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Infrared features of the Landau gauge QCD
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The infrared features of Landau gauge QCD are studied by lattice simulation ofb56.0,164,244,324 and
b56.4,324,484. We adopt two definitions of the gauge field,~1! U linear and~2! logU, and measured the gluon
propagator and ghost propagator. The infrared singularity of the gluon propagator is less than that of the tree
level result, but the gluon propagator at 0 momentum remains finite. The infrared singularity of the ghost
propagator is stronger than the tree level. The QCD running coupling measured by using the gluon propagator
and the ghost propagator has a maximumas(p).1 at aroundp50.5 GeV and decreases asp approaches 0.
The data are analyzed with use of the formula of the principle of minimal sensitivity and the effective charge
method, and by the contour-improved perturbation method, which suggest the necessity of the resummation of
the perturbation series in the infrared region together with the existence of the infrared fixed point. The
Kugo-Ojima parameter is about20.8 in contrast with the theoretically expected value of21. The color
off-diagonal part of the ghost propagator in the Landau gauge is consistent with zero, and its fluctuation can be
parametrized as a constant/(qa)4.
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I. INTRODUCTION

Two decades ago, Kugo and Ojima proposed a criter
for the absence of colored massless asymptoptic state
Landau gauge QCD using the Beecchi-Rouet-Stora-Ty
~BRST! symmetry@1#. They suggested to measure the tw
point function of the covariant derivative of the ghost and
commutator of the antighost and gauge field:

S dmn2
qmqn

q2 D uab~q2!

5
1

V(
x,y

e2 ip(x2y)K trS la†Dm

1

2]D
@An ,lb# D

xy
L .

~1!

They showed thatuab(0)5dabu(0) satisfies

11u~0!5
Z1

Z3
5

1

Z̃3

, ~2!

whereZ3 is the gluon wave function renormalization facto
Z1 is the gluon vertex renormalization factor, andZ̃3 is the
ghost wave function renormalization factor, respective
Kugo claimed that confinement is realized either by~1! Z1
50 and Z35finite or ~2! Z1/Z350 but ~and! Z350. The
divergence ofZ̃3 implies u(0)521 and the presence of
long-range correlation between colored sources.
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As shown by Gribov@2#, the Landau gauge is not uniqu
and the uniqueness of the gauge field can be achieved
restriction to the fundamental modular region~FMR!—i.e.,
the region where the norm is the absolute minimum@3,4#.
We adopted the smearing gauge fixing@5# to make the con-
figuration close to the FMR. We observed the proximity
the gauge configurations with and without smearing ga
fixing, but the overlap of the Gribov region and FMR r
mains to be investigated.

The confinement scenario was recently reviewed in
framework of the renormalization group equation and disp
sion relation@6#. It was shown that the gluon dressing fun
tion ZA(q2) defined from the gluon propagator of SU(n),

Dmn~q!5
1

n221
(

x5x,t
e2 ikx Tr^Am~x!†An~0!&

5S dmn2
qmqn

q2 DDA~q2!, ~3!

as ZA(q2)5q2DA(q2), satisfies the superconvergence re
tion, and the gluon dressing function at zero momentum d
not necessarily vanish as Gribov and Zwanziger conjectu
but it could be finite. A systematic study of lattice data i
deed establishes the infrared finiteness of the gluon prop
tor @7#.

The ghost propagator is defined as the Fourier transf
of an expectation value of the inverse Faddeev-Popov~FP!
operatorM:

DG
ab~x,y!5^tr^laxu~M@U# !21ulby&&, ~4!

where the outmost̂•••& denotes average over samplesU.
The infrared behavior of the ghost propagator in the ren
malization group approach depends on the gauge,
whether it satisfies the superconvergence relation is not c
In maximal Abelian gauge, it is conjectured that the o
©2004 The American Physical Society05-1
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diagonal gluon and off-diagonal ghost satisfy the superc
vergence relation, but the diagonal ghost does not, and
the source of the long-range correlation. We remark t
Nishijima proposed a sufficient condition for the confin
ment asZ350, based on the convergence of the spec
function @8#.

The nonperturbative color confinement mechanism w
studied with the Dyson-Schwinger approach@9# and lattice
simulation @10–16#. We produced SU(3) gauge configur
tions by using the heat-bath method@17,18# and performed
gauge fixing@13#. We analyzed lattice Landau gauge co
figurations of b56.0, 164, 244, 324 and b56.4, 324, 484

produced at KEK. Progress reports are presented in@13# and
an extensive report will be published elsewhere. The ga
field is defined from the link variables as

logU type: Ux,m5eAx,m, Ax,m
† 52Ax,m ,

U-linear type:Ax,m5
1
2

(Ux,m2Ux,m
† )u tr less p.

The fundamental modular region of lattice sizeL is speci-
fied by the global minimum along the gauge orbits—i.e.,

LL5$UuFU(1)5MingFU(g)%, LL,VL ,

where VL is called the Gribov region~local minima! and
VL5$Uu2]D(U)>0, ]A(U)50%.

HereFU(g) for the two options are@19,20#

FU(g)5uuAguu25(x,mtr(Ag
x,m

† Ax,m
g ),

FU(g)5(x,m(12 1
3 Re trUx,m

g ),

respectively.
The Landau gauge fixing in the logU type is performed by

Newton’s method where the linear equation is solved up
third order of the gauge field, and then the Poisson equa
is solved by the Green’s function method for 164,244 lattices
and by the multigrid method for 324,484 lattices @13#. The
gauge fixing in theU-linear type is performed by the stan
dard overrelaxation method. The accuracy of]A(U)50 is
1024 in the maximum norm.

In the calculation of the ghost propagator—i.e., inve
FP operator—we adopt the perturbative method with use
the multigrid Poisson solver@21#, whose accuracy was kep
within 1025, and we set 1% as an ending condition in t
method@13#. But later we also introduce the straightforwa
and preconditioned conjugate gradient~CG! methods@22#
for cross-checking of the calculation. In the precondition
CG method, we take for the preconditioning operation
same truncated perturbation series of inversion as that o
perturbative method. In the CG method, the accuracy of
convergence of the series is set to be less than 5% in thL2
norm.

We analyze these data using a method inspired by
principle of minimal sensitivity~PMS! and/or the effective
charge method@23,24# and the contour-improved perturba
tion method@25#.

In Sec. II we explain the method of analysis, and in Se
III the lattice data are presented and compared with result
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the theoretical analysis. We performed a cross-check of
program of SU(3) by performing the SU(2) lattice simul
tion. In Sec. IV we show our data and compare with tho
results of other groups. Our conclusion and outlook are p
sented in Sec. V. Some details of our method of calculat
the FP inverse operator are given in the Appendix.

II. METHOD OF ANALYSIS

In the infrared region, the QCD perturbation series do
not converge and truncation of the renormalization gro
equation and resummation of the series to evaluate the re
malon effect was proposed@26#. On the other hand, the pos
sibility of the presence of an infrared fixed point was d
cussed and methods to bridge infrared and ultraviolet reg
via the renormalization group equation were propos
@23,24#. The method was recently applied to an analysis
lattice data@27# and succeeded in explaining qualitatively th
data. We briefly review the method.

A. PMS and the effective charge method

In the PMS method, thenth-order approximation to the
physical quantityR is expressed by the corresponding ser
of coupling constanth(n) which is defined as a solution of

b0 log
m2

L2
5

1

h
1

b1

b0
log~b0h!1E

0

h

dxS 1

x2
2

b1

b0x

2
b0

b0x21b1x31•••1bnxn12D , ~5!

where the scheme-independent constant and logarith
term are separated.

When R is the QCD running coupling from the triple
gluon vertex from up to three-loop diagrams in the modifi
minimal subtraction (MS) scheme, one sets the scalem2

equal to the external scaleq2 and expresses

R n5h(n)~11A1h(n)1A2h(n)21•••1Anh(n)n!, ~6!

where in the case of n53, A1570/3,A25 516217
576

2z3
153

4 , A35 304676635
6912 2z3

299961
64 2z5

81825
64 @28#.

When one definesyMS(q) as a solution of

1/yMS~q!5b0 log~q/LMS!22
b1

b0
log@b0yMS~q!# ~7!

and expresses the solution of Eq.~5!,

h~q!5yMS~q!H 11yMS~q!2@b̄2 /b02~b1 /b0!2#

1yMS~q!3
1

2
@b̄3 /b02~b1 /b0!3#1•••J , ~8!

whereb0511, b15102, b̄25 2857
2 , b̄35 149753

6 13564z3, we
can calculateR via Eq. ~6!.
5-2
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INFRARED FEATURES OF THE LANDAU GAUGE QCD PHYSICAL REVIEW D69, 074505 ~2004!
The parameteryMS(q) can be expressed asy defined as a
solution of

b0 log
m2

L2
5

1

y
1

b1

b0
log~b0y! ~9!

and the function

k~q2,y!5
1

y
1

b1

b0
log~b0y!2b0log~q2/LMS

2
!. ~10!

In @27# the parametery is fixed via minimization of
u„R n(y)2R 1(y)…/R 1(y)u for each q2. There are subtle
problems in fixingy of PMS in the low-energy region@29#.
We leave the fitting of the low-energy region for the futu
and we fixy at m51.97 GeV by solving

1/y5b0 log~m/L!22
b1

b0
log~b0y!. ~11!

The choice ofm51.97 GeV corresponds to the inverse la
tice unit 1/a of b56.0 and chosen by@11# as the factoriza-
tion scale of the effective charge method. WhenL5LMS
50.237 GeV we find the solutiony50.01594, and we cal
this method of choosingy at a specificm and defineas from
ghost-ghost-gluon coupling, the MOM˜ scheme.

B. Contour-improved perturbation series

Exact solution of the two-loop renormalization grou
equation forx with variablet5 log(q2/L2),

b~x!5
dx

dt
52

b

2
x2~11cx!, ~12!

is

b

2
log~q2/L2!5

1

x
2c logS 1

x
1cD . ~13!

The solutionx can be expressed as

x~q2!52
1

c

1

11W~z!
,

where W(z) is the LambertW function which satisfies
W(z)eW(z)5z. We apply the dispersion relation and consid
contributions on a cut of negative real axis in the space
q2—i.e., takeq pure imaginary. In order to be consistent wi
the MS scheme, the variablez is defined as

z52e(212bt/2c)52
1

e S q

L̃MS
D 2b/c

eiKp52Z~q2!eiKp,

~14!

where t5 log(q2/L̃MS
2 ), L̃MS5(2c/b)2c/bLMS, K52b/2c

@23,25#. The physical quantitiesR are expressed in a serie
07450
r
f

R~q2!5B1~q2!1 (
n51

`

AnBn11~q2!, ~15!

Bn5
1

2pE2p

p S 21

c~11W~Z~q2!eiKu!
D n

du. ~16!

III. LATTICE DATA

A. Gluon propagator

The gluon propagator on the lattice was measured by
ing cylindrical cut method@12#—i.e., choosing momenta
close to the diagonal direction. When the difference of th
lattice constanta2151.885 GeV inb56.0, 323364 and our
a2151.97 GeV, 324 is taken into account, the data are co
sistent with@12# ~see Fig. 1!.

The effective couplingy of the MOM̃ scheme is calcu-
lated from

1/y5b0 log~m/Lz!
22

b1

b0
log~b0y! ~17!

for m51.97 GeV andLz5LMSe25085/37752 @28# obtained
from the three-gluon vertex in Landau gauge perturbat
theory. The relevant solution of Eq.~17! is y50.02227.

The gluon dressing function is defined asZA(q2)
5q2DA(q2). Its inverseZ21 is expressed in the two-loop
perturbation series as@28#

Z21~q2,y!5lz
21h(2)213/22F12

25085

2904
h(2)

2S 41245993

1874048
2

9747

352
z3Dh(2)2G , ~18!

wherelz is a fitting parameter~see Fig. 3!.
As shown in Fig. 1 and Fig. 3, the gluon propagators

244, 324, and 484 as a function of the physical momentu
agree quite well with one another and they can be fitted

FIG. 1. The gluon propagator as a function of the momentumq
~GeV!. b56.0, 244 ~triangles!, 324 ~diamonds!, and b56.4, 484

~stars! in the logU definition.
5-3
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DA~q2!5
Z~q2,y!uy50.02227

q2
5

ZA~q2!

q2 ~19!

in the q.0.8 GeV region. At zero momentum,DA(0) de-
creases as the lattice size becomes larger.

The gluon dressing function in the MOM˜ scheme withy
50.02227 fits the lattice data forq.0.8 GeV, but there
appears a discontinuity atz.0.174 andz51/e. We note that
the q dependence ofZ(q2,y) in z,0.17 is similar to
1/W0(0.172z), that in 0.17,z,1/e is similar to
Re@W21(0.172z)1W21(z2e21)#, and that inz.1/e is
similar to 1/W0(z21/e).

B. Ghost propagator

The ghost dressing function is defined by the ghost pro
gator asGab(q2)5q2DG

ab(q2). In the MOM̃ scheme, we fix
the scale by choosingy as a solution of

1/y5b0 log~m/Lgh!
22

b1

b0
log~b0y!. ~20!

FIG. 2. The dressing functionlzZ(q2,y) as a function of the
variablez for a fixedy50.02227. The branches of the LambertW
funtion 1/W0(0.172z), Re@W21(0.172z)1W21(z2e21)#, and
1/W0(z2e21) are shown as dotted lines.

FIG. 3. The gluon dressing function as the function of the m
mentumq ~GeV!. b56.0, 244 ~triangles!, 324 ~diamonds!, and b
56.4, 484 ~stars! in the logU version. The fitted line is that of the

MOM̃ scheme.
07450
a-

For m51.97 GeV andLgh5LMSe1757/2904 @28# obtained
from two-loop Landau gauge perturbation theory, we find
a relevant solutiony50.02142.

The ghost dressing function is

Zg
21~q2,y!5lg

21h(2)29/44F11h(2)S 2
5271

1936D
1h(2)2S 2

615512003

7496192
1

5697

704
z3D1•••G ,

~21!

wherelg is a fitting parameter.
In Fig. 4, the 244, 324, and 484 lattice data are compare

with

DG~q2!52
Zg~q2,y!uy50.02142

q2
5

G~q2!

q2 . ~22!

We observe that the agreement is good forq.0.5 GeV
and better than the result of the PMS method of@27#. The
ghost propagators were calculated by the perturba
method and the straightforward and preconditioned
methods. We found that the two CG methods are consis
and give better accuracy than the perturbative method
SU(2) and give correct result in the lowest-momentum po
of the SU(3) 484 lattice. With the lowest-momentum poin
of the 484 lattice calculated with the CG method, the who
data can be fitted by Eq.~22!.

C. QCD running coupling

We measured the running coupling from the product
the gluon dressing function and the ghost dressing func
squared@9#:

as~q2!5
g0

2

4p
ZA~q2!G~q2!2.~qa!22(aD12aG). ~23!

The lattice size dependences of the exponentsaD andaG
are summarized in Table I.

-

FIG. 4. The ghost propagator as the function of the momen
q ~GeV!. b56.0, 244, 324 and b56.4, 484 in the logU version.

The fitted line is that of the MOM̃scheme.Zg(q2,y) is singular at

L̃MS.0.25 GeV which should be washed away by the nonper
bative effects.
5-4
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The effective running coupling in theMS scheme is ex-
pressed by the series of coupling constantsh(n) as Eq.~6!

@27,28#. The result of the MOM̃scheme usingy50.01594 is
shown by the solid line in Fig. 5. The lattice data of 244, 324,
and 484 and the MOM̃ scheme agree at 0.5 GeV,q
,2 GeV, but the fit is slightly overestimated atq
.2 GeV.

In the contour-improved perturbation series, the runn
coupling in two loops is expressed as

R 2~q2!5B1~q2!1A1B2~q2!1A2B3~q2!1•••. ~24!

The series truncated at orderA1 is plotted in Fig. 6 together
with the 484 lattice data measured by using the logU defini-
tion. We observed that the fit is good forq.2 GeV, but the
nonperturbative effect is underestimated.

Since in the perturbative calculation of the Landau gau
gluon vertex in theMS scheme theLMS is modified to
e70/6b0LMS @30#, we performed the same replacement. T
result is overestimated in theq.1 GeV region. Since theA3
term is not known and there are cancellations between
essive terms, we fit the data by inclusion of half of theA2
term. The result is shown by the dotted line in Fig. 6.

The similar nonperturbative effect was attributed to t
gluon condensates in@11,31#. The lattice data are qualita
tively the same as the results of hypotheticalt lepton decay
@32#, and the Dyson-Schwinger approach@33#.

The lowest-momentum point ofas of b56.4, 484 be-
comes consistent with results of other lattice sizes when
calculated with the CG method.

TABLE I. The exponent of gluon dressing function near ze
momentumaD , near qa51 aD8 , and the exponent of the ghos
dressing function near zero momentumaG . logU type.

b L aD aD8 aG aD12aG

6.0 32 20.375 0.302 0.174 20.03~10!

6.4 48 20.273 0.288 0.193 0.11~10!

FIG. 5. The running couplingas(q) of b56.0, 244 ~squares!,
324 ~triangles!, b56.4, 324 ~diamonds!, and 484 ~stars! as a func-
tion of momentumq ~GeV! and the result of the PMS method in th

MOM̃ scheme.
07450
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D. Kugo-Ojima parameter

Our lattice data of~1! The Kugo-Ojima parameterc
52u(0), ~2! the trace of the gauge field divided by th
dimensione/d, and ~3! the deviation parameterh from the
horizon condition@13# are summarized in Table II.

We observe that the Kugo-Ojima parameter of t
U-linear definition remains smaller than that of logU. The
similar difference exists in the ghost propagator in the inf
red region.

We plot in Fig. 7, the valuec as a function of logZ(m2) of
b56.0, 164, and 244 in logU and U-linear definitions and
b56.4, 324, and 484 in the logU definition. The valuec of
b56.0, 324 is almost the same as 244. The value increases
as the lattice size increases from 164 to 244 and the extrapo-
lation of the two definitions to those of a large lattice whe
c in logU and U-linear seem to cross atc;1. The linear
extrapolation as the function of logZ(m2) is based on the
factorizability

Z3~m2,LMOM̃!5ZR~m2!/Zb~LMOM̃! ~25!

whenm;1.97 GeV, which allows us to express

Z3~m2,LMOM̃!5Z3~m2,LMS!3@Zb
21~LMOM̃!/Zb

21~LMS!#.
~26!

The difference of the speed ofZb(LMOM̃) to its continuum
limit in the U-linear and logU definitions will appear as a

FIG. 6. The running couplingas(q) as a function of momentum
q (GeV) of theb56.4, 484 lattice. The solid line is the result o
R 2 using LMS5237 MeV. The dotted line is the result o

e70/6b0L̃MS and including half ofA2. The dashed line is the result o

the MOM̃ scheme.

TABLE II. The Kugo-Ojima parameterc in the U-linear and
log U versions.b56.0 and 6.4.

b L c1 e1 /d h1 c2 e2 /d h2

6.0 16 0.576~79! 0.860~1! 20.28 0.628~94! 0.943~1! 20.32
6.0 24 0.695~63! 0.861~1! 20.17 0.774~76! 0.944~1! 20.17
6.0 32 0.706~39! 0.862~1! 20.15 0.777~46! 0.944~1! 20.16

6.4 32 0.650~39! 0.883~1! 20.23 0.700~42! 0.953~1! 20.25
6.4 48 0.793~61! 0.954~1! 20.16
5-5
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difference of the slope. However, the increase ofc from 244

to 324 is small. The Kugo-Ojima parameterc of b56.4, 484

lattice calculated in the CG method is 0.793(61), which
consistent to the result of the logU definition of b
56.0, 244, and 324 lattice data.

IV. SU„2… LATTICE DATA

In the numerical simulation of the SU~2! Yang-Mills field,
we took the U-linear-type gauge field and simulatedb
52.2 and 164 lattices. We took 67 samples taken aft
18 000 thermalization sweeps and up to 84 000 sweeps
intervals of 1000 sweeps@16#. To each sample, we performe
parallel tempering gauge fixing~PT! and direct gauge fixing
by the overrelaxation method~first copy!. We define the
scale by the relation 1/a50.938 GeV and compare our da
with those of@34,35# and @47#.

A. Gluon propagator

The gluon propagator is shown in Fig. 8. We observe t
above 1 GeV our data agree with@34#, but in the infrared
region our data have an enhancement. Suppression at 0
mentum is consistent with the data of@35#.

B. Ghost propagator

The color diagonal component of the ghost propaga
calculated in PT is about 6% less singular than that of fi

FIG. 7. The Kugo-Ojima parameterc as a function of
log Z(1.97 GeV). b56.4, 324, 484 in log U ~star!, b56.0, 164,
and 244 in log U ~triangles! andU-linear ~diamonds! versions.

FIG. 8. The gluon propagatorDA(q) as a function of the mo-
mentumq ~GeV! of PT samples.
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copy~Fig. 9!. We performed the calculation of the FP inver
operator by using the CG method, since the matrix is sy
metric positive definite. Our data in the infrared are less s
gular than that of@34#. Although there are differences in th
gauge fixing method~PT versus simulated annealing!, we do
not understand the origin of the difference.

In the maximal Abelian~MA ! gauge, color symmetry is
spontaneously broken by the ghost condensation@36,37#. In
the Landau gauge, there is no background field as in the
gauge, but the structure of the color off-diagonal gh
propagator has not been known. In order to investigate
problem, we measured color off-diagonal symmetric and
tisymmetric @eabcDG

ab(q,q)# matrix elements, where
DG

ab(q,q) is the ghost propagator with color indicesa andb.
We observed that the color off-diagonal antisymmetric par
consistent with zero pointwise as is expected from the th
retical observation and that the color off-diagonal symme
part multiplied byq4 is consistent with zero over the en
semble average, but its standard deviation is almost cons
in the whole momentum region. The fluctuation can be
rametrized ass/q4 with s50.0176(28) GeV2, in the nor-
malization trt251. We observed the same qualitative fe
tures in the SU~3! 484 lattice, buts is about 1/9 of the SU~2!
164 lattice, i.e., the fluctuation is statistical.

C. QCD running coupling

The result of the running is shown in Fig. 10. As a res
of the difference in the ghost propagator, the running c
pling is about 1/3 of@34#. We observe suppression near
momentum.

D. Kugo-Ojima parameter

The Kugo-Ojima parameterc of the PT samples was
0.690~52! and that of the first copy was 0.722~68!. This dif-
ference is qualitatively the same as that of the ghost dres
function at 0 momentum.

V. CONCLUSION AND OUTLOOK

There are two aspects of color confinement: i.e.,~1! the
presence of long-range correlation between colored sou
and ~2! the absence of massless gluon poles. The Ku

FIG. 9. The color diagonal ghost dressing functionDG(q2)
3q2 as a function of the momentum squaredq2 (GeV2). The first
copies~diamonds! are more singular than PT~triangles!.
5-6
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Ojima criterion is a sufficient condition for the two aspec
but the lattice data do not verify that these criteria are sa
fied.

A new method of FMR gauge fixing in SU~2! is reported
in @16#. We observe that the gluon propagator is suppres
at zero momentum in SU~2!—i.e., the exponent
aD,20.5—in contrast to the SU~3! case whereaD>
20.5. In the simulation of SU~2!, we observed differences i
the Kugo-Ojima parameter of the configuration in the FM
and of copies randomly produced in the Gribov region. T
Gribov copy affects the Kugo-Ojima parameter, and in
ghost propagator in the infrared region, the difference
about 4%. Color SU~3! contains I , U, and V SU~2! spin
components, and we expect that the Gribov ambiguity is
same order.

In the lattice data, the singularity of the ghost propaga
is stronger than the tree level and that of the gluon propa
tor is weaker than the tree level. The dependence on theU-
linear or logU definition of the gauge field is small in th
gluon propagator, consistent with@38#, but not negligible in
the FP inverse operator.

We aimed at detecting in the lattice dynamics a signa
the Kugo-Ojima confinement criterion derived in the co
tinuum theory, formulated with use of the FP Lagrangian a
BRST symmetry. We also noted that Zwanziger’s horiz
condition, based on the lattice formulation, coincides w
the Kugo-Ojima criterion@3,13#. However, our present dat
are not satisfactory to prove or disprove the confinement
terion. The color off-diagonal antisymmetric part of the gho
propagator@36,39# vanishes in the Landau gauge, but t
off-diagonal symmetric part has fluctuations proportional
(qa)24.

Although there are problems in fixingy of the PMS in the
low-energy region, an extension of the effective cha
method is a possible solution. In an extension of the solu
of the two-loop renormalization group equation expressed
the LambertW function, a solution of Pade´ approximant of
the three-loop renormalization group equation was sho
@40# and numerical calculation was done forNf>3 @41#. In
the analytical perturbation theory approach in one loop,
predicts@42# a nonperturbative infrared fixed point of

as~0!

4p
5

1

b0
5

1

1122/3Nf
.

FIG. 10. The running couplingas(q) as a function of the mo-
mentumq (GeV) of PT samples.
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Extension to two loops is discussed in@40#. For Nf50, one
needs continuation. There is a conjecture, in combina
with the conformal relation, that continuation fromNf in the
conformal window (4<Nf<6) to Nf50 would be possible
@29,43,44#.

We remark that the Orsay group analyzed QCD runn
coupling in the Landau gauge from a three-gluon vert
They separate the momentum space intoq,0.8 GeV and
1.5 GeV,q and fit the lower-momentum region by the in
stanton liquid model and the higher-momentum region
including the 1/q2 power correction due to gluon conden
sates@45#. We did not takeas(0)50. Agreement of the lat-
tice results of QCD running coupling inq.0.8 GeV region
and the 3 loop perturbation theory is reported in@46#.

We observed that the contour-improved perturbat
theory performs a resummation of the perturbation series
that we can understand qualitatively the Landau gauge la
QCD data via these methods.
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APPENDIX: THE NUMERICAL CALCULATION
OF THE FADDEEV-POPOV INVERSE

In this appendix we briefly explain the numerical meth
of calculating the Faddeev-Popov inverse.

1. Perturbative method

The ghost propagator, which is the Fourier transform
an expectation value of the inverse Faddeev-Popov oper
M52]D52]2(I 2M ),

DG
ab~x,y!5^tr^laxu~M@U# !21ulby&&, ~A1!

where the outmost̂•••& denotes average over samplesU, is
evaluated as follows. We take the plane wave for the sou
b[1]5lbeiqx and get the solution2Df[1]5b[1] . Heref[1]

5(2D)21b[1] . We calculate iteratively f [ i 11]

5Mf[ i ] (x) ( i 51, . . . ,k21). The iteration was con-
tinued until the maximum norm Maxxuf[k] (x)u/
Maxxu( i 51

k21f[ i ] (x)u,0.001–0.01. The number of iteration
k, is of the order of 60, in SU~2!, 164 lattice, and of the order
of 100 in SU~3!. We measure also theł 2 norm
iuf[k] (x)iu/iu( i 51

k21f[ i ] (x)iu.
We define Fb(x)5( i 51

k f[ i ] (x) and evaluate
^laeiqx,Fb(x)& as the ghost propagator from colorb
to color a.

In the low-momentum region of SU~2! we observed a
specific color symmetry violation pattern, and in the case
SU~3! relatively large color off-diagonal matrix elemen
suppressed the color diagonal matrix element. For a cr
check of the perturbative method, we adopted the straight
5-7
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ward conjugate gradient method and the preconditioned c
jugate gradient method@22# in which the truncated
perturbation series is used for the preconditioning.

2. Preconditioned conjugate gradient method

We define M52]2(I 2M ) and define the truncate
M 21 which is used in the perturbative method asB215(I
1M1•••1Mm21)(2D)21. First we choosex0 and define
r05b2Mx0. Using the multigrid Poisson solver we calc
late the perturbation series

r̃05B21r0 ~A2!

and definep05 r̃0.
Then we begin the iteration fork50,1, . . . ,

ak52~ r̃ k,r k!/~pk,Mpk!, ~A3!

xk115xk2akp
k, ~A4!

r k115r k1akMpk. ~A5!
er-

r-

-

s

,

3

07450
n- We check the norm ofr k11, and if it is not small, we
calculate the perturbation seriesr̃ k115B21r k11 as before.
We define

bk5~ r̃ k11,r k11!/~ r̃ k,r k!, ~A6!

pk115 r̃ k111bkp
k, ~A7!

and go back to the beginning of the iteration cycle. B
choosing a sufficiently large number ofm, the convergence
occurs after a few iteration cycles.

The preconditioned method makes theł 2 norm conver-
gence faster than the straightforward conjugate grad
method, but its maximum norm is larger than that of straig
forward method. The solution agrees with the straightf
ward conjugate gradient method within errors in the wh
momentum region, but disagrees with the perturbat
method in the lowest-momentum point ofb56.4, SU~3! 484

lattice @47#.
hn.
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2003!, pp. 197–210; hep-ph/0211220.

@47# A. Cucchieri, Nucl. Phys.B508, 353 ~1997!.
5-9


