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Coulomb energy, remnant symmetry, and the phases of non-Abelian gauge theories
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We show that the confining property of the one-gluon propagator, in the Coulomb gauge, is linked to the
unbroken realization of a remnant gauge symmetry which exists in this gauge. An order parameter for the
remnant gauge symmetry is introduced, and its behavior is investigated in a variety of models via numerical
simulations. We find that the color-Coulomb potential, associated with the gluon propagator, grows linearly
with distance both in the confined and—surprisingly—in the high-temperature deconfined phase of pure Yang-
Mills theory. We also find a remnant symmetry-breaking transition in SU~2! gauge-Higgs theory which com-
pletely isolates the Higgs region from the~pseudo!confinement region of the phase diagram. This transition
exists despite the absence, pointed out long ago by Fradkin and Shenker, of a genuine thermodynamic phase
transition separating the two regions.
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I. INTRODUCTION

It is well known that the phase transition from a confin
to an unconfined phase in a non-Abelian gauge theor
associated with the breaking of global center symmetry.
nontrivial center symmetry exists and is unbroken, th
Polyakov line expectation values are zero, and as a co
quence the free energy of a static color charge is infinite
an infinite volume. But the confined phase may be associ
with other global symmetries as well. In this article we w
focus on the remnant gauge symmetry which is found a
imposing the Coulomb gauge. What is interesting about
symmetry is that its unbroken realization implies the ex
tence of a confining color-Coulomb potential, and this in tu
is a necessary~but not sufficient! condition for confinement.

The color-Coulomb potential arises from the energy of
longitudinal color-electric field in Coulomb gauge, and co
responds diagrammatically to instantaneous dressed
gluon exchange between static sources. We have previo
studied this potential numerically in pure lattice Yang-Mi
theory at zero temperature, and found that the potential r
linearly with color charge separation@1,2#, albeit with a
string tensionsCoul which is significantly higher~by about a
factor of 3 @2#! than the string tensions of the static quark
potential. In this article we introduce an order parameter
remnant gauge symmetry breaking and study its behavio
well as the behavior of the color-Coulomb potential, in t
following cases.

~1! SU~2! gauge-Higgs theory, with the Higgs field in th
adjoint representation.

*Electronic address: greensit@stars.sfsu.edu
†Electronic address: stefan.olejnik@savba.sk
‡Electronic address: daniel.zwanziger@nyu.edu
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~2! Pure SU~2! gauge theory, in the confined and the hig
temperature deconfined phases.

~3! SU~2! gauge-Higgs theory, with the Higgs field in th
fundamental representation.

~4! Compact four-dimensional QED (QED4).

In the first, second, and fourth theories the action ha
nontrivial global center symmetry, which may be brok
spontaneously in some range of couplings or temperature
the third case center symmetry is explicitly broken, and
asymptotic string tension vanishes at all couplings. By stu
ing these different cases, we can explore to what extent r
nant symmetry breaking is correlated with center symme
breaking, and whether the confining Coulomb potential
always associated with a confining static quark potential.

This article is organized as follows. In Sec. II we intr
duce the remnant symmetry order parameter, and relate
the confining properties of the color-Coulomb potential. W
also examine scaling ofsCoul with b. Section III concerns
the gauge-adjoint Higgs model, where we find perfect cor
spondence between remnant symmetry and center symm
breaking. But this correspondence is lost already in p
Yang-Mills theory at high temperature, studied in Sec.
where we find that Coulomb confinement and unbroken re
nant symmetry persist in the deconfined phase. A poss
explanation of this phenomenon is discussed. In Sec. V
review the Gribov confinement scenario in Coulomb gau
and show that it accords with the vortex dominance scena
by gauge transforming from the maximal center gauge to
minimal Coulomb gauge. In Sec. VI we present our resu
for the gauge-fundamental Higgs model, where the gau
Higgs interaction breaks global center symmetry explicit
In this case we find very clear numerical evidence of a re
nant symmetry-breaking transition which is unaccompan
by a true thermodynamic phase transition, and also argue
the existence of such a transition from a lattice stron
©2004 The American Physical Society06-1
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coupling analysis. This result is in complete accord with
earlier work of Langfeld@3,4#, which found remnant symme
try breaking in Landau gauge, and it implies that a sh
distinction can be made between the Higgs and
~pseudo!confining regions of the gauge-Higgs couplin
plane. This distinction exists despite the fact, pointed out
Fradkin and Shenker@5#, that these regions are continuous
connected in the usual sense of thermodynamics. The r
nant symmetry breaking in the adjoint Higgs theory is re
amined in Sec. VII, where we draw some conclusions ab
the measure of Abelian configurations in the fundamen
modular region. Our methods are applied to compact QE4
in Sec. VIII.

As in the previous work of Ref.@2#, we also investigate
numerically the relevance of center vortices to the existe
of a confining Coulomb potential, particularly in the hig
temperature deconfined phase of pure Yang-Mills theory,
in the ~pseudo!confined phase of gauge-fundamental Hig
theory. In Sec. V it is shown that thin center vortices lie
the Gribov Horizon, which may be relevant to their drama
effect on the Coulomb potential. Vortex removal, by the
Forcrand–D’Elia procedure@6#, is found in every case to
convert a confining Coulomb potential to a nonconfinin
asymptotically flat potential.

In Sec. IX, we provide a 2-way translation between t
temporal gauge (A050) and the minimal Coulomb gauge
This allows our measurements, which are made by gau
fixing to the minimal Coulomb gauge, to be equivalen
described in temporal gauge. We show that the state in w
our measurements are made is, in temporal gauge, a qu
pair state of the type introduced by Lavelle and McMull
@7#. It has correct gauge-transformation properties, altho
it does not make use of Wilson lines running between
sources. Section X contains some concluding remarks.

II. COULOMB ENERGY AND REMNANT SYMMETRY

On the lattice, minimal Coulomb gauge consists of fixi
to the configuration on the gauge orbit maximizing the qu
tity

R5(
x,t

(
k51

3

Tr@Uk~x,t !#. ~2.1!

Maximizing R does not fix the gauge completely, since the
is still the freedom to perform time-dependent gauge tra
formations

Uk~x,t !→g~ t !Uk~x,t !g†~ t ! ~k51,2,3!,

U0~x,t !→g~ t !U0~x,t !g†~ t11!. ~2.2!

To understand the role of this remnant gauge symmetry, c
sider a stateCq

a obtained by operating on the lattice Yan
Mills vacuum stateC0 ~i.e., the ground state of the Coulom
gauge transfer matrix! with a heavy quark operatorqa

Cq
a@x;A#5qa~x!C0@A#. ~2.3!
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Evolve this state for Euclidean timeT,nt , wherent is the
lattice extension in the time direction. Dividing out th
vacuum factor exp@2E0T# and taking the inner product with
Cq

b@x;A#, we have

Gba~T!5^Cq
bue2(H2E0)TuCq

a&

5(
n

^Cq
buCn&^CnuCq

a&e2(En2E0)T

5Ge2mqT^Lba~x,1,T!&, ~2.4!

where indexn refers to summation over charged ener
eigenstates,mq→` is the heavy quark mass,G is a numeri-
cal factor, andL(x,t1 ,t2) is a Wilson line

L~x,t1 ,t2!5U0~x,t1!U0~x,t111!•••U0~x,t2!. ~2.5!

In a confining theory, the excitation energyDEn5En2E0 of
any stateCn containing a single static quark must be infinit
It follows thatGba(T)50, and therefore that the expectatio
value of any timelike Wilson lineL(x,1,T) must vanish.
Now, under the remnant gauge symmetry,L transforms as

L~x,t1 ,t2!→g~ t1!L~x,t1 ,t2!g†~ t211!. ~2.6!

If T5t22t111 is less than the lattice extensionnt in the
time direction, then not onlyL but also Tr@L# is noninvariant
under the remnant gauge symmetry.1 If the remnant symme-
try is unbroken, then̂L& must vanish. The confining phase
therefore a phase of unbroken remnant gauge symmetry;
unbroken remnant symmetry is a necessary condition
confinement.

There are several issues which require some further c
ment. First of all, why is unbroken remnant symmetry n
also asufficientcondition for confinement? The answer
that in an unconfined phase, where there exist finite ene
states containing a single static charge in an infinite volum
there is still the possibility that these finite energy states h
vanishing overlap withCq

a as defined in Eq.~2.3!. Thus
^L&50 and unbroken remnant symmetry could be found,
principle, also in the absence of confinement. Secondly,
obviously impossible to insert a single charge in a finite v
ume with, e.g., periodic boundary conditions; electric fie
lines starting from the static charge must end on some o
charge, regardless of whether or not the theory is in a c
fining phase. How, then, is this fact reflected in the remn
symmetry-breaking criterion? The same question can
raised in connection with Polyakov lines, and the answe
the same: Strictly speaking, spontaneous symmetry brea
cannot occur in a finite volume, so^L&50 always, consisten
with the absence of an isolated static charge. Neverthe
~again similar to Polyakov lines!, it is possible to construc
an order parameter which detects the infinite-volume tra
tion via finite-volume calculations which are subsequen

1If T5nt , then L is a Polyakov line, whose trace is invarian
under gauge transformations, but noninvariant under global ce
transformations.
6-2
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extrapolated to infinite volume.2 We will construct such an
operator below. Finally, there is the question of Elitzu
theorem. Although the remnant symmetry is global on a ti
slice, it is local in the time direction, and according to t
theorem local symmetries cannot break spontaneously
how could we ever havêL&Þ0, even in an infinite volume?
The answer is that in fact the average value ofL(x,t,T1t)
does indeed vanish on an infinite lattice, in accordance w
the Elitzur theorem, providing the averaging is done over
spatialx and all timest. On a time slice, however, the sym
metry is only global, and it is possible in any given config
ration that the average value ofL(x,t,T1t) is finite on an
infinite lattice, when averaged over allx at fixedtime t. This
is what we will mean by the phrase ‘‘spontaneous break
of the remnant symmetry,’’ and it involves no actual viol
tion of the Elitzur theorem.

With these points in mind, we propose to construct
order parameter for remnant symmetry breaking from
timelike link variable averaged over spatial volume at fix
time. Let

Ũ~ t !5
1

V3
(

x
U0~x,t !, ~2.7!

whereV35nxnynz is the 3-volume of a lattice time slice. I
remnant symmetry is unbroken, thenŨ(t)501O(1/V3

1/2) in
any thermalized lattice configuration. The order parameteQ
is defined to be, for SU~2!,

Q5
1

nt
(
t51

nt KA1

2
Tr@Ũ~ t !Ũ†~ t !#L . ~2.8!

ThenQ is positive definite on a finite lattice, and on gene
grounds

Q5c1
b

AV3

, where H c50 in the symmetric phase,

c.0 in the broken phase.
~2.9!

If Q extrapolates to a nonzero value asV3→`, then the
remnant symmetry in Coulomb gauge is spontaneously
ken.

Next, we make the connection between unbroken remn
symmetry and the existence of a confining Coulomb pot
tial. We first recall that the Hamiltonian operator in Coulom
gauge has the formH5Hglue1HCoul where, in the con-
tinuum

Hglue5
1

2E d3x~J 21/2EW tr,aJ•EW tr,aJ 21/21BW a
•BW a!,

HCoul5
1

2E d3xd3yJ 21/2ra~x!JKab~x,y;A!rb~y!J 21/2,

Kab~x,y;A!5F 1

¹•D~A!
~2¹2!

1

¹•D~A!G
xy

ab

,

2In the case of spontaneous center symmetry breaking, the
cepted order parameter on a finite lattice is the absolute value o
spatial average of Polyakov lines.
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tr,c ,

J5det@2¹•D~A!# ~2.10!

and the factors ofJ arise from operator ordering conside
ations@8#. It is understood thatA is identically transverse in
Coulomb gauge,A5Atr. Note that J commutes with all
quantities exceptEtr, and in particular withrq(x) and
Kab(x,y;A). The expectation value ofK(x,y;A) is the in-
stantaneous piece of the^A0A0& gluon propagator, i.e.,

^A0
a~x!A0

b~y!&5D~x2y!dabd~x02y0!1non-instantaneous,

D~x2y!dab5K F 1

¹•D@A#
~2¹2!

1

¹•D@A#G
x,y

a,bL ,

~2.11!

as shown in Ref.@9#. We see from these expressions that t
Coulomb interaction energy between two charged st
sources is given by instantaneous~dressed! one-gluon ex-
change.

Now consider a physical state in Coulomb gauge conta
ing massive quark-antiquark sources

uCqq&5q̄~0!q~R!uC0& ~2.12!

which is invariant under the remnant symmetry. The exc
tion energy is

E5^CqquHuCqq&2^C0uHuC0&

5VCoul~R!1Ese, ~2.13!

whereEse is anR-independent constant, on the order of t
inverse lattice spacing, to be specified below. TheR depen-
dence ofE can only come from the expectation value of t
nonlocal quark-quark part of the Hamiltonian

Hqq5
1

2E d3xd3yrq
a~x!Kab~x,y;A!rq

b~y!. ~2.14!

Thus theR-dependent pieceVCoul(R) can be identified as the
Coulomb potential due to these static sources. Moreover,
same kernelK(x,y;A) appears inHqq and in the instanta-
neous partD(x) of the ~dressed! one-gluon propagato
^A0A0&. This yields the formula

VCoul~ uxu!1Ese5Cr@D~0!2D~x!#, ~2.15!

whereCr @53/4 for the SU~2! gauge group# is the Casimir
factor in the fundamental representation.

The correlator of two Wilson lines can be expressed
terms of the Hamiltonian operator and the stateCqq as fol-
lows:

G~R,T!5 K 1

2
Tr@L†~x,0,T!L~y,0,T!#L

5^Cqque2(H2E0)TuCqq&, ~2.16!

whereR5ux2yu, andL is now the timelike Wilson line in
the continuum theory. We have

G~R,T!5(
n

u^CnuCqq&u2e2DEnT ~2.17!

c-
he
6-3
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and we define the logarithmic derivative

V~R,T!52
d

dT
log@G~R,T!#. ~2.18!

It is easy to see that the Coulomb energy is obtained aT
→0, i.e.,

E5VCoul~R!1Ese

5V~R,0!. ~2.19!

The minimum energy of a state containing two static qu
antiquark charges, which in a confining theory would be
energy of the flux tube ground state, is obtained in the op
site T→` limit

Emin5V~R!1Ese8

5 lim
T→`

V~R,T! ~2.20!

and in this limitV(R) is usual static quark potential.
The idea of using the correlator of timelike Wilson line

to compute the static quark potential, in Coulomb gauge
the lattice, was put forward some years ago by Marin
et al. @10#. These authors also noted that the remnant s
metry in Coulomb gauge is unbroken in the confining pha

We now recall an inequality first pointed out by one of
~D.Z.! in Ref. @11#. With a lattice regularization,Ese andEse8
are finite constants. In a confining theory, both of these c
stants are negligible compared toV(R), at sufficiently large
R. But sinceEmin<E, it follows that

V~R!<VCoul~R! ~2.21!

asymptotically. The intriguing implication is that if confine
ment exists at all, then it exists already at the level of dres
one-gluon exchange in Coulomb gauge. But we also see
because the Coulomb potential is only an upper bound on
static potential, a confining Coulomb potential is a necess
but not a sufficient condition for the existence of a confini
static quark potential.

On the lattice, the continuum logarithmic derivative in E
~2.18! is replaced by

V~R,T!5
1

a
logF G~R,T!

G~R,T1a!G , ~2.22!

wherea is the lattice spacing. In particular, in lattice uni
a51,

V~R,0!52 log@G~R,1!#

52 logF K 1

2
Tr@U0~x,1!U0

†~y,1!#L G , ~2.23!

and at largeb, where the lattice logarithmic derivative ap
proximates the continuum,V(R,0) provides an estimate o
the Coulomb potentialVCoul(R) ~up to an additive constan
Ese).
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In Eq. ~2.23! the relation between the confining proper
of the Coulomb potential, and the unbroken realization
remnant symmetry, is manifest. For ifQ→0 at infinite vol-
ume, then also

lim
R→`

^Tr@U0~x,t !U0
†~y,t !#&5 lim

V3→`
^Tr@Ũ~ t !Ũ†~ t !#&

50 ~2.24!

in which case the potentialV(R,0) rises to infinity asR
→`. Conversely, ifQ.0, then the limit in Eq.~2.24! is
finite, and V(R,0) is asymptotically flat. SinceVCoul(R)
'V(R,0) is an upper bound on the static quark potential,
see again that unbroken remnant symmetry is a necessar
not sufficient condition for confinement.

V(R,T) has been computed numerically for pure SU~2!
lattice gauge theory at a range of lattice couplingsb in Ref.
@2#. We recall the essential results.

~1! V(R,T) increases linearly withR at largeR and allT,
at any coupling.

~2! The associated string tensions(T) converges~from
above! to the usual asymptotic string tensions, at any given
b, asT increases.

~3! At weaker couplings, the Coulomb string tensio
sCoul[s(0) is substantially greater~by about a factor of
three! than the asymptotic string tension.

~4! Removing center vortices from lattice configuratio
~by the de Forcrand–D’Elia procedure@6#! sendss(T)→0
at all T, including the Coulomb string tensionsCoul→0 at
T50.

In the following sections we extend the investigation
models including scalar matter fields, and to SU~2! gauge
theory across the high-temperature deconfinem
transition.3 First, however, we would like to remark on th
scaling properties ofsCoul's(0) in pure SU~2! gauge
theory at zero temperature. The ratio of the CoulombT
50) to the asymptotic (T→`) string tensions, reported in
Ref. @2#, varies somewhat withb in the range (b
P@2.2,2.5#) of couplings investigated. The ratios(0)/s
tends to rise in this interval, as shown in Fig. 1. However
is known thats does not quite conform to the two-loo
scaling formula associated with asymptotic freedom, in
range ofb we have studied, and it is always possible th
scaling sets in at different values ofb for different physical
quantities. What we find is that when our values fors(0) are
divided by the asymptotic freedom expression

F~b!5S 6p2

11
b D 102/121

expS 2
6p2

11
b D ~2.25!

3A note on gauge fixing to Coulomb gauge: In this investigati
we generate eight random gauge copies of each lattice config
tion, and carry out gauge-fixing on each configuration by ov
relaxation for 250 iterations. The best copy of eight copies is th
chosen, and the over-relaxation procedure is continued until
average value of the gauge-fixed links has changed, in the las
iterations, by less than 231027.
6-4
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relevant to the SU~2! string tension, the ratios(0)/F(b) is
virtually constant as seen in Fig. 2. This fact suggests
scaling according to asymptotic freedom may set in ear
for the Coulomb string tensionsCoul's(0) than for the
asymptotic string tensions.

A. Divergent constant in D„R…

We would also like to remark, at this stage, on a subtl
in identifying the color Coulomb potential with dressed on
gluon exchange.4 The energy expectation value of the sta
qq̄ state, E(R)5VCoul(R)1Ese, is finite for finite quark
separationR and finite lattice spacinga; in fact we have
calculated this quantity@5V(R,0)# numerically. So it might
seem natural, from Eq.~2.15!, to identify theR-dependent
Coulomb interaction energy asVCoul(R)52CrD(R). That
cannot be quite right, however. The reason is that1

2 CrD(0)
is the energy of anisolatedquark state in an infinite volume
it is the energy we would extract from the logarithmic tim

derivative ofG(T)5^ 1
2 Tr L(0,0,T)&. In the case of unbro-

ken remnant symmetry we haveG(T)50, and therefore
1
2 CrD(0)5` in an infinite volume, even though the lattic
spacinga is nonzero. This infinity, which has a nonperturb
tive, infrared origin, should not be confused with the us
ultraviolet contribution to the quark self-energy, which
only infinite in the continuum limit. SinceE(R) is finite, the
infrared divergence inCrD(0) must be cancelled, in Eq
~2.15!, by a corresponding divergent constant contained
CrD(R). In other words, only the differenceD(0)2D(R) is
finite, andVCoul(R), if finite, differs from 2CrD(R) by an
infinite constant. In order thatVCoul(R) andEse be separately
finite and well-defined, we may relate them to the glu
propagator with an~arbitrary! subtraction atR5R0 which
removes the infrared divergence, i.e.,

4We thank M. Polikarpov for a helpful discussion on this poin

FIG. 1. The ratios(0)/s at variousb, from fits which either
include (b5p/12) or do not include (b50) the Lüscher term. This
ratio should equal the ratio ofsCoul /s in the continuum limit.~Data
points come from numerical simulations on lattice sizes 164, 204,
204, and 324 at b52.2, 2.3, 2.4, and 2.5, respectively.!
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VCoul~R!52Cr@D~R!2D~R0!#

5E~R!2E~R0!,

Ese5Cr@D~0!2D~R0!#

5E~R0!. ~2.26!

Defined in this way,VCoul(R) crosses zero at the subtractio
point, andEse contains the ultraviolet, but not the infrare
contributions to the quark-antiquark self-energies.

As a check of the cancellation~or noncancellation! of
infrared divergences, consider a colored state consisting,
of two static quarks, rather than a quark and antiquark. T
energy of such a state could be extracted from anLL cor-
relator, which is zero if remnant symmetry is unbroken. T
energy is therefore infinite, and according to our previo
analysis would be proportional toD(0)1D(R). In this case,
the divergent constant inD(R) adds to, rather than subtrac
from, the divergent constant inD(0), and theresulting sum
is divergent, as it should be. The argument can be rea
generalized to baryonic states in SU(N) gauge theories com
posed of static charges. The energy of a color singlet st
with charges at pointsx1 ,x2 , . . . ,xN is obtained from the
logarithmic time derivative of the correlator

G~$xi%,T!5e i 1••• i N
e j 1••• j N

^Li 1 j 1~x1,0,T!•••Li Nj N~xN,0,T!&.
~2.27!

The orderT contributions toG($xi%,T) are terms propor-
tional to D(0) andD(xm2xn), mÞn, with differing signs.
On the other hand, for a color singlet state, the opera
ee L•••L is a T-independent constant in thex15x25•••

5xN coincidence limit. From this it is clear that the prop
gators completely cancel in the coincidence limit, and a
constant terms in the propagators cancel in general. T
means that the energy of a color singlet baryonic state
finite. Conversely, the divergent constants do not cance
color nonsinglet states, so their energies are infinite.

FIG. 2. The ratios(0)/F(b) vs b, again from fits with (b
5p/12) or without (b50) the Lüscher term. F(b) is the
asymptotic freedom expression given in the text; a constant r
implies scaling according to the two-loop beta function.
6-5
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III. SU „2… GAUGE-ADJOINT HIGGS THEORY

The lattice action for SU~2! gauge theory with a Higgs
field in the adjoint representation of the gauge group is

S5b(
plaq

1

2
Tr@UUU†U†#

1
g

4 (
x,m

fa~x!fb~x1m̂ !Tr@saUm~x!sbUm
† ~x!#

~3.1!

with the radially ‘‘frozen,’’ three-component Higgs fieldf
subject to the restriction

(
a51

3

fa~x!fa~x!51. ~3.2!

This theory was first studied numerically by Broweret al.
@12#. In addition to SU~2! gauge symmetry, the action is als
invariant under globalZ2 center symmetry

U0~x,t0!→2U0~x,t0! ~3.3!

for some choice oft5t0, with all other fields unchanged
The existence of this apparently innocent global symmetr
the action has profound consequences; in its absence
static quark potential is asymptotically flat, and there can
no truly confined phase. The significance of center symm
to the confinement property in general is reviewed in R
@13#.

Since the action~3.2! is symmetric under global cente
transformations, a transition from the Higgs phase to a
tinct confinement phase is possible. The Higgs phase is
phase of spontaneously broken center symmetry, while c
finement corresponds to the symmetric phase. This divis
of theb-g phase diagram into two separate phases was v
fied numerically long ago, in the Monte Carlo investigati
of Ref. @12#, which mapped out the approximate location
the transition line.

The Higgs phase of the adjoint Higgs model is often ch
acterized as a spontaneous breaking of the local gauge
metry, from SU(2) down to U(1). In view of the Elitzur
theorem, which states that a local symmetry cannot br
spontaneously, this characterization is a little misleadi
However, as we have discussed above, there exists in C
lomb gauge a remnant gauge symmetry which is global o
time slice, and which can break spontaneously on a t
slice in the sense described in the previous section. We h
therefore studied the phase diagram of the adjoint Hi
theory via two observables:~i! the plaquette energy

Ep5 K 1

2
Tr@UUU†U†#L ~3.4!

and ~ii ! the remnant symmetry breaking order parameteQ
defined in Eq.~2.8!. What we find is that the transition line
~Fig. 3! detected by each of these two parameters coinc
the common line location agrees with the earlier results
Brower et al. based on the plaquette energy alone. In Fig
07450
n
the
e
ry
f.

s-
he
n-
n
ri-

f

r-
m-

k
.
u-
a
e
ve
s

e;
f

4

we plot Ep vs b at three values ofg. The existence of a
phase transition for the two larger values ofg is clearly
visible; there is no transition apparent at the smallestg value.
Figure 5 is the corresponding plot ofQ vs b at the same
three values ofg. At b,g values whereEp shows a transi-
tion, the transition inQ is even more evident. Conversel
where no transition is seen inEp , at g50.5, neither is there
a transition inQ. Finally, in Fig. 6, Q is plotted against
V3

21/2, and we show the extrapolation ofQ to a small value
~consistent with zero! at infinite volume, for couplings in the
confined phase.

IV. HIGH-TEMPERATURE DECONFINEMENT

We have seen that in the SU~2!-adjoint Higgs model,
things go much as one might have expecteda priori: rem-
nant symmetry breaking coincides withZ2 center symmetry
breaking, and in consequence the presence of a confi
Coulomb potential is correlated with the presence of a c
fining static quark potential. One might then guess that re
nant and center symmetry breaking always go together. T

FIG. 3. Phase diagram of the SU~2! adjoint Higgs model. The
plaquette energyEp and the remnant symmetry order parameterQ
locate the same transition line between the confined and H
phases.

FIG. 4. Plaquette energyEp vs b at three values ofg in the
gauge-adjoint Higgs model.
6-6
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COULOMB ENERGY, REMNANT SYMMETRY, AND THE . . . PHYSICAL REVIEW D 69, 074506 ~2004!
appears not to be true, as we have discovered in our inv
gation of pure SU~2! lattice gauge theory at high temper
ture.

Monte Carlo simulations of the pure SU~2! gauge theory
were carried out onL332 lattices atb52.3, which is inside
the deconfined phase. Figure 7 is a plot ofQ vs 1/AV3,
where it seems thatQ tends to zero at large volume~although
we cannot entirely rule out a small nonzero intercept atV3
→`). This impression is strengthened by our plot ofV(R,0)
in Fig. 8, where it is clear that the Coulomb potential go
asymptotically to a straight line, as the lattice volume
creases. There is no indication of the screening of the s
quark potential~as measured by Polyakov line correlator!,
which occurs at much smaller distances.

The results for the Coulomb potential in the deconfin
phase are not paradoxical; we have already noted that
nant symmetry breaking is a necessary but not sufficient c
dition for confinement, and that the Coulomb potential
only an upper bound on the static quark potential. Thus
possible for the Coulomb potential to increase linearly ev
if the static quark potential is screened, as evidently occur
the deconfined phase. Nevertheless, this result is a little

FIG. 5. Remnant symmetry order parameterQ vs b at three
values ofg in the gauge-adjoint Higgs model.

FIG. 6. Plot ofQ vs root inverse 3-volume, and extrapolation
Q to infinite volume, at several couplings in the confined phase
the gauge-adjoint Higgs model.
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prising, and it would be nice to understand it a little bette
Recall that in the continuum, the instantaneous part of

timelike gluon propagator, which is proportional to the Co
lomb interaction energy between static charges, is given
Eq. ~2.11!. Note that this is the expectation value of an o
erator which depends only on the space components of
vector potential at a fixed time. On the lattice, this transla
into an operator which depends only on spacelike links o
time slice. However, we know that spacelike links, at fix
time, are a confining ensemble, in the sense that space
Wilson loops have an area law falloff even in the hig
temperature deconfinement phase. If the confining prop
of the spacelike links on a timeslice is not removed by
deconfinement transition, then it is perhaps less surpris
that the confining property of the~latticized! operator in Eq.
~2.11!, which depends only on spacelike links on a timesli
survives in the deconfinement regime.

As a check, we apply a procedure that is known to remo
the confining properties of lattice configurations. This is t
de Forcrand–D’Elia@6# method of center vortex remova

f

FIG. 7. TheQ parameter vs root inverse 3-volume in the hig
temperature deconfined phase, pure SU~2! gauge theory atb
52.3, andnt52 lattice spacings.

FIG. 8. V(R,0) in the deconfined phase, atb52.3 with nt52
lattice spacings in the time direction, and space volumes rang
from 123 to 323.
6-7
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The procedure is to first fix a given thermalized lattice co
figuration to direct maximal center gauge, i.e., the gau
which maximizes

R5(
x,m

S 1

2
Tr@Um~x!# D 2

~4.1!

and carry out center projection

Zm~x!5sgn Tr@Um~x!# ~4.2!

to locate the vortices. Vortices are then ‘‘removed’’ from t
original configuration by setting

Um~x!→Um8 ~x!5Zm~x!Um~x!. ~4.3!

In effect this procedure superimposes a thinZ2 vortex inside
the thickSU(2) center vortices. The effect of the thin vorte
is to cancel out the long range influence of the thick vor
on Wilson loops. It was found that this procedure not on
removes the Wilson loop area law falloff, but also remov
chiral symmetry breaking, and sends every configuration
the zero topological charge sector@6#.

Having removed center vortices from theL332 lattice,
thereby removing the area-law falloff of spacelike Wils
loops, we fix the modified configuration to Coulomb gaug
and compute timelike link correlators in order to meas
V(R,0). The effect is quite dramatic. It was found in Ref.@2#
that vortex removal in pure gauge theory, in the lo
temperature confined phase, removes the confinement p
erty of the Coulomb potential. Now we see, from Fig. 9, th
vortex removal also removes the confining property of
Coulomb potential in the high-temperature deconfinem
phase. This is in accord with the idea that it is the confin
property of the ensemble of spacelike links at fixed time~or,
perhaps, the percolation of center vortices on any time sl!
that is crucial for the confining property of the Coulom
energy.

It is interesting to ask whether there is some connec
between the center vortex confinement mechanism, and o
proposals based on the Gribov horizon@14#. While this ques-

FIG. 9. The effect of vortex removal onV(R,0) in the decon-
fined phase,b52.3 on a 16332 lattice.
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tion cannot yet be answered definitively, there is one v
intriguing fact that may be relevant: when gauge transform
to the minimal Coulomb gauge, thin-vortex configuratio
lie on the Gribov horizon, as we now explain.

V. CONFINEMENT SCENARIO IN COULOMB GAUGE
AND VORTEX DOMINANCE

In the confined phase@2#, and in the deconfined phas
Fig. 8, one sees clear evidence of a linearly rising col
Coulomb potential. There is a simple intuitive scenario in t
minimal Coulomb gauge that explains whyVCoul(R) is long
range@14#. In minimal Coulomb gauge the gauge-fixed co
figurations are~three-dimensionally! transverse configura
tions that lie in the fundamental modular regionL. In con-
tinuum gauge theory,L is convex and bounded in ever
direction @15#. By simple entropy considerations, the pop
lation in a bounded region of a high-dimensional space g
concentrated at the boundary. For example, inside a sphe
radiusR in a D-dimensional space, the radial density is giv
by r D21dr and, for r<R, is highly concentrated near th
boundaryr 5R for D large. With lattice discretization the
dimensionD of configuration space is proportional to th
volume V of the lattice. Moreover on the boundary th
Faddeev-Popov operatorM (A)52¹•D(A) has a vanishing
eigenvalue, as we will see.~At large volume it has a high
density of small positive eigenvalues.! This makes the color-
Coulomb interaction kernel K(x,y;A)5M 21(A)
(2¹2)M 21(A)uxy of long range for typical configurationsA
that dominate the functional integral. We thus expect t
VCoul(ux2yu)5^K(x,y;A)& is long range, although this
qualitative argument is not precise enough to establish
VCoul(R) rises linearly at largeR, as suggested by the nu
merical data.

We shall show that vortex dominance, which is strong
supported by the data just presented, is consistent with
simple confinement scenario in minimal Coulomb gau
More precisely we shall show that when a center configu
tion ~defined below! is gauge transformed to minimal Cou
lomb gauge it lies on the boundary]L of the fundamental
modular regionL. According to the confinement scenario
minimal Coulomb gauge, the probability measure is dom
nated by points at or near the boundary]L. So center domi-
nance, when translated into the minimal Coulomb gau
means dominance by a subset of configurations on
boundary]L. This is a stronger condition than the confin
ment scenario in minimal Coulomb gauge, but consist
with it.

Proof of assertion.To simplify the kinematics we give the
continuum version of the argument. Numerical gauge fix
to minimal Coulomb gauge corresponds to minimizing
each time slice the functionalF(A)5uuAuu2, with respect to
local gauge transformations. HereuuAuu25*d3xuAu2 is the
square Hilbert norm ofAi

a . At a minimum, which may be
relative or absolute, the first variation with respect to infin
tesimal gauge transformationsdAi5Di(A)v, vanishes for
all v, duuAuu252@Ai ,Di(A)v#52@Ai ,] iv#50, which
gives the Coulomb gauge condition] iAi50. Moreover at a
relative or absolute minimum the second variation with
6-8
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spect to gauge transformationsd2uuAuu252@D(A) iv,] iv#
>0 is non-negative for allv, which is the statement that th
Faddeev-Popov operatorM (A)52¹•D(A) is non-
negative. These two conditions define the Gribov regionV,

V[$A:] iAi50 and2] iDi~A!>0%. ~5.1!

The fundamental modular regionL is the set of absolute
minima with respect to gauge transformations

L[$A:uuAuu<uu gAuu for all g%. ~5.2!

It is included in the Gribov regionL,V. In the interior of
V all eigenvalues ofM (A) are strictly positiveln.0 ~apart
from the trivial null eigenvalue associated with consta
gauge transformations] iv50), and on the boundary]V
there is a nontrivial null eigenvector] iDi(A)v050, and all
other eigenvalues are non-negative.5

We call a center configuration any lattice configurati
Zi(x) for which every link variable is a center eleme
Zi(x)PZ for every link (x, ı̂ ). The only nonzero action ex
citations of center configurations are thin center vortic
Such configurations are invariant under all global gau
transformationsg21Zi(x)g5Zi(x). Now apply an arbitrary
local gauge transformationh(x) to the center configuration
Zi(x)→Vi(x)5h21(x)Zi(x)h(x1 ı̂ ). We shall takeh(x) to
be the gauge transformation that brings the center config
tion into the minimal Coulomb gauge. In general, the tra
formed configurationVi(x) is not an element of the cente
but it is invariant,Vi(x)5g821(x)Vi(x)g8(x1 ı̂ ), with re-
spect to the gauge transformationg8(x)5h21(x)gh(x)
which, in general, is no longer global.

We give an infinitesimal characterization of the invarian
of the configurationVi(x) under the gauge transformation
g8(x). The set of global gauge transformations form t
SU(N) Lie group and theg8(x)5exp@v(x)# form a represen-
tation of this group. Herev(x) is an element of the Lie
algebra of SU(N). This algebra hasN221 linearly indepen-
dent elementsvn(x), where n51, . . . ,N221, that satisfy
@v l(x),vm(x)#5 f lmnvn(x). Thus the configurationVi(x)
5exp@Ai(x)#, which is the gauge transform of the center co
figurationZi(x) into the minimal Coulomb gauge, is invar
ant under local gauge transformations withN221 indepen-
dent generatorsvn.6 This is the statement that in continuu
notation readsAi5Ai1eDi(A)vn, or Di(A)vn50. It fol-
lows that the vn also satisfy the weaker condition¹
•D(A)vn50. HereA is the representative in minimal Cou

5The Gribov regionV consists of relative minima that are Gribo
copies of the setL of absolute minima. Our numerical procedu
selects the best Gribov copy obtained from eight random ga
copies; there is no known method for finding the absolute m
mum. On theoretical grounds, one expects the sensitivity of
results to the choice of Gribov copy be small@16#. This expectation
is susceptible to numerical investigation, as has been done rec
for the ghost propagator@17#.

6The gauge orbit of the center configuration is degenerate and
N221 fewer dimensions than a generic gauge orbit.
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lomb gauge of the center configuration, and as such it lie
the fundamental modular regionAPL ~by definition! that
moreover is included in the Gribov regionL,V, so we
have APV. However, the equation¹•D(A)vn50 for A
PV means thatA lies on its boundary]V. With L,V it
follows that A lies on the boundary]L of L, at a point
where the two boundaries touch. We conclude that the ga
transform of a center configuration lies on]L, as asserted.7

The argument just given also applies to Abelian config
rations, namely, a configuration that lies in an Abelian su
algebra of the Lie algebra. Such a configuration is invari
under a global U~1! gauge transformation. When an Abelia
configuration is gauge transformed to the minimal Coulo
gauge, it is mapped into a point where the two bounda
]L and]V touch. But now the equationDi(A)v50 has, in
general, only one linearly independent~nontrivial! solution,
instead ofN221. Thus Abelian dominance is also compa
ible with dominance of configurations on the boundary]L.

VI. SU„2… GAUGE-FUNDAMENTAL HIGGS THEORY

We now consider SU~2! gauge theory with the radially
frozen Higgs field in the fundamental representation. For
SU~2! gauge group, the lattice action can be written in t
form @18#

S5b(
plaq

1

2
Tr@UUU†U†#

1g(
x,m

1

2
Tr@f†~x!Um~x!f~x1m̂ !# ~6.1!

with f an SU~2! group-valued field. This theory cannot b
truly confining for nonzerog, since the matter field can
screen any charge, and this simply reflects the absence
nontrivial global center symmetry. However, at sufficien
small g there exists a ‘‘pseudoconfinement’’ region, whe
the static potential~as measured by the correlator of Poly
kov loops! is linear for some intermediate range of qua
separations before the onset of screening. At largeg there is
a Higgs region, where the linear potential is completely a
sent. It was shown many years ago by Fradkin and Shen
@5# that any two points in the Higgs and pseudoconfinem
regions can be joined by a path in theb-g coupling plane
that avoids all thermodynamic singularities. Although the
exists a line of first-order phase transitions in theb-g plane,
this line has an endpoint and does not divide the diagram
thermodynamically separate phases.~It appears as the solid
line in Fig. 12, below.! In accord with the Fradkin-Shenke
observation, numerical simulations suggest that there is o
one nonconfining phase in the gauge-fundamental Hi
theory.
e

i-
r

tly

as

7It should be noted that the numerical procedure that we have u
to remove center vortices is 4 dimensional. The argument gi
here applies in Coulomb gauge to center configurations defi
within 3-dimensional time slices.
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In apparent contradiction to this fact, one can make
strong case for the existence of a remnant symme
breaking transition at smallb. We setb50 so the action is

Sf5g(
x,m

1

2
Tr@f†~x!Um~x!f~x1m̂ !#. ~6.2!

We shall show that~i! at largeg there is spontaneous brea
ing of the remnant gauge symmetry, associated with the s
range ofVCoul(R), but ~ii ! at smallg there is a linear rise o
VCoul(R) at largeR. Thus along the lineb50 in the b-g
plane we expect a transition at some finite value ofg.

~i! First consider the limitg→`. The actionSf is a maxi-
mum whenUm(x)5f(x)f†(x1m̂) holds on each link, and
when g gets large,Um(x) gets frozen at this value. Thi
configuration is a gauge transform of the identityUm(x)
5I , and when fixed to the minimal Coulomb gauge the s
tial components get fixed to the identityUi(x,t)
5f(x,t)f†(x1 ı̂ ,t)5I , for all x and i. Thusf(x,t) is inde-
pendent of x. We write f(x,t)5g(t), and we have
U0(x,t)5g(t)g†(t11), which is also independent ofx.
This is the gauge analog of all spins aligned, and we exp
spontaneous breaking of the remnant gauge symmetry
deed, we have

Ũ~ t !5
1

V3
(

x
U0~x,t !5g~ t !g†~ t11!, ~6.3!

and the order parameterQ defined above has the valueQ
51. This is maximal breaking of the remnant gauge symm
try.

~ii ! Now consider small values ofg. We shall calculate
the lattice analog of VCoul(R), namely, V(R,0)
52 log@G(R,1)#, to leading nonzero order ing. The gauge
fixing involves only the spatial link variablesUi , and with
the actionSf the integration over theU0 factorizes into a
product over link integrals. To evaluateG(R,1)

5^ 1
2 Tr@U0(x,1)U0

†(y,1)#&, we first integrate over the
U0(x,t), with the result, to leading order ing,

G~R,1!5
g2

16K 1

2
Tr@f†~x,2!f~x,1!f†~y,2!f~y,1!#L .

~6.4!

There are now 4 unsaturatedf fields. For simplicity we sup-
pose that (x,1) and (y,1) are joined by a principle axis
which we take to be the 1 axis, andR5ux2yu. The leading
contribution to thef integration at smallg is obtained by
saturating each link on the line that runs from (x,1) to (y,1)
by ‘‘bringing down’’ from the exponentSf the term
1
2 g Tr@f(z,1)U1(z,1)f†(z11̂,1)#, and likewise for the line
from (x,2) to (y,2). This gives a factorg2R. Thef integra-
tions are now effected. The remaining integration on the s
tial link variablesUi is finite because of the gauge fixing. W
cannot evaluate it explicitly, but this last integration does
introduce any furtherg dependence. We thus obta
G(R,1)5g2R123H(R). HereH(R) is not known, but it is
independent ofg. This gives V(R,0)52(2R12)logg
07450
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2log@H(R)#. The asymptotic fall off in the correlatorG(R,1)
should not be more rapid than exponential,
limR→`log@H(R)#52cR. We thus obtain a linear rise at larg
R in V(R,0);sCoulR, where the ‘‘Coulomb’’ string tension
is given by

sCoul522 logg1c. ~6.5!

This is nonzero for smallg. To make this argument rigorou
one would have to show that the expansion ofG(R,1) in
powers of g converges. However, this calculation do
strongly suggest that atb50 the remnant symmetry is un
broken for smallg whereas, as we have seen, it is broken
largeg.8

Returning to the SU~2! gauge-fundamental Higgs theor
we note that the above calculations at large and smallg are
easily understood in terms of the Coulomb gauge and cen
dominance scenarios. Indeed, for largeg ~and anyb), the
gauge-fixed configurations are at or nearUi(x)5I . This con-
figuration is an interior point of the fundamental modul
region L. Thus at largeg the coupling to the fundamenta
Higgs is effective in keeping configurations away from t
boundary]L, where the thin vortex configurations are to b
found, and where the Faddeev-Popov operator is of lo
range. On the contrary, at smallg the coupling to the Higgs
field is ineffective, and entropy leads to dominance of co
figurations on the boundary]L.

Now we turn to numerical simulation. Figure 10 is a ca
culation of Q vs g at b52.1, where it is known~from the
work of Lang et al. @18#! that the first-order transition is
aroundg50.9. Below g50.9, Q seems to extrapolate t
zero at infinite volume, while above the transitionQ extrapo-

8One can make a similar calculation ofV(R,0) for small b
~strong coupling! in pure SU(N) gauge theory. This yields a finite
‘‘Coulomb’’ string tension at smallb given bysCoul52 log b. This
suggests that at least in the strong-coupling region there is a ‘‘C
lomb flux tube’’ that connects the external sources.

FIG. 10. Plot ofQ vs root inverse 3-volume, and extrapolatio
of Q to infinite volume in the gauge-fundamental Higgs theory
b52.1 and variousg, above (g51.2) and below the first-orde
transition point aroundg50.9.
6-10
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lates to a nonzero constant. There appears to be an a
discontinuity inQ across the whole line of first-order~ther-
modynamic! phase transitions in theb-g coupling plane. At
sufficiently small values ofb, there is no thermodynami
transition, and we see no discontinuity inQ as a function of
g. What we see instead is thatQ'0 over a finite range ofg,
and then, beyond a critical valueg5gcr , Q smoothly in-
creases with increasingg. Our results forQ vs g at b50, on
84 and 164 lattices, are shown in Fig. 11; the solid line is th
presumed extrapolation to infinite volume. If we were de
ing with a spin system, andQ were the magnetization, thi
would clearly represent a second order phase transition
the present case it is certainly a symmetry-breaking tra
tion, separating a symmetric region withQ50 from a
broken-symmetry region ofQ.0.

On the other hand, despite the existence of a symme
breaking transition, there is no thermodynamic transition
any kind atb50. At this value ofb the free energy can b
computed exactly, with the result, in a 4-volumeV

F~g!54V logF2I 1~g!

g G ~6.6!

which is perfectly analytic for allg.0. Thus we have con
firmed the theoretical argument that there must be a rem
symmetry-breaking transition even at smallb, but we have
also found that this transition is not accompanied~at small
b) by a thermodynamic transition, defined as some degre
nonanalyticity in the free energy. Our result for the line
critical couplings of the remnant symmetry-breaking tran
tion is shown in Fig. 12. Along the solid line there is also
thermodynamic~first-order! transition, which is absent alon
the dashed line.

Our result for the gauge fundamental Higgs system is
entirely new; it was in fact anticipated by Langfeld in Re
@3#, who considered a closely related model in Land
~rather than Coulomb! gauge. In that work the modulus o
the space-time averaged Higgs field was used as an o
parameter to detect the breaking of remnant symme

FIG. 11. Q vs g at b50 in the SU~2! fundamental Higgs model
on 84 and 164 lattices. The solid line is the presumed extrapolati
of Q to infinite volume.
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which in Landau gauge must be both spaceand time inde-
pendent. In Ref.@4# it was further suggested that the line
remnant symmetry breaking transitions, where it is unacco
panied by a line of thermodynamic transitions, is a Kerte´sz
line @19#. A Kertész line is a line of percolation transitions
the original example comes from the Ising model. In t
Ising model, in the absence of an external magnetic fie
there is a phase transition from aZ2 symmetric to an ordered
phase, and this transition can be expressed, in different v
ables, as a transition from a percolating phase at low te
perature, to a nonpercolating phase at high temperature
the presence of a magnetic field, the partition function a
thermodynamic observables become analytic in temperat
there is no thermodynamic phase transition. Neverthel
the percolation transition persists, and traces out a Ker´sz
line in the temperature-magnetic field plane, complet
separating the phase diagram into two regions. But if ther
a Kertész line in the gauge-Higgs coupling plane, the qu
tion is what kind of objects are percolating. Based in part
results reported by Bertle and Faber@20#, Langfeld@4# pro-
posed that the unbroken remnant symmetry region is a re
of percolating center vortices, which cease percolating in
broken symmetry region. There is now very good eviden
for a vortex percolation transition of this kind in gaug
fundamental Higgs theory, reported in Ref.@21#.9

Our findings here support the idea that there is so
physical distinction that can be made between the Higgs
the pseudoconfining regions of the gauge-fundamental H
phase diagram. In the pseudoconfining region the remn
symmetry is unbroken, the Coulomb potential rises linea
and center vortices percolate, while the Higgs region i
region of broken symmetry, the Coulomb potential is asym
totically flat, and center vortices do not percolate. This d
tinction appears to exist despite the fact that the two regi
are thermodynamically connected, as demonstrated by F
kin and Shenker in Ref.@5#.

9The role of Kerte´sz lines in high-temperature QCD is also di
cussed by Satz in Ref.@22#.

FIG. 12. Phase diagram of the SU~2! fundamental Higgs model
There is a thermodynamic transition and aQ ~remnant symmetry-
breaking! transition along the solid line, but only a nonthermod
namic transition~Kertész line! along the dashed line.
6-11
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Before leaving the gauge-fundamental Higgs theory,
should ask what are the effects of vortex removal in
symmetric phase. We already know that the Coulomb po
tial in the fundamental Higgs theory must be confining in t
symmetric ~pseudoconfinement! phase and screened in th
broken phase; the only issue is how the Coulomb potentia
affected in each phase if center vortices are removed. In F
13 and 14 we see the Coulomb potential in the symme
(b52.1, g50.6) and broken (b52.1, g51.2) phases, re
spectively, before and after vortex removal. In the symme
phase, vortex removal by the de Forcrand–D’Elia proced
sends the Coulomb string tension to zero, as in the h
temperature phase of pure gauge theory. Deep in the H
phase, on the other hand, the effect of vortex removal is s
to be very minor.

VII. THE ADJOINT-HIGGS MODEL REVISITED

We have understood theoretically why there should b
remnant symmetry-breaking transition at smallb in the
gauge-fundamental Higgs model, as seen in the nume

FIG. 13. Gauge-fundamental Higgs theory: effect of vortex
moval in the symmetric~pseudoconfinement! phase,b52.1, g
50.6.

FIG. 14. Gauge-fundamental Higgs theory: effect of vortex
moval in the broken~Higgs! phase,b52.1, g51.2.
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data. This raises immediately the question of why there is
corresponding transition inQ, at small b, in the gauge-
adjoint Higgs theory. Now in the fundamental-Higgs mod
the transition at smallb appears to be a percolation trans
tion, as discussed in the previous section. But the absenc
a percolation transition at lowb in the adjoint-Higgs case is
easy to understand. There the Higgs part of the action
insensitive to the existence of thin center vortices, and c
not suppress their condensation at smallb regardless of the
value ofg. More concretely, atb50, the action is invariant
with respect to local transformationsU0(x)→z(x)U0(x),
wherez(x)561, and this immediately implies thatQ50 at
infinite volume, again regardless of the value ofg.

On the other hand, if the absence of a remnant symme
breaking transition at lowb is due to large fluctuations o
center elementsz(x), then one might still expect breaking, a
low b and largeg, of the SO~3!5SU~2!/Z2 part of the rem-
nant symmetry group, which is insensitive toU0(x)
→z(x)U0(x) fluctuations. The relevant order parameter i

Qadj5
1

nt
(
t51

nt KA1

3
Tr@Ũadj~ t !Ũadj

† ~ t !#L , ~7.1!

whereŨadj(t) is the spatial average of timelike links in th
adjoint representation

Ũadj~ t !5
1

V3
(

x
U0,adj~x,t !,

U0,adj
ab ~x,t !5

1

2
Tr@saU0~x,t !sbU0

†~x,t !#.

~7.2!

Rather surprisingly, there appears to be no transition inQadj
either, in the adjoint-Higgs model. As we see in Fig. 15,
data taken on a small 84 lattice, there is no sign of any
transition forQadj at finite g and b50. In fact, Qadj is es-
sentiallyg independent. Extrapolation ofQadj to infinite vol-
ume anywhere in the confined (Q50) phase is consisten

-

-

FIG. 15. ~Lack of! variation of Qadj with g at b50 in the
gauge-adjoint Higgs theory.
6-12
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with Qadj50, as seen in Fig. 16. Thus the transition line f
Qadj in theb-g coupling plane appears to be the same as
Q in Fig. 3, but not similar toQ in Fig. 12, and this fact calls
for an explanation.

The difference in the phase diagrams of Figs. 3 and
occurs at smallb and largeg. To understand this differenc
we setb50 in the adjoint Higgs action~3.2! so it reads

Sf5
g

2 (
x,m

fa~x!Um,adj
ab fb~x1m̂ !, ~7.3!

and we shall evaluate the equal time correlator in minim
Coulomb gauge

Gadj~x2y,1!5 K 1

3
Tr@U0,adj~x,1!U0,adj

† ~y,1!#L ~7.4!

for g large.
Step 1: Integration over U0. The gauge fixing does no

involve theU0, so the integrals over theU0 factorize, with
the result on each timelike link

^U0,adj
ab ~x!&5l^fa~x!fb~x10̂!&,

l5

coshS g

2D
sinhS g

2D 2
2

g
. ~7.5!

Herel has the limiting valuel51 at largeg. The correlator
factorizes into a product of expectation values on adjac
time slices

Gadj~x2y,1!5
1

3
^fa~x,1!fb~x,2!fb~y,2!fa~y,1!&

5
1

3
^fa~x,1!fa~y,1!&^fb~x,2!fb~y,2!&.

~7.6!

FIG. 16. Plot ofQadj vs root inverse 3-volume, and extrapolatio
of Qadj to infinite volume, at a variety of couplings in the confine
phase, in gauge-adjoint Higgs theory.
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This gives

Gadj~x2y,1!53C2~x2y!, ~7.7!

where

C~x2y!5
1

3
^fa~x,1!fa~y,1!& ~7.8!

is thef propagator within a single time slice. It is calculate
using the action within a time slice,

Sslice5
g

2 (
x,i

fa~x!Ui ,adj
ab ~x!fb~x1 ı̂ !. ~7.9!

~The argumentt that enumerates time slices is suppressed
the following.!

Step 2: Reduction to U(1) theory.To evaluate thef
propagator at largeg, we introduce a gauge transformatio
g(x)PSU(2) that depends onf(x) with the property that
the group element in the adjoint representation, deno
R ab@g(x)#, is the SO~3! rotation matrix that rotates the
direction into thef direction,fa(x)5R a3@g(x)#. The ac-
tion and correlator are given by

Sslice5
g

2 (
x,i

R 33@g21~x!Ui~x!g~x1 ı̂ !#

C~x2y!5
1

3
^R a3@g~x!#R a3@g~y!#&. ~7.10!

These expressions are invariant underg(x)→g(x)h(x),
whereh(x) is an SU~2! element that corresponds to a rot
tion about the 3 axis. So we may average overh(x) which
results in replacing the integral overf(x) by an integral over
g(x)PSU(2). At largeg the functional integral is domi-
nated by the maximum of the actionSslice, which occurs
where R 33@g21(x)Ui(x)g(x1 ı̂ )#51 holds on each link,
namely, whereui(x)[g21(x)Ui(x)g(x1 ı̂ ) is a rotation
about the 3 axis. These rotations form the U~1! group. Thus
at the maximum of the action the link variables are given

Ui~x!5g~x!ui~x!g21~x1 ı̂ !

5 gui~x!, ~7.11!

whereg(x)PSU(2). Thus Ui(x) is an SU~2! gauge trans-
form of ui(x)PU(1). At largeg the Ui(x) get frozen into
this form, and the integral overUi(x)PSU(2) gets reduced
to an integral over Abelian configurationsui(x)P U(1). We
have noted that we may replaceg(x) by g(x)h(x), where
h(x)PU(1). We usethis freedom to gauge fix theui(x)
within the U~1! group of rotations about the 3-axis. Natural
we choose the minimal Coulomb gauge of U~1! gauge
theory. Thus the integral over theUi(x)PSU(2) gets re-
placed by an integral over gauge-fixed configurationsui(x)
PU(1). We designate this set byT. In continuum gauge
theory, T is the set ofall transverse Abelian configuration
Ai

3(x). In sharp contrast to the SU~2! case, in Abelian gauge
6-13
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theory there are no Gribov copies. Different transverse c
figurationsAi

3(x) are gauge inequivalent, and the setT of
gauge-fixed Abelian configurationsAi

3(x) is the unbounded
set of all transverse Abelian configurations, without restr
tion to a fundamental modular region.~This is a major dif-
ference between Abelian and non-Abelian gauge theo
and is the basis of the confinement scenario in minimal C
lomb gauge.!

Step 3: Integration over the g(x). AlthoughuPT is com-
pletely gauge-fixed by minimizing with respect to localU(1)
gauge transformations, it is not gauge fixed by minimizi
with respect to local SU~2! gauge transformations, becau
that is a larger group. But our calculation in minimal Co
lomb gauge requires that the SU~2! configuration Ui(x)
5 gui(x)PL be completely gauge fixed with respect to loc
SU~2! gauge transformations. So for givenu, g(x) is the
unique SU~2! gauge transformation~modulo global gauge
transformations! that accomplishes this gauge fixing. W
write g(x)5g(x;u), and thef propagator is given by

C~x2y!5E
T
duP~u!

1

3
R a3@g~x;u!#R a3@g~y;u!#,

~7.12!

whereP(u) is a positive probability density.
Step 4: Integration over the u(x). We saw in Sec. V tha

when configurations in an Abelian subgroup are gauge fix
they get mapped into the boundary]L. However, that con-
clusion is an overstatement which ignores the fact that so
U~1! configurationsuPT lie in the interior ofL ~although
this happens with probability 0, as we shall see!. Since in the
continuum limit L is a subset of transverse SU~2! configu-
rationsAi

a,tr(x) that is bounded in every direction whereasT
is the unbounded set ofall transverse Abelian configuration
Ai

3,tr(x), it follows that some configurationsuPT lie inside
L and some lie outsideL. Correspondingly we break up th
integral into contributions fromuPT insideL, and fromu
PT outsideL,

C~x2y!5Cin~x2y!1Cout~x2y!,

Cin~x2y!5E
TùL

duP~u!
1

3
R a3@g~x;u!#R a3@g~y;u!#,

Cout~x2y!5E
T2TùL

duP~u!
1

3
R a3@g~x;u!#R a3@g~y;u!#.

~7.13!

For uPTùL the unique gauge transformationg(x,u) that
bringsu insideL is the identity transformation

g~x,u!5I ; uPTùL. ~7.14!

This givesR a3@g(x;u)#5R a3@ I #5da3, and we obtain

Cin~x2y!5E
uPTùL

duP~u!

5Pin , ~7.15!
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wherePin is that probability thatuPT lies insideL. This is
independent ofx andy, and corresponds to ordered spins.
resembles the calculation with coupling to fundamen
Higgs fields atb50 andg large, wherePin51. For u out-
side L it appears that the solutiong(x,u) of the spin-glass
minimization problem depends in a very irregular and dis
dered way on u and x, so Cout(R) decays rapidly,
limR→`Cout(R)50. With Gadj(R,1)53C2(R) this gives

lim
R→`

Gadj~R,1!53Pin
2 . ~7.16!

Thus, remarkably, a numerical determination ofGadj(R,1)
provides a direct measurement of the probabilityPin that a
configurationuPT lies insideL.

The data of Fig. 16 strongly suggest thatQadj extrapolates
to 0 at infinite volume. This is the disordered phase, in wh
limR→`Gadj(R,1)50 holds. This gives

lim
V→`

Pin50. ~7.17!

We have noted that in continuum gauge theoryL is bounded
in every direction whereasT is unbounded in all directions
According to the simple entropy estimate,p(r )dr
;r D21dr, whereD is the~very high! dimension of the space
T of transverse U~1! configurations, the fractionPin of the set
T that lies inside the bounded regionL is negligible, Pin
→0, as in fact the data indicate, and we have alsoPout
→1. Moreover an Abelian configurationuPT that lies out-
side L, gets gauge transformed in the minimal Coulom
gauge into a configurationU5 gu that lies on the boundary
]L, as was shown in Sec. V, so in this instance all the pr
ability lies on the boundary]L and the measure of the inte
rior vanishes. This exemplifies the simple scenario in C
lomb gauge, according to which confinement occurs wh
the functional integral is dominated by the boundary]L.

The absence atb50 of a transition inQadj asg increases
from 0 to ` is now explained. For with coupling to th
adjoint Higgs field, the measure of ordered spins that wo
break the remnant gauge symmetry isPin50 at largeg, and
the remnant gauge symmetry is preserved. By contrast,
coupling to the fundamental Higgs field forg large,Ui(x) is
a gauge transform of the identityI, as we have seen in Se
VI. Since I is certainly inL, thenPin51, and the remnan
symmetry is maximally broken. The coupling to the fund
mental Higgs field at largeg keeps configurations away from
the boundary]L.

Finally we wish to emphasize that with coupling to th
adjoint Higgs field, the numerical resultPin50 is a direct
manifestation of the deep difference between the fundam
tal modular regions~defined by minimizingF@A# with re-
spect to local gauge transformations! of an Abelian and non-
Abelian gauge theory. The fundamental modular region
unbounded in every direction in an Abelian gauge theory,
bounded in every direction in a non-Abelian gauge theor
6-14
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VIII. COMPACT QED

Although in the preceding sections we have conside
only the theories with a non-Abelian SU~2! gauge invari-
ance, there is no barrier to studying remnant symme
breaking in an Abelian model such as compact QED4. In this
model we have confinement at strong couplings and a m
less phase at weak couplings, with a transition between
two phases at approximatelyb51. In Fig. 17 we show our
results for~the Abelian analogue of! Q at b50.7, which is
inside the confinement phase, and atb51.3, which lies in
the massless phase. The results are as expected;Q extrapo-
lates nicely to zero at infinite volume in the confined pha
and appears to extrapolate to a nonzero value in the mas
phase. Figure 18 is a plot ofV(R,0) vs charge separationR at
b50.7 on variety of hypercubic lattice volumesL4. Note
that the potential is insensitive to changes in lattice volum
and that deviations from the linear potential, where they
statistically significant, arise from the lack of rotation inva
ance at strong couplings.

The situation changes drastically in the massless phas
b51.3, where our results forV(R,0) are displayed for
54, 104, and 204 lattices in Fig. 19. Although the string ten

FIG. 17. Plot ofQ vs root inverse 3-volume, and extrapolatio
of Q to infinite volume in QED4, for b50.7 ~confining phase! and
b51.3 ~massless phase!.

FIG. 18. The potentialV(R,0) in QED4 at b50.7, on a variety
of L4 lattice volumes.
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sion extracted fromV(R,0) appears to be nonzero on each
these lattices~which cannot be correct for the Coulomb p
tential in the weak-coupling regime!, this string tension
drops very markedly~by about 1/3! with each doubling of
the lattice volume. This volume dependence of the str
tension is very different from what we have observed for
non-Abelian theories in various phases. For the Abel
theory, the expected resultsCoul50 is presumably recovere
in the large volume limit. In fact, from the value ofQ ex-
trapolated to infinite volume, we can estimate that on a la
lattice V(R,0) should be bounded, very roughly, b
2 ln(Q2)'1.6 at largeR. This bound implies thatV(R,0) has
to level out in large volumes, resulting insCoul50.

What we learn from the weak-coupling case is th
V(R,0) may have very significant lattice size dependence
theories such as QED4 in the massless phase, where the c
relation length is large~comparable to lattice size! or infinite.
It is therefore important to computeV(R,0) on a variety of
lattice sizes, and to extrapolateQ to infinite volumes, as we
have done in the preceding sections.

IX. TRANSLATION TO TEMPORAL GAUGE
AND STRINGLESS STATES

In this section we shall show how to translate back a
forth between the minimal Coulomb gauge and the tempo
gauge,A050, so the measurements reported here have
equivalent description in the temporal gauge. Both of th
gauges are compatible with a Hamiltonian formulation an
physical transfer matrix. Moreover the temporal gauge is
variant under all space dependent but time-independ
gauge transformationsg(x), where x is a 3-vector, and it
may be helpful to express things in a more gauge-invar
way. We shall see that the state obtained here by numeric
gauge-fixing to the minimal Coulomb gauge becomes, a
translation into temporal gauge, a ‘‘stringless’’ state of t
type introduced by Lavelle and McMullan@7# that does not
involve a Wilson line joining the sources.

FIG. 19. The potentialV(R,0) in QED4 atb51.3, on severalL4

lattice volumes.
6-15
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A. Temporal gauge

In temporal gauge the continuum Hamiltonian has the
nonical form

H5
1

2g2E d3x~E21B2!. ~9.1!

Here the spatial componentsAi
a(x) of the vector potential are

canonically conjugate to the color-electric field opera
Ei

a(x)5 i @d/dAi
a(x)#, andBi

a5e i jk(] jAk
a1 1

2 f abcAj
bAk

c).
The color-charge density of the static quarks does not

pear inH becauseA050. Instead it appears in the generat
of local space-dependent gauge transformations

Ga~x!52Dac~A!•Ec~x!1rq
a~x!, ~9.2!

where

rq
a~x!5t1

ad~x2x1!1t2
ad~x2x2! ~9.3!

is the color-charge density of a pair of external quarks atx1
andx2. The wave functionalCab(A) bears the color indices
of the external quarks, on which the quark charge vectors
according to

~ t1
aC!ab5tag

a Cgb , ~ t2
aC!ab52tbg

a* Cag , ~9.4!

where theta form the basis of an irreducible representati
of the Lie algebra of SU(N), @ ta,tb#5 i f abctc. One may
verify that G(v)5*d3xva(x)Ga(x) generates an infinitesi
mal gauge transformation

@G~v!,Ai
a#5 iD i

acvc,

@G~v!,Ei
a#5 i f abcEi

bvc,

@G~v!,rq
a#5 i f abcrq

bvc. ~9.5!

This transformation leavesH invariant, @G(v),H#50, so
we may choose wave functionals that transform irreduci
under the local gauge group. Physical wave functionals
required to satisfy the subsidiary condition

G~x!C50, ~9.6!

which is both Gauss’ law and the statement that the w
functional is gauge invariant. This condition determines
gauge-transformation properties of the wave functional

C~ gA!5g~x1!C~A!g†~x2!, ~9.7!

where we use matrix notation for the quark color indices, a
gAi5gAig

†1g] ig
†.

B. From temporal gauge to minimal Coulomb gauge and back

The continuum temporal gauge does not really provid
well-defined quantum mechanics because the inner pro
for gauge-invariant wave functionals
07450
-

r

p-
r

ct

y
re

e
e

d

a
ct

~C1 ,C2!5E dAC1* ~A!C2~A! ~9.8!

diverges due to the local gauge invariance of the wa
functionals. Gauge-fixing is required to correctly normali
the wave functionals in temporal gauge. We do this by
plying the Faddeev-Popov formula to gauge-invariant in
products. For this purpose we parametrize configurations
A5 gAtr, whereAtr is the representative ofA in the minimal
Coulomb gauge, soAtrPL is a transverse configuration i
the fundamental modular region. The Faddeev-Popov
mula gives

~C1 ,C2!5E
L

dAtrdetM ~Atr!C1* ~Atr!C2~Atr!. ~9.9!

Here M (Atr)52¹•D(Atr) is the Faddeev-Popov operato
which is symmetric and positive forAtrPL. The right hand
side is the inner product in minimal Coulomb gauge. Thus
the 3-dimensional operator formalism, the minimal Coulom
gauge is a gauge-fixingwithin the temporal gauge of the
3-dimensional local gauge invariance, and the wave fu
tional in minimal Coulomb gauge is the restriction of th
wave-functional in temporal gauge to the fundamental mo
lar region10

CCoul~Atr!5C~Atr!, AtrPL. ~9.10!

Conversely, the gauge invariance of the wave functio
in temporal gauge defines the unique extension of the w
functional in minimal Coulomb gauge into a wave function
in temporal gauge. We parametrize an arbitrary configura
by A5 gAtr, whereAtrPL, andg(x;A) andAtr(x;A) depend
on the configurationA. The existence and uniqueness
these quantities at the nonperturbative level is assured~with
lattice regularization! by the existence of an absolute min
mum with respect to gauge transformations ofFA(g)
5uu g21

Auu2. From Eq.~9.7! above we obtain, in matrix no
tation

C~A!5C@ gAtr#

5g~x1 ;A!C@Atr~A!#g†~x2 ;A!, ~9.11!

which expresses the wave functional in temporal gauge
terms of the wave functionalC(Atr) in minimal Coulomb
gauge. The gauge transformationg(x;A) that is found nu-
merically when gauge fixing to the minimal Coulomb gau
has reappeared in the wave functional in the temporal ga

For completeness, we note that a quick way to obtain
Hamiltonian in Coulomb gauge@8# is to apply the Faddeev
Popov formula to the matrix elements ofE2,

10To avoid confusion we note that the two conditionsA050 and
] iAi50 can be imposed at afixed time, which is sufficient for the
3-dimensional operator formalism. They cannot both be maintai
for all time, and in the 4-dimensional Feynman path-integral f
malism in Coulomb gauge one maintains] iAi50, butA0Þ0.
6-16
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~Ei
aC1 ,Ei

aC2!5E
L

dAtrdetM ~Atr!~EiC1!* EiC2uA5Atr.

~9.12!

From this formula the matrix elements of the Hamiltonian
Coulomb gauge are easily found onceEiCuA5Atr is specified.
To evaluateEiCuA5Atr we solve Gauss’ law for the longitu
dinal part of the color-electric field. We writeEi5Ei

tr

2] if, wherefa(x) is the color-Coulomb potential operato
andEi

tr5 i (d/dAtr) satisfies

@Ei
a,tr~x!,Aj

b,tr~y!#5 i @d i j 2] i] j~]2!21#d~x2y!dab.
~9.13!

Gauss’ law in temporal gauge reads

2Di] ifC1Ai3Ei
trC5rqC, ~9.14!

where (X3Y)a5 f abcXbYc is the Lie bracket. We solve fo
the color-Coulomb potential

f~x!CuA5Atr5@M 21~Atr!r#~x!C~Atr!, ~9.15!

where AtrPL. Here M (Atr)52D(Atr)•]52]•D(Atr) is
the Faddeev-Popov operator, and

r[2Ai
tr3Ei

tr1rq ~9.16!

is the total color-charge density of quarks and dynam
gluons. This gives the desired expression

EiCuA5Atr5@Ei
tr2] iM

21~Atr!r#C~Atr!, ~9.17!

which is to be used in Eq.~9.12!.

C. Energy in Coulomb gauge is energy in temporal gauge

The quantity we have measured is the expectation va

^HCoul&2E05VCoul~ ux2yu!1Ese ~9.18!

in the state with wave-functional in minimal Coulomb gau

Cab~Atr!5
1

A2
dabF0~Atr!, ~9.19!

whereF0(Atr) is the vacuum state of pure glue.
We translate this back into temporal gauge. From

~9.11! we obtain

Cab~A!5
1

A2
@g~x1 ;A!g†~x2 ;A!#abF0~A!, ~9.20!

where we have used the gauge invariance of the vac
state of pure glue,F0(Atr)5F0( gAtr)5F0(A). Thus the
quantity we measure may equivalently be described as
expectation-value of the Hamiltonian in temporal gau
with this wave functional

~C,HC!2E05VCoul~ ux2yu!1Ese. ~9.21!
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D. Stringless states

A wave functional of type~9.20!, with F0(A) an arbitrary
gauge-invariant scalar function, has been considered be
@7# and was called a ‘‘stringless’’ state.11 The motivation for
constructing this state was that it has the correct gau
transformation properties, which is equivalent to Gauss’ l
being satisfied exactly. Moreover in QED, with extern
charges only, the stringless state is the exact wave functio
with g(x;A)5exp@i(¹2)21¹•A#. This leads us to expect tha
in QCD the stringless state becomes exact at short dista
ux2yu. Thus the stringless state has several attractive p
erties.

The stringless state was originally constructed using
perturbative expansion forg(x;A). This expansion does no
converge forAtr outside the fundamental modular regionL.
However, as we have noted, the existence ofg(x;A) at the
nonperturbative level is assured by the minimization pro
dure, andg(x;A) is the gauge transformation that we ha
found numerically.

Since our numerical data strongly suggest thatVCoul(R)
rises linearly, it appears from Eq.~9.20! that the ‘‘stringless’’
state of quarks manifests a finite string tensionsCoul at large
separation. Our numerical finding is that this string tens
exceeds the standard string tensions by sCoul;3s. This
provides a measure of the extent to which the stringless s
~9.20! fails to be the exact ground state of a pair of exter
quarks.

X. CONCLUSIONS

In this article we have shown that the confining prope
of the color-Coulomb potential is tied to the unbroken re
ization of a remnant global gauge symmetry in Coulom
gauge. We have studied this type of confinement numeric
in SU~2! gauge-Higgs theories, and in pure gauge theory
zero and at finite temperatures. Confinement in the co
Coulomb potential is not identical to confinement in t
static quark potential. We have seen that the deconfi
phase in pure gauge theory, and the pseudoconfinemen
gion of gauge-fundamental Higgs theory, are instances
which the color-Coulomb potential is asymptotically linea
even though the static quark potential is screened. In term
symmetries, the point is that center symmetry breaki
spontaneous or explicit, does not necessarily imply remn
symmetry breaking.

The existence of a confining color-Coulomb potential,
cases where the static quark potential is screened, has s

11It was called ‘‘stringless’’ because in its construction the th
string, P exp(*x1

x2Aidxi), was replaced byg(x1 ;A)g†(x2 ;A) which

transforms in the same way under gauge transformation. It
argued that the thin string has infinite energy, whereas the ‘‘stri
less’’ state has finite energy~after ultraviolet renormalization! and is
a better approximation to the correct hadron state. However, wheA
lies on a degenerate orbit,hA5A for someh(x)ÞI , the parametri-
zationA5 gAtr is singular. As a result the stringless wave function
is singular for such configurations, which may raise its energy s
nificantly.
6-17
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bearing on the question: In what sense does confinem
exist in real QCD, with dynamical quarks? The problem
that in gauge theories with matter fields in the fundamen
representation, such as real QCD, there is no nontrivial c
ter symmetry, and no possibility of having an asymptotica
confining static potential. Further, in gauge theories with
scalar matter field in the fundamental representation, the
no local order parameter that can distinguish between
Higgs and confinement phases, and the Fradkin-She
theorem assures us that there is no thermodynamic trans
of any kind that can isolate the Higgs phase from a disti
confinement phase.12 All this suggests that there is no fund
mental difference between real QCD and SU~3! gauge theory
in a Higgs phase, and it should be possible to interpo
smoothly from the one theory to the other by a continuo
change of parameters.

The results reported in this paper suggest otherwise
gauge theories with matter fields in the fundamental rep
sentation, the ‘‘confinement’’ phase and the Higgs phase
distinguished by the symmetric or broken realization o
remnant gauge symmetry. Remnant symmetry breakin
not accompanied by nonanalyticity in the free energy, nev
theless the~nonlocal! order parameterQ is directly related to
the color-Coulomb potential, which is confining in theQ
50 phase. Thus, in real QCD, the gluon propagator in C
lomb gauge is confining. This confining property of~dressed!
one-gluon exchange is absent in the Higgs phase of a g
field theory.

12While it is sometimes suggested that confinement should sim
be understood as the condition that asymptotic particle states a
color singlets, this condition is also fulfilled in the Higgs phase
gauge-Higgs theories~cf., e.g., Ref.@13#!.
s.
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We have also uncovered a strong correlation between
presence of center vortices and the existence of a confi
Coulomb potential. Thin center vortices, as pointed o
above, lie on the Gribov horizon. In every case where
find a confining Coulomb potential, we also find that r
moval of center vortices takes the Coulomb string tension
zero. In related work on the SU~2! gauge-fundamental Higg
theory, it was suggested@4#, and recently verified@21#, that
vortices percolate throughout the lattice in the pseudoc
fined phase, and do not percolate in the Higgs phase. T
phases correspond to regions of unbroken and broken r
nant symmetry, which are completely separated by a pe
lation transition located along a Kerte´sz line.

There are many open questions. Presumably the lin
color-Coulomb potential is associated with a flux tube
longitudinal color electric field. If this is really so, does th
tube have stringlike properties; i.e., roughening and a L¨s-
cher term? SincesCoul is several times greater thans, the
Coulomb flux tube must be an excited state. By what mec
nism is the string tensions of the minimal energy flux tube
reduced below the valuesCoul of the Coulomb flux tube?
Does this mechanism involve production of constituent g
ons, along the lines of the gluon-chain model@23#, or is some
other process at work? We hope to address some of t
issues in a future investigation.
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