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Confinement and gluon propagator in Coulomb gauge QCD
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We consider the role of the Faddeev-Popov determinant in the Coulomb gauge on the confinement properties
of the QCD vacuum. We show that the determinant is needed to regularize the otherwise divergent functional
integrals near the Gribov horizon but still enables large field configurations to generate IR enhanced running
coupling. The physical gluon propagator is found to be strongly suppressed in the IR consistent with expec-
tations from lattice gauge calculations.
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[. INTRODUCTION For example, it has been argued that in covariant gauges the
Kugo-Ojima confinement criterion for the absence of colored
Quantitative understanding of confinement and more gennon-singlets in the physical spectrum can be satisfied with a
erally of the dynamics of gluons at low energies remains tasoft gluon propagator if the ghost propagator is enhanced
be a major challenge in QCD. In the past few years latticd 1,25—28. We will show that this also seems to be the case
simulations and phenomenological studies have provideth Coulomb gauge formulation.
new insights into the nature of the low energy behavior of In a covariant formulation one sacrifices positivity con-
the gluon propagator and the role of gluons in forming thestraints and the Fock space representation to introduce addi-
hadronic spectrurfil,2]. Since gluons can only participate in tional (ghos} non-physical degrees of freedom. Alterna-
strong interactions, spectroscopy of hadrons with excitedively, by relaxing the requirement of manifest Lorentz
gluonic modes is of crucial importance for investigations ofcovariance it is possible to eliminate all non-physical com-
confinement. It has recently been shown that hybrid mesonsonents and study confinement and other low energy phe-
with excited quark and gluon modes should have propertieaomena within the framework of quantum mechanical wave
similar to ordinary hadronic resonances and thus gluonic exfunctions. Such an approach has obvious, important implica-
citations may appear in the meson spectf@mn7]. Searches tions for quark-model-based phenomenology. Furthermore,
for exotic mesons have produced a few tantalizing candiat finite density it allows for well established, diagrammatic,
dated8-13 and new experiments planned for JLab and GSImany-body techniques to be used. A many-body approach
focusing on light and charm meson spectra, respectively, areas proven to be successful in treating a variety of low en-
expected to produce a map of gluonic excitations. ergy phenomena in QCD. For example, the random phase
In this paper we address gluon propagation in the QCDapproximation, which is typicallye.g. for the electron gas
vacuum. This investigation was prompted by recent latticaelevant at high densities, in QCD is also applicable at low
results, indicating that in both covariant and Coulomb gaugesensities and may result in a self-consistent realization of
the low momentum behavior of the gluon propagator is sigconfinemen{23,29,3Q. Because of the long-range nature of
nificantly different from the non-interacting ofi@4-18. In  the confining interaction, at low-densities quasiparticle exci-
Landau gauge it can be parametrized as an analytical funtations have infinite energy which eliminates colored states
tion with a singularity (pole or branch point at |p?| from the physical spectrum. The absence of color singlet
~0(1 Ge\?) [19]; however, due to uncertainties in the ana- states is a consistent criterion for confinement in the Cou-
lytical structure the physical interpretation of the singularitylomb gauge as recently demonstrated in lattice simulations
as the gluon mass may be misleading. Nevertheless this is [131]. Due to bare quark-antiquark pairs near the Fermi-Dirac
the direction expected for physical degrees of freedom, e.gsurface, the quasiparticle vacuum breaks chiral symmetry
two transverse gluons in a physical gayg@®-23; an IR and leads to a non-vanishing scalar quark density. The col-
suppressed gluon propagator could originate from a largé&ective excitations of this quark-antiquark plasma correspond
mass thus describing propagation over short instances onl§o the Goldstone bosor82-37.
In the four-dimensional Euclidean formulation of covariant The picture described above relies on the existence of a
gauge QCD, however, the lack of IR enhancement in thdong range, quark-quark interaction. Such an interaction is
gluon propagator simultaneously contradicts the naive exexpected to arise from the Coulomb operator which in the
pectation that the color confining force might be simply re-Coulomb gauge Hamiltonian describes direct interactions be-
lated to the gluon propagator. A popular, phenomenologicalween (color) charge densities. Unlike QED, where this in-
approach to gluoand quarklow energy dynamics is based teraction is simply determined by the distance between
on a truncation of the self-consistent set of Dyson-Schwingecharge sources, in QCD it is a complicated function of the
equations. In many such approaches the gluon propagattnansverse gluon field and cannot be thought of as a simple
plays a central role in providing the effective interaction be-potential, i.e. of the Cornell typ88]. The conjecture that the
tween quarks; for example, it is used to generate dynamicaloulomb operator is related to the confining interaction is
chiral symmetry breaking24]. A soft gluon propagator im- based on the observation that it is positive definite and en-
plies that confinement has to be described by other meankrges at the Gribov horizon. The Gribov horizon defines the
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boundary of the gluon field domain. A number of approxi- H=H[A3X),IT3(x)]=Hq+ HogtHga+HgatHe, (D)
mations have been developed to calculate the expectation

value of the Coulomb operator and to verify this conjecturewith TI#(x) being the canonical momentum, satisfying
[23,29,39-41 In the process it has been realized that the -
Gribov region still contains physically equivalent field con- [TI2(x),A(Y)]= =i 8apd} (V) 8% (x—y), 2
figurations. To what extent the necessary identification of the i _ ivig2 ) . )
wave functional at these gauge-equivalent points modifie7(V)=9 a—V VIV ang in the Shrdinger representation
the expectation value of the Coulomb operator remains afiven byII'(x)=—i8/5A%(x). The five terms represent the
open issud41]. klnc_atlc energy, the quark-transver_se gluon coup_llng, the mag-

It should also be noted that confinement of the Coulomi€tic three- and four-gluon couplings and the instantaneous
operator is not equivalent to confinement of the static potenCoUlomb energy, respectively. In this paper we focus on the
tial. Furthermore, Coulomb confinement is a necessary biluon sector and thus will ignore quark degrees of freedom.
not sufficient condition for confinement of the static potential | "€ gluon kinetic term is given by
[27]. The relation between the two has recently being ex- 1
plored in Ref.[31]. For example, Coulomb confinement re- Hoz—f dx[ 7 HIR(x) JIT3(x) + (V X A%(x))?], (3)
spects Casimir scaling while in the adjoint representation the 2
static potential is expected to be screened. with

The standard approach to a many-body system is to intro-
duce a physically motivated ansatz for the ground state wave J=Det(1—\)=e""logl-1) (4)
functional and to define approximations for the evaluation of
expectation values. The variational mean field approach ibeing the Faddeev-Popd#P) determinant. The matrix is
expected to be particularly adequate for systems with longiven by
range correlations which is the case here due to the Coulomb
operator. Furthermore, it can in principle be systematically N _
improved by the introduction of two-, three-, and more par- xay,b
ticle correlations[37]. We have followed this approach in
Ref.[23] where we generated the confining interaction fromand in Eq.(4) the trace is over the spatialy and color
the Coulomb operator but a specific assumption on the bea,b,c indices. The FP determinant is the Jacobian of
havior of the gluon propagator at low energies had to beransformation from the canonical coordinates of the Weyl
imposed. In particular, the gluon dispersion relation whichgauge, V3(x),V%3(x)=0, with kinetic energy given by
follows from minimizing the vacuum expectation value was 1/2fdx[ —i 6/ 5V3(x)]?, to the Coulomb gauge coordinates
solved self-consistently together with the confining interac-A?(x) defined through the gauge map
tion with a specific boundary condition imposed on the

1
- VZ) gfachc(y)Vyv %)
Xy

propagator. In absence of the Faddeev-Popov determinant Va(x)=u(p)A2u" Y ) +iu(H)Vu (), (6)
this boundary condition was necessary in order to obtain a o
non-trivial solution to the coupled integral equations. with V-A?%(x)=0. The dependence of the Hamiltonian and

In this paper we will show how the Faddeev-Popov deterwave functionals on the~1§—1 Euler angles@(x) can be
minant constraints the low momentum behavior of the gluoreliminated using the Gauss'’s law constraint and results in the
propagator and brings it into a qualitative agreement withCoulomb energy terné3],
lattice results. The paper is organized as follows: in Sec. Il .
we give a brief description of QCD in the Coulomb gauge. _ 1 a b
As discussed above, the main novel feature of this approach HC_EJ dxdy T "p" () TKLA Lk ay0p (), @)
is the inclusion of the Faddeev-Popov determinant. The
Faddeev-Popov determinant has been treated previously With p?(x) being the color charge density, which in the ab-
the case of th&® spatial manifold with an UV cutoff which  sence of quarks is given by
results in a finite number of normal modes of the gluon field
[39,42. This is quite different from the continuum, flat three- PA(X) = FapdI°(X)A%(x), ®
dimensional case studied here.

The details of the many-body formulation are given in
Sec. lll. Even though the main focus of this work is the IR
sector, for completeness we briefly discuss the UV behavior K[A]x,a;y,bzgz[(l—M_2< - —2)
and renormalization in Sec. IV. It should be stressed, how-
ever, that the main results of this work could well be 0b-y,4re getails of the derivation of the Coulomb gauge can be
tained by simply cutting off the high momentum compo- found in Refs[23,43.
nents. The numerical results are discussed in Sec. V. '

and the Coulomb kerné{ given by

(€)

x,a;y,b

Functional integrals in the Coulomb gauge are performed
over the measurél, , ;dA"?(x)J. The Faddeev-Popov de-
terminant results from the nonlinear field transformation

The QCD Coulomb gauge Hamiltonian, defined ¥y given in Eq.(6) and reflects the complicated topology of the
-A3(x)=0 is given by[43] field space domain. Furthermore, it is well known that the

II. QCD IN THE COULOMB GAUGE
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The determinant of the FP operator leads to a suppression
of the ground state wave functional near the Gribov horizon.
This can be illustrated using an analogy between the Weyl
and the Coulomb gauge kinetic terms and a harmonic oscil-
lator in Cartesian and spherical coordinates, respectively. In
N dimensions, theswave harmonic oscillator radial wave
function satisfies
. {109 0 22|
(r) > jarj(?r+w r<{R(r).

(12)

1 N 9
— ——2+w2Xi2
2 i=1 (}]Xi

Here the Jacobian is given hy=rN"1~exp(Nlogr) and

it vanishes at the boundany—0 of the domain ofr. The
FIG. 1. A schematic representation of the field domain in theground state wave functioR(r) is finite at that boundary,

Coulomb gauge. The poir is on the common boundary of the R(r)=exp(—r2w?2) but the radial wave function defined by

fundamental modular regiors(\) and the Gribov regiondQ2) and ()= 7Y2R(r) vanishes as—0. The Hamiltonian can be

corresponds to a coordinate singulariggA]=0. redefined to absorb the Jacobian,

gauge conditionV-A2?=0 is not a complete gauge fixing
and thus the mappiny—A,é is not unique. The unique
solution on a gauge orbit can be defined as the absolute
minimum of the functional,l[A,g]=fdx[Aa(x)]§ mini-  wherep,=—id/dr and the additional potential is given by
mized overg [41]. At the minimum ofl[A], V-A?=0 and  Vc=J [p,.J1%4— T Yp;.[p;.J1V2. The Hamiltonian
the FP operator is positive. The space of the absolute minimg js Hermitian with respect to a flat measure in the radial
defines the fundamental modular regi#MR), A as shown  direction,

in Fig. 1. The boundary o\ is a set of gauge fields which

lead to degenerate absolute minima. The fundamental regio

resides inside the so-called Gribov regi@n corresponding DXR(x)HR(x)
to all minima of I[A] and thus also satisfying the transver-
sality condition. The boundaryQ defines a set of configu- f do
rations for which the gauge mapping is singular afid\]

=0. In what follows we will primarily study the role of
configurations near singular boundary points &d. Since
there exist configurations for whichA and Q) overlap, the
point A3(x)=0 lies in A and bothA and Q are convex,

some fluctuations around the null field reach the coordinatSlDOhding to the singularity of the coordinate transformation
singularity, Q) without leavingA. Furthermore, it has been . ) X )
ingutarty. withou ving . : Furthermore, by transforming to the radial baBis>u the

pointed ouf44] that it is the common boundary points which .

dominate functional integrals. The argument is based on th@tegaals are t;)thbe pCeE)formed overfa”flat m?asijhre. '(I;he Icorrbe—
observation that in the infinite volume limit a probability spondence with Q goes as foflows. In the toulom

distribution may be concentrated on a lower dimensionaf2u9e: at the Gribov honizogf=0 as the Coulomb kernel

subspace, i.e. at the boundary. Thus even if field config;;ura(zi've.rges and this can be in.terpreted as a man.ifestation of
tions outside of FMR are included these may not lead tQconf|nemeni[23]. However, since the wave functional van-
substantial errors Ishes at singular point&Q) of the coordinate transformation

In the limit 7=1, the Kinetic term describes a set of (equivalent tau— 0 asr—0), functional integrals over color

coupled harmonic oscillators and iisnnormalized ground singlet statgs are expected to be finite. In k28] we have
state| wg) is given by explored this scenario, but we have not accounted for the
0

boundary condition on the ground state wave functional. In

_ 1
HoH=J" M7 2= (pf+0’r?)+Ve, (13

=J drjR(r)HR(r)=j dru(r)ﬁu(r).

(14

In terms ofH and u(r) one effectively recovers the simple
harmonic motion in one dimensidmoduloV), except for
éhe boundary conditionu(r)—0 at the pointr=0 corre-

1 dk effect we used a Gaussian ansatz danstead ofR, i.e. the
(A|w0)=exp{ — —f ——— wo(K)A*(K)A%(—k) radial wave functional was finite at the Gribov horizon. To
2J) (2m) ensure that functional integrals which include the FP opera-

(20 tor or the Coulomb operator converge we had to choose a
particular condition on the parameters of the ground state

with k)=k= k| being the free gluon energy and
oK) K g g 9y wave functional. Summarizing, the FP determinant is a cru-

_ cial element of the QCD Coulomb gauge dynamics as it
Aa(k)EJ dxe™ " *A%(x) (1) suppresses the integrands near the Gribov horizon. This sup-
pression can be accounted for explicitly in the meauee
represents the normal modes. the middle term in Eq(14)] or absorbed into the radial wave
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function [the last term in Eq(14)]. In the following we will A a
keep.J explicitly in the measure and use the Gaussian func- <w|w>:f DA2J[AJe [k IATOATC = ( T AT).
tional for the ground staté.e. R). (19)

As long as gauge fields are within the Gribov regidn
the Coulomb potential is positive and it is possible to use aVe will use(- - -) to represent functional integrals over the
variational approach. The Gaussian ansatz can be motivateglound state ansatz functional with tflat measure. After
by noting that mean-field approximation works best for sys-dntegrating by parts the kinetic and Coulomb kernel contri-
tems with long-range correlations and from a technicabutions can be written g$dk]=dk/(27)3]
standpoint it enables diagrammatic expansion, which corre-
sponds to generalized quasiparticle approximation. This ap- _ 1 f DA Je~ [dke(0AT WA~k
proximation can be systematically improved using cluster —K™ 2(y|w)
expansion techniques and excited states can also be studied
[37]. In this context one often uses the formalism of second 2 a a; a/ o2
guantization which is natural when dealing with Gaussian f[dk]w (AT AX ka X{B00]
integrals over polynomial§Wick theorem. In our case, (20)
however, before one gets to this stage one has to deal with
non-polynomial operators, e.g[A] or K[A], and thus itis gnd
simpler to continue with the Schidinger representation.

X

Ecz_l fDAaf %[ dk;] e [ dke(IA% A (k)
lll. THE QUASIPARTICLE SPECTRUM 2(w|w) !

In the non-interacting caséd=H, the perturbative X p(k1, ko) K[ATi abp°(K3,K4), (21)
vacuum of Eq(10) minimizes the energy density of the sys-
tem, i.e. respectively. The charge density is now given by
d  (w|Holw)/V p(Ki K;)=fapcow (ki) AP(k;) - A°(K;) (22)
ok (o|o) w=ag and the Coulomb kernel by
g 1. d 2 . .
e e e O i VL)
do(k) 4) (2m)° o@],_, ' 23

Here V is the total number of gluon degrees of freedam, EVven though details of the boundary of the functional inte-
— 5.,,01 fdx=(NZ—1)x 2x volume. To describe the quasi- gral_s_ are not knOV\_/n, the partlal_lntegratlon is presumably
particle spectrum we will use the same Gaussian variationd'Stified since the integrand vanishes A&s-> and at the
ansatz. The VEV of the Hamiltonian becomes boundary of the Gribov region7— 0. Compared to the har-
monic oscillator example discussed earlier, the partial inte-
gration combines contributions from. and p,2 in Eq. (13
to the vacuum expectation val¢EV) of the Hamiltonian
and expresses the sum as a coordinate space integral over the
Gaussian wave function. In our case the complication in
evaluating functional integrals ov&A is due to the nonlin-
E = 1 f DAaf dxe [ K0(K21AZKAZ(~K) ear dependence Qff A] andK[A] on theA through the FP
K7 2(0w|w) operator, (:\)=(1—A[A]). These integrals are per-
o a formed by expanding functionals in powersAfperforming
X {TI3(x) JII3(x) +[B3(x) |2} e~ /Ko (/AT OAT-K) Gaussian integrals of over polynomialsArand approximat-
17 ing them by products of two-point Green’s functions. This
will be illustrated in particular cases below.

To simplify the notation, the triplet of indices representing
momentum, color and spin will be denoted by Greek letters,
e.g.a=(k,a,i) and a doublet containing a momentum and a

EC:_l f DAaf dxdyeffdk[w(k)/ZlAa(k)Aa(fk) color index bya=(k,a). The summation convention will be
2(w|w) used with upper and lower indices differing by a replacement
k——k, e.g.A?=A"?(k),

E(w)=(w|Ho)/{w|o)=Ex(w)+Ec(w), (16)

where

B3(x) =V X A%(x) + gf.pAP(X) X AS(x)/2, and

X[ p?(X) JK[ A, ay bpb(y)]effdk[“’(k)/Z]Aa(k)Aa(fk).
(18) E AaAaEAaAa:z 2 [dk]Aia(k)5i-|l(k)Aja(_k)_
@ a i

The ground state normalization is given by (24
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In this notation the matrix in the FP operator can be written

as
NTG=APD g =\ AT
~gfucs ] [0 Pk 2, (29
with
)\a“yﬁ:)\(?ﬁ)&k%(qvb):(Zw)sbﬁ(p_k_q)ig[&r;;zk)q]kfacb-
(26)

Evaluation of functional integrals is simplified by introduc-

ing generating functionals,

(AL .. AF[A])= f DAF[AJA®. . ~A“ne‘27 w ATA,

27
with DA=II_,dA“ and since
f DAF[A]ezy [*wyAVAerAVJy]
J
=e2 (3”7/4‘“y)< FlA+— > (28
y 2w
we obtain
(A% .. A“F[A])
) 1) 2 J
- (CRANZI) -~
5‘](11 5\]%‘]709 ~ YOy < FlA+ o >

(29

In this paper we are primarily concerned with the instanta-
neous part of the transverse gluon propagdtamo-point

Green's functiop defined by

a

1)
M5 =(A“AT AN ITTAD = 55

(30

with the last equality following from translational invariance

PHSICAL REVIEW D 69, 074031 (2004

1/20)Y

A Y

[vXe} GI_’,

FIG. 2. Primitive self-energy, i.e. the lowest order correction to
the FP operator, or the Coulomb lin&. The solid line represents
the bare Coulomb potential ({13).

with the first term corresponding to the propagator in the
absence of the FP determinarf€1) and the second term

given by
°2 <J >/(J[A]>

Haﬁbo
RS Y RE
——<_2wa(1—)\) 12—%(1—7\) 1} ;J[A]>/
(JLAD

')\a B Y )\B - a
+<_2wa(1—x> 1} lz—wﬁ(l—x) 1} UJ[A]>/

Y

(JA]), (32

where[A¥]7 = aAVE;AB/(?Aa=)\W;. This relation can be
represented through an infinite set of coupled integral Dyson
equations containing all dressed vertices. As argued in Refs.
[23,29, however, vertex corrections give a finite and small
modification and will be ignored. The dominant contribu-
tions in both the IR and the UV regions of the loop momen-
tum integrals over instantaneous propagators come from dia-
grams with a maximal number of soft Coulomb lines and a
maximal number oprimitive self-energy loops, respectively.
The primitive self-energy is shown in Fig. 2 and is given by

A+ J
2w

OQa—— a—_ a —\ OYy—_ S Q
100g=2, 20, M 5= 2 5NN T= 8l

Y y €W,
(33
or
1-(g-k)?
010/~ — 2

zind color neutralitx of the vacuum. In the approximatign This self-energy is UV divergent and has to be renormalized.
=1, one hast)(k)=w(k) and one obtains the propagator \yg il discuss renormalization in the following section. To

used in Ref[23]. From Eq.(29) it follows that

v 2]
" 6 o J /
) B+2waﬁa WJZO j[A-l— Z}>

: (31

1)

We=53, 597,

eE (373 /40,) <j
Y

2w

a

(JIAD)

proceed we need to introduce the expectation value of the
inverse of the FP operator,

= ([(1=N) T [ADNTIAD = 5d5. (35

A few lowest order diagram contributions to this VEV are
shown in Fig. 3. At the two-loop order the first and second
diagram in the second line dominate in the IR and UV, re-
spectively, and are retained. In higher orders the dominant
contribution comes from a series of rainbow-ladder diagrams
obtained by summing the class of diagrams generated by
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d

FIG. 4. The rainbow-ladder approximation to the Dyson equa-
tion for the transverse gluon propagator.

and is shown in Fig. 4. Since neutrality of the vacuum im-

plies
FIG. 3. Rainbow-ladder approximation to the Dyson equation _
for the Faddeev-Popov operator. [N“dNgd]"= E A7e ~a: )\" A, =26%F,, (40)
these two lowest order loop diagrams. The resulting approxi- i
mation to the Dyson series is given by we finally obtain
= 5= 0+ (ML= NG T ) = 0% Qo= utFay .

1 - = _ L
+2y E[Mm\yd]aﬁz s1+15d,], (36 whereF ,=F(q) is given by

k-9)?
where Fl@= [ 1ok ddkha—k). (@2
1
> 20, ylrd g 5“’ (37 We can now return to the calculation of the vacuum expec-

tation of the full Hamiltonian. Minimizing energy with re-
With d_=d(q) andl=1(q), we obtain the following equa- spect tow determines the ground statend ), and from
tion: Eq. (41), the gluon propagator 1¢2. In terms of this propa-

gator, the kinetic vacuum expectation valdg is given by

g
W= 141y
) )

Using the same approximatioff ignoring vertex correc-
tions), the Dyson equation for the instantaneous propagatol

becomes
J /
” > (JIA)

J| A+ 5~

6 o <
6J“ 8Jg,_,
NN ]

2w, 2wg

Y

dx d ! vz Mo gl
Y 7 FIG. 5. The vacuum expectation value of the kinetic energy. The

(39 four-point function contribution comes from tH&# term.

+3 oo

(X
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FIG. 6. Low order contributions to the 2PI gluon-gluon four-
point function.

Jd d d 4

1 1
_ E 2 2 a - o
EK_Z = (wa+pa)H a+2V0'aBV yﬁaJa (9‘]3 (9"]}/ (7‘]5

X ez (JPJP/4mP)<j
p

J
A+ %D . (43)

The second term originates from the square of the magneti +
field, B?=[V X ]7, A7+ V7,,A“AP, and it is shown in Fig.
51

w?(q)+¢?

Ex/V= = f [dal—sa—— 20.(9)
( q)z FIG. 7. The vacuum expectation value of the Coulomb operator.

e f Mgl 9 o e
with the charge density given by EQ(22), p=p”
This magnetic contribution involves a transverse gluon four=p? ﬁAaAB and
point function, which as discussed earlier, is approximated
by the product of two two-point functions, i.e. the gluon- c
gluon scattering amplitude shown in Figs. 6 is set to zero. Ec/V= —J [dk][dq]
The Coulomb energy VEV is shown in Fig. 7 and is given by 32

E (373, /4w

J
20 Pys

.

(q_—k)z[lJr(k'CI)]

[Q(k)—F(kh—Q(la)+F(|a))]?
Q(lkhQ(al)

Finally the gap equation follows from=9J(Ex +E¢)/dw,

(45) and is given by

<(1 N)A=VHT|A

Ncg? 3—(q-k)?
0%(q)-F(@) -~ | [dk] o[ aaree @k

Q(k)
XK(q—k) [Q(k)—Q(q) —F(k)+F(a)][2(q)+ Q(k)—F(k)+F(q)] @)
(q—k)? Q(k) ’
|
with It is also instructive to analyze the single quasiparticle dis-
persion relation
K(q)="f(q)d*(q), (48)
E.05=(TAHART). (50)

andf satisfying

—(q The calculation is straightforward although more tedious due
f(q)=1+ ch [dk] . f(lg—k|). (49 to the presence of up to three contractions _correspondmg the
2Q([k[)(a—k) VEV of six field operators. The final result is
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E S Q2+ F2(q)+ 2+Ncng dk @R
(@)= (@)+q 7 [dk] oK

N
+—Cf [dk](1
20(9) 4

K(a—k) [Q(k)—Q(a)—F(k)+F(@)][Q(q)+Q(k) —F(k)+F(a)]+20%q)

+(9-k)?) (50
(q—k)? Q(k)
|
After combining with the gap equation one obtains Similarly from Eq.(47), to leading logarithmic approxima-
tion, we finddw(q)/dg=1+0(g?(A)) for g~A. Thus fi-
Ne ., K(@K) nally
EQ)=0(@)| 1+ [ T+ @R — |
4 Q(k)(q—k)z(sz) dg(A) B, ]
A =- A)+0(g>(A)), 55
aA (477)29( )+0(g>(A)) (55
In the limit F=0, corresponding to/ =1, Eqs.(47) and(52) o ) 5 ) )
reduce to the ones derived in RE23] with Q= w. which, ignoring the term®(g~), has a solution given by
g(w)
IV. RENORMALIZATION g(A)= 13" (56)
So far we have been ignoring potential UV divergences. 1+ P g2(w)log(A% w?)
These divergences should be removed by renormalizing ap- (47)?

propriate operators and the coupling const@nit turns out

that all four equations of interest, Eq88), (41), (47), (49),  The asymptotic behavior as— is therefore given by
require renormalization. These equations have to be regular-

ized first. This can be done by cutting off the momentum 4
integrals,[dk]— f*[dk]. The physical, renormalized solu- gA)= ———. (57)
tions,d(q), f(q), w(q) andQ(q) should beA independent. B40g 4 A?)

We will first discuss renormalization of the expectation value

of the inverse of the FP operatai(q). Assuming that a The renormalized equation fai(k) is completely specified
renormalized solution fof)(q) has been found, the equation onceg(u), the value of the coupling at an arbitrarily chosen
for d(k) is renormalized by adjusting the bare coupling, renormalization scalg, is fixed. It should be stressed, how-
—g(A), i.e. the renormalized VEV of the inverse of the FP ever, that this solution is valid only to within terms of the
operatord(k) will play the role of the running coupling. The order of 1/lo§’( A% 1?). In practical applications we will be
A dependence af(A) is determined by the UV behavior of renormalizing at a low energy scalg for example, by fix-

Eq. (398), ing the string tension or the glueball mass and thus such
corrections become unimportant As—. For relevant op-
dg(A) B gXA)d(A) eratprs, however, aswe will see .below, such logarithmic cor-
=— 5 , (53 rections are multiplied by positive powers af and thus
dA (4m)=  Q(A) cannot be neglected.

For practical(numerical applications we have found a
with S=8N¢/3. In this and all other renormalization group different, momentum subtraction renormalizati¢MSR)
equations we keep only relevant and marginal contributionsScheéme to be more practical. In this scheme the renormalized
i.e. no power correction€(p"/A") with n>0 are included €quation ford(q) is obtained by subtracting E¢38) at g

since they do not require renormalization. Sirge0 and ~— &>
physical solutions requird(k),{(k)>0 the solution of Eq.
(53) vanishes in the limitA — . In the limit k—o the in- 1 1

tegrall (k= A,A) given by Eq.(38), with the second argu- d(q) - d(w)
ment referring to the upper limit of integration, is finite. Thus K

in leading logarithmic approximatiord(A)—g(A) as A B 1 - 31-(k-q)2d(g—k)
— oo, Furthermore, from Eq41) it follows that for largeq, =— zf d(R-&)j dklké— >
q~A, (4m)) -1 0 4 Q)  (g—k)
+(Q—p). (58)
dQ(q) de(q) ) do(q) ’
dg - dq O (@)~ dq +O@(A). In this renormalization scheme the coupling constant is

(54)  therefore given by
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1 1 B
= +

OmseA)  d(p)  (4m)?

1—(k-m? d(p—k)

k) (u—k)?’

and g(A)=gusr(A) to within corrections of the order
O(u/A), i.e. they agree asymptotically. We also find fpr

~A—o0

d(q)=gmsA){1+0[gysy A)log(A%g?)]},  (60)

as expected from that discussed above. From now on we wi
only use the subtracted equations and drop NM@R sub-
script.

J'sin e’

(59

PHSICAL REVIEW D 69, 074031 (2004

B 1 (A 3
(477)2j1d(k'mf0 dkkzZ
1—(k-w? d*(u—k)f(pu—k)

Q(k) (n—k)?

As expected, for UV values di~ A —o we find

Zy(M)=F(p)—

(65

f(k)=Zx(A){1+O[g?*(A)log(A?/k*)]}. (66)
An extensive discussion on renormalizationfndf has
already been given in Ref23]. It should be noted that for
large k, if d2(k)/Q(k)<1/log®)" with n>1 there is no
renormalization forf(k). Our analysis suggests that=1,
thus the unrenormalized equation fbrhas a sub-leading

We now proceed to discuss renormalization of the equatog[log(k)]. We suspect that this is an artifact of the rainbow-

tion for f(k). Physicallyf(k) —1 represents the relative dif-

ladder truncation.

ference between the VEV of the square of the inverse of the As long as one works with the leading logarithmic ap-

FP operator and the square of the VEV of that operator. Anyyroximation and use€ (k) = w(k) =k, there is no effect of
UV divergent contribution td should therefore be renormal- the EP determinant od or f. The inclusion of the EP deter-

ized by renormalizing the operata@?®/(1—\)?, since the
operatorg/(1—X\) has already been renormalized. This is

minant influences the low momentum behaviordoénd f,
but it also introduces a new divergent integfa{q) in Eq.

done by multiplying the Coulomb operator by a renormaliza-(42). Since the origin of is the FP determinanf, it is the

tion constantZg (A), K[A]—Zk(A)K[A]. Using the renor-
malized Coulomb operator the equation E49) for f(k)
becomes

31—(k-q)?

B 1 (A
f(k)=Zk(A)+ —(4w)2f1d(k'q)fo d|<k24 om0
d?(g—k)f(g—k)
X—
(g—k)?
and in the limitA — o one obtains
B dA(A)f(A)
S (4m?2 QM)

(61)

dZ(A)
A
dA

(62

Zk(A),

which in the leading logarithmic approximation has a solu-
tion given by

Zi ()

Zy(N)=———5-.
K( ) |Ogl/2(A2/,LL2)

(63)

Choosing a value foZ(u) at some UV point fixes the renor-
malized equation fof (k). As in the case of the FP determi-
nant, we will employ the momentum subtraction renormal-
ization scheme, which leads to

f(k)—f(u)
B 1 . . (A
(47)21—1d(k-q)fo dkic
d*(g—k)f(a—k)
X—

(q—k)?
resulting in the MSR scheme i (A) given by

31—(k-g)?

4 Q(k)

— (=), (64)

FP determinant that has to be renormalized in order to make
Q(k) finite. The renormalized FP determinant should by
chosen as

T {Jeza S0 ATA+ - -

(67)

A

Here - - - stands for higher powers of the field operators;
however, within the Gaussian approximation we are working
with only the quadratic term that needs to be retained. It can
be easily verified that replacing by Eq. (67) leads to the
replacement

F(g)—F(g,A)+ dw(A), (68
where F(q,A) stands for the integral in Eq42) with the
upper limit set toA. The counterterndw(A) will be chosen
to make()(q) UV finite. SinceF(qg) has the mass dimension
of one, in general one expects two counterterms will be
needed, one proportional to and the other to one power of
the momentum. From the UV behavior of the integrand in
Eq. (42) it follows, however, that only the first is needed and
we obtain

déw(A) B
A (477)20'2(/\), (69)
whose solution is given by
A
Sw(A)=w(um)— (477)2L dkd?(k). (70)

We note that corrections to the leading asymptotic behavior
d(k)~g(k) cannot be neglected here since fofq) they
result in terms ofO(A). Thus it is necessary to keeffk)
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rather therg in the renormalized expression fbr As in the  determined by the cutoff. The gap equation has a quadratic
case ofd andf in the following we will use the MSR scheme divergence which is to be renormalized by a gluon “mass”
for Q(q), which gives counterterm in the Hamiltonian,

Q(q) — Q2 (p) ~ o(q) + o(u) 5H(A)=%m2(A)AaAa. 75

B (1 . . (= 31—(k-q)?
- (4W)2f_1d(k- q)fo dkaZ (q—k)2 d(k)d(q—k) This is the only relevant operator, e.g. of dimension two. The
constantm?(A) is fixed by requiring that the gap equation

—(g—pum), (71 leads to aA-independent solution. Thus we insist thatk)
. . . . is A independent and this guarantees that any divergence of
with the asymptotic behavidi~A —co given by an operator matrix element calculated with respect to the

state|w) will be associated with the operator itself and not
g2(A)A{1+O[g2(A)log(A%k?)]}, with the state. The counterterdiH(A) contributes to the rhs

QK) = w(k)+

(4)? of Eq. (74) with m?(A) and from the UV behavior of Eq.
(72) (74 we find
and sw(A) in MSR given by dm?(A) B A?
=- 5| 29%(A) +d?(A)f(A)w(A) |,
Sw(A)=Q(u)— w(pm) dA (4) w(A)
.. (76)
A fl d(lid)jAdkkf—l_(k.mz whose solution is
(4m)%) -1 0 4 (u—k)? dk
A
— 20AYV—m2( )= — | o2 2
X d(k)d(pu—Kk). (73 m(A)—m*(u) =g w(k)[Zg (A)k
The gap equation is the one which cannot be renormalized +d2(k) F(K) (k). (77)

in a simple way. This is due to inconsistencies in the approxi-

mation used. Specifically, the gap equation is derived by tak, the MSR scheme the gap equation then becomes
ing the functional derivative of the energy expectation value

with respect taw. In the second integral in E¢47) we have 0?(Q)— 0 (w)—q*—F(q) o(q)+F(u) o(u)+u?
retained only the derivative of the gluon lines and not of the P .

Coulomb kernel. The former leads to terms in the integrand B - * 9 2
proportional toF thus formally ofO(g?). Similarly deriva- _(4w)2fld(k'q)fo dkKT (k) ~ w*(a)]

tives of the Coulomb operatodtf) lead to terms propor-

tional to d*f/Q?, i.e. also ofO(g*). Thus if terms propor- 31+(k-q)2 K(g—k)

tional to the difference) — w are kept in the numerator of 3 oK) (4K —(q—u), (78)

the gap equation it would be necessary to include derivatives
of the Coulomb kernel. Since all the§¥g*) terms involve

: . | . ith th totic behavior fdt~ A i b
two-loop integrals in the following we will neglect them. The w © asymprotic behavior — given by

simplified gap equation then reads w?(k)=qg¥1+0[g?(A)log(A%/K?) ]}
Ncg? 3-(q-k)? B
2(q) =+ 2F = [ +———g2(M)Zg(A)A?, (79
w*(Q) =0+ 2F(@ala) + —— | [dk— 7 am)? K
N¢ . K(g—k) 0?(k)—w?(q) and the counterternm?(A) in the MSR is given by
e L ERTCH G
4 (q—k) w(Kk) A 1
2 2 2 2
M=t w250 <A>JO dkié
The equation is identical to the one in REZ3] except for B (1 A 3
the term involvingF in the rhs and all terms are @(g?). — 2f d(ﬁ.,})f dkI w?(K)— 0?(u)]=
This simplification is justifiable since our goal is to study the (4m)°) -1 0 8
effect of the FP determinant on the low momentum proper- A oa,
ties and thus possible modifications of UV behavior are X(1+(k'ﬂ) ) K(p—k) (80
largely irrelevant. (k) (m—k)?"

In a covariant formulation the renormalized theory has the
same operator structure as the bare one. This is not the casbe renormalized equations for the VEV of the inverse of the
in the Hamiltonian approach. Renormalization introducesFP operator, the corrections #3 needed to obtain the Cou-
non-canonical operators. The strength of such operators Ismb potential, the gluon propagator and the ground state
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wave function are given by Eq$58), (64), (71), and (78), 1 1
respectively. These equations depend on four parameters, the =——————
renormalization constantd(u), f(u), Q(x) andw(w). In d(q) d(u)
the fqllowmg section we W|II_ study the_ solutions of these B a k2 d(q) B q d(k)
equations and their physical interpretation. =— _f — + f dk
(4m?Jo q? k) (4m*Ju Q(K)
V. RESULTS B k? d(u)
prEd 9
As discussed above there are four constants that need to (4m)=Jo — u” Q(k)
be fixed. This can be done, for example, by comparing the R
Coulomb potential in position space, the gluon propagator functiof} is given by
2 a k2
dk  d*(k)f(k Q(q)=Q(p) + o(q) —w(u)+ f dk—d(k)d(q)
erf(X) = j grex T O (81) (4m)*Jo " g?
(2m)3 k2 )
B (e . B (r k
+ Zf dkd(k)— Zf dk—d(k)d(u),
with the lattice, static quark-antiquark potential. This proce- (4m)"Ja (4m)*Jo  p

dure was used in Reff23]. Unfortunately, the dependence of (84)
Vess ON the renormalization constants is complicated, thus
fitting the lattice potential will not necessarily provide much and the gap equation fas(q),
physical insight. Furthermore, it has recently been shown
that there are differences between the lattice Coulomb poten-  w?(q) — w?(u)—>—F(q) w(q) + F(u) o(m) + u?
tial and the static potentig#5]. This is to be expected. On ) ) )
the lattice the Coulomb potential corresponds to the expec- _ B fq kk—K( )“’ (k) —0™(q)
tation value of a part of the Hamiltonian while the static (4m)?2lo o? q w(K)
potential gives the full energy.
We will thus proceed by simplifying the integral equa- * w?(K)— »?(q)
tions derived in the previous section and imposing con- +f dkK(k)T_(q_’/‘)- (85)
straints on the renormalization constants. The main differ- d

ence between the present analysis and what was done in R%‘e note thati( T
; i . a),Q(q)/ u andw(q)/ n are renormalization
[23] has to do with the inclusion of the Faddeev-Popov de, o, (,) invariants. As discussed above if one ignores the

terminant. Our goa_l here is to investigate th? role O.f the FFlgP determinant it is not possible to choose an arbitrary renor-
determinant which is most prominently seen in the differenc

between 1/2 and 1/2.: the gluon propagator in the pres fnalization condition forw(0). Furthermore, in this case
ence and absence of the FP determinant, respectively. If tﬁgere is_a_critical (maximum value of d()=dc(x)

determinant is omitted, one h&k) = w(k) and in this case = 4m\3fw(0)/5u for which Eq.(83) has a solution. The

- . appearance of such a critical coupling is an artifact of the
the remaining three equations, fo¢q), Eg. (58), f(q), Eq. . i . : . ]
(64) and w(q), Eq. (78), were analyzed in Ref23]. These rainbow-ladder truncation used in evaluation of the expecta

equations have solutions provider(k) is finite ask—0. If tion value of the Hamiltonian. The origin of this critical cou-
(K)—0 then the equation fai(K) will develop a pole at a pling can be illustrated by considering the following integral:

finit i | ¢ ¢ 4 i6(K) s o0 K a schematic representation of the functional integral repre-
inte, posilive value of momentum an ( )_f as senting the VEV of the inverse of the FP operator,
—0 then for a confining potentiak (k) — 1/k¢, with o>2

the gap equation has no solution. A renormalization condi- ok
tion at u=0, w(0)=my was therefore imposed witim, |(g):J dx7(x) _ (86)
fixed by the Wilson loop string tensigieven though, as dis- 1-gx

cussed above it is now known that the two string tensions are
different. A simplified set of equations can be obtained byHerex represents the gauge potentidlx) ~€'°9* = plays
making an angular approximation, the role of the FP determinant, and 14 §x) of the VEV of
the inverse of the FP operator. If one sgts-1 the integral
becomes divergent at=1/g unlessg=0. In the ladder ap-
la—k|—a6(a—k) +ke(k—q) (82 proximation the integral is evaluated by expanding 1/(1
—gXx) in a power series igx and integrating term by term,
whereq=|q| andk=|k|. In Ref.[23] it was shown that the keeping only a subset of contributions. It effectively means
i i ; i i 2\n\ _ /y2\n ; m
angular approximation leads to results which are very closéh® ___approximation ((x%)")=(x%) with — (x™)
to the exact numerical solutions. We will thus follow this = Vo/7[dxx"exp(-wx?), which gives
approximation here since it allows us to considerably sim-
plify the numerical analysis. After the angular approximation I(g)= 87)
the equation fod(k) becomes 1-9%2w
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FIG. 10. Numerical solution foff (k) normalized tof (k=)

FIG. 8. A lot of the function f(z)=1
P (2) =1. Labeling of curves is the same as in Fig. 9.

—[rhs of Eq. (84)/92(0) = —3 In(1+52/3) / 5+ 31/25— 25/12%
+144(1- 1/J1+52/3)/6252, with z= uBd?(0)/(47)2Q(0).
_ From Eq.(84) we can derive a relation betwedh(0) and
which has a critical coupling=g.= 2w. d(w),
The FP determinant, however, makes the integral well de-
fined for all values ofg and thus no critical coupling is ex-
pected if 7 is not ignored. This is indeed what happens if

one uses Eq84). As long as(2(0)>0 the value ofw(q) at 20Q(0)=pu d?(0) (89
g=0 does not play a role in determining the position of the (4m)?
pole in thed(p) and we can for simplicity assume(q)
=0. Then from Eq.{83) approximatingQ2(q)=€(0) for q
<u, we obtain wherezy~4 is a root of the nonlinear equation shown in Fig.
8. Now we see that ad(0) increases so dod3(0)/u but
d(0) there is no upper limit onl(0).
d(a)= 5 12 (88) The FP determinant regularizes functional integrals near
1+ — 2d2(0)q/Q(0) the Gribov horizon. A€)(0) increases, the transverse-gluon
3 (4m) two-point correlation function decreases at low momentum
107 . . . . . . and the ghost correlator functiat{k) increases. This is pre-
10' . . .
10° | e
10° | E
% 10" | E 107 L i
<
=
10° | ] 0% 4 .
10° .
e 10t 107 100 100 100 10F 100 10°
i 107 ' ' ' * ! ! !
, ) , 10 10 0% 107 10° 10" 10®  10° 10’
FIG. 9. Numerical solution for the vacuum expectation value of kin
the inverse of the FP operatd(k). The three curves correspond to
d(k=u)=38.4(solid), d(k=u)=3.8 (dashegandd(k=pu)=1.1 FIG. 11. Numerical solution for the instantaneous gluon propa-
(dashed-dotted respectively, indicating that a solution may exist gator. Labeling of curves is the same as in Fig. 9. Increasing cou-
for arbitrary choice ofd(w) i.e. no critical coupling. pling d(u) results in a stronger suppression at low moment.
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cisely what was found in other gauges using Dyson- VI. SUMMARY
Schwinger methods and in other approximations to the Cou-
lomb gauge.

In Figs. 9—11 we plot the results of numerical solutions to
the set of coupled equatiori64), (83), (84), (85 for d(k),

In this paper we have studied the role of the Faddeev-
Popov determinant in the Coulomb gauge. The FP determi-
nant specifies the measure in the functional integrals over
X gauge field configurations and has so far been ignored in
f(k), andII(k) =1/20(k), respectively. most calculations of QCD matrix elements in the Coulomb

These should be compared with Figs. 4—6 from R&3].  gauge. The FP determinant vanishes at the boundary of the
In Fig. 11 we plot the inverse d(k) which is representing  Gribov region; nevertheless it still allows for large field con-
the transverse-gluon two-point function. As expected it isfigurations near the boundary to enhance matrix elements
suppressed at low momenta and approaches the perturbativg/olving the inverse of the FP operator or the Coulomb
limit as k— oo, potential. In particular we have shown that the inverse of the

We also note that even though the variational approacliP operator, corresponding to the running coupling or the
alone does not reproduce the correct UV limit of full QCD ghost propagator, is strongly enhanced in the IR, but at the
since for that propagating transverse gluons and quarksame time no artificial critical coupling exists. The same is
antiquark pairs are needed, these are not expected to charigee for the Coulomb kernel which is related to confinement.
the IR behavior. The reason being that, as indicated by thEinally, the instantaneous part of the transverse gluon propa-
leading contribution to thg function, the contribution from gator is found to be suppressed as is found in other gauges.
the propagating physical degrees of freedom is small,
O(10%), and screening is thus not related to confinement.
Furthermore, at low momenta the mass gap between the
ground state and quark-antiquark and/or gluon states is of the | would like to thank R. Alkofer, P. Bowman, H. Rein-
order of thep-meson mass or the lightest glueball mass, andhardt and D. Zwanziger for several discussions and S. Teige
is not expected to mix in significantly. To some extent thefor reading the manuscript. This work was supported in part
decoupling of the IR and UV limits is seen from E@8). by the U.S. Department of Energy grant under contract DE-
The IR exponent of 1/2 is independent of the valugsof FG0287ER40365.
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