and also argue for
*Electronic address: daniel.zwanziger@nyu.edu the existence of such a transition from a lattice strong-
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coupling analysis. This result is in complete accord with theEvolve this state for Euclidean tinie<n,, wheren; is the
earlier work of Langfeld3,4], which found remnant symme- lattice extension in the time direction. Dividing out the
try breaking in Landau gauge, and it implies that a sharpracuum factor exfp-EyT] and taking the inner product with
distinction can be made between the Higgs and thelfg[x;A], we have

(pseudgconfining regions of the gauge-Higgs coupling

plane. This distinction exists despite the fact, pointed out by GP(T)=(¥ e  H ET| g2y

Fradkin and Shenkdb], that these regions are continuously

connected in the usual sense of thermodynamics. The rem- _ b a\ o~ (En—Eq)T

nant symmetry breaking in the adjoint Higgs theory is reex- En: (el ¥o)(WolWo)e

amined in Sec. VII, where we draw some conclusions about T ba

the measure of Abelian configurations in the fundamental =le M (L>(x,1T)), 24
modular region. Our methods are applied to compact QED
in Sec. VIII.

As in the previous work of Ref.2], we also investigate
numerically the relevance of center vortices to the existenc
of a confining Coulomb potential, particularly in the high- _
temperature deconfined phase of pure Yang-Mills theory, and LGt 1) =Uo(X,t) Ug(X,ty 1) - - Uo(x,t2). (2.9
in the (pseudoconfined phase of gauge-fundamental Higgs, 5 confining theory, the excitation energy, = E, — E, of
theory. In Sec. V it is shown that thin center vortices lie Onany statel, containing a single static quark must be infinite.

the Gribov Horizon, which may be relevant to their dramatic; ¢511ows thatGP3(T)=0, and therefore that the expectation
effect on the Coulomb potential. Vortex removal, by the de

i : . value of any timelike Wilson lineL(x,1,T) must vanish.
Forcrand-D EI|_a.proceduré6], IS found In every case 10 noy under the remnant gauge symmetryyansforms as
convert a confining Coulomb potential to a nonconfining, '

asymptotically flat potential. _ L(X,ty,to)—g(t)L(X,ty,t)g (1, +1). (2.6)
In Sec. IX, we provide a 2-way translation between the
temporal gaugeA,=0) and the minimal Coulomb gauge. |f T=t,—t,+1 is less than the lattice extensiop in the
This allows our measurements, which are made by gauggime direction, then not onl but also TFL] is noninvariant
fixing to the minimal Coulomb gauge, to be equivalently ynder the remnant gauge symmétif.the remnant symme-
described in temporal gauge. We show that the state in whicfty is unbroken, theL ) must vanish. The confining phase is
our measurements are made is, in temporal gauge, a quatiferefore a phase of unbroken remnant gauge symmetry; i.e.,
pair state of the type introduced by Lavelle and McMullan ynproken remnant symmetry is a necessary condition for
[7]. It has correct gauge-transformation properties, althouglonfinement.
it does not make use of Wilson lines running between the There are several issues which require some further com-
sources. Section X contains some concluding remarks.  ment. First of all, why is unbroken remnant symmetry not
also asufficientcondition for confinement? The answer is
Il. COULOMB ENERGY AND REMNANT SYMMETRY that in an unconfined phase, where there exist finite energy
) o ] ~ states containing a single static charge in an infinite volume,
On the lattice, minimal Coulomb gauge consists of fixingthere is still the possibility that these finite energy states have
to the configuration on the gauge orbit maximizing the quanyanishing overlap With‘lfg as defined in Eq(2.3. Thus

where indexn refers to summation over charged energy
eigenstatesn,—c is the heavy quark mask, is a numeri-
8al factor, and_(x,t,,t,) is a Wilson line

tity (LY=0 and unbroken remnant symmetry could be found, in
3 principle, also in the absence of confinement. Secondly, it is
R=> > TrU(xt)]. (2.1)  obviously impossible to insert a single charge in a finite vol-

x,t k=1

ume with, e.g., periodic boundary conditions; electric field

lines starting from the static charge must end on some other
Maximizing R does not fix the gauge completely, since therecharge, regardless of whether or not the theory is in a con-
is still the freedom to perform time-dependent gauge transfining phase. How, then, is this fact reflected in the remnant

formations symmetry-breaking criterion? The same question can be
raised in connection with Polyakov lines, and the answer is
Ux,t)—g(U(x,)g’(t) (k=1,2,3), the same: Strictly speaking, spontaneous symmetry breaking
cannot occur in a finite volume, gt ) =0 always, consistent
Ug(x,)—g(t)Ug(x,H)g(t+1). (2.20  Wwith the absence of an isolated static charge. Nevertheless

(again similar to Polyakov lingsit is possible to construct

To understand the role of this remnant gauge symmetry, cord! order parameter which detects the infinite-volume transi-

sider a statelfg obtained by operating on the lattice Yang- tion via finite-volume calculations which are subsequently
Mills vacuum statel, (i.e., the ground state of the Coulomb

gauge transfer matfwith a heavy quark operat(qa Lt T=n,, thenL is a Polyakov line, whose trace is invariant

a a under gauge transformations, but noninvariant under global center
VX Al=a%(x)Wo[A]. (23 transformations.

074506-2



COULOMB ENERGY, REMNANT SYMMETRY, AND THE . .. PHYSICAL REVIEW D 69, 074506 (2004

extrapolated to infinite volumeWe will construct such an pa:pg_gfabcAEEng,
operator below. Finally, there is the question of Elitzur’s
theorem. Although the remnant symmetry is global on a time J=def—-V-D(A)] (2.10

slice, it is local in the time direction, and according to the
theorem local symmetries cannot break spontaneously.
how could we ever havdl)+#0, even in an infinite volume?
The answer is that in fact the average valud¢%,t,T+1)
does indeed vanish on an infinite lattice, in accordance wi
the Elitzur theorem, providing the averaging is done over algt
spatialx and all timest. On a time slice, however, the sym-
metry is only global, and it is possible in any given configu- (Ag(x)Ag(y)>= D(x—y)8%P8(xo—Yo) + Non-instantaneous,
ration that the average value b{x,t,T+t) is finite on an

d the factors of7 arise from operator ordering consider-
ations[8]. It is understood thad is identically transverse in
Coulomb gaugeA=A". Note that.7 commutes with all
tquantities exceptE", and in particular with pq(X) and

ab(x,y;A). The expectation value dk(x,y;A) is the in-
antaneous piece of t§é&yA,) gluon propagator, i.e.,

e e . . 4 . . 1 a,b

infinite lattice, when averaged over allat fixedtime t. This D(x—y) &= (—V2)

is what we will mean by the phrase “spontaneous breaking y V-D[A]' ’V.D[A] Xy '

of the remnant symmetry,” and it involves no actual viola- 71

tion of the Elitzur theorem. ) ]
With these points in mind, we propose to construct an®S shown in Ref[9]. We see from these expressions that the

order parameter for remnant symmetry breaking from theCoqumb_ intgractign _energy between two Ch?rged static
timelike link variable averaged over spatial volume at fixedSCUrCes is given by instantaneo(dressedi one-gluon ex-

; change.
time. Let - 1 Now consider a physical state in Coulomb gauge contain-
U(t)= Vo > Ug(x,t), (2.7 ing massive quark-antiquark sources
3 X
whereVz;=n,nyn, is the 3-volume of a lattice time slice. If |V =0(0)a(R)| Vo) (2.12

; i) — U2 L . .
remnant symmetry is unbroken, thex{t) =0+ O(1V3) in  which is invariant under the remnant symmetry. The excita-
any thermalized lattice configuration. The order param@ter tion energy is

is defined to be, for S(2),
g:<‘qu|H|‘qu>_<‘PO|H|q’0>

Q= L > < \/lTr[U(t)UT(t)]>. (2.9 =Veou(R) + Ese, (2.13
Ny =1 2

whereEg, is anR-independent constant, on the order of the
ThenQ is positive definite on a finite lattice, and on generalinverse lattice spacing, to be specified below. Fhéepen-
grounds dence of€ can only come from the expectation value of the
nonlocal quark-quark part of the Hamiltonian

b c=0 inthe symmetric phase, 1
Q=c+ A Where | .~0 inthe broken phase. quzzf d*xd®ypg0)K(x,y;A)pg(y).  (2.14
(2.9

Thus theR-dependent piec¥.,,(R) can be identified as the
If Q extrapolates to a nonzero value ¥Wg—, then the Coulomb potential due to these static sources. Moreover, the
remnant symmetry in Coulomb gauge is spontaneously bresame kerneK(x,y;A) appears inH,, and in the instanta-
ken. neous partD(x) of the (dressell one-gluon propagator

Next, we make the connection between unbroken remnar{AoAo). This yields the formula

symmetry and the existence of a confining Coulomb poten-
tigl. We fi);st recall that the Hamiltonian opegrator in Cou?omb Veaul X)) +Ese=C[D(0) ~D(x)], (219
gauge has the fornH=H g+ Hcou Where, in the con-  whereC, [=3/4 for the SU2) gauge groupis the Casimir

tinuum factor in the fundamental representation.
1 5 . -, o Ga s The correlator of two Wilson lines can be expressed in

Hgluezzf d*x (g~ EAT-ENAT Y+ B2 BY), terms of the Hamiltonian operator and the stétg, as fol-

1 lows:

Heou=3 J d¥x Py Mp?(x) TK*(x,y: A)p°(y) T, .
G(R,T)= ETr[L*(x,o,T)L(y,o,T)]
1 ab
ab . — (—\U2) —(H—
K (leiA) |:VD(A)\ V }VD(A) xy! :<\Iqu|e (H EO)qu}qq>, (216)

whereR=|x—y|, andL is now the timelike Wilson line in
the continuum theory. We have
2In the case of spontaneous center symmetry breaking, the ac-
ceptfsd order parameter on a flnlte lattice is the absolute value of the G(R,T)= E |(\Ifn|\lqu)|zefAEnT (2.17)
spatial average of Polyakov lines. n
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and we define the logarithmic derivative In Eqg. (2.23 the relation between the confining property
of the Coulomb potential, and the unbroken realization of

d remnant symmetry, is manifest. For@f— 0 at infinite vol-
V(R,T)=— d—_l_log[G(R,T)]. (2.18 ume, then also
It is easy to see that the Coulomb energy is obtained at im (TITU~(x. DU v O = lim (T U Ut
0. ie. Rw( [Uo(x,)Uo(y,1) 1) Vgﬁ@( [(U(MUTD])
E=Veoul(R) +Ege =0 (2.249
=V(R,0). (2.19

in which case the potentidV(R,0) rises to infinity asR
The minimum energy of a state containing two static quark—>- Conversely, ifQ>0, then the limit in Eq.(2.24 is

antiquark charges, which in a confining theory would be thdinite, and V(R,0) is asymptotically flat. Since/co,(R)
energy of the flux tube ground state, is obtained in the oppo=Y(R.0) is an upper bound on the static quark potential, we

site T— oo limit see again that unbroken remnant symmetry is a necessary but
not sufficient condition for confinement.
Emin=V(R)+E., V(R,T) has been computed numerically for pure (3JU
lattice gauge theory at a range of lattice coupliggg Ref.
= lim V(R,T) (2.20 [2]. We recall the essential results.
T—o (1) V(R,T) increases linearly withR at largeR and allT,
at any coupling.
and in this limitV(R) is usual static quark potential. (2) The associated string tensier(T) converges(from

The idea of using the correlator of timelike Wilson lines above to the usual asymptotic String tension at any given
to compute the static quark potential, in Coulomb gauge org, asT increases.
the lattice, was put forward some years ago by Marinari (3) At weaker couplings, the Coulomb string tension
etal. [10]. These authors also noted that the remnant symg . =(0) is substantially greatefoy about a factor of
metry in Coulomb gauge is unbroken in the confining phasethreg than the asymptotic string tension.

We now recall an inequality first pointed out by one ,Of Us  (4) Removing center vortices from lattice configurations
(D.Z) in Ref.[11]. With a lattice regularizatiorEse andE;,  (by the de Forcrand—D’Elia proceduf8]) sendso(T)—0
are finite constants. In a confining theory, both of these conat all T, including the Coulomb string tensiomg,,—0 at
stants are negligible compared\¥g§R), at sufficiently large T=0.

R. But since&,i,=<¢, it follows that In the following sections we extend the investigation to
models including scalar matter fields, and to (2Ugauge
V(R)<Vcou(R) (22D theory across the high-temperature  deconfinement

. L . , transition® First, however, we would like to remark on the
asymptotically. The intriguing implication is that if confine-

ment exists at all, then it exists already at the level of dresse caling properties ofoce,~c(0) in pure SU2) gauge

. eory at zero temperature. The ratio of the Coulorib (
one-gluon exchange in Coulc_)mp gauge. But we also see tha__to) to the asymptotic T— =) string tensions, reported in
because the Coulomb potential is only an upper bound on thlsef. [2], varies somewhat withg in the range B

static potentla'll,' a conf|n|.n'g Coulomb pptennal IS a necessary [2.2,2.9) of couplings investigated. The ratio(0)/o
but not a sufficient condition for the existence of a confining AL A _
tends to rise in this interval, as shown in Fig. 1. Howeuver, it

static quark potential. is known thato does not quite conform to the two-loop
On the lattice, the continuum logarithmic derivative in Eq. . . : : .
(2.18 is replaced by scaling formula assouate_d with a_sy_mptotlc freedom, in the
range of 3 we have studied, and it is always possible that

scaling sets in at different values gffor different physical

, (2.22 quantities. What we find is that when our valuesddqb) are

divided by the asymptotic freedom expression

G(R,T)
G(R,T+a)

1
V(R,T)= alog

wherea is the lattice spacing. In particular, in lattice units

a—1 G2 | 102121 62
! F(B):(H ) ex;{—i (225}
V(R,0)=~-10g[G(R,1)]
= —log <£Tr[u0(x,l)U$(y,1)]> , (2.23 3A note on gauge fixing to Coulomb gauge: In this investigation
2 we generate eight random gauge copies of each lattice configura-

) ) ) o tion, and carry out gauge-fixing on each configuration by over-
and at larges, where the lattice logarithmic derivative ap- rejaxation for 250 iterations. The best copy of eight copies is then
proximates the continuun¥/(R,0) provides an estimate of chosen, and the over-relaxation procedure is continued until the
the Coulomb potential/c,,(R) (up to an additive constant average value of the gauge-fixed links has changed, in the last 10
Eso)- iterations, by less than>210™".
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String tensions extracted from V(R,0) String tensions extracted from V(R,0)
35 T T T T T
vBeos b=0 14000 | & b=0
et D=2 B bt D=2
- 12000
3t J
E . 10000 | - .
. ...
g L 8000 % % =
\b 25 =] %
=) 8 - ® 6000 |
b E ]
2 1 4000 |
2000
1.5 1 1 1 1 0 1 1 1 1
2.2 2.3 2.4 25 2.2 23 24 2.5
B B
FIG. 1. The ratioo(0)/o at variousg, from fits which either FIG. 2. The ratioo(0)/F(B) vs B, again from fits with b

include (b= 7/12) or do not includelf=0) the Lischer term. This =#/12) or without ©=0) the Lischer term.F(B) is the
ratio should equal the ratio @f., /o in the continuum limit(Data  asymptotic freedom expression given in the text; a constant ratio
points come from numerical simulations on lattice size$, T&, implies scaling according to the two-loop beta function.
20%, and 32 at 3=2.2, 2.3, 2.4, and 2.5, respectivly.

Veou(R)=—C{[D(R)—D(Ro)]
relevant to the S(2) string tension, the ratio(0)/F(B) is

virtually constant as seen in Fig. 2. This fact suggests that =E&R)=&(Ro),

scaling according to asymptotic freedom may set in earlier

for the Coulomb string tensiomc,,~o(0) than for the Ese=C/[D(0)~D(Rp)]

asymptotic string tensiomr. —&(Ry). (2.26

Defined in this wayVcq,(R) crosses zero at the subtraction

i ) point, andEg, contains the ultraviolet, but not the infrared,
We would also like to remark, at this stage, on a subtlety.qntributions to the quark-antiquark self-energies.

in identifying the color Coulomb potential with dressed one-  ag 3 check of the cancellatiofor noncancellation of

gluon exchangé.The energy expectation value of the static nfrared divergences, consider a colored state consisting, e.g.,

qq state, &(R)=Vcou(R) +Esge, is finite for finite quark of two static quarks, rather than a quark and antiquark. The

separationR and finite lattice spacing, in fact we have energy of such a state could be extracted fromLancor-

calculated this quantity=V(R,0)] numerically. So it might relator, which is zero if remnant symmetry is unbroken. The

seem natural, from Eq2.15, to identify the R-dependent energy is therefore infinite, and according to our previous

Coulomb interaction energy a¢c,,(R)=—C,D(R). That analysis would be proportional ®(0)+ D(R). In this case,

cannot be quite right, however. The reason is §@tD(0) the divergent constant iD(R) adds to, rather than subtracts

is the energy of afsolatedquark state in an infinite volume; from, the divergent constant in(0), and theresulting sum

it is the energy we would extract from the logarithmic time is divergent, as it should be. The argument can be readily

derivative of G(T)=(3 TrL(0,0,T)). In the case of unbro- generalized to baryonic states in SU(gauge theories com-

ken remnant symmetry we hav@(T)=0, and therefore posed of static charges. The energy of a qolor singlet state,

1C,D(0)=2 in an infinite volume, even though the lattice With charges at point;,x,, ... Xy is obtained from the

spacinga is nonzero. This infinity, which has a nonperturba- 0garithmic time derivative of the correlator

tive, infrared origin, should not be confused with the usual o o

ultraviolet contribution to the quark self-energy, which is G({xi},T)=€i ..i € .. (L'1(X1,0T)- - - L'NN(xy,0.T)).

only infinite in the continuum limit. Sincé&(R) is finite, the (2.27

infrared divergence inC,D(0) must be cancelled, in Eqg.

(2.19, by a corresponding divergent constant contained irThe orderT contributions toG({x;},T) are terms propor-

C,D(R). In other words, only the differend®(0)—D(R) is  tional toD(0) andD(x,,—X,), m#n, with differing signs.

finite, andV¢q,(R), if finite, differs from —C,D(R) by an  On the other hand, for a color singlet state, the operator

infinite constant. In order that.,,(R) andEg. be separately ee L---L is a T-independent constant in thg=x,="---

finite and well-defined, we may relate them to the gluon=xy coincidence limit. From this it is clear that the propa-

propagator with an(arbitrary) subtraction atR=R, which  gators completely cancel in the coincidence limit, and any

removes the infrared divergence, i.e., constant terms in the propagators cancel in general. This
means that the energy of a color singlet baryonic state is
finite. Conversely, the divergent constants do not cancel in

“We thank M. Polikarpov for a helpful discussion on this point. color nonsinglet states, so their energies are infinite.

A. Divergent constant in D(R)
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Ill. SU (2) GAUGE-ADJOINT HIGGS THEORY o Compact QED,
The lattice action for S(2) gauge theory with a Higgs
field in the adjoint representation of the gauge group is
1 it
S=8>, =TruuU’U™] 3f
plaq 2 y 2 4 Hei
Spi
Y ~ L
+ 7 2 $008° 0+ )TV, () o UL (0)] 1 Contined
ok Q=0
(3.1
with the radially “frozen,” three-component Higgs field °0 p 5 oo
subject to the restriction B
3 FIG. 3. Phase diagram of the &) adjoint Higgs model. The
> (X)) =1. (3.2 plaquette energf, and the remnant symmetry order parameQer
a=1 locate the same transition line between the confined and Higgs
phases.

This theory was first studied numerically by Browet al.
[12]. In addition to SW2) gauge symmetry, the action is also

invariant under globaZ, center symmetry we plot E, vs g at three values ofy. The existence of a
phase transition for the two larger values gfis clearly
Uo(X,tg)— — Ug(X,tg) (3.3)  visible; there is no transition apparent at the smahlegalue.

Figure 5 is the corresponding plot € vs B at the same
for some choice ot=ty, with all other fields unchanged. three values ofy. At 8,y values whereE,, shows a transi-
The existence of this apparently innocent global symmetry irtjon, the transition inQ is even more evident. Conversely,
the action has profound consequences; in its absence thghere no transition is seen B, at y=0.5, neither is there
static quark potential is asymptotically flat, and there can by transition inQ. Finally, in Fig. 6,Q is plotted against
no truly confined phase. The significance of center symmetry; 12 - and we show the extrapolation @to a small value

to the confinement property in general is reviewed in Ref(consistent with zeroat infinite volume, for couplings in the

[13]. _ . . confined phase.
Since the action3.2) is symmetric under global center

transformations, a transition from the Higgs phase to a dis-

tinct confinement phase is possible. The Higgs phase is the V. HIGH-TEMPERATURE DECONFINEMENT
phase of spontaneously broken center symmetry, while con-
finement corresponds to the symmetric phase. This divisiogji
of the 8-y phase diagram into two separate phases was verf
fied numerically long ago, in the Monte Carlo investigation

We have seen that in the ®)-adjoint Higgs model,
ngs go much as one might have expecéegriori: rem-

ant symmetry breaking coincides wiy center symmetry

. ; - breaking, and in consequence the presence of a confining
of Ref. [12], which mapped out the approximate location of Coulomb potential is correlated with the presence of a con-

the transition line. o : . .
) - . . fining static quark potential. One might then guess that rem-
Th'e Higgs phase of the adjoint Higgs model is often Char'nant and center symmetry breaking always go together. This
acterized as a spontaneous breaking of the local gauge sym-

metry, fromSU(2) down toU(1). In view of the Elitzur

theorem, which states that a local symmetry cannot break SU(2) with adjoint Higgs, 12* lattice
spontaneously, this characterization is a little misleading. —e— y=20.0
However, as we have discussed above, there exists in Cou- %87 e Fg-g L esB888" ®
lomb gauge a remnant gauge symmetry which is global on a = s au"
time slice, and which can break spontaneously on a time 06 L " o 1
slice in the sense described in the previous section. We have ﬁ; - o °
therefore studied the phase diagram of the adjoint Higgs & o4} g o e
theory via two observablesi) the plaquette energy B . ,--'5

0.2 L ®

1
Ep=<§Tr[UUUTUT]> (3.9
0

and (ii) the remnant symmetry breaking order param&er y ' y ‘ y y ! : y
defined in Eq(2.8). What we find is that the transition lines 06 08 1 12 1[5.4 16 18 2 22
(Fig. 3 detected by each of these two parameters coincide;

the common line location agrees with the earlier results of FIG. 4. Plaquette energf, vs 8 at three values ofy in the
Brower et al. based on the plaquette energy alone. In Fig. 4gauge-adjoint Higgs model.
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SU(2) with adjoint Higgs, 12° lattice Pure SU(2), p=2.3, n=2
0.6 T = T T
—— 1=20.0 o / @
0.8 | w1230 o g . /
1t y=0.5 o L] g E 05 / o ]
o 0 g . . /
06 | Oz a L I 04| / y
m " : /om 0.4 . —
4 d
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H
= ° 02t P 02T ﬂ){ 1
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e 4
§ 5 g nm ....'ll.! 0.1} / 0 ! . k
0 / 0 0.005 0.01 0.015
. L . . R . 0 , . . .
06 08 1 12 14 16 18 2 2.2 0 0.01 0.02 0.03 0.04 0.05
B Vq-1/2
FIG. 5. Remnant symmetry order parame@rvs 3 at three FIG. 7. TheQ parameter vs root inverse 3-volume in the high-
values ofy in the gauge-adjoint Higgs model. temperature deconfined phase, pure(BUgauge theory atB

=2.3, andn,=2 lattice spacings.

appears not to be true, as we have discovered in our investi-
gation of pure S(R) lattice gauge theory at high tempera- prising, and it would be nice to understand it a little better.
ture. Recall that in the continuum, the instantaneous part of the

Monte Carlo simulations of the pure &) gauge theory timelike gluon propagator, which is proportional to the Cou-
were carried out oh®x 2 lattices a3=2.3, which is inside  |omb interaction energy between static charges, is given by
the deconfined phase. Figure 7 is a plot@fvs 1A\Vs,  Eq.(2.1D. Note that this is the expectation value of an op-
where it seems th& tends to zero at large voluntalthough  erator which depends only on the space components of the
we cannot entirely rule out a small nonzero intercepVat  vector potential at a fixed time. On the lattice, this translates
—). This impression is strengthened by our ploM§R,0)  into an operator which depends only on spacelike links on a
in Fig. 8, where it is clear that the Coulomb potential goestime slice. However, we know that spacelike links, at fixed
asymptotically to a straight line, as the lattice volume in-time, are a confining ensemble, in the sense that spacelike
creases. There is no indication of the screening of the statigvilson loops have an area law falloff even in the high-
quark potentiaas measured by Polyakov line correlajors temperature deconfinement phase. If the confining property
which occurs at much smaller distances. of the spacelike links on a timeslice is not removed by the

The results for the Coulomb potential in the deconfineddeconfinement transition, then it is perhaps less surprising
phase are not paradoxical, we have already noted that renthat the confining property of th@atticized operator in Eq.
nant symmetry breaking is a necessary but not sufficient con2.11), which depends only on spacelike links on a timeslice,
dition for confinement, and that the Coulomb potential issurvives in the deconfinement regime.
only an upper bound on the static quark potential. Thus itis As a check, we apply a procedure that is known to remove
possible for the Coulomb potential to increase linearly everthe confining properties of lattice configurations. This is the
if the static quark potential is screened, as evidently occurs ide Forcrand—D’Elia[6] method of center vortex removal.
the deconfined phase. Nevertheless, this result is a little sur-

V(R,0)=-log[G(R,1)], B=2.3

SU(2) with adjoint Higgs, confined phase 5 3 y ; ' ' '
0.4 . . ; - p— —e—i 1522
-8~ B=2.2, y=0.5 /"m —_ 2o * 2
+m-+ B=1.2, v=3.0 -~ 4r o 523 * g
vo- p=1.0, y=20.0 /m/ —o— 283+
03 — asbt . ] —o— 323%2
— atbEict? ’ St
S
o
o 02 >
= a2t A
0.1 1 /‘é T
g
‘Q
0 . . : . 0 . . . - - ; L
0 0.01 0.02 0.03 0.04 0.05 0 2 4 6 8 10 12 14 16
&qu-uz R

FIG. 6. Plot ofQ vs root inverse 3-volume, and extrapolation of  FIG. 8. V(R,0) in the deconfined phase, At=2.3 with n,=2
Q to infinite volume, at several couplings in the confined phase ofattice spacings in the time direction, and space volumes ranging
the gauge-adjoint Higgs model. from 128 to 32,
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V(R,0)=-log[G(R,1)], B=2.3, 16>*2 lattice tion cannot yet be answered definitively, there is one very
. . intriguing fact that may be relevant: when gauge transformed
to the minimal Coulomb gauge, thin-vortex configurations
08 | 1 lie on the Gribov horizon, as we now explain.

@t Without vortibes, fund.

V. CONFINEMENT SCENARIO IN COULOMB GAUGE
AND VORTEX DOMINANCE

06 | 00 ©600068 COEEEED D 6D NI AR
=)

In the confined phasf2], and in the deconfined phase,
Fig. 8, one sees clear evidence of a linearly rising color-
Coulomb potential. There is a simple intuitive scenario in the
minimal Coulomb gauge that explains wi,(R) is long
range[14]. In minimal Coulomb gauge the gauge-fixed con-

P > 3 4 5 s 7 s figurations are(three-dimensionally transverse configura-
R tions that lie in the fundamental modular regian In con-
tinuum gauge theoryA is convex and bounded in every

FIG. 9. The effect of vortex removal o¥(R,0) in the decon-  direction[15]. By simple entropy considerations, the popu-
fined phasef=2.3 on a 18x 2 lattice. lation in a bounded region of a high-dimensional space gets

concentrated at the boundary. For example, inside a sphere of
The procedure is to first fix a giVen thermalized lattice Con'radiusR in aD-dimensional space, the radial density is given
figuration to direct maximal center gauge, i.e., the gaugeyy rP-1dr and, forr<R, is highly concentrated near the

which maximizes boundaryr =R for D large. With lattice discretization the
1 2 dimensionD of configuration space is proportional to the
R=, (—Tr[U (x)]) (4.1  Vvolume V of the lattice. Moreover on the boundary the

om \ 2 . Faddeev-Popov operatdt (A)=—V-D(A) has a vanishing

o eigenvalue, as we will se€At large volume it has a high
and carry out center projection density of small positive eigenvalugJhis makes thelcolor-
Coulomb interaction kernel K(x,y;A)=M"*(A)
Zu(x)=sgnTEU,(x)] (4.2 (= V%)M 1(A)],y of long range for typical configurations
that dominate the functional integral. We thus expect that
Veoul[X—Y])=(K(x,y;A)) is long range, although this
qualitative argument is not precise enough to establish that

to locate the vortices. Vortices are then “removed” from the
original configuration by setting

U, ()= UL(X)=Z,(x)U (). 4.3 Vcou(R) rises linearly at largeR, as suggested by the nu-
merical data.
In effect this procedure superimposes a thjvortex inside We shall show that vortex dominance, which is strongly

the thickSU(2) center vortices. The effect of the thin vortex supported by the data just presented, is consistent with this
is to cancel out the long range influence of the thick vortexsimple confinement scenario in minimal Coulomb gauge.
on Wilson loops. It was found that this procedure not onlyMore precisely we shall show that when a center configura-
removes the Wilson loop area law falloff, but also removesfion (defined belowis gauge transformed to minimal Cou-
chiral symmetry breaking, and sends every configuration intdomb gauge it lies on the boundasA of the fundamental
the zero topological charge sec{@i. modular regionA. According to the confinement scenario in

Having removed center vortices from théx 2 lattice, ~mMinimal Coulomb gauge, the probability measure is domi-
thereby removing the area-law falloff of spacelike Wilson nated by points at or near the boundary. So center domi-
loops, we fix the modified configuration to Coulomb gauge,nance, when translated into the minimal Coulomb gauge,
and compute timelike link correlators in order to measuremeans dominance by a subset of configurations on the
V(R,0). The effect is quite dramatic. It was found in R&f] boundarydA. This is a stronger condition than the confine-
that vortex removal in pure gauge theory, in the low-ment scenario in minimal Coulomb gauge, but consistent
temperature confined phase, removes the confinement propith it.
erty of the Coulomb potential. Now we see, from Fig. 9, that Proof of assertionTo simplify the kinematics we give the
vortex removal also removes the confining property of thecontinuum version of the argument. Numerical gauge fixing
Coulomb potential in the high-temperature deconfinemento minimal Coulomb gauge corresponds to minimizing on
phase. This is in accord with the idea that it is the confiningeach time slice the function&(A)=||A||?, with respect to
property of the ensemble of spacelike links at fixed time  local gauge transformations. HefpA||*=[d®x|A|® is the
perhaps, the percolation of center vortices on any time)slicesquare Hilbert norm ofA?. At a minimum, which may be
that is crucial for the confining property of the Coulomb relative or absolute, the first variation with respect to infini-
energy. tesimal gauge transformatior$A;=D;(A)w, vanishes for

It is interesting to ask whether there is some connectiorall o, 6||A||?=2[A;,Di(A)w]=2[A;,d;w]=0, which
between the center vortex confinement mechanism, and othgives the Coulomb gauge conditiapA;=0. Moreover at a
proposals based on the Gribov horizdd]. While this ques- relative or absolute minimum the second variation with re-
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spect to gauge transformations?||A||?=2[D(A);w,diw] lomb gauge of the center configuration, and as such it lies in
=0 is non-negative for alb, which is the statement that the the fundamental modular regiohe A (by definition that
Faddeev-Popov operatorM(A)=—-V-D(A) is non- moreover is included in the Gribov regiohC(), so we
negative. These two conditions define the Gribov redlon  have Ae ). However, the equatiolV-D(A)w"=0 for A
e () means that lies on its boundaryQ. With ACQ it
Q={A:9;A;=0 and—g;D;(A)=0}. (5.)  follows that A lies on the boundaryA of A, at a point

o where the two boundaries touch. We conclude that the gauge
The fundamental modular regioft is the set of absolute transform of a center configuration lies én, as assertedl.

minima with respect to gauge transformations The argument just given also applies to Abelian configu-
o o rations, namely, a configuration that lies in an Abelian sub-
A={A:|[A]|<I[9A]| forall g}. (52 algebra of the Lie algebra. Such a configuration is invariant

L , . ) o under a global (1) gauge transformation. When an Abelian
It is included in the Gribov regiod C{). In the interior of - nfiguration is gauge transformed to the minimal Coulomb
Q all eigenvalues oM (A) are strictly positive\,>0 (apart  ga,ge, it is mapped into a point where the two boundaries
from the trivial null eigenvalue associated with constant;\ 5nd90 touch. But now the equatiob(A)w=0 has, in
gauge transformationgjw=0), and on the boundaryQ)  general, only one linearly independemontrivia) solution,
there is a nontrivial null eigenvect@D;(A)wo=0, and all jnstead ofN?—1. Thus Abelian dominance is also compat-

other eigenvalues are non-negative. _ _ _ible with dominance of configurations on the boundaty.
We call a center configuration any lattice configuration

Z;(x) for which every link variable is a center element
Z.(x) e Z for every link (x,1). The only nonzero action ex-  V!- SU(2) GAUGE-FUNDAMENTAL HIGGS THEORY

citations of center configurations are thin center vortices. e now consider S(2) gauge theory with the radially
Such Conflgurat'?ps are invariant under all global gauggrozen Higgs field in the fundamental representation. For the
transformationgy"Z;(x)g=Z;(x). Now apply an arbitrary ~ g2) gauge group, the lattice action can be written in the
local gauge transformation(x) to the center configuration  form [18]
Zi(x)—V;(x)=h"}(x)Z;(x)h(x+1). We shall taken(x) to
be the gauge transformation that brings the center configura- 1
tion into the minimal Coulomb gauge. In general, the trans- S=p>, —Tfuuutu
formed configurationV;(x) is not an element of the center, plag 2
but it is invariant,V;(x)=g' ~X(x)V;(x)g’ (x+1), with re- 1 R
spect to the gauge transformatiogl (x)=h"%(x)gh(x) +y> ETT[¢T(X)U;L(X)¢(X+ )] (6.9
which, in general, is no longer global. s
We give an infinitesimal characterization of the invariance
of the configurationV;(x) under the gauge transformations With ¢ an SU2) group-valued field. This theory cannot be
g’ (x). The set of global gauge transformations form thetruly confining for nonzeroy, since the matter field can
SU(N) Lie group and they' (x) =exf »(X)] form a represen- screen any charge, and this simply reflects the absence of a
tation of this group. Heravu(x) is an element of the Lie nontrivial global center symmetry. However, at Sufficiently
algebra of SUK). This algebra hadl?—1 linearly indepen- small y there exists a “pseudoconfinement” region, where
dent elementsn"(x), wheren=1,... N2—1, that satisfy the static potentialas measured by the correlator of Polya-
[w'(X),0™(x)]=f™"w"(x). Thus the configurationV;(x) kov loops is linear for some intermediate range of quark
= eXF[Ai(X)]! which is the gauge transform of the center Con_SeparationS before the onset of Screening. At |al'gbere is
figurationZ;(x) into the minimal Coulomb gauge, is invari- & Higgs region, where the linear potential is completely ab-
ant under local gauge transformations wNA— 1 indepen- ~ Sent. It was shown many years ago by Fradkin and Shenker
dent generators".® This is the statement that in continuum [5] that any two points in the Higgs and pseudoconfinement
notation reads\;= A+ eD;(A)w", or D;(A)w"=0. It fol-  regions can be joined by a path in tiey coupling plane
lows that the " also satisfy the weaker conditioR tha}t avoujs all thermodynamm smgul'a'ntles.. Although there
-D(A)w"=0. HereA is the representative in minimal Cou- exists a line of first-order phase transitions in pe/ plane,
this line has an endpoint and does not divide the diagram into
thermodynamically separate phasés.appears as the solid
“The Gribov region() consists of relative minima that are Gribov line in F'Q- 12, belo_\’\)' In_accorq with the Fradk'n'Sher,]ker
copies of the sef\ of absolute minima. Our numerical procedure ©Pservation, numerical simulations suggest that there is only
selects the best Gribov copy obtained from eight random gaug@N€ nhonconfining phase in the gauge-fundamental Higgs
copies; there is no known method for finding the absolute mini-theory.
mum. On theoretical grounds, one expects the sensitivity of our
results to the choice of Gribov copy be sn{dl6]. This expectation
is susceptible to numerical investigation, as has been done recently’It should be noted that the numerical procedure that we have used

for the ghost propagatdd.7]. to remove center vortices is 4 dimensional. The argument given
5The gauge orbit of the center configuration is degenerate and hdre applies in Coulomb gauge to center configurations defined
N?—1 fewer dimensions than a generic gauge orbit. within 3-dimensional time slices.
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In apparent contradiction to this fact, one can make a SU(2) with fund. Higgs, B=2.1
strong case for the existence of a remnant symmetry- 1.2 - - - =7
breaking transition at smaB. We setB=0 so the action is ¥=0.6 v
1 ¥=0.85 +-@- 1
1 'Y=1 2 Bt
— - T + - | d
Sy=72 3T U0+ ). (62 N
0.6 o

We shall show thati) at largevy there is spontaneous break- o % -
ing of the remnant gauge symmetry, associated with the shor i
range ofV¢q,(R), but(ii) at smally there is a linear rise of
Veou(R) at largeR. Thus along the ling3=0 in the 8-y
plane we expect a transition at some finite valueyof

(i) First consider the limity—c. The actionS, is a maxi-

mum whenU ,(X) = ¢(x) #T(x+ ) holds on each link, and
when y gets large,U ,(x) gets frozen at this value. This
configuration is a gauge transform of the identity,(x) FIG. 10. Plot ofQ vs root inverse 3-volume, and extrapolation
=1, and when fixed to the minimal Coulomb gauge the spaef Q to infinite volume in the gauge-fundamental Higgs theory at
tial components get fixed to the identityJ;(x,t) B=2.1 and variousy, above (y=1.2) and below the first-order
=p(x,t)p(x+1,t)=1, for all x andi. Thus¢(x,t) is inde-  transition point around=0.9.
pendent of x. We write ¢(x,t)=g(t), and we have
Uo(x,1)=g(t)g"(t+1), which is also independent of.  —log[H(R)]. The asymptotic fall off in the correlat@®(R,1)
This is the gauge analog of all spins aligned, and we expechould not be more rapid than exponential, so
spontaneous breaking of the remnant gauge symmetry. IfiMg_...l0g[H(R)]=—CcR We thus obtain a linear rise at large
deed, we have Rin V(R,0)~ ocouR, Where the “Coulomb” string tension
is given by

- 1
V=g, g Uo(x,t)=g(t)g'(t+1), (6.3 Toou= — 2 10gy+C. (6.5)

0
0 0.01 0.02 0.03 0.04 0.05

, This is nonzero for smaly. To make this argument rigorous
and the order paramet€) defined above has the val@@ one would have to sho}tv that the expangionGiing) in

=1. This is maximal breaking of the remnan mme- . ]
try s is maximal breaking of the remnant gauge sy epowers of v converges. However, this calculation does

strongly suggest that 8=0 the remnant symmetry is un-
broken for smally whereas, as we have seen, it is broken at
large .8

Returning to the S(2) gauge-fundamental Higgs theory,
we note that the above calculations at large and smailte
easily understood in terms of the Coulomb gauge and center-
L N ) ) dominance scenarios. Indeed, for larggand anyp), the
=(z2 TUo(x,.)Uo(y.1)]), we first integrate over the gage-fixed configurations are at or nek¢x)=1. This con-

(i) Now consider small values of. We shall calculate
the lattice analog of Vg (R), namely, V(R,0)
=—log[G(R,1)], to leading nonzero order ir. The gauge
fixing involves only the spatial link variabled;, and with
the actionS, the integration over th&J, factorizes into a
product over link integrals. To evaluateG(R,1)

Uo(x,t), with the result, to leading order im, figuration is an interior point of the fundamental modular
21 region A. Thus at largey the coupling to the fundamental

GRD = (=TT (x.2) d(x,1) T (y,2 1), Higgs is effective in keeping configurations away from the

RD 16<2 [47(x2)¢(x1)$(y.2) $(y. 1] boundarydA, where the thin vortex configurations are to be

(6.4 found, and where the Faddeev-Popov operator is of long
range. On the contrary, at smallthe coupling to the Higgs
field is ineffective, and entropy leads to dominance of con-
figurations on the boundagA .

Now we turn to numerical simulation. Figure 10 is a cal-
culation of Q vs y at B=2.1, where it is knowr(from the

There are now 4 unsaturatédfields. For simplicity we sup-
pose that X,1) and {,1) are joined by a principle axis,
which we take to be the 1 axis, aftE=|x—y|. The leading
contribution to the¢ integration at smally is obtained by

saturating each link on the line that runs from1) to (y,1) work of Lang et al. [18]) that the first-order transition is

E’y bringing down” from the exponentS, the term .., nq,—009. Below y=0.9, Q seems to extrapolate to
3y Tl p(z.1)U1(21)¢"(z+1,1)], and likewise for the line  zero at infinite volume, while above the transiti@rextrapo-
from (x,2) to (y,2). This gives a facto§?R. The ¢ integra-

tions are now effected. The remaining integration on the spa———

tial link variablesU; is finite because of the gauge fixing. We  8one can make a similar calculation M(R,0) for small 8
cannot evaluate it explicitly, but this last integration does nofstrong couplingin pure SUN) gauge theory. This yields a finite
introduce any furthery dependence. We thus obtain “Coulomb” string tension at smalB given byoc,,= —log 8. This
G(R,1)=y*R*2XH(R). HereH(R) is not known, but it is  suggests that at least in the strong-coupling region there is a “Cou-
independent ofy. This gives V(R,0)=—(2R+2)logy  lomb flux tube” that connects the external sources.
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SU(2) with fund. Higgs, p=0

84 r----e---l--:

164 reeenns g 3 Higgs-like
Q>0

N ——
———.

Confinement-like
Q=0

0 0.5 1 1.5 2

B
FIG. 12. Phase diagram of the &) fundamental Higgs model.
There is a thermodynamic transition andQaremnant symmetry-

breaking transition along the solid line, but only a nonthermody-
namic transition(Kertesz ling along the dashed line.

FIG. 11.Qvs y at 8=0 in the SU2) fundamental Higgs model,
on 8* and 14 lattices. The solid line is the presumed extrapolation
of Q to infinite volume.

lates to a nonzero constant. There appears to be an actushich in Landau gauge must be both sparel time inde-
discontinuity inQ across the whole line of first-ordéther-  pendent. In Ref[4] it was further suggested that the line of
modynami¢ phase transitions in th8-y coupling plane. At remnant symmetry breaking transitions, where it is unaccom-
sufficiently small values of3, there is no thermodynamic panied by a line of thermodynamic transitions, is a Kezte
transition, and we see no discontinuity@as a function of line [19]. A Kertesz line is a line of percolation transitions;

y. What we see instead is th@t0 over a finite range of;, thg original Qxample comes from the Ising model. _In .the
and then, beyond a critical valug=y., Q smoothly in- Ising _model, in the a_b_sence of an exterr]al magnetic field,
creases with increasing Our results foQ vs y at =0, on there is a pha_se transition fromza symmetric toan ordered .
8% and 14 lattices, are shown in Fig. 11; the solid line is the PNase. and this transition can be expressed, in different vari-
presumed extrapolation to infinite volume. If we were deal-ables’ as a transition from a percolating phase at low tem-

! : . o . perature, to a nonpercolating phase at high temperature. In
ing with & spin system, an@ were the magnetization, this the presence of a magnetic field, the partition function and

would clearly represent a second order phase transition. I{h . g )
o : : thermodynamic observables become analytic in temperature;
the present case it is certainly a symmetry-breaking transi-

tion, separating a symmetric region wid=0 from a there is no thermodynamic phase transition. Nevertheless,
broléen-.f mmetgr e ?/on @®>0 9 the percolation transition persists, and traces out a Kerte
y y reg X line in the temperature-magnetic field plane, completely

On the other hand, despite the existence of a symmetry:- . . . X . )
breaking transition, there is no thermodynamic transition Otseparatlng the phase diagram into two regions. But if there is

X - ; a Kertesz line in the gauge-Higgs coupling plane, the ques-
22%""12 datf;(gl' At Fthr:StrY:T:sOrtB .tnhg ffeofer:;égy can be tion is what kind of objects are percolating. Based in part on
pu xactly, wi uit, 1 volu results reported by Bertle and Fal§eo|, Langfeld[4] pro-

posed that the unbroken remnant symmetry region is a region
(6.6) of percolating center vortices, which cease percolating in the
broken symmetry region. There is now very good evidence
for a vortex percolation transition of this kind in gauge-
which is perfectly analytic for ally>0. Thus we have con- fundamental Higgs theory, reported in REZ1].°
firmed the theoretical argument that there must be a remnant Our findings here support the idea that there is some
symmetry-breaking transition even at small but we have physical distinction that can be made between the Higgs and
also found that this transition is not accompaniatismall  the pseudoconfining regions of the gauge-fundamental Higgs
B) by a thermodynamic transition, defined as some degree gihase diagram. In the pseudoconfining region the remnant
nonanalyticity in the free energy. Our result for the line of symmetry is unbroken, the Coulomb potential rises linearly,
critical couplings of the remnant symmetry-breaking transi-and center vortices percolate, while the Higgs region is a
tion is shown in Fig. 12. Along the solid line there is also aregion of broken symmetry, the Coulomb potential is asymp-
thermodynamidfirst-orde) transition, which is absent along totically flat, and center vortices do not percolate. This dis-
the dashed line. tinction appears to exist despite the fact that the two regions
Our result for the gauge fundamental Higgs system is noare thermodynamically connected, as demonstrated by Frad-
entirely new; it was in fact anticipated by Langfeld in Ref. kin and Shenker in Ref5].
[3], who considered a closely related model in Landau
(rather than Coulombgauge. In that work the modulus of
the space-time averaged Higgs field was used as an ordePThe role of Kertsz lines in high-temperature QCD is also dis-
parameter to detect the breaking of remnant symmetryussed by Satz in Ref22].

214(y)

F(y)=4Vlog
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SU(2) with fund. Higgs: B=2.1, v=0.6, 16* SU(2) with adjoint Higgs, 8* lattice
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FIG. 13. Gauge-fundamental Higgs theory: effect of vortex re-

moval in the symmetric(pseudoconfinementphase, 3=2.1, y FIG. 15. (Lack of variation of Qqq With y at =0 in the
=0.6. gauge-adjoint Higgs theory.

Before leaving the gauge-fundamental Higgs theory, wdlata. This rgises imrr_u_ediat_ely the question _of why there is no
should ask what are the effects of vortex removal in thecorresponding transition i, at small 8, in the gauge-
symmetric phase. We already know that the Coulomb poter@dioint Higgs theory. Now in the fundamental-Higgs model,
tial in the fundamental Higgs theory must be confining in thethe transition at smalB appears to be a percolation transi-
symmetric (pseudoconfinemenphase and screened in the tion, as dlgcussed in the previous section. But. the absenpe of
broken phase; the only issue is how the Coulomb potential i§ Percolation transition at lo in the adjoint-Higgs case is
affected in each phase if center vortices are removed. In Fig§aSy to understand. There the Higgs part of the action is
13 and 14 we see the Coulomb potential in the symmetri¢Sensitive to the_ existence o_f thin center vortices, and can-
(8=2.1,y=0.6) and broken g=2.1, y=1.2) phases, re- Notsuppress their condensation at sntaliegardless of the
spectively, before and after vortex removal. In the symmetri¢/alue of y. More concretely, a8=0, the action is invariant
phase, vortex removal by the de Forcrand—D’Elia procedurdvith respect to local transformatioridq(x) —2(x)Uo(X),
sends the Coulomb string tension to zero, as in the highwherez(x)==1, and this immediately implies thg=0 at
temperature phase of pure gauge theory. Deep in the Higggfinite volume, again regardless of the valuejof
phase, on the other hand, the effect of vortex removal is seen On the other hand, if the absence of a remnant symmetry-

to be very minor. breaking transition at low3 is due to large fluctuations of
center elements(x), then one might still expect breaking, at
VIl. THE ADJOINT-HIGGS MODEL REVISITED low 8 and largey, of the S@3)=SU(2)/Z; part of the rem-

nant symmetry group, which is insensitive tdg(x)
We have understood theoretically why there should be a-z(x)Uy(x) fluctuations. The relevant order parameter is
remnant symmetry-breaking transition at smallin the
gauge-fundamental Higgs model, as seen in the numerical

18 1 - -
Qadj:n_ttzl < \/§Tf[Uadj(t)U;dj(t)] . (7D
SU(2) with fund. Higgs: B=2.1, y=1.2, 16*

—a— with vortices ' ' ' ' WhereDadj(t) is the spatial average of timelike links in the
—a— without vortices adjoint representation
08 _
~ 1
06 | Uag(t) = A > Uoad(X1),
5 e S 3 X
o au®
> oal ) . b ! byt
’ . Ug.agf X 1) = ETr[oaUO(x,t)a Ug(x,t)].
02} ] (7.2
Rather surprisingly, there appears to be no transitioQ jg
0 ; : ! ' : : : either, in the adjoint-Higgs model. As we see in Fig. 15, for

data taken on a small“8lattice, there is no sign of any

transition forQ,q; at finite y and 8=0. In fact, Qg is es-
FIG. 14. Gauge-fundamental Higgs theory: effect of vortex re-sentially y independent. Extrapolation @f,q to infinite vol-

moval in the broker(Higgs) phase,3=2.1, y=1.2. ume anywhere in the confined@@E&0) phase is consistent
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SU(2) with adjoint Higgs, confined phase This gives
0.2 : : . .
ol e dre GagX—Y,1)=3C%(x—Y), (7.7
wber B=1.0, y=20.0
015 | rgpa g=0_0, ;3_0 - where
a+b-& 1
T 01t | C(x—y)= §<¢a(x,1)¢a(y,1)> (7.8
g .
is the ¢ propagator within a single time slice. It is calculated
0.05 r using the action within a time slice,
Y ~
0 - - - - Ssice=y 2 TOURG0 P (x+1). (7.9
0 0.01 0.02 0.03 0.04 0.05 X

=V -1/2
s=Vs (The argument that enumerates time slices is suppressed in
FIG. 16. Plot ofQ,q; vs root inverse 3-volume, and extrapolation the following)
of Qqq; to infinite volume, at a variety of couplings in the confined  Step 2: Reduction to U(1) theorylo evaluate the¢
phase, in gauge-adjoint Higgs theory. propagator at large,, we introduce a gauge transformation
g(x) e SU(2) that depends om(x) with the property that
with Q,4=0, as seen in Fig. 16. Thus the transition line forthe group element in the adjoint representation, denoted
Qag;j in the 8-y coupling plane appears to be the same as folR 27 g(x)], is the S@3) rotation matrix that rotates the 3
Qin Fig. 3, but not similar t® in Fig. 12, and this fact calls  direction into the¢ direction, $3(x)=R23[g(x)]. The ac-
for an explanation. tion and correlator are given by
The difference in the phase diagrams of Figs. 3 and 12

occurs at smalpB and largey. To understand this difference Y S R3q-t -~
we setB=0 in the adjoint Higgs actiofi.2) so it reads Ssiice™ 5 — R¥ g™ )U;()g(x+1)]
Y ~
S, =— () U3 D(x+ 1), 7.3 1
077 & POVt 0l 13 Clx-y)= 5 (R¥GIR“[a(y)]). (7.0

and we shall evaluate the equal time correlator in minimal

Coulomb gauge LI'hese expressions are invariant undgix) —g(x)h(x),

whereh(x) is an SU2) element that corresponds to a rota-
1 tion about the 3 axis. So we may average owéx) which
Gag(X—Yy,1) = §Tr[UO,adﬂx,l)Ugyadﬁy,l)] (7.9 results in replacing the integral ove(x) by an integral over
g(x) e SU(2). At largey the functional integral is domi-
for v large. nated by the maximum of the actio®;.., which occurs

Step 1: Integration over I The gauge fixing does not Where R3{g 1(x)U;(x)g(x+1)]=1 holds on each link,
involve theU,, so the integrals over the, factorize, with  namely, whereu;(x)=g~%(x)U,(x)g(x+1) is a rotation
the result on each timelike link about the 3 axis. These rotations form théllUgroup. Thus

R at the maximum of the action the link variables are given by
(Uad)) =M% (x) ¢°(x+0)),

Ui(x)=g(x)ui(x)g~(x+1)

Y
C°~°’*{§) 2 = %u;(x), (7.12)
N ——— = (7.5
sinl-(z) Y whereg(x) e SU(2). Thus U;(x) is an SU2) gauge trans-
2 form of u;(x) e U(1). At large y the U;(x) get frozen into

. this form, and the integral ovey;(x) e SU(2) gets reduced
Here\ has the limiting value. =1 at largey. The correlator 4, integral over Abelian configurationg(x) e U(1). We
f_actoriz_es into a product of expectation values on adjacen, e noted that we may replaggx) by g(x)h(x), where
time slices h(x) e U(1). We usethis freedom to gauge fix the;(x)
1 within the U(1) group of rotations about the 3-axis. Naturally
Gadj(x—y,1)=§<¢a(x,1)¢b(x,2)¢b(y,2)(/ba(y,l)) we choose the minimal Coulomb gauge of1J gauge
theory. Thus the integral over thd;(x) e SU(2) gets re-
1 placed by an integral over gauge-fixed configuratiap(x)
=§<¢a(x,1)¢a(y,1)><¢b(x,2)¢b(y,2)>. eU(1). We designate this set b¥. In continuum gauge
theory, T is the set ofall transverse Abelian configurations
(7.6 Ai3(x). In sharp contrast to the $P) case, in Abelian gauge
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theory there are no Gribov copies. Different transverse conwhereP;, is that probability thatie T lies insideA. This is
figurationsA3(x) are gauge inequivalent, and the eof  independent ok andy, and corresponds to ordered spins. It
gauge-fixed Abelian configuratiorlé‘q?’(x) is the unbounded resembles the calculation with coupling to fundamental
set ofall transverse Abelian configurations, without restric- Higgs fields atg=0 andy large, whereP;,=1. Foru out-
tion to a fundamental modular regiofiChis is a major dif- side A it appears that the solutiog(x,u) of the spin-glass
ference between Abelian and non-Abelian gauge theoriegninimization problem depends in a very irregular and disor-
and is the basis of the confinement scenario in minimal Coudered way onu and x, so C,,(R) decays rapidly,
lomb gauge. limg_Cou(R) =0. With G,4(R,1)=3C?*(R) this gives

Step 3: Integration over the(g). Althoughue T is com-
pletely gauge-fixed by minimizing with respect to loti(1)
gauge transformations, it is not gauge fixed by minimizing
with respect to local S(2) gauge transformations, because
that is a larger group. But our calculation in minimal Cou-

lomb gauge requires that the & configurationUi(X)  Thys, remarkably, a numerical determination ®f(R,1)

= 9Ui(x) € A be completely gauge fixed with respect to local oy ides a direct measurement of the probabifty that a
SU(2) gauge transformations. So for given g(x) is the configurationu e T lies insideA .

unique SU2) gauge transformatioimodulo global gauge The data of Fig. 16 strongly suggest ti@y; extrapolates
transformations that accomplishes this gauge fixing. We (4 ( 4t infinite volume. This is the disordered phase, in which

lim G,q( R,1)=3P2. (7.16

R—oo

write g(x) =g(x;u), and the¢ propagator is given by limg_.-Gag(R,1)=0 holds. This gives
1
—v)= P a3 . a3 .
C(x—y) JTdu (W) gRFLIOW IR T g(y;w) ], lim P, —0. (7.17
(7.12 Voo

whereP(u) is a positive probability density.

Step 4: Integration over the(®). We saw in Sec. V that We have noted that in continuum gauge thearjs bounded
when configurations in an Abelian subgroup are gauge fixedn every direction wherea$ is unbounded in all directions.
they get mapped into the boundai. However, that con- According to the simple entropy estimatep(r)dr
clusion is an overstatement which ignores the fact that some r°~*dr, whereD is the(very high dimension of the space
U(1) configurationsue T lie in the interior of A (although T of transverse () configurations, the fractioR;, of the set
this happens with probability 0, as we shall se&ince inthe T that lies inside the bounded region is negligible, P,
continuum limit A is a subset of transverse 8) configu- —0, as in fact the data indicate, and we have &g,
rationsA®"(x) that is bounded in every direction wherés — 1. Moreover an Abelian configuratiane T that lies out-
is the unbounded set all transverse Abelian configurations side A, gets gauge transformed in the minimal Coulomb
A3Y(x), it follows that some configurationse T lie inside ~ gauge into a configuratiod = 9u that lies on the boundary
A and some lie outsida. Correspondingly we break up the dA, as was shown in Sec. V, so in this instance all the prob-
integral into contributions fronue T inside A, and fromu  ability lies on the boundaryA and the measure of the inte-

e T outsideA, rior vanishes. This exemplifies the simple scenario in Cou-
lomb gauge, according to which confinement occurs when
C(x—y)=Cin(x—=Yy) +Cou{x—Y), the functional integral is dominated by the boundary.

The absence g&=0 of a transition inQ,q asy increases
B 1 . ) a3 _ from 0 to « is now explained. For with coupling to the
Cin(x—y)= fTMdUP(U)§R [gOGWIR*g(y;w], adjoint Higgs field, the measure of ordered spins that would
break the remnant gauge symmetryPis=0 at largey, and
1 the remnant gauge symmetry is preserved. By contrast, with
duP(u)=R [ g(x;u) IR =3[ g(y;u)]. coupling to the fundamental Higgs field forlarge,U;(x) is
A 3 a gauge transform of the identity as we have seen in Sec.
(713 vI. Sincel is certainly inA, thenP;,=1, and the remnant
symmetry is maximally broken. The coupling to the funda-
mental Higgs field at largg keeps configurations away from
the boundarn@A.

Cout(X_Y):J

Forue TN A the unique gauge transformatigrfx,u) that
bringsu inside A is the identity transformation

gix,u)=1; ueTNA. (7.14 Finally we wish to emphasize that with coupling to the
adjoint Higgs field, the numerical resui;,=0 is a direct
This givesR 23[g(x;u)]=R 23[1]= 8,3, and we obtain manifestation of the deep difference between the fundamen-

tal modular regiongdefined by minimizingF[ A] with re-

spect to local gauge transformatigms an Abelian and non-
Cm(x—y)zfuemAduP(u) Abelian gauge theory. The fundamental modular region is
unbounded in every direction in an Abelian gauge theory, but
=Pi,, (7.19  bounded in every direction in a non-Abelian gauge theory.
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FIG. 17. Plot ofQ vs root inverse 3-volume, and extrapolation R

of Q to infinite volume in QELR, for 8=0.7 (confining phaseand

B=1.3 (massless phase FIG. 19. The potentia¥/(R,0) in QED, at 3=1.3, on several*

lattice volumes.
VIll. COMPACT QED

Although in the preceding sections we have considered " extracted fronv(R,0) appears to be nonzero on each of
only the theories with a non-Abelian $2) gauge invari- the;e Ia}ttlceiwhlch cannot_ be correct fqr the .Coulomt.) po-
ance, there is no barrier to studying remnant symmetry€ntial in the weak-coupling regimethis string tension
breaking in an Abelian model such as compact QER this ~ drops very markedlyby about 1/3 with each doubling of
model we have confinement at strong couplings and a mas&e lattice volume. This volume dependence of the string
less phase at weak couplings, with a transition between thénsion is very different from what we have observed for the
two phases at approximatefy=1. In Fig. 17 we show our non-Abelian theories in various phases. For the Abelian
results for(the Abelian analogue diQ at 3=0.7, which is  theory, the expected resut,,=0 is presumably recovered
inside the confinement phase, and@st 1.3, which lies in  in the large volume limit. In fact, from the value 6 ex-
the massless phase. The results are as expe@tedirapo- trapolated to infinite volume, we can estimate that on a large
lates nicely to zero at infinite volume in the confined phaselattice V(R,0) should be bounded, very roughly, by
and appears to extrapolate to a nonzero value in the masslessn(Q?)~1.6 at largeR. This bound implies tha¥(R,0) has
phase. Figure 18 is a plot ®(R,0) vs charge separatidhat  to level out in large volumes, resulting inco,=0.

B=0.7 on variety of hypercubic lattice volumes'. Note What we learn from the weak-coupling case is that
that the potential is insensitive to changes in lattice volumey/(R 0) may have very significant lattice size dependence in
and that deviations from the linear potential, where they argneories such as QEDn the massless phase, where the cor-
statistically S|gn|f|can't, arise from the lack of rotation invari-  a|ation length is largécomparable to lattice sizer infinite.
ance at strong couplings. It is therefore important to computé(R,0) on a variety of

The situation changes drastically in the massless phase Rlitice sizes. and to extrapola@to infinite volumes. as we
B=1.3, where our results fok(R,0) are displayed for have done i,n the precedirr:g ﬁtions '
54 104, and 20 lattices in Fig. 19. Although the string ten- '

9 T
8l : | IX. TRANSLATION TO TEMPORAL GAUGE
N ¥ AND STRINGLESS STATES
! Llf10 x o ¥ = In this section we shall show how to translate back and
61 '[;;3 . ; x 7 forth between the minimal Coulomb gauge and the temporal
55¢F 1 gauge,Ap=0, so the measurements reported here have an
D;f al 5 | equivalent description in the temporal gauge. Both of these
LI gauges are compatible with a Hamiltonian formulation and a
3r " 1 physical transfer matrix. Moreover the temporal gauge is in-
ol | variant under all space dependent but time-independent
.l " ] gauge transformationg(x), wherex is a 3-vector, and it
may be helpful to express things in a more gauge-invariant
0 . : . L . : . way. We shall see that the state obtained here by numerically
0 0.5 1 15 2 25 3 35 4

gauge-fixing to the minimal Coulomb gauge becomes, after

translation into temporal gauge, a “stringless” state of the
FIG. 18. The potentiaV/(R,0) in QED, at 3=0.7, on a variety type introduced by Lavelle and McMulldiT] that does not

of L* lattice volumes. involve a Wilson line joining the sources.
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A. Temporal gauge

— *
In temporal gauge the continuum Hamiltonian has the ca- (\Pl'\IIZ)_J dAWT (A)W2(A) ©.8

nonical form
diverges due to the local gauge invariance of the wave-

3 o oo functionals. Gauge-fixing is required to correctly normalize

H= > d°x(E*+B%). (9.1 the wave functionals in temporal gauge. We do this by ap-
9 plying the Faddeev-Popov formula to gauge-invariant inner
products. For this purpose we parametrize configurations by

Here the spatial componemg(x) of the vector potential are A= 9A". whereA" is the representative @ in the minimal

canonically conjugate to the color-electric field operator tr ! ; o

E2(x) = i[ 6/ SAR dB2= g AR+ Lfabcabac Coulomb gauge, sé\" e A is a transverse configuration in
=il 1 ()], andBy'= e (9;A + 2 iAW) the fundamental modular region. The Faddeev-Popov for-
The color-charge density of the static quarks does not aPhula gives

pear inH becaused,=0. Instead it appears in the generator

of local space-dependent gauge transformations

(lPl,\Ifz):f dA"detM (A" W (AN W,(A"). (9.9

A

G#(x)=—D*(A)-E*(x) + pg(x), 9.2
where Here M(A")=—V-D(A") is the Faddeev-Popov operator,
which is symmetric and positive fok" e A. The right hand
pa(x) =t78(x—X1) +158(x—X5) (9.3  side is the inner product in minimal Coulomb gauge. Thus, in

the 3-dimensional operator formalism, the minimal Coulomb
is the color-charge density of a pair of external quarks,at gauge is a gauge-fixingvithin the temporal gauge of the
andx,. The wave functionall’ , 5(A) bears the color indices 3-dimensional local gauge invariance, and the wave func-
of the external quarks, on which the quark charge vectors adional in minimal Coulomb gauge is the restriction of the

according to wave-functional in temporal gauge to the fundamental modu-
lar regiort®
(V) ap=10,V 15, (GV)op=—15¥,,, (9.9
VoA =T (A"), AfeA. (9.10
where thet? form the basis of an irreducible representation
of the Lie algebra of SW{), [t t"]=if2"%C. One may Conversely, the gauge invariance of the wave functional
verify that G(w) = [d®xw?(x) G?¥(X) generates an infinitesi- in temporal gauge defines the unique extension of the wave
mal gauge transformation functional in minimal Coulomb gauge into a wave functional
in temporal gauge. We parametrize an arbitrary configuration
[G(w),AM]=iD 0", by A= 9A", whereA"e A, andg(x;A) andA"(x;A) depend
on the configurationA. The existence and unigueness of
[G(w),Ef]zifabcEiwa, these quantities at the nonperturbative level is ass(witt
lattice regularizationby the existence of an absolute mini-
[G(w),pg]:ifabcpgwc_ (9.5 mum with respect to gauge transformations B/(Q)

—||9'AJ|2. From Eq.(9.7) above we obtain, in matrix no-
This transformation leavebl invariant,[G(w),H]=0, so tation
we may choose wave functionals that transform irreducibly
under the local gauge group. Physical wave functionals are W(A)=W[9A"]

required to satisfy the subsidiary condition
q fy Y =9(x1 ;A YA A IgT (%23 A), (9.11

G(x)¥ =0, (9.6 : N :
which expresses the wave functional in temporal gauge in
. P
which is both Gauss’ law and the statement that the wav&eMs of the wave functional’(A") in minimal Coulomb

functional is gauge invariant. This condition determines thed@uge. The gauge transformatiglix;A) that is found nu-
gauge-transformation properties of the wave functional ~ Merically when gauge fixing to the minimal Coulomb gauge
has reappeared in the wave functional in the temporal gauge.

W(9A)=g(x1) ¥ (A)gT(x,), (9.7) For completeness, we note that a quick way to obtain the
Hamiltonian in Coulomb gaug8] is to apply the Faddeev-
where we use matrix notation for the quark color indices, and®opov formula to the matrix elements Bf,
IA=gAg'+gag".

1070 avoid confusion we note that the two conditiohg=0 and
d,A;=0 can be imposed at fixedtime, which is sufficient for the
The continuum temporal gauge does not really provide &-dimensional operator formalism. They cannot both be maintained
well-defined quantum mechanics because the inner produgir all time, and in the 4-dimensional Feynman path-integral for-
for gauge-invariant wave functionals malism in Coulomb gauge one maintaif\é;=0, butA,#0.

B. From temporal gauge to minimal Coulomb gauge and back
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D. Stringless states

a a — tr tr ) * . .
(ENV1 BT JAdA detM(AD)(EiW )" EiW ol a-n A wave functional of typ&9.20), with ®,(A) an arbitrary

(9.12 gauge-invariant scalar function, has been considered before
_ _ ~[7]and was called a “stringless” staté The motivation for
From this formula the mgtrlx elements of the .Hamlltqr_llan INconstructing this state was that it has the correct gauge-
Coulomb gauge are easily found orgel [y av is specified.  transformation properties, which is equivalent to Gauss’ law
To evaluateE; V| ar We solve Gauss’ law for the longitu- peing satisfied exactly. Moreover in QED, with external
dinal part of the color-electric field. We writd;=E{  charges only, the stringless state is the exact wave functional,
—di¢, where¢?(x) is the color-Coulomb potential operator, with g(x;A)=exdi(V?)~'V-A]. This leads us to expect that

andE['=i( 5/ 5A") satisfies in QCD the stringless state becomes exact at short distance
|x—yl|. Thus the stringless state has several attractive prop-
[Eia’tr(x),A,b’tr(y)]:i[5ij —3,9;(9%) " 118(x—y) 8. erties.
9.13 The stringless state was originally constructed using a

perturbative expansion fa(x;A). This expansion does not
converge forA" outside the fundamental modular regidn
— D,V +A X Eitr\l,:pqq,' (9.14 However, as we have noted, the existencg(f;A) at the
nonperturbative level is assured by the minimization proce-
where (XX Y)2=fab°XPY¢ is the Lie bracket. We solve for dure, andg(x;A) is the gauge transformation that we have

the color-Coulomb potential found numerically.
Since our numerical data strongly suggest tat,(R)

(X)W ar=[M A" p](x) W (AY), (9.15 rises linearly, it appears from E.20 that the “stringless”
state of quarks manifests a finite string tensig,, at large
where A"e A. Here M(A")=—D(A")-9=—49-D(A") is  separation. Our numerical finding is that this string tension

Gauss’ law in temporal gauge reads

the Faddeev-Popov operator, and exceeds the standard string tensiorby oco,~30. This
provides a measure of the extent to which the stringless state
p=—AXE{"+pq (9.16  (9.20 fails to be the exact ground state of a pair of external
uarks.
is the total color-charge density of quarks and dynamicalq
gluons. This gives the desired expression X. CONCLUSIONS
EiW[acar=[E =M (A)p]¥(A"),  (9.17) In this article we have shown that the confining property
of the color-Coulomb potential is tied to the unbroken real-
which is to be used in Eq9.12). ization of a remnant global gauge symmetry in Coulomb
gauge. We have studied this type of confinement numerically
C. Energy in Coulomb gauge is energy in temporal gauge in SU(2) gauge-Higgs theories, and in pure gauge theory at

The quantity we have measured is the expectation valug?"o and at finit.e tgmpera_tures.. Confinemgnt in thg color-
Coulomb potential is not identical to confinement in the
(Hcou) —Eo=Veoul[X—Y|) + Ese (9.19  static quark potential. We have seen that the c_Jeconfined
phase in pure gauge theory, and the pseudoconfinement re-
in the state with wave-functional in minimal Coulomb gaugegion of gauge-fundamental Higgs theory, are instances in
which the color-Coulomb potential is asymptotically linear,
1 even though the static quark potential is screened. In terms of
W p(A) = —=6,5P0(A"), (9.19  symmetries, the point is that center symmetry breaking,
V2 spontaneous or explicit, does not necessarily imply remnant
symmetry breaking.
The existence of a confining color-Coulomb potential, in
ses where the static quark potential is screened, has some

where®,(A") is the vacuum state of pure glue.
We translate this back into temporal gauge. From Edca
(9.11) we obtain

‘I’aﬁ(A): i[g(xl;A)gT(Xz;A)]aﬁ(I)O(A)y (9.20 l?It was callt;,\d “s_tringless" because in its construction the thin
\/5 string, Pexp(inAidX), was replaced by (x;;A)g"(x,;A) which
. ) transforms in the same way under gauge transformation. It was
where we have used the gauge invariance of the vacuumygued that the thin string has infinite energy, whereas the “string-
state of pure glue®o(A")=dy(9A")=dy(A). Thus the |ess” state has finite energgfter ultraviolet renormalizatiorand is
quantity we measure may equivalently be described as thgpetter approximation to the correct hadron state. However, vkhen
expectation-value of the Hamiltonian in temporal gaugelies on a degenerate orbitA=A for someh(x) #1, the parametri-

with this wave functional zationA= 9A" is singular. As a result the stringless wave functional
is singular for such configurations, which may raise its energy sig-
(V,HP)—Ep=Vcou(|X—Y]) + Ese. (9.21 nificantly.
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bearing on the question: In what sense does confinement We have also uncovered a strong correlation between the
exist in real QCD, with dynamical quarks? The problem ispresence of center vortices and the existence of a confining
that in gauge theories with matter fields in the fundamentafoulomb potential. Thin center vortices, as pointed out
representation, such as real QCD, there is no nontrivial cergbove, lie on the Gribov horizon. In every case where we
ter symmetry, and no possibility of having an asymptoticallyfind @ confining Coulomb potential, we also find that re-
confining static potential. Further, in gauge theories with gmoval of center vortices takes the Coulomb string tension to
scalar matter field in the fundamental representation, there &r0- In related work on the S2) gauge-fundamental Higgs
no local order parameter that can distinguish between thH1€0MY: it was suggested], and recently verified21], that

: : o rtices percolate throughout the lattice in the pseudocon-
Higgs and confinement phases, and the Fradkin-Shenk lEed phase, and do not percolate in the Higgs phase. These

theorem assures us that there is no thermodynamic transmoﬁ ases correspond to regions of unbroken and broken rem-

O e o 2 i hant symmery, nich are competely separated by  perco-
P ’ 99 lation transition located along a Keszline.

mental difference between real QCD and(SLbauge theory There are many open questions. Presumably the linear

Isnm?)oTr:?g?roprEatSh% ::g tlrgesof;oq[lg tﬁi g?hses:btl)e ;oC'S:ﬁirrf)&l)%t%olor-Coulomb potential is associated with a flux tube of
y y y SIongitudinal color electric field. If this is really so, does the

change of parameters. : : . tube have stringlike properties; i.e., roughening and a-Lu
The results reported in this paper suggest otherwise. In . . .

) X ) ' cher term? Sincercy, IS several times greater than the

gauge theories with matter fields in the fundamental repre: .
. ’ . y i Coulomb flux tube must be an excited state. By what mecha-
sentation, the “confinement” phase and the Higgs phase are._ . ! : e
T . A nism is the string tension of the minimal energy flux tube
distinguished by the symmetric or broken realization of a

remnant gauge symmetry. Remnant symmetry breaking i%educed below the value,, of the Coulomb flux tube?
not accompanied by nonanalyticity in the free energy, never: oes this mechanism involve production of constituent glu-

theless thénonloca) order paramete® is directly related to ons, along the lines of the gluon-chain mof#d], or is some
) A L other process at work? We hope to address some of these
the color-Coulomb potential, which is confining in tl@

=0 phase. Thus, in real QCD, the gluon propagator in coutsstesina future investigation.
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