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Quenched QCD simulations on three voluméx8 12°x and 16x 32 and three couplingg=5.7, 5.85
and 6.0 using domain wall fermions provide a consistent picture of quenched QCD. We demonstrate that the
small induced effects of chiral symmetry breaking inherent in this formulation can be described by a residual
mass (M,e9) Whose size decreases as the separation between the domainlwhiis ihcreased. However, at
stronger couplings much larger valueslaf are required to achieve a given physical valuengf;. For 8
=6.0 andL =16, we findm,,s/ms=0.0333), while for 8=5.7, andL¢=48, m,/m;=0.0745), wheremg
is the strange quark mass. These values are significantly smaller than those obtained from a more naive
determination in our earlier studies. Important effects of topological near zero modes which should afflict an
accurate quenched calculation are easily visible in both the chiral condensate and the pion propagator. These
effects can be controlled by working at an appropriately large volume. A non-linear behami\@rinfthe limit
of small quark mass suggests the presence of additional infrared subtlety in the quenched approximation. Good
scaling is seen both in masses and jnover our entire range, with inverse lattice spacing varying between 1

and 2 GeV.
DOI: 10.1103/PhysRevD.69.074502 PACS nuni®er12.38.Gc, 11.15.Ha, 11.30.Rd, 12.38.Aw
[. INTRODUCTION references see Refl2].) For a physical four-dimensional

problem, the domain wall fermion Dirac operat@, is a

Since spontaneous chiral symmetry breaking is a domifive-dimensional operator with free boundary conditions for
nant property of the QCD vacuum and is responsible foithe fermions in the new fifth dimension. The desired light,
much of the low energy physics seen in nature, having a firsthiral fermions appear as states exponentially bound to the
principles formulation of lattice QCD which does not explic- four-dimensional surfaces at the ends of the fifth dimension.
ity break chiral symmetry has been an important goal. BothThe remaining modes fdd are heavy and delocalized in the
Wilson and staggered fermions recover chiral symmetry irfifth dimension.
the continuum limit but with these techniques the chiral and Anp additional important feature of the domain wall fer-
continuum limits cannot be decoupled. For the QCD phasgnjon Dirac operator in the limit— = is the existence of an
transition, which is dominantly a chiral symmetry restoringuindex’u an integer that is invariant under small changes in
transition, a formula?ion th_at is free of vi(_)lations of chiral the background gauge field. Hete is the extent of the
symmetry due to lattice artifacts, should give a phase ranSkyttice in the fifth dimension. This property, true for all but a

tion more closely approximating that of the continuum limit. et of gauge fields of measure zero, can be readily seen using

For the measurement of matrix elements of operators in ha he overlap formalisni2—5]. In the smooth background field

ronic states, a formulation that respects chiral symmetry O'leit, this index is the normal topological charge but, even

he latti ntially r rator mixing thr . o .
the lattice substantially reduces operato gt Oughfor rough fields, it signals the presence of massless fermion

renormalization. Lastly, since much of our analytic under- dd h Th d v b
standing of low-energy QCD is formulated in terms of low- mo S)_ when non-zero. These zero modes can easily be
ecognized in numerical studies with semiclassical gauge

energy effective field theories based on chiral symmetry, a

lattice formulation preserving chiral symmetry allows con- field background$13-18. _ _
trolled comparison with analytic expectations. These powerful theoretical developments in fermion for-

Building on the work of Kaplari1], who showed how to Mulations require additional study to demonstrate their merit
produce light chiral modes in é&dimensional theory as sur- for numerical work. For the case of domain wall fermions, a
face states in ad+ 1)-dimensional theory, a number of at- growing body of numerical results are available. Both
tractive lattice formulations have been developed whichquenched[17,19-31 and dynamical[31-35,12 domain
achieve a decoupling of the continuum and chiral limits.wall fermion simulations have been conducted and the do-
Here we will use Kaplan’s approach as was further develimain wall approach is readily adapted to current algorithms
oped by Narayanan and Neuber@2+5] and by Shamif6].  for lattice QCD.(Much work is also being done on the nu-
It is Shamir’'s approach, commonly known as the domainmerical implementation of the overlap formulation and its
wall fermion formulation, which we adoptFor reviews of variations[36—46.) A fundamental question, which is a ma-
this topic see Refs[7—11] and for more extensive recent jor part of this paper, involves quantifying the residual chiral
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symmetry breaking effects of finite extent in the fifth dimen- ~ 0.005
sion.
Due to current limits on computer speed, some lattice

QCD studies are only practical when the fermionic determi- 0.004
nant is left out of the measure of the path integral. The re-
sulting quenched theory does not suppress gauge field cor .. |

figurations with light fermionic modes, in contrast with the ,
original theory where, for small quark mass, the determinanh%
strongly damps such configurations. The measurement of ob' ¢.g02 L
servables involving fermion propagation through configura-
tions with unsuppressed light fermionic modes can in prin-
ciple lead to markedly different infrared behavior than that  0.001 -
found in full QCD, in the limit of small quark masses. Do-
main wall fermions, which produce light chiral modes at
finite lattice spacing and preserve the global symmetries of 0 001 002 003 004 005
continuum QCD, should produce a well-defined chiral limit m,

for full QCD. The central question addressed in this paper is _

whether a well-controlled chiral limit also exists within the _ FIG- 1. {qq) for quenched simulations done of>832 lattices
quenched approximation. A thorough theoretical and numeri{©O) @nd 16x32 lattices (J) at 8=5.7 with L;=32. The smaller

cal understanding of the quenched chiral limit is essential nyolume shows a pronounced riserag—0 as is expected if unsup-

th d chiral i fd . I f . ¢ be[pressed zero modes are present. For the larger volume, the effect of
€ good chiral properties of domain wall fermions are 1o opological near zero modes is reduced if not eliminated. This is

exploited in quenched lattice simulations. expected sincé|»|)/V should fall as 1{V.
Here we present results from extensive simulations of

quenched QCD with domain wall fermions, primarily at two results, organized to correspond to the expanded discussion
lattice spacingsa”!~1 and 2 GeV. Many different values in Secs. IV, V, VI and VIL.

for the fifth-dimensional extenl,s, and the bare quark mass,  Zero mode effects i(gq): As already mentioned, the do-

m; have been used. Hadron massgsand the chiral con- main wall fermion operatoD has an Atiyah-Singer index

densate(qq), are the primary hadronic observables we haveor Ls—. However, in quenched QCD; plays no role in
studied. In calculating physical observables using domaif’® 9eneration of gauge field configurations. ket0, both
wall fermions, four-dimensional quark fieldg(x) are de- D and the Hermitian domain wall fermion operafy, [47]
fined from the five-dimensional field#(x,s) by taking the ~have zero modes. Singg|q) is an appropriately restricted
left-handed fields from the four-dimensional hypersurfacetrace ofDy;* it should diverge ag|v|)/m;V for small my if
with smallest coordinate in the fifth dimension and the right-the ensemble average pof| is non-zero. Her¢/ is the four-
handed fields from the hypersurface with the largest value ofimensional, space-time volume of the lattice being studied.
this coordinate. We also present results from measuring thEOr large but finite, the residual chiral symmetry breaking
lowest eigenvectors and eigenvalues of the Hermitian doShould cut off this divergence.
main wall fermion operator. Figure 1 showsqq) versus the quark mass; for a~*
Here we list the major topics in each section of this paper~1 GeV on two different volumes of linear dimensions of
Section Il defines our conventions and gives details of thébout 1.6 and 3.2 fermi. A divergence for—0 is clearly
Hermitian domain wall fermion operator. Section Il dis- visible on the smaller volume, but not on the larger. This is
cusses our simulation parameters and fitting procedures afXPected sincé|v|)/V should go as 4V and is clear evi-
includes tables of run parameters and hadron massesfor dence for unsuppressed zero modes in quenched QCD, first
=0.01. In Sec. IV a precise understanding of how finite reported in Ref[22]. Notice that there may be other prob-

effects enteqq) is developed and measurements(qf) lems v_wth the chiral limit of(qq) that are masked by this
which show the role of fermionic zero modes are reported/m; divergence. o .
We study the pion mass in the chiral limit in Sec. V, which ~ The chiral limit of m. : With this clear evidence for zero
requires understanding zero mode effects. Section VI conmode effects iqq), one might expect to see zero mode
tains two determinations of the residual chiral symmetrycontributions in any quark propagatdr *(x,y) if at bothx
breaking for finiteL; one from measuring appropriate pion andy a single zero eigenvector has reasonable magnitude.
correlators and the other from the explicitly measured smalFor sufficiently large volume, needed to see asymptotic be-
eigenvalues and eigenvectors of the Hermitian domain walhavior in the limit of large|x—y|, there should be no zero
fermion operator. Our determination d¢f., an important mode effects. Our results for the zero mode effects on the
check of the chiral properties of domain wall fermions, ispion mass are presented in Fig. 2 which shawgsversusm;
discussed in Sec. VII, along with the scaling of hadronfor 83x 32 lattices withLs=48 and Fig. 3, where all the
masses. parameters are the same except that the volume was in-
Because of the length of this paper and the number otreased to 1< 32. The pion mass is determined from three
topics covered, we now give a brief summary of our majordifferent correlators which are each affected differently by
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FIG. 3. The pion mass squared versus from (7%(x) 7%(0))

FIG. 2. The pion mass squared versugfrom (73(x)72(0)) (), (AG(X)A5(0)) (O) and (m3(x)7%(0))+(a(x)a(0))c (O)
(O), (A3(x)A3(0)) (O) and (7(x)72(0))+ (o (X)a(0))¢ () for quenched simulations done on®¥632 lattices at3=>5.7 with
for quenched simulations done of>832 lattices at3=5.7 with ~ Ls=48. The star is the value ofi.sas measured from E¢77) and
L,=48. Form;=0.0, the correlators all give different masses dueits error bar in the horizontal axis is too small to show on this scale.
to the differing topological near-zero mode contributions for eachThe solid line is the fit to theAg(x)A5(0)) correlator formy
one. For large enougR, all the correlators should give the same =0.02 to 0.08 given in Eq(75), while the dotted line is for the
mass. However, this limit requires a large volume which is expected 7*(x) 7%(0)) correlator form;=0.0 to 0.08 as given in E476).
to suppress such zero-mode effects. The dotted line is the fit
of Eq. (69), the solid line is from Eq(70) and the dashed line is lattices witha *~1 GeV but with largerL =48 finds a
from Eq.(72). value of m,es/Ms=0.074(5) orm,.~8 MeV.

We have also used the Rayleigh-Ritz method, imple-
zero modes. For the smaller volume, the pion masses megiented using the technique of Kalk-Reuter and Sinu&,
sured disagree for smath; , while they agree for the larger to determine the low-lying eigenvalues and eigenvectors for
volume. the Hermitian domain wall fermion operator. The results ex-

Notice that on the larger volume shown in Fig. 3, where
zero-mode effects are not apparamﬁ, shows signs of cur-
vature inm; with the threem;=0 values lying below the
extrapolation from larger masses. In addition, this simple 120
large-mass linear extrapolation vanishes at a valua;adhat
is more negative than the poini;+m,.e=0 (shown in the 10.0 F
graph by the staralso suggesting downward concavity.
While the discrepancy between thisntercept and the point
m¢+m,.s=0, may be caused b@(a?) effects, we find a
considerably larger discrepancy when making a similar com-—,
parison at3=6.0. Thus, we have evidence thaf. does not £
depend linearly om; in the chiral limit.

Determining the residual masn the limit of small lat-
tice spacing, the dominant chiral symmetry breaking effect,
due to the mixing between the domain walls, is the appear- 2.0
ance of a residual mass),. in the low energy effective
Lagrangian. The Ward-Takahashi identity for domain wall 0.0
fermions[47] has an additional contribution representing this 10 20 30 40 50
explicit chiral symmetry breaking due to finile;. Matrix
elements of this additional term between low energy states g, 4. ThelL, dependence of the residual mass fof2182
determine the residual quark mass. Figure 4 shows our rgattices atg=6.0. The long-dashed line is the fit given in Eg@8),
sults formyes for 16°x 32 lattices at3=6.0 as a function of  the short-dashed line is the fit from Eg9) and the solid line is the
Ls. My is clearly falling with Lg and reaches a value of fit given in Eq.(81). Each of the three fits is made to all of the
~2 MeV for Lg=24. Our data do not resolve the precise points shown. We have employed an intermediate non-perturbative
behavior ofm,¢sfor largeL g, but the very small value makes renormalization to convert the plotted valuesrf into the MS
this less important for current simulations. A similar study onscheme au=2 GeV.
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200 L assumed to be even. The space-time voldiggiven by
i V=L3N,. The domain wall fermion operator acts on a five-
! dimensional fermion field¥(x,s), which has four spinor
180 | = components. A generic four-dimensional fermion field, with
four spin components, will be denoted Ipyx), while the
| specific four-dimensional fermion field defined frob(x,s)
160 |- . will be denoted byg(x). The space-time indices for vectors
3 ! will be enclosed in parentheses while for matrices they will
= ; ‘ be given as subscripts. Our general formalism follows that
¥ 140 1 i developed by Furman and Sharfd7].
i A. Conventions
120 - ; 1 The domain wall fermion operator is given by
| | 1
: : DX,S;X’,S’:5S,S’DL‘(’X/+5X,X’DS,5/ (1)
100 : 1 i : 1 L 1
0 0.01 0.02 0.03 0.04 12
m, Dllyx,zi Z}l (1= ¥,) Uy w0t h
FIG. 5. Results forf . at 3=6.0 with a 16 32 lattice and_ :
=16 plotted as a function ofn;. The open circles are obtained +(1+ ’)/,LL)UX"M5X*/;,X’]+(M5_4)5X,X’ 2

from the (A§(x)A3(0)) correlator, while the open diamonds are

obtained from thé =(x) 72(0)) correlator. We also show the linear

fits which are used to determine our estimate fiprand fi . The D:S, =§[(l— ¥5) 015+ (14 ¥5) 05— 16— 28s,5/]

vertical dashed lines identify the values for; which locate the

chiral limit, m= —m,sand give the physical ratio fan, /m,. The m

solid symbols represent the extrapolations to the paifit —m;qs - 7[(1— 75)55!'-5*150-5’

and interpolations to the kaon mass.

+(1+ /1.

hibit the approximate behavior expected from low-energy (1% 76) 500 ,-1] 3

excitations in the domain wall formulation. We use the re-jae U.  is the gauge field at site in direction x, and

sulting eigenvalues to provide an independent estimate of thg and ’;f‘ lie in the range 6s,s'<L 1. The' five-

residual mass which is nicely consistent with the more preynengional mass, representing the height of the domain wall

cise value determined from pseudoscalar correlators. in Kaplan's original language, is given byls, while m
Results for f,, hadron masses and scaling/ith this de- directly couples the two domain walls a=0 ands=L

tailed understanding of the chiral limit of quenched lattice v

. ) . —1. Since the light chiral modes should be exponentially
.QCD with domain wall ferm|on§, we have calculatbdus- bound to the domain wallsn; mixes the two chiralities and
ing both pseudoscalar and axial-vector correlators. The r

85 therefore the input bare quark mass. The valuel gimust
sults for lattices witha *~2 GeV are shown in Fig. 5, b d 9

h d b h hods i fe chosen to produce these light surface states and, in the
where good agreement between the two methods IS seen. }Q.q fie|q case, &Mg<2 produces a single fermion flavor

do this comparison, the appropriate Z-factor for the IOCaIwith the left-hand chirality bound ts=0 and the right to
axial current must be determined and a consistent value fol_ | ;1 |\ order to use our pre-existing, high-performance
m,es Must be known. The good agreement in the figure is s '

res . “Wilson fermion operator computer program as part of our
significant test of these measurements as well as the Ch'rﬂomain wall fermion operator, we have used the opertor
properties of domain wall fermions. We find very good scal- '

PTOP . iy above, which is the same &5 of Ref.[47].
g !n the. rat|o.f7r./mp for a lw2 (;e\/. Formy/m, Following Ref. [47], we define the four-dimensional
scaling is within 6%. We also find that—(qq)

uark fieldsg(x) b
=(256(8)MeV) from our 8=6.0 simulations. a a(x) by
q(x)=P ¥ (x,0)+Pr¥(x,Ls—1)
II. DOMAIN WALL FERMIONS

In this section we first define our notation, including the 9= (X Ls—1)P +¥(x0Pg @

domain wall fermion Dirac operator, and then derive the pre—Where we have used the bproiection operatéts. — (1
cise form of the Banks-Casher relation for domain wall fer-_’ S v 1 ¢ pt_J fth pf_ d.ﬁ'-_(. |
mions, to second order in the quark mass. In this paper, thg ¥s)/2. Symmetry transformations of the five-dimensiona

variable x specifies the coordinates in the four-dimensional lelds yield a four-dimensional axial current

space-time volume, with exteht along each of the spatial L—1 L1
directions and exteni; along the time direction, while A%(x)= s r(s— s )-a XS 5
=0,1,...Ls—1 is the coordinate of the fifth direction, with w) SZO g 2 Ju(x:8)- ©
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Here s~L,—1 states vanishes, this extra “mid-point” contribu-
tion will be zero and a continuum-like Ward-Takahashi iden-
tity will be realized.
Since we must work at finite it is useful to characterize
o the chiral symmetry breaking effects of mixing between the
—W(X,8)(1—y,)Uy ¥ (x+ w,s)] (6)  domain walls as precisely as possible. We do this by adopt
ing the language of the Symanzik improvement program
while the flavor matrices are normalized to obey tfif) [49,50. Here we use an effective continuum Lagrangign

1 — .
ja(x,8)= SI¥(x+p.8)(1+ Y)UL W (x,S)

= 6%, The divergence of this current satisfies to reproduce t@(a") the amplitudes predicted by our lattice
. . . theory when evaluated at low momenta and finite lattice
A AL (X)=2med5(X) +2354(X) (7)  spacing. ClearlyC, is simply the continuum QCD Lagrang-

ian, while £, will include the dimension-five, clover term:

whereA , f(x)=f(x)— f(x—u) is a simple finite difference yot"yF,, [51]. The chiral symmetry breaking effects

operator and the pseudoscalar dendfifx) is of mixing between the domain walls will appear to lowest
_ order in a as an additional, dimension three operator
J5(X) ==V (x,Ls— )P t2¥(x,0) xa~te~%Lsyy. This term represents the residual mass term
— that remains even after the explicit input chiral symmetry
+W(X,0Pt*W(x,Ls—1) breaking parametemn; has been set to zero. The next chiral
. symmetry breaking contribution from domain wall mixing
=q(x)t%y5q(x). (8)  will be O(a?) smaller, appearing as a coefficient of ordér

for the clover term.
This equation differs from the corresponding continuum ex- We define the chiral symmetry breaking parametgs so
pression by the presence of tﬂ%q(x) term, which is built the complete coefficient of the mass termdy is propor-
from point-split operators dt¢/2 andL¢/2—1 and is given tional to the simple sunm;+m,s. While this is a precise

by definition of mes, valid for finite lattice spacing, a precise
. determination ofn,.sin a lattice calculation will be impeded
Sq(x) =—W(x,LJ2—1)P t2W(x,L/2) by the need to quantitatively account for the additional chiral
. symmetry breaking effects of terms of higher orderin
+W(x,Lg/2)Prt®*W(x,Ls/2—1). 9 Close to the continuum limit, for long distance ampli-

tudes, the Ward-Takahashi identity given in Ef0) must
We will refer to this term as the “mid-point” contribution to agree with the corresponding identity in the effective con-
the divergence of the axial current. tinuum theory. Thus, for the non-singlet case, the sum of the
This mid-point contribution adds an additional term to thefirst two terms on the right-hand side of EG.0) must be
axial Ward-Takahashi identities and modifies observablessquivalent to an effective quark mags,s= m¢+ My, times
like the pion mass, which are controlled by these identitiesthe pseudoscalar densil§. The residual massp,.s appears

The Ward-Takahashi identity is in the low energy identity:
AL (AL)O(y))=2me(I5(X)O(y)) +2(JI5,(x)O(y)) J5q™~ MresJ5 (11
+i{520(y)). (10

where this equality will hold up t®(a?) in low-momentum

For operator®, made from the fieldg/(y) andq(y), it has ~amplitudes. _ o _

been showrj47] that theJ§, term in Eq.(10) vanishes for Thus, close to the continuum limifes in Eq. (11) is a
flavor non-singlet currents when,— . For the singlet cur- universal measure of the chiral symmetry breaking effects of
rent, this extra term generates the axial anomaly. The migdomain wall fermions for all low energy matrix elements,

point term represents the contribution of finitg effects on ~ With corrections coming from terms of higher order in the
the low-energy physics of domain wall fermions. lattice spacing. However, away from the continuum limit the

O(a?) terms may be appreciable. In addition, if there are
high energy scales entering an observable, such a low energy
description is not valid and the explicit chiral symmetry
For domain wall fermions, the axial transformation which breaking effects of finitd.; can be more complicated than a
leads to the Ward-Takahashi identity of E40) rotates the simple additive shift of the input quark mass byy,.
fermions in the two half-spaces along the fifth direction with  Many aspects of the chiral behavior of the domain wall
opposite charges. Fon;=0, the action is not invariant un- theory can be easily understood by reference to the more
der this transformation due to the coupling of the left- andfamiliar Wilson fermion formulation. For finite g the do-
right-handed light surface states at the midpoint of the fifthmain wall formulation can be viewed as an “on- and off-
dimension. This results in the additional term in the diver-shell improved” version of Wilson fermions. The low energy
gence of the axial current, as given in H§). In theL,  effective Lagrangian for domain wall fermions is the same as
—oo |limit where the explicit mixing between the~0 and that for the Wilson case except the coefficients of the chiral

B. Definition of the residual mass and the chiral limit

074502-5
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symmetry breaking terms are expected to decrease exponen-
tially with Lg. Viewed in this way, one might expect to

achieve a vanishing pion mass by fine-tuningto a critical
value,ms. in very much the same way as one fine-tures

PHYSICAL REVIEW D 69, 074502 (2004

Dy=7vsRsD (12

where Rs)sy =051 -1-s is the reflection in the fifth di-
mension around the five-dimensional midpoirg=(Lg

k. for Wilson fermions. As the above discussion demon-—1)/2. Writing outD, gives

strates,m;.= M.+ O(a?). Just as in the Wilson case, this
limit can be interpreted as the approach to the critical surface

of the Aoki phasd34,29,30Q.

C. The Hermitian domain wall fermion operator

A Hermitian operatoDy can be constructeldt7] from D
through

Dp= 75Dl,xf55+s’,LS—l
Y5l PLosis L T PROstsr L2~ Osts L ~1
—M(PL3s00s 0 PrOs L ~10s/,1L ~1)10xxr (13)

while as an explicit matrix in the,s’ indices:

—mgysPL ¥sPr ys(DI-1)
vsPR 75(DH_1) vsPL
Dy= . . (14
¥sPr ys(DI—1) ysP,
ys5(DI-1) ¥sPL —M¢ysPr

The eigenvalues and eigenvectorsipf will be denoted by

DyWy, =An¥,, (19
with the five-dimensional propagator given by
Wy, (X)W (X' 9) y5(Rs)z s
5 H H '
Sf(,s);x’,s’ = AEH AH . (16)

The matriceQ™ andQ(™P are the two parts oDy, which
correspond to terms iD= ysRsDy which are not invariant
under the transformation in E€RO). The matrixQ™) under-
lies the explicit mass term and, in the original operéor
explicitly mixes thes=0 ands=L,—1 walls. Likewise, the
matrix Q(™ is a “mid-point” matrix with non-zero elements
only in the center of the fifth dimension. It represents the
component of the operatdd which connects the left and
right half regions. These two contributions provide the terms
on the right hand side of E¢7) and one easily finds

(Grassmann variables in the Euclidean path integral will be

denoted by andW¥, while the eigenfunctions dd,, will be
denoted?} andW, .)

We will find it convenient to define three additional ma-

trices
L—1
(I's)s,s = 5s,s/sgr(T—s) (17)
QLY =P8 00y ot PrOsL~10s/ L -1 (18
and
Qg?)= PLOs 1 y20s L g2t PrOsLy2-10s Lg2-1- (19

The transformation which generates the current in(Bis

T —expia?t?l's)¥

VW exp( —ia®t?Ts). (20)

{I's,Dy}=2m;QM +2Q(MP), (21)

Since it is expected that there are eigenvector® gfwhich
are exponentially localized on the domain walls, we see that
with m{=0 and the limitL;—0 taken,Dy anticommutes
with T's in the subspace of these eigenvectors. This is the
property expected for massless, four-dimensional fermions in
the continuum in Euclidean space.

Using the matrix,Q™, we can write a simple form for

the four-dimensional chiral condensatgg)

— 1 —
—(a0) =~ 13y 2 (a(a(0) (22

1 J—
=~ 537 2 (PS)(ReQ™)g 0¥ (x,8) (23
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1 q,R (X,3) ysQ(W),‘I’A (x,s") where in the last line a bra/ket notation has been used. The
= H >3 H (24) large angle brackets indicate the average over an appropriate
12V \ X7y Ay ensemble of gauge fields.

We define the pion interpolating field asr®(x)
_ 1 3 (AylysQ™[A ) (25 =iq(x)t?ysq(x) and then find that the pion two-point func-
12v\ 15 Ay tion is given by(no sum ona)

s,s’

(r)m20)={ > : (26)

!
ApAf AnAy

t ’ I o
T (S)QUDT, (xS)W] (0B)QED W, (05)

Note that the generator, do not appear in the spectral sum, since they merely serve to specify the contractions of the quark
propagators and that?(x) =iJ2(x). To investigate the extra term in the axial Ward-Takahashi identity( Hy, we will also

have need to measure the correlation function between interpolating pion fields defined on the domain walls and the mid-point
contribution to the divergence of the axial curredgq. We define a mid-point pion interpolating field byf‘mp)(x)

= iJEq(x) and the spectral decomposition for the correlator between interpolating pion operators on the wall and the midpoint
is

WL (69)QUIW y (xS)W] (05)Q W, (0F)
<7T?mp)(x) Wa(o» = E . (27

!
An A AyAy

We define a local axial current asAj(x) and 6.00. Thus, these ensembles follow the distribution,

Ea(x)tayﬂy5q(x) and note that it is different fromi 2 de- exp{6/922ptrlup} where the sum ranges over all elementary
fined in Eq.(5). The two-point function of the zeroth com- PlaquettesP in the lattice andJ is the ordered product of
ponent of this currentA3(x)A(0)), has a form similar to the four link matrices assoma_ted W_lth the edges. of the
Eq. (26) with a factor of y, multiplying eachQ™ and an plaquetteP. Some of theB=5.7 S|mula§|ons and a ppruon of
overall minus sign. Finally, our scalar density s(x) those at,8:5.8_5 were performed using the hybrid Monte
= Carlo “®” algorithm [53]. These runs were performed on an
=q(x)q(x) and the connected correlatos(x)o(0)). also

. o 83X 32 space-time volume with a domain wall heigtft;
ha(lvsv)the form of ch26).w'th a factor ofys multiplying each  _ 1.65. Each hybrid Monte Carlo trajectory consisted of 50
Q" and an overall minus sign.

steps with a step siz&t=0.02. These runs are summarized
in Table I. In each case the first 2000 hybrid Monte Carlo
Ill. HADRON MASSES FOR m{=0.01
. . TABLE |. Simulation parameters for the quenched results ob-
In this section we present the results fof, m, andmy  (5ined using the hybrid Monte Carlo method. The mass ranges re-
obtained for reasonably heavy input quark mass=0.01  ferred to are specified in Table Ill. The spectrum column contains
where the |0W?r limit corresponds tuna(k* mstran_gé"r- The  the number of configurations on which hadron mass measurements
more challenging study ah;. for m—0 is described later, \yere performed while théqq) column shows the number of con-
in Sec. V. This section is organized as follows. We begin bfigurations used to compute the chiral condensate. Finally, within
describing the Monte Carlo runs on which the results in thisyarentheses in the last column we specify the number of random
paper are based. Next the methods used to determine thgise sourceshits) that were used in each of the&gg) measure-

hadron masses are discussed, both the propagator determingsnts. All of the calculations described in this table used the do-
tions and our fitting procedures. Finally, we present the remajn wall height parametevis=1.65.

sults of those calculations for the easier, large mass case;

m;=0.01. B LN, L Massrange Spectrum (qq)(hits)
, , 570 &x32 10 0.02-0.20 87 87
A. Simulation summary 570 #x32 16  0.02-0.20 67 67)
The results reported in this paper were obtained from en-5.70 &x32 24  0.02-0.22 84 82a)
sembles of gauge field configuration generated from pures70 &x32 32 0.02-0.22 94 qa)
gauge simulations using the standard Wilson acfte®| at 570 &x32 48 0.02-0.22 81 g1)

three values of the coupling parametgr=6/g%: 5.7, 5.85
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TABLE II. Simulation parameters for the quenched results obtained using the heatbath method. The
column labeled sweeps records the number of Monte Carlo sweeps between successive measurements. The
remaining notation is the same as that used in Table I.

B L3X N, L Mg Sweeps Mass range Spectrum (Eq)(hits)
5.70 Fx32 32 1.65 2000 0.00025-0.008, 0.00-0.04 0 (210
5.70 &x32 32 1.65 2000 0.02, 0.04 184 0
5.70 #x32 48 1.65 200 0.02-0.22 46 0
5.70 &x32 48 1.65 5000 0.001-0.01 0 @2
0.02-0.22 42 4B)
5.70 &x32 48 1.65 2000 0.0, 0.04 336 0
5.70 &x32 48 1.65 2000 0.00025-0.008, 0.00-0.04 0 (p1
5.70 Fx32 64 1.65 5000 0.02-0.22 76 0
5.70 16x 32 24 1.65 5000 0.02-0.22 73 ()]
5.70 16x 32 32 1.65 2000 0.00025-0.008, 0.00-0.04 0 (160
5.70 16x32 48 1.65 2000 0.001-0.01 0 (620)]
0.02-0.22 61 1®)
5.70 16x 32 48 1.65 2000 0.0, 0.04 106 0
5.70 16x 32 48 1.65 2000 0.02, 0.06, 0.1 45 0
5.70 16x 32 48 1.65 2000 0.08 106 0
5.85 12x64 20 1.9 5000 0.025-0.075 100 0
5.85 Fx32 32 1.65 — 0.001-0.01, 0.02-0.10 0 200
5.85 16x 32 32 1.65 1000 0.001-0.01, 0.02-0.10 0 (191
6.0 16 16 1.8 2000 — 32 —
6.0 16x 32 12 1.8 2000 0.02 56 0
6.0 16x 32 16 1.8 5000 0.01-0.04 85 a
6.0 16x 32 16 1.8 2000 0.000 216 0
6.0 16x 32 16 1.8 2000 0.001 229 0
6.0 16x32 16 1.8 2000 0.02 56 0
6.0 16x32 16 1.8 2000 0.00025-0.008, 0.00-0.04 0 (120
6.0 16x642 16 1.8 2000 0.01-0.05, 0.075, 0.1, 0.125 98 0
6.0 16x32 24 1.8 2000 0.01-0.04 76 0
6.0 16x32 24 1.8 2000 0.02 56 0
6.0 16x 32 24 1.8 2000 0.00025-0.008, 0.00-0.04 0 (110
6.0 16x 32 32 1.8 2000 0.02 72 0
6.0 16x 32 48 1.8 2000 0.02 64 0

&This extent of 64 in the time direction was achieved by “doubliidi’= 32 lattice configurations in the time
direction so the resulting gauge field background has an unphysiett 32 periodicity.

trajectories were discarded for thermalization before any A portion of the 3=5.7 masses described here appeared
measurements were made. After these thermalization trajeearlier in Ref.[21] while the first of theg=6.0 results ap-
tories, successive measurements of hadron masses and thears in Refs[60] and[26].

chiral condensate(ﬂq) were made after each group of 200
trajectories.

A second set of simulations were performed using the we follow the standard procedures for determining the
heatbath method of Creuta4], adapted foSU(3) using the  hadron masses from a lattice calculation, extracting these
two-subgroup technique of Cabibbo and Marin&b] and  masses from the exponential time decay of Euclidean-space,
improved for a multi-processor machine by the algorithm oftwo-point correlation functions. In our calculation the source

Kennedy and Pendlet0E56]. The first 5000 sweeps were may take two forms. The first is a point source
discarded for thermalization. These runs are described in

Table Il where the values dfl 5 used are also givefsee also a(x)=q(x)t*Cq(x) (29
Table Ill). Finally, the single8=5.85 run withMg=1.9 was

performed using the MILC codé&7]. Here four over-relaxed which is usually introduced at the origin. The flavor index
heatbath sweepl58,59 with w=2 were followed by one is introduced to make clear that we do not study the masses
Kennedy-Pendleton sweep, with 50 000 initial sweeps disef flavor singlet states. For the nucleon state we use a com-
carded for thermalization. bination of three quark fields:

B. Mass measurement techniques

074502-8



QUENCHED LATTICE QCD WITH DOMAIN WALL . ..

Op(X) = €apclla(X)[Up(X) Cy°dc(X)] (29

where for simplicity we have written the source for a proton

in terms of up and down quark fieldg=u andd. HereC is
the 4x4 Dirac charge-conjugation matrixe the anti-
symmetric tensor in three dimensions and the color sum ov
the indicesa, b andc is shown explicitly. Only these point
sources are used in th@=5.7 running.

The second variety of source used in this work is a wall
source. Such a source is obtained by a simple generalizatio

of Egs.(28) and(29) in which we replace the quark fields
evaluated at the same space-time p&iﬁt(F,t) with distrib-

uted fields, each of which is summed over the entire spatial

volume at a fixed timd. Gauge covariance is maintained

by introducing a gauge field dependent color matrix

V[U](F,ti) which transforms the spatial links in the time
slicet=t; into Coulomb gauge. Thus, to construct our wall

sources we simply replace the quark fiesjdr*,ti)C by the
non-local field

9"(t)e=2 V(T t)eea(r t)e (30)

PHYSICAL REVIEW D 69, 074502 (2004

> O?(F,tf)EW(ti)Ftan(ti>>

~A(e Mt 4 emmr(Nt ) - (37)

é?" similar equation is used for the nucleon correlation func-

tion except that the second exponent representing the state
propagating through the antiperiodic boundary condition
connectingt=0 andt=N;—1 is reversed in sign and has
changed upper and lower components for a spinor basis in
which »? is diagonal.

For both the calculation of the quark propagators from
which these hadron correlators are constructed and the evalu-

ation of the chiral condensat¢qq), we invert the five-
dimensional domain wall fermion Dirac operator of Ef)),
using the conjugate gradient method to solve an equation of
the formDy=h. This iterative method is run until a stopping
condition is satisfied, which requires that the norm squared
of the residual be a fixed, small fraction of the norm
squared of the source vectbr At the n'" iteration, we de-
termine the residual, as a cumulative approximation to the
difference vector obtained by applying the Dirac operator to
the present approximate solutigp andh: r,=Dy,—h. We
stop the process when,|?/|h|?<e.

For the calculation ofqq) we usee=10"° for the runs
of Table | ande=10"28 for those in Table Il. For the com-

wherec andc’ are color indices. We use these wall sourcesputation of hadron masses in the runs of Table | we &se

for the 8=5.85 calculations and a combination of both wall
and point sources in th=6.0 studies. The use of wall

=108 whenLg has the values 10, 16, 24 and 48, the con-
dition e=10"1° for the casd_,=32. For the hadron masses

sources for these weaker coupling runs is appropriate sinc@mputed in the runs in Table Il we used=108 for B
the physical hadron states are larger in lattice units and better 5.7 and 6.0, ané¢=10"" for 8=5.85. Tests showed that

Overlap is achieved with the states of interest by USing thesgero-momentum projected hadronic propagators e|ght time

extended sources.

slices from the source, calculated with a stopping condition

In all cases we use a zero-momentum-projected point sinkf 10-9, differed by less than 1% from the same propagators
for the second operator in the correlation function. This isca|culated with a stopping condition of 18 for m;=0.01

obtained by simply summing the operators in E@8) and
(29) over all spatial positions in a fixed time plane=t; .
Thus, for example, we will extract the masg of the light-
est meson with quantum numbers of the Dirac mdirifxom
the larget;—t; expression:

TABLE Ill. Here we list the explicit masses that

[61]. For a quark mass)=0.01 and a 15x 32 volume with
L,=16, typically ~1500 conjugate gradient iterations were
required to meet the stopping condition. For our very light
quark massesnf;=0.001) up to 10000 iterations were re-
quired for convergence.

are included in the various mass ranges referred to in

Tables | and 1.
Mass range Mass values
0.00-0.04 0.00, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035

0.00025-0.008
0.001-0.01
0.01-0.04
0.01-0.05
0.02-0.20

0.02-0.22
0.02-0.10
0.025-0.075

0.01,

and 0.04

0.00025, 0.0005, 0.001, 0.002, 0.004 and 0.008

0.001, 0.004, 0.007 and 0.01
0.015, 0.02, 0.025, 0.03, 0.035 and 0.04
0.01, 0.02, 0.03, 0.04, 0.05

0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18

and 0.20

0.02, 0.06, 0.10, 0.14, 0.18 and 0.22

0.02, 0.04, 0.06, 0.08 and 0.10

0.025, 0.0325, 0.05, 0.0625 and 0.075
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1.2

T time separations for this relatively light quark mass make it

- more difficult to determine a plateau. Better nucleon plateaus
om are seen for larger values of; .

! gm The actual fits are carried out by minimizing the corre-

© My lated x? to determine the particle mass and propagation am-

08 % i plitude. We then choosg,;, as small as possible consistent

with two criteria. First, the fit must remain sufficiently good
that they? per degree of freedom does not grow above 1-2.
T Second, we require that the mass values obtained agree with
& those determined from a larger value ©f,, within their
Ko — o in
%@::@:@ﬂmmﬁﬁﬁé EE errors.
04 r + In order to keep the fitting procedure as simple and
straightforward as possible, we choose valued fgrwhich
can be used for as large a range of quark masses, domain
wall separations and particle types as possible. Given the
large number of Monte Carlo runs and variety of masses and
‘ ‘ L values it is possible to employ an essentially statistical
0 Y s 15 technique to determing,,. In choosing the appropriate,,
we examine two distributions. The first distribution is a
FIG. 6. Effective massmgg(t) is plotted for the 18x32, 8 simple histogram of values gf*/ DOF obtained for all quark
=6.0, Lg=16, m=0.01 calculation of themr, p and nucleon masses and a particular physical quantum number. We re-
masses. While plateau regions fex5 are easily identified fom,  quire that for our choice df.,;,, this distribution is sensibly
andm,, the nucleon fit is less satisfactory. Although a plateau maypeaked around the value 1 or lower. An example is shown in

be recognized for &t<8, the rapidly growing errors make such an Fig. 7 for theg=6.00p mass determined from a wall source
identification problematic for this case. More satisfactory nucleonfgy three values of . 5, 7 and 9.

min -
plateaus are seen for the larger valuesnpt In the second distribution we first determine a fitted mass
m;(t) and the corresponding errot(t) for the statd, where

The final step in extracting the masses of the lowest-lyinghe lower bound on the fitting range is given byWe then
hadron states from the exponential behavior of the correlachoose d&’ >t and examine a measure of the degree to which
tion functions given in Eq(31) is to perform a fit to this m;(t) andm;(t’) agree. The measure we choose is
exponential form over a time range chosen so that this
single-state description is accurate. Choodgirg0, we use m;(t") —m;(t)
the appropriaté;— N;—t; symmetry of Eq.(31) to fold the St t)= ———.
correlator data into one-half of the original time range O ai(t’)
<t;<N;. We then perform a single-state fit of the form in _ o
Eq. (31) for the time rangemn=<t;<tma=Ng/2. Typically  In Fig. 7 we show the distribution of values 8f(t’,tr) for
tmax iS SIMply set to the largest possible valtig,,=N,/2.>  thep meson for allt’>tq, and three choices fdr,,: 5, 7

The lower limit, t,,,, is decreased to include as large aand 9. The distributions include mesons with all \{alues of
time range as possible so as to extract the most accuraf@=0.01 and all values fok ¢ used in the calculations.
results. Howevert,,, must be sufficiently large that the 2'” our sample Fig. 7, we have a reasonable distribution of
asymptotic, single-state formula in E¢B1) is a good de- x“/DOF values for all three choices i, with only a slight
scription of the data in the time range studied. These issudgpProvement visible asy, increases from 5 to 9. Likewise
are nicely represented by the effective masgy(t), with the the distribution of mass values foundtat-t,;, is in reason-
parametersA and m=mg(t) in Eq. (31) determined to ex- able agreement for each value tgfi, with a slight bias to-
actly describe the hadron correlator at the timesdt+1.  ward larger values being visible at the lowest valyg,
To the extent thamgg(t) is independent of, the data are in = 5. Examining this figure and corresponding figures for the
a time range which is consistent with the desired single stat@, for our quoted masses, we chdgg,=7 for these states.
signal. As an illustration, this effective mass is plotted in Fig. The fact that Fig. 7 does not sharply discriminate between
6 for the 77, p and nucleon states in the 3632, 3=6.0, these three possible choicestgf, implies that we will get
L¢=16, m;=0.01 calculation. Good single-state fits are easyessentially equivalent results from each of these three values.
to identify from the plateau regions for the casenof and Our choices ofty,, are as follows. Foig=5.7, where

m,. For the nucleon the rapidly increasing errors at largelonly point sources are usetly, was chosen to be 7 for the
7, p and nucleon. FoB=5.85, hadron masses were deter-

mined only from the doubled X 64 configurations using
IFor the=5.7 runs we used smaller valuestgf, for the w and  Wall sources and the valug,,=6 for thep and 7 for therr

p fitting, typically 12 or 14, in order to avoid the effects of rounding @nd nucleon. Finally fo3=6.0 the most accurate mass val-
errors. These finite-precision errors, caused by a poor choice dfe€s were determined using wall sources and it is these mass

initial solution vector, were seen at the largest time separations fofesults which we quote below. Hetg;, was chosen to be 7
the very rapidly falling propagators found at this strong coupling. for the = and p and 8 for the nucleon. We were able to

effective mass
o
[+
T

=1

Fas
02t -t T T e e o e

]
=

(32
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TABLE IV. Results for hadron masses gt=5.7, $x32, Mg

=1.65,L¢=10 from 87 configurations.

FIG. 7. Distribution ofy? and
the mass difference [m;(t)
—m;(tmin) 1/ o for t>t.,;,, evalu-
ated for three values af;, for the
case of thep mass and a 6 32
lattice, with B=6.0 and m
=0.01 and.s=12, 16, 24, 32 and
48. Both distributions appear rea-
sonable for each value of,,, with
only small improvement as,
increases from 5 to 9. We choose
to quote values ofn, for all these
cases using the valug,;,=7

TABLE V. Results for hadron masses g&=5.7, $£x32, Mg

=1.65,L¢=16 from 67 configurations.

m; m, m, my m; m, m, my
0.02 0.52812) 0.823) 1.246) 0.02 0.48319) 0.8712) 1.2514)
0.04 0.60412) 0.87419) 1.324) 0.04 0.56212) 0.896) 1.3610)
0.06 0.67614) 0.92218) 1.403) 0.06 0.63%7) 0.934) 1.448)
0.08 0.74412) 0.97115) 1.493) 0.08 0.7025) 0.992) 1.527)
0.10 0.80810) 1.01712) 1.562) 0.10 0.7685) 1.01918) 1.596)
0.12 0.86%9) 1.06310) 1.632) 0.12 0.8315) 1.06415) 1.654)
0.14 0.9298) 1.1089) 1.70518) 0.14 0.8926) 1.10913) 1.71(4)
0.16 0.9875) 1.1538) 1.77915) 0.16 0.9545) 1.15312) 1.783)
0.18 1.04385) 1.1997) 1.85314) 0.18 1.0125) 1.19910) 1.853)
0.20 1.0975) 1.2446) 1.92813) 0.20 1.0726) 1.24310) 1.932)
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TABLE VI. Results for hadron masses g&=5.7, $x 32, Mg
=1.65, Ls=24 from 84 configurations.

PHYSICAL REVIEW D 69, 074502 (2004

TABLE VIII. Results for hadron masses #=5.7, $x 32,
Ms=1.65,Ls=48. The results fom;=0.04 are obtained from 335
configurations, while the others are from 169 configurations. One of

m; m, m, my the original 336 configurations had eigenvalues very close to zero
requiring nearly 11 000 conjugate gradient iterations to converge.
0.02 0.442) 0.848) 1.44) The resulting pion propagator was so large as to dominate the av-
0.06 0.61812) 0.943) 1.316) erage of the(w%(x)w2(0)) correlator for them;=0.0 case. We
0.10 0.7568) 1.01415 1.503) omitted this single configuration from this analysis.
0.14 0.88%25) 1.10211) 1.66216)
0.18 0.9991) 1.1899) 1.817112) my m, m, my
0.22 1.1084) 1.2749) 1.95911) 0.02 0.37410) 0.9912) 10119
0.04 0.4904) 0.872) 1.226)
extract quite consistent results with larger errors using point 0.06 0.5807) 0.953) 1.385)
sources. Here the needed valug gf, was 10 for ther and 0.10 0.7305) 1.01413) 1.522)
p andt,,;,=8 for the nucleon. Finally, the errors are deter- 0.14 0.8604) 1.0988) 1.65817)
mined for each mass by a jackknife analysis performed on 0-18 0.9814) 1.1846) 1.80914)
the resulting fitted mass. 0.22 1.0984) 1.2725) 1.96212)

C. Hadron mass results

with ensembles of configurations on which all relevant quark

mass values were studied. Added configurations where only

The hadron masses that result from the fitting proced“reﬁarticular quark masses had been evaluated were not in-
described above are given in Tables IV-XV. Omitted from, ,qaq

this tabulation are the masses for the more difficult cases A simple linear fit provides a good approximation to all
m;=0.0 and 0.001 which are discussed later in Sec. V. | he masses considered in this section, in particularnipr

eagh Cgse the pion mass was determined ffom th%0.0L In Table XVI we assemble the fit parameters for the
(A(X)A5(0)) correlator. While the results presented in these —5.7, 8% 32 masses, while Tables XVII, XVIIl and XIX
tables will be used in later sections of this paper, there argontain the fit parameters for thg=5.7, 16x32, B
some important aspects of these results which will be dis_ g g5 1332 andB=6.0, 16x32 calcuiations re,spec-

cussed in this section. In particular, the dependence on Vo o\ The parameters presented in these three tables were
ume and them; dependence of thg and nucleon masses

ilb ned obtained by minimizing a correlateg? which incorporated

witt e examined. - the effects of the correlation between hadron masses ob-
We begin by examining the dependence of e@nd  yaineq with different valence quark masses,, but deter-

nucleon on the input quark mass; . In Figs. 8, 9 and 10 we

) mined on the same ensemble of quenched gauge configura-
plot the p and nucleon masses as a functionnuf. As the  {i5ns The errors quoted follow from the jackknife method

figures show, each case is well described by a simple lineaf,q the small values of%/DOF shown demonstrate how

dependence om;. The data plotted in these figures appearq|| these linear fits work. Because of the visible curvature
in Tables VII, Xl and XIII, respectively. Also plotted in Fig.

1 Its f ith q ks. Th in the pion mass for ouy8=>5.7 and 6.0 results, the linear fits
0 are our results fom, with non-degenerate quarks. The ¢, mZ were made to the lowest three mass values. Fopthe
coincidence of these two results implies the familiar conclu

sion that to a aood aporoximation the meson mass de en- nd nucleon and all three massesg@at 5.85 we fit to the
on the sim Iegavera pep of the quark masses of whichpit is asses obtained for the full rangerof values.

P erage ot quark i . Next we consider the effects of finite volume by compar-
composed. For simplicity in obtaining jackknife errors, we

: . . ) '~ ing the &x32 and 16x 32, volumes used in th8=5.7,
have included in these linear fits only that data associate =48 calculation. The value af_=0.383(4) found at the

lightest m=0.02 mass value for the 1832 implies a
Compton wavelength of 2.6 in lattice units. This lies between
1/4 and 1/3 of the linear dimension of the smaller lattice,

TABLE VII. Results for hadron masses #=5.7, $x32,
Mg=1.65,L,=32. The results fom;=0.02 are obtained from 278
configurations, those fom;=0.04 are from 184 configurations,

while the others are from 94 configurations. TABLE IX. Results for hadron masses At=5.7, 8x32, Mg

=1.65, Ls=64 from 76 configurations.

my m, m, my

0.02 0.40%6) 0.835) 1.1711) Mt Ma M My
0.04 0.5025) 0.874) 1.165) 0.02 0.36414) 0.98(17) 1.23)
0.06 0.59%9) 0.922) 1.368) 0.06 0.5628) 0.965) 1.184)
0.10 0.7487) 0.99516) 1.503) 0.10 0.7198) 1.012) 1.423)
0.14 0.8726) 1.08411) 1.662) 0.14 0.8547) 1.08912) 1.622)
0.18 0.9915) 1.1789) 1.82716) 0.18 0.978) 1.1769) 1.78417)
0.22 1.1044) 1.2747) 1.97415) 0.22 1.0975) 1.2657) 1.93914)
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TABLE X. Results for hadron masses 5.7, 16x 32, Mg
=1.65, Lg=24 from 73 configurations.

m; m,, m, my
0.02 0.4175) 0.854) 1.179)
0.06 0.5974) 0.90912) 1.294)
0.10 0.74%4) 0.9909) 1.472)
0.14 0.87%4) 1.0826) 1.64214)
0.18 0.9943) 1.1755) 1.80016)
0.22 1.1084) 1.2654) 1.95316)

TABLE XI. Results for hadron masses @=5.7, 16x32, 9 ) !
Mg=1.65, L;=48. The results form;=0.02,0.04,0.06,0.08 and fects. This is borne out by comparing the data in Tables VIl
0.10 are obtained from 106 configurations, while the others ar@nd XI where the two sets of masses agree within errors.
from 61 configurations.

m; m, m, my
0.02 0.38%4) 0.895) 1.00(4)
0.04 0.4824) 0.862) 1.233)
0.06 0.5772) 0.91818) 1.26415)
0.08 0.6503) 0.9519) 1.37516)
0.10 0.7292) 0.9899) 1.44910)
0.14 0.86%3) 1.0837) 1.62314)
0.18 0.9863) 1.1735) 1.78612)
0.22 1.0974) 1.2645) 1.94212)

TABLE XII. Results for hadron masses &=5.85, 13X 32,
Ms=1.9, Ls=20, 100 configurations.

m; m, m, my

0.0250 0.358%) 0.62715) 0.84424)
0.0375 0.4263) 0.65010) 0.91916)
0.0500 0.48®) 0.6758) 0.98513
0.0625 0.5363) 0.7066) 1.04410
0.0750 0.5883) 0.7385) 1.1069)

TABLE XIII. Results for hadron masses #=6.0, 16X 32,
Mg=1.8, L,=16 from 85 configurations.

my m, m, my

0.010 0.2083) 0.44210) 0.62130)
0.015 0.23®) 0.4517) 0.64821)
0.020 0.27() 0.4626) 0.66815)
0.025 0.2983) 0.475%5) 0.68612)
0.030 0.324) 0.4885) 0.70610)
0.035 0.34®) 0.5024) 0.7299)
0.040 0.3712) 0.5154) 0.7529)
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TABLE XIV. Results for hadron masses with nondegenerate va-
lence quarks aB=6.0, 16x32, Ms=1.8, L=16 from 98 con-
figurations.

mg(1) mg(2) mz; m,

0.010 0.020 0.232) 0.44112)
0.030 0.020 0.292) 0.4718)
0.040 0.020 0.322) 0.48717)
0.050 0.020 0.342) 0.5027)
0.075 0.020 0.40@) 0.5386)
0.100 0.020 0.452) 0.5745)
0.125 0.020 0.502) 0.6084)

suggesting that we should not expect large finite volume ef-

This apparent volume independence within our errors can
be nicely summarized by comparing the coefficients of the
linear fits of thep and nucleon. Writing the twa and b
coefficients from the tables as a pédr,b], we can compare
the 16x32 values from Table XVII[0.775(18),2.20(7)
and[1.034),4.13(17) for the p and nucleon with the cor-
responding numbers for the®832 numbers from Table
XVI: [0.790(13),2.18(5) and[1.134),3.79(15). Form_
the results on the two volumes agree to within the typical 1%
statistical errors. However, for the case of thand nucleon
masses, finite volume effects may be visible on the two stan-
dard deviation or 1-2 % level for the more accurate masses
obtained form;=0.06.

Since in lattice units thep mass decreases by about a
factor of two as we changg from 5.7 to 6.0, the 16spatial
volume used ap=6.0 should be equivalent to the’ &ol-
ume just discussed @=5.7. Thus, we expect that theand
nucleon masses that we have found on thi$ i@ume will
differ from their large volume limits by an amount on the
order of a few percent while the finite-volume pion masses
may be accurate on the 0.5% level.

IV. ZERO MODES AND THE CHIRAL CONDENSATE
A. Banks-Casher formula for domain wall fermions

In the previous section, our results for quark masses
=0.01 were given, where the smallest valuesngf gave
m_/m,~0.4. Since the domain wall fermion operator with

TABLE XV. Results for hadron masses #&=6.0, 16x 32,
Ms=1.8, Ls=24 from 76 configurations.

my m,, m, my

0.010 0.2015) 0.42311) 0.66443)
0.015 0.2364) 0.4419) 0.64425)
0.020 0.26B3) 0.4587) 0.653198)
0.025 0.2983) 0.4736) 0.67415)
0.030 0.32(8) 0.4875) 0.69812)
0.035 0.3483) 0.5025) 0.72311)
0.040 0.368) 0.5164) 0.74810)
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FIG. 8. Thep (O) and nucleon masse&]() plotted as a func-
tion of m; for the case of3=5.7, Ms=1.65, L;=32 and a §
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FIG. 10. Thep (O) and nucleon masse§]() plotted as a func-

tion of m; for the case of3=6.0, M5s=1.8, L;=16 and a 18
X 32 lattice. The lines represent least squares fits using the param-

X 32 lattice. The lines represent least squares fits whose paramete@ters appearing in Table XIX while the data plotted appear in Table
appear in Table XVI while the data plotted appear in Table VII. XIIl. In addition to these hadron masses computed for the case of
Note the relatively low value for the; = 0.04 nucleon point results equal mass quarks, we have also plotteddhmeass for the case of
from the comparison of two somewhat different data sets. As mennon-degenerate quarks given in Table XIV as a function of the
tioned in the text, the linear fit was obtain from the 94 configura-average quark masan;(1)+m(2)]/2. These points are plotted as

tions identified in Table | while then;=0.02 and 0.04 points plot-

ted also include the further 184 configurations referenced in
where zero modes are not suppressed by the fermion deter-
minant, these modes can be expected to produce pronounced

Table Il.

m;=0 should give exact fermionic zero modes las—»,
observables determined from quark propagators at finjte

filled diamonds.

effects. One important practical question is the size of the
quark mass where the effects are measurable. To begin to

when small quark masses are used, should show the effedfvestigate this we now turn to the simplest observable
of topological near-zero modes. For quenched simulationsyhere they can occu(gq).

TABLE XVI. Valence extrapolationsg+bmy) for mf,, m, and
my at B=5.7, 8x32, Ms=1.65. The fitting ranges used are de-

0.5

FIG. 9. Thep (O) and nucleon masse&]() plotted as a func- m
tion of m; for the case of3=5.85, Ms=1.9, L;=32 and a § m

0.02

0.04

m

0.06

0.08

scribed in Sec. Il C.

Mass Lq a b X2/DOF
m2 10 0.20117) 4.5517) 5.35
m, 10 0.79219) 2.266) 0.55
my 10 1.184) 3.7417) 0.13
m2 16 0.14732 4.3236) 1.59
m, 16 0.79824) 2.2310) 0.17
My 16 1.218) 3.6029) 0.28
m2 24 0.09316) 4.8212) 1.47
m, 24 0.78621) 2.247) 0.34
my 24 1.173) 3.6014) 1.01
m2 32 0.07610) 4.8312) 4.81
m, 32 0.75326) 2.3611) 0.43
my 32 1.145) 3.7822) 1.14
m2 48 0.0428) 4.9009) 0.012
o1 m, 48 0.79013) 2.185) 0.50
N 48 1.134) 3.7915 0.73
2 64 0.03911) 4.7521) 6.28
, 64 0.75622) 2.288) 0.65
64 1.036) 4.0622) 3.23

X 32 lattice. The lines represent least squares fits whose parametarg,

appear in Table XVIII while the data plotted appear in Table XII.
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TABLE XVII. Valence extrapolations g+bmy) for m%, m, TABLE XVIII. Valence extrapolations §+bmy) for m2, m,
andmy at 8=5.7, 16x32, Ms=1.65. The fitting ranges used are andmy at 8=5.85, 12X32, Ms=1.9. The masses from all five

described in Sec. Il C. values ofm; are included in the fits.

Mass L a b x*/DOF Mass Lq a b X?/DOF
m2 24 0.0726) 4.839) 7.26 m2 20 0.0243) 4.274) 2.8
m, 24 0.76412) 2.275) 1.10 m, 20 0.54914) 2.5017) 0.88
my 24 1.103) 3.8715) 0.69 My 20 0.742) 4.93) 0.81
m, 48 0.77518) 2.207) 1.04

My 48 1.034) 4.1317) 3.58

contrasts with the behavior se¢dl] above the deconfine-
L . . ment transition where it can be shown that then term
Before considering the domain wall fermion operator, we . . o

: . . remains non-zero for quenched QCD in the infinite volume
review the spectral decomposition of the continuum four_Iimit [65].) Before discussing the results of our simulations
dimensional, anti-Hermitian Euclidean Dirac operafof).? first add how thi ng : tation ofm &rm in
The eigenfunctions and corresponding eigenvalues of sycff© first address how this Simple expectation ofra lerm in

an anti-Hermitian operator satisfy (gq) due to zero modes should appear for the domain wall
fermion operator.
(D@ +m) g, =(iN+m) g, (33 We will find it usgful to compare the spgctrum and prop-
erties of the Hermitian domain wall fermion operatoy,
with \ real and with the Hermitian four-dimensional operat@!;”, defined
b
iy, N=0, a4 Y
Vs = W, AN#O. (34
D= 75(D@+m). (39)

(We use\ to label eigenfunctions and eigenvalues of the
anti-Hermitian operator, saving, for the “Hermitian” case
defined below. In the continuum, the presence of zero -
modes is guaranteed by the Atiyah-Singer index theorem for . . b
a gluonic field background with non-zero winding numbertor can be given in terms of and ¢, given above. IfA

he eigenvaluesy, and eigenvectorsw)\H, for this opera-

[62,63. =0 we immediately get an eigenvalug = = m for the Her-
The four-dimensional quark propagatsf?), can be writ- mitian operator, and an eigenvector with the definite chirality
v +1 or —1. ForA#0, the ei ab () l
ten as . , genvectors db},’ are linear
combinations ofiy, and_, and the corresponding eigen-
(4)_3 I )P (Y) @5 values are Ay==VA2+m?2.  Since @®W+m)!
Y4 i+ m =(D) " 1ys, we have

leading directly to the Banks-Casher relatid@#] (with our

normalization for the chiral condensate _ 1
—(Y) =5 (@D +m) ™) (39)
_ 1 {|v]) m 1
_(lﬂw)—a - E<§0 )\2+m2> (36) )
- o = T {T(rs(DE) ) (40)
_ . p

=12, M 87
TABLE XIX. Valence extrapolationsg+bmy) for m, m, and

where v is the winding number ang(\) is the average mN.at,B.= 6.0, 16x32, Ms=1.8. The fitting ranges used are de-
density of eigenvalues. For quenched QGi¥)\) has no  Scribed in Sec. il C.

dependence on the quark mass. For both quenched and fatf 5
QCD, one expects thav|~\V, as is the case for a dilute " 2>> Ls a b X"/DOF
instanton gas model. Thus, zero modes lead to a divergei2 16 0.009820) 3.149) 0.029

1/m term in(qq) whose coefficient decreases ag\l/ (This m, 16 0.4048) 2.78911) 0.48
My 16 0.56621) 4.6629) 0.34

m?2 24 0.009426) 3.097) 0.32

’The naive lattice fermion operatorD = y,(Uy ,, s+ 1u.x/ m, 24 0.40Q10) 2.8612) 0.38
—UI,’Mﬁx,’;VX,) and the lattice staggered fermion operator havem, 24 0.54619) 5.0533) 0.65

eigenvalues and eigenvectors which also obey(B4).
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FIG. 11.(qq) for quenched simulations done oA>832 lattices
at 3=5.7 forL;=32 (O) andL,=48 (J). The more pronounced
rise asm;— 0 for L;=48 shows that the expected topological near-
zero modes have smaller values fgrand/orémy; for this largerL .

1 <E l//xH(X)TVSl//AH(X)>

FIG. 12. {(qq) for quenched simulations done on®¥632 lat-
tices at3=6.0 for Lg=16 (O) andLs=24 (O0). The more pro-
nounced rise asm;—0 for Lg=24 shows that the expected topo-
logical near-zero modes have smaller valuesNoand/or sm; for
this largerL ;.

(41 Herens; is an overall normalization factor and we have de-
5
fined ém;, which enters as a contribution to the total quark
: (4) mass for thath eigenvalue. Fobm;=—m;s, Aﬁ i is at its
Since forDy, S ) . |
minimum. Modes which become precise zero modes when
m L,—o will have non-zero values fox; and ém; for finite
>yl (%) Vs, (X) =— (420 Ls. We will refer to such modes as topological near-zero
x M modes.
From perturbation theory im;, one can easily see that

- m X'}\H )\H

Eq. (41) also reduces to the Banks-Casher relation, (B@).
For finite mass, the zero-mode Hermitian eigenfunctions are dAy i

chiral, while other eigenfunctions have a chirality propor- dm :<AH,i|75Q(W)|AH,i> (45)
tional to the mass. This will be important in our comparisons
with domain wall fermions. while the chain rule applied to E¢44) gives

For largelLg, it is expected that the spectrum of light
eigenvalues of the Hermitian domain wall fermion operator, dAy i(my) ngi(mf+ om;)
Dy, should reproduce the features of the operdddf . am, Ao - (46)
SinceDy depends continuously amg, for smallmy its ith '
eigenvalue must have the form Combining this with Eq(25) gives

Af=a/ +b/mi+c/mi+ - (43

(— >_ 1 E mf+ 5mi (47)
. . . ad 12v i )\i2+(mf+ 5mi)2
To make a connection with the normal continuum form for

the eigenvalues we reparametris ; as which agrees with the Banks-Casher form, B&¥) with the
) s 5 addition of thei dependent mass contributidm; . Thus, the
Afyi=ng AT+ (mg+om) )+ - - - (44 parameted; in Eq. (44) should be identified with the eigen-

TABLE XX. Results for fits of(qq) to the form given in Eq(48).

L3X N{X Lg B a_; a a, M qq)

8%x32x 32 5.7 6.0(6) 1078 1.76(3)x 1073 6.53(4)x 1072 4.0(4)x 1073
83X 32x48 5.7 6.8(7)x 1078 1.92(5)x 1073 6.04(14)x 102 1.7(2)x 1073
16%x 32X 32 5.7 2.5(4)x10°8 1.86(2)x 103 6.53(2)x 102 9.3(9)x10° 3
163X 32x 16 6.0 1.0(1x10°© 3.87(8)x10°4 8.64(1)<10°2 5.6(3)x10 4
16°x32x 24 6.0 9.1(10x 1077 3.62(9)x 104 8.64(2)x 1072 1.1(1)x 104
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0.001 P cover the ranges ©0.04 and 0.000250.008, defined in

L T S R =Y . g
-0001 | ' oo Table IlI. Both values fotg show an increase ir-(qq) for
0,001 very small quark mass, an effect expected from the presence
TR Wi, m=0005 of a non-zero value fof|»|). (This effect was first reported
~0-001 for domain wall fermions based on quenched simulations
0002 b _ done on §x32 lattices with3=5.85, M;=1.65 andLq
0003 [ 7y meooon =32 and listed in Table [22].) B
Motivated by the form of Eq(47) we have fit—(qq) to
0008 1AM /AN b VN N el m=0.0005 the following phenomenological form:
ooos Gfiacisl)
0.004 oy a1
e ==t m=0.00025 —(qq)= —————+apgta;ny (48)
~0.004 ‘~ M;+ 6M(qq)
0.008 i S batd Atetl f i - A AT _00
SN S T A SR A wherea_;, ag, a, and My, are parameters to be deter-
0 40 80 120 160 mined.ém g, represents a weighted averagesaf; over the

configuration number A ) . —
eigenvalues which dominatgqg) for small m;. The mea-

FIG. 13. Evolutions of-(qq) (solid line) and—{qysq) (dotted  surements ofqq) for different values ofm; are strongly

line) for 16°x 32 lattices af3=6.0 with Ls=16. For smaller values  correlated, being done on the same gauge field configurations
of my the evolutions show pronounced fluctuations which have opith, generally, the same random noise estimator used to
posite sign foxqq) and(qysa), indicating the presence of eigen- determine(qq) for all the masses. The common noise source
functions ofDy, at thisL¢ which are very good approximations to makes the signal for the i divergence particularly clean,
the exact topological zero modes expected at-. Note that the  gjnce the overlap of the topological near-zero mode eigen-
vertical scaleincreasesfor the smaller values af . vectors with the random source does not fluctuate on a single
configuration. This strong correlation precludes doing a cor-
related fit of(qqg) to m;, since the correlation matrix is too
singular. Thus, the fits in this section are uncorrelated fits of

values of the continuum anti-Hermitian operaf*. As
indicated by Eqs(45) and(46), Sm; should represent a con-
tribution to the eigenvalue from the chiral symmetry break-

- - - mite () O M.
:_ng effects of coupling of the domain walls, present for finite Table XX gives the results for fits to the form of E@8)
S

for our B=5.7, 5.85 and 6.0 simulations. All the fits have a
value y?/DOF less than 0.1, a consequence of doing uncor-
related fits to such correlated data. In Fig. 11, one sees that
the fit represents the data quite well. Continuing with 8

X 32 lattices at3=5.7, Table XX shows the fit parameters
are very similar folLs= 32 and 48, except fobmgg, , which

These arguments show that the domain wall fermion chi
ral condensate will grow as i for gauge field configura-
tions with topology, provided g is large enough to make
om; and\; small. The continuum expectation of ari/di-
vergence is modified at smath; by the non-zero values of
om; and \; for topological near-zero modes. For a single AU
configuration, the precise departure from andtivergence Qrops from 0.'0049') 10 0.00172). This indicates a decrease
is dominated by the eigenvalues with the smallest values fof" 5“ asls mcrea_seg. — )
sm; and \;; for an ensemble average, the departure from Figure 12 is a similar plot of-(qq) for 16°x 32 lattices
1/m; behavior depends on the distribution of valuessof; . with B=6.0 forL;=16 and 24. The rise ifgq) for smallm;
With this understanding ofqq) for domain wall fermions, ~€xhibits the same general structure as for feS.7 data in
we turn to our simulation results. Fig. 11, but the effect is larger. Herémj, falls from
0.000563) for L=16 to 0.0001(1) for L =24.
_ To further demonstrate that the divergence for small

B. Quenched measurements ofqq) is due to eigenfunctions db,, that represent zero modes of

In this section we discuss our results fQE(D for @ definite chirality, Fig. 13 shows the evolution of both

quenched QCD simulations with domain wall fermions. —{dq) (solid lineg and —(qysq) (dotted lineg. These evo-
Tables 1, Il and Il give details about the runs whegg)  lutions are for 18x32 lattices atf=6.0 with L =16.
was measured. The most important aspect of the run paran@enfunctgns with a positive chirality contribute equally to
eters is the small values fan; used, includingm;=0.0  (qd) and (qysd), while negative chirality eigenfunctions
where finiteLs keepsAy non-zero, allowing the conjugate contribute with an opposite sign {@ysq). The topological
gradient inverter to be used. Of course the number of conjurear-zero modes should be approximately chiral and, for

gate gradient iterations becomes quite large. smaller values ofn;, one see large fluctuations {aq) and

Equation(47) shows that we should expect large values<ay5q>_ Some of the fluctuations have the same sign and

for —(qq) for smallmy for configurations with topological some are of opposite sign. Thus, we have configurations with
near-zero modes. Figure 11 showsqq) for 83X 32 lattices  eigenfunctions which are very good approximations to the
at B=5.7 with bothL;=32 and 48. The quark masses usedexact zero modes expectedlag— .
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As mentioned earlier|v|)/V should decrease with vol- for m;+m,=0. In particular, additional chiral symmetry
ume, with the asymptotic dependence given by\1/ To breaking will come from the effects of higher dimension op-
investigate this numerically, we have measufgd) on both  erators suppressed by factorsaffor n=2. Thus, we can-
83x32 and 168x32 lattices atB=5.7 and 5.85 withL, ~ not expectm_ to vanish precisely at the poim;= —my,
=32 and show th@=5.7 results in Fig. 1. The graph clearly but perhaps at a nearby point, removed frem,. by terms
shows that the 1, divergence is drastically suppressed by Of O(a%).
the larger volume. The coefficient of thami/term falls from (2) Finite Ls. The residual massn,.s, should represent
6.0(6)x 10 © to 2.5(4)x 10 ® as the volume is changed by the finite L effects for physics describable by a low-energy
a factor of 8. This may be somewhat misleading, sinceeffective Lagrangian. However, there will be additional ef-
SM(qq) also changes by a factor of about 2, likely due to thefects of finiteL  for observables sensitive to ultraviolet phe-
phenomenological nature of the fit and the small effects ohomena. Further, a quantity with sufficiently severe infrared
the 1i; pole for the larger volume. Putting aside this sys-singularity may show unphysical sensitivity to those
tematic difficulty, the It coefficient decreases by a factor Ls-dependent eigenfunction4,, ;) (and the parameters; ,
of 1/1/5.8, showing the general behavior expected but not inti and om; of the previous sectignwith small eigenvalues
precise agreement with the expected asymptotic form. Fof\H, -

B=5.85, where the physical size of the lattices is smaller, (3) Topological near-zero modes. The previous section
the 1in; coefficient falls from 3.8(3X10°° to 0.60(9) has shown these dominatgq) for small quark masses
%1078, a factor of 6.3. We have not seen the expecte®/1/ (m;=<0.01) for the volumes we are using. From the Ward-
dependence for the m} coefficient, but it does decrease Takahashi identity, these effects must also be present in the
with volume in accordance with general ideas. It is possiblepion correlator w?(x) w(0)).

that on the larger 1< 32 volume, the 1 rise is not large (4) Finite volume. For staggered fermions, where the
enough to allow its coefficient to be determined without sys+emnant chiral symmetry at finite lattice spacing requires
tematic errors. m2=0 when the input quark mass is zero, the finite volumes

Thus, we have clear evidence for topological near-zeraised in simulations have been seen to merlﬁ;e non-zero
modes in our quenched simulations using domain wall ferwhen extrapolated to the chiral limit from abo{y86,67].
mions. They are revealed through a largendfise in our  Such an effect may also be expected to occur for domain
values for —(qq), the presence of configurations where wall fermions.

<aq> and <a75Q> are large and of opposite sign and the _(5) Analyti(? results argue for the2 presence of “quenclhed
volume dependence of the coefficient of thenlterm. We  chiral logs” with the dependence ofiZ. on the quark mass in
have extracted a quantitym,gg , from a phenomenological dquenched QCD different from that of full QC[B8—70.

fit to <EQ>, which represents the effects of finitg on the In this section we study the pion mass in the limit of small

. ) ) i = quark mass. Demonstrating consistent chiral behavior for the
eigenmodes with small eigenvalues which domir@g) for o mass in the limitng+m,es—0 is a critical component in

m;—0. Physical values fofqq) in the chiral limit, without  establishing the ability of the domain wall fermion formal-
the contribution of the topological near-zero modes, will beism to adequately describe chiral physics. If we discover that
presented in Sec. VII. We now turn to a discussion of howthe limit m;+ m,.<— 0 is obscured by larg®(a?) effects or
these zero modes, and the expected light modes responsiligge violations of chiral symmetry caused by unanticipated
for chiral symmetry breaking, are evident in measurementgropagation between the domain walls, little may be gained
of the pion mass. from this new formalism. For the and nucleon masses re-
ported in Sec. lll, the masses were shown to be well fit by a
linear dependence on the input quark mass, Any pos-
sible non-linearities are not resolvable within our statistics.
For domain wall fermions with.i=, the chiral limitis  For the pion, the statistical errors for these valuesnpfare
achieved by takingn;=0. For our quenched simulations at Smaller and we have also run simulations at smaller values
finite Ly, we must investigate the chiral limit in detail to for m¢ so we might hope to learn more about this important
demonstrate that the changes from the- limit are under ~ quantity. We begin by investigating the effects of topological
control and of a known size. As is discussed in Sec. Il B, fornear-zero modes on the pion.
low energy QCD physics the dominant effect of finitg
should be the appearance of an additional chiral symmetry
breaking term in the effective Lagrangian describing QCD.

This term has the fornrm,.g(x)q(x) and in the continuum _ _
limit its presence will maken_. vanish atm,= —m,.. up to _We have seen that topological near-zero modes dominate
terms of ordera. Our investigation of the chiral limit is (ad) for smallm; and, by continuity, they will also alter the
made more difficult since there are other issues affecting thisalue for (qq) determined with larger quark masses.
limit, beyond havingL finite. For domain wall fermion Through the Ward-Takahashi identity, these modes also ap-
quenched simulations, the chiral limit may be distorted by: pear in the pion correlato{%(x) #*(0)) and therefore can

(1) Ordera? effects. Since we are working at finite lattice enter in the determination of the pion mass in a lattice simu-
spacing chiral symmetry will not be precisely restored everation. Alternatively, the axial-vector correlator can be used

V. THE PION MASS IN THE CHIRAL LIMIT

A. Topological near-zero mode effects on the pion:
analytic considerations
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to measure the pion mass and the zero modes may affect thisle” piece,a_;, may contain an additional \t#? term aris-
correlator differently. It is vital to understand the role of ing from zero modes. Note, a particular order of limits must
these topological near-zero modes, since a study of the chirble understood when interpreting E&§4). One expects that
limit of m2 depends on an accurate measurement of the masse usual relation m2om will hold only when m

of Fhe pion state. In this section_we will study the way in > 1/|(qq)| [71]. Although this prevents our taking the
which topological zero-modes might be expected to effect o |imit of Eq. (54), it is fully consistent with the domain
pion correlation functions for the continuum theory using ourmq« 1 /Y2 where the Th? term in Eq.(54) may be as large as
Before proceeding, we first establish our notation for sushe pion. For domain wall fermions at finite, these pole
ceptibilities and the integrated Ward-Takahashi identity. Inierms will be rendered less singular by the presence of the

general we define dm; terms in the eigenvalues f@,, .
1 Lattice measurements of the pion mass come from the
Xco=T5 > (C(x)D(0)) (49  exponential decay of a correlator liker®(x) 7%(0)) in the
X

limit of large |x|. Having examined the zero mode effect in
the somewhat simpler susceptibilities, we will now investi-

whereC andD are any two hadronic interpolating fields. In gate the topological zero mode contributions to two-point

particular functions from their spectral decomposition to understand
1 how zero modes can distort measurements of the pion mass.
Xan= 15 2 (m(x)7%(0)) (50)  We have
X
. (m2(x)m(0))=(T S sS5 7s]) (55
Xan= 75 2 (ASOAG(0) (59

- YO0 g (X)) (0) 4, (0)
1 S (inemyin +m)
X (o™ 12 EX: (T (mpy(X) 7%(0)) (52) 56

First we consider the terms in the sum where botand\’

re zero. This gives a? pole in(7?(x) 72(0)), provided

e eigenfunctions in the numerator are non-zern abd 0.
Integrating(7?(x) #*(0)) overx shows that these topologi-
cal near-zero modes give then® contribution toy...] The
terms in the sum where neithér or A’ are zero should
include the small eigenvalues which are responsible for the
Goldstone nature of the pion. For large, the total contri-
bution to{ 7%(x) 7?(0)) from these modes should be propor-
tional to

where no sum ovea is intended and the factor of 1/12 has
been introduced to maintain consistency with our somewh
unconventional normalization for the chiral condensate giverﬁ
in Eq. (22). Then the Ward-Takahashi identity, E40), with

0(0)==?%0) and summed over becomes

me’JT7T+X’7T(mp)7T: _<EQ> (53)

which we will refer to as the integrated Ward-Takahashi
identity.

We first consider Eq(53) for largelL, where we should R
recover the continuum version of the identity. To simplify the ol (o) )2 Vo i 5
presentation, we start with the notation of Sec. IV A for the (O m(O)]m)[*vm. |x|%2 ®7
continuum four-dimensional anti-Hermitian Dirac operator.
We immediately deduce from E¢63) that a 1/ divergence  (Integrating overx results in an overall factor afZ in the
in (qq) from topological zero modes dictates anf/diver- ~ denominator, which produces thenifpion pole inx . .)
gence iny,,. In addition, . should have a m diver-  Lastly, the terms with eithek or A" zero, but not both, can
gence for large volumes from the pion pole and, as we willPe written as
see below, there can also be anJgole from topological zero
modes. However, the volume dependence of these various <

pole terms should be different. Pole terms from topological
near-zero modes should have a coefficient whidb (¥ ~ 2

s w1<xm/(x>w1,<om<0>>

A>0\' =0 A2+ m?

for large volumes, while the a1 term from the pion pole 1 (ECD
should be volume independent. << > = e (58
Thus, we expect K70 N+m? m

1l a, a; 0 where{Eq)nZ is the chiral condensate measured without zero
)(7”7_\/_1/2?Jr oM. (54 mode contributions. Here we have used the symmetries in

Eqg. (34) to combine thex\ terms in the sum ovex and

The coefficientsa_, anda_; should become volume inde- remove the term odd in\. Since(ﬁq)nZ should be non-zero
pendent in the infinite volume limit. However, the “pion asm—0, we see that the contribution to the correlator from
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terms with zero modes in one of the propagators can produceompared with the i contribution of the physical pion to

at most a Ih pole term in{=?(x) 72(0)). X==- We now turn to the question of the zero mode contri-
Thus, we expect bution.
Once again we consider the,=«~ case and use the no-
. . 1 [c_»(x,00 c_1(x,0 tation forD(*). For the axial vector correlation function, the
(m(x)7%(0)) = v + o spectral decomposition is
oMl (AS)AG(0)) = — (T S{B7075S03 7075]) (63)
+C,1/2\/m,n.|x|w+'-- (59 . .
3 In(X) vothy (X) iy ,(0) yoii, (0)

for smallm. The first two terms represent the possible zero N (=iIN+m)(iN +m) '
mode contributions. It is important to note tltat,(x,0) gets (64)

contributions from the modulus squared of the zero-mode
eigenfunctions at the points 0 ang while c_;(x,0) does The terms in the sum where bokhand\’ are zero modes
not. In particular, for a configuration with a single zero vanish here, since the zero modes have a definite chirality

mode,c_,(x,0) is positive definite, being given by andy, couples different chiral componen{€®n a given con-
" ) ) figuration, all the exact zero modes must have the same
C_2(%,0)= VX[ ho(x)|*| ho(0)[ ). (60 chirality since exact zero modes can only occur through

h | ¢ h the index theorem. Thus, there are no i terms
Thus, one could expect_,(x,0) to be a number of order the in (A3(x)A3(0)). Note that a Ih contribution to

inverse of the mean zero-mode size squared, whilgx,0) a a . L
could be much smaller due to the terms of differing signiAgEXi'?‘Oéoz)érgagggggirvggrzgﬁgi:‘az?((;:;rg);}”ﬂ_}ﬁgher

appearing in the sum over eigenmodes. : e /
For large enoughx|, only the true pion state should con- 52 of such a contribution depends on the matrix element of
vo between eigenfunctions.

tribute. Such larggx| requires a correspondingly largé The terms with neithe nor A’ a zero mode give the

with the necessary suppression of zero modes. However, at ; . - .
fixed separatior}x| in a finite volume and for simulations p%ysmal pion contribution, which should have the form

with small enoughm, the physical pion contribution to e~ MalX
(m?(x)7?(0)) can be completely negligible. For a lattice mS’ZXS ] (65)
with space-time volum&/=L3xN, and N, large, one also " |x|72
expects that the zero modes should be suppressed. Thus for
large enoughN,, zero modes should not play a role in Thus, we expect that
(m¥(x)7%(0)) and the large time limit of that correlation q
function should determine the physical pion mass without a a -1 2
ambiguity even for finite spatial volume. (Aa(X)A0(0)) = —mvl’2 +d1,2m5’4x0 |x|72

For finiteLg, the domain wall fermion spectral form, Eq. (66)
(26), gives the precise role of the topological near-zero
modes. The double sum ovar, and A, decomposes as we with other possible subleading terms from topological zero
have done above fdd*) and the dominant contribution of modes. As for the coefficiemt_;(x,0) in{#%(x)7?(0)), the
the topological near-zero modes enters ash{(m;  coefficient d_,(x,0) above involves matrix elements be-
+6m;)?) provided(AH|Q("")|A,’4> is well approximated by tween different eigenfunctions and could be quite small from
O(1)64,, Al Thus, for\; and ém; small, there should be a cancellations. Thus, even though iRA5(x)A5(0)), the

region inm; where(73(x) 73(0)) displays a ]nh? character. Physical pion contriputio_n can still b®(m®4) smaller thgn .
The pion mass can also be measured from the axial vectdpe zero mode contribution, the effects of zero modes in this
current correlator{A3(x)A3(0)). The susceptibility for this correlator are likely suppressed by the smaller coefficient
correlator, yaa, IS not constrained by the integrated Ward-d—l(x'(.)).' . . . .
Takahashi identity as ig... However, there must be a pion To finish our discussion of the topological zero modes in

pole contribution in addition to any zero mode terms. There_correlators, we now examine the spectral form of

(a(x)a(0))., where thec subscript means that we only con-

(x,0) e~ Malx|

+...

fore sider the connected part of the correlator. We find
(0] Ag(0)| )| . t t
XAA™ 2z +0O(m™") zero mode poles (5(0)0(0)) > In(X) Y5\ (X) i, ,(0) y5¢,(0)
m -0 g = . . *
(61 ¢ AN (—iIN+m)(iN"+m)
(67)
=0(m%+0(m ") zero mode poles (62

Since zero modes are eigenfunctionsygf their contribution
where we have use(D|Ay(0)|w)~m, . The physical pion to the 1m? and 1m terms in (7%(x)7%(0)) and
contribution is independent ah for smallm, which is to be  —(a(x)o(0)). are equal. Thus, we have
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FIG. 14'. The_quantltymﬁ(mf—O) from {m(x)m*(0)) for FIG. 15. The pion effective mass as a function of the source-
quenched simulations done 0A>832 lattices aj3="5.7 versud_;. sink separationt, for 83 32 lattices atg=5.7 with L= 48 and
This graph is an updated version of an earlier result based on part %ﬁ —00. The up’per panel is fror((Aa(x)Aa(O.)) (©) tshe middle
the data presented here. While a slow decreaséiim;=0) asL frcf>m .<7;'a(x)'rra(0)> () and theo Iowé)r from(v;a(x) 73(0))
increases from 32 to 64 is now visible, the effect is much Iess+<a(x)a(0)> (%). Them,=0.0 points in Fig. 2 come from fit-
dramatic than the drop seen in the more accurate values,Qf tin fromt:7ctot:.16 =0.0P g
which decrease from 0.01( to 0.00714) asL ¢ increases from 32 9 '
to 48. This contrast presumably results from the effects of both zergyut which contains both the physical pion and a heavier state

modes and non-linearity fam?(my) in the quenched approxima- from (o (x)o(0)).. Thus, to reduce the effects of topological

tion. near-zero modes in this way requires that one works with
correlators where the heavy masg state is present.
C_»(x,00 c_1(x,0 To summarize this section, we have seen how the topo-
_<‘T(X)U(O)>c=v_1/2 m2 + m logical near-zero modes for domain wall fermions should
enter the correlators which are used to determine the pion
+c e Mo |x|324 . .. (68)  mass. FoK7%(x) 7%(0)), there must be a ff? contribution

o . . from near-zero modes, compared with the/mf contribu-

for smallm. By considering( 7%(x) 7%(0)) +(co(x)a(0))c.  tion expected from the physical pion. Fgk3(x)A3(0)), the
we obtain a two point function with no zero mode effects, topological near-zero modes can contribute a term of order

TABLE XXI. Results form_ from different correlators fom; 1/my, while the phyﬁ’lcal pllff).n.Shomg %rOdUCEme contri-

<0.01. There should be a single value for the pion mass, detelbuuon' However, the coefficient of theri/ term can be

mined at asymptotically large times, irrespective of the correlatorsgn‘au' We a_lgo _havefplcq)lnted ?Ut _thalt the volume dgpendeﬂce
used. Since the correlators give different masses for the fittin the contribution of the topological near-zero modes to the

ranges used, the localized topological near-zero mode effects a rrelatqr IS d'ﬁer(.ant from the contrlbqtlor] due to the modes
important. Here PP, AA and PFSS represent the correlators responsible for chiral symmetry breaking in QCD so that the

(m3(x) 73(0)), (A3(X)AZ(0)) and (73(x) m3(0))+(a(x)o(0))c, _zero-mode effects should vanish as the space-time volume

: increases.
respectively. The above discussion explicitly addresses the behavior to
B v L, Correlator m m +2/DOF be found in a chiral theory. Thus, it will apply to the domain

il wall theory in the limitL— . We might expect two sorts of

5.7 8x32 48 PP 0.0 0.2439 1.3+0.6 modified behavior for a theory with finileg . First, the chiral
57 &x32 48 AA 0.0 0.19711) 1.5+1.0 properties of the exact zero modes which eliminate the most
57 &x32 48 PPSS 00 01201 1.8+08  singular terms from thd A3(x)A3(0)) and (7?(x)m?(0))
57 16x32 48 PP 0.0 0.268) 1.9+0.9 +(a(x)a(0)) will no longer be exact for finitd s allowing
5.7 16x32 48 AA 0.0 0.1987) 1.6+0.9 more singular terms suppressed exponentiallyjnto ap-
57 16x32 48 PP-SS 00 0190) 1.1+0.6 pear. Second the zero-mode singularities themselves may be
60 16x32 16 PP 00 0.158 o06+06 Softened by additional mass contributions to the denomina-
6.0 16x32 16 AA 00 0098) 06+x05 tors.We now turn to the results of our simulations.

6.0 16x32 16 PP-SS 0.0 0.01@3 1.0+0.6
6.0 16x32 16 PP 0.001 0.146) 0.9+0.6
6.0 16x32 16 AA 0.001 0.118%) 1.1+0.9
6.0 16x32 16 PPSS 0.001 0.0821) 0.5+0.4 The first detailed studies le’l,zT asm;—0, done on 8
X 32 lattices with=5.7 and a variety of values dfg,

B. Topological near-zero mode effects on the pion:
numerical results
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E k3 I73371 § 7 7 § % FIG. 18. The evolution of point source correlatorstat8 for
8%x 32 lattices atB=5.7 with Lg=48 andm;=0.04. The upper
045 4 8 12 16 panel is(7%(x) 73(0)), the middle—(o(x)c(0)). and the lower
t (A3(x)A5(0)). Zero mode effects seem entirely absent from these

. . . evolution plots.
FIG. 16. The pion effective mass as a function of the source- P

sink separationt, for 83x 32 lattices at3=5.7 with Ls=48 and . ith ic d ~0 ith
m;=0.04. The upper panel is frofA3(x)A3(0)) (O), the middle consistent with a monotonic decrease mir(mf— ) wit

from (m3(x)7%(0)) (OJ) and the lower from(m?(x)72(0))  IncreasinglL than that seen in our earlier stuf36]. How-
+(o(x)a(0))e (). The effective masses from the different €Ver, the dependence &n shown in Fig. 14 still cannot be
correlators are quite consistent. described by a single falling exponential and, for lakgds
falling quite slowly. In this section we will probe this issue
showed tham?(m;=0) was not decreasing exponentially to and others related to the chiral limit, using information from
zero asL—, but rather seemed to be approaching a conour simulations at botl8=5.7 and 6.0 for many values of
stant value of~200 MeV [21,61,26. The pion mass was My andLs.
extracted from(7?(x)72(0)) and the resultingn® versus Figure 2 shows results fom’ versusm; for 83x 32
m; showed noticeable curvature for the quark masses useldttices at$=5.7 with Ls=48, including results fom
which were in the range 0.02—0.22. Therefore, the extrapo=0.0. The pion mass is extracted from three different corr-
lation tom;=0 was done using only the three lightest quarkelators: (7%(x) 7%(0)), (A§(x)A3(0)) and (7%(x)7*(0))
masses: 0.02, 0.06 and 0.10. Figure 14 updates the earlier{o(x)o(0)).. For 0.02<m;=0.15, the pion masses ex-
graph in[26] with more data at.;=48 and a new point at tracted from the different correlators are in good agreement.
L,=64. The additional data do show a behavior that is moréAs m{— 0 the masses begin to disagree, presumably due to
the differing contributions of the topological near-zero
200 ' ' ' modes to each correlator. Table XXI gives our fitted pion
masses fom;<0.01. While the different correlators gener-

o
£ 100 . ally have reasonable values fg/DOF the fitted masses
é ﬂ A_ J MJL disagree substantially. For large enough separation of the in-
o ML RO TN Y T terpolating operators, the three correlators should give the
200 , , , same mass. However, we cannot take this large separation

limit in our finite volume. The results in Table XXI are the
apparent masses as determined from fitting to the correlators

100 |
Aﬂ A for finite separation of the interpolating operators.
JL/»\AAM Al ,AAA

-S8 correlator

The lines drawn in Fig. 2 are from correlated linear fits to
m2 usingm;=0.02 to 0.1. The dotted line is fan® from
(7?(x)7?(0)), the solid line for (A5(x)A5(0)) and the
dashed line fof 72(x) w3(0)) + (o (x) o(0)).. The fit results
are

AA correlator
o
.

0 ™ 200 P~ mf,=0.0538) +4.7612)m¢, x%/DOF=0.7+2.5 (69
configuration number
. ) mf,=0.042{8)+4.9({9)mf, x%/DOF=0.01+0.25 (70
FIG. 17. The evolution of point source correlatorstat8 for

8%x 32 lattices atB=5.7 with Ls=48 andm;=0.0. The upper
panel is(7?(x)7%(0)), the middle— (o (x)c(0)). and the lower
(A3(x)A5(0)). The large fluctuations that are common to
(m3(x) m*(0)) and — (& (X) o(0)), are due to zero modes and show for (7%(x)7%(0)), (A§(X)A5(0)) and (7*(x)7*(0))
that they dominate the ensemble average for the correlator t this +{o(X) o(0)). respectively. Note for large massy>0.1,

m2=0.0378)+5.046)m;, x?/DOF=1.7+2.8 (72)
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FIG. 21. The pion effective mass as a function of the source-
sink separationt, for 16°x 32 lattices at3=6.0 with L,=16 and
(0), (A5(x)AG(0)) (O) and (m%(x) m(0))+(o(x)a(0))c (©) m;=0.01. The upper panel is frofA§(x)A5(0)) (O), the middle
for quenched simulations done on3¥632 lattices at3=6.0 with from (73(x)73(0)) (O) and the lower from(m3(x)73(0))
L,=16. Form;=0.0 and 0.001, the correlators all give different +(o(X)a(0))c (©).
masses due to the differing topological near-zero mode contribu-
tions for each one. For larger; , the pion mass determination from
(m(x) m*(0)) + (o (x) o(0)), is likely contaminated by the heavy
mass states in théo(x)o(0)).. The dotted line is the fit of Eq.
(72), the solid line is from Eq(73) and the dashed line is from
Eq. (74).

FIG. 19. The pion mass squared versysfrom { 7%(x) 72(0))

=48 and m;=0.0. Reasonable plateaus are present in
(A5(x)A5(0)) and(7?(x)w?(0)), although the value for the
effective mass is markedly different. Thier?(x) ##(0))
+{a(x)o(0)). effective mass becomes very small for inter-
mediate values of. Provided the eigenvectors of the topo-
(m?(x) m2(0))+ (o (X) o(0)) gives a mass that is systemati- l0gical near-zero modes are sufficiently localized, one ex-
cally higher than that implied by the other two correlators,Pects that for large enough valuestothe effective masses
likely due to contamination from heavy states present irshould agree. Our data are consistent with this statement,
(o(x)o(0))e. with the effective masses far-12 showing possible agree-
Figure 15 shows the pion effective mass from the threénent, although the statistical errors are large here. Figure 16

different correlators for 8x 32 lattices at3=5.7 with Ly IS & similar plot, except fom;=0.04. Here the effective
mass plots show nice plateaus and consistent results. This

0.2

OAA

< PP+8S

T 3

kt

§§§§§§§

8
t

]

16

supports the presence of topological near-zero modes affect-
ing the various correlators in different ways and provides an
example where nice plateaus do not assure a correct
asymptotic result.

As a final step in demonstrating the zero mode effects in
the various correlators, in Fig. 17 the evolution of
(m?(x)7?(0)), (o(x)a(0)). and (A§(x)A3(0)) is shown
for 83x 32 lattices at3=5.7 with Lg=48 and m;=0.0.
These correlators are from a point source to a point sink and
the zero spatial momentum component is taken for the sink.
The sink is at a separatidr=8 from the source. The corr-
elators(7?(x) #*(0)) and — (o (x)o(0)). show very large
fluctuations, which are common to both correlators, showing
the presence of topological near-zero modes. These large
fluctuations are clearly dominating the ensemble average for
the correlators at this separatiars 8. The (A§(x)A3(0))
correlator does not show large fluctuations where
(m¥(x)w?(0)) and (o (x)a(0)). do, making the topological

FIG. 20. The pion effective mass as a function of the sourcel1€ar zero mode effects smaller for this correlator, as expected

sink separationt, for 16°x 32 lattices at3=6.0 with L,=16 and
m;=0.001. The upper panel is frod3(x) A3(0)) (O), the middle
from (7%(x)7*(0)) (Od) and the lower from(m?(x)w?(0))

+{o(x)a(0))c (0).

from the theoretical discussion of the previous subsection.
Figure 18 is a similar plot, for the same configurations, ex-
cept withm;=0.04. There is no evidence for a large role

being played by the topological near-zero modes.
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FIG. 22. For eac;, the average value of,, is calculated for t

the three correlators and the graph above shows the deviation of
each correlator from the average. For eawh, the result from
(A3(x)A3(0)) is shifted slightly to the right and the result from
(m¥(x) 7(0)) + (o (x) o(0)), to the left for clarity. No systematic
deviation is visible from the data.

FIG. 23. The pion effective mass as a function of the source-
sink separationt, for 16°x 32 lattices at3="5.7 with L,=48 and
m;=0.0. The upper panel is frofAd(x)A3(0)) (O), the middle
from (7?(x)7%(0)) (O) and the lower from{=?(x)w?(0))
+{ao(x)o(0))c (< ). All three correlators give reasonable effective

L . . . masses and the fitted masses agree.
Similar results have been obtained for simulations on

16> 32 lattices atB=6.0 with Ly=16. These lattices have _ )
essentially the same spatial volume, in physical units, as thgomPonent in the somewhat large valuesntf plotted in
previous 8x 32, B=5.7 lattices since the lattice spacing is F19- 14 is the effect of topological near zero modes. As can
half that for3=5.7. Figure 19 shows2 for (A3(x)A3(0)), ]E)e sein by a ?Omng'solgv'éh T]f‘ble XV tieoresults gve find
(m3(x) m(0)) and (73(x)73(0))+ (o (x)o(0)).. For the rom the corre aton(_ 0(x) 0(0)) for mZ(m¢=0) are about
smallestm; points, 0.0 and 0.001, all three correlators givel 1/2 standard deviations lower fa=32 and 48. This is
different results. For larger values o, the pion mass from likely a systematic bias caused by the greater influence of the
(AX(x)A3(0)) and (m3(x)7(0)) agree, while the topological near-zero modes on the®(x) wa(O)_> correlator.
(72(x) 73(0)) +(o(X)7(0)), pion mass is systematically Unfortunately, the;e effects may also enter in the.othe'r cor-
high, likely due to the contribution of the heavy states inrelators' that can given,,, at leaSt for'the spurce-smk tlmg
(o(x)7(0))c. The lines drawn in Fig. 19 are from correlated separations currently accessible. With this large distortion
linear fits tomi usingm;=0.01 to 0.04. The dotted line is

for m2 from (73(x) 73(0)), the solid line for A3(x)A3(0)) 8

and the dashed line fdrm®(x) 7%(0)) + (o (x)o(0)).. The %
fit results are § 47 M .
o
o
m2=0.013220)+3.016)m;, x%DOF=5.0+5.0 (72 o o pand Lo, | s\t
2 T T

m2=0.009820) +3.149)m;, x?/DOF=0.03+=0.30 (73)

-S8 correlator

m2=0.002426)+3.568)m;, x?/DOF=0.06+0.51 (74)
-1 \
for (7?(x)73(0)), (AJ(X)A3(0)) and (=?(x)7?(0)) 0.05 : . :
+ (o (x)o(0)). respectively.

Figure 20 shows effective mass plots for the pion from the
three correlators form;=0.001 and Fig. 21 is form;
=0.01. Both figures show reasonable plateaus, even thoug™ _, ;s ‘ , ‘
there are differences in the final fitted masses. We have als 0 20 4 60 80 100
studied the evolution of the correlators at a fixefdr these configuration number

B=6.0 lattices and see clear topological near-zero mode ef- g, 24. The evolution of point source correlatorstat8 for
fects as were seen @t="5.7. 16°x 32 lattices at3=5.7 with L;=48 andm;=0.0. The upper

Thus, investigating the chiral limit of domain wall fermi- panel is(#%(x)72(0)), the middle— (o (x)a(0)). and the lower
ons in quenched QCD by measuring the pion mass is mad@j(x)A3(0)) (AA). There are few, if any, contributions from to-
difficult by the presence of topological near-zero modes. On@ological near-zero modes.

AA correlator
o
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15 . . tors is shown in Fig. 22. Here, for each;, the average
I - value of m_ is calculated and then the deviation from that
average, for each correlator, is plotted. For eauh,

i - t (A5(x)A5(0)) is offset to the left and th&#?(x)7?(0))
or il +{a(x)o(0)). to the right for clarity.
ny Figure 23 shows the effective mass from each of the three
. correlators fom¢=0. In contrast to the smaller volume case,
the effective masses have quite similar values and lead to the
L same fitted mass, within errors. As a last comparison with the
1 % small volume, Fig. 24 shows the three correlators at a time

degree of freedom

separation oft=8 as a function of configuration number.
i Little if any effect of topological near-zero modes is seen.

Thus, we conclude that this larger volume has suppressed
OPP
58S these gffects as gxpected. _ .
I & PP+SS Having established that a consistent pion mass can be
-5 ‘ : w . ‘ ‘ determined from our fitting range, we discuss the result of
0-0.1 0-0.08 0-0.06 0.02-0.08 0.02-0.1 0.04-0.1 . . 2 .

mass range in fit linear fits of m7, as a function ofm;. We have done corre-

lated linear fits oinfT to m; for each of the correlators, using
a variety of different ranges fan; in the fit. The resulting,?
per degree of freedom is shown in Fig. 25, including the
jackknife error on they?. (The plotted error bars are the
+ 10 errors from the jackknife procedure and do not mean

2
X" per

FIG. 25. They? per degree of freedom for linear fits mf,
versus m; for 16°x32 lattices atB8=5.7 with Ls=48 from
(R3(¥)A3(0)) (O), (m*(x)7*(0)) (O) and (m*(x)7*(0))
+(a(x)o(0))c (¢ ). Only the rangam;=0.02 to 0.08 gives a fit

with an acceptable value for? per degree of freedom. After using H'lat X2 can become negatieThe pion propagator fom;

the large volume to eliminate zero modes, and presumably als_0 0 and 0.04 d th t of ,
finite volume effects, we have evidence for a non-linear dependencg ~-° @Nnd V.04 was measured on the same set of configura-

of m2 onm;. tions, with some of then;=0.08 propagators also measured
on those configurations. The;=0.02, 0.06 and 0.10 points

due to the topological near-zero modes, there we cannot qdere 'aI'I measured on the same configuration.s, along with the
termine the chiral limit by extrapolating to the point where remaining 0.08 propagators. Thus, these points are less cor-

2 . 7 . related inm; than the corresponding measurements on the
m:. vanishes. ler finite volume eff n ibl
~ vanishes. Subtle te volume effects and pOSSbesmaIIer volumes.

guenched chiral logarithms are completely overshadowed by Now let us discuss the quality of these fits. Given the

tmhe singular nature of the basic quark propagators for Smagignificant upward curvature crth for m>0.1, seen for
f .

In many ways, the presence of these topological near—zer%xample in_ Fig. 2, we !imit the mass rangemgo.os. I .
modes is); wglcome pchange from other Igtticg fermion for\We do not include the lightest masses and fit the points with
.02<m;=<0.08, as shown in Fig. 25 we obtain acceptable

mulations because they are a vital part of the spectrum of an
y b P alues fory? per degree of freedom for all three correlators.

continuum Dirac operator. However, in order to further in- e ; B )
vestigate the chiral limit, they must be removed, or at |eas§peczlf|cally using the mass rin%;0‘02 0 %08’ tahe fits
suppressed. Without adding the fermionic determinant to thi® Mz from the correlatorg(7*(x) 7%(0)), (Ag(X)Aq(0))

path integral, we can suppress the effect of topological nea@Nd(7*(X) m(0)) +(a(x) 7(0)). are
zero modes by going to large volumes.

m2=0.0445)+4.755)m;, x?/DOF=1.4+3.6
C. The pion mass for larger volume mi=0.05](3)+4.6&4)mf . Xx°’/DOF=1.4+1.4
Having seen clear evidence for topological near-zero mf,z .0493)+4.705)m;, x%/DOF=25+2.4. (75

modes in the measurements of the pion mass for lattices with

ahphysul:al IS'ZG Of:zf ferm|, we have Wﬁrke?f on a fIaLger However, given our confidence that this larger 3®!-
physical volume; ermi, to suppress the efiects of these ;.o permits the reliable calculation of the pion mass for

modes. As we saw in Sec. IV from studyifgq), the effects  smaller values ofn, we can also attempt a linear fit in the

of the topological near-zero modes were dramatically reentire range 0.6 m;=0.08. For this mass range, we find
duced for larger volumes. Here we present results for the

pion mass from simulating with £& 32 lattices at3=5.7

— m2=0.0423)+4.713)m;, x?/DOF=1.3+3.5
andL =48. m
Figure 3 showsm,zT plotted againstn; for these runs. In mf,=0.0443)+4.75(5)mf, X°/DOF=4.3+2.6
contrast to the smaller volumée 8 32 result shown in Fig. 2, mi: 0424)+4.826)m;, y2DOF=4.4+30 (76)

all three correlators now give the same results for the pion
mass, within statistic§Table XXI). The larger volume has

clearly reduced the effects of the zero modes. Further evifor the correlators (72(x)72(0)), (A§(x)A§(0)) and
dence of the consistency of the mass from the three correlgdr?(x) #%(0)) +{o(x)o(0)), respectively. The
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FIG. 26. The residual mass fof 832 lattices withL=32,48
andm;=0.04 atB=5.7. The labels for the horizontal lines are the
averages over the ranges4<16 with jackknife errors.

(A3(x)A3(0)) and(7?(x) 72(0)) +(o(x) o (0)). fits suggest
that m2 is not linear in this mass range. While the

(mw¥(x)7%(0)) fit is acceptable, as can be seen from a careful

PHYSICAL REVIEW D 69, 074502 (2004

TABLE XXIIl. Results for residual masses g8=5.7, Mg
=1.65.

Lattice size L m; No. of config. Myes
83x 32 32 0.02 184 0.01@8)
83x 32 32 0.04 184 0.01@3)
83x 32 48 0.04 335 0.006883)
16°x 32 48 0.02 50 0.0079)
16°x 32 48  0.04 50 0.0074)
16°x 32 48 0.06 50 0.0066)
16°x 32 48 0.08 50 0.0085)
16°x 32 48 0.10 50 0.0063)

non-linearities for larger masses can come from a variety of
sources including terms from the naive analytic expansion in
powers ofm; . However, for smalm;, linearity is expected

for large volumes in full QCD. In contrast, in the quenched
approximation the absence of the fermion determinant may
result in complex and more singular infrared behavior. For
example, it has been argued that a quenched chiral logarithm
can appear imf, versusm; for quenched QCD68—-70. The
results just presented may be evidence for some non-linear
behavior of this sort.

Because of the poor linear fits found for smail}, our

examination of Fig. 3, this acceptable fit comes because thgata o not allow a determination of the location of the chiral

m;=0.02 point lies somewhat below while ting;=0.0 lies
somewhat above the masses obtained from the other

mode distortion.

It is difficult to draw a firm conclusion from the relatively
large correlatedy?/ DOF presented in Eq76). As is indi-
cated by the errors shown, thegé/DOF are not reliably
known. However, the comparison of thg/DOF between
Egs. (75 and (76) may be more meaningful. We attribute
significant weight to the fact that the lightest=0 point

lies below the value predicted by a linear extrapolation from

larger masses as can be easily seen in Fig. 3.

limit for quenched domain wall fermions by a simple ex-

. ) Wapolation ofm? . Even with the suppression of topological
correlators. Since the smaller volume studies suggest that tk;f-ep . PP polog

(m?(x)?(0)) correlator is most sensitive to zero modes and,,
such an upturn for small mass is the effect of zero modeglr
seen at smaller volume, this could easily be a remaining zerg

ar-zero mode effects that has been achieved by going to
ger volume, further theoretical input may be needed if we
e to deducen,. from these measurements wf- . In the

ext section we will discuss our determination of the location
of the chiral limit using other techniques and then return to
the question of the behavior ofiZ. with m;.

VI. THE RESIDUAL MASS
A. Determining the residual mass

In this section, we discuss our determinatiom®fs using
the low-momentum identity in Eq11). This can be done by

We conclude that a linear fit does not well represent oufalculating the ratio

data over the full mass range;=0.0 to 0.1. Of course,

TABLE XXII. Results for residual mass #&=5.85 and 6.0. The
3=5.85 calculation was performed on a®¥232 with anti-periodic
boundary conditionsMz=1.9 and the ratioR(t) from Eq. (77)
averaged over the time range<6<26. The =6.0 calcu-
lation, described in the text, was performed on &X82 lattice
with M;=1.8.

B L m; No. of config. Mres

5.85 20 0.05 100 0.0028&3)
6.0 12 0.02 56 0.00238)
6.0 16 0.02 56 0.00128)
6.0 24 0.02 56 0.000%9)
6.0 32 0.02 72 0.00044)
6.0 48 0.02 64 0.00023)

<23a&nfw»
<Z J%(i,t>wa<o>>

R(t)=

(77)

as a function oft (no sum ona), where#?(0) is a source
evaluated at=0 but possibly extended in spatial position.
This ratio was first used to determime. in Ref. [10] and
later in Refs.[29,30. Our results are consistent with this
earlier work, but a much more detailed study is undertaken
here. Fort outside some short-distance regiogt ,,, R(t)
should be simply equal to,.s. UsingR(t) for very larget
givesm,. as the coupling of the pion to the mid-point pseu-
doscalar density divided by its coupling to the wall pseudo-
scalar density. Of course),.sis an additive contribution to
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TABLE XXIV. Results for fits to the form predicted for a quenched chiral logarithm, [B8), for the
16°x 32 simulations a=5.7 with L,=48. For comparison, we have also included the colugpg,: which
gives thex intercepts predicted by the simple linear fits of E@5) in the heavier mass range 098
<0.08. Here PP, AA and PPSS represent the correlatorém®(x)72(0)), (A5(x)A5(0)) and

(m¥(x) 7(0)) +(a(x)a(0))¢, respectively.

Correlator ag a; a, X%/DOF Xintcpt

PP 4.73) 0.0085%7) —0.00828) 1.9+4.7 —0.009212)
AA 4.1(3) 0.007310) —-0.074) 3.6£2.4 —0.01087)
PP+SS 4.33) 0.007511) —0.054) 4.8+3.2 —0.01047)

the effective quark mass at low energies which effects althe asymptotic behavior for large; at 8=5.7, due to the
low-energy physics, not just the pion. To understand howarge values forL¢ required, but instead have studied this
larget must be, Fig. 26 shows a typical good plateau and &uestion for3=6.0.

poor one. Results are shown foP>832 lattices withm
=0.04 andB=5.7 for Lg=32 and 48. The good plateau is
obtained from 335 configurations fag= 48, while the poor
plateau is obtained from 184 configurations fqe=32. The
fewer measurements fdrs=32 likely is the cause for the
upturn in the data at largeand adding more configurations
at thisL¢ should improve the signal.

Figure 4 shows a similar study of the, dependence of
the residual mass for $&32 lattices withm;=0.02 and
B=6.0. The number of configurations used is modest for the
larger values of Lg. We have used the factor
Z4(MS,2 GeV)=0.619(25) obtained by a combination of
non-perturbative renormalization and standard perturbation
theory[72,73 to convert the plotted values of,.into MeV.

From observing the onset of the plateaus in our data, wéNe value ofm.is decreasing with.¢ for all values oflL,

calculatem,.s from the ratio in Eq.(77) using the range 4

<t=<16 for=5.7, 6<t<26 for 3=5.85, and 2t=<16 for

B=6.0. The jackknife method is used to measure the statis-

tical uncertainty and oum,e results at3=5.7,5.85 and 6.0

but is poorly fit by a simple exponential. In particular, an
exponential fit using all values df gives

Myes=0.00684)exp(—0.0944)L ),

are listed in Tables XXII and XXIIl. For most data sets, nice
plateaus can be seen over the selected range, while for the
few others with the poor plateaus, using a different ranggyhich clearly does not match the measured values. Adding a
could change the results by5%. We have also measured constant to the fit gives

m;esfor different values ofn; for 3=5.7 on 16X 32 lattices

with Lg=48. Table XXIII gives the results and shows that
the residual mass has little dependence on the input quark
mass, reflecting the expected universal charactemgf.
Our B=6.0 results fom,.s appear to be a consistent exten-
sion of the values plotted in Fig. 5 of R¢B0] for Ly=4, 6
and 10.

X%/DOF(3)=32 (78

Me= 0.000323) +0.018 3)exp(— 0.18% 13)L ),

X2/DOF(2)=4.1 (79

where again all values fdr, were used. Even if this is the

correct asymptotic form, the value of,sfor Lg— o is very
The L, dependence ofn, is of vital importance to nu- Small, 1 MeV. S _

merical simulations with domain wall fermions. Without the ~ We have also tried fitting the largest threg points to a

effects of topological near-zero modes, quenched chiral logg§imple exponential and find

and finite volumemi(mfZO) should be proportional to, ¢ B

and should vanish witim,.; asL,—. However, in Sec. V Mees=0.00122)exp(—0.0326)L).

we discussed how topological near-zero mode effects alter

(m3(x)73(0)) and can distort the value @hZ(m;=0) for

large Lg shown in Fig. 14. By measuring the ratio in Eq.

x2/DOF(1)=0.074. (80)

Our data are consistent with the residual mixing vanishing

(77), we can determinen,.for non-zerom; and suppress all
these effects which make time;— O limit problematic. This
allows us to study thé ; dependence afn,.s, to which we
now turn.

From the two values of ¢ shown in Fig. 26, we see that
the residual mass for3% 32 lattices at3=>5.7 falls from
0.0105%2) to 0.0068813) asL is increased from 32 to 48.

exponentially ag.—o0, but the 0.032 coefficient in the ex-
ponent of Eq.(80) is quite small. Of course, we can easily
obtain an excellent fit to our five points if we include a
second exponential. For example, as shown in the figure, the
five points fit well to two-exponential function

Myec=0.038 16)exp(— 0.264)L )

This is in sharp contrast to the almost identical results for

mi(mfZO) at these two values fdr, (Fig. 14). The overlap

+0.001@3)exp(—0.0277)Ly),

of the surface states is significantly suppressed, as expected,

even at this relatively strong coupling. We have not pursued

X2/DOF(1)=0.1. (81)
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Our measurements do not demonstrate a precise 0.6
asymptotic form form,.¢ as a function ofLg. However, we
do seem, s decreasing for largé g until, for L¢=24, it has 05 | o
become so small as to be essentially negligible for current
numerical work. For3=5.7 atLs=48, m,.s is 0.0745) in
units of the strange quark mass, while = 6.0 atL =16 it
is 0.033(3)ms. In the latter case, where we know the renor-
malization factors,m,s in the MS scheme at 2 GeV is =
3.8716) MeV. Thus, even though more simulations will be
needed to get the precise asymptotic form, we find domain 0.2 |
wall fermions having the expected chiral properties for large

04

03 |

OAA

L, even for lattice spacings of around 1 fermi. 01 opp
. . <& PP+SS
In the next subsection, we will use the valueswg, that *m
have just been determined to investigate furtherrthede- ol
pendence om?, looking in particular at possible non-linear . . . . . .
behavior asm;+m,.s—0. Here we would like to discuss a 0 0.02 004 006 008 01 012

simpler consistency check on the values nof,s just ob- m,
tained. For ther, p and nucleon we have established good
linear m¢ behavior for larger values ah; with slopes and
intercepts given in Tables XVI and XVII. If the only effec

on these masses of changihg is to change the effective L,=48. The star is the value ofi.sas measured from E77) and

quark mass through the corresponding change,in, then its error bar in the horizontal axis is too small to show on this scale.

we should be able to relate the differences in the interceptsy o sojid line is a fit of théA3(x)A3(0)) correlator form;=0.0 to

given in these tables to the product of the corresponding og to the quenched chiral logarithm form given in E&g). This
slope times the change ims given in Tables XXII and i gives the pion mass vanishing in very good agreement with the
XXIIL. value of m.s determined from Eq(77).

While this comparison shows no inconsistencies, the er-

rors in the intercepts are typically too large to permit a de-, ;) (o)) case and fail for all three correlators when the
tailed confirmation. For example, the difference in mterceptspion mass is required to vanish = — m

2 _ _ . . res-
for m> at3=6.0 betweert.;=16 and 24 is 0.00080) while We can make this conclusion more quantitative by com-
the difference predicted from the slope and the measuregaring our accurate value fon,.c=0.00688(13) al =48
change inMmyes is 0.00202). The best test of this sort can be getermined on an B<32 lattice with the naive linear ex-

made Lising the aciual value fan, determined al8=5.7  yanolation ofmZ(my) to the pointm?=0. Using the most
andm;=0.04 forLs=32 and 48. Here the difference of the \qjiapje inear fits obtained by excluding the =0 point in

masses squared is_ O'Q.ﬁ? while the prediction from the Eq. (75 we obtain thex-intercept values shown in Table
slope and change imis 0.017612). Thus, we can dem-  yy /- ~0.0092(12), —0.0108(7) and—0.0104(7) for
onstrate consistency with the expected behavior but cann%e () 73(0)), (A2)AX0)) and (mA(x)m3(0))

’ 0 0

make a definitive test. +(a(x)o(0)). correlators respectively. These differ from
this value ofm,s by ~50% and 2, 5 and 6 standard devia-
tions respectively. We conclude that there is a significant
The definition ofm,sand its measurement mean that we discrepancy between the;-dependence of thesa,, results
have determined the value of; for which the pion should and the hypothesis that’(—m,. = 0. However, notice that
become massless if the domain wall method is successfulli the m=0 points are included in the linear fits, and the less
representing the chiral limit of the underlying theory. We canaccuratem,es from the same volume is used, this discrepancy
now return to the question of the dependencengfonm;,  can be reduced. For example, a linear fit to the data from the
starting with the 18x32 simulations at3=5.7 and L, (7?(x)7?(0)) correlator in Eq.(76) has an intercept at
=48. Recalling Fig. 3, we found that the larger volume gave—0.0088(5) while —m,,e=—0.0072(9) on the same vol-
consistent pion mass measurements from the three correlame. We believe that such an interpretation should be dis-
tors, butm2 was not well fit as a linear function afi; for  counted as failing to exploit all the available information.
two of the correlators if then;=0.0 point was included. In Is this significant discrepancy caused by essential non-
Fig. 3, we have included the value of (the starred point linearities in the quenched approximation or by a breakdown
as measured from Eq77). (Its error bar on the horizontal of the domain wall method, for example, lar@ya?) ef-
axis is a vertical line on this scajélhe solid line is the fitto  fects? We can address this question by making a similar
the (A§(x)A$(0)) correlator form;=0.02 to 0.08 given in comparison for3=6.0 whereO(a?) effects should be sig-
Eg. (75) while the dotted line is for thé=?(x)7?(0)) cor-  nificantly reduced. Since we have not investigated a large
relator form;=0.0 to 0.08 as given in E@76). Thus, we see Vvolume at this weaker coupling, we propose to examine the
that linear fits poorly represent the data when the=0.0  (A5(x)A5(0)) correlator because reduced zero-mode effects
point is included for the{A§(x)A$(0)) and (=?(x)=?(0))  were seen for this correlator in oBr=5.7 studies. Using the

FIG. 27. The pion mass squared versusfrom (73(x) 72(0))
¢ (3, (AG()AG(0)) (O) and (m*(x)m*(0))+(a(x)o(0))c ()
for quenched simulations done on3%632 lattices at3=5.7 with

B. The residual mass andm? versusm
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three lightest masses we fimdntercepts of-0.0031(7) and in Eq. (76) for this same mass range, the ability of the loga-
—0.0030(9) for thed_;=16 and 24 cases respectively. Again, rithmic fit to predict the appropriate,.s value is significant.
these are dramatically farther from the origin than the corre- For the simulations at smaller physical volume$x&2
sponding values afn,.e=0.00124(5) and 0.00059). These at 8=5.7 and 18x32 at 3=6.0, the values fom,,s mea-

are each three standard deviation effects. However, they asired from Eq.(77) are generally smaller than theinter-
obtained on independent configurations and together can leepts for the linear fits shown in Figs. 2 and 19. This indi-
viewed & a 6 standard deviation discrepancy. Thus, if pos<cates curvature in the direction given by a chiral logarithm,
sible finite-volume difficulties are ignored, we have againbut the other phenomena that may be affecting these chiral
strong evidence for a discrepancy. Rather than decreasing iynits make quantitative analysis ambiguous. We note that
a factor of four as would be expected from @¢a?) error, m2 from (73(x) 73(0))+ (o (x)0(0)). seems to smoothly
this fractional discrepancy is substantially larger in tj§is curve towards the value ofi.from the previous subsection.
=6.0 comparison. Thus, it is natural to conclude that domairHowever, we are not sufficiently certain of the absence of
wall fermions are accurately representing the chiral behaviozero mode effects in thér?(x) 72(0))+ (o (x) o(0)), cor-

of quenched QCD. relator to describe a logarithmic fit to these cases.

At the beginning of Sec. V we listed possible systematic This nice agreement between the valuesnof, deter-
effects influencing the chiral limit fom,.. With a measure- mined from the location of the"z =0 point in these fits and
ment ofm,swe have quantified the role of finite, and with  that computed by other means earlier in the paper implies
the larger volume used fg8=5.7 we have reduced, if not consistency between our results and the logarithmic form of
eliminated the topological near-zero modes. We should alsgq. (82). Of course, other non-linear terms could be used to
have minimized other finite volume distortions of the densityexplain this curvature and, given our statistics, would pro-
of eigenvalues, which also influence the pion mass. Finallyide an equally consistent description of our data.
with the comparison above, we have examined the possibil- However, our most important conclusion is not related to
ity of O(a®) errors. Thus, we now address the question ofguenched chiral logarithms, but rather to having seen all the
quenched chiral logarithms. Predictions of this particular paexpected properties for the chiral limit with domain wall
thology of quenched simulations were made some time agdermions. Once the topological near-zero mode effects are
There are certainly much data indicating possible support foreduced or eliminated, consistent pion masses can be mea-
the predictions, but there is disagreement about their conclusyred. A precise measurementmof. is consistent with our
siveness, see for example Reffgé4—79. Since many other m2 versusm; dependence if, for example, a chiral logarithm
effects must be removed before these subtle logarithms akgrm is included. In short, domain wall fermions are showing

convincingly seen, it is a challenging numerical issue. sensible chiral properties, even on lattices with a lattice spac-
The natural first place to look for quenched chiral loga-ing of ~1 fermi.
rithm effects is inmﬂ., but this is difficult for Wilson fermi- We have chosen not to pursue an additional method of

ons, where 'the chiral point is not cri'sply defined for fini'ge determiningm,. that has been proposed in two of our pre-
lattice spacing. For staggered fermions, where the chira)ioys publicationg25,17. In that method, one examines the
limit occurs when the input quark mass is zero, the issue iihtegrated Ward-Takahashi identity in E&3) and uses the
complicated by the presence of onlya single Go_ldstone PioNgcation of the pion pole iny,., to determinem,.s. While

In some respects, domain wall fermions are an ideal place tghjs technique should be reliable for dynamical fermion cal-
look for these effects, except that the statistical resolutionyyjations, e.g. as used in RefL2], it does not explicitly
needed is difficult to achieve with the additional computa-jow for the effects of topological near-zero modes or pos-
tional load of the fifth dimension. In addition, the topological sjpje non-linear behavior a2 (my) that we have found to
near-zero modes are a much larger quenched pathology gk important in the quenched approximation. Thus, even
moderate volumes. though this method gave a result f8#=5.7 quite closd25]

. . . . 2
As one way of probing the gon-lmegrlty M7 VErSUSMy, g the L =48 valuem,.<=0.00688(13) presented in this pa-
we have fitted our data fom? for 16°X32 lattices at3  per, more analysis is needed to adequately justify its use in
=5.7 andL;=48 to the form[68—-7Q this quenched case.
m2=ay(m;+a,)[1+a,In(m;+ay)] (82

C. Eigenvalue properties andm,eg

A comparison of the approximate form of the Banks-
and the results are given in Table XXIV. The fit yields a casher relation for domain wall fermions given in E47)
value for the residual masthe parametea, above and the  with the usual 4-dimensional expression in E8j7) suggests
results are quite close to those measured from the ratio of E@ close relationship between the parameter, deduced
(77). Figure 27 shows the result from fittin\g(x)A5(0))  from thei'" eigenvalueA, ; of Dy, and the residual mass
for m¢=0.0 to 0.08 to the quenched chiral logarithm form m. In this section we will explore this relation further
given in Eq.(82). We have excluded the larger valuesnof ~ making use of an exploratory study of the low-lying spec-
from our fits, since higher order terms are needed in(82.  trum of Dy, [80].
to accommodate the upward curvature of mirdata. While These eigenvalues were calculated for 32 configurations
the x2/DOF for the logarithmic fit is only marginally better obtained at3=6.0 on a 18 lattice with L,=16 listed in
than those obtained for the simple linear fits described earlieFable 1l and beginning with an equilibrated configuration
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1x10 | 3 ® Eigenvector 0 * |
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1x10 1 3 ® Eigenvector 1 f 7
1x107 | ! ! |
o ! . |
2 x| o ' i
| ) ,
> 1x10%] ! o ® ' b
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FIG. 28. A three-dimensional “Lego” plot showing the matrix %1074, L4 e ® ® i | i
elements of"® between all nineteen eigenvectors found for one of e * ‘ ‘ ‘ L
the better configurations in our sample of 32, evaluateh;at 0. 0 4 8 12 16
The height of the box located by horizontal coordinates$)(rep- s
. ) 5
resents the magnitude of the matrix ele%(anpﬂl“_ |An,j)- The FIG. 29. The distribution of the 4-dimensional nori(s), for
five zero modes, all nearly eigenvectorsliof with eigenvalué-1, e first two zero modes shown in Fig. 28 as a functios. dfiote

are easily identified. The remaining seven pairs are also very eViggih states are tightly bound to tee-L.— 1 wall, as are the other
dent corresponding to the expectedl,) and ['S|A)=]—Ay) three zero modes states.
eigenstates.

pect that this norm should be concentrated ongh® and
=L¢—1 walls, which we find to be true to good accuracy.

For the entire group of 3219X 5=3040 eigenvectors com-
]uted, the ratio of the sum of the norm on the two walls to
e minimum value of this norm between the walls was al-

from an earlier run. We used the Kalkreuter-Simifa3]

method to find the 19 lowest eigenvalues on eac
configuratior® We apply this method to the positive matrix
D2, and then determine the eigenvectors and eigenvalues

Dy by a final explicit diagonalization dDy, in the subspace ways greater than 34(0)+ M(Lo—1)>34-A{s,). The

gf twii ae':i%enn(\)/m?frg?srsmdgtﬂ élésgggtzrmgﬁd'cgge I(;?;atllescgriOl:iro rgnedian value for this ratio was 744. Thus, the general frame-
pp . . piete PUORy ork upon which the domain wall formalism rests appears
of these results will be presented in a later publicafi®di.

; ) : . pproximately valid.
. While this method determines both the e|genvalues ang As a test of our method for determining the eigenvectors,
eigenvectors, we have chosen to examine only th‘?N

dependent. four-dimensional inner oroducts: e evaluate the left- and right-hand sides of the symmetry
Sdependent, Tou ensionalinner proaucts: relation, Eq.(21), between pairs of eigenvectors on a given
configuration. The resulting equality

Pru(8)ij= 2 W9, Pru¥(XS)y, (83
(At Ay (Al Ts[ Ay j)

where the indices,j run over all of the 19 eigenvalues while _ _ W) (mp) ‘
Pr and P, are the left and right spin projection operators =(Anil2mQ™+2Q )lAH'l> (85)
defined above Ed5). In order to be able to make use of the
mass dependence of the eigenvalues, we have repeated tt 4,4,

[
I
b
\

calculation ofAj(m;) andI'g, (s,my); ; five times on each %10 |
configuration for the five different mass values=0.0, E _J N . ®
0.0025, 0.005, 0.0075 and 0.001. 0™ * e . 1

5
X
. . . 3 ® o0 P
Here we will describe some of the overall features of this + x107: *
calculation and then examine more closely the relation be-  1x15*-
tween the parameteidm; and the value ofm,.s determined

earlier in this paper. First we examine the diagonal elements

® @ Eigenvector 5 Py

of the matrixI"(s) o b o Eigenvector 6 o |
)i r
N(8)i=T'r(8)ii+T'(5)i- (84) E e °, Lo ]
P . | L . |
This is the contribution to the norm of the 5-dimensional 7 x10° Peeee? C
wave function from the 4-dimensional hyperplane with a 1x107} b
specific value ofs. For these low lying eigenvalues, we ex- ‘ L
[¢] 4 8 12 16

S

SWe thank Robert Edwards whose program formed the basis of FIG. 30. The distribution of the 4-dimensional nori(s), for
the code used in this part of the calculation. the first pair of non-zero modes shown in Fig. 28 as a function of
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80 plot. Note the five zero-modes in this configuration are easily
recognized. Each has a diagonal matrix elemertofvithin
1.5% of 1 and matrix elements with other vectors all of mag-
nitude below 0.06. The values af for these five eigenval-
60 1 | ues all lie in magnitude below 3:610 * while the remain-
ing paired eigenvalues lie between 0.028 and 0.093. In Figs.
29 and 30 we show the-dependence of the first two zero-
modes and the first pair of non-zero eigenvectors, numbers 5
and 6. One sees precisely the expected behavior. Both zero-
modes are bound to the same w@ak are the other three zero
modes while the two paired non-zero modes are nearly sym-
metrical between right and left. This is clearly identified as a
configuration with topological charge= +5.

Of direct interest in this section is the mass dependence of
A(m¢)y i and a quadratic fit of the sort proposed in E4).
0 lolas o o ool o For the small masses we have used, this quadratic form pro-

0 0.005 0.01 0.015 0.02 vides an excellent fit, after some re-sorting of eigenvalues is

dm, . . .
performed to account for infrequent level crossingsrads

FIG. 31. The distribution of values of the quadratic fit parametervaried. In order to avoid the possibility that these level cross-
sm; defined in Eq(48). These parameters were determined from aings may have pushed a needed eigenvalue up to beyond
total of 576 eigenvalues obtained from 32 configurations computediumber 19, we have excluded those quadratic fits which con-
with 3=6.0, 16 and L,=16. The peak of the distribution lies tain the largest eigenvalue at;=0 for each of the 32 con-
remarkably close to the value we find for the residual mass,  figurations. The resulting root-mean-square of the fractional
=0.001245). differences between the left- and right-hand sides of(E4).

] ) o is very small. The average root-mean-square of the fractional
provides a good test of our diagonalization procedure. Thejifference is 1.%10°% while the largest value is 4.3
vectors|AH,]-> needed to evaluate this expression are eigensc1g-3,
vectors of the Dirac operatd,;, notD, . We determine the In Fig. 31 we present a histogram of the distribution of fit
eigenvectors ofDy by diagonalization within the 19- parameters for the 2832=576, Sm; values that we obtain.
dimensional subspace found by applying the KalkreuterThe majority of values are quite small, very much on the
Simma method td)|2_| . In the event that the 19th and 20th grder ofm,.s. While a few larger values afm; are seerithe
eigenvalues oDf; are nearly degenerat@ot entirely un- |argest is 0.0660) the median of the distribution igm

40 | 1

Number of eigenvalues

20 | 1

likely given the expectation that the eigenvalue®gfoccur  =0.00147 which is remarkably close to the valuenof,
in = Ay pairs, this truncated, 19-dimensional subspace will =0.00124 found earlier for this value ¢f andL;.
not be spanned by eigenvectors Bf,. It will contain 18 The 4-dimensional expression f(@lﬂ) in Eq. (37) and

valid eigenvectors and a 19th vector, orthogonal to the reshe 5_dimensional result in Eq47) as a function ofm

but not an eigenvector db,. This “spurious” eigenvector _ 7 myst agree in the continuum limit after a rescaling
can be reliably removed since it will give an “eigenvalue” 5y gyerall subtraction. This must be true evemg,is held
whose square does not agree with any foundDdr. We fixed in physical units as—0. Therefore, in the limit of
remove such eigenvectors from our test of BBp) and, for  zerg Jattice spacing, the histogram shown in Fig. 31 must
uniformity, the 19th eigenvector in the case that no spuriougpproach a delta function so tham; has the unique value
eigenvector occurs. There are then>x32=160 instances m . Thus, we might interpret the width of the distribution
where we can check f8ndependent elements of E®5).  in Fig. 31 as a result oD(a?) effects. The large size of the
We find that 95% of these 51 840 comparisons have a fragyctuations relative to the central value is presumably a re-
tional error below 5%. The few cases with significantly syt of the small central value produced by our quite large
worse agreement, result from infrequent near degeneraci@gparation of 16 between the walls.

which challenge the Rayleigh-Ritz method on which the

Kalkreuter-Simma algorithm is based.

For most configurations there.are easily identifigd zero VIl. HADRONIC OBSERVABLES
modes. Typically the few lowest eigenvalues have eigenvec-
tors all of which are bound to the same wall, eittser0 We can now use the results of the previous sections to

or s=Ls—1. The corresponding matrix elements compute a variety of hadronic properties. In this section we
(An,ilTs|Ay ;) all have the same sign and are within a few will discuss two topics: the evaluation of the pion decay
percent of 1, showing precisely the structure expected in aonstantf . and the scaling properties of the nucleongto
four-dimensional theory as summarized in E84). mass ratio. The first topic is of greatest interest since we can
The potential of the domain wall method is nicely dis- compute the pion decay constant using two independent
played by examining the properties of one of our better conmethods, one of which depends directly on the residual mass
figurations. In Fig. 28, we show the magnitude of the ele-determined in Sec. VI. The close agreement between these
ments of the matriXA |I's|Ay ;) in a three-dimensional two approaches provides a very important consistency check
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of the analysis and results presented in this paper. 0.82

0.81 1
A. Calculation of f
In the conventional continuum formulation, the pion de- 08 |
cay constanf . is defined through the equation 0.79 .
. ol L ]
— > i 0.7732(14
(Oligrviyyst®yl #b(p»EIfWTﬂ 80 <07 @%§§§IJ
=P

076 |
where the fieldsyy and ¢ are interpreted as convention-
al, Hilbert space quark operators and the pion state

obeys the non-covariant normalizatio(p’)|m(p)) 074 | 1
=(2m)38%(p—p’). To be concrete we adopt the Minkowski

0.75

073 | 1
metric g#*” with signature 1,+1,+1,+1) and a

Minkowski gamma matrix convention in Whiclylﬁ,, is anti- 0.72 4 s 12 16 20 24 28 32 36
Hermitian and{vy}; ,ym}=29*". With this normalization, t

f ,~130 MeV. o .
. . FIG. 32. The renormalization constadj, obtained for a 1%
Following the usual methods of lattice gauge theory, We, o5 |attice with L.—16 and3=6.0 (O) and that for a 8x32

gva!uate matrlx.elements c_)f the tyvo-quark operator appeaféttice with Ls=48 andB=5.7 (¢ ). The labels for the horizontal
ing in Eq. (86) with the_ Euclidean time depend_ence reSUIIIr"glines are the averages, with jackknife errors, over the ranges 4
from use of the evolution operater H whereH is the QCD <14 and 18<t<28.

Hamiltonian. Thus, we choose to evaluate

Tr[e—“”—” f d3xi hrySy yst2u(x,t) e~ i gryd yst?y(0,0)
e~ Mal= |im

Toos Tr{e "7}

m
2 Mx
2

(87)

where no sum over the flavor indexis intended and the The conserved curreméli defined in Eq.(5) must ap-
time t is assumed sufficiently large that only the pion inter-proach the corresponding, partially conserved continuum
mediate state contributes. current with unit normalization, when the continuum limit is
The continuum operators in Eq87) are easily repre- taken. Thus, to ordea?, the low energy matrix elements of
sented as lattice, Euclidean-space expressions once the usyg? and AZ must be proportionaIA2=ZAAi. While we
transition to a Euclidean-space path integral has been pefmye computed . using the local currenAf‘L we have also
formed. In particular, the operatorsgs(x) and (X) compared that current to the partially conserved domain wall
= l/,T()Z) ¥° are replaced by the Grassmann variabjei,t) axial currentAi, allowing an accurate determination2f .
andq(x,t) respectively. Thus, we extraéf. from the usual In addition to the procedure just described, there is a sec-
Euclidean correlation function: ond, independent method that we have _used to comipute
Here we use the Ward-Takahashi identity to relAt% and
2 m, o - the pseudoscalar densify :
2—276m”t=<fd3XQ7°V5taQ(>Z,t)q7075taq(5,0)>
A 89) A LA (X) =~ 2(My+ Myed JA(X) (89)

where now Euclidean gamma matrices appear, obeying TABLE XXV. Results forZ, at 3=6.0, 16x 32, Ms=1.8.
{y*,v"}=268"". Here we have introduced the Grassmann

variablesq and q defined earlier in this paper so the axial  Ls my Configurations Za

current appearing in Eq88) is explicitly constructed from 12 0.02 56 0.756@)
the five-dimensional quark field® and W restricted to the 16 0.02 56 0.75513)
s=0 ands=L,—1 walls. This “local” current, A‘; is not 24 0.02 56 0.7543)
conserved in the full five-dimensional theory so the fa@gr 32 0.02 72 0.7533)
appearing on the left-hand side of E§8) is needed to make 48 0.02 64 0.7533)

a connection to the continuum axial current.
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TABLE XXVI. Results for the correlator amplitud& andf , (in
MeV) at 3=5.7, 8x32, Ms=1.65, L=32, 94 configurations.
Parameters with subscrigA are obtained from the axial vector
current correlator. Parameters with subscRptare obtained from
the pseudoscalar density correlatéy=0.7732 andm,.=0.0105
are used in thé . calculation as described in the text.

PHYSICAL REVIEW D 69, 074502 (2004

TABLE XXVIII. Results for the correlator amplitudé andf .
(in MeV) at B=5.7, 16X 32, Mg=1.65, L,=48. Parameters with
subscriptAA are obtained from the axial vector current correlator.
Parameters with subscriftP are obtained from the pseudoscalar
density correlatoiZ,=0.7732 andn,.s=0.00688 are used in tHe,
calculation as described in the text.

My Ana (f2)an App (f)ep mg Ana (f2)aa App (f=)ep
0.02 0.00771Y) 15809) 0.17618) 1458) 0.00 0.00282) 1335) 0.344) 136(11)
0.06 0.013213) 172(8) 0.14510) 1736) 0.02 0.00683) 142(3) 0.180110 1384)
0.10 0.019715) 188(7) 0.1437) 194(4) 0.04 0.00985) 1534) 0.14Q6) 150(4)
0.14 0.026715) 202(5) 0.1516) 2144) 0.06 0.011%4) 156(3) 0.1396) 1633)
0.18 0.034615) 216(4) 0.1645) 2333) 0.08 0.0147) 167(3) 0.1274) 1693)
0.22 0.043216) 2294) 0.1805) 252(3) 0.10 0.01745) 171(2) 0.1365) 182(3)
0.14 0.024810) 1884) 0.1479) 201(5)
0.18 0.032612) 202(4) 0.1617) 220(4)
an expression valid for low energy matrix amplitudes. Ing.22 0.041115) 214(4) 0.1787) 2394)
particular, we have replaced the usual midpoint term in the
exact identity of Eq(7) by its low energy limit: 2n,oJ2(x).
Thus, we can also obtaif,. from the correlation function: 91)

2 3
f7T mz

(mf+mres)2 ?

_ —m_t

T

:{fd%%ﬂw&n&ﬂwmm> (90)

where again no sum over the flavor indeis intended. This
formula involves no renormalization factors but requires
knowledge of the residual mass, induced by mixing be-
tween the walls. Thus, a comparison of the values ffpr
obtained from Eqs(88) and (90) provides a critical test of
the analysis presented in this paper.

We will now discuss these two calculationsfqfin detail.
To measure the value for the renormalization fa&gr we
compare the amplitudes of two-point functio@{t) and
L(t) defined as

C(t+1/2)= 2, (A4(x,1)7%(0,0))

TABLE XXVII. Results for the correlator amplitudd and f .
(in MeV) at B=5.7, &x32, Ms=1.65, L,=48, 169 configura-
tions. Parameters with subscripiA are obtained from the axial
vector current correlator. Parameters with subsdéPare obtained
from the pseudoscalar density correlat@n=0.7732 andmeg
=0.00688 are used in thle, calculation as described in the text.

mg Ana (f2)aa App (f-)ep
0.02 0.005%) 134(5) 0.20213) 1437)
0.06 0.01147) 1524) 0.1447) 1624)
0.10 0.01728) 167(3) 0.1385) 180(3)
0.14 0.02409) 1823) 0.1464) 1983)
0.18 0.031710) 196(3) 0.1594) 2162)
0.22 0.040812) 209(3) 0.1765) 234(3)

L(t)=2 (A5(X,t)7%(G,0)).

The 1/2 in the argument dZ(t+1/2) in Eqg.(91) comes
from the fact the conserved axial currenﬁ(x) is not the
current at lattice sitex but instead the current carried by the
link betweenx and x+ . We take appropriate arithmetic
averages to solve the problem thaft+1/2) andL(t) are
not at the same location. To avoid as much systematic error
as possible, we defing,(t) as

2C(t+1/2)

Lo+l
(92

1(C(t+1/2)+C(t—1/2)
2 2L(1)

Zp()=

Fort>a 1, C(t)/L(t) behaves like a constant which can be
identified withZ, . Both terms in Eq(92) estimate this value
without O(a) error. The average of these two, incorporated
in Eq. (92), further eliminates a portion of th@(a?) error.
Figure 32 shows the ratid,(t) defined in Eq.(92) for
both a 16x 32 lattice withL,=16, and3=6.0 as well as
the same quantity for a®% 32 lattice withL =48 andg

TABLE XXIX. Results for the correlator amplitud& andf . (in
MeV) at 3=6.0, 16x32, Ms=1.8, L=16, 85 configurations.
Parameters with subscrigA are obtained from the axial vector
current correlator. Parameters with subscRptare obtained from
the pseudoscalar density correlatoZ,=0.7555 and meg
=0.00124 are used in thfe, calculation as described in the text.

mg Aaa (f2)aa App (f=)ep
0.010 0.0010@L3) 144(10 0.0506) 14909)
0.015 0.0013¢14) 153(8) 0.0404) 151(8)
0.020 0.0016@15) 1598) 0.0364) 156(8)
0.025 0.0018€1L6) 164(7) 0.0343) 161(8)
0.030 0.00216L7) 1687) 0.0323) 166(8)
0.035 0.0024@.8) 1726) 0.0323)  1718)
0.040 0.0026@.8) 1756) 0.0313) 176(7)
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TABLE XXX. Results for the correlator amplitudé andf , (in 250
MeV) at 3=6.0, 16Xx32, Ms=1.8, Ly=24, 76 configurations.
Parameters with subscrigtA are obtained from the axial vector
current correlator. Parameters with subscRptare obtained from
the pseudoscalar density correlatoZ,=0.7542 and meg
=0.00059 are used in thle, calculation as described in the text.

K -7

200
Mg Apaa (f2)aa App (f)ep <
[+
0.010 0.0008a4) 13811 0.0436) 134(10) 2
0.015 0.0011(L1) 141(7) 0.0344) 1398) o
0.020 0.001301)  144(6) 0.0313) 144(6) 150 |

0.025 0.0015@1) 1485) 0.0292) 1496)
0.030 0.00176L2) 1535) 0.028Qq18) 154(5)
0.035 0.00200.4) 1575) 0.027516) 1595)
0.040 0.002275) 162(5) 0.027215) 164(5)

o

0.1 0.15 0.2 0.25
m|

oOF-==—=————--

'o-
a

100

=5.7. We determine the value for the renormalization factor

Za by calculating the average over two rangest_.oﬂst FIG. 33. Results foff , at 8=5.7 with a &x 32 lattice and_
$1_4 and 18<t=28, chosen to avoid t.he largest t|me Sepa'=48 plotted as a function of;. The open circles are obtained
ration t~16 where the errors are quite large. A jackknife fom the axial vector current correlator, while the open diamonds
error is determined, to compensate for possible correlatiogre ghtained from the pseudoscalar density correlator. We also show
between the numerator and denominator in ©Q). the linear fits which are used to determine our estimatef foand

The results foZ, at 8=6.0, 16x32, Ms=1.8 and with ~ f, . The vertical dashed lines identify the values fof which lo-
different values ofLg are listed in Table XXV. The data cate the chiral limit,m;=—m, and give the physical ratio for
show little L dependence, as should be expected. Figure 3 /m,. The solid symbols represent the extrapolations to the point
also shows our result af,=0.7732(14) found for the 8 m;=—m,and interpolations to the kaon mass.

X 32 lattice withB=5.7, Ls=48, M5=1.65, m;=0.02.

The results for the amplitudes for the axial vector currentwe choose fom; that value which givesn,/m,=0.645. In
correlator and the pseudoscalar density correlat@=ab.7  determiningf . for the physical pion state, we did not at-
and 6.0 are given in Tables XXVI-XXX. They are obtained tempt to use a value afi; giving the physical value for the
from the point-source correlators using a conventionaratiom,/m,=0.18 since we do not adequately know the
2-parameter fit with the pion masses extracted concurrentllependence of this ratio in the relevant region. These linear
We also list in the same tables the resultsfipias a function  fit parameters as well as the resulting values ffprand f ¢
of m; determined from the corresponding correlators withare summarized in Table XXXI. The errors given in the
the help ofZ, andm,¢ (Tables XXII, XXIII). These values tables are obtained from the jackknife method.
of f. have been converted to physical units using the mea- Figure 33 shows the values fdr, at 8=5.7, 8x32,
suredp mass discussed in Sec. lll, extrapolated to the chiralL ;=48 as a function ofm; and the linear fits through all the
limit m;+m,=0. m; points. The results obtained from the pseudoscalar-

Next, we use a linear fit inm; to evaluatef, for two  pseudoscalar correlator are higher than those from the axial-
values ofm¢. To obtain a value of . close to that for the axial correlator. The two linear fits give,=127(4) MeV,
physical pion, we go to the chiral limi;+m=0. Forfy fx=145(4) MeV andf .=132(4) MeV, fyx=154(4) MeV

TABLE XXXI. Linear fit parametersf ., fx andfg/f, determined from the axial vector current cor-
relator and the pseudoscalar density correlator.

B \% Lg Correlator Intercept Slope f. fx fu It

5.7 8x32 32 axial 15) 352(38) 14810 1628) 1.09416)
5.7 8% 32 32 pseudoscalar 16 50525 137(6) 157(5) 1.14614)
5.7 8% 32 48 axial 130 364(18) 1274) 1454) 1.14211)
5.7 8x32 48 pseudoscalar 1688 45321) 132(4) 154(4) 1.17113)
5.7 16x 32 48 axial 13&3) 36233 1334) 1492) 1.12214)
5.7 16x32 48  pseudoscalar 13 52536) 1254)  1492) 1.18818)
6.0 16x32 16 axial 13810 958195 137(11) 156(8) 1.13437)
6.0 16x 32 16 pseudoscalar 138) 938235 13710 155(8) 1.131(40)
6.0 16x 32 24 axial 12810) 847222 12710 143(7) 1.12441)

6.0 16x32 24 pseudoscalar 101) 1031232 122(11) 1427) 1.15649)
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210 ' B=5.7 and 6.0 agree well with the experimental value of
~130 MeV, while the values forfy may be somewhat
smaller than the experimental value #fl60 MeV as is ex-
pected from quenched chiral perturbation theory arguments
[69] and naive scaling consideratiofil]. Note, in Table
XXXI we also list f /f . with jackknifed errors for the ratio.
Here the statistical errors are now well below the systematic
errors that might be expected in thg + m,.c—0 extrapola-
tion. The values shown fof/f, agree on the 5% level
between methods of determination and different lattice spac-
ings but are systematically below the experimental value of
1.21.

This same analysis was done using the amplitudes calcu-
lated from the point-source correlators but making a
1-parameter fit using the pre-determined pion masses com-
puted from the more mass accurate measurements based on
' w the wall-source correlators. This method gives consistent re-
Or}?5 01 sults with slightly smaller errors. The results are not listed

! here.

FIG. 34. Results forf . at 8=5.7 with a 16x 32 lattice and The reasonable agreement of our domain wall results with
L.=48 plotted as a function af;. The open circles are obtained the experimental values and their relative insensitivitp te
from the axial vector current correlator, while the open diamondsencouraging. Similar results were obtained &+6.0 for
are obtained from the pseudoscalar density correlator. We also shasmaller values ofLg with somewhat larger errors in Ref.
the linear fits which are used to determine our estimate foand ~ [30]. Of special interest here is the comparison that we make
fi . The fits are done to the points with;=0.02—-0.10. The ver-  between the two methods of determinifig, which is done
tical dashed lines identify the values fov; which locate the chiral here. As can be seen from E®O0), the determination of
limit, m{= —msand give the physical ratio fch/mp. The solid from <’7Ta(X) 773(0» depends directly orm,. Thus, the
symbols represent the extrapolations to the pamt-—mesand  comparison of these two methods is an important check of
interpolations to the kaon mass. our understanding of the chiral properties of the domain wall

. . L 5 formulation. The ratio of these two quantities extrapolated to
respectively. When the lattice volume is increased t0 16, pointm; +m,.=0 provides an interesting figure of merit

X 32 (Fig. 34, the difference between the linear fits from ;o "ihe present calculation. We find f {pp/(f)an
the two methods becomes smaller. We  obtafm, =1.00(10) and 0.980) for L¢=16 and 24 respectively.

=133(4) MeV, fx=149(2) MeV andf,=125(4) MeV, o pever if instead of the values af given in Table
fk=149(2) MeV from the two correlators. The values for yy, we use the x-intercepts —0.0031(7) and

f -(m;) obtained from the two methods should agree for aII_0_0030(9) quoted earlier and obtained from the
values ofm; since they are related by a Ward—Takahashi<A8(X)AS(O» values of m2, we find (. )pp/(f.)an

identity that should become exact in the continuum Iimit._1 20(12) for both the_ =16 and 24 cases. While these
. . - . . T . S_ .
Presumably the visibly different slopes seen in Figs. 33 anqatios each differ from 1 by two standard deviations, they are

34\/6\1;8 tlhe re?ultl ot;ordteaz err(?(rs. i Ei 5sh independent calculations and demonstrate the good chiral
e also calculaté,, at a weaker coupling. Figure 5 shows properties of domain wall fermions.

our results for38=6.0, 16x32, Ls=16 on 85 configura-
tions. The two independent calculations give very consistent

results. We havé,=137(11) MeV,f,=156(8) MeV from B. Continuum limit of my/m,

the axial vector current correlator and almost the same values Here we combine the hadron mass results tabulated in
from the pseudoscalar correlator. Our resultsffprat both  gec. 1] to examine the behavior of the nucleonptanass
ratio asB varies between 5.7 to 6.0. First we evaluaig
andm,, in the limit m¢+m,=0. We did not use the value of
m; which gives the physical ration,./m,=0.18 for the rea-

190

170

« (MeV)

150

130

110

TABLE XXXII. Results for a~! using m, extrapolated tam;
+m,s=0 to set the scale and fony /m, extrapolated to this same

value ofm sons outlined in the previous section. In Table XXXII we

8 v L a }(GeV) my/m, give the_ resulti_ng mass ratio_s as well as the lattice spacings
in physical units as determined from, evaluated atm;

5.7 gx32 32 1.05840) 1.51(5) +mes= 0. Note, no contribution to the quoted error for these

5.7 8x32 48 0.994198) 1.453) mass ratios arising from the uncertainty in this choicengf

5.7 16x32 48 1.01824) 1.4Q005) has been included.

5.85 12x 32 20 1.41934) 1.345) The relatively large variation afny/m, with g suggests

6.0 16x 32 16 1.92240) 1.424) that the errors shown in Table XXXII may be underestimated

6.0 16x 32 24 1.93850) 1.394) and makes a simpla® extrapolation to the continuum limit

somewhat uncertain. Nevertheless the result of such an ex-
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TABLE XXXIII. A variety of expressions for(Eq) in lattice and physical units. The quantttyin the fifth
column comes from our earliea(-bmy) fits to mi. The final column gives a conventionally normalized
value of the chiral condensate which is to be compared with the phenomenological value 6329

3 — 2 —
LoXNexLs B 3o — (A% my=—m,, bfz/48 (—12d0)ms 2 cen
8%x32x32 57 1.76(3x10°%  1.07(3)x10°%  1.7(2)x10°° —
83x32x 48 57  1.92(5x10°3 1.50(5)x 10 2 1.8(1)x 103 —
16°x32x 16 6.0 3.87(8x10°%  2.80(9)x10°%  3.3(5)x10°4 245(7) MeV
16°x 32X 24 6.0 3.62(9x10* 3.11(10x10*  2.6(5)x10°4 256(8) MeV

trapolation toa—0 is my/m,=1.375). Perhaps more in-  that the differences betwe¢qq) for the two different values
teresting is a comparison with similar quantities computed agf |__ at a giveng are of the same order as the difference

comparable lattice spacings and volumes using Wilson anfetween the values with and without the extrapolation to
staggered fermions. For staggered fermionsBat6.0 on  m=—m,.

comparable volumes, one finfi82,83 my/m,=1.473), a

. This unwanted~m,.s/a contribution to{qq) can onl
somewhat larger and less physical value than the(2)4hd e (qa) y

} N be controlled by explicitly taking the limit ;— <. We do not
1.384) results obtained here fdr;=16 and 24. However, at present have the numerical results to permit such an ex-

this cqmparison is made somgwhat ambiguous by t.he Signiflt'rapolation. Therefore, we will use the=6.0, Lg=24 result
cant finite size effects seen in staggered calculations whe ' 'S

. ; Js our best approximation to such a limit and interpret the
going from our 18x 32 to larger volume$84]. For Wilson difference between the,=16 and 24 values as an estimate
fermions, as reported in Ref85], one deducesny/m °

P of the systematic error,~10%. Given the value of

=1.37(2) by linear interpolation between ti#e=5.93 and .
Z5(MS,2 GeV)=0.619(25) for 3=6.0 quoted earlier and
6.17 values presented, a number remarkably close to our d%we results for the lattice spacing in physical units in Table

main wall value. When comparing these values, it is impor- R . .
tant to recall that our Band 16 spatial volumes are not yet XXXII, we can determingqq) in physical units. The results

— 3 3
infinite and, as discussed in Sec. Il, corrections on the ordef°r Ls=16 and 24[245(7) MeV]® and[256(8) MeV]”, are
of a few percent are expected. included in Table XXXIII, where only the statistical error is

displayed. The agreement between these numbers and phe-
nomenological estimates of the chiral condensate is satisfac-

) ] . tory, for example the value o (Uu +Ed),\,|—s,1 cev= (229
Finally we use the results presented earlier to estimate the g \vev)2 obtained in Ref[86]. Note thee ™ *ts/a® uncer-

size of the chiral condensa@q). Naively, one might ex- tainty present in our calculation does not have an analogue in
pect that a physical value fédgq) could be easily identified the properly regulated continuum theory. Wh{l¢#) does

in Table XX as thems-independent terma,, defined in Eq. contain a quadratically divergent piece in the continuum
(ﬁi). This quantity represents a simple extrapolation oftheory, this is eliminated for the chirally symmetric choice
{qq)(m;) from large mass down to the point;=0. Given =~ Mgquan= 0. This choice is not available in a domain wall fer-
the volume independence seen for the paramagewhen  mion calculation without taking thes—c limit. Of course,
comparing the3="5.7, 8® and 16 volumes in Table XX, itis  the other lattice methods for directly computifigy) have
natural to expect that such a choice minimizes the sensitivitgqual or more severe difficulties.

to the finite-volume zero mode effects that give rise to the Finally it is interesting to compare th8=5.7 and g

more singulam._; term. _ =6.0 results for(qq). Since we do not at present have a
However, there are other issues that must be addressegjiable determination of the needed renormalization con-
Perhaps most obvious is the fact that the pampt=0 is not  gtant, z5, for the stronger3=5.7 coupling, we do not at-
the physical chiral limit because the effectsfshave been  tempt to quote a physical value. However, the ratio of the
ignored. This is easily remedied by using the sl@pe 0 unrenormalized lattice numbers given in Table XXXIII for
ext_rapolatet_o theT phy§|cal p(.)|mf_+ mres—o. The resulting <QQ>(Ls:325:5.7)/<QQ)(LS:245:6.0):4-8(2) is reasonably
estimate of(qq), in lattice units, is given as the fourth col- . qistent with the ratio expected from naive scaling
umn in Table XXXIII. However, becaus@q) is a quadrati- S _s 757)/331 upes0=T-4(4).
cally divergent quantity, we cannot expect that all the chiral ( 5= 32675 (Ls=24/5=6.0) . —
symmetry breaking effects of domain wall mixing are re- Given the values now determined faq), f, and quark
moved by this choice ofn;. In contrast to many physical Mass, it is natural to test the degree to which the Gell-Mann—

= . o Oakes—Renner relatidid7]
quantities,(qq) receives contributions from energy scales
much larger than those for whiatm,.s represents the com- m? o
plete effect of chiral symmetry breaking. Thus, we should fff48(m—47:m: —(qq) (93
expect additional contributions t¢gq) of order e “s/a® + Mred
~ms/a®. This is born out in Table XXXIIl where we see is obeyed. However, the form of this equation reveals an

C. Determining the chiral condensate{qq)
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important difficulty. At what value ofm; should the ratio from the pion mass and find this agrees with the results from
m?2/(m;+m,.9 be computed? In full QCD, this ratio be- our explicitly calculatedm,s. Lastly, agreement fof . as
comes a constant for small quark mass. As we have seetdlculated from axial vector and pseudoscalar correlators re-
earlier, this is not the case in the quenched approximatioquires knowledge ofnsand the agreement serves as a fur-
where one expects non-linearities. ther check.

We might try to determine the proper treatment of these While our data for weaker couplings do not clearly dem-
non-linearities by returning to the underlying equation, Eq.onstrate tham,s—0, we have seen them fall to 1 MeV for
(53), from which the Gell-Mann—Oakes—Renner relation isLs;=48 at3=6.0. ForLs=16, a practical value for studies
derived. However, this is somewhat complex. Both sides obf low energy hadronic physics and matrix elemenigghas
this original equation have a mass dependence which comesvalue of 3.8716) MeV, roughly 1/30 of the strange quark
from the contribution of the pion pole term and other physi-mass. Even at stronger couplings, where the lattice spacing is
cal states, all influenced by the quenched approximation, as 1~1 GeV, we have measureal.sto also be about 1/14 of
well as the quadratically divergent terms {gq) and the the strange quark mass, although hege-48 was required.
contact term iny,,. Thus, while the underlying Eq53  Thus, we see domain wall fermions producing the desired
will be obeyed exactly in our calculation, there is consider-light surface states with small mixing, even for relatively
able ambiguity in deciding how to extract a quenched genstrong couplings.
eralization of the Gell-Mann—Oakes—Renner relation, Eq. We have measured hadron massesfgnfir lattice scales
(93). 1 GeV<a <2 GeV and have studied scaling in this re-

Here we will simply compare the right- and left-hand gion. Our determinations df; involve not onlym,sas men-
sides of Eq(93) by replacing the ration?/(m;+m,.) by the tioned above but also the measurement of the Z-factor for the
slope b obtained at larger massesy,=0.01 and given in local axial current. We .findfwlmp evalugted at themy
Tables XVI, XVII and XIX. The results from the left-hand +Mres=0 point to be scaling very well, while fany /m, the
side of Eq.(93) are given in Table XXXIII. Given our un- scaling violations may be at the 6% level. However, scaling
certainty i determining(ﬁq) and the significant non- seems at least as good as that seen for staggered fermions at
linearities we see imm2, the agreement seen between thesimilar lattice spacings and similar to that found for Wilson

. . S fermions with a clover terni84]. This is in accord with
frglrjsrth and fifth columns in Table XXXIIl is within our er- general expectations that finite lattice spacing errors will en-

ter domain wall fermion amplitudes &(a?) [19,89.
VIIl. CONCLUSIONS Our results demonstrate that quenched domain wall fer-
mions do exhibit the desired good chiral properties, even at

We have presented the results of detailed studies ofglatively strong couplings. The residual quark mass effects,
quenched lattice QCD using domain wall fermions, with par-which break the full global symmetries to leading ordeajn
ticular attention pald to the lowest order chiral Symmetrycan be eliminated by an appropriate Choicen‘u}f] so that
breaking effects of finitd_s and the behavior of the theory |ow energy physics should be well described by an effective
for small values ofm;. A major difficulty in studying the theory with the continuum global symmetries. Quenched chi-
smallm; behavior of the theory is the presence of topologi-ra| logarithm effects may appear for quenched domain wall
cal near-zero modes which are unsuppressed in the quenchggmion simulations, as they do for other fermion formula-
theory. These are a result of the improved character of thﬁons, but present no new difficulties. For |arge enough vol-
domain wall fermion operator, which has an Atiyah-Singerumes, the effects of t0p0|ogica| near-zero modes are sup-
index at finite lattice spacing ands—<. However, these pressed and the smaih; region can be investigated. For
zero-modes Complicate the quenChEd theory and demonstrq@ger values Ofnf , where these zero mode effects are sup-
that the quenched approximation is considerably morgyessed by the quark mass, one has a formulation of lattice
treacherous than might have been originally expected. We)cp with the full global symmetries realized to ordérand
have seen how these modes produce the expecteddl/  an effective quark mass ofi;+m,. Thus, the domain wall
vergence in(qq) for smallm; and distort correlation func- formulation provides a powerful tool which can be used,
tions used to measure the properties of the pion. By workingven within the quenched approximation, to study many of
on larger volumes, we found that the effects of these modethe outstanding problems in particle and nuclear physics for
were dramatically reduced, as expected. We were then ablghich chiral symmetry plays an important role.
to see a common pion mass determined from different Note addedAfter this paper was essentially complete, the
correlators. recent work of the CP-PACS Collaboration became available

We have determined or constrained the value for the ref89]. The reader is referred to this paper for another discus-
sidual massm,.s, Which enters the effective quark mass for sion of some of the topics presented here.
low-energy physics asngz=m;+ M, a humber of ways
and found good agreement. The residual mass was measured
from the extra, finiteLg term in the divergence of the con-
served axial current and from the explicitly determined low- The authors would like to acknowledge useful discussion
est eigenvalues of the Hermitian domain wall fermion operawith Shoichi Sasaki, Thomas Manke, T. D. Lee, Robert Ed-
tor. These two determinations agree within errors. We havevards and Mike Creutz. We thank RIKEN, Brookhaven Na-
also determined the difference s for two values ofLg  tional Laboratory and the U.S. Department of Energy for
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