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Confinement and gluon propagator in Coulomb gauge QCD

Adam P. Szczepaniak
Physics Department and Nuclear Theory Center, Indiana University, Bloomington, Indiana 47405, USA

~Received 9 June 2003; published 29 April 2004!

We consider the role of the Faddeev-Popov determinant in the Coulomb gauge on the confinement properties
of the QCD vacuum. We show that the determinant is needed to regularize the otherwise divergent functional
integrals near the Gribov horizon but still enables large field configurations to generate IR enhanced running
coupling. The physical gluon propagator is found to be strongly suppressed in the IR consistent with expec-
tations from lattice gauge calculations.
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I. INTRODUCTION

Quantitative understanding of confinement and more g
erally of the dynamics of gluons at low energies remains
be a major challenge in QCD. In the past few years latt
simulations and phenomenological studies have provi
new insights into the nature of the low energy behavior
the gluon propagator and the role of gluons in forming
hadronic spectrum@1,2#. Since gluons can only participate i
strong interactions, spectroscopy of hadrons with exc
gluonic modes is of crucial importance for investigations
confinement. It has recently been shown that hybrid mes
with excited quark and gluon modes should have proper
similar to ordinary hadronic resonances and thus gluonic
citations may appear in the meson spectrum@3–7#. Searches
for exotic mesons have produced a few tantalizing can
dates@8–13# and new experiments planned for JLab and G
focusing on light and charm meson spectra, respectively,
expected to produce a map of gluonic excitations.

In this paper we address gluon propagation in the Q
vacuum. This investigation was prompted by recent latt
results, indicating that in both covariant and Coulomb gau
the low momentum behavior of the gluon propagator is s
nificantly different from the non-interacting one@14–18#. In
Landau gauge it can be parametrized as an analytical f
tion with a singularity ~pole or branch point! at up2u
;O(1 GeV2) @19#; however, due to uncertainties in the an
lytical structure the physical interpretation of the singular
as the gluon mass may be misleading. Nevertheless this
the direction expected for physical degrees of freedom,
two transverse gluons in a physical gauge@20–23#; an IR
suppressed gluon propagator could originate from a la
mass thus describing propagation over short instances
In the four-dimensional Euclidean formulation of covaria
gauge QCD, however, the lack of IR enhancement in
gluon propagator simultaneously contradicts the naive
pectation that the color confining force might be simply
lated to the gluon propagator. A popular, phenomenolog
approach to gluon~and quark! low energy dynamics is base
on a truncation of the self-consistent set of Dyson-Schwin
equations. In many such approaches the gluon propag
plays a central role in providing the effective interaction b
tween quarks; for example, it is used to generate dynam
chiral symmetry breaking@24#. A soft gluon propagator im-
plies that confinement has to be described by other me
0556-2821/2004/69~7!/074031~14!/$22.50 69 0740
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For example, it has been argued that in covariant gauges
Kugo-Ojima confinement criterion for the absence of color
non-singlets in the physical spectrum can be satisfied wi
soft gluon propagator if the ghost propagator is enhan
@1,25–28#. We will show that this also seems to be the ca
in Coulomb gauge formulation.

In a covariant formulation one sacrifices positivity co
straints and the Fock space representation to introduce a
tional ~ghost! non-physical degrees of freedom. Altern
tively, by relaxing the requirement of manifest Loren
covariance it is possible to eliminate all non-physical co
ponents and study confinement and other low energy p
nomena within the framework of quantum mechanical wa
functions. Such an approach has obvious, important impl
tions for quark-model-based phenomenology. Furtherm
at finite density it allows for well established, diagrammat
many-body techniques to be used. A many-body appro
has proven to be successful in treating a variety of low
ergy phenomena in QCD. For example, the random ph
approximation, which is typically~e.g. for the electron gas!
relevant at high densities, in QCD is also applicable at l
densities and may result in a self-consistent realization
confinement@23,29,30#. Because of the long-range nature
the confining interaction, at low-densities quasiparticle ex
tations have infinite energy which eliminates colored sta
from the physical spectrum. The absence of color sing
states is a consistent criterion for confinement in the C
lomb gauge as recently demonstrated in lattice simulati
@31#. Due to bare quark-antiquark pairs near the Fermi-Di
surface, the quasiparticle vacuum breaks chiral symm
and leads to a non-vanishing scalar quark density. The
lective excitations of this quark-antiquark plasma correspo
to the Goldstone bosons@32–37#.

The picture described above relies on the existence
long range, quark-quark interaction. Such an interaction
expected to arise from the Coulomb operator which in
Coulomb gauge Hamiltonian describes direct interactions
tween ~color! charge densities. Unlike QED, where this i
teraction is simply determined by the distance betwe
charge sources, in QCD it is a complicated function of t
transverse gluon field and cannot be thought of as a sim
potential, i.e. of the Cornell type@38#. The conjecture that the
Coulomb operator is related to the confining interaction
based on the observation that it is positive definite and
larges at the Gribov horizon. The Gribov horizon defines
©2004 The American Physical Society31-1



xi-
ti
r

th
n-
th
fie
a

m
en
b
ia
ex
e-
th

tr
a
o

h
on
om
ll

ar
n
m
b
b

ich
as
ac
he
na
in

e
o
it
.
e
a
h

ly

eld
e-

in
IR
vi
w
b
o-

e
ag-
ous
the
m.

of
eyl

s

nd

the

b-

be

ed
-
on
e
he

ADAM P. SZCZEPANIAK PHYSICAL REVIEW D69, 074031 ~2004!
boundary of the gluon field domain. A number of appro
mations have been developed to calculate the expecta
value of the Coulomb operator and to verify this conjectu
@23,29,39–41#. In the process it has been realized that
Gribov region still contains physically equivalent field co
figurations. To what extent the necessary identification of
wave functional at these gauge-equivalent points modi
the expectation value of the Coulomb operator remains
open issue@41#.

It should also be noted that confinement of the Coulo
operator is not equivalent to confinement of the static pot
tial. Furthermore, Coulomb confinement is a necessary
not sufficient condition for confinement of the static potent
@27#. The relation between the two has recently being
plored in Ref.@31#. For example, Coulomb confinement r
spects Casimir scaling while in the adjoint representation
static potential is expected to be screened.

The standard approach to a many-body system is to in
duce a physically motivated ansatz for the ground state w
functional and to define approximations for the evaluation
expectation values. The variational mean field approac
expected to be particularly adequate for systems with l
range correlations which is the case here due to the Coul
operator. Furthermore, it can in principle be systematica
improved by the introduction of two-, three-, and more p
ticle correlations@37#. We have followed this approach i
Ref. @23# where we generated the confining interaction fro
the Coulomb operator but a specific assumption on the
havior of the gluon propagator at low energies had to
imposed. In particular, the gluon dispersion relation wh
follows from minimizing the vacuum expectation value w
solved self-consistently together with the confining inter
tion with a specific boundary condition imposed on t
propagator. In absence of the Faddeev-Popov determi
this boundary condition was necessary in order to obta
non-trivial solution to the coupled integral equations.

In this paper we will show how the Faddeev-Popov det
minant constraints the low momentum behavior of the glu
propagator and brings it into a qualitative agreement w
lattice results. The paper is organized as follows: in Sec
we give a brief description of QCD in the Coulomb gaug
As discussed above, the main novel feature of this appro
is the inclusion of the Faddeev-Popov determinant. T
Faddeev-Popov determinant has been treated previous
the case of theS3 spatial manifold with an UV cutoff which
results in a finite number of normal modes of the gluon fi
@39,42#. This is quite different from the continuum, flat thre
dimensional case studied here.

The details of the many-body formulation are given
Sec. III. Even though the main focus of this work is the
sector, for completeness we briefly discuss the UV beha
and renormalization in Sec. IV. It should be stressed, ho
ever, that the main results of this work could well be o
tained by simply cutting off the high momentum comp
nents. The numerical results are discussed in Sec. V.

II. QCD IN THE COULOMB GAUGE

The QCD Coulomb gauge Hamiltonian, defined by“
•Aa(x)50 is given by@43#
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H5H@Aa~x!,Pa~x!#5H01Hqg1Hg31Hg41HC , ~1!

with Pa(x) being the canonical momentum, satisfying

@P i
a~x!,Aj

b~y!#52 idabdT
i j ~“ !d3~x2y!, ~2!

dT
i j (“)5d i j 2¹ i¹ j /“2 and in the Shro¨dinger representation

given byPa(x)52 id/dAa(x). The five terms represent th
kinetic energy, the quark-transverse gluon coupling, the m
netic three- and four-gluon couplings and the instantane
Coulomb energy, respectively. In this paper we focus on
gluon sector and thus will ignore quark degrees of freedo
The gluon kinetic term is given by

H05
1

2E dx@J 21Pa~x!JPa~x!1„“3Aa~x!…2#, ~3!

with

J[Det~12l!5eTr log(12l) ~4!

being the Faddeev-Popov~FP! determinant. The matrixl is
given by

lx,a;y,b5S 2
1

“

2D
x,y

g facbA
c~y!“y , ~5!

and in Eq. ~4! the trace is over the spatialx,y and color
a,b,c indices. The FP determinant is the Jacobian
transformation from the canonical coordinates of the W
gauge, Va(x),V0,a(x)50, with kinetic energy given by
1/2*dx@2 id/dVa(x)#2, to the Coulomb gauge coordinate
Aa(x) defined through the gauge map

Va~x!5u~fW !Aau21~fW !1 iu~fW !“u21~fW !, ~6!

with “•Aa(x)50. The dependence of the Hamiltonian a
wave functionals on theNc

221 Euler anglesfW (x) can be
eliminated using the Gauss’s law constraint and results in
Coulomb energy term@43#,

HC5
1

2E dxdyJ 21ra~x!JK@A#x,a;y,brb~y!, ~7!

with ra(x) being the color charge density, which in the a
sence of quarks is given by

ra~x!5 f abcP
b~x!Ac~x!, ~8!

and the Coulomb kernelK given by

K@A#x,a;y,b[g2F ~12l!22S 2
1

“

2D G
x,a;y,b

. ~9!

More details of the derivation of the Coulomb gauge can
found in Refs.@23,43#.

Functional integrals in the Coulomb gauge are perform
over the measurePx,a,idAi ,a(x)J. The Faddeev-Popov de
terminant results from the nonlinear field transformati
given in Eq.~6! and reflects the complicated topology of th
field space domain. Furthermore, it is well known that t
1-2
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gauge condition,“•Aa50 is not a complete gauge fixin
and thus the mappingV→A,fW is not unique. The unique
solution on a gauge orbit can be defined as the abso
minimum of the functional,I @A,g#5*dx@Aa(x)#g

2 mini-
mized overg @41#. At the minimum ofI @A#, “•Aa50 and
the FP operator is positive. The space of the absolute min
defines the fundamental modular region~FMR!, L as shown
in Fig. 1. The boundary ofL is a set of gauge fields whic
lead to degenerate absolute minima. The fundamental re
resides inside the so-called Gribov regionV, corresponding
to all minima of I @A# and thus also satisfying the transve
sality condition. The boundary]V defines a set of configu
rations for which the gauge mapping is singular andJ@A#
50. In what follows we will primarily study the role o
configurations near singular boundary points on]V. Since
there exist configurations for which]L and]V overlap, the
point Aa(x)50 lies in L and bothL and V are convex,
some fluctuations around the null field reach the coordin
singularity,dV without leavingL. Furthermore, it has bee
pointed out@44# that it is the common boundary points whic
dominate functional integrals. The argument is based on
observation that in the infinite volume limit a probabili
distribution may be concentrated on a lower dimensio
subspace, i.e. at the boundary. Thus even if field config
tions outside of FMR are included these may not lead
substantial errors.

In the limit J51, the kinetic term describes a set
coupled harmonic oscillators and its~unnormalized! ground
stateuv0& is given by

^Auv0&5expS 2
1

2
E dk

~2p!3 v0~k!Aa~k!Aa~2k!D
~10!

with v0(k)5k5uku being the free gluon energy and

Aa~k![E dxe2 ik•xAa~x! ~11!

represents the normal modes.

FIG. 1. A schematic representation of the field domain in
Coulomb gauge. The pointA is on the common boundary of th
fundamental modular region (dL) and the Gribov region (dV) and
corresponds to a coordinate singularity,J@A#50.
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The determinant of the FP operator leads to a suppres
of the ground state wave functional near the Gribov horiz
This can be illustrated using an analogy between the W
and the Coulomb gauge kinetic terms and a harmonic os
lator in Cartesian and spherical coordinates, respectively
N dimensions, theS-wave harmonic oscillator radial wav
function satisfies

1

2
(
i 51

N F2
]2

]xi
2 1v2xi

2GR~r !5
1

2
F 1

J
]

]r
J

]

]r
1v2r 2GR~r !.

~12!

Here the Jacobian is given byJ5r N21;exp(2N log r) and
it vanishes at the boundaryr→0 of the domain ofr. The
ground state wave functionR(r ) is finite at that boundary,
R(r )5exp(2r2v2/2) but the radial wave function defined b
u(r )5J 1/2R(r ) vanishes asr→0. The Hamiltonian can be
redefined to absorb the Jacobian,

H→H̄5J 1/2HJ 21/25
1

2
~pr

21v2r 2!1VC , ~13!

wherepr52 i ]/]r and the additional potential is given b
VC5J 22@pr ,J #2/42J 21

†pr ,@pr ,J#‡/2. The Hamiltonian
H̄ is Hermitian with respect to a flat measure in the rad
direction,

E DxR~x!HR~x!

E dV

5E drJR~r !HR~r !5E dru~r !H̄u~r !.

~14!

In terms ofH̄ andu(r ) one effectively recovers the simpl
harmonic motion in one dimension~moduloVC), except for
the boundary conditionu(r )→0 at the pointr 50 corre-
sponding to the singularity of the coordinate transformati
Furthermore, by transforming to the radial basisR→u the
integrals are to be performed over a flat measure. The co
spondence with QCD goes as follows. In the Coulom
gauge, at the Gribov horizon,J50 as the Coulomb kerne
diverges and this can be interpreted as a manifestatio
confinement@23#. However, since the wave functional van
ishes at singular points]V of the coordinate transformatio
~equivalent tou→0 asr→0), functional integrals over colo
singlet states are expected to be finite. In Ref.@23# we have
explored this scenario, but we have not accounted for
boundary condition on the ground state wave functional.
effect we used a Gaussian ansatz foru instead ofR, i.e. the
radial wave functional was finite at the Gribov horizon. T
ensure that functional integrals which include the FP ope
tor or the Coulomb operator converge we had to choos
particular condition on the parameters of the ground s
wave functional. Summarizing, the FP determinant is a c
cial element of the QCD Coulomb gauge dynamics as
suppresses the integrands near the Gribov horizon. This
pression can be accounted for explicitly in the measure@i.e.
the middle term in Eq.~14!# or absorbed into the radial wav

e

1-3
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function @the last term in Eq.~14!#. In the following we will
keepJ explicitly in the measure and use the Gaussian fu
tional for the ground state~i.e. R).

As long as gauge fields are within the Gribov regionV,
the Coulomb potential is positive and it is possible to us
variational approach. The Gaussian ansatz can be motiv
by noting that mean-field approximation works best for s
tems with long-range correlations and from a techni
standpoint it enables diagrammatic expansion, which co
sponds to generalized quasiparticle approximation. This
proximation can be systematically improved using clus
expansion techniques and excited states can also be st
@37#. In this context one often uses the formalism of seco
quantization which is natural when dealing with Gauss
integrals over polynomials~Wick theorem!. In our case,
however, before one gets to this stage one has to deal
non-polynomial operators, e.g.J@A# or K@A#, and thus it is
simpler to continue with the Schro¨dinger representation.

III. THE QUASIPARTICLE SPECTRUM

In the non-interacting caseH5H0 the perturbative
vacuum of Eq.~10! minimizes the energy density of the sy
tem, i.e.

05
]

]v~k!

^vuH0uv&/V
^vuv&

U
v5v0

5
]

]v~k!

1

4
E dq

~2p!3 Fv~q!1
q2

v~q!
G

v5v0

. ~15!

HereV is the total number of gluon degrees of freedomV
5daadT

ii *dx5(NC
2 21)323volume. To describe the quas

particle spectrum we will use the same Gaussian variatio
ansatz. The VEV of the Hamiltonian becomes

E~v!5^vuHv&/^vuv&[EK~v!1EC~v!, ~16!

where

EK5
1

2^vuv&E DAaE dxe2*dk[v(k)/2]Aa(k)Aa(2k)

3$Pa~x!JPa~x!1@Ba~x!#2%e2*dk[v(k)/2]Aa(k)Aa(2k),

~17!

Ba(x)5“3Aa(x)1g fabcA
b(x)3Ac(x)/2, and

EC5
1

2^vuv&E DAaE dxdye2*dk[v(k)/2]Aa(k)Aa(2k)

3@ra~x!JK@A#x,a;y,brb~y!#e2*dk[v(k)/2]Aa(k)Aa(2k).

~18!

The ground state normalization is given by
07403
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^vuv&5E DAaJ@A#e2*dkv(k)Aa(k)Aa(2k)[^J@A#&.

~19!

We will use ^•••& to represent functional integrals over th
ground state ansatz functional with theflat measure. After
integrating by parts the kinetic and Coulomb kernel con
butions can be written as@@dk#[dk/(2p)3#

EK5
1

2^vuv&E DAaJe2*dkv(k)Aa(k)Aa(2k)

3F E @dk#v2~k!Aa~k!Aa~2k!1E dx@Ba~x!#2G
~20!

and

EC5
1

2^vuv&E DAaE P i
4@dk i #Je2*dkv(k)Aa(k)Aa(2k)

3ra~k1 ,k2!K@A#ki ,a,brb~k3 ,k4!, ~21!

respectively. The charge density is now given by

ra~k i ,k j !5 f abcv~kj !A
b~k i !•Ac~k j ! ~22!

and the Coulomb kernel by

K@A#ki ,a,b5E dxdyei (k11k2)•xK@A#x,a;y,bei (k31k4)•y.

~23!

Even though details of the boundary of the functional in
grals are not known, the partial integration is presuma
justified since the integrand vanishes asA→` and at the
boundary of the Gribov region,J→0. Compared to the har
monic oscillator example discussed earlier, the partial in
gration combines contributions fromVC and pr

2 in Eq. ~13!
to the vacuum expectation value~VEV! of the Hamiltonian
and expresses the sum as a coordinate space integral ov
Gaussian wave function. In our case the complication
evaluating functional integrals overDA is due to the nonlin-
ear dependence ofJ@A# andK@A# on theA through the FP
operator, (12l)5(12l@A#). These integrals are per
formed by expanding functionals in powers ofA, performing
Gaussian integrals of over polynomials inA and approximat-
ing them by products of two-point Green’s functions. Th
will be illustrated in particular cases below.

To simplify the notation, the triplet of indices representin
momentum, color and spin will be denoted by Greek lette
e.g.a5(k,a,i ) and a doublet containing a momentum and
color index byā5(k,a). The summation convention will be
used with upper and lower indices differing by a replacem
k→2k, e.g.Aa[Aia(k),

(
a

AaAa[AaAa5(
a

(
i j

E @dk#Aia~k!dT
i j ~k!Aja~2k!.

~24!
1-4
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In this notation the matrixl in the FP operator can be writte
as

lā
b̄5l (p,a)

(q,b)[lā
gb̄Ag

5g facbE @dk#~2p!3d3~p2k2q!
Ac~k!• iq

p2 , ~25!

with

lā
gb̄5l (k,c,k),(q,b)

(p,a) 5~2p!3d3~p2k2q!
ig@dT~k!q#k

p2 f acb .

~26!

Evaluation of functional integrals is simplified by introdu
ing generating functionals,

^Aa1
•••AanF@A#&5E DAF@A#Aa1

•••Aane2(
g

vgAgAg

~27!

with DA5PadAa and since

E DAF@A#e(
g

[ 2vgAgAg1AgJg]

5e(
g

(JgJg/4vg)K FFA1
J

2vG L ~28!

we obtain

^Aa1
•••AanF@A#&

5
d

dJa1

•••

d

dJan J50

e(
g

(JgJg/4vg)K FFA1
J

2vG L .

~29!

In this paper we are primarily concerned with the instan
neous part of the transverse gluon propagator~two-point
Green’s function! defined by

Pa
b[^AaAbJ@A#&/^J @A#&5

da
b

2Va
~30!

with the last equality following from translational invarianc
and color neutrality of the vacuum. In the approximationJ
51, one hasV(k)5v(k) and one obtains the propagat
used in Ref.@23#. From Eq.~29! it follows that

Pa
b5

d

dJa

d

dJb
J50

e(
g

(JgJg/4vg) KJ FA1
J

2vG L Y ^J @A#&

5
1

2va
Fda

b12va

d

dJa

d

dJb
J50

KJ FA1
J

2vG L Y
^J @A#&G , ~31!
07403
-

with the first term corresponding to the propagator in t
absence of the FP determinant (J51) and the second term
given by

d

dJa

d

dJb
J50

KJ FA1
J

2vG L Y ^J @A#&

52K F la

2va
~12l!21

lb

2vb
~12l!21G

ḡ

ḡ

J @A#L Y
^J @A#&

1K F la

2va
~12l!21G

ḡ

ḡ F lb

2vb
~12l!21G

s̄

s̄

J @A#L Y
^J @A#&, ~32!

where@la#ḡ
s̄[]lḡb

s̄Ab /]Aa5lḡa
s̄ . This relation can be

represented through an infinite set of coupled integral Dy
equations containing all dressed vertices. As argued in R
@23,29#, however, vertex corrections give a finite and sm
modification and will be ignored. The dominant contrib
tions in both the IR and the UV regions of the loop mome
tum integrals over instantaneous propagators come from
grams with a maximal number of soft Coulomb lines and
maximal number ofprimitive self-energy loops, respectively
The primitive self-energy is shown in Fig. 2 and is given b

I 0ā
b̄[(

g

1

2vg
@lglg#ā

b̄5(
g

1

2vg
lā

gs̄ls̄g
b̄5dā

b̄I ā
0

~33!

or

I ā
0
5I 0~q!5g2NCE @dk#

12~ q̂• k̂!2

2v~ uku!~q2k!2 . ~34!

This self-energy is UV divergent and has to be renormaliz
We will discuss renormalization in the following section. T
proceed we need to introduce the expectation value of
inverse of the FP operator,

dā
b̄5^@~12l!21#ā

b̄J @A#&/^J @A#&5dā
b̄dā . ~35!

A few lowest order diagram contributions to this VEV a
shown in Fig. 3. At the two-loop order the first and seco
diagram in the second line dominate in the IR and UV,
spectively, and are retained. In higher orders the domin
contribution comes from a series of rainbow-ladder diagra
obtained by summing the class of diagrams generated

FIG. 2. Primitive self-energy, i.e. the lowest order correction
the FP operator, or the Coulomb lineI 0. The solid line represents
the bare Coulomb potential (1/p2).
1-5
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these two lowest order loop diagrams. The resulting appr
mation to the Dyson series is given by

dā
b̄5dā

b̄dā5dā
b̄1^@l~12l!#ā

b̄J &/^J &5dā
b̄

1(
g

1

2Vg
@lgdlgd#ā

b̄5dā
b̄@11I ādā#, ~36!

where

(
g

1

2Vg
lā

gs̄ds̄ls̄g
b̄5dā

b̄I ā . ~37!

With dā5d(q) andI ā5I (q), we obtain the following equa
tion:

d~q!5
g

12gI~q!
,

I ~q!5NCE @dk#
~12~ q̂• k̂!2!

2V~ uku!~q2k!2 d~ uq2ku!. ~38!

Using the same approximation~of ignoring vertex correc-
tions!, the Dyson equation for the instantaneous propag
becomes

d

dJa

d

dJbJ50
KJ FA1

J

2vG L Y ^J@A#&

52F la

2va
d

lb

2vb
dG

ḡ

ḡ

1(
r

F la

2va
dlrdG

ḡ

ḡ 1

2Vr
Flrd

lb

2vb
dG

s̄

s̄

,

~39!

FIG. 3. Rainbow-ladder approximation to the Dyson equat
for the Faddeev-Popov operator.
07403
i-

or

and is shown in Fig. 4. Since neutrality of the vacuum i
plies

@ladlbd#ḡ
ḡ5(

ḡs̄

lḡa
s̄ds̄ls̄

bḡdḡ52da
bFa , ~40!

we finally obtain

Va5va1Fa , ~41!

whereFa5F(q) is given by

F~q![
NC

2 E @dk#
12~ k̂•q̂!2

~q2k!2 d~ uku!d~ uq2ku!. ~42!

We can now return to the calculation of the vacuum exp
tation of the full Hamiltonian. Minimizing energy with re
spect tov determines the ground state~and v), and from
Eq. ~41!, the gluon propagator 1/2V. In terms of this propa-
gator, the kinetic vacuum expectation valueEK is given by

FIG. 5. The vacuum expectation value of the kinetic energy. T
four-point function contribution comes from theB2 term.

n

FIG. 4. The rainbow-ladder approximation to the Dyson eq
tion for the transverse gluon propagator.
1-6
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EK5
1

2 (
a

~va
21pa

2 !Pa
a1

1

2
VsabVs

gd

]

]Ja

]

]Jb

]

]Jg

]

]Jd

3e(
r

(JrJr/4vr)KJ FA1
J

2vG L . ~43!

The second term originates from the square of the magn
field, Bs5@¹3#s

gAg1Vs
abAaAb, and it is shown in Fig.

5,

EK /V5
1

2E @dq#
v2~q!1q2

2V~q!

1
g2NC

32 E @dq#@dk#
32~ k̂•q̂!2

V~ uku!V~ uqu!
. ~44!

This magnetic contribution involves a transverse gluon fo
point function, which as discussed earlier, is approxima
by the product of two two-point functions, i.e. the gluo
gluon scattering amplitude shown in Figs. 6 is set to ze
The Coulomb energy VEV is shown in Fig. 7 and is given

EC5
1

2

]

]Ja

]

]Jb

]

]Jg

]

]Jd
Fe(

r
(JrJr/4vr)rab

3 K ~12l!22~2“

2!J FA1
J

2vG L rgdG ~45!

FIG. 6. Low order contributions to the 2PI gluon-gluon fou
point function.
07403
tic

r-
d

.

with the charge density given by Eq.~22!, r5rḡ

5rḡ
abAaAb, and

EC /V5
NC

32
E @dk#@dq#

K~ uq2ku!

~q2k!2 @11~ k̂•q̂!2#

3
@V~ uku!2F~ uku!2V~ uqu!1F~ uqu!#2

V~ uku!V~ uqu!
. ~46!

Finally the gap equation follows from 05](EK1EC)/]va
and is given by

FIG. 7. The vacuum expectation value of the Coulomb opera
V2~q!2F2~q!2q25
NCg2

4
E @dk#

32~ q̂• k̂!2

V~k!
1

NC

4
E @dk#@11~ q̂• k̂!2#

3
K~q2k!

~q2k!2

@V~k!2V~q!2F~k!1F~q!#@V~q!1V~k!2F~k!1F~q!#

V~k!
, ~47!
is-

ue
the
with

K~q!5 f ~q!d2~q!, ~48!

and f satisfying

f ~q!511NCE @dk#
12~ q̂• k̂!2

2V~ uku!~q2k!2 f ~ uq2ku!. ~49!
It is also instructive to analyze the single quasiparticle d
persion relation

Eadb
a5^J AaHAb&/^J &. ~50!

The calculation is straightforward although more tedious d
to the presence of up to three contractions corresponding
VEV of six field operators. The final result is
1-7



ADAM P. SZCZEPANIAK PHYSICAL REVIEW D69, 074031 ~2004!
E~q!5
1

2V~q!
FV21F2~q!1q21

NCg2

4
E @dk#

32~ q̂• k̂!2

V~k!
1

NC

4
E @dk#~1

1~ q̂• k̂!2!
K~q2k!

~q2k!2

@V~k!2V~q!2F~k!1F~q!#@V~q!1V~k!2F~k!1F~q!#12V2~q!

V~k!
G . ~51!
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After combining with the gap equation one obtains

E~q!5V~q!F11
NC

4
E @dk#@11~ q̂• k̂!2#

K~q2k!

V~k!~q2k!2G .

~52!

In the limit F50, corresponding toJ 51, Eqs.~47! and~52!
reduce to the ones derived in Ref.@23# with V5v.

IV. RENORMALIZATION

So far we have been ignoring potential UV divergenc
These divergences should be removed by renormalizing
propriate operators and the coupling constantg. It turns out
that all four equations of interest, Eqs.~38!, ~41!, ~47!, ~49!,
require renormalization. These equations have to be reg
ized first. This can be done by cutting off the momentu
integrals,*@dk#→*L@dk#. The physical, renormalized solu
tions,d(q), f (q), v(q) andV(q) should beL independent.
We will first discuss renormalization of the expectation va
of the inverse of the FP operator,d(q). Assuming that a
renormalized solution forV(q) has been found, the equatio
for d(k) is renormalized by adjusting the bare coupling,g
→g(L), i.e. the renormalized VEV of the inverse of the F
operator,d(k) will play the role of the running coupling. The
L dependence ofg(L) is determined by the UV behavior o
Eq. ~38!,

dg~L!

dL
52

b

~4p!2

g2~L!d~L!

V~L!
, ~53!

with b58NC/3. In this and all other renormalization grou
equations we keep only relevant and marginal contributio
i.e. no power corrections,O(pn/Ln) with n.0 are included
since they do not require renormalization. Sinceb.0 and
physical solutions required(k),V(k).0 the solution of Eq.
~53! vanishes in the limitL→`. In the limit k→` the in-
tegral I (k5L,L) given by Eq.~38!, with the second argu
ment referring to the upper limit of integration, is finite. Th
in leading logarithmic approximation,d(L)→g(L) as L
→`. Furthermore, from Eq.~41! it follows that for largeq,
q;L,

dV~q!

dq
→ dv~q!

dq
1O„d2~q!…→ dv~q!

dq
1O„g2~L!….

~54!
07403
.
p-

r-

s,

Similarly from Eq. ~47!, to leading logarithmic approxima
tion, we finddv(q)/dq511O„g2(L)… for q;L. Thus fi-
nally,

L
dg~L!

dL
52

b

~4p!2 g3~L!1O„g5~L!…, ~55!

which, ignoring the termsO(g5), has a solution given by

g~L!5
g~m!

S 11
b

~4p!2
g2~m!log~L2/m2!D 1/2. ~56!

The asymptotic behavior asL→` is therefore given by

g~L!5
4p

b1/2log1/2~L2!
. ~57!

The renormalized equation ford(k) is completely specified
onceg(m), the value of the coupling at an arbitrarily chose
renormalization scalem, is fixed. It should be stressed, how
ever, that this solution is valid only to within terms of th
order of 1/log3/2(L2/m2). In practical applications we will be
renormalizing at a low energy scalem, for example, by fix-
ing the string tension or the glueball mass and thus s
corrections become unimportant asL→`. For relevant op-
erators, however, as we will see below, such logarithmic c
rections are multiplied by positive powers ofL and thus
cannot be neglected.

For practical~numerical! applications we have found
different, momentum subtraction renormalization~MSR!
scheme to be more practical. In this scheme the renormal
equation ford(q) is obtained by subtracting Eq.~38! at q
5m,

1

d~q!
2

1

d~m!

52
b

~4p!2E
21

1

d~ k̂•q̂!E
0

`

dkk2
3

4

12~ k̂•q̂!2

V~k!

d~q2k!

~q2k!2

1~q→m!. ~58!

In this renormalization scheme the coupling constant
therefore given by
1-8
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1

gMSR~L!
5

1

d~m!
1

b

~4p!2E
21

1

d~ k̂•m̂!E
0

L

dkk2
3

4

3
12~ k̂•m̂!2

V~k!

d~m2k!

~m2k!2 , ~59!

and g(L)5gMSR(L) to within corrections of the orde
O(m/L), i.e. they agree asymptotically. We also find forq
;L→`

d~q!5gMSR~L!$11O@gMSR
2 ~L!log~L2/q2!#%, ~60!

as expected from that discussed above. From now on we
only use the subtracted equations and drop theMSR sub-
script.

We now proceed to discuss renormalization of the eq
tion for f (k). Physicallyf (k)21 represents the relative dif
ference between the VEV of the square of the inverse of
FP operator and the square of the VEV of that operator. A
UV divergent contribution tof should therefore be renorma
ized by renormalizing the operatorg2/(12l)2, since the
operatorg/(12l) has already been renormalized. This
done by multiplying the Coulomb operator by a renormaliz
tion constant,ZK(L), K@A#→ZK(L)K@A#. Using the renor-
malized Coulomb operator the equation Eq.~49! for f (k)
becomes

f ~k!5ZK~L!1
b

~4p!2E
21

1

d~ k̂•q̂!E
0

L

dkk2
3

4

12~ k̂•q̂!2

V~k!

3
d2~q2k! f ~q2k!

~q2k!2 , ~61!

and in the limitL→` one obtains

L
dZK~L!

dL
52

b

~4p!2

d2~L! f ~L!

V~L!
ZK~L!, ~62!

which in the leading logarithmic approximation has a so
tion given by

ZK~L!5
ZK~m!

log1/2~L2/m2!
. ~63!

Choosing a value forZ(m) at some UV point fixes the renor
malized equation forf (k). As in the case of the FP determ
nant, we will employ the momentum subtraction renorm
ization scheme, which leads to

f ~k!2 f ~m!

5
b

~4p!2E
21

1

d~ k̂•q̂!E
0

L

dkk2
3

4

12~ k̂•q̂!2

V~k!

3
d2~q2k! f ~q2k!

~q2k!2 2~q→m!, ~64!

resulting in the MSR scheme inZK(L) given by
07403
ill

-

e
y

-

-

-

ZK~L!5 f ~m!2
b

~4p!2E
21

1

d~ k̂•m̂!E
0

L

dkk2
3

4

3
12~ k̂•m̂!2

V~k!

d2~m2k! f ~m2k!

~m2k!2 . ~65!

As expected, for UV values ofk;L→` we find

f ~k!5ZK~L!$11O@g2~L!log~L2/k2!#%. ~66!

An extensive discussion on renormalization ofd and f has
already been given in Ref.@23#. It should be noted that for
large k, if d2(k)/V(k),1/log(k)n with n.1 there is no
renormalization forf (k). Our analysis suggests thatn51,
thus the unrenormalized equation forf has a sub-leading
log@log(k)#. We suspect that this is an artifact of the rainbo
ladder truncation.

As long as one works with the leading logarithmic a
proximation and usesV(k)5v(k)5k, there is no effect of
the FP determinant ond or f. The inclusion of the FP deter
minant influences the low momentum behavior ofd and f,
but it also introduces a new divergent integral,F(q) in Eq.
~42!. Since the origin ofF is the FP determinantJ , it is the
FP determinant that has to be renormalized in order to m
V(k) finite. The renormalized FP determinant should
chosen as

J → FJ e(
a

dvaAaAa1•••G
L

. ~67!

Here ••• stands for higher powers of the field operato
however, within the Gaussian approximation we are work
with only the quadratic term that needs to be retained. It
be easily verified that replacingJ by Eq. ~67! leads to the
replacement

F~q!→F~q,L!1dv~L!, ~68!

whereF(q,L) stands for the integral in Eq.~42! with the
upper limit set toL. The countertermdv(L) will be chosen
to makeV(q) UV finite. SinceF(q) has the mass dimensio
of one, in general one expects two counterterms will
needed, one proportional toL and the other to one power o
the momentum. From the UV behavior of the integrand
Eq. ~42! it follows, however, that only the first is needed an
we obtain

ddv~L!

dL
52

b

~4p!2 d2~L!, ~69!

whose solution is given by

dv~L!5dv~m!2
b

~4p!2E
m

L

dkd2~k!. ~70!

We note that corrections to the leading asymptotic beha
d(k);g(k) cannot be neglected here since forF(q) they
result in terms ofO(L). Thus it is necessary to keepd(k)
1-9
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rather theng in the renormalized expression forF. As in the
case ofd andf in the following we will use the MSR schem
for V(q), which gives

V~q!2V~m!2v~q!1v~m!

5
b

~4p!2E
21

1

d~ k̂•q̂!E
0

`

dkk2
3

4

12~ k̂•q̂!2

~q2k!2 d~k!d~q2k!

2~q→m!, ~71!

with the asymptotic behaviork;L→` given by

V~k!5v~k!1
b

~4p!2 g2~L!L$11O@g2~L!log~L2/k2!#%,

~72!

anddv(L) in MSR given by

dv~L!5V~m!2v~m!

2
b

~4p!2E
21

1

d~ k̂•q̂!E
0

L

dkk2
3

4

12~ k̂•m̂!2

~m2k!2

3d~k!d~m2k!. ~73!

The gap equation is the one which cannot be renormal
in a simple way. This is due to inconsistencies in the appro
mation used. Specifically, the gap equation is derived by
ing the functional derivative of the energy expectation va
with respect tov. In the second integral in Eq.~47! we have
retained only the derivative of the gluon lines and not of
Coulomb kernel. The former leads to terms in the integra
proportional toF thus formally ofO(g4). Similarly deriva-
tives of the Coulomb operator (d2f ) lead to terms propor-
tional to d4f /V2, i.e. also ofO(g4). Thus if terms propor-
tional to the differenceV2v are kept in the numerator o
the gap equation it would be necessary to include derivat
of the Coulomb kernel. Since all theseO(g4) terms involve
two-loop integrals in the following we will neglect them. Th
simplified gap equation then reads

v2~q!5q212F~q!v~q!1
NCg2

4
E @dk#

32~ q̂• k̂!2

v~k!

1
NC

4
E @dk#@11~ q̂• k̂!2#

K~q2k!

~q2k!2

v2~k!2v2~q!

v~k!
.

~74!

The equation is identical to the one in Ref.@23# except for
the term involvingF in the rhs and all terms are ofO(g2).
This simplification is justifiable since our goal is to study t
effect of the FP determinant on the low momentum prop
ties and thus possible modifications of UV behavior a
largely irrelevant.

In a covariant formulation the renormalized theory has
same operator structure as the bare one. This is not the
in the Hamiltonian approach. Renormalization introduc
non-canonical operators. The strength of such operator
07403
d
i-
k-
e

e
d

s

r-
e

e
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s
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determined by the cutoff. The gap equation has a quadr
divergence which is to be renormalized by a gluon ‘‘mas
counterterm in the Hamiltonian,

dH~L!5
1

2
m2~L!AaAa . ~75!

This is the only relevant operator, e.g. of dimension two. T
constantm2(L) is fixed by requiring that the gap equatio
leads to aL-independent solution. Thus we insist thatv(k)
is L independent and this guarantees that any divergenc
an operator matrix element calculated with respect to
stateuv& will be associated with the operator itself and n
with the state. The countertermdH(L) contributes to the rhs
of Eq. ~74! with m2(L) and from the UV behavior of Eq
~74! we find

dm2~L!

dL
52

b

~4p!2 F2g2~L!
L2

v~L!
1d2~L! f ~L!v~L!G ,

~76!

whose solution is

m2~L!2m2~m!52
b

~4p!2E
m

L dk

v~k!
@2g2~L!k2

1d2~k! f ~k!v2~k!#. ~77!

In the MSR scheme the gap equation then becomes

v2~q!2v2~m!2q22F~q!v~q!1F~m!v~m!1m2

5
b

~4p!2E
21

1

d~ k̂•q!E
0

`

dkk2@v2~k!2v2~q!#

3
3

8

11~ k̂•q!2

v~k!

K~q2k!

~q2k!2 2~q→m!, ~78!

with the asymptotic behavior fork;L→` given by

v2~k!5q2$11O@g2~L!log~L2/k2!#%

1
b

~4p!2 g2~L!ZK~L!L2, ~79!

and the countertermm2(L) in the MSR is given by

m2~L!5v2~m!1m222
b

~4p!2 g2~L!E
0

L

dkk2
1

v~k!

2
b

~4p!2E
21

1

d~ k̂•m̂!E
0

L

dkk2@v2~k!2v2~m!#
3

8

3
~11~ k̂•m̂!2!

v~k!

K~m2k!

~m2k!2 . ~80!

The renormalized equations for the VEV of the inverse of
FP operator, the corrections tod2 needed to obtain the Cou
lomb potential, the gluon propagator and the ground s
1-10
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wave function are given by Eqs.~58!, ~64!, ~71!, and ~78!,
respectively. These equations depend on four parameters
renormalization constants,d(m), f (m), V(m) andv(m). In
the following section we will study the solutions of the
equations and their physical interpretation.

V. RESULTS

As discussed above there are four constants that nee
be fixed. This can be done, for example, by comparing
Coulomb potential in position space,

Ve f f~x!5E dk

~2p!3 eik•x
d2~k! f ~k!

k2 ~81!

with the lattice, static quark-antiquark potential. This proc
dure was used in Ref.@23#. Unfortunately, the dependence
Ve f f on the renormalization constants is complicated, th
fitting the lattice potential will not necessarily provide mu
physical insight. Furthermore, it has recently been sho
that there are differences between the lattice Coulomb po
tial and the static potential@45#. This is to be expected. O
the lattice the Coulomb potential corresponds to the exp
tation value of a part of the Hamiltonian while the sta
potential gives the full energy.

We will thus proceed by simplifying the integral equ
tions derived in the previous section and imposing c
straints on the renormalization constants. The main dif
ence between the present analysis and what was done in
@23# has to do with the inclusion of the Faddeev-Popov
terminant. Our goal here is to investigate the role of the
determinant which is most prominently seen in the differen
between 1/2V and 1/2v: the gluon propagator in the pres
ence and absence of the FP determinant, respectively. I
determinant is omitted, one hasV(k)5v(k) and in this case
the remaining three equations, ford(q), Eq. ~58!, f (q), Eq.
~64! andv(q), Eq. ~78!, were analyzed in Ref.@23#. These
equations have solutions providedv(k) is finite ask→0. If
v(k)→0 then the equation ford(k) will develop a pole at a
finite, positive value of momentum and ifv(k)→` as k
→0 then for a confining potential,K(k)→1/ka, with a.2
the gap equation has no solution. A renormalization con
tion at m50, v(0)5mg was therefore imposed withmg
fixed by the Wilson loop string tension~even though, as dis
cussed above it is now known that the two string tensions
different!. A simplified set of equations can be obtained
making an angular approximation,

uq2ku→qu~q2k!1ku~k2q! ~82!

whereq5uqu andk5uku. In Ref. @23# it was shown that the
angular approximation leads to results which are very cl
to the exact numerical solutions. We will thus follow th
approximation here since it allows us to considerably s
plify the numerical analysis. After the angular approximati
the equation ford(k) becomes
07403
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1

d~q!
2

1

d~m!

52
b

~4p!2E
0

q

dk
k2

q2

d~q!

V~k!
1

b

~4p!2E
m

q

dk
d~k!

V~k!

1
b

~4p!2E
0

m

dk
k2

m2

d~m!

V~k!
, ~83!

the gluon propagator functionV is given by

V~q!5V~m!1v~q!2v~m!1
b

~4p!2E
0

q

dk
k2

q2 d~k!d~q!

1
b

~4p!2E
q

m

dkd2~k!2
b

~4p!2E
0

m

dk
k2

m2 d~k!d~m!,

~84!

and the gap equation forv(q),

v2~q!2v2~m!2q22F~q!v~q!1F~m!v~m!1m2

5
b

~4p!2E
0

q

dk
k2

q2 K~q!
v2~k!2v2~q!

v~k!

1E
q

`

dkK~k!
v2~k!2v2~q!

v~k!
2~q→m!. ~85!

We note thatd(q),V(q)/m andv(q)/m are renormalization
group (m) invariants. As discussed above if one ignores
FP determinant it is not possible to choose an arbitrary ren
malization condition forv(0). Furthermore, in this case
there is a critical ~maximum! value of d(m)5dc(m)
54pA3bv(0)/5m for which Eq. ~83! has a solution. The
appearance of such a critical coupling is an artifact of
rainbow-ladder truncation used in evaluation of the expec
tion value of the Hamiltonian. The origin of this critical cou
pling can be illustrated by considering the following integr
a schematic representation of the functional integral rep
senting the VEV of the inverse of the FP operator,

I ~g!5E dxJ ~x!
e2vx2

12gx
. ~86!

Herex represents the gauge potential,J (x);elog(12x) plays
the role of the FP determinant, and 1/(12gx) of the VEV of
the inverse of the FP operator. If one setsJ 51 the integral
becomes divergent atx51/g unlessg50. In the ladder ap-
proximation the integral is evaluated by expanding 1/
2gx) in a power series ingx and integrating term by term
keeping only a subset of contributions. It effectively mea
the approximation ^(x2)n&5^x2&n with ^xm&
5Av/p*dxxmexp(2vx2), which gives

I ~g!5
1

12g2/2v
~87!
1-11
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which has a critical couplingg5gc5A2v.
The FP determinant, however, makes the integral well

fined for all values ofg and thus no critical coupling is ex
pected ifJ is not ignored. This is indeed what happens
one uses Eq.~84!. As long asV(0).0 the value ofv(q) at
q50 does not play a role in determining the position of t
pole in thed(p) and we can for simplicity assumev(q)
50. Then from Eq.~83! approximatingV(q)5V(0) for q
,m, we obtain

d~q!5
d~0!

S 11
5

3

b

~4p!2 d2~0!q/V~0!D 1/2. ~88!

FIG. 8. A plot of the function f (z)[1
2@rhs of Eq. (84)# /V(0) 5 23 ln (115z/3) / 5131/252 25/125z
1144(121/A115z/3)/625z2, with z[mbd2(0)/(4p)2V(0).

FIG. 9. Numerical solution for the vacuum expectation value
the inverse of the FP operatord(k). The three curves correspond
d(k5m)538.4 ~solid!, d(k5m)53.8 ~dashed! and d(k5m)51.1
~dashed-dotted!, respectively, indicating that a solution may ex
for arbitrary choice ofd(m) i.e. no critical coupling.
07403
-

f

From Eq.~84! we can derive a relation betweenV(0) and
d(m),

z0V~0!5m
b

~4p!2 d2~0! ~89!

wherez0;4 is a root of the nonlinear equation shown in Fi
8. Now we see that asd(0) increases so doesV(0)/m but
there is no upper limit ond(0).

The FP determinant regularizes functional integrals n
the Gribov horizon. AsV(0) increases, the transverse-gluo
two-point correlation function decreases at low moment
and the ghost correlator functiond(k) increases. This is pre

f

FIG. 10. Numerical solution forf (k) normalized tof (k5m)
51. Labeling of curves is the same as in Fig. 9.

FIG. 11. Numerical solution for the instantaneous gluon pro
gator. Labeling of curves is the same as in Fig. 9. Increasing c
pling d(m) results in a stronger suppression at low moment.
1-12
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cisely what was found in other gauges using Dyso
Schwinger methods and in other approximations to the C
lomb gauge.

In Figs. 9–11 we plot the results of numerical solutions
the set of coupled equations~64!, ~83!, ~84!, ~85! for d(k),
f (k), andP(k)51/2V(k), respectively.

These should be compared with Figs. 4–6 from Ref.@23#.
In Fig. 11 we plot the inverse ofV(k) which is representing
the transverse-gluon two-point function. As expected it
suppressed at low momenta and approaches the perturb
limit as k→`.

We also note that even though the variational appro
alone does not reproduce the correct UV limit of full QC
since for that propagating transverse gluons and qu
antiquark pairs are needed, these are not expected to ch
the IR behavior. The reason being that, as indicated by
leading contribution to theb function, the contribution from
the propagating physical degrees of freedom is sm
O(10%), and screening is thus not related to confinem
Furthermore, at low momenta the mass gap between
ground state and quark-antiquark and/or gluon states is o
order of ther-meson mass or the lightest glueball mass, a
is not expected to mix in significantly. To some extent t
decoupling of the IR and UV limits is seen from Eq.~88!.
The IR exponent of 1/2 is independent of the value ofb.
y

ll-

l-
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VI. SUMMARY

In this paper we have studied the role of the Fadde
Popov determinant in the Coulomb gauge. The FP deter
nant specifies the measure in the functional integrals o
gauge field configurations and has so far been ignored
most calculations of QCD matrix elements in the Coulom
gauge. The FP determinant vanishes at the boundary o
Gribov region; nevertheless it still allows for large field co
figurations near the boundary to enhance matrix eleme
involving the inverse of the FP operator or the Coulom
potential. In particular we have shown that the inverse of
FP operator, corresponding to the running coupling or
ghost propagator, is strongly enhanced in the IR, but at
same time no artificial critical coupling exists. The same
true for the Coulomb kernel which is related to confineme
Finally, the instantaneous part of the transverse gluon pro
gator is found to be suppressed as is found in other gau
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