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Quenched lattice QCD with domain wall fermions and the chiral limit
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Quenched QCD simulations on three volumes 833, 1233 and 163332 and three couplingsb55.7, 5.85
and 6.0 using domain wall fermions provide a consistent picture of quenched QCD. We demonstrate that the
small induced effects of chiral symmetry breaking inherent in this formulation can be described by a residual
mass (mres) whose size decreases as the separation between the domain walls (Ls) is increased. However, at
stronger couplings much larger values ofLs are required to achieve a given physical value ofmres. For b
56.0 andLs516, we findmres/ms50.033(3), while for b55.7, andLs548, mres/ms50.074(5), wherems

is the strange quark mass. These values are significantly smaller than those obtained from a more naive
determination in our earlier studies. Important effects of topological near zero modes which should afflict an
accurate quenched calculation are easily visible in both the chiral condensate and the pion propagator. These
effects can be controlled by working at an appropriately large volume. A non-linear behavior ofmp

2 in the limit
of small quark mass suggests the presence of additional infrared subtlety in the quenched approximation. Good
scaling is seen both in masses and inf p over our entire range, with inverse lattice spacing varying between 1
and 2 GeV.
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I. INTRODUCTION

Since spontaneous chiral symmetry breaking is a do
nant property of the QCD vacuum and is responsible
much of the low energy physics seen in nature, having a
principles formulation of lattice QCD which does not expli
itly break chiral symmetry has been an important goal. B
Wilson and staggered fermions recover chiral symmetry
the continuum limit but with these techniques the chiral a
continuum limits cannot be decoupled. For the QCD ph
transition, which is dominantly a chiral symmetry restori
transition, a formulation that is free of violations of chir
symmetry due to lattice artifacts, should give a phase tra
tion more closely approximating that of the continuum lim
For the measurement of matrix elements of operators in h
ronic states, a formulation that respects chiral symmetry
the lattice substantially reduces operator mixing throu
renormalization. Lastly, since much of our analytic und
standing of low-energy QCD is formulated in terms of low
energy effective field theories based on chiral symmetry
lattice formulation preserving chiral symmetry allows co
trolled comparison with analytic expectations.

Building on the work of Kaplan@1#, who showed how to
produce light chiral modes in ad-dimensional theory as sur
face states in a (d11)-dimensional theory, a number of a
tractive lattice formulations have been developed wh
achieve a decoupling of the continuum and chiral limi
Here we will use Kaplan’s approach as was further dev
oped by Narayanan and Neuberger@2–5# and by Shamir@6#.
It is Shamir’s approach, commonly known as the dom
wall fermion formulation, which we adopt.~For reviews of
this topic see Refs.@7–11# and for more extensive recen
0556-2821/2004/69~7!/074502~39!/$22.50 69 0745
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references see Ref.@12#.! For a physical four-dimensiona
problem, the domain wall fermion Dirac operator,D, is a
five-dimensional operator with free boundary conditions
the fermions in the new fifth dimension. The desired lig
chiral fermions appear as states exponentially bound to
four-dimensional surfaces at the ends of the fifth dimensi
The remaining modes forD are heavy and delocalized in th
fifth dimension.

An additional important feature of the domain wall fe
mion Dirac operator in the limitLs→` is the existence of an
‘‘index,’’ an integer that is invariant under small changes
the background gauge field. HereLs is the extent of the
lattice in the fifth dimension. This property, true for all but
set of gauge fields of measure zero, can be readily seen u
the overlap formalism@2–5#. In the smooth background field
limit, this index is the normal topological charge but, ev
for rough fields, it signals the presence of massless ferm
mode~s! when non-zero. These zero modes can easily
recognized in numerical studies with semiclassical ga
field backgrounds@13–18#.

These powerful theoretical developments in fermion f
mulations require additional study to demonstrate their m
for numerical work. For the case of domain wall fermions
growing body of numerical results are available. Bo
quenched@17,19–31# and dynamical@31–35,12# domain
wall fermion simulations have been conducted and the
main wall approach is readily adapted to current algorith
for lattice QCD.~Much work is also being done on the nu
merical implementation of the overlap formulation and
variations@36–46#.! A fundamental question, which is a ma
jor part of this paper, involves quantifying the residual chi
©2004 The American Physical Society02-1
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symmetry breaking effects of finite extent in the fifth dime
sion.

Due to current limits on computer speed, some latt
QCD studies are only practical when the fermionic deter
nant is left out of the measure of the path integral. The
sulting quenched theory does not suppress gauge field
figurations with light fermionic modes, in contrast with th
original theory where, for small quark mass, the determin
strongly damps such configurations. The measurement o
servables involving fermion propagation through configu
tions with unsuppressed light fermionic modes can in pr
ciple lead to markedly different infrared behavior than th
found in full QCD, in the limit of small quark masses. Do
main wall fermions, which produce light chiral modes
finite lattice spacing and preserve the global symmetries
continuum QCD, should produce a well-defined chiral lim
for full QCD. The central question addressed in this pape
whether a well-controlled chiral limit also exists within th
quenched approximation. A thorough theoretical and num
cal understanding of the quenched chiral limit is essentia
the good chiral properties of domain wall fermions are to
exploited in quenched lattice simulations.

Here we present results from extensive simulations
quenched QCD with domain wall fermions, primarily at tw
lattice spacings,a21;1 and 2 GeV. Many different value
for the fifth-dimensional extent,Ls , and the bare quark mas
mf have been used. Hadron masses,f p and the chiral con-

densate,̂ q̄q&, are the primary hadronic observables we ha
studied. In calculating physical observables using dom
wall fermions, four-dimensional quark fieldsq(x) are de-
fined from the five-dimensional fieldsC(x,s) by taking the
left-handed fields from the four-dimensional hypersurfa
with smallest coordinate in the fifth dimension and the rig
handed fields from the hypersurface with the largest valu
this coordinate. We also present results from measuring
lowest eigenvectors and eigenvalues of the Hermitian
main wall fermion operator.

Here we list the major topics in each section of this pap
Section II defines our conventions and gives details of
Hermitian domain wall fermion operator. Section III di
cusses our simulation parameters and fitting procedures
includes tables of run parameters and hadron masses fomf
>0.01. In Sec. IV a precise understanding of how finiteLs

effects enter̂ q̄q& is developed and measurements of^q̄q&
which show the role of fermionic zero modes are report
We study the pion mass in the chiral limit in Sec. V, whi
requires understanding zero mode effects. Section VI c
tains two determinations of the residual chiral symme
breaking for finiteLs ; one from measuring appropriate pio
correlators and the other from the explicitly measured sm
eigenvalues and eigenvectors of the Hermitian domain w
fermion operator. Our determination off p , an important
check of the chiral properties of domain wall fermions,
discussed in Sec. VII, along with the scaling of hadr
masses.

Because of the length of this paper and the numbe
topics covered, we now give a brief summary of our ma
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results, organized to correspond to the expanded discus
in Secs. IV, V, VI and VII.

Zero mode effects in̂q̄q&: As already mentioned, the do
main wall fermion operatorD has an Atiyah-Singer indexn
for Ls→`. However, in quenched QCD,n plays no role in
the generation of gauge field configurations. FornÞ0, both
D and the Hermitian domain wall fermion operatorDH @47#

have zero modes. Sincêq̄q& is an appropriately restricted
trace ofDH

21 it should diverge aŝunu&/mfV for small mf if
the ensemble average ofunu is non-zero. HereV is the four-
dimensional, space-time volume of the lattice being stud
For large but finiteLs , the residual chiral symmetry breakin
should cut off this divergence.

Figure 1 showŝ q̄q& versus the quark massmf for a21

;1 GeV on two different volumes of linear dimensions
about 1.6 and 3.2 fermi. A divergence formf→0 is clearly
visible on the smaller volume, but not on the larger. This
expected sincêunu&/V should go as 1/AV and is clear evi-
dence for unsuppressed zero modes in quenched QCD,
reported in Ref.@22#. Notice that there may be other prob
lems with the chiral limit of^q̄q& that are masked by this
1/mf divergence.

The chiral limit of mp : With this clear evidence for zero
mode effects in̂ q̄q&, one might expect to see zero mod
contributions in any quark propagatorD21(x,y) if at both x
and y a single zero eigenvector has reasonable magnitu
For sufficiently large volume, needed to see asymptotic
havior in the limit of largeux2yu, there should be no zero
mode effects. Our results for the zero mode effects on
pion mass are presented in Fig. 2 which showsmp

2 versusmf

for 83332 lattices withLs548 and Fig. 3, where all the
parameters are the same except that the volume was
creased to 163332. The pion mass is determined from thr
different correlators which are each affected differently

FIG. 1. ^q̄q& for quenched simulations done on 83332 lattices
(s) and 163332 lattices (h) at b55.7 with Ls532. The smaller
volume shows a pronounced rise asmf→0 as is expected if unsup
pressed zero modes are present. For the larger volume, the effe
topological near zero modes is reduced if not eliminated. This
expected sincêunu&/V should fall as 1/AV.
2-2
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zero modes. For the smaller volume, the pion masses m
sured disagree for smallmf , while they agree for the large
volume.

Notice that on the larger volume shown in Fig. 3, whe
zero-mode effects are not apparent,mp

2 shows signs of cur-
vature in mf with the threemf50 values lying below the
extrapolation from larger masses. In addition, this sim
large-mass linear extrapolation vanishes at a value ofmf that
is more negative than the pointmf1mres50 ~shown in the
graph by the star! also suggesting downward concavit
While the discrepancy between thisx-intercept and the poin
mf1mres50, may be caused byO(a2) effects, we find a
considerably larger discrepancy when making a similar co
parison atb56.0. Thus, we have evidence thatmp

2 does not
depend linearly onmf in the chiral limit.

Determining the residual mass: In the limit of small lat-
tice spacing, the dominant chiral symmetry breaking effe
due to the mixing between the domain walls, is the appe
ance of a residual mass,mres in the low energy effective
Lagrangian. The Ward-Takahashi identity for domain w
fermions@47# has an additional contribution representing th
explicit chiral symmetry breaking due to finiteLs . Matrix
elements of this additional term between low energy sta
determine the residual quark mass. Figure 4 shows our
sults formres for 163332 lattices atb56.0 as a function of
Ls . mres is clearly falling with Ls and reaches a value o
;2 MeV for Ls>24. Our data do not resolve the preci
behavior ofmres for largeLs , but the very small value make
this less important for current simulations. A similar study

FIG. 2. The pion mass squared versusmf from ^pa(x)pa(0)&
(h), ^A0

a(x)A0
a(0)& (s) and ^pa(x)pa(0)&1^s(x)s(0)&c (L)

for quenched simulations done on 83332 lattices atb55.7 with
Ls548. Formf50.0, the correlators all give different masses d
to the differing topological near-zero mode contributions for ea
one. For large enoughx, all the correlators should give the sam
mass. However, this limit requires a large volume which is expec
to suppress such zero-mode effects. The dotted line is the
of Eq. ~69!, the solid line is from Eq.~70! and the dashed line is
from Eq. ~71!.
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lattices with a21;1 GeV but with largerLs548 finds a
value ofmres/ms50.074(5) ormres'8 MeV.

We have also used the Rayleigh-Ritz method, imp
mented using the technique of Kalk-Reuter and Simma@48#,
to determine the low-lying eigenvalues and eigenvectors
the Hermitian domain wall fermion operator. The results e

h

d
fit

FIG. 3. The pion mass squared versusmf from ^pa(x)pa(0)&
(h), ^A0

a(x)A0
a(0)& (s) and ^pa(x)pa(0)&1^s(x)s(0)&c (L)

for quenched simulations done on 163332 lattices atb55.7 with
Ls548. The star is the value ofmres as measured from Eq.~77! and
its error bar in the horizontal axis is too small to show on this sca
The solid line is the fit to thê A0

a(x)A0
a(0)& correlator for mf

50.02 to 0.08 given in Eq.~75!, while the dotted line is for the
^pa(x)pa(0)& correlator formf50.0 to 0.08 as given in Eq.~76!.

FIG. 4. TheLs dependence of the residual mass for 163332
lattices atb56.0. The long-dashed line is the fit given in Eq.~78!,
the short-dashed line is the fit from Eq.~79! and the solid line is the
fit given in Eq.~81!. Each of the three fits is made to all of theLs

points shown. We have employed an intermediate non-perturba
renormalization to convert the plotted values ofmres into the MS
scheme atm52 GeV.
2-3
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hibit the approximate behavior expected from low-ener
excitations in the domain wall formulation. We use the r
sulting eigenvalues to provide an independent estimate of
residual mass which is nicely consistent with the more p
cise value determined from pseudoscalar correlators.

Results for fp , hadron masses and scaling: With this de-
tailed understanding of the chiral limit of quenched latti
QCD with domain wall fermions, we have calculatedf p us-
ing both pseudoscalar and axial-vector correlators. The
sults for lattices witha21;2 GeV are shown in Fig. 5,
where good agreement between the two methods is seen
do this comparison, the appropriate Z-factor for the lo
axial current must be determined and a consistent value
mres must be known. The good agreement in the figure i
significant test of these measurements as well as the c
properties of domain wall fermions. We find very good sc
ing in the ratio f p /mr for a21;1 to 2 GeV. FormN /mr

scaling is within 6%. We also find that2^q̄q&
5(256(8)MeV)3 from our b56.0 simulations.

II. DOMAIN WALL FERMIONS

In this section we first define our notation, including th
domain wall fermion Dirac operator, and then derive the p
cise form of the Banks-Casher relation for domain wall fe
mions, to second order in the quark mass. In this paper,
variablex specifies the coordinates in the four-dimension
space-time volume, with extentL along each of the spatia
directions and extentNt along the time direction, whiles
50,1, . . . ,Ls21 is the coordinate of the fifth direction, with

FIG. 5. Results forf p at b56.0 with a 163332 lattice andLs

516 plotted as a function ofmf . The open circles are obtaine
from the ^A0

a(x)A0
a(0)& correlator, while the open diamonds ar

obtained from thêpa(x)pa(0)& correlator. We also show the linea
fits which are used to determine our estimate forf p and f K . The
vertical dashed lines identify the values formf which locate the
chiral limit, mf52mresand give the physical ratio formK /mr . The
solid symbols represent the extrapolations to the pointmf52mres

and interpolations to the kaon mass.
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Ls assumed to be even. The space-time volumeV is given by
V5L3Nt . The domain wall fermion operator acts on a fiv
dimensional fermion field,C(x,s), which has four spinor
components. A generic four-dimensional fermion field, w
four spin components, will be denoted byc(x), while the
specific four-dimensional fermion field defined fromC(x,s)
will be denoted byq(x). The space-time indices for vector
will be enclosed in parentheses while for matrices they w
be given as subscripts. Our general formalism follows t
developed by Furman and Shamir@47#.

A. Conventions

The domain wall fermion operator is given by

Dx,s;x8,s85ds,s8Dx,x8
i

1dx,x8Ds,s8
' ~1!

Dx,x8
i

5
1

2 (
m51

4

@~12gm!Ux,mdx1m̂,x8

1~11gm!Ux8,m
† dx2m̂,x8#1~M524!dx,x8 ~2!

Ds,s8
'

5
1

2
@~12g5!ds11,s81~11g5!ds21,s822ds,s8#

2
mf

2
@~12g5!ds,Ls21d0,s8

1~11g5!ds,0dLs21,s8#. ~3!

Here Ux,m is the gauge field at sitex in direction m, and
s and s8 lie in the range 0<s,s8<Ls21. The five-
dimensional mass, representing the height of the domain
in Kaplan’s original language, is given byM5, while mf
directly couples the two domain walls ats50 and s5Ls
21. Since the light chiral modes should be exponentia
bound to the domain walls,mf mixes the two chiralities and
is therefore the input bare quark mass. The value ofM5 must
be chosen to produce these light surface states and, in
free field case, 0,M5,2 produces a single fermion flavo
with the left-hand chirality bound tos50 and the right to
s5Ls21. In order to use our pre-existing, high-performan
Wilson fermion operator computer program as part of o
domain wall fermion operator, we have used the operatoD
above, which is the same asDF

† of Ref. @47#.
Following Ref. @47#, we define the four-dimensiona

quark fieldsq(x) by

q~x!5PLC~x,0!1PRC~x,Ls21!

q̄~x!5C̄~x,Ls21!PL1C̄~x,0!PR ~4!

where we have used the projection operatorsPR,L5(1
6g5)/2. Symmetry transformations of the five-dimension
fields yield a four-dimensional axial current

A m
a ~x!5 (

s50

Ls21

sgnS s2
Ls21

2 D j m
a ~x,s!. ~5!
2-4
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Here

j m
a ~x,s!5

1

2
@C̄~x1m̂,s!~11gm!Ux,m

† taC~x,s!

2C̄~x,s!~12gm!Ux,mtaC~x1m̂,s!# ~6!

while the flavor matrices are normalized to obey Tr(tatb)
5dab. The divergence of this current satisfies

DmA m
a ~x!52mfJ5

a~x!12J5q
a ~x! ~7!

whereDm f (x)5 f (x)2 f (x2m̂) is a simple finite difference
operator and the pseudoscalar densityJ5

a(x) is

J5
a~x!52C̄~x,Ls21!PLtaC~x,0!

1C̄~x,0!PRtaC~x,Ls21!

5q̄~x!tag5q~x!. ~8!

This equation differs from the corresponding continuum
pression by the presence of theJ5q

a (x) term, which is built
from point-split operators atLs/2 andLs/221 and is given
by

J5q
a ~x!52C̄~x,Ls/221!PLtaC~x,Ls/2!

1C̄~x,Ls/2!PRtaC~x,Ls/221!. ~9!

We will refer to this term as the ‘‘mid-point’’ contribution to
the divergence of the axial current.

This mid-point contribution adds an additional term to t
axial Ward-Takahashi identities and modifies observab
like the pion mass, which are controlled by these identit
The Ward-Takahashi identity is

Dm^A m
a ~x!O~y!&52mf^J5

a~x!O~y!&12^J5q
a ~x!O~y!&

1 i ^daO~y!&. ~10!

For operatorsO, made from the fieldsq(y) and q̄(y), it has
been shown@47# that theJ5q

a term in Eq.~10! vanishes for
flavor non-singlet currents whenLs→`. For the singlet cur-
rent, this extra term generates the axial anomaly. The m
point term represents the contribution of finiteLs effects on
the low-energy physics of domain wall fermions.

B. Definition of the residual mass and the chiral limit

For domain wall fermions, the axial transformation whi
leads to the Ward-Takahashi identity of Eq.~10! rotates the
fermions in the two half-spaces along the fifth direction w
opposite charges. Formf50, the action is not invariant un
der this transformation due to the coupling of the left- a
right-handed light surface states at the midpoint of the fi
dimension. This results in the additional term in the div
gence of the axial current, as given in Eq.~9!. In the Ls
→` limit where the explicit mixing between thes;0 and
07450
-

s,
.
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h
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s;Ls21 states vanishes, this extra ‘‘mid-point’’ contribu
tion will be zero and a continuum-like Ward-Takahashi ide
tity will be realized.

Since we must work at finiteLs it is useful to characterize
the chiral symmetry breaking effects of mixing between t
domain walls as precisely as possible. We do this by ado
ing the language of the Symanzik improvement progr
@49,50#. Here we use an effective continuum LagrangianLn
to reproduce toO(an) the amplitudes predicted by our lattic
theory when evaluated at low momenta and finite latt
spacing. ClearlyL0 is simply the continuum QCD Lagrang
ian, while L1 will include the dimension-five, clover term
c̄smncFmn @51#. The chiral symmetry breaking effect
of mixing between the domain walls will appear to lowe
order in a as an additional, dimension three opera
}a21e2aLsc̄c. This term represents the residual mass te
that remains even after the explicit input chiral symme
breaking parametermf has been set to zero. The next chir
symmetry breaking contribution from domain wall mixin
will be O(a2) smaller, appearing as a coefficient of ordera1

for the clover term.
We define the chiral symmetry breaking parametermresso

the complete coefficient of the mass term inL0 is propor-
tional to the simple summf1mres. While this is a precise
definition of mres, valid for finite lattice spacing, a precis
determination ofmres in a lattice calculation will be impeded
by the need to quantitatively account for the additional ch
symmetry breaking effects of terms of higher order ina.

Close to the continuum limit, for long distance amp
tudes, the Ward-Takahashi identity given in Eq.~10! must
agree with the corresponding identity in the effective co
tinuum theory. Thus, for the non-singlet case, the sum of
first two terms on the right-hand side of Eq.~10! must be
equivalent to an effective quark mass,meff5mf1mres, times
the pseudoscalar densityJ5

a . The residual mass,mres appears
in the low energy identity:

J5q
a 'mresJ5

a ~11!

where this equality will hold up toO(a2) in low-momentum
amplitudes.

Thus, close to the continuum limit,mres in Eq. ~11! is a
universal measure of the chiral symmetry breaking effects
domain wall fermions for all low energy matrix element
with corrections coming from terms of higher order in th
lattice spacing. However, away from the continuum limit t
O(a2) terms may be appreciable. In addition, if there a
high energy scales entering an observable, such a low en
description is not valid and the explicit chiral symmet
breaking effects of finiteLs can be more complicated than
simple additive shift of the input quark mass bymres.

Many aspects of the chiral behavior of the domain w
theory can be easily understood by reference to the m
familiar Wilson fermion formulation. For finiteLs the do-
main wall formulation can be viewed as an ‘‘on- and o
shell improved’’ version of Wilson fermions. The low energ
effective Lagrangian for domain wall fermions is the same
that for the Wilson case except the coefficients of the ch
2-5
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symmetry breaking terms are expected to decrease expo
tially with Ls . Viewed in this way, one might expect t
achieve a vanishing pion mass by fine-tuningmf to a critical
value,mf c in very much the same way as one fine-tunesk to
kc for Wilson fermions. As the above discussion demo
strates,mf c5mres1O(a2). Just as in the Wilson case, th
limit can be interpreted as the approach to the critical surf
of the Aoki phase@34,29,30#.

C. The Hermitian domain wall fermion operator

A Hermitian operatorDH can be constructed@47# from D
through
b

a-

07450
en-
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e

DH[g5R5D ~12!

where (R5)ss8[ds,Ls212s8 is the reflection in the fifth di-

mension around the five-dimensional midpoint,s5(Ls
21)/2. Writing outDH gives

DH5g5Dx,x8
i ds1s8,Ls21

1g5@PLds1s8,Ls
1PRds1s8,Ls222ds1s8,Ls21

2mf~PLds,0ds8,01PRds,Ls21ds8,Ls21!#dx,x8 ~13!

while as an explicit matrix in thes,s8 indices:
DH5S 2mfg5PL g5PR g5~D i21!

g5PR g5~D i21! g5PL

••• ••• •••

••• ••• •••

g5PR g5~D i21! g5PL

g5~D i21! g5PL 2mfg5PR

D . ~14!
he

ms

hat

the
s in
The eigenvalues and eigenvectors ofDH will be denoted by

DHCLH
5LHCLH

~15!

with the five-dimensional propagator given by

Sx,s;x8,s8
(5)

5(
LH

CLH
~x,s!CLH

† ~x8,s̃!g5~R5! s̃,s8

LH
. ~16!

~Grassmann variables in the Euclidean path integral will

denoted byC̄ andC, while the eigenfunctions ofDH will be
denotedCLH

† andCLH
.!

We will find it convenient to define three additional m
trices

~G5!s,s85ds,s8sgnS Ls21

2
2sD ~17!

Qs,s8
(w)

5PLds,0ds8,01PRds,Ls21ds8,Ls21 ~18!

and

Qs,s8
(mp)

5PLds,Ls/2
ds8,Ls/2

1PRds,Ls/221ds8,Ls/221 . ~19!

The transformation which generates the current in Eq.~5! is

C→exp~ iaataG5!C

C̄→C̄ exp~2 iaataG5!. ~20!
e

The matricesQ(w) andQ(mp) are the two parts ofDH which
correspond to terms inD5g5R5DH which are not invariant
under the transformation in Eq.~20!. The matrixQ(w) under-
lies the explicit mass term and, in the original operatorD,
explicitly mixes thes50 ands5Ls21 walls. Likewise, the
matrix Q(mp) is a ‘‘mid-point’’ matrix with non-zero elements
only in the center of the fifth dimension. It represents t
component of the operatorD which connects the left and
right half regions. These two contributions provide the ter
on the right hand side of Eq.~7! and one easily finds

$G5 ,DH%52mfQ
(w)12Q(mp). ~21!

Since it is expected that there are eigenvectors ofDH which
are exponentially localized on the domain walls, we see t
with mf50 and the limitLs→` taken,DH anticommutes
with G5 in the subspace of these eigenvectors. This is
property expected for massless, four-dimensional fermion
the continuum in Euclidean space.

Using the matrix,Q(w), we can write a simple form for
the four-dimensional chiral condensate,^q̄q&

2^q̄q&52
1

12V (
x

^q̄~x!q~x!& ~22!

52
1

12V (
x

^C̄~x,s!~R5Q(w)!s,s8C~x,s8!& ~23!
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5
1

12V K (
x,LH

CLH

† ~x,s!g5Qs,s8
(w) CLH

~x,s8!

LH
L ~24!

5
1

12V K (
LH

^LHug5Q(w)uLH&
LH

L ~25!
-

,
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where in the last line a bra/ket notation has been used.
large angle brackets indicate the average over an approp
ensemble of gauge fields.

We define the pion interpolating field aspa(x)

[ i q̄(x)tag5q(x) and then find that the pion two-point func
tion is given by~no sum ona)
quark

id-point

idpoint
^pa~x!pa~0!&5K (
LH ,LH8

C
L

H8
†

~x,s!Qs,s8
(w) CLH

~x,s8!CLH

† ~0,s̃!Qs̃,s̃8
(w)

CL
H8
~0,s̃8!

LHLH8
L . ~26!

Note that the generators,ta, do not appear in the spectral sum, since they merely serve to specify the contractions of the
propagators and thatpa(x)5 iJ5

a(x). To investigate the extra term in the axial Ward-Takahashi identity, Eq.~10!, we will also
have need to measure the correlation function between interpolating pion fields defined on the domain walls and the m
contribution to the divergence of the axial current,J5q

a . We define a mid-point pion interpolating field byp (mp)
a (x)

5 iJ5q
a (x) and the spectral decomposition for the correlator between interpolating pion operators on the wall and the m

is

^p (mp)
a ~x!pa~0!&5K (

LH ,LH8

C
L

H8
†

~x,s!Qs,s8
(mp)CLH

~x,s8!CLH

† ~0,s̃!Qs̃,s̃8
(w)

CL
H8
~0,s̃8!

LHLH8
L . ~27!
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We define a local axial current asAm
a (x)

[q̄(x)tagmg5q(x) and note that it is different fromA m
a de-

fined in Eq.~5!. The two-point function of the zeroth com
ponent of this current,̂A0

a(x)A0
a(0)&, has a form similar to

Eq. ~26! with a factor ofg0 multiplying eachQ(w) and an
overall minus sign. Finally, our scalar density iss(x)
[q̄(x)q(x) and the connected correlator^s(x)s(0)&c also
has the form of Eq.~26! with a factor ofg5 multiplying each
Q(w) and an overall minus sign.

III. HADRON MASSES FOR mfÐ0.01

In this section we present the results formp , mr andmN
obtained for reasonably heavy input quark mass,mf>0.01
where the lower limit corresponds tomquark'mstrange/4. The
more challenging study ofmp for mf→0 is described later
in Sec. V. This section is organized as follows. We begin
describing the Monte Carlo runs on which the results in t
paper are based. Next the methods used to determine
hadron masses are discussed, both the propagator deter
tions and our fitting procedures. Finally, we present the
sults of those calculations for the easier, large mass c
mf>0.01.

A. Simulation summary

The results reported in this paper were obtained from
sembles of gauge field configuration generated from p
gauge simulations using the standard Wilson action@52# at
three values of the coupling parameter,b56/g2: 5.7, 5.85
y
s
the
ina-
-
e,

-
re

and 6.00. Thus, these ensembles follow the distributi
exp$6/g2(Ptr UP% where the sum ranges over all elementa
plaquettesP in the lattice andUP is the ordered product o
the four link matrices associated with the edges of
plaquetteP. Some of theb55.7 simulations and a portion o
those atb55.85 were performed using the hybrid Mon
Carlo ‘‘F ’’ algorithm @53#. These runs were performed on a
83332 space-time volume with a domain wall heightM5
51.65. Each hybrid Monte Carlo trajectory consisted of
steps with a step sizeDt50.02. These runs are summarize
in Table I. In each case the first 2000 hybrid Monte Ca

TABLE I. Simulation parameters for the quenched results o
tained using the hybrid Monte Carlo method. The mass ranges
ferred to are specified in Table III. The spectrum column conta
the number of configurations on which hadron mass measurem

were performed while thêq̄q& column shows the number of con
figurations used to compute the chiral condensate. Finally, wi
parentheses in the last column we specify the number of ran

noise sources~hits! that were used in each of these^q̄q& measure-
ments. All of the calculations described in this table used the
main wall height parameterM551.65.

b L33Nt Ls Mass range Spectrum ^q̄q&~hits!

5.70 83332 10 0.02–0.20 87 87~1!

5.70 83332 16 0.02–0.20 67 67~1!

5.70 83332 24 0.02–0.22 84 84~1!

5.70 83332 32 0.02–0.22 94 94~1!

5.70 83332 48 0.02–0.22 81 81~1!
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TABLE II. Simulation parameters for the quenched results obtained using the heatbath metho
column labeled sweeps records the number of Monte Carlo sweeps between successive measurem
remaining notation is the same as that used in Table I.

b L33Nt Ls M5 Sweeps Mass range Spectrum ^q̄q&~hits!

5.70 83332 32 1.65 2000 0.00025–0.008, 0.00–0.04 0 210~1!

5.70 83332 32 1.65 2000 0.02, 0.04 184 0
5.70 83332 48 1.65 200 0.02–0.22 46 0
5.70 83332 48 1.65 5000 0.001–0.01 0 42~3!

0.02–0.22 42 42~3!

5.70 83332 48 1.65 2000 0.0, 0.04 336 0
5.70 83332 48 1.65 2000 0.00025–0.008, 0.00–0.04 0 141~1!

5.70 83332 64 1.65 5000 0.02–0.22 76 0
5.70 163332 24 1.65 5000 0.02–0.22 73 70~1!

5.70 163332 32 1.65 2000 0.00025–0.008, 0.00–0.04 0 60~1!

5.70 163332 48 1.65 2000 0.001–0.01 0 10~3!

0.02–0.22 61 10~3!

5.70 163332 48 1.65 2000 0.0, 0.04 106 0
5.70 163332 48 1.65 2000 0.02, 0.06, 0.1 45 0
5.70 163332 48 1.65 2000 0.08 106 0
5.85 123364a 20 1.9 5000 0.025–0.075 100 0
5.85 83332 32 1.65 — 0.001–0.01, 0.02–0.10 0 200
5.85 163332 32 1.65 1000 0.001–0.01, 0.02–0.10 0 91~1!

6.0 164 16 1.8 2000 — 32 —
6.0 163332 12 1.8 2000 0.02 56 0
6.0 163332 16 1.8 5000 0.01–0.04 85 85~1!

6.0 163332 16 1.8 2000 0.000 216 0
6.0 163332 16 1.8 2000 0.001 229 0
6.0 163332 16 1.8 2000 0.02 56 0
6.0 163332 16 1.8 2000 0.00025–0.008, 0.00–0.04 0 120~1!

6.0 163364a 16 1.8 2000 0.01–0.05, 0.075, 0.1, 0.125 98 0
6.0 163332 24 1.8 2000 0.01–0.04 76 0
6.0 163332 24 1.8 2000 0.02 56 0
6.0 163332 24 1.8 2000 0.00025–0.008, 0.00–0.04 0 110~1!

6.0 163332 32 1.8 2000 0.02 72 0
6.0 163332 48 1.8 2000 0.02 64 0

aThis extent of 64 in the time direction was achieved by ‘‘doubling’’Nt532 lattice configurations in the time
direction so the resulting gauge field background has an unphysicalt→t132 periodicity.
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trajectories were discarded for thermalization before a
measurements were made. After these thermalization tra
tories, successive measurements of hadron masses an

chiral condensate,̂q̄q& were made after each group of 20
trajectories.

A second set of simulations were performed using
heatbath method of Creutz@54#, adapted forSU(3) using the
two-subgroup technique of Cabibbo and Marinari@55# and
improved for a multi-processor machine by the algorithm
Kennedy and Pendleton@56#. The first 5000 sweeps wer
discarded for thermalization. These runs are described
Table II where the values ofM5 used are also given~see also
Table III!. Finally, the singleb55.85 run withM551.9 was
performed using the MILC code@57#. Here four over-relaxed
heatbath sweeps@58,59# with v52 were followed by one
Kennedy-Pendleton sweep, with 50 000 initial sweeps d
carded for thermalization.
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A portion of theb55.7 masses described here appea
earlier in Ref.@21# while the first of theb56.0 results ap-
pears in Refs.@60# and @26#.

B. Mass measurement techniques

We follow the standard procedures for determining t
hadron masses from a lattice calculation, extracting th
masses from the exponential time decay of Euclidean-sp
two-point correlation functions. In our calculation the sour
may take two forms. The first is a point source

OG
a~x!5q̄~x!taGq~x! ~28!

which is usually introduced at the origin. The flavor indexa
is introduced to make clear that we do not study the mas
of flavor singlet states. For the nucleon state we use a c
bination of three quark fields:
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OP~x!5eabcua~x!@ub~x!Cg5dc~x!# ~29!

where for simplicity we have written the source for a prot
in terms of up and down quark fields,q5u andd. HereC is
the 434 Dirac charge-conjugation matrix,e the anti-
symmetric tensor in three dimensions and the color sum o
the indicesa, b and c is shown explicitly. Only these poin
sources are used in theb55.7 running.

The second variety of source used in this work is a w
source. Such a source is obtained by a simple generaliza
of Eqs. ~28! and ~29! in which we replace the quark field
evaluated at the same space-time pointx5(rW,t) with distrib-
uted fields, each of which is summed over the entire spa
volume at a fixed timet. Gauge covariance is maintaine
by introducing a gauge field dependent color mat
V@U#(rW,t i) which transforms the spatial links in the tim
slice t5t i into Coulomb gauge. Thus, to construct our w
sources we simply replace the quark fieldq(rW,t i)c by the
non-local field

qw~ t i !c5(
rW

V~rW,t i !c,c8q~rW,t i !c8 ~30!

wherec andc8 are color indices. We use these wall sourc
for the b55.85 calculations and a combination of both w
and point sources in theb56.0 studies. The use of wa
sources for these weaker coupling runs is appropriate s
the physical hadron states are larger in lattice units and b
overlap is achieved with the states of interest by using th
extended sources.

In all cases we use a zero-momentum-projected point
for the second operator in the correlation function. This
obtained by simply summing the operators in Eqs.~28! and
~29! over all spatial positionsrW in a fixed time planet5t f .
Thus, for example, we will extract the massmG of the light-
est meson with quantum numbers of the Dirac matrixG from
the larget f2t i expression:
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rW

OG
a~rW,t f !q̄

w~ t i !Gtaqw~ t i !L
;A~e2mG(t f2t i )1e2mG(Nt2t f1t i )!. ~31!

A similar equation is used for the nucleon correlation fun
tion except that the second exponent representing the
propagating through the antiperiodic boundary condit
connectingt50 and t5Nt21 is reversed in sign and ha
exchanged upper and lower components for a spinor bas
which g0 is diagonal.

For both the calculation of the quark propagators fro
which these hadron correlators are constructed and the ev
ation of the chiral condensate,^q̄q&, we invert the five-
dimensional domain wall fermion Dirac operator of Eq.~1!,
using the conjugate gradient method to solve an equatio
the formDy5h. This iterative method is run until a stoppin
condition is satisfied, which requires that the norm squa
of the residual be a fixed, small fractione of the norm
squared of the source vectorh. At the nth iteration, we de-
termine the residualr n as a cumulative approximation to th
difference vector obtained by applying the Dirac operator
the present approximate solutionyn andh: r n5Dyn2h. We
stop the process whenur nu2/uhu2,e.

For the calculation of̂ q̄q& we usee51026 for the runs
of Table I ande51028 for those in Table II. For the com
putation of hadron masses in the runs of Table I we use
51028 whenLs has the values 10, 16, 24 and 48, the co
dition e510210 for the caseLs532. For the hadron masse
computed in the runs in Table II we usede51028 for b
55.7 and 6.0, ande51027 for b55.85. Tests showed tha
zero-momentum projected hadronic propagators eight t
slices from the source, calculated with a stopping condit
of 1026, differed by less than 1% from the same propagat
calculated with a stopping condition of 10212 for mf>0.01
@61#. For a quark massmf50.01 and a 163332 volume with
Ls516, typically '1500 conjugate gradient iterations we
required to meet the stopping condition. For our very lig
quark masses (mf<0.001) up to 10 000 iterations were re
to in
TABLE III. Here we list the explicit masses that are included in the various mass ranges referred
Tables I and II.

Mass range Mass values

0.00–0.04 0.00, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035
and 0.04

0.00025–0.008 0.00025, 0.0005, 0.001, 0.002, 0.004 and 0.008
0.001–0.01 0.001, 0.004, 0.007 and 0.01
0.01–0.04 0.01, 0.015, 0.02, 0.025, 0.03, 0.035 and 0.04
0.01–0.05 0.01, 0.02, 0.03, 0.04, 0.05
0.02–0.20 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18

and 0.20
0.02–0.22 0.02, 0.06, 0.10, 0.14, 0.18 and 0.22
0.02–0.10 0.02, 0.04, 0.06, 0.08 and 0.10
0.025–0.075 0.025, 0.0325, 0.05, 0.0625 and 0.075
2-9
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The final step in extracting the masses of the lowest-ly
hadron states from the exponential behavior of the corr
tion functions given in Eq.~31! is to perform a fit to this
exponential form over a time range chosen so that
single-state description is accurate. Choosingt i50, we use
the appropriatet f→Nt2t f symmetry of Eq.~31! to fold the
correlator data into one-half of the original time range
<t f,Nt . We then perform a single-state fit of the form
Eq. ~31! for the time rangetmin<t f<tmax<Nt/2. Typically
tmax is simply set to the largest possible value,tmax5Nt/2.1

The lower limit, tmin , is decreased to include as large
time range as possible so as to extract the most accu
results. However,tmin must be sufficiently large that th
asymptotic, single-state formula in Eq.~31! is a good de-
scription of the data in the time range studied. These iss
are nicely represented by the effective mass,meff(t), with the
parametersA and m[meff(t) in Eq. ~31! determined to ex-
actly describe the hadron correlator at the timest and t11.
To the extent thatmeff(t) is independent oft, the data are in
a time range which is consistent with the desired single s
signal. As an illustration, this effective mass is plotted in F
6 for the p, r and nucleon states in the 163332, b56.0,
Ls516, mf50.01 calculation. Good single-state fits are ea
to identify from the plateau regions for the case ofmp and
mr . For the nucleon the rapidly increasing errors at lar

1For theb55.7 runs we used smaller values oftmax for thep and
r fitting, typically 12 or 14, in order to avoid the effects of roundin
errors. These finite-precision errors, caused by a poor choic
initial solution vector, were seen at the largest time separations
the very rapidly falling propagators found at this strong couplin

FIG. 6. Effective mass,meff(t) is plotted for the 163332, b
56.0, Ls516, mf50.01 calculation of thep, r and nucleon
masses. While plateau regions fort>5 are easily identified formp

andmr , the nucleon fit is less satisfactory. Although a plateau m
be recognized for 5<t<8, the rapidly growing errors make such a
identification problematic for this case. More satisfactory nucle
plateaus are seen for the larger values ofmf .
07450
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time separations for this relatively light quark mass make
more difficult to determine a plateau. Better nucleon plate
are seen for larger values ofmf .

The actual fits are carried out by minimizing the corr
latedx2 to determine the particle mass and propagation a
plitude. We then choosetmin as small as possible consiste
with two criteria. First, the fit must remain sufficiently goo
that thex2 per degree of freedom does not grow above 1
Second, we require that the mass values obtained agree
those determined from a larger value oftmin within their
errors.

In order to keep the fitting procedure as simple a
straightforward as possible, we choose values fortmin which
can be used for as large a range of quark masses, do
wall separations and particle types as possible. Given
large number of Monte Carlo runs and variety of masses
Ls values it is possible to employ an essentially statisti
technique to determinetmin . In choosing the appropriatetmin
we examine two distributions. The first distribution is
simple histogram of values ofx2/DOF obtained for all quark
masses and a particular physical quantum number. We
quire that for our choice oftmin , this distribution is sensibly
peaked around the value 1 or lower. An example is shown
Fig. 7 for theb56.00r mass determined from a wall sourc
for three values oftmin : 5, 7 and 9.

In the second distribution we first determine a fitted ma
mi(t) and the corresponding errors i(t) for the statei, where
the lower bound on the fitting range is given byt. We then
choose at8.t and examine a measure of the degree to wh
mi(t) andmi(t8) agree. The measure we choose is

d i~ t8,t !5
mi~ t8!2mi~ t !

s i~ t8!
. ~32!

In Fig. 7 we show the distribution of values ofd i(t8,tmin) for
the r meson for allt8.tmin and three choices fortmin : 5, 7
and 9. The distributions includer mesons with all values o
mf>0.01 and all values forLs used in the calculations.

In our sample Fig. 7, we have a reasonable distribution
x2/DOF values for all three choices oftmin with only a slight
improvement visible astmin increases from 5 to 9. Likewise
the distribution of mass values found att8.tmin is in reason-
able agreement for each value oftmin with a slight bias to-
ward larger values being visible at the lowest valuetmin
55. Examining this figure and corresponding figures for t
p, for our quoted masses, we chosetmin57 for these states
The fact that Fig. 7 does not sharply discriminate betwe
these three possible choices oftmin implies that we will get
essentially equivalent results from each of these three val

Our choices oftmin are as follows. Forb55.7, where
only point sources are used,tmin was chosen to be 7 for th
p, r and nucleon. Forb55.85, hadron masses were dete
mined only from the doubled 123364 configurations using
wall sources and the valuetmin56 for ther and 7 for thep
and nucleon. Finally forb56.0 the most accurate mass va
ues were determined using wall sources and it is these m
results which we quote below. Heretmin was chosen to be 7
for the p and r and 8 for the nucleon. We were able

of
or

y

n
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FIG. 7. Distribution ofx2 and
the mass difference @mi(t)
2mi(tmin)#/s i for t.tmin , evalu-
ated for three values oftmin for the
case of ther mass and a 163332
lattice, with b56.0 and mf

>0.01 andLs512, 16, 24, 32 and
48. Both distributions appear rea
sonable for each value oftmin with
only small improvement astmin

increases from 5 to 9. We choos
to quote values ofmr for all these
cases using the valuetmin57.
TABLE IV. Results for hadron masses atb55.7, 83332, M5

51.65, Ls510 from 87 configurations.

mf mp mr mN

0.02 0.528~12! 0.82~3! 1.24~6!

0.04 0.604~12! 0.874~19! 1.32~4!

0.06 0.676~14! 0.922~18! 1.40~3!

0.08 0.744~12! 0.971~15! 1.48~3!

0.10 0.808~10! 1.017~12! 1.56~2!

0.12 0.869~9! 1.063~10! 1.63~2!

0.14 0.929~8! 1.108~9! 1.705~18!

0.16 0.987~5! 1.153~8! 1.779~15!

0.18 1.043~5! 1.199~7! 1.853~14!

0.20 1.097~5! 1.244~6! 1.928~13!
07450
TABLE V. Results for hadron masses atb55.7, 83332, M5

51.65, Ls516 from 67 configurations.

mf mp mr mN

0.02 0.483~18! 0.87~12! 1.25~14!

0.04 0.562~12! 0.89~6! 1.36~10!

0.06 0.635~7! 0.93~4! 1.44~8!

0.08 0.702~5! 0.98~2! 1.52~7!

0.10 0.768~5! 1.019~18! 1.59~6!

0.12 0.831~5! 1.064~15! 1.65~4!

0.14 0.892~6! 1.109~13! 1.71~4!

0.16 0.954~5! 1.153~12! 1.78~3!

0.18 1.012~5! 1.199~10! 1.85~3!

0.20 1.072~6! 1.243~10! 1.93~2!
2-11
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extract quite consistent results with larger errors using p
sources. Here the needed value oftmin was 10 for thep and
r and tmin58 for the nucleon. Finally, the errors are dete
mined for each mass by a jackknife analysis performed
the resulting fitted mass.

C. Hadron mass results

The hadron masses that result from the fitting procedu
described above are given in Tables IV–XV. Omitted fro
this tabulation are the masses for the more difficult ca
mf50.0 and 0.001 which are discussed later in Sec. V.
each case the pion mass was determined from
^A0

a(x)A0
a(0)& correlator. While the results presented in the

tables will be used in later sections of this paper, there
some important aspects of these results which will be
cussed in this section. In particular, the dependence on
ume and themf dependence of ther and nucleon masse
will be examined.

We begin by examining the dependence of ther and
nucleon on the input quark mass,mf . In Figs. 8, 9 and 10 we
plot the r and nucleon masses as a function ofmf . As the
figures show, each case is well described by a simple lin
dependence onmf . The data plotted in these figures appe
in Tables VII, XII and XIII, respectively. Also plotted in Fig
10 are our results formr with non-degenerate quarks. Th
coincidence of these two results implies the familiar conc
sion that to a good approximation the meson mass dep
on the simple average of the quark masses of which i
composed. For simplicity in obtaining jackknife errors, w
have included in these linear fits only that data associa

TABLE VI. Results for hadron masses atb55.7, 83332, M5

51.65, Ls524 from 84 configurations.

mf mp mr mN

0.02 0.44~2! 0.84~8! 1.4~4!

0.06 0.613~12! 0.94~3! 1.31~6!

0.10 0.756~8! 1.016~15! 1.50~3!

0.14 0.882~5! 1.102~11! 1.662~16!

0.18 0.999~4! 1.189~9! 1.817~12!

0.22 1.108~4! 1.278~8! 1.959~11!

TABLE VII. Results for hadron masses atb55.7, 83332,
M551.65, Ls532. The results formf50.02 are obtained from 278
configurations, those formf50.04 are from 184 configurations
while the others are from 94 configurations.

mf mp mr mN

0.02 0.405~6! 0.83~5! 1.17~11!

0.04 0.502~5! 0.87~4! 1.16~5!

0.06 0.595~9! 0.92~2! 1.36~8!

0.10 0.743~7! 0.995~16! 1.50~3!

0.14 0.872~6! 1.082~11! 1.66~2!

0.18 0.991~5! 1.178~8! 1.822~16!

0.22 1.104~4! 1.274~7! 1.970~15!
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with ensembles of configurations on which all relevant qu
mass values were studied. Added configurations where o
particular quark masses had been evaluated were no
cluded.

A simple linear fit provides a good approximation to a
the masses considered in this section, in particular formf
>0.01. In Table XVI we assemble the fit parameters for
b55.7, 83332 masses, while Tables XVII, XVIII and XIX
contain the fit parameters for theb55.7, 163332, b
55.85, 123332 andb56.0, 163332 calculations, respec
tively. The parameters presented in these three tables w
obtained by minimizing a correlatedx2 which incorporated
the effects of the correlation between hadron masses
tained with different valence quark masses,mf , but deter-
mined on the same ensemble of quenched gauge config
tions. The errors quoted follow from the jackknife metho
and the small values ofx2/DOF shown demonstrate how
well these linear fits work. Because of the visible curvatu
in the pion mass for ourb55.7 and 6.0 results, the linear fit
for mp

2 were made to the lowest three mass values. For thr
and nucleon and all three masses atb55.85 we fit to the
masses obtained for the full range ofmf values.

Next we consider the effects of finite volume by compa
ing the 83332 and 163332, volumes used in theb55.7,
Ls548 calculation. The value ofmp50.383(4) found at the
lightest mf50.02 mass value for the 163332 implies a
Compton wavelength of 2.6 in lattice units. This lies betwe
1/4 and 1/3 of the linear dimension of the smaller lattic

TABLE VIII. Results for hadron masses atb55.7, 83332,
M551.65, Ls548. The results formf50.04 are obtained from 335
configurations, while the others are from 169 configurations. On
the original 336 configurations had eigenvalues very close to z
requiring nearly 11 000 conjugate gradient iterations to conve
The resulting pion propagator was so large as to dominate the
erage of the^pa(x)pa(0)& correlator for themf50.0 case. We
omitted this single configuration from this analysis.

mf mp mr mN

0.02 0.374~10! 0.99~12! 1.07~19!

0.04 0.490~4! 0.87~2! 1.22~6!

0.06 0.580~7! 0.95~3! 1.38~5!

0.10 0.730~5! 1.016~13! 1.52~2!

0.14 0.860~4! 1.098~8! 1.658~17!

0.18 0.981~4! 1.184~6! 1.809~14!

0.22 1.093~4! 1.272~5! 1.962~12!

TABLE IX. Results for hadron masses atb55.7, 83332, M5

51.65, Ls564 from 76 configurations.

mf mp mr mN

0.02 0.364~14! 0.98~17! 1.2~3!

0.06 0.563~8! 0.96~5! 1.18~4!

0.10 0.719~8! 1.01~2! 1.42~3!

0.14 0.854~7! 1.089~12! 1.62~2!

0.18 0.978~6! 1.176~9! 1.784~17!

0.22 1.097~5! 1.265~7! 1.938~14!
2-12
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TABLE X. Results for hadron masses atb55.7, 163332, M5

51.65, Ls524 from 73 configurations.

mf mp mr mN

0.02 0.412~5! 0.85~4! 1.17~9!

0.06 0.597~4! 0.909~12! 1.29~4!

0.10 0.743~4! 0.990~9! 1.47~2!

0.14 0.873~4! 1.082~6! 1.642~14!

0.18 0.994~3! 1.175~5! 1.800~16!

0.22 1.105~4! 1.265~4! 1.953~16!

TABLE XI. Results for hadron masses atb55.7, 163332,
M551.65, Ls548. The results formf50.02,0.04,0.06,0.08 and
0.10 are obtained from 106 configurations, while the others
from 61 configurations.

mf mp mr mN

0.02 0.383~4! 0.88~5! 1.00~4!

0.04 0.482~4! 0.86~2! 1.23~3!

0.06 0.577~2! 0.918~18! 1.260~15!

0.08 0.650~3! 0.951~9! 1.375~16!

0.10 0.729~2! 0.989~9! 1.449~10!

0.14 0.865~3! 1.083~7! 1.623~14!

0.18 0.986~3! 1.173~5! 1.786~12!

0.22 1.097~4! 1.264~5! 1.942~12!

TABLE XII. Results for hadron masses atb55.85, 123332,
M551.9, Ls520, 100 configurations.

mf mp mr mN

0.0250 0.359~4! 0.627~15! 0.844~24!

0.0375 0.426~3! 0.650~10! 0.919~16!

0.0500 0.483~3! 0.675~8! 0.985~13!

0.0625 0.536~3! 0.706~6! 1.044~10!

0.0750 0.585~3! 0.738~5! 1.106~9!

TABLE XIII. Results for hadron masses atb56.0, 163332,
M551.8, Ls516 from 85 configurations.

mf mp mr mN

0.010 0.203~3! 0.442~10! 0.621~30!

0.015 0.239~3! 0.451~7! 0.648~21!

0.020 0.270~3! 0.462~6! 0.668~15!

0.025 0.298~3! 0.475~5! 0.686~12!

0.030 0.324~2! 0.488~5! 0.706~10!

0.035 0.348~2! 0.502~4! 0.729~9!

0.040 0.371~2! 0.515~4! 0.752~9!
07450
suggesting that we should not expect large finite volume
fects. This is borne out by comparing the data in Tables V
and XI where the two sets of masses agree within errors

This apparent volume independence within our errors
be nicely summarized by comparing the coefficients of
linear fits of ther and nucleon. Writing the twoa and b
coefficients from the tables as a pair@a,b#, we can compare
the 163332 values from Table XVII@0.775(18),2.20(7)#
and @1.03(4),4.13(17)# for the r and nucleon with the cor-
responding numbers for the 83332 numbers from Table
XVI: @0.790(13),2.18(5)# and @1.13(4),3.79(15)#. For mp

the results on the two volumes agree to within the typical
statistical errors. However, for the case of ther and nucleon
masses, finite volume effects may be visible on the two st
dard deviation or 1–2 % level for the more accurate mas
obtained formf>0.06.

Since in lattice units ther mass decreases by about
factor of two as we changeb from 5.7 to 6.0, the 163 spatial
volume used atb56.0 should be equivalent to the 83 vol-
ume just discussed atb55.7. Thus, we expect that ther and
nucleon masses that we have found on this 163 volume will
differ from their large volume limits by an amount on th
order of a few percent while the finite-volume pion mass
may be accurate on the 0.5% level.

IV. ZERO MODES AND THE CHIRAL CONDENSATE

A. Banks-Casher formula for domain wall fermions

In the previous section, our results for quark massesmf
>0.01 were given, where the smallest values ofmf gave
mp /mr;0.4. Since the domain wall fermion operator wi

re

TABLE XIV. Results for hadron masses with nondegenerate
lence quarks atb56.0, 163332, M551.8, Ls516 from 98 con-
figurations.

mf(1) mf(2) mp mr

0.010 0.020 0.238~2! 0.441~12!

0.030 0.020 0.298~2! 0.471~8!

0.040 0.020 0.325~2! 0.487~7!

0.050 0.020 0.349~2! 0.502~7!

0.075 0.020 0.406~2! 0.538~6!

0.100 0.020 0.457~2! 0.574~5!

0.125 0.020 0.505~2! 0.608~4!

TABLE XV. Results for hadron masses atb56.0, 163332,
M551.8, Ls524 from 76 configurations.

mf mp mr mN

0.010 0.201~5! 0.423~11! 0.664~43!

0.015 0.236~4! 0.441~9! 0.644~25!

0.020 0.267~3! 0.458~7! 0.653~18!

0.025 0.295~3! 0.473~6! 0.674~15!

0.030 0.320~3! 0.487~5! 0.698~12!

0.035 0.345~3! 0.502~5! 0.723~11!

0.040 0.368~2! 0.516~4! 0.748~10!
2-13
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mf50 should give exact fermionic zero modes asLs→`,
observables determined from quark propagators at finiteLs ,
when small quark masses are used, should show the ef
of topological near-zero modes. For quenched simulatio

FIG. 8. Ther (s) and nucleon masses (h) plotted as a func-
tion of mf for the case ofb55.7, M551.65, Ls532 and a 83

332 lattice. The lines represent least squares fits whose param
appear in Table XVI while the data plotted appear in Table V
Note the relatively low value for themf50.04 nucleon point results
from the comparison of two somewhat different data sets. As m
tioned in the text, the linear fit was obtain from the 94 configu
tions identified in Table I while themf50.02 and 0.04 points plot
ted also include the further 184 configurations referenced
Table II.

FIG. 9. Ther (s) and nucleon masses (h) plotted as a func-
tion of mf for the case ofb55.85, M551.9, Ls532 and a 83

332 lattice. The lines represent least squares fits whose param
appear in Table XVIII while the data plotted appear in Table XI
07450
cts
s,

where zero modes are not suppressed by the fermion d
minant, these modes can be expected to produce pronou
effects. One important practical question is the size of
quark mass where the effects are measurable. To begi
investigate this we now turn to the simplest observa
where they can occur,^q̄q&.

ers
.

n-
-

n

ers

FIG. 10. Ther (s) and nucleon masses (h) plotted as a func-
tion of mf for the case ofb56.0, M551.8, Ls516 and a 163

332 lattice. The lines represent least squares fits using the pa
eters appearing in Table XIX while the data plotted appear in Ta
XIII. In addition to these hadron masses computed for the cas
equal mass quarks, we have also plotted ther mass for the case o
non-degenerate quarks given in Table XIV as a function of
average quark mass,@mf(1)1mf(2)#/2. These points are plotted a
filled diamonds.

TABLE XVI. Valence extrapolations (a1bmf) for mp
2 , mr and

mN at b55.7, 83332, M551.65. The fitting ranges used are d
scribed in Sec. III C.

Mass Ls a b x2/DOF

mp
2 10 0.201~17! 4.55~17! 5.35

mr 10 0.792~19! 2.26~6! 0.55
mN 10 1.18~4! 3.74~17! 0.13
mp

2 16 0.147~32! 4.32~36! 1.59
mr 16 0.798~24! 2.23~10! 0.17
mN 16 1.21~8! 3.60~29! 0.28
mp

2 24 0.093~16! 4.82~12! 1.47
mr 24 0.786~21! 2.24~7! 0.34
mN 24 1.17~3! 3.60~14! 1.01
mp

2 32 0.076~10! 4.83~12! 4.81
mr 32 0.753~26! 2.36~11! 0.43
mN 32 1.14~5! 3.78~22! 1.14
mp

2 48 0.042~8! 4.90~9! 0.012
mr 48 0.790~13! 2.18~5! 0.50
mN 48 1.13~4! 3.79~15! 0.73
mp

2 64 0.039~11! 4.75~21! 6.28
mr 64 0.756~22! 2.28~8! 0.65
mN 64 1.03~6! 4.06~22! 3.23
2-14
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Before considering the domain wall fermion operator,
review the spectral decomposition of the continuum fo
dimensional, anti-Hermitian Euclidean Dirac operatorD” (4).2

The eigenfunctions and corresponding eigenvalues of s
an anti-Hermitian operator satisfy

~D” (4)1m!cl5~ il1m!cl ~33!

with l real and

g5cl5H 6cl , l50,

c2l , lÞ0.
~34!

~We usel to label eigenfunctions and eigenvalues of t
anti-Hermitian operator, savinglH for the ‘‘Hermitian’’ case
defined below.! In the continuum, the presence of ze
modes is guaranteed by the Atiyah-Singer index theorem
a gluonic field background with non-zero winding numb
@62,63#.

The four-dimensional quark propagator,Sx,y
(4) , can be writ-

ten as

Sx,y
(4)5(

l

cl~x!cl
†~y!

il1m
~35!

leading directly to the Banks-Casher relation@64# ~with our
normalization for the chiral condensate!

2^c̄c&5
1

12V

^unu&

m
1

m

12V K (
lÞ0

1

l21m2L ~36!

5
2m

12E0

`

dl
r~l!

l21m2
~37!

where n is the winding number andr(l) is the average
density of eigenvalues. For quenched QCD,r(l) has no
dependence on the quark mass. For both quenched and
QCD, one expects thatunu;AV, as is the case for a dilut
instanton gas model. Thus, zero modes lead to a diver
1/m term in^q̄q& whose coefficient decreases as 1/AV. ~This

2The naive lattice fermion operatorD” 5gu(Ux,mdx1m̂,x8
2Ux8,m

† dx2m̂,x8) and the lattice staggered fermion operator ha
eigenvalues and eigenvectors which also obey Eq.~34!.

TABLE XVII. Valence extrapolations (a1bmf) for mp
2 , mr

andmN at b55.7, 163332, M551.65. The fitting ranges used ar
described in Sec. III C.

Mass Ls a b x2/DOF

mp
2 24 0.072~6! 4.83~9! 7.26

mr 24 0.764~12! 2.27~5! 1.10
mN 24 1.10~3! 3.87~15! 0.69
mr 48 0.775~18! 2.20~7! 1.04
mN 48 1.03~4! 4.13~17! 3.58
07450
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contrasts with the behavior seen@31# above the deconfine
ment transition where it can be shown that the 1/m term
remains non-zero for quenched QCD in the infinite volum
limit @65#.! Before discussing the results of our simulation
we first address how this simple expectation of a 1/m term in

^q̄q& due to zero modes should appear for the domain w
fermion operator.

We will find it useful to compare the spectrum and pro
erties of the Hermitian domain wall fermion operatorDH

with the Hermitian four-dimensional operator,DH
(4) , defined

by

DH
(4)5g5~D” (4)1m!. ~38!

The eigenvalues,lH , and eigenvectors,clH
, for this opera-

tor can be given in terms ofl and cl given above. Ifl
50 we immediately get an eigenvaluelH56m for the Her-
mitian operator, and an eigenvector with the definite chira
11 or 21. For lÞ0, the eigenvectors ofDH

(4) are linear
combinations ofcl and c2l and the corresponding eigen

values are lH56Al21m2. Since (D” (4)1m)21

5(DH
(4))21g5, we have

2^c̄c&5
1

12V
^Tr~D” ~4!1m!21& ~39!

5
1

12V
^Tr„g5~DH

(4)!21
…& ~40!

e

TABLE XVIII. Valence extrapolations (a1bmf) for mp
2 , mr

and mN at b55.85, 123332, M551.9. The masses from all five
values ofmf are included in the fits.

Mass Ls a b x2/DOF

mp
2 20 0.024~3! 4.27~4! 2.8

mr 20 0.549~14! 2.50~17! 0.88
mN 20 0.74~2! 4.9~3! 0.81

TABLE XIX. Valence extrapolations (a1bmf) for mp
2 , mr and

mN at b56.0, 163332, M551.8. The fitting ranges used are d
scribed in Sec. III C.

Mass Ls a b x2/DOF

mp
2 16 0.0098~20! 3.14~9! 0.029

mr 16 0.404~8! 2.78~11! 0.48
mN 16 0.566~21! 4.66~29! 0.34
mp

2 24 0.0094~26! 3.09~7! 0.32
mr 24 0.400~10! 2.86~12! 0.38
mN 24 0.546~19! 5.05~33! 0.65
2-15
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5
1

12V K (
x,lH

clH
~x!†g5clH

~x!

lH
L . ~41!

Since forDH
(4)

(
x

clH

† ~x!g5clH
~x!5

m

lH
~42!

Eq. ~41! also reduces to the Banks-Casher relation, Eq.~37!.
For finite mass, the zero-mode Hermitian eigenfunctions
chiral, while other eigenfunctions have a chirality propo
tional to the mass. This will be important in our compariso
with domain wall fermions.

For large Ls , it is expected that the spectrum of ligh
eigenvalues of the Hermitian domain wall fermion operat
DH , should reproduce the features of the operatorDH

(4) .
SinceDH depends continuously onmf , for small mf its i th
eigenvalue must have the form

LH,i
2 5ai81bi8mf1ci8mf

21•••. ~43!

To make a connection with the normal continuum form
the eigenvalues we reparametrizeLH,i

2 as

LH,i
2 5n5,i

2
„l i

21~mf1dmi !
2
…1•••. ~44!

FIG. 11. ^q̄q& for quenched simulations done on 83332 lattices
at b55.7 for Ls532 (s) andLs548 (h). The more pronounced
rise asmf→0 for Ls548 shows that the expected topological ne
zero modes have smaller values forl i and/ordmi for this largerLs .
07450
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r

Heren5,i is an overall normalization factor and we have d
fined dmi , which enters as a contribution to the total qua
mass for thei th eigenvalue. Fordmi52mf , LH,i

2 is at its
minimum. Modes which become precise zero modes w
Ls→` will have non-zero values forl i and dmi for finite
Ls . We will refer to such modes as topological near-ze
modes.

From perturbation theory inmf , one can easily see that

dLH,i

dmf
5^LH,i ug5Q(w)uLH,i& ~45!

while the chain rule applied to Eq.~44! gives

dLH,i~mf !

dmf
5

n5,i
2 ~mf1dmi !

LH,i
. ~46!

Combining this with Eq.~25! gives

2^q̄q&5
1

12V K (
i

mf1dmi

l i
21~mf1dmi !

2L ~47!

which agrees with the Banks-Casher form, Eq.~37! with the
addition of thei dependent mass contributiondmi . Thus, the
parameterl i in Eq. ~44! should be identified with the eigen

-

FIG. 12. ^q̄q& for quenched simulations done on 163332 lat-
tices atb56.0 for Ls516 (s) and Ls524 (h). The more pro-
nounced rise asmf→0 for Ls524 shows that the expected topo
logical near-zero modes have smaller values forl i and/ordmi for
this largerLs .
TABLE XX. Results for fits of^q̄q& to the form given in Eq.~48!.

L33Nt3Ls b a21 a0 a1 dm^q̄q&

83332332 5.7 6.0(6)31026 1.76(3)31023 6.53(4)31022 4.0(4)31023

83332348 5.7 6.8(7)31026 1.92(5)31023 6.04(14)31022 1.7(2)31023

163332332 5.7 2.5(4)31026 1.86(2)31023 6.53(2)31022 9.3(9)31023

163332316 6.0 1.0(1)31026 3.87(8)31024 8.64(1)31022 5.6(3)31024

163332324 6.0 9.1(10)31027 3.62(9)31024 8.64(2)31022 1.1(1)31024
2-16
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values of the continuum anti-Hermitian operatorD” (4). As
indicated by Eqs.~45! and~46!, dmi should represent a con
tribution to the eigenvalue from the chiral symmetry brea
ing effects of coupling of the domain walls, present for fin
Ls .

These arguments show that the domain wall fermion c
ral condensate will grow as 1/mf for gauge field configura-
tions with topology, providedLs is large enough to make
dmi andl i small. The continuum expectation of a 1/mf di-
vergence is modified at smallmf by the non-zero values o
dmi and l i for topological near-zero modes. For a sing
configuration, the precise departure from a 1/mf divergence
is dominated by the eigenvalues with the smallest values
dmi and l i ; for an ensemble average, the departure fr
1/mf behavior depends on the distribution of values ofdmi .
With this understanding of̂q̄q& for domain wall fermions,
we turn to our simulation results.

B. Quenched measurements ofŠq̄q‹

In this section we discuss our results for^q̄q& for
quenched QCD simulations with domain wall fermion
Tables I, II and III give details about the runs where^q̄q&
was measured. The most important aspect of the run pa
eters is the small values formf used, includingmf50.0
where finiteLs keepsLH non-zero, allowing the conjugat
gradient inverter to be used. Of course the number of co
gate gradient iterations becomes quite large.

Equation~47! shows that we should expect large valu
for 2^q̄q& for small mf for configurations with topologica
near-zero modes. Figure 11 shows2^q̄q& for 83332 lattices
at b55.7 with bothLs532 and 48. The quark masses us

FIG. 13. Evolutions of2^q̄q& ~solid line! and2^q̄g5q& ~dotted
line! for 163332 lattices atb56.0 withLs516. For smaller values
of mf the evolutions show pronounced fluctuations which have

posite sign for̂ q̄q& and^q̄g5q&, indicating the presence of eigen
functions ofDH at thisLs which are very good approximations t
the exact topological zero modes expected atLs→`. Note that the
vertical scaleincreasesfor the smaller values ofmf .
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cover the ranges 020.04 and 0.0002520.008, defined in
Table III. Both values forLs show an increase in2^q̄q& for
very small quark mass, an effect expected from the prese
of a non-zero value for̂unu&. ~This effect was first reported
for domain wall fermions based on quenched simulatio
done on 83332 lattices withb55.85, M f51.65 andLs
532 and listed in Table I@22#.!

Motivated by the form of Eq.~47! we have fit2^q̄q& to
the following phenomenological form:

2^q̄q&5
a21

mf1dm^q̄q&

1a01a1mf ~48!

wherea21 , a0 , a1 and dm^q̄q& are parameters to be dete
mined.dm^q̄q& represents a weighted average ofdmi over the
eigenvalues which dominatêq̄q& for small mf . The mea-
surements of̂ q̄q& for different values ofmf are strongly
correlated, being done on the same gauge field configurat
with, generally, the same random noise estimator used
determinê q̄q& for all the masses. The common noise sou
makes the signal for the 1/mf divergence particularly clean
since the overlap of the topological near-zero mode eig
vectors with the random source does not fluctuate on a si
configuration. This strong correlation precludes doing a c
related fit of^q̄q& to mf , since the correlation matrix is too
singular. Thus, the fits in this section are uncorrelated fits

^q̄q& to mf .
Table XX gives the results for fits to the form of Eq.~48!

for our b55.7, 5.85 and 6.0 simulations. All the fits have
valuex2/DOF less than 0.1, a consequence of doing unc
related fits to such correlated data. In Fig. 11, one sees
the fit represents the data quite well. Continuing with3

332 lattices atb55.7, Table XX shows the fit paramete
are very similar forLs532 and 48, except fordm^q̄q& , which
drops from 0.0040~4! to 0.0017~2!. This indicates a decreas
in dmi asLs increases.

Figure 12 is a similar plot of2^q̄q& for 163332 lattices
with b56.0 forLs516 and 24. The rise in̂q̄q& for smallmf
exhibits the same general structure as for theb55.7 data in
Fig. 11, but the effect is larger. Heredm^q̄q& falls from
0.00056~3! for Ls516 to 0.00011~1! for Ls524.

To further demonstrate that the divergence for smallmf
is due to eigenfunctions ofDH that represent zero modes o
a definite chirality, Fig. 13 shows the evolution of bo
2^q̄q& ~solid lines! and2^q̄g5q& ~dotted lines!. These evo-
lutions are for 163332 lattices atb56.0 with Ls516.
Eigenfunctions with a positive chirality contribute equally

^q̄q& and ^q̄g5q&, while negative chirality eigenfunction
contribute with an opposite sign tôq̄g5q&. The topological
near-zero modes should be approximately chiral and,
smaller values ofmf , one see large fluctuations in^q̄q& and

^q̄g5q&. Some of the fluctuations have the same sign a
some are of opposite sign. Thus, we have configurations w
eigenfunctions which are very good approximations to
exact zero modes expected asLs→`.

-
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As mentioned earlier,̂unu&/V should decrease with vol
ume, with the asymptotic dependence given by 1/AV. To
investigate this numerically, we have measured^q̄q& on both
83332 and 163332 lattices atb55.7 and 5.85 withLs
532 and show theb55.7 results in Fig. 1. The graph clear
shows that the 1/mf divergence is drastically suppressed
the larger volume. The coefficient of the 1/mf term falls from
6.0(6)31026 to 2.5(4)31026 as the volume is changed b
a factor of 8. This may be somewhat misleading, sin
dm^q̄q& also changes by a factor of about 2, likely due to t
phenomenological nature of the fit and the small effects
the 1/mf pole for the larger volume. Putting aside this sy
tematic difficulty, the 1/mf coefficient decreases by a fact
of 1/A5.8, showing the general behavior expected but no
precise agreement with the expected asymptotic form.
b55.85, where the physical size of the lattices is smal
the 1/mf coefficient falls from 3.8(3)31026 to 0.60(9)
31026, a factor of 6.3. We have not seen the expected 1/AV
dependence for the 1/mf coefficient, but it does decreas
with volume in accordance with general ideas. It is possi
that on the larger 163332 volume, the 1/mf rise is not large
enough to allow its coefficient to be determined without s
tematic errors.

Thus, we have clear evidence for topological near-z
modes in our quenched simulations using domain wall
mions. They are revealed through a large 1/mf rise in our
values for 2^q̄q&, the presence of configurations whe

^q̄q& and ^q̄g5q& are large and of opposite sign and t
volume dependence of the coefficient of the 1/mf term. We
have extracted a quantity,dm^q̄q& , from a phenomenologica
fit to ^q̄q&, which represents the effects of finiteLs on the
eigenmodes with small eigenvalues which dominate^q̄q& for
mf→0. Physical values for̂q̄q& in the chiral limit, without
the contribution of the topological near-zero modes, will
presented in Sec. VII. We now turn to a discussion of h
these zero modes, and the expected light modes respon
for chiral symmetry breaking, are evident in measureme
of the pion mass.

V. THE PION MASS IN THE CHIRAL LIMIT

For domain wall fermions withLs5`, the chiral limit is
achieved by takingmf50. For our quenched simulations
finite Ls , we must investigate the chiral limit in detail t
demonstrate that the changes from theLs→` limit are under
control and of a known size. As is discussed in Sec. II B,
low energy QCD physics the dominant effect of finiteLs
should be the appearance of an additional chiral symm
breaking term in the effective Lagrangian describing QC
This term has the formmresq̄(x)q(x) and in the continuum
limit its presence will makemp vanish atmf52mres up to
terms of ordera2. Our investigation of the chiral limit is
made more difficult since there are other issues affecting
limit, beyond havingLs finite. For domain wall fermion
quenched simulations, the chiral limit may be distorted b

~1! Ordera2 effects. Since we are working at finite lattic
spacing chiral symmetry will not be precisely restored ev
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for mf1mres50. In particular, additional chiral symmetr
breaking will come from the effects of higher dimension o
erators suppressed by factors ofan for n>2. Thus, we can-
not expectmp to vanish precisely at the pointmf52mres,
but perhaps at a nearby point, removed from2mres by terms
of O(a2).

~2! Finite Ls . The residual mass,mres, should represen
the finiteLs effects for physics describable by a low-ener
effective Lagrangian. However, there will be additional e
fects of finiteLs for observables sensitive to ultraviolet ph
nomena. Further, a quantity with sufficiently severe infrar
singularity may show unphysical sensitivity to tho
Ls-dependent eigenfunctionsuLH,i& ~and the parametersn5,i ,
l i and dmi of the previous section! with small eigenvalues
LH,i .

~3! Topological near-zero modes. The previous sect
has shown these dominatêq̄q& for small quark masses
(mf<0.01) for the volumes we are using. From the Wa
Takahashi identity, these effects must also be present in
pion correlator̂ pa(x)pa(0)&.

~4! Finite volume. For staggered fermions, where t
remnant chiral symmetry at finite lattice spacing requi
mp

2 50 when the input quark mass is zero, the finite volum
used in simulations have been seen to makemp

2 non-zero
when extrapolated to the chiral limit from above@66,67#.
Such an effect may also be expected to occur for dom
wall fermions.

~5! Analytic results argue for the presence of ‘‘quench
chiral logs’’ with the dependence ofmp

2 on the quark mass in
quenched QCD different from that of full QCD@68–70#.

In this section we study the pion mass in the limit of sm
quark mass. Demonstrating consistent chiral behavior for
pion mass in the limitmf1mres→0 is a critical component in
establishing the ability of the domain wall fermion forma
ism to adequately describe chiral physics. If we discover t
the limit mf1mres→0 is obscured by largeO(a2) effects or
large violations of chiral symmetry caused by unanticipa
propagation between the domain walls, little may be gain
from this new formalism. For ther and nucleon masses re
ported in Sec. III, the masses were shown to be well fit b
linear dependence on the input quark mass,mf . Any pos-
sible non-linearities are not resolvable within our statisti
For the pion, the statistical errors for these values ofmf are
smaller and we have also run simulations at smaller val
for mf so we might hope to learn more about this importa
quantity. We begin by investigating the effects of topologic
near-zero modes on the pion.

A. Topological near-zero mode effects on the pion:
analytic considerations

We have seen that topological near-zero modes domi

^q̄q& for smallmf and, by continuity, they will also alter the
value for ^q̄q& determined with larger quark masse
Through the Ward-Takahashi identity, these modes also
pear in the pion correlator,^pa(x)pa(0)& and therefore can
enter in the determination of the pion mass in a lattice sim
lation. Alternatively, the axial-vector correlator can be us
2-18
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to measure the pion mass and the zero modes may affec
correlator differently. It is vital to understand the role
these topological near-zero modes, since a study of the c
limit of mp

2 depends on an accurate measurement of the m
of the pion state. In this section we will study the way
which topological zero-modes might be expected to eff
pion correlation functions for the continuum theory using o
results as a guide to the study of the domain wall amplitud

Before proceeding, we first establish our notation for s
ceptibilities and the integrated Ward-Takahashi identity.
general we define

xCD[
1

12 (
x

^C~x!D~0!& ~49!

whereC andD are any two hadronic interpolating fields. I
particular

xpp[
1

12 (
x

^pa~x!pa~0!& ~50!

xAA[
1

12 (
x

^A0
a~x!A0

a~0!& ~51!

xp(mp)p
[

1

12 (
x

^p (mp)
a ~x!pa~0!& ~52!

where no sum overa is intended and the factor of 1/12 ha
been introduced to maintain consistency with our somew
unconventional normalization for the chiral condensate gi
in Eq. ~22!. Then the Ward-Takahashi identity, Eq.~10!, with
O(0)5pa(0) and summed overx becomes

mfxpp1xp(mp)p
52^q̄q& ~53!

which we will refer to as the integrated Ward-Takaha
identity.

We first consider Eq.~53! for largeLs , where we should
recover the continuum version of the identity. To simplify t
presentation, we start with the notation of Sec. IV A for t
continuum four-dimensional anti-Hermitian Dirac operat
We immediately deduce from Eq.~53! that a 1/m divergence
in ^q̄q& from topological zero modes dictates a 1/m2 diver-
gence inxpp . In addition, xpp should have a 1/m diver-
gence for large volumes from the pion pole and, as we w
see below, there can also be a 1/m pole from topological zero
modes. However, the volume dependence of these var
pole terms should be different. Pole terms from topologi
near-zero modes should have a coefficient which isO(V21/2)
for large volumes, while the 1/m term from the pion pole
should be volume independent.

Thus, we expect

xpp5
1

V1/2

a22

m2
1

a21

m
1O~m0!. ~54!

The coefficientsa22 and a21 should become volume inde
pendent in the infinite volume limit. However, the ‘‘pio
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pole’’ piece,a21, may contain an additional 1/V1/2 term aris-
ing from zero modes. Note, a particular order of limits mu
be understood when interpreting Eq.~54!. One expects tha
the usual relation mp

2 }m will hold only when m

@1/Vu^q̄q&u @71#. Although this prevents our taking them
→0 limit of Eq. ~54!, it is fully consistent with the domain
m}1/V1/2 where the 1/m2 term in Eq.~54! may be as large as
or much larger than the conventional 1/m term coming from
the pion. For domain wall fermions at finiteLs these pole
terms will be rendered less singular by the presence of
dmi terms in the eigenvalues forDH .

Lattice measurements of the pion mass come from
exponential decay of a correlator like^pa(x)pa(0)& in the
limit of large uxu. Having examined the zero mode effect
the somewhat simpler susceptibilities, we will now inves
gate the topological zero mode contributions to two-po
functions from their spectral decomposition to understa
how zero modes can distort measurements of the pion m
We have

^pa~x!pa~0!&5^Tr@Sx,0
(4)g5S0,x

(4)g5#& ~55!

5K (
l,l8

cl
†~x!cl8~x!cl8

†
~0!cl~0!

~2 il1m!~ il81m!
L .

~56!

First we consider the terms in the sum where bothl andl8
are zero. This gives a 1/m2 pole in ^pa(x)pa(0)&, provided
the eigenfunctions in the numerator are non-zero atx and 0.
@Integrating^pa(x)pa(0)& overx shows that these topologi
cal near-zero modes give the 1/m2 contribution toxpp .] The
terms in the sum where neitherl or l8 are zero should
include the small eigenvalues which are responsible for
Goldstone nature of the pion. For largeuxu, the total contri-
bution to^pa(x)pa(0)& from these modes should be propo
tional to

u^0up~0!up&u2 Amp

e2mpuxu

uxu3/2 . ~57!

~Integrating overx results in an overall factor ofmp
2 in the

denominator, which produces the 1/m pion pole in xpp .)
Lastly, the terms with eitherl or l8 zero, but not both, can
be written as

K (
l.0,l850

cl
†~x!cl8~x!cl8

†
~0!cl~0!

l21m2 L
,K (

lÞ0

1

l21m2L 5
^q̄q&nz

m
~58!

where^q̄q&nz is the chiral condensate measured without z
mode contributions. Here we have used the symmetrie
Eq. ~34! to combine the6l terms in the sum overl and
remove the term odd inil. Since^q̄q&nz should be non-zero
asm→0, we see that the contribution to the correlator fro
2-19
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terms with zero modes in one of the propagators can prod
at most a 1/m pole term in^pa(x)pa(0)&.

Thus, we expect

^pa~x!pa~0!&5
1

V1/2S c22~x,0!

m2
1

c21~x,0!

m D
1c21/2Amp

e2mpuxu

uxu3/2 1••• ~59!

for small m. The first two terms represent the possible ze
mode contributions. It is important to note thatc22(x,0) gets
contributions from the modulus squared of the zero-mo
eigenfunctions at the points 0 andx, while c21(x,0) does
not. In particular, for a configuration with a single ze
mode,c22(x,0) is positive definite, being given by

c22~x,0!5V1/2^uc0~x!u2uc0~0!u2&. ~60!

Thus, one could expectc22(x,0) to be a number of order th
inverse of the mean zero-mode size squared, whilec21(x,0)
could be much smaller due to the terms of differing si
appearing in the sum over eigenmodes.

For large enoughuxu, only the true pion state should con
tribute. Such largeuxu requires a correspondingly largeV
with the necessary suppression of zero modes. However,
fixed separationuxu in a finite volume and for simulation
with small enoughm, the physical pion contribution to
^pa(x)pa(0)& can be completely negligible. For a lattic
with space-time volumeV5L33Nt and Nt large, one also
expects that the zero modes should be suppressed. Thu
large enoughNt , zero modes should not play a role
^pa(x)pa(0)& and the large time limit of that correlatio
function should determine the physical pion mass with
ambiguity even for finite spatial volume.

For finiteLs , the domain wall fermion spectral form, Eq
~26!, gives the precise role of the topological near-ze
modes. The double sum overLH andLH8 decomposes as w
have done above forD (4) and the dominant contribution o
the topological near-zero modes enters as 1/(l i

21(mf

1dmi)
2) provided ^LHuQ(w)uLH8 & is well approximated by

O(1)dLH ,L
H8
. Thus, forl i anddmi small, there should be a

region inmf where^pa(x)pa(0)& displays a 1/mf
2 character.

The pion mass can also be measured from the axial ve
current correlator,̂A0

a(x)A0
a(0)&. The susceptibility for this

correlator,xAA , is not constrained by the integrated War
Takahashi identity as isxpp . However, there must be a pio
pole contribution in addition to any zero mode terms. The
fore

xAA;
u^0uA0~0!up&u2

mp
2

1O~m2n! zero mode poles

~61!

5O~m0!1O~m2n! zero mode poles ~62!

where we have used̂0uA0(0)up&;mp . The physical pion
contribution is independent ofm for small m, which is to be
07450
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compared with the 1/m contribution of the physical pion to
xpp . We now turn to the question of the zero mode con
bution.

Once again we consider theLs5` case and use the no
tation for D (4). For the axial vector correlation function, th
spectral decomposition is

^A0
a~x!A0

a~0!&52^Tr@Sx,0
(4)g0g5S0,x

(4)g0g5#& ~63!

5K (
l,l8

cl
†~x!g0cl8~x!cl8

†
~0!g0cl~0!

~2 il1m!~ il81m!
L .

~64!

The terms in the sum where bothl andl8 are zero modes
vanish here, since the zero modes have a definite chira
andg0 couples different chiral components.~On a given con-
figuration, all the exact zero modes must have the sa
chirality since exact zero modes can only occur throu
the index theorem.! Thus, there are no 1/m2 terms
in ^A0

a(x)A0
a(0)&. Note that a 1/m contribution to

^A0
a(x)A0

a(0)& can appear from terms in the sum with eith
l or l8 a zero mode@as we saw for̂ pa(x)pa(0)&]. The
size of such a contribution depends on the matrix elemen
g0 between eigenfunctions.

The terms with neitherl nor l8 a zero mode give the
physical pion contribution, which should have the form

mp
5/2x0

2
e2mpuxu

uxu7/2 . ~65!

Thus, we expect that

^A0
a~x!A0

a~0!&5
d21~x,0!

mV1/2
1d1/2m

5/4x0
2

e2mpuxu

uxu7/2 1...

~66!

with other possible subleading terms from topological ze
modes. As for the coefficientc21(x,0) in ^pa(x)pa(0)&, the
coefficient d21(x,0) above involves matrix elements be
tween different eigenfunctions and could be quite small fr
cancellations. Thus, even though in̂A0

a(x)A0
a(0)&, the

physical pion contribution can still beO(m9/4) smaller than
the zero mode contribution, the effects of zero modes in
correlator are likely suppressed by the smaller coeffici
d21(x,0).

To finish our discussion of the topological zero modes
correlators, we now examine the spectral form
^s(x)s(0)&c , where thec subscript means that we only con
sider the connected part of the correlator. We find

2^s~x!s~0!&c5K (
l,l8

cl
†~x!g5cl8~x!cl8

†
~0!g5cl~0!

~2 il1m!~ il81m!
L .

~67!

Since zero modes are eigenfunctions ofg5, their contribution
to the 1/m2 and 1/m terms in ^pa(x)pa(0)& and
2^s(x)s(0)&c are equal. Thus, we have
2-20
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2^s~x!s~0!&c5
1

V1/2S c22~x,0!

m2
1

c21~x,0!

m D
1cse2msc

uxu/uxu3/21••• ~68!

for small m. By considerinĝ pa(x)pa(0)&1^s(x)s(0)&c ,
we obtain a two point function with no zero mode effec

FIG. 14. The quantitymp
2 (mf50) from ^pa(x)pa(0)& for

quenched simulations done on 83332 lattices atb55.7 versusLs .
This graph is an updated version of an earlier result based on pa
the data presented here. While a slow decrease inmp

2 (mf50) asLs

increases from 32 to 64 is now visible, the effect is much l
dramatic than the drop seen in the more accurate values ofmres,
which decrease from 0.0105~2! to 0.0071~4! asLs increases from 32
to 48. This contrast presumably results from the effects of both z
modes and non-linearity formp

2 (mf) in the quenched approxima
tion.

TABLE XXI. Results for mp from different correlators formf

,0.01. There should be a single value for the pion mass, de
mined at asymptotically large times, irrespective of the correla
used. Since the correlators give different masses for the fit
ranges used, the localized topological near-zero mode effects
important. Here PP, AA and PP1SS represent the correlato
^pa(x)pa(0)&, ^A0

a(x)A0
a(0)& and ^pa(x)pa(0)&1^s(x)s(0)&c ,

respectively.

b V Ls Correlator mf mp x2/DOF

5.7 83332 48 PP 0.0 0.273~39! 1.360.6
5.7 83332 48 AA 0.0 0.197~11! 1.561.0
5.7 83332 48 PP1SS 0.0 0.128~21! 1.860.8
5.7 163332 48 PP 0.0 0.200~5! 1.960.9
5.7 163332 48 AA 0.0 0.193~7! 1.660.9
5.7 163332 48 PP1SS 0.0 0.191~7! 1.160.6
6.0 163332 16 PP 0.0 0.151~8! 0.660.6
6.0 163332 16 AA 0.0 0.098~7! 0.660.5
6.0 163332 16 PP1SS 0.0 0.017~43! 1.060.6
6.0 163332 16 PP 0.001 0.141~6! 0.960.6
6.0 163332 16 AA 0.001 0.118~6! 1.160.9
6.0 163332 16 PP1SS 0.001 0.082~11! 0.560.4
07450
,

but which contains both the physical pion and a heavier s
from ^s(x)s(0)&c . Thus, to reduce the effects of topologic
near-zero modes in this way requires that one works w
correlators where the heavy masssc state is present.

To summarize this section, we have seen how the to
logical near-zero modes for domain wall fermions shou
enter the correlators which are used to determine the p
mass. For̂ pa(x)pa(0)&, there must be a 1/mf

2 contribution
from near-zero modes, compared with the 1/Amf contribu-
tion expected from the physical pion. For^A0

a(x)A0
a(0)&, the

topological near-zero modes can contribute a term of or
1/mf , while the physical pion should produce aAmf contri-
bution. However, the coefficient of the 1/mf term can be
small. We also have pointed out that the volume depende
of the contribution of the topological near-zero modes to
correlator is different from the contribution due to the mod
responsible for chiral symmetry breaking in QCD so that
zero-mode effects should vanish as the space-time vol
increases.

The above discussion explicitly addresses the behavio
be found in a chiral theory. Thus, it will apply to the doma
wall theory in the limitLs→`. We might expect two sorts o
modified behavior for a theory with finiteLs . First, the chiral
properties of the exact zero modes which eliminate the m
singular terms from thêA0

a(x)A0
a(0)& and ^pa(x)pa(0)&

1^s(x)s(0)&c will no longer be exact for finiteLs allowing
more singular terms suppressed exponentially inLs to ap-
pear. Second the zero-mode singularities themselves ma
softened by additional mass contributions to the denom
tors. We now turn to the results of our simulations.

B. Topological near-zero mode effects on the pion:
numerical results

The first detailed studies ofmp
2 as mf→0, done on 83

332 lattices withb55.7 and a variety of values ofLs ,

of

s

ro

r-
r
g
re

FIG. 15. The pion effective mass as a function of the sour
sink separation,t, for 83332 lattices atb55.7 with Ls548 and
mf50.0. The upper panel is from̂A0

a(x)A0
a(0)& (s), the middle

from ^pa(x)pa(0)& (h) and the lower from ^pa(x)pa(0)&
1^s(x)s(0)&c (L). The mf50.0 points in Fig. 2 come from fit-
ting from t57 to t516.
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showed thatmp
2 (mf50) was not decreasing exponentially

zero asLs→`, but rather seemed to be approaching a c
stant value of;200 MeV @21,61,26#. The pion mass was
extracted from^pa(x)pa(0)& and the resultingmp

2 versus
mf showed noticeable curvature for the quark masses u
which were in the range 0.02–0.22. Therefore, the extra
lation tomf50 was done using only the three lightest qua
masses: 0.02, 0.06 and 0.10. Figure 14 updates the ea
graph in@26# with more data atLs548 and a new point a
Ls564. The additional data do show a behavior that is m

FIG. 16. The pion effective mass as a function of the sour
sink separation,t, for 83332 lattices atb55.7 with Ls548 and
mf50.04. The upper panel is from̂A0

a(x)A0
a(0)& (s), the middle

from ^pa(x)pa(0)& (h) and the lower from ^pa(x)pa(0)&
1^s(x)s(0)&c (L). The effective masses from the differe
correlators are quite consistent.

FIG. 17. The evolution of point source correlators att58 for
83332 lattices atb55.7 with Ls548 and mf50.0. The upper
panel is^pa(x)pa(0)&, the middle2^s(x)s(0)&c and the lower
^A0

a(x)A0
a(0)&. The large fluctuations that are common

^pa(x)pa(0)& and2^s(x)s(0)&c are due to zero modes and sho
that they dominate the ensemble average for the correlator at tt.
07450
-
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consistent with a monotonic decrease ofmp
2 (mf50) with

increasingLs than that seen in our earlier study@26#. How-
ever, the dependence onLs shown in Fig. 14 still cannot be
described by a single falling exponential and, for largeLs is
falling quite slowly. In this section we will probe this issu
and others related to the chiral limit, using information fro
our simulations at bothb55.7 and 6.0 for many values o
mf andLs .

Figure 2 shows results formp
2 versus mf for 83332

lattices at b55.7 with Ls548, including results formf
50.0. The pion mass is extracted from three different co
elators: ^pa(x)pa(0)&, ^A0

a(x)A0
a(0)& and ^pa(x)pa(0)&

1^s(x)s(0)&c . For 0.02<mf<0.15, the pion masses ex
tracted from the different correlators are in good agreem
As mf→0 the masses begin to disagree, presumably du
the differing contributions of the topological near-ze
modes to each correlator. Table XXI gives our fitted pi
masses formf,0.01. While the different correlators gene
ally have reasonable values forx2/DOF the fitted masses
disagree substantially. For large enough separation of the
terpolating operators, the three correlators should give
same mass. However, we cannot take this large separa
limit in our finite volume. The results in Table XXI are th
apparent masses as determined from fitting to the correla
for finite separation of the interpolating operators.

The lines drawn in Fig. 2 are from correlated linear fits
mp

2 using mf50.02 to 0.1. The dotted line is formp
2 from

^pa(x)pa(0)&, the solid line for ^A0
a(x)A0

a(0)& and the
dashed line for̂pa(x)pa(0)&1^s(x)s(0)&c . The fit results
are

mp
2 50.053~8!14.76~12!mf , x2/DOF50.762.5 ~69!

mp
2 50.042~8!14.90~9!mf , x2/DOF50.0160.25 ~70!

mp
2 50.037~8!15.04~6!mf , x2/DOF51.762.8 ~71!

for ^pa(x)pa(0)&, ^A0
a(x)A0

a(0)& and ^pa(x)pa(0)&
1^s(x)s(0)&c respectively. Note for large mass,mf.0.1,

-

FIG. 18. The evolution of point source correlators att58 for
83332 lattices atb55.7 with Ls548 andmf50.04. The upper
panel is^pa(x)pa(0)&, the middle2^s(x)s(0)&c and the lower
^A0

a(x)A0
a(0)&. Zero mode effects seem entirely absent from the

evolution plots.
2-22
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^pa(x)pa(0)&1^s(x)s(0)&c gives a mass that is systema
cally higher than that implied by the other two correlato
likely due to contamination from heavy states present
^s(x)s(0)&c .

Figure 15 shows the pion effective mass from the th
different correlators for 83332 lattices atb55.7 with Ls

FIG. 19. The pion mass squared versusmf from ^pa(x)pa(0)&
(h), ^A0

a(x)A0
a(0)& (s) and ^pa(x)pa(0)&1^s(x)s(0)&c (L)

for quenched simulations done on 163332 lattices atb56.0 with
Ls516. For mf50.0 and 0.001, the correlators all give differe
masses due to the differing topological near-zero mode contr
tions for each one. For largermf , the pion mass determination from
^pa(x)pa(0)&1^s(x)s(0)&c is likely contaminated by the heav
mass states in thês(x)s(0)&c . The dotted line is the fit of Eq
~72!, the solid line is from Eq.~73! and the dashed line is from
Eq. ~74!.

FIG. 20. The pion effective mass as a function of the sour
sink separation,t, for 163332 lattices atb56.0 with Ls516 and
mf50.001. The upper panel is from̂A0

a(x)A0
a(0)& (s), the middle

from ^pa(x)pa(0)& (h) and the lower from ^pa(x)pa(0)&
1^s(x)s(0)&c (L).
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548 and mf50.0. Reasonable plateaus are present
^A0

a(x)A0
a(0)& and^pa(x)pa(0)&, although the value for the

effective mass is markedly different. Thêpa(x)pa(0)&
1^s(x)s(0)&c effective mass becomes very small for inte
mediate values oft. Provided the eigenvectors of the top
logical near-zero modes are sufficiently localized, one
pects that for large enough values oft, the effective masses
should agree. Our data are consistent with this statem
with the effective masses fort.12 showing possible agree
ment, although the statistical errors are large here. Figure
is a similar plot, except formf50.04. Here the effective
mass plots show nice plateaus and consistent results.
supports the presence of topological near-zero modes af
ing the various correlators in different ways and provides
example where nice plateaus do not assure a cor
asymptotic result.

As a final step in demonstrating the zero mode effects
the various correlators, in Fig. 17 the evolution
^pa(x)pa(0)&, ^s(x)s(0)&c and ^A0

a(x)A0
a(0)& is shown

for 83332 lattices atb55.7 with Ls548 and mf50.0.
These correlators are from a point source to a point sink
the zero spatial momentum component is taken for the s
The sink is at a separationt58 from the source. The corr
elators^pa(x)pa(0)& and 2^s(x)s(0)&c show very large
fluctuations, which are common to both correlators, show
the presence of topological near-zero modes. These l
fluctuations are clearly dominating the ensemble average
the correlators at this separation,t58. The ^A0

a(x)A0
a(0)&

correlator does not show large fluctuations whe
^pa(x)pa(0)& and ^s(x)s(0)&c do, making the topologica
near zero mode effects smaller for this correlator, as expe
from the theoretical discussion of the previous subsect
Figure 18 is a similar plot, for the same configurations, e
cept with mf50.04. There is no evidence for a large ro
being played by the topological near-zero modes.

u-

-

FIG. 21. The pion effective mass as a function of the sour
sink separation,t, for 163332 lattices atb56.0 with Ls516 and
mf50.01. The upper panel is from̂A0

a(x)A0
a(0)& (s), the middle

from ^pa(x)pa(0)& (h) and the lower from ^pa(x)pa(0)&
1^s(x)s(0)&c (L).
2-23
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Similar results have been obtained for simulations
163332 lattices atb56.0 with Ls516. These lattices hav
essentially the same spatial volume, in physical units, as
previous 83332, b55.7 lattices since the lattice spacing
half that forb55.7. Figure 19 showsmp

2 for ^A0
a(x)A0

a(0)&,
^pa(x)pa(0)& and ^pa(x)pa(0)&1^s(x)s(0)&c . For the
smallestmf points, 0.0 and 0.001, all three correlators gi
different results. For larger values ofmf , the pion mass from
^A0

a(x)A0
a(0)& and ^pa(x)pa(0)& agree, while the

^pa(x)pa(0)&1^s(x)s(0)&c pion mass is systematicall
high, likely due to the contribution of the heavy states
^s(x)s(0)&c . The lines drawn in Fig. 19 are from correlate
linear fits tomp

2 using mf50.01 to 0.04. The dotted line i
for mp

2 from ^pa(x)pa(0)&, the solid line for̂ A0
a(x)A0

a(0)&
and the dashed line for̂pa(x)pa(0)&1^s(x)s(0)&c . The
fit results are

mp
2 50.0132~20!13.07~6!mf , x2/DOF55.065.0 ~72!

mp
2 50.0098~20!13.14~9!mf , x2/DOF50.0360.30 ~73!

mp
2 50.0020~26!13.56~8!mf , x2/DOF50.0660.51 ~74!

for ^pa(x)pa(0)&, ^A0
a(x)A0

a(0)& and ^pa(x)pa(0)&
1^s(x)s(0)&c respectively.

Figure 20 shows effective mass plots for the pion from
three correlators formf50.001 and Fig. 21 is formf
50.01. Both figures show reasonable plateaus, even tho
there are differences in the final fitted masses. We have
studied the evolution of the correlators at a fixedt for these
b56.0 lattices and see clear topological near-zero mode
fects as were seen atb55.7.

Thus, investigating the chiral limit of domain wall ferm
ons in quenched QCD by measuring the pion mass is m
difficult by the presence of topological near-zero modes. O

FIG. 22. For eachmf , the average value ofmp is calculated for
the three correlators and the graph above shows the deviatio
each correlator from the average. For eachmf , the result from
^A0

a(x)A0
a(0)& is shifted slightly to the right and the result from

^pa(x)pa(0)&1^s(x)s(0)&c to the left for clarity. No systematic
deviation is visible from the data.
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component in the somewhat large values ofmp
2 plotted in

Fig. 14 is the effect of topological near zero modes. As c
be seen by a comparison with Table XVI the results we fi
from the correlator̂ A0

a(x)A0
a(0)& for mp

2 (mf50) are about
1 1/2 standard deviations lower forLs532 and 48. This is
likely a systematic bias caused by the greater influence of
topological near-zero modes on the^pa(x)pa(0)& correlator.
Unfortunately, these effects may also enter in the other c
relators that can givemp , at least for the source-sink tim
separations currently accessible. With this large distort

of FIG. 23. The pion effective mass as a function of the sour
sink separation,t, for 163332 lattices atb55.7 with Ls548 and
mf50.0. The upper panel is from̂A0

a(x)A0
a(0)& (s), the middle

from ^pa(x)pa(0)& (h) and the lower from ^pa(x)pa(0)&
1^s(x)s(0)&c (L). All three correlators give reasonable effectiv
masses and the fitted masses agree.

FIG. 24. The evolution of point source correlators att58 for
163332 lattices atb55.7 with Ls548 andmf50.0. The upper
panel is^pa(x)pa(0)&, the middle2^s(x)s(0)&c and the lower
^A0

a(x)A0
a(0)& ~AA !. There are few, if any, contributions from to

pological near-zero modes.
2-24
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QUENCHED LATTICE QCD WITH DOMAIN WALL . . . PHYSICAL REVIEW D 69, 074502 ~2004!
due to the topological near-zero modes, there we canno
termine the chiral limit by extrapolating to the point whe
mp

2 vanishes. Subtler finite volume effects and possi
quenched chiral logarithms are completely overshadowed
the singular nature of the basic quark propagators for sm
mf .

In many ways, the presence of these topological near-z
modes is a welcome change from other lattice fermion f
mulations because they are a vital part of the spectrum of
continuum Dirac operator. However, in order to further
vestigate the chiral limit, they must be removed, or at le
suppressed. Without adding the fermionic determinant to
path integral, we can suppress the effect of topological n
zero modes by going to large volumes.

C. The pion mass for larger volume

Having seen clear evidence for topological near-z
modes in the measurements of the pion mass for lattices
a physical size of;2 fermi, we have worked on a large
physical volume,;4 fermi, to suppress the effects of the
modes. As we saw in Sec. IV from studying^q̄q&, the effects
of the topological near-zero modes were dramatically
duced for larger volumes. Here we present results for
pion mass from simulating with 163332 lattices atb55.7
andLs548.

Figure 3 showsmp
2 plotted againstmf for these runs. In

contrast to the smaller volume 83332 result shown in Fig. 2
all three correlators now give the same results for the p
mass, within statistics~Table XXI!. The larger volume has
clearly reduced the effects of the zero modes. Further
dence of the consistency of the mass from the three corr

FIG. 25. Thex2 per degree of freedom for linear fits ofmp
2

versus mf for 163332 lattices at b55.7 with Ls548 from
^A0

a(x)A0
a(0)& (s), ^pa(x)pa(0)& (h) and ^pa(x)pa(0)&

1^s(x)s(0)&c (L). Only the rangemf50.02 to 0.08 gives a fit
with an acceptable value forx2 per degree of freedom. After usin
the large volume to eliminate zero modes, and presumably
finite volume effects, we have evidence for a non-linear depende
of mp

2 on mf .
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tors is shown in Fig. 22. Here, for eachmf , the average
value of mp is calculated and then the deviation from th
average, for each correlator, is plotted. For eachmf ,
^A0

a(x)A0
a(0)& is offset to the left and thêpa(x)pa(0)&

1^s(x)s(0)&c to the right for clarity.
Figure 23 shows the effective mass from each of the th

correlators formf50. In contrast to the smaller volume cas
the effective masses have quite similar values and lead to
same fitted mass, within errors. As a last comparison with
small volume, Fig. 24 shows the three correlators at a t
separation oft58 as a function of configuration numbe
Little if any effect of topological near-zero modes is see
Thus, we conclude that this larger volume has suppres
these effects as expected.

Having established that a consistent pion mass can
determined from our fitting range, we discuss the result
linear fits of mp

2 as a function ofmf . We have done corre
lated linear fits ofmp

2 to mf for each of the correlators, usin
a variety of different ranges formf in the fit. The resultingx2

per degree of freedom is shown in Fig. 25, including t
jackknife error on thex2. ~The plotted error bars are th
61s errors from the jackknife procedure and do not me
that x2 can become negative.! The pion propagator formf
50.0 and 0.04 was measured on the same set of config
tions, with some of themf50.08 propagators also measure
on those configurations. Themf50.02, 0.06 and 0.10 point
were all measured on the same configurations, along with
remaining 0.08 propagators. Thus, these points are less
related inmf than the corresponding measurements on
smaller volumes.

Now let us discuss the quality of these fits. Given t
significant upward curvature ofmp

2 for mf>0.1, seen for
example in Fig. 2, we limit the mass range tomf<0.08. If
we do not include the lightest masses and fit the points w
0.02<mf<0.08, as shown in Fig. 25 we obtain acceptab
values forx2 per degree of freedom for all three correlato
Specifically using the mass rangemf50.02 to 0.08, the fits
to mp

2 from the correlatorŝ pa(x)pa(0)&, ^A0
a(x)A0

a(0)&
and ^pa(x)pa(0)&1^s(x)s(0)&c are

mp
2 50.044~5!14.75~5!mf , x2/DOF51.463.6

mp
2 50.051~3!14.68~4!mf , x2/DOF51.461.4

mp
2 50.049~3!14.70~5!mf , x2/DOF52.562.4. ~75!

However, given our confidence that this larger 163 vol-
ume permits the reliable calculation of the pion mass
smaller values ofmp we can also attempt a linear fit in th
entire range 0.0<mf<0.08. For this mass range, we find

mp
2 50.042~3!14.77~3!mf , x2/DOF51.363.5

mp
2 50.044~3!14.75~5!mf , x2/DOF54.362.6

mp
2 50.042~4!14.82~6!mf , x2/DOF54.463.0 ~76!

for the correlators ^pa(x)pa(0)&, ^A0
a(x)A0

a(0)& and
^pa(x)pa(0)&1^s(x)s(0)&c respectively. The

so
ce
2-25
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BLUM et al. PHYSICAL REVIEW D 69, 074502 ~2004!
^A0
a(x)A0

a(0)& and^pa(x)pa(0)&1^s(x)s(0)&c fits suggest

that mp
2 is not linear in this mass range. While th

^pa(x)pa(0)& fit is acceptable, as can be seen from a care
examination of Fig. 3, this acceptable fit comes because
mf50.02 point lies somewhat below while themf50.0 lies
somewhat above the masses obtained from the other
correlators. Since the smaller volume studies suggest tha
^pa(x)pa(0)& correlator is most sensitive to zero modes a
such an upturn for small mass is the effect of zero mo
seen at smaller volume, this could easily be a remaining z
mode distortion.

It is difficult to draw a firm conclusion from the relativel
large correlatedx2/DOF presented in Eq.~76!. As is indi-
cated by the errors shown, thesex2/DOF are not reliably
known. However, the comparison of thex2/DOF between
Eqs. ~75! and ~76! may be more meaningful. We attribut
significant weight to the fact that the lightestmf50 point
lies below the value predicted by a linear extrapolation fr
larger masses as can be easily seen in Fig. 3.

We conclude that a linear fit does not well represent
data over the full mass rangemf50.0 to 0.1. Of course

FIG. 26. The residual mass for 83332 lattices withLs532,48
andmf50.04 atb55.7. The labels for the horizontal lines are th
averages over the range 4<t<16 with jackknife errors.

TABLE XXII. Results for residual mass atb55.85 and 6.0. The
b55.85 calculation was performed on a 123332 with anti-periodic
boundary conditions,M551.9 and the ratioR(t) from Eq. ~77!
averaged over the time range 6<t<26. The b56.0 calcu-
lation, described in the text, was performed on a 163332 lattice
with M551.8.

b Ls mf No. of config. mres

5.85 20 0.05 100 0.00281~8!

6.0 12 0.02 56 0.00239~6!

6.0 16 0.02 56 0.00124~5!

6.0 24 0.02 56 0.00059~4!

6.0 32 0.02 72 0.00044~4!

6.0 48 0.02 64 0.00027~3!
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non-linearities for larger masses can come from a variety
sources including terms from the naive analytic expansion
powers ofmf . However, for smallmf , linearity is expected
for large volumes in full QCD. In contrast, in the quench
approximation the absence of the fermion determinant m
result in complex and more singular infrared behavior. F
example, it has been argued that a quenched chiral logar
can appear inmp

2 versusmf for quenched QCD@68–70#. The
results just presented may be evidence for some non-lin
behavior of this sort.

Because of the poor linear fits found for smallmf , our
data do not allow a determination of the location of the chi
limit for quenched domain wall fermions by a simple e
trapolation ofmp

2 . Even with the suppression of topologic
near-zero mode effects that has been achieved by goin
larger volume, further theoretical input may be needed if
are to deducemres from these measurements ofmp

2 . In the
next section we will discuss our determination of the locat
of the chiral limit using other techniques and then return
the question of the behavior ofmp

2 with mf .

VI. THE RESIDUAL MASS

A. Determining the residual mass

In this section, we discuss our determination ofmres using
the low-momentum identity in Eq.~11!. This can be done by
calculating the ratio

R~ t !5

K (
xW

J5q
a ~xW ,t !pa~0!L

K (
xW

J5
a~xW ,t !pa~0!L ~77!

as a function oft ~no sum ona), wherepa(0) is a source
evaluated att50 but possibly extended in spatial positio
This ratio was first used to determinemres in Ref. @10# and
later in Refs.@29,30#. Our results are consistent with th
earlier work, but a much more detailed study is undertak
here. Fort outside some short-distance region,t>tmin , R(t)
should be simply equal tomres. Using R(t) for very larget
givesmres as the coupling of the pion to the mid-point pse
doscalar density divided by its coupling to the wall pseud
scalar density. Of course,mres is an additive contribution to

TABLE XXIII. Results for residual masses atb55.7, M5

51.65.

Lattice size Ls mf No. of config. mres

83332 32 0.02 184 0.0106~2!

83332 32 0.04 184 0.0105~2!

83332 48 0.04 335 0.00688~13!

163332 48 0.02 50 0.0072~9!

163332 48 0.04 50 0.0071~4!

163332 48 0.06 50 0.0066~6!

163332 48 0.08 50 0.0065~5!

163332 48 0.10 50 0.0063~4!
2-26
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TABLE XXIV. Results for fits to the form predicted for a quenched chiral logarithm, Eq.~82!, for the
163332 simulations atb55.7 with Ls548. For comparison, we have also included the columnxintcpt which
gives thex intercepts predicted by the simple linear fits of Eq.~75! in the heavier mass range 0.02<mf

<0.08. Here PP, AA and PP1SS represent the correlatorŝpa(x)pa(0)&, ^A0
a(x)A0

a(0)& and
^pa(x)pa(0)&1^s(x)s(0)&c , respectively.

Correlator a0 a1 a2 x2/DOF xintcpt

PP 4.7~3! 0.0085~7! 20.008~28! 1.964.7 20.0092~12!

AA 4.1~3! 0.0073~10! 20.07~4! 3.662.4 20.0108~7!

PP1SS 4.3~3! 0.0075~11! 20.05~4! 4.863.2 20.0104~7!
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the effective quark mass at low energies which effects
low-energy physics, not just the pion. To understand h
large t must be, Fig. 26 shows a typical good plateau an
poor one. Results are shown for 83332 lattices withmf

50.04 andb55.7 for Ls532 and 48. The good plateau
obtained from 335 configurations forLs548, while the poor
plateau is obtained from 184 configurations forLs532. The
fewer measurements forLs532 likely is the cause for the
upturn in the data at larget and adding more configuration
at thisLs should improve the signal.

From observing the onset of the plateaus in our data,
calculatemres from the ratio in Eq.~77! using the range 4
<t<16 for b55.7, 6<t<26 for b55.85, and 2<t<16 for
b56.0. The jackknife method is used to measure the sta
tical uncertainty and ourmres results atb55.7,5.85 and 6.0
are listed in Tables XXII and XXIII. For most data sets, ni
plateaus can be seen over the selected range, while fo
few others with the poor plateaus, using a different ran
could change the results by,5%. We have also measure
mres for different values ofmf for b55.7 on 163332 lattices
with Ls548. Table XXIII gives the results and shows th
the residual mass has little dependence on the input q
mass, reflecting the expected universal character ofmres.
Our b56.0 results formres appear to be a consistent exte
sion of the values plotted in Fig. 5 of Ref.@30# for Ls54, 6
and 10.

The Ls dependence ofmres is of vital importance to nu-
merical simulations with domain wall fermions. Without th
effects of topological near-zero modes, quenched chiral l
and finite volume,mp

2 (mf50) should be proportional tomres

and should vanish withmres asLs→`. However, in Sec. V
we discussed how topological near-zero mode effects a
^pa(x)pa(0)& and can distort the value ofmp

2 (mf50) for
large Ls shown in Fig. 14. By measuring the ratio in E
~77!, we can determinemres for non-zeromf and suppress al
these effects which make themf→0 limit problematic. This
allows us to study theLs dependence ofmres, to which we
now turn.

From the two values ofLs shown in Fig. 26, we see tha
the residual mass for 83332 lattices atb55.7 falls from
0.0105~2! to 0.00688~13! as Ls is increased from 32 to 48
This is in sharp contrast to the almost identical results
mp

2 (mf50) at these two values forLs ~Fig. 14!. The overlap
of the surface states is significantly suppressed, as expe
even at this relatively strong coupling. We have not pursu
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the asymptotic behavior for largeLs at b55.7, due to the
large values forLs required, but instead have studied th
question forb56.0.

Figure 4 shows a similar study of theLs dependence of
the residual mass for 163332 lattices withmf50.02 and
b56.0. The number of configurations used is modest for
larger values of Ls . We have used the facto
ZS(MS,2 GeV)50.619(25) obtained by a combination o
non-perturbative renormalization and standard perturba
theory@72,73# to convert the plotted values ofmres into MeV.
The value ofmres is decreasing withLs for all values ofLs ,
but is poorly fit by a simple exponential. In particular, a
exponential fit using all values ofLs gives

mres50.0068~4!exp„20.094~4!Ls…,

x2/DOF~3!532 ~78!

which clearly does not match the measured values. Addin
constant to the fit gives

mres50.00032~3!10.018~3!exp„20.181~13!Ls…,

x2/DOF~2!54.1 ~79!

where again all values forLs were used. Even if this is the
correct asymptotic form, the value ofmres for Ls→` is very
small, 1 MeV.

We have also tried fitting the largest threeLs points to a
simple exponential and find

mres50.0012~2!exp„20.032~6!Ls…,

x2/DOF~1!50.074. ~80!

Our data are consistent with the residual mixing vanish
exponentially asLs→`, but the 0.032 coefficient in the ex
ponent of Eq.~80! is quite small. Of course, we can easi
obtain an excellent fit to our five points if we include
second exponential. For example, as shown in the figure,
five points fit well to two-exponential function

mres50.038~16!exp„20.26~4!Ls…

10.0010~3!exp„20.027~7!Ls…,

x2/DOF~1!50.1. ~81!
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Our measurements do not demonstrate a pre
asymptotic form formres as a function ofLs . However, we
do seemres decreasing for largeLs until, for Ls>24, it has
become so small as to be essentially negligible for curr
numerical work. Forb55.7 at Ls548, mres is 0.074~5! in
units of the strange quark mass, while forb56.0 atLs516 it
is 0.033(3)ms . In the latter case, where we know the reno
malization factors,mres in the MS scheme at 2 GeV is
3.87~16! MeV. Thus, even though more simulations will b
needed to get the precise asymptotic form, we find dom
wall fermions having the expected chiral properties for la
Ls , even for lattice spacings of around 1 fermi.

In the next subsection, we will use the values ofmres that
have just been determined to investigate further themf de-
pendence ofmp

2 , looking in particular at possible non-linea
behavior asmf1mres→0. Here we would like to discuss
simpler consistency check on the values ofmres just ob-
tained. For thep, r and nucleon we have established go
linear mf behavior for larger values ofmf with slopes and
intercepts given in Tables XVI and XVII. If the only effec
on these masses of changingLs is to change the effective
quark mass through the corresponding change inmres, then
we should be able to relate the differences in the interce
given in these tables to the product of the correspond
slope times the change inmres given in Tables XXII and
XXIII.

While this comparison shows no inconsistencies, the
rors in the intercepts are typically too large to permit a d
tailed confirmation. For example, the difference in interce
for mp

2 at b56.0 betweenLs516 and 24 is 0.0004~30! while
the difference predicted from the slope and the measu
change inmres is 0.0020~2!. The best test of this sort can b
made using the actual value formp determined atb55.7
andmf50.04 for Ls532 and 48. Here the difference of th
masses squared is 0.012~6! while the prediction from the
slope and change inmres is 0.0176~12!. Thus, we can dem
onstrate consistency with the expected behavior but ca
make a definitive test.

B. The residual mass andmp
2 versusmf

The definition ofmres and its measurement mean that w
have determined the value ofmf for which the pion should
become massless if the domain wall method is success
representing the chiral limit of the underlying theory. We c
now return to the question of the dependence ofmp

2 on mf ,
starting with the 163332 simulations atb55.7 and Ls
548. Recalling Fig. 3, we found that the larger volume ga
consistent pion mass measurements from the three cor
tors, butmp

2 was not well fit as a linear function ofmf for
two of the correlators if themf50.0 point was included. In
Fig. 3, we have included the value ofmres ~the starred point!
as measured from Eq.~77!. ~Its error bar on the horizonta
axis is a vertical line on this scale.! The solid line is the fit to
the ^A0

a(x)A0
a(0)& correlator formf50.02 to 0.08 given in

Eq. ~75! while the dotted line is for thêpa(x)pa(0)& cor-
relator formf50.0 to 0.08 as given in Eq.~76!. Thus, we see
that linear fits poorly represent the data when themf50.0
point is included for thê A0

a(x)A0
a(0)& and ^pa(x)pa(0)&
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1^s(x)s(0)&c case and fail for all three correlators when t
pion mass is required to vanish atmf52mres.

We can make this conclusion more quantitative by co
paring our accurate value formres50.00688(13) atLs548
determined on an 83332 lattice with the naive linear ex
trapolation ofmp

2 (mf) to the pointmp
2 50. Using the most

reliable linear fits obtained by excluding themf50 point in
Eq. ~75! we obtain thex-intercept values shown in Tabl
XXIV: 20.0092(12), 20.0108(7) and20.0104(7) for
the ^pa(x)pa(0)&, ^A0

a(x)A0
a(0)& and ^pa(x)pa(0)&

1^s(x)s(0)&c correlators respectively. These differ from
this value ofmres by '50% and 2, 5 and 6 standard devi
tions respectively. We conclude that there is a signific
discrepancy between themf-dependence of thesemp results
and the hypothesis thatmp

2 (2mres)50. However, notice that
if the mf50 points are included in the linear fits, and the le
accuratemres from the same volume is used, this discrepan
can be reduced. For example, a linear fit to the data from
^pa(x)pa(0)& correlator in Eq.~76! has an intercept a
20.0088(5) while2mres520.0072(9) on the same vol
ume. We believe that such an interpretation should be
counted as failing to exploit all the available information.

Is this significant discrepancy caused by essential n
linearities in the quenched approximation or by a breakdo
of the domain wall method, for example, largeO(a2) ef-
fects? We can address this question by making a sim
comparison forb56.0 whereO(a2) effects should be sig-
nificantly reduced. Since we have not investigated a la
volume at this weaker coupling, we propose to examine
^A0

a(x)A0
a(0)& correlator because reduced zero-mode effe

were seen for this correlator in ourb55.7 studies. Using the

FIG. 27. The pion mass squared versusmf from ^pa(x)pa(0)&
(h), ^A0

a(x)A0
a(0)& (s) and ^pa(x)pa(0)&1^s(x)s(0)&c (L)

for quenched simulations done on 163332 lattices atb55.7 with
Ls548. The star is the value ofmres as measured from Eq.~77! and
its error bar in the horizontal axis is too small to show on this sca
The solid line is a fit of thêA0

a(x)A0
a(0)& correlator formf50.0 to

0.08 to the quenched chiral logarithm form given in Eq.~82!. This
fit gives the pion mass vanishing in very good agreement with
value ofmres determined from Eq.~77!.
2-28
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QUENCHED LATTICE QCD WITH DOMAIN WALL . . . PHYSICAL REVIEW D 69, 074502 ~2004!
three lightest masses we findx-intercepts of20.0031(7) and
20.0030(9) for theLs516 and 24 cases respectively. Aga
these are dramatically farther from the origin than the co
sponding values ofmres50.00124(5) and 0.00059~4!. These
are each three standard deviation effects. However, they
obtained on independent configurations and together ca
viewed as a 6 standard deviation discrepancy. Thus, if p
sible finite-volume difficulties are ignored, we have aga
strong evidence for a discrepancy. Rather than decreasin
a factor of four as would be expected from anO(a2) error,
this fractional discrepancy is substantially larger in thisb
56.0 comparison. Thus, it is natural to conclude that dom
wall fermions are accurately representing the chiral beha
of quenched QCD.

At the beginning of Sec. V we listed possible systema
effects influencing the chiral limit formp . With a measure-
ment ofmreswe have quantified the role of finiteLs and with
the larger volume used forb55.7 we have reduced, if no
eliminated the topological near-zero modes. We should a
have minimized other finite volume distortions of the dens
of eigenvalues, which also influence the pion mass. Fin
with the comparison above, we have examined the poss
ity of O(a2) errors. Thus, we now address the question
quenched chiral logarithms. Predictions of this particular
thology of quenched simulations were made some time a
There are certainly much data indicating possible support
the predictions, but there is disagreement about their con
siveness, see for example Refs.@74–79#. Since many other
effects must be removed before these subtle logarithms
convincingly seen, it is a challenging numerical issue.

The natural first place to look for quenched chiral log
rithm effects is inmp , but this is difficult for Wilson fermi-
ons, where the chiral point is not crisply defined for fin
lattice spacing. For staggered fermions, where the ch
limit occurs when the input quark mass is zero, the issu
complicated by the presence of only a single Goldstone p
In some respects, domain wall fermions are an ideal plac
look for these effects, except that the statistical resolut
needed is difficult to achieve with the additional compu
tional load of the fifth dimension. In addition, the topologic
near-zero modes are a much larger quenched patholog
moderate volumes.

As one way of probing the non-linearity inmp
2 versusmf ,

we have fitted our data formp
2 for 163332 lattices atb

55.7 andLs548 to the form@68–70#

mp
2 5a0~mf1a1!@11a2ln~mf1a1!# ~82!

and the results are given in Table XXIV. The fit yields
value for the residual mass~the parametera1 above! and the
results are quite close to those measured from the ratio of
~77!. Figure 27 shows the result from fittinĝA0

a(x)A0
a(0)&

for mf50.0 to 0.08 to the quenched chiral logarithm for
given in Eq.~82!. We have excluded the larger values ofmf
from our fits, since higher order terms are needed in Eq.~82!
to accommodate the upward curvature of ourmp

2 data. While
the x2/DOF for the logarithmic fit is only marginally bette
than those obtained for the simple linear fits described ea
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in Eq. ~76! for this same mass range, the ability of the log
rithmic fit to predict the appropriatemres value is significant.

For the simulations at smaller physical volumes, 83332
at b55.7 and 163332 at b56.0, the values formres mea-
sured from Eq.~77! are generally smaller than thex inter-
cepts for the linear fits shown in Figs. 2 and 19. This in
cates curvature in the direction given by a chiral logarith
but the other phenomena that may be affecting these ch
limits make quantitative analysis ambiguous. We note t
mp

2 from ^pa(x)pa(0)&1^s(x)s(0)&c seems to smoothly
curve towards the value ofmres from the previous subsection
However, we are not sufficiently certain of the absence
zero mode effects in thêpa(x)pa(0)&1^s(x)s(0)&c cor-
relator to describe a logarithmic fit to these cases.

This nice agreement between the values ofmres deter-
mined from the location of themp

2 50 point in these fits and
that computed by other means earlier in the paper imp
consistency between our results and the logarithmic form
Eq. ~82!. Of course, other non-linear terms could be used
explain this curvature and, given our statistics, would p
vide an equally consistent description of our data.

However, our most important conclusion is not related
quenched chiral logarithms, but rather to having seen all
expected properties for the chiral limit with domain wa
fermions. Once the topological near-zero mode effects
reduced or eliminated, consistent pion masses can be m
sured. A precise measurement ofmres is consistent with our
mp

2 versusmf dependence if, for example, a chiral logarith
term is included. In short, domain wall fermions are showi
sensible chiral properties, even on lattices with a lattice sp
ing of ;1 fermi.

We have chosen not to pursue an additional method
determiningmres that has been proposed in two of our pr
vious publications@25,12#. In that method, one examines th
integrated Ward-Takahashi identity in Eq.~53! and uses the
location of the pion pole inxpp to determinemres. While
this technique should be reliable for dynamical fermion c
culations, e.g. as used in Ref.@12#, it does not explicitly
allow for the effects of topological near-zero modes or p
sible non-linear behavior ofmp

2 (mf) that we have found to
be important in the quenched approximation. Thus, e
though this method gave a result forb55.7 quite close@25#
to theLs548 valuemres50.00688(13) presented in this pa
per, more analysis is needed to adequately justify its us
this quenched case.

C. Eigenvalue properties andmres

A comparison of the approximate form of the Bank
Casher relation for domain wall fermions given in Eq.~47!
with the usual 4-dimensional expression in Eq.~37! suggests
a close relationship between the parameterdmi deduced
from the i th eigenvalueLH,i of DH and the residual mas
mres. In this section we will explore this relation furthe
making use of an exploratory study of the low-lying spe
trum of DH @80#.

These eigenvalues were calculated for 32 configurati
obtained atb56.0 on a 164 lattice with Ls516 listed in
Table II and beginning with an equilibrated configuratio
2-29
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from an earlier run. We used the Kalkreuter-Simma@48#
method to find the 19 lowest eigenvalues on ea
configuration.3 We apply this method to the positive matr
DH

2 , and then determine the eigenvectors and eigenvalue
DH by a final explicit diagonalization ofDH in the subspace
of the eigenvectors ofDH

2 just determined. The details of ou
application of this method and a more complete descrip
of these results will be presented in a later publication@80#.

While this method determines both the eigenvalues
eigenvectors, we have chosen to examine only
s-dependent, four-dimensional inner products:

GR/L~s! i , j5(
x

C†~x,s!LH,i
PR/LC~x,s!LH, j

, ~83!

where the indicesi , j run over all of the 19 eigenvalues whil
PR and PL are the left and right spin projection operato
defined above Eq.~5!. In order to be able to make use of th
mass dependence of the eigenvalues, we have repeate
calculation ofL i(mf) and GR/L(s,mf) i , j five times on each
configuration for the five different mass valuesmf50.0,
0.0025, 0.005, 0.0075 and 0.001.

Here we will describe some of the overall features of t
calculation and then examine more closely the relation
tween the parametersdmi and the value ofmres determined
earlier in this paper. First we examine the diagonal eleme
of the matrixG(s)

N~s! i5GR~s! i ,i1GL~s! i ,i . ~84!

This is the contribution to the norm of the 5-dimension
wave function from the 4-dimensional hyperplane with
specific value ofs. For these low lying eigenvalues, we e

3We thank Robert Edwards whose program formed the basi
the code used in this part of the calculation.

FIG. 28. A three-dimensional ‘‘Lego’’ plot showing the matri
elements ofG5 between all nineteen eigenvectors found for one
the better configurations in our sample of 32, evaluated atmf50.
The height of the box located by horizontal coordinates (i , j ) rep-
resents the magnitude of the matrix element^LH,i uG5uLH, j&. The
five zero modes, all nearly eigenvectors ofG5 with eigenvalue11,
are easily identified. The remaining seven pairs are also very
dent corresponding to the expecteduLH& and G5uLH&5u2LH&
eigenstates.
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pect that this norm should be concentrated on thes50 and
s5Ls21 walls, which we find to be true to good accurac
For the entire group of 323193553040 eigenvectors com
puted, the ratio of the sum of the norm on the two walls
the minimum value of this norm between the walls was
ways greater than 34,N(0)1N(Ls21).34•N(smin). The
median value for this ratio was 744. Thus, the general fram
work upon which the domain wall formalism rests appe
approximately valid.

As a test of our method for determining the eigenvecto
we evaluate the left- and right-hand sides of the symme
relation, Eq.~21!, between pairs of eigenvectors on a giv
configuration. The resulting equality

~LH,i1LH, j !^LH,i uG5uLH, j&

5^LH,i u~2mfQ
(w)12Q(mp)!uLH, j& ~85!

of

f

i-

FIG. 29. The distribution of the 4-dimensional norm,N(s), for
the first two zero modes shown in Fig. 28 as a function ofs. Note
both states are tightly bound to thes5Ls21 wall, as are the other
three zero modes states.

FIG. 30. The distribution of the 4-dimensional norm,N(s), for
the first pair of non-zero modes shown in Fig. 28 as a function os.
2-30
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provides a good test of our diagonalization procedure. T
vectorsuLH, j& needed to evaluate this expression are eig
vectors of the Dirac operatorDH , notDH

2 . We determine the
eigenvectors ofDH by diagonalization within the 19
dimensional subspace found by applying the Kalkreu
Simma method toDH

2 . In the event that the 19th and 20
eigenvalues ofDH

2 are nearly degenerate~not entirely un-
likely given the expectation that the eigenvalues ofDH occur
in 6LH pairs!, this truncated, 19-dimensional subspace w
not be spanned by eigenvectors ofDH . It will contain 18
valid eigenvectors and a 19th vector, orthogonal to the
but not an eigenvector ofDH . This ‘‘spurious’’ eigenvector
can be reliably removed since it will give an ‘‘eigenvalue
whose square does not agree with any found forDH

2 . We
remove such eigenvectors from our test of Eq.~85! and, for
uniformity, the 19th eigenvector in the case that no spuri
eigenvector occurs. There are then 32355160 instances
where we can check 182 independent elements of Eq.~85!.
We find that 95% of these 51 840 comparisons have a f
tional error below 5%. The few cases with significan
worse agreement, result from infrequent near degenera
which challenge the Rayleigh-Ritz method on which t
Kalkreuter-Simma algorithm is based.

For most configurations there are easily identified z
modes. Typically the few lowest eigenvalues have eigenv
tors all of which are bound to the same wall, eithers50
or s5Ls21. The corresponding matrix elemen
^LH,i uG5uLH,i& all have the same sign and are within a fe
percent of 1, showing precisely the structure expected
four-dimensional theory as summarized in Eq.~34!.

The potential of the domain wall method is nicely di
played by examining the properties of one of our better c
figurations. In Fig. 28, we show the magnitude of the e
ments of the matrix̂ LH,i uG5uLH, j& in a three-dimensiona

FIG. 31. The distribution of values of the quadratic fit parame
dmi defined in Eq.~48!. These parameters were determined from
total of 576 eigenvalues obtained from 32 configurations compu
with b56.0, 164 and Ls516. The peak of the distribution lie
remarkably close to the value we find for the residual mass,mres

50.00124(5).
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plot. Note the five zero-modes in this configuration are ea
recognized. Each has a diagonal matrix element ofG5 within
1.5% of 1 and matrix elements with other vectors all of ma
nitude below 0.06. The values ofl i for these five eigenval-
ues all lie in magnitude below 3.631024 while the remain-
ing paired eigenvalues lie between 0.028 and 0.093. In F
29 and 30 we show thes-dependence of the first two zero
modes and the first pair of non-zero eigenvectors, numbe
and 6. One sees precisely the expected behavior. Both z
modes are bound to the same wall~as are the other three zer
modes! while the two paired non-zero modes are nearly sy
metrical between right and left. This is clearly identified as
configuration with topological chargen515.

Of direct interest in this section is the mass dependenc
L(mf)H,i and a quadratic fit of the sort proposed in Eq.~44!.
For the small masses we have used, this quadratic form
vides an excellent fit, after some re-sorting of eigenvalue
performed to account for infrequent level crossings asmf is
varied. In order to avoid the possibility that these level cro
ings may have pushed a needed eigenvalue up to bey
number 19, we have excluded those quadratic fits which c
tain the largest eigenvalue atmf50 for each of the 32 con-
figurations. The resulting root-mean-square of the fractio
differences between the left- and right-hand sides of Eq.~44!
is very small. The average root-mean-square of the fractio
difference is 1.331024 while the largest value is 4.3
31023.

In Fig. 31 we present a histogram of the distribution of
parameters for the 183325576, dmi values that we obtain
The majority of values are quite small, very much on t
order ofmres. While a few larger values ofdmi are seen~the
largest is 0.0660!, the median of the distribution isdm
50.00147 which is remarkably close to the value ofmres
50.00124 found earlier for this value ofb andLs .

The 4-dimensional expression for^c̄c& in Eq. ~37! and
the 5-dimensional result in Eq.~47! as a function ofm
5Zmf must agree in the continuum limit after a rescali
and overall subtraction. This must be true even ifmres is held
fixed in physical units asa→0. Therefore, in the limit of
zero lattice spacing, the histogram shown in Fig. 31 m
approach a delta function so thatdmi has the unique value
mres. Thus, we might interpret the width of the distributio
in Fig. 31 as a result ofO(a2) effects. The large size of the
fluctuations relative to the central value is presumably a
sult of the small central value produced by our quite lar
separation of 16 between the walls.

VII. HADRONIC OBSERVABLES

We can now use the results of the previous sections
compute a variety of hadronic properties. In this section
will discuss two topics: the evaluation of the pion dec
constantf p and the scaling properties of the nucleon tor
mass ratio. The first topic is of greatest interest since we
compute the pion decay constant using two independ
methods, one of which depends directly on the residual m
determined in Sec. VI. The close agreement between th
two approaches provides a very important consistency ch

r

d
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of the analysis and results presented in this paper.

A. Calculation of f p

In the conventional continuum formulation, the pion d
cay constantf p is defined through the equation

^0u i c̄gM
m g5tacupb~pW !&[ i f p

pmda,b

A2Ep~pW !
~86!

where the fieldsc and c̄ are interpreted as convention
al, Hilbert space quark operators and the pion st
obeys the non-covariant normalization̂p(pW 8)up(pW )&
5(2p)3d3(pW 2pW 8). To be concrete we adopt the Minkows
metric gmn with signature (21,11,11,11) and a
Minkowski gamma matrix convention in whichgM

0 is anti-
Hermitian and$gM

m ,gM
n %52gmn. With this normalization,

f p'130 MeV.
Following the usual methods of lattice gauge theory,

evaluate matrix elements of the two-quark operator app
ing in Eq.~86! with the Euclidean time dependence resulti
from use of the evolution operatore2Ht whereH is the QCD
Hamiltonian. Thus, we choose to evaluate
r

us
p

in
n
al
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FIG. 32. The renormalization constantZA obtained for a 163

332 lattice with Ls516 andb56.0 (s) and that for a 83332
lattice with Ls548 andb55.7 (L). The labels for the horizonta
lines are the averages, with jackknife errors, over the ranges 4<t
<14 and 18<t<28.
f p
2 mp

2
e2mpt5 lim

T→`

TrHe2H(T2t)E d3xic̄gM
0 g5tac~xW ,t !e2Hti c̄gM

0 g5tac~0W ,0!J
Tr$e2HT%

~87!
um
is
f

all

ec-
where no sum over the flavor indexa is intended and the
time t is assumed sufficiently large that only the pion inte
mediate state contributes.

The continuum operators in Eq.~87! are easily repre-
sented as lattice, Euclidean-space expressions once the
transition to a Euclidean-space path integral has been
formed. In particular, the operatorsc(xW ) and c̄(xW )
5c†(xW )g0 are replaced by the Grassmann variablesq(xW ,t)
and q̄(xW ,t) respectively. Thus, we extractf p

2 from the usual
Euclidean correlation function:

f p
2

ZA
2

mp

2
e2mpt5 K E d3xq̄g0g5taq~xW ,t !q̄g0g5taq~0W ,0!L

~88!

where now Euclidean gamma matrices appear, obey
$gm,gn%52dmn. Here we have introduced the Grassma
variablesq and q̄ defined earlier in this paper so the axi
current appearing in Eq.~88! is explicitly constructed from

the five-dimensional quark fieldsC and C̄ restricted to the
s50 and s5Ls21 walls. This ‘‘local’’ current, Am

a is not
conserved in the full five-dimensional theory so the factorZA
appearing on the left-hand side of Eq.~88! is needed to make
a connection to the continuum axial current.
-

ual
er-

g
n

The conserved currentA m
a defined in Eq.~5! must ap-

proach the corresponding, partially conserved continu
current with unit normalization, when the continuum limit
taken. Thus, to ordera2, the low energy matrix elements o
A m

a and Am
a must be proportional:A m

a 5ZAAm
a . While we

have computedf p using the local currentAm
a we have also

compared that current to the partially conserved domain w
axial currentA m

a , allowing an accurate determination ofZA .
In addition to the procedure just described, there is a s

ond, independent method that we have used to computef p .
Here we use the Ward-Takahashi identity to relateA m

a and
the pseudoscalar densityJ5

a :

DmA m
a ~x!'2~mf1mres!J5

a~x! ~89!

TABLE XXV. Results forZA at b56.0, 163332, M551.8.

Ls mf Configurations ZA

12 0.02 56 0.7560~3!

16 0.02 56 0.7555~3!

24 0.02 56 0.7542~3!

32 0.02 72 0.7535~3!

48 0.02 64 0.7533~3!
2-32
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an expression valid for low energy matrix amplitudes.
particular, we have replaced the usual midpoint term in
exact identity of Eq.~7! by its low energy limit: 2mresJ5

a(x).
Thus, we can also obtainf p from the correlation function:

2
f p

2

~mf1mres!
2

mp
3

8
e2mpt

5 K E d3xq̄g5taq~xW ,t !q̄g5taq~0W ,0!L ~90!

where again no sum over the flavor indexa is intended. This
formula involves no renormalization factors but requir
knowledge of the residual massmres induced by mixing be-
tween the walls. Thus, a comparison of the values forf p

obtained from Eqs.~88! and ~90! provides a critical test of
the analysis presented in this paper.

We will now discuss these two calculations off p in detail.
To measure the value for the renormalization factorZA , we
compare the amplitudes of two-point functionsC(t) and
L(t) defined as

C~ t11/2!5(
xW

^A 0
a~xW ,t !pa~0W ,0!&

TABLE XXVI. Results for the correlator amplitudeA and f p ~in
MeV! at b55.7, 83332, M551.65, Ls532, 94 configurations.
Parameters with subscriptAA are obtained from the axial vecto
current correlator. Parameters with subscriptPP are obtained from
the pseudoscalar density correlator.ZA50.7732 andmres50.0105
are used in thef p calculation as described in the text.

mf AAA ( f p)AA APP ( f p)PP

0.02 0.0077~11! 158~9! 0.176~18! 145~8!

0.06 0.0132~13! 172~8! 0.145~10! 173~6!

0.10 0.0197~15! 188~7! 0.143~7! 194~4!

0.14 0.0267~15! 202~5! 0.151~6! 214~4!

0.18 0.0346~15! 216~4! 0.164~5! 233~3!

0.22 0.0432~16! 229~4! 0.180~5! 252~3!

TABLE XXVII. Results for the correlator amplitudeA and f p

~in MeV! at b55.7, 83332, M551.65, Ls548, 169 configura-
tions. Parameters with subscriptAA are obtained from the axia
vector current correlator. Parameters with subscriptPP are obtained
from the pseudoscalar density correlator.ZA50.7732 andmres

50.00688 are used in thef p calculation as described in the text.

mf AAA ( f p)AA APP ( f p)PP

0.02 0.0058~5! 134~5! 0.202~13! 143~7!

0.06 0.0114~7! 152~4! 0.144~7! 162~4!

0.10 0.0172~8! 167~3! 0.138~5! 180~3!

0.14 0.0240~9! 182~3! 0.146~4! 198~3!

0.18 0.0317~10! 196~3! 0.159~4! 216~2!

0.22 0.0403~12! 209~3! 0.176~5! 234~3!
07450
e

L~ t !5(
xW

^A0
a~xW ,t !pa~0W ,0!&. ~91!

The 1/2 in the argument ofC(t11/2) in Eq.~91! comes
from the fact the conserved axial currentA m

a (x) is not the
current at lattice sitex but instead the current carried by th
link betweenx and x1m̂. We take appropriate arithmeti
averages to solve the problem thatC(t11/2) andL(t) are
not at the same location. To avoid as much systematic e
as possible, we defineZA(t) as

ZA~ t !5
1

2 H C~ t11/2!1C~ t21/2!

2L~ t !
1

2C~ t11/2!

L~ t !1L~ t11!J .

~92!

For t@a21, C(t)/L(t) behaves like a constant which can b
identified withZA . Both terms in Eq.~92! estimate this value
without O(a) error. The average of these two, incorporat
in Eq. ~92!, further eliminates a portion of theO(a2) error.

Figure 32 shows the ratioZA(t) defined in Eq.~92! for
both a 163332 lattice withLs516, andb56.0 as well as
the same quantity for a 83332 lattice with Ls548 andb

TABLE XXVIII. Results for the correlator amplitudeA and f p

~in MeV! at b55.7, 163332, M551.65, Ls548. Parameters with
subscriptAA are obtained from the axial vector current correlat
Parameters with subscriptPP are obtained from the pseudoscal
density correlator.ZA50.7732 andmres50.00688 are used in thef p

calculation as described in the text.

mf AAA ( f p)AA APP ( f p)PP

0.00 0.0028~2! 133~5! 0.34~4! 136~11!

0.02 0.0063~3! 142~3! 0.180~10! 138~4!

0.04 0.0092~5! 153~4! 0.140~6! 150~4!

0.06 0.0115~4! 156~3! 0.139~6! 163~3!

0.08 0.0147~5! 167~3! 0.127~4! 169~3!

0.10 0.0174~5! 171~2! 0.136~5! 182~3!

0.14 0.0248~10! 188~4! 0.147~8! 201~5!

0.18 0.0326~12! 202~4! 0.161~7! 220~4!

0.22 0.0411~15! 214~4! 0.178~7! 239~4!

TABLE XXIX. Results for the correlator amplitudeA and f p ~in
MeV! at b56.0, 163332, M551.8, Ls516, 85 configurations.
Parameters with subscriptAA are obtained from the axial vecto
current correlator. Parameters with subscriptPP are obtained from
the pseudoscalar density correlator.ZA50.7555 and mres

50.00124 are used in thef p calculation as described in the text.

mf AAA ( f p)AA APP ( f p)PP

0.010 0.00100~13! 144~10! 0.050~6! 149~9!

0.015 0.00132~14! 153~8! 0.040~4! 151~8!

0.020 0.00161~15! 159~8! 0.036~4! 156~8!

0.025 0.00189~16! 164~7! 0.034~3! 161~8!

0.030 0.00216~17! 168~7! 0.032~3! 166~8!

0.035 0.00243~18! 172~6! 0.032~3! 171~8!

0.040 0.00269~18! 175~6! 0.031~3! 176~7!
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55.7. We determine the value for the renormalization fac
ZA by calculating the average over two ranges oft: 4<t
<14 and 18<t<28, chosen to avoid the largest time sep
ration t;16 where the errors are quite large. A jackkn
error is determined, to compensate for possible correla
between the numerator and denominator in Eq.~92!.

The results forZA at b56.0, 163332, M551.8 and with
different values ofLs are listed in Table XXV. The data
show little Ls dependence, as should be expected. Figure
also shows our result ofZA50.7732(14) found for the 83

332 lattice withb55.7, Ls548, M551.65, mf50.02.
The results for the amplitudes for the axial vector curr

correlator and the pseudoscalar density correlator atb55.7
and 6.0 are given in Tables XXVI–XXX. They are obtaine
from the point-source correlators using a conventio
2-parameter fit with the pion masses extracted concurre
We also list in the same tables the results forf p as a function
of mf determined from the corresponding correlators w
the help ofZA andmres ~Tables XXII, XXIII !. These values
of f p have been converted to physical units using the m
suredr mass discussed in Sec. III, extrapolated to the ch
limit mf1mres50.

Next, we use a linear fit inmf to evaluatef p for two
values ofmf . To obtain a value off p close to that for the
physical pion, we go to the chiral limitmf1mres50. For f K

TABLE XXX. Results for the correlator amplitudeA and f p ~in
MeV! at b56.0, 163332, M551.8, Ls524, 76 configurations.
Parameters with subscriptAA are obtained from the axial vecto
current correlator. Parameters with subscriptPP are obtained from
the pseudoscalar density correlator.ZA50.7542 and mres

50.00059 are used in thef p calculation as described in the text.

mf AAA ( f p)AA APP ( f p)PP

0.010 0.00089~14! 138~11! 0.043~6! 134~10!

0.015 0.00110~11! 141~7! 0.034~4! 138~8!

0.020 0.00130~11! 144~6! 0.031~3! 144~6!

0.025 0.00152~11! 148~5! 0.029~2! 149~6!

0.030 0.00176~12! 153~5! 0.0280~18! 154~5!

0.035 0.00201~14! 157~5! 0.0275~16! 159~5!

0.040 0.00227~15! 162~5! 0.0272~15! 164~5!
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we choose formf that value which givesmp /mr50.645. In
determining f p for the physical pion state, we did not a
tempt to use a value ofmf giving the physical value for the
ratio mp /mr50.18 since we do not adequately know themf
dependence of this ratio in the relevant region. These lin
fit parameters as well as the resulting values forf p and f K
are summarized in Table XXXI. The errors given in th
tables are obtained from the jackknife method.

Figure 33 shows the values forf p at b55.7, 83332,
Ls548 as a function ofmf and the linear fits through all the
mf points. The results obtained from the pseudosca
pseudoscalar correlator are higher than those from the a
axial correlator. The two linear fits givef p5127(4) MeV,
f K5145(4) MeV andf p5132(4) MeV, f K5154(4) MeV

FIG. 33. Results forf p at b55.7 with a 83332 lattice andLs

548 plotted as a function ofmf . The open circles are obtaine
from the axial vector current correlator, while the open diamon
are obtained from the pseudoscalar density correlator. We also s
the linear fits which are used to determine our estimate forf p and
f K . The vertical dashed lines identify the values formf which lo-
cate the chiral limit,mf52mres and give the physical ratio for
mK /mr . The solid symbols represent the extrapolations to the p
mf52mres and interpolations to the kaon mass.
r-
TABLE XXXI. Linear fit parameters,f p , f K and f K / f p determined from the axial vector current co
relator and the pseudoscalar density correlator.

b V Ls Correlator Intercept Slope f p f K f K / f p

5.7 83332 32 axial 152~9! 352~38! 148~10! 162~8! 1.094~16!

5.7 83332 32 pseudoscalar 142~6! 505~25! 137~6! 157~5! 1.146~14!

5.7 83332 48 axial 130~4! 364~18! 127~4! 145~4! 1.142~11!

5.7 83332 48 pseudoscalar 135~4! 453~21! 132~4! 154~4! 1.171~13!

5.7 163332 48 axial 136~3! 362~33! 133~4! 149~2! 1.122~14!

5.7 163332 48 pseudoscalar 129~3! 525~36! 125~4! 149~2! 1.188~18!

6.0 163332 16 axial 138~10! 958~195! 137~11! 156~8! 1.134~37!

6.0 163332 16 pseudoscalar 138~10! 938~235! 137~10! 155~8! 1.131~40!

6.0 163332 24 axial 128~10! 847~222! 127~10! 143~7! 1.124~41!

6.0 163332 24 pseudoscalar 123~10! 1031~232! 122~11! 142~7! 1.156~49!
2-34
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respectively. When the lattice volume is increased to3

332 ~Fig. 34!, the difference between the linear fits fro
the two methods becomes smaller. We obtainf p

5133(4) MeV, f K5149(2) MeV and f p5125(4) MeV,
f K5149(2) MeV from the two correlators. The values f
f p(mf) obtained from the two methods should agree for
values of mf since they are related by a Ward-Takaha
identity that should become exact in the continuum lim
Presumably the visibly different slopes seen in Figs. 33
34 are the result of ordera2 errors.

We also calculatef p at a weaker coupling. Figure 5 show
our results forb56.0, 163332, Ls516 on 85 configura-
tions. The two independent calculations give very consis
results. We havef p5137(11) MeV, f K5156(8) MeV from
the axial vector current correlator and almost the same va
from the pseudoscalar correlator. Our results forf p at both

FIG. 34. Results forf p at b55.7 with a 163332 lattice and
Ls548 plotted as a function ofmf . The open circles are obtaine
from the axial vector current correlator, while the open diamon
are obtained from the pseudoscalar density correlator. We also s
the linear fits which are used to determine our estimate forf p and
f K . The fits are done to the points withmf50.0220.10. The ver-
tical dashed lines identify the values formf which locate the chiral
limit, mf52mres and give the physical ratio formK /mr . The solid
symbols represent the extrapolations to the pointmf52mres and
interpolations to the kaon mass.

TABLE XXXII. Results for a21 using mr extrapolated tomf

1mres50 to set the scale and formN /mr extrapolated to this sam
value ofmf .

b V Ls a21(GeV) mN /mr

5.7 83332 32 1.058~40! 1.51~5!

5.7 83332 48 0.994~18! 1.45~3!

5.7 163332 48 1.013~24! 1.40~5!

5.85 123332 20 1.419~34! 1.34~5!

6.0 163332 16 1.922~40! 1.42~4!

6.0 163332 24 1.933~50! 1.38~4!
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b55.7 and 6.0 agree well with the experimental value
'130 MeV, while the values forf K may be somewha
smaller than the experimental value of'160 MeV as is ex-
pected from quenched chiral perturbation theory argume
@69# and naive scaling considerations@81#. Note, in Table
XXXI we also list f K / f p with jackknifed errors for the ratio.
Here the statistical errors are now well below the system
errors that might be expected in themf1mres→0 extrapola-
tion. The values shown forf K / f p agree on the 5% leve
between methods of determination and different lattice sp
ings but are systematically below the experimental value
1.21.

This same analysis was done using the amplitudes ca
lated from the point-source correlators but making
1-parameter fit using the pre-determined pion masses c
puted from the more mass accurate measurements base
the wall-source correlators. This method gives consistent
sults with slightly smaller errors. The results are not list
here.

The reasonable agreement of our domain wall results w
the experimental values and their relative insensitivity toa is
encouraging. Similar results were obtained atb56.0 for
smaller values ofLs with somewhat larger errors in Re
@30#. Of special interest here is the comparison that we m
between the two methods of determiningf p , which is done
here. As can be seen from Eq.~90!, the determination off p

from ^pa(x)pa(0)& depends directly onmres. Thus, the
comparison of these two methods is an important check
our understanding of the chiral properties of the domain w
formulation. The ratio of these two quantities extrapolated
the pointmf1mres50 provides an interesting figure of mer
for the present calculation. We find (f p)PP /( f p)AA
51.00(10) and 0.96~10! for Ls516 and 24 respectively
However, if instead of the values ofmres given in Table
XXII, we use the x-intercepts 20.0031(7) and
20.0030(9) quoted earlier and obtained from t
^A0

a(x)A0
a(0)& values of mp

2 , we find (f p)PP /( f p)AA

51.20(12) for both theLs516 and 24 cases. While thes
ratios each differ from 1 by two standard deviations, they
independent calculations and demonstrate the good c
properties of domain wall fermions.

B. Continuum limit of mN Õmr

Here we combine the hadron mass results tabulated
Sec. III to examine the behavior of the nucleon tor mass
ratio asb varies between 5.7 to 6.0. First we evaluatemN
andmr in the limit mf1mres50. We did not use the value o
mf which gives the physical ratio,mp /mr50.18 for the rea-
sons outlined in the previous section. In Table XXXII w
give the resulting mass ratios as well as the lattice spac
in physical units as determined frommr evaluated atmf
1mres50. Note, no contribution to the quoted error for the
mass ratios arising from the uncertainty in this choice ofmf
has been included.

The relatively large variation ofmN /mr with b suggests
that the errors shown in Table XXXII may be underestima
and makes a simplea2 extrapolation to the continuum limi
somewhat uncertain. Nevertheless the result of such an

s
ow
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TABLE XXXIII. A variety of expressions for̂ q̄q& in lattice and physical units. The quantityb in the fifth
column comes from our earlier (a1bmf) fits to mp

2 . The final column gives a conventionally normalize
value of the chiral condensate which is to be compared with the phenomenological value of (22969)3.

L33Nt3Ls b a0 2^q̄q&mf52mres
b fp

2 /48 (212̂ q̄q&MS,2 GeV)
1/3

83332332 5.7 1.76(3)31023 1.07(3)31023 1.7(2)31023 —
83332348 5.7 1.92(5)31023 1.50(5)31023 1.8(1)31023 —
163332316 6.0 3.87(8)31024 2.80(9)31024 3.3(5)31024 245(7) MeV
163332324 6.0 3.62(9)31024 3.11(10)31024 2.6(5)31024 256(8) MeV
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trapolation toa→0 is mN /mr51.37(5). Perhaps more in-
teresting is a comparison with similar quantities computed
comparable lattice spacings and volumes using Wilson
staggered fermions. For staggered fermions atb56.0 on
comparable volumes, one finds@82,83# mN /mr51.47(3), a
somewhat larger and less physical value than the 1.42~4! and
1.38~4! results obtained here forLs516 and 24. However
this comparison is made somewhat ambiguous by the sig
cant finite size effects seen in staggered calculations w
going from our 163332 to larger volumes@84#. For Wilson
fermions, as reported in Ref.@85#, one deducesmN /mr

51.37(2) by linear interpolation between theb55.93 and
6.17 values presented, a number remarkably close to ou
main wall value. When comparing these values, it is imp
tant to recall that our 83 and 163 spatial volumes are not ye
infinite and, as discussed in Sec. III, corrections on the or
of a few percent are expected.

C. Determining the chiral condensateŠq̄q‹

Finally we use the results presented earlier to estimate
size of the chiral condensate^q̄q&. Naively, one might ex-
pect that a physical value for^q̄q& could be easily identified
in Table XX as themf-independent terma0, defined in Eq.
~48!. This quantity represents a simple extrapolation

^q̄q&(mf) from large mass down to the pointmf50. Given
the volume independence seen for the parametera0 when
comparing theb55.7, 83 and 163 volumes in Table XX, it is
natural to expect that such a choice minimizes the sensiti
to the finite-volume zero mode effects that give rise to
more singulara21 term.

However, there are other issues that must be addres
Perhaps most obvious is the fact that the pointmf50 is not
the physical chiral limit because the effects ofmreshave been
ignored. This is easily remedied by using the slopea1, to
extrapolate to the physical pointmf1mres50. The resulting
estimate of̂ q̄q&, in lattice units, is given as the fourth co
umn in Table XXXIII. However, becausêq̄q& is a quadrati-
cally divergent quantity, we cannot expect that all the ch
symmetry breaking effects of domain wall mixing are r
moved by this choice ofmf . In contrast to many physica
quantities,^q̄q& receives contributions from energy scal
much larger than those for whichmres represents the com
plete effect of chiral symmetry breaking. Thus, we sho
expect additional contributions tôq̄q& of order e2aLs/a3

;mres/a
2. This is born out in Table XXXIII where we se
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that the differences between^q̄q& for the two different values
of Ls at a givenb are of the same order as the differen
between the values with and without the extrapolation
mf52mres.

This unwanted;mres/a
2 contribution to^q̄q& can only

be controlled by explicitly taking the limitLs→`. We do not
at present have the numerical results to permit such an
trapolation. Therefore, we will use theb56.0, Ls524 result
as our best approximation to such a limit and interpret
difference between theLs516 and 24 values as an estima
of the systematic error,'10%. Given the value of
ZS(MS,2 GeV)50.619(25) for b56.0 quoted earlier and
the results for the lattice spacing in physical units in Ta
XXXII, we can determinê q̄q& in physical units. The results
for Ls516 and 24,@245(7) MeV#3 and@256(8) MeV#3, are
included in Table XXXIII, where only the statistical error i
displayed. The agreement between these numbers and
nomenological estimates of the chiral condensate is satis
tory, for example the value of12 (ūu1d̄d)MS,1 GeV5(229
69 MeV)3 obtained in Ref.@86#. Note thee2aLs/a3 uncer-
tainty present in our calculation does not have an analogu
the properly regulated continuum theory. While^c̄c& does
contain a quadratically divergent piece in the continuu
theory, this is eliminated for the chirally symmetric choic
mquark50. This choice is not available in a domain wall fe
mion calculation without taking theLs→` limit. Of course,
the other lattice methods for directly computing^c̄c& have
equal or more severe difficulties.

Finally it is interesting to compare theb55.7 and b

56.0 results for^q̄q&. Since we do not at present have
reliable determination of the needed renormalization c
stant,ZS , for the strongerb55.7 coupling, we do not at-
tempt to quote a physical value. However, the ratio of
unrenormalized lattice numbers given in Table XXXIII fo

^q̄q& (Ls532,b55.7) /^q̄q& (Ls524,b56.0)54.8(2) is reasonably
consistent with the ratio expected from naive scali
a(Ls532,b55.7)

3 /a(Ls524,b56.0)
3 57.4(4).

Given the values now determined for^q̄q&, f p and quark
mass, it is natural to test the degree to which the Gell-Man
Oakes–Renner relation@87#

f p
2

mp
2

48~mf1mres!
52^q̄q& ~93!

is obeyed. However, the form of this equation reveals
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important difficulty. At what value ofmf should the ratio
mp

2 /(mf1mres) be computed? In full QCD, this ratio be
comes a constant for small quark mass. As we have s
earlier, this is not the case in the quenched approxima
where one expects non-linearities.

We might try to determine the proper treatment of the
non-linearities by returning to the underlying equation, E
~53!, from which the Gell-Mann–Oakes–Renner relation
derived. However, this is somewhat complex. Both sides
this original equation have a mass dependence which co
from the contribution of the pion pole term and other phy
cal states, all influenced by the quenched approximation
well as the quadratically divergent terms in^q̄q& and the
contact term inxpp . Thus, while the underlying Eq.~53!
will be obeyed exactly in our calculation, there is consid
able ambiguity in deciding how to extract a quenched g
eralization of the Gell-Mann–Oakes–Renner relation,
~93!.

Here we will simply compare the right- and left-han
sides of Eq.~93! by replacing the ratiomp

2 /(mf1mres) by the
slope b obtained at larger masses,mf>0.01 and given in
Tables XVI, XVII and XIX. The results from the left-han
side of Eq.~93! are given in Table XXXIII. Given our un-
certainty in determining^q̄q& and the significant non
linearities we see inmp

2 , the agreement seen between t
fourth and fifth columns in Table XXXIII is within our er-
rors.

VIII. CONCLUSIONS

We have presented the results of detailed studies
quenched lattice QCD using domain wall fermions, with p
ticular attention paid to the lowest order chiral symme
breaking effects of finiteLs and the behavior of the theor
for small values ofmf . A major difficulty in studying the
small mf behavior of the theory is the presence of topolo
cal near-zero modes which are unsuppressed in the quen
theory. These are a result of the improved character of
domain wall fermion operator, which has an Atiyah-Sing
index at finite lattice spacing andLs→`. However, these
zero-modes complicate the quenched theory and demons
that the quenched approximation is considerably m
treacherous than might have been originally expected.
have seen how these modes produce the expected 1/mf di-
vergence in̂ q̄q& for small mf and distort correlation func
tions used to measure the properties of the pion. By work
on larger volumes, we found that the effects of these mo
were dramatically reduced, as expected. We were then
to see a common pion mass determined from differ
correlators.

We have determined or constrained the value for the
sidual mass,mres, which enters the effective quark mass f
low-energy physics asmeff5mf1mres, a number of ways
and found good agreement. The residual mass was meas
from the extra, finiteLs term in the divergence of the con
served axial current and from the explicitly determined lo
est eigenvalues of the Hermitian domain wall fermion ope
tor. These two determinations agree within errors. We h
also determined the difference inmres for two values ofLs
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from the pion mass and find this agrees with the results fr
our explicitly calculatedmres. Lastly, agreement forf p as
calculated from axial vector and pseudoscalar correlators
quires knowledge ofmres and the agreement serves as a f
ther check.

While our data for weaker couplings do not clearly de
onstrate thatmres→0, we have seen them fall to 1 MeV fo
Ls548 atb56.0. ForLs516, a practical value for studie
of low energy hadronic physics and matrix elements,mreshas
a value of 3.87~16! MeV, roughly 1/30 of the strange quar
mass. Even at stronger couplings, where the lattice spacin
a21;1 GeV, we have measuredmres to also be about 1/14 o
the strange quark mass, although hereLs548 was required.
Thus, we see domain wall fermions producing the desi
light surface states with small mixing, even for relative
strong couplings.

We have measured hadron masses andf p for lattice scales
1 GeV,a21,2 GeV and have studied scaling in this r
gion. Our determinations off p involve not onlymresas men-
tioned above but also the measurement of the Z-factor for
local axial current. We findf p /mr evaluated at themf
1mres50 point to be scaling very well, while formN /mr the
scaling violations may be at the 6% level. However, scal
seems at least as good as that seen for staggered fermio
similar lattice spacings and similar to that found for Wilso
fermions with a clover term@84#. This is in accord with
general expectations that finite lattice spacing errors will
ter domain wall fermion amplitudes atO(a2) @19,88#.

Our results demonstrate that quenched domain wall
mions do exhibit the desired good chiral properties, even
relatively strong couplings. The residual quark mass effe
which break the full global symmetries to leading order ina,
can be eliminated by an appropriate choice ofmf , so that
low energy physics should be well described by an effect
theory with the continuum global symmetries. Quenched c
ral logarithm effects may appear for quenched domain w
fermion simulations, as they do for other fermion formul
tions, but present no new difficulties. For large enough v
umes, the effects of topological near-zero modes are s
pressed and the smallmf region can be investigated. Fo
larger values ofmf , where these zero mode effects are su
pressed by the quark mass, one has a formulation of la
QCD with the full global symmetries realized to ordera2 and
an effective quark mass ofmf1mres. Thus, the domain wall
formulation provides a powerful tool which can be use
even within the quenched approximation, to study many
the outstanding problems in particle and nuclear physics
which chiral symmetry plays an important role.

Note added. After this paper was essentially complete, t
recent work of the CP-PACS Collaboration became availa
@89#. The reader is referred to this paper for another disc
sion of some of the topics presented here.
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