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Infrared features of the Landau gauge QCD
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The infrared features of Landau gauge QCD are studied by lattice simulatigr=6£0,16,24",32* and
B=6.4,32,48". We adopt two definitions of the gauge field) U linear and(2) logU, and measured the gluon
propagator and ghost propagator. The infrared singularity of the gluon propagator is less than that of the tree
level result, but the gluon propagator at 0 momentum remains finite. The infrared singularity of the ghost
propagator is stronger than the tree level. The QCD running coupling measured by using the gluon propagator
and the ghost propagator has a maximagip)=1 at aroundo=0.5 GeV and decreases psapproaches 0.

The data are analyzed with use of the formula of the principle of minimal sensitivity and the effective charge
method, and by the contour-improved perturbation method, which suggest the necessity of the resummation of
the perturbation series in the infrared region together with the existence of the infrared fixed point. The
Kugo-Ojima parameter is about 0.8 in contrast with the theoretically expected value-61. The color
off-diagonal part of the ghost propagator in the Landau gauge is consistent with zero, and its fluctuation can be
parametrized as a constarng)*.
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[. INTRODUCTION As shown by Gribo\{2], the Landau gauge is not unique
and the uniqueness of the gauge field can be achieved via
Two decades ago, Kugo and Ojima proposed a criteriofiestriction to the fundamental modular regiFMR)—i.e.,
for the absence of colored massless asymptoptic states he region where the norm is the absolute minimi8].
Landau gauge QCD using the Beecchi-Rouet-Stora-TyutiyVe adopted the smearing gauge fixitd to make the con-
(BRST) symmetry[1]. They suggested to measure the two-figuration cIose_to the_: FMR: We obse;rved the proximity of
point function of the covariant derivative of the ghost and theth® gauge configurations with and without smearing gauge

commutator of the antighost and gauge field: fixing, but the overlap of the Gribov region and FMR re-
' mains to be investigated.

The confinement scenario was recently reviewed in the
P 4.9y uab(g?) framework of the renormalization group equation and disper-
K g2 q sion relation[6]. It was shown that the gluon dressing func-
tion Zx(q?) defined from the gluon propagator of St)(

1 . 1
:vz e—ID(X—y)<tr<)\aTDMﬁ[AW)\b]) >
X,y o Xy D = e ™ TrHA, (X)TA (0
@ W=7y 2 (A0A0))
ab/ny_ sab (i 4.9,
They showed than?”(0)= §*°u(0) satisfies :( 80— ;2 )DA(QZ), @)

~i, 2) @as Za(9%)=0q°Da(g?), satisfies the superconvergence rela-
Z3 7, tion, and the gluon dressing function at zero momentum does
not necessarily vanish as Gribov and Zwanziger conjectured,
whereZ; is the gluon wave function renormalization factor, but it could.be finite. A systematic study of lattice data in-
) T - deed establishes the infrared finiteness of the gluon propaga-
Z, is the gluon vertex renormalization factor, afg is the o [7].
ghost wave function renormalization factor, respectively. The ghost propagator is defined as the Fourier transform
Kugo claimed that confinement is realized either(ty Z;  of an expectation value of the inverse Faddeev-Pasdy
=0 andZz=finite or (2) Z,/Z3=0 but (and Z;=0. The  operatorM:
divergence ofZ; implies u(0)=—1 and the presence of a ab _ a b
long-range correlation between colored sources. DE(x,y) = (A X[ (MUD) *\7y)), )

where the outmost- - -) denotes average over samplds
The infrared behavior of the ghost propagator in the renor-
*Electronic address: furui@umb.teikyo-u.ac.jp; URL http:// malization group approach depends on the gauge, and
albert.umb.teikyo-u.ac.jp/furui_lab/furuipbs.htm whether it satisfies the superconvergence relation is not clear.
Electronic address: nakajima@is.utsunomiya-u.ac.jp In maximal Abelian gauge, it is conjectured that the off-
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diagonal gluon and off-diagonal ghost satisfy the superconthe theoretical analysis. We performed a cross-check of our
vergence relation, but the diagonal ghost does not, and it iprogram of SU(3) by performing the SU(2) lattice simula-

the source of the long-range correlation. We remark thation. In Sec. IV we show our data and compare with those
Nishijima proposed a sufficient condition for the confine-results of other groups. Our conclusion and outlook are pre-
ment asZ;=0, based on the convergence of the spectrakented in Sec. V. Some details of our method of calculating

function[8]. the FP inverse operator are given in the Appendix.
The nonperturbative color confinement mechanism was
studied with the Dyson-Schwinger approd&j and lattice Il. METHOD OF ANALYSIS
simulation[10-16. We produced SU(3) gauge configura-
tions by using the heat-bath methfit7,18 and performed In the infrared region, the QCD perturbation series does

gauge fixing[13]. We analyzed lattice Landau gauge con-not converge and truncation of the renormalization group
figurations of 3=6.0, 16, 24', 32 and 8=6.4, 32, 48 equation and resummation of the series to evaluate the renor-
produced at KEK. Progress reports are present¢@i3hand ~ malon effect was proposg@6]. On the other hand, the pos-
an extensive report will be published elsewhere. The gauggibility of the presence of an infrared fixed point was dis-

field is defined from the link variables as cussed and methods to bridge infrared and ultraviolet regions
via the renormalization group equation were proposed
logU type: UX,M=eAw, Al”u: A [23,24). The method was recently applied to an analysis of
. _ + lattice datd27] and succeeded in explaining qualitatively the
U-linear type:A, , =5 (Ux,.— Uy lirtess p data. We briefly review the method.

The fundamental modular region of lattice slzés speci-

. L ) ; A. PMS and the effective charge method
fied by the global minimum along the gauge orbits—i.e.,

In the PMS method, thath-order approximation to the
A ={U[Fy(1)=MingFy(9)}, AL.CQ, physical quantityR is expressed by the corresponding series
of coupling constanh(™ which is defined as a solution of
where (), is called the Gribov regiorflocal minimg and

Q. ={U|-dD(U)=0, 7A(U)=0}. w? 1 1
L=l L) (L)=0} ,80Iog— —+£—Iog(ﬁ0h)+f dx(—z—%
HereF(g) for the two options ar¢19,20] X 0
Fu(@) = (1497 = 3, (A%, A9, . Bo ) -
Fu(9)=2,,.(1— 3Re tU] ), Box?+ Byx3+ -+ Bx" T2
respectively. where the scheme-independent constant and logarithmic

The Landau gauge fixing in the logtype is performed by term are separated.
Newton’'s method where the linear equation is solved up to When R is the QCD running coupling from the triple
third order of the gauge field, and then the Poisson equatiogluon vertex from up to three-loop diagrams in the modified
is solved by the Green’s function method for*1B4* lattices  minimal subtraction MS) scheme, one sets the scalé
and by the multigrid method for 348" lattices[13]. The equal to the external sca_{ﬁ and expresses
gauge fixing in theJ-linear type is performed by the stan-
dard overrelaxation method. The accuracyddf(U)=0 is R"=hM(1+AhMW+ARM2L. ..+ A KON (6)
10" 4 in the maximum norm.

In the calculation of the ghost propagator—i.e., inversewhere in the case of n=3, A;=70/3,A,=3%Y
FP operator—we adopt the perturbative method Wlth use of ;183 A — 304676635, 299961 - 81825 [5g)
the multigrid Poisson solvei21], whose accuracy was kept  \yhen one definegys(q) as a solution of
within 107°, and we set 1% as an ending condition in the
method[13]. But later we also introduce the straightforward
and preconditioned conjugate gradig@G) methods[22] 1lyws(q) = Bo log(a/ Aws) >~
for cross-checking of the calculation. In the preconditioned
CG method, we take for the preconditioning operation the
same truncated perturbation series of inversion as that of th
perturbative method. In the CG method, the accuracy of the

%IOQ[IBOYM_S(Q)] (7)
0

and expresses the solution of E§),

convergence of the series is set to be less than 5% ih the h(q)=yms(a)| 1+ yiis(A) [ B2/ Bo— (B1!Bo)]
norm.

We analyze these data using a method inspired by the 1 _
principle of minimal sensitivity(PMS) and/or the effective +yM—S(q)3§[,83/BO—(ﬁ1/,80)3]+ -ty (8)

charge method23,24] and the contour-improved perturba-
tion method[25].

In Sec. Il we explain the method of analysis, and in Sec.whereBy=11, 8;=102, B,= 2357, B,= 1497581 35647, we
[l the lattice data are presented and compared with results afan calculateR via Eq. (6).
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The parameteyys(q) can be expressed gglefined as a
solution of

2

us 1 B
Bo |09P =y + %mg(ﬁow 9
and the function
2 _ l Bl 2 2
k(gs,y)= §+ %'09(303/)_/30'09((1 I\ (10)

In [27] the parametery is fixed via minimization of
[(R"(y)—RYy))Ry)| for eachqg? There are subtle
problems in fixingy of PMS in the low-energy regiof9].
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FIG. 1. The gluon propagator as a function of the momengum
(GeV). B=6.0, 24 (triangles, 32* (diamonds, and B8=6.4, 48

We leave the fitting of the low-energy region for the future (starg in the logU definition.

and we fixy at u=1.97 GeV by solving

1ly=Bolog(u/A)*~ %'09(,30)’)- (11)

The choice ofu=1.97 GeV corresponds to the inverse lat-

tice unit 1A of 8=6.0 and chosen bl1] as the factoriza-
tion scale of the effective charge method. Wheer Ays
=0.237 GeV we find the solutiop=0.01594, and we call
this method of choosing at a specifiqu and definexg from

ghost-ghost-gluon coupling, the MOKtheme.

B. Contour-improved perturbation series

Exact solution of the two-loop renormalization group
equation forx with variablet=1log(g%/A?),

_dx b, 1 12
BX)= g7 =~ X (1+cx), (12
is
bl 2IN%) = ! | ! 13
5109(q"/A%) =2 —clog| - +c/. (13
The solutionx can be expressed as
o 1 1
4= W)

where W(z) is the LambertW function which satisfies

W(z)eV@ =z, We apply the dispersion relation and consider
contributions on a cut of negative real axis in the space of

qz—i_.e., takeq pure imaginary. In order to be consistent with
the MS scheme, the variableis defined as

7= — (~1-bt/2c)

olr

q —blc
(~_> eiKﬂn':_Z(qZ)eiKﬂ"
Aws
(14)

where t=log(e?/Azg), Ams=(2c/b) “PAys, K=—b/2c
[23,25. The physical quantitie® are expressed in a series:

R<q2>=81(q2)+n§l AnBni1(0?), (15)

1

“2w) .

_1 n
C(1+W(Z(q2)eiK0)>

ks

B deé.

(16)

lll. LATTICE DATA

A. Gluon propagator

The gluon propagator on the lattice was measured by us-
ing cylindrical cut method[12]—i.e., choosing momenta
close to the diagonal direction. When the difference of their
lattice constana ™ *=1.885 GeV in8=6.0, 3% x 64 and our
a 1=1.97 GeV, 32 is taken into account, the data are con-
sistent with[12] (see Fig. 1

The effective couplingy of the 'MOM scheme s calcu-
lated from

1ly=Bolog(u/A,)*~ %'09(/30)/) (17

0

for ©=1.97 GeV andA,=Ayse®>°%%%7752[28] obtained
from the three-gluon vertex in Landau gauge perturbation
theory. The relevant solution of E¢L7) is y=0.02227.

The gluon dressing function is defined a&\(g?)
=0°DA(g?). Its inverseZ™ ! is expressed in the two-loop
perturbation series 428|

25085 )

“1(n2 )y —x —1n(2)—13/23 4 _
Z7(g%y)=\;h 2{1 5904

|

where)\, is a fitting parametefsee Fig. 3.

As shown in Fig. 1 and Fig. 3, the gluon propagators of
24% 32, and 48 as a function of the physical momentum
agree quite well with one another and they can be fitted by

41245993 9747 212 16
1874048 352 %3 . (19
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FIG. 2. The dressing function,Z(g?,y) as a function of the
variablez for a fixedy=0.02227. The branches of the Lamb@rt
funtion 1M/(0.17—2), R§W_,(0.17-2)+W_,(z—e Y], and
1MW,(z—e™ 1) are shown as dotted lines.

Z(9%Y)ly=0.02007 Za(9?)
-T2
q q

Da(0?)= (19

2

in the g>0.8 GeV region. At zero momentun 5(0) de-
creases as the lattice size becomes larger.

The gluon dressing function in the MOKtheme withy
=0.02227 fits the lattice data faq>0.8 GeV, but there
appears a discontinuity at=0.174 andz= 1/e. We note that
the q dependence ofZ(g?y) in z<0.17 is similar to
1MWy(0.17—2), that in 0.1Kz<1/e is similar to
RgW_,(0.17-2)+W_,(z—e 1)], and that inz>1/e is
similar to 1Wy(z— 1/e).

B. Ghost propagator

The ghost dressing function is defined by the ghost propa-

gator asG?*(q?) = ¢2D2(q?). In the MOM scheme, we fix
the scale by choosing as a solution of

ﬁlo9(,30)/)- (20

1ly=Bolog(u/ A gn)>— B

3

0 1 2 6

FIG. 3. The gluon dressing function as the function of the mo-
mentumq (GeV). 3=6.0, 24 (triangles, 32* (diamond$, and 3
=6.4, 48 (starg in the logU version. The fitted line is that of the
MOM scheme.
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FIG. 4. The ghost propagator as the function of the momentum
q (GeV). B=6.0, 24, 32" and B=6.4, 48 in the logU version.

The fitted line is that of thé—m(fl\d;chemezg(qz,y) is singular at

Aws=0.25 GeV which should be washed away by the nonpertur-
bative effects.

For ©=1.97 GeV andAy,=Ayse'’>"29% [28] obtained
from two-loop Landau gauge perturbation theory, we find as
a relevant solutiory=0.02142.

The ghost dressing function is

1936

615512003 5697
7496192 704 %3

Zgl(qz,Y):)\glh(z)9/44[l+h(2)( 5271)

+ ..

+ h(2)2< _

(21)

where\ is a fitting parameter.
In Fig. 4, the 24, 32*, and 48 lattice data are compared
with

Zo(0%Y)ly=002142 G(T?)
q q*
We observe that the agreement is good or0.5 GeV
and better than the result of the PMS method 2f]. The
ghost propagators were calculated by the perturbative
method and the straightforward and preconditioned CG
methods. We found that the two CG methods are consistent
and give better accuracy than the perturbative method in
SU(2) and give correct result in the lowest-momentum point
of the SU(3) 48 lattice. With the lowest-momentum point
of the 48 lattice calculated with the CG method, the whole
data can be fitted by E@22).

De(9?)=- (22)

2

C. QCD running coupling

We measured the running coupling from the product of
the gluon dressing function and the ghost dressing function
squared9]:

2
g -
al(01)= 5 Za(4)G(0?)?=(ga) 207210, (23)

The lattice size dependences of the exponeptand ag
are summarized in Table .
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TABLE I. The exponent of gluon dressing function near zero
momentumeap, nearqa=1 «f, and the exponent of the ghost
dressing function near zero momenturg . logU type. 1.

B L ap ap ag ap+2ag

6.0 32 —0.375 0.302 0.174 —0.0310
6.4 48 —0.273 0.288 0.193 0.110

N > O 0 B DN

o O O O

The effective running coupling in th®IS scheme is ex-
pressed by the series of coupling constdmif8 as Eq.(6)

[27,28. The result of the MOMscheme using=0.01594 is 2 4 6 8 10 12
shown by the solid line in Fig. 5. The lattice data of 282", FIG. 6. The running coupling(q) as a function of momentum

and 48 and the MOM scheme agree at 0.5Ge\My g (GeV) of thep=6.4, 48 lattice. The solid line is the result of
<2 GeV, but the fit is slightly overestimated af R2 using Ays=237 MeV. The dotted line is the result of
>2 GeV. e’%%07 s and including half ofA,. The dashed line is the result of
In the contour-improved perturbation series, the runninghe MOM scheme.
coupling in two loops is expressed as
D. Kugo-QOjima parameter

R2(q%)=By(q2) + ABo(02) + ABa(qD) + - - - (24) Our lattice data of(1) The Kugo-Ojima parametec
a 14 1221 223t =—u(0), (2) the trace of the gauge field divided by the
dimensione/d, and(3) the deviation parametdr from the
The series truncated at ord@j is plotted in Fig. 6 together horizon condition13] are summarized in Table II.

with the 48 lattice data measured by using the Ubdefini- We observe that the Kugo-Ojima parameter of the

tion. We observed that the fit is good fqi-2 GeV, but the  U-linear definition remains smaller than that of ldg The

nonperturbative effect is underestimated. similar difference exists in the ghost propagator in the infra-
Since in the perturbative calculation of the Landau gaugeed region.

gluon vertex in theMS scheme theAwys is modified to We plot in Fig. 7, the value as a function of lo@(u?) of

e’Y%0oA s [30], we performed the same replacement. The=6.0, 16", and 24 in logU and U-linear definitions and
result is overestimated in thg>1 GeV region. Since tha;  8=6.4, 32, and 48 in the logU definition. The value of
term is not known and there are cancellations between su@=6.0, 32 is almost the same as 24The value increases
essive terms, we fit the data by inclusion of half of the  as the lattice size increases fronf 16 24* and the extrapo-
term. The result is shown by the dotted line in Fig. 6. lation of the two definitions to those of a large lattice where
The similar nonperturbative effect was attributed to thec in logU and U-linear seem to cross at~1. The linear
gluon condensates ifiL1,31. The lattice data are qualita- extrapolation as the function of Iat{u?) is based on the
tively the same as the results of hypothetiedépton decay factorizability
[32], and the Dyson-Schwinger approd&s].

The lowest-momentum point ofs of 8=6.4, 48 be- Z(1?, Afiom) = Zr( )/ Zp( Afiowm) (25
comes consistent with results of other lattice sizes when it is )
calculated with the CG method. when u~1.97 GeV, which allows us to express

Z3(p? Aviow) = Zs( 12, Aws) X[ Z5 H(Aviom)/ Zp H(Awg) 1.

1.4 (26)
12 The difference of the speed @f,(Ayow) to its continuum
1 y limit in the U-linear and logJ definitions will appear as a

0.8

TABLE Il. The Kugo-Ojima parametec in the U-linear and
0.6 1 I logU versions.3=6.0 and 6.4.
0.4
- Ix B L ¢ eJd  h c, e,/d  hy

6.0 16 0.57679) 0.8601) —0.28 0.62894) 0.9431) —0.32
1 2 3 4 5 6.0 24 0.69%63) 0.8611) —0.17 0.77476) 0.9441) —0.17
FIG. 5. The running couplingrs(q) of 3=6.0, 24 (square} 6.0 32 07069 08621 —0.15 0.77746 0.9441) —0.16

32 (triangley, B=6.4, 32 (diamonds, and 48 (starg as a func- 6.4 32 0.65(89) 0.8831) —0.23 0.70042) 0.9531) —0.25
tion of momentuny (GeV) and the result of the PMS method inthe g 4 48 0.79%1) 0.9541) —0.16

MOM scheme.
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FIG. 7. The Kugo-Ojima parametec as a function of FIG. 9. The color diagonal ghost dressing functibrg(g?)
logZ(1.97 GeV). B=6.4, 32, 48" in logU (sta), B=6.0, 16 X g? as a function of the momentum squagd(GeV?). The first
and 24 in logU (triangles and U-linear (diamonds versions. copies(diamonds are more singular than P(friangles.

difference of the slope. However, the increase @fom 24*  copy (Fig. 9. We performed the calculation of the FP inverse
to 32 is small. The Kugo-Ojima parametenf 8=6.4, 48  operator by using the CG method, since the matrix is sym-
lattice calculated in the CG method is 0.793(61), which ismetric positive definite. Our data in the infrared are less sin-
consistent to the result of the Iag definition of B gular than that of 34]. Although there are differences in the

=6.0, 24, and 32 lattice data. gauge fixing methodPT versus simulated annealjngve do
not understand the origin of the difference.
IV. SU(2) LATTICE DATA In the maximal Abelian(MA) gauge, color symmetry is

i i i . spontaneously broken by the ghost condensdi38;37]. In
In the numerical simulation of the 3B) Yang-Mills field, ;0 | andau gauge, there is no background field as in the MA
we took the U-linear-type gauge field and simulatgdl  g5,9e, but the structure of the color off-diagonal ghost

=2.2 and 16 lattices. We took 67 samples taken after nronagator has not been known. In order to investigate this
18 000 thermalization sweeps and up to 84 000 sweeps Withohlem, we measured color off-diagonal symmetric and an-

intervals of 1000 sweeg46]. To each sample, we performed tisvmmetric [e...Dab matrix elements. where
parallel tempering gauge fixindg®T) and direct gauge fixing D%(q q) is th[e agbI’?OSGt EJ?(,)?J);gator with color indicx'aandb
by the overrelaxation methodirst copy. We define the WG b d that th lor off-di | anti tri ' ti
scale by the relation &~0.938 GeV and compare our data € ObSETved nat te color ofi-diagonal anisymmetric part IS
with those of[34,35 and[47] consistent with zero pointwise as is expected from the theo-
' ' retical observation and that the color off-diagonal symmetric

part multiplied byg* is consistent with zero over the en-
semble average, but its standard deviation is almost constant

The gluon propagator is shown in Fig. 8. We observe thain the whole momentum region. The fluctuation can be pa-
above 1 GeV our data agree wifB4], but in the infrared rametrized asr/q* with 0=0.0176(28) GeY, in the nor-
region our data have an enhancement. Suppression at 0 m@alization trr?=1. We observed the same qualitative fea-
mentum is consistent with the data[@5]. tures in the SI(B) 48" lattice, buto is about 1/9 of the S(2)

16" lattice, i.e., the fluctuation is statistical.

A. Gluon propagator

B. Ghost propagator

The color diagonal component of the ghost propagator C. QCD running coupling
calculated in PT is about 6% less singular than that of first The result of the running is shown in Fig. 10. As a result
of the difference in the ghost propagator, the running cou-

e pling is about 1/3 of{34]. We observe suppression near 0
momentum.
15}
D. Kugo-Ojima parameter
10l ] The Kugo-Ojima parametec of the PT samples was
0.69052) and that of the first copy was 0.7@&B8). This dif-
ference is qualitatively the same as that of the ghost dressing
31 } function at 0 momentum.
b1, .
ol I Y AAAdsddsssns V. CONCLUSION AND OUTLOOK
0 1 2 3 4

There are two aspects of color confinement: i(&),the
FIG. 8. The gluon propagatdd,(q) as a function of the mo- presence of long-range correlation between colored sources
mentumq (GeV) of PT samples. and (2) the absence of massless gluon poles. The Kugo-
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2 Extension to two loops is discussed[#0]. For N;=0, one
1.75 needs continuation. There is a conjecture, in combination
15 w w w with the conformal relation, that continuation frdxy in the
conformal window (4<N¢<6) to N;=0 would be possible
1583 l [29,43,44.
1 [ We remark that the Orsay group analyzed QCD running
0.75 I | coupling in the Landau gauge from a three-gluon vertex.
0.5 I They separate the momentum space iQtc0.8 GeV and
. 1.5 Ge\K g and fit the lower-momentum region by the in-
: stanton liquid model and the higher-momentum region by

0.5 1 1.5 > 2.5 including the 14> power correction due to gluon conden-
sateq45]. We did not takex((0)=0. Agreement of the lat-
FIG. 10. The running coupling(q) as a function of the mo- tjce results of QCD running coupling ig>0.8 GeV region
mentumq (GeV) of PT samples. and the 3 loop perturbation theory is reported46).
. o o - We observed that the contour-improved perturbation
Ojima criterion is a sufficient condition for the two aspects, theory performs a resummation of the perturbation series and
but the lattice data do not verify that these criteria are satisghat we can understand qualitatively the Landau gauge lattice

fied. S _ QCD data via these methods.
A new method of FMR gauge fixing in SP) is reported

in [16]. We observe that the gluon propagator is suppressed
at zero momentum in SW)—i.e., the exponent

ap<—0.5—in contrast to the SB) case whereap= We are grateful to Daniel Zwanziger for enlightening dis-
—0.5. In the simulation of S(2), we observed differences in cyssions. S.F. thanks Kei-Ichi Kondo, Stanley Brodsky,
the Kugo-Ojima parameter of the configuration in the FMRKare| van Acoleyen, David Dudal, and Kurt Langfeld for

and of copies randomly produced in the Gribov region. Theajuable information. This work is supported by the KEK
Gribov copy affects the Kugo-Ojima parameter, and in thesypercomputing project No. 03-94.

ghost propagator in the infrared region, the difference is
about 4%. Color S(B) containsl, U, andV SU(2) spin
components, and we expect that the Gribov ambiguity is the
same order.

In the lattice data, the singularity of the ghost propagator | this appendix we briefly explain the numerical method

is stronger than the tree level and that of the gluon propagasf calculating the Faddeev-Popov inverse.
tor is weaker than the tree level. The dependence otJthe

linear or logU definition of the gauge field is small in the

gluon propagator, consistent wifB8], but not negligible in

the FP inverse operator. The ghost propagator, which is the Fourier transform of

We aimed at detecting in the lattice dynamics a signal ofan expectation value of the inverse Faddeev-Popov operator

the Kugo-Ojima confinement criterion derived in the con- M= — D= —3%(1 — M),

tinuum theory, formulated with use of the FP Lagrangian and b -

BRST symmetry. We also noted that Zwanziger’s horizon DE(x,y) = (tr(A®X|(M[U]) "\ y)), (A1)
condition, based on the lattice formulation, coincides with

the Kugo-QOjima criterior{3,13]. However, our present data where the outmosgt- - -} denotes average over samplgsis

are not satisfactory to prove or disprove the confinement crievaluated as follows. We take the plane wave for the source

terion. The color off-diagonal antisymmetric part of the ghostb[*!= \Pe® and get the solution- A ¢*!=bl*]. Here ¢!*]
propagator[36,39 vanishes in the Landau gauge, but the=(—A)"'bY).  We calculate iteratively ¢l'*1]
off-diagonal symmetric part has fluctuations proportional to=M ¢{'l(x) (i=1,... k—1). The iteraton was con-
(qa)~*. tinued until the maximum norm Makp!(x)|/

Although there are problems in fixingof the PMS in the  Max,|=K" ! ¢l1!(x)|<0.001-0.01. The number of iterations

low-energy region, an extension of the effective chargey is of the order of 60, in S(2), 16" lattice, and of the order
method is a possible solution. In an extension of the solutiof 100 in SU3). We measure also thet, norm

of the two-loop renormalization group equation expressed by AN /12R Lt ()]

the LambertW function, a solution of Padapproximant of We define q)b(x):2k71¢[i](x) and evaluate

the three-loop renormalization group equation was ShOWI?)\aeiqx Dd°(x)) as the ghcl)gt propagator from coldy

[40] and numerical calculation was done fd¢=3 [41]. In to colo,ra.

the a_malytical perturbation t_heo_ry approgch in one loop, oNe |4 the low-momentum region of SB) we observed a
predicts[42] a nonperturbative infrared fixed point of specific color symmetry violation pattern, and in the case of

SU(3) relatively large color off-diagonal matrix elements

a5(0) = i: ; suppressed the color diagonal matrix element. For a cross-
4w Bo  11-2/3N¢’ check of the perturbative method, we adopted the straightfor-
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ward conjugate gradient method and the preconditioned con- We check the norm of“*!, and if it is not small, we

jugate gradient method22] in which the truncated calculate the perturbation series"t=B~1rk*1 as before.
perturbation series is used for the preconditioning. We define

2. Preconditioned conjugate gradient method

We define M=—¢?(1—M) and define the truncated
M ~1 which is used in the perturbative methodBis'=(|
+M+---+M™ Y (—A)"L First we choose® and define pkri=Tk+1p g pk, (A7)
r®=b— Mx°. Using the multigrid Poisson solver we calcu-
late the perturbation series

ﬁk:(?k+1,rk+l)/(}'k,rk)’ (A6)

and go back to the beginning of the iteration cycle. By

T0=p~10 (A2)  choosing a sufficiently large number of, the convergence
occurs after a few iteration cycles.
and defingp®="°. The preconditioned method makes thenorm conver-
Then we begin the iteration fde=0,1, . . ., gence faster than the straightforward conjugate gradient
method, but its maximum norm is larger than that of straight-
a=— (%, r 1 (pk, MpY), (A3)  forward method. The solution agrees with the straightfor-
ward conjugate gradient method within errors in the whole
XKL= xK— X, (A4) momentum region, but disagrees with the perturbative
method in the lowest-momentum point 8t 6.4, SU?3) 48"
rkFl=rk4 g MpK. (A5) lattice[47].
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