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Covariant light-front approach for s-wave andp-wave mesons: Its application to decay constants
and form factors
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We study the decay constants and form factors of the ground-states-wave and low-lyingp-wave mesons
within a covariant light-front approach. Numerical results of the form factors for transitions between a heavy
pseudoscalar meson and ans-wave orp-wave meson and their momentum dependence are presented in detail.
In particular, form factors for heavy-to-light andB→D** transitions, whereD** denotes generically a
p-wave charmed meson, are compared with other model calculations. The experimental measurements of the

decaysB2→D** p2 and B→D̄Ds** are employed to test the decay constants ofDs** and theB→D**
transition form factors. The heavy quark limit behavior of the decay constants and form factors is examined
and it is found that the requirement of heavy quark symmetry is satisfied. The universal Isgur-Wise~IW!
functions, one fors-wave tos-wave and two fors-wave top-wave transitions, are obtained. The values of the
IW functions at zero recoil and their slope parameters can be used to test the Bjorken and Uraltsev sum rules.

DOI: 10.1103/PhysRevD.69.074025 PACS number~s!: 12.39.Ki, 12.39.Hg, 13.25.2k, 14.40.2n
n
o

re

lly
as
ge
r-
tu
in
a
r

rm

g
m

be
on

h
fo
nd
n
n

nt
a

.

r-
in

ing
ill

ele-
g-

se-
nt

the
con-
f

nt
lar

-
iant
pass
o-
o-

ll-
p-
in
he
es

ke
-
by

it is
rsy
on-
I. INTRODUCTION

Mesonic weak transition form factors and decay consta
are two of the most important ingredients in the study
hadronic weak decays of mesons. There exist many diffe
model calculations. The light-front quark model@1,2# is the
only relativistic quark model in which a consistent and fu
relativistic treatment of quark spins and the center-of-m
motion can be carried out. This model has many advanta
For example, the light-front wave function is manifestly Lo
entz invariant as it is expressed in terms of the momen
fraction variables in analogy with the parton distributions
the infinite momentum frame. Moreover, hadron spin c
also be correctly constructed using the so-called Melosh
tation. This model is very suitable to study hadronic fo
factors. Especially, as the recoil momentum increases~corre-
sponding to a decreasingq2), we have to start considerin
relativistic effects seriously. In particular, at the maximu
recoil point q250 where the final-state meson could
highly relativistic, there is no reason to expect that the n
relativistic quark model is still applicable.

The relativistic quark model in the light-front approac
has been employed to obtain decay constants and weak
factors @3–7#. There exist, however, some ambiguities a
even some inconsistencies in extracting the physical qua
ties. In the light-front quark model formulation one ofte
picks up a specific Lorentz frame~e.g., the purely longitudi-
nal frame q'50, or the purely transverse frameq15q0

1q350) and then calculates a particular component~the
‘‘plus’’ component! of the associated current matrix eleme
Because of the lack of relativistic covariance, the results m
not be unique and may even cause some inconsistencies
example, it has been pointed out in@7# that, in theq'50
frame, the so-calledZ-diagram contributions must be inco
porated in the form-factor calculations in order to mainta
0556-2821/2004/69~7!/074025~39!/$22.50 69 0740
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covariance. Another issue is that the usual recipe of tak
only the plus component of the current matrix elements w
miss the zero-mode contributions and render the matrix
ment noncovariant. A well known example is the electroma
netic form factorF2(q2) of the vector meson~see e.g.@8#!.
In other words, the familiar expression off V , for example, in
the conventional light-front approach@4# is not trustworthy
due to the lack of the zero-mode contributions. As a con
quence, it is desirable to construct a covariant light-fro
model that can provide a systematic way of exploring
zero-mode effects. Such a covariant model has been
structed in@9# for heavy mesons within the framework o
heavy quark effective theory.

Without appealing to the heavy quark limit, a covaria
approach of the light-front model for the usual pseudosca
and vector mesons has been put forward by Jaus@10# ~for a
different approach, see@11#!. The starting point of the cova
riant approach is to consider the corresponding covar
Feynman amplitudes in meson transitions. Then one can
to the light-front approach by using the light-front decomp
sition of the internal momentum in covariant Feynman m
mentum loop integrals and integrating out thep25p02p3

component@12#. At this stage one can then apply some we
studied vertex functions in the conventional light-front a
proach afterp2 integration. It is pointed out by Jaus that
going from the manifestly covariant Feynman integral to t
light-front one, the latter is no longer covariant as it receiv
additional spurious contributions proportional to the lightli
vector ṽm5(1,0,0,21). This spurious contribution is can
celled after correctly performing the integration, namely,
the inclusion of the zero mode contribution@13#, so that the
result is guaranteed to be covariant. Before proceeding,
worth mentioning that in the literature there is a controve
about the zero mode contributions to the vector decay c
stant f V and the form factorA1(q2) in the pseudoscalar to
©2004 The American Physical Society25-1
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vector transition: While Jaus@10,14# claimed that there are
zero effects in the aforementioned two quantities, Bakk
Choi and Ji@8,11# argued that bothf V andA1(q2) are free of
zero-mode contributions. This issue will be addressed in S
III B.

The main purposes of this work are twofold: First, w
wish to extend the covariant analysis of the light-front mo
in @10# to even-parity,p-wave mesons. Second, the mome
tum dependence of the form factors is parametrized i
simple three-parameter form so that the reader is ready to
our numerical results as the analytic expressions of var
form factors in the covariant light-front model are usua
complicated~see Sec. III!. Interest in even-parity charme
mesons has been revived by recent discoveries of two na
resonances: the 01 stateDs0* (2317) @15# and theP1

1/2 state
Ds1(2460) @16#, and two broad resonances,D0* (2308) and
D1(2427) @17#.1 Furthermore, the hadronicB decays such as
B→D** p and B→Ds** D̄ have been recently observe
whereD** denotes ap-wave charmed meson. A theoretic
study of them requires the information of theB→D** form
factors and the decay constants ofD** and Ds** . In the
meantime, three body decays ofB mesons have been re
cently studied at theB factories: BaBar and Belle. The Dalit
plot analysis allows one to see the structure of exclus
quasi-two-body intermediate states in the three-body sign
Thep-wave resonances observed in three-body decays b
to emerge. Theoretically, the Isgur-Scora-Grinstein-W
~ISGW! quark model@19# is so far the only model in the
literature that can provide a systematical estimate of the t
sition of a ground-states-wave meson to a low-lyingp-wave
meson. However, this model and, in fact, many other mod
in P→P,V ~P: pseudoscalar meson;V: vector meson! cal-
culations, are based on the nonrelativistic constituent qu
picture. As noted in passing, the final-state meson at
maximum recoil pointq250 or in heavy-to-light transitions
could be highly relativistic. It is thus important to consider
relativistic approach.

It has been realized that the zero mode contributions
be interpreted as residues of virtual pair creation processe
the q1→0 limit @20#. In @10#, the calculation of the zero
mode contribution is obtained in a frame where the mom
tum transferq1 vanishes. Because of this (q150) condi-
tion, form factors are known only for spacelike momentu
transfer q252q'

2 <0. One needs to analytically continu
them to the timelike region@6#, where the physical deca
processes are relevant. Recently, it has been shown
within a specific model, form factors obtained directly fro
the timelike region~with q1.0) are identical to those ob
tained by the analytic continuation from the spacelike reg
@11#.

There are some theoretical constraints implied by he
quark symmetry~HQS! in the case of heavy-to-heavy tran
sitions and heavy-to-vacuum decays@21#. It is important to

1We follow the naming scheme of the Particle Data Group@18# to
add a superscript ‘‘* ’’ to the states if the spin-parity is in the ‘‘nor
mal’’ sense,JP501,12,21,... .
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check if the calculated form factors and decay constants
satisfy these constraints. Furthermore, under HQS the n
ber of the independent form factors is reduced and they
related to some universal Isgur-Wise~IW! functions. In this
work, we shall follow@9# to evaluate the form factors an
decay constants in a covariant light-front formulism with
the framework of heavy quark effective theory. It is foun
that the resultant decay constants and form factors do a
with those obtained from the covariant light-front approa
and then extended to the heavy quark limit. The relevant
functions, namely,j, t1/2 andt3/2 are obtained. One can the
study some properties of these IW functions, including
slopes and sum rules@22,23#.

The paper is organized as follows. In Sec. II, we give t
calculations for the decay constants ofs-wave andp-wave
mesons in a covariant light-front model. The calculation
s-wave meson transitions has been done by Jaus@10#. We
extend it to thep-wave meson case. In Sec. III,P→P,V,S,A,T
~S,A,T standing for scalar, axial-vector and tensor meso
respectively! transitions are considered. It is interesting
notice that the analytic forms ofP→S,A transitions are simi-
lar to that ofP→P,V transitions, respectively, while theP
→T calculation needs formulas beyond@10#. We provide
numerical results forB andD decay form factors and theirq2

dependence. These results are then compared to the
model calculations. In Sec. IV, properties of the decay c
stants and form factors in the heavy quark limit are studi
The universal Isgur-Wise functions, one fors-wave to
s-wave and two fors-wave to p-wave transitions, are ob
tained. Their values at zero recoil and their slope parame
can be used to test the sum rules derived by Bjorken@22# and
by Uraltsev@23#. Conclusion is given in Sec. V followed b
two Appendixes devoted to the derivations of conventio
light-front vertex functions and some useful formulas.

II. FORMALISM OF A COVARIANT LIGHT-FRONT
MODEL

A. Formalism

In the conventional light-front framework, the constitue
quarks of the meson are required to be on their mass sh
~see Appendix A for an introduction! and various physica
quantities are extracted from the plus component of the c
responding current matrix elements. However, this proced
will miss the zero-mode effects and render the matrix e
ments non-covariant. Jaus@10# has proposed a covarian
light-front approach that permits a systematical way of de
ing with the zero mode contributions. Physical quantit
such as the decay constants and form factors can be c
lated in terms of Feynman momentum loop integrals wh
are manifestly covariant. This of course means that the c
stituent quarks of the bound state are off-shell. In princip
this covariant approach will be useful if the vertex functio
can be determined by solving the QCD bound state equat
In practice, we would have to be contended with the p
nomenological vertex functions such as those employed
5-2
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the conventional light-front model. Therefore, using t
light-front decomposition of the Feynman loop momentu
saypm , and integrating out the minus component of the lo
momentump2, one goes from the covariant calculation
the light-front one. Moreover, the antiquark is forced to
on its mass shell afterp2 integration. Consequently, one ca
replace the covariant vertex functions by the phenomenol
cal light-front ones.

As stated in passing, in going from the manifestly cov
riant Feynman integral to the light-front one, the latter is
longer covariant as it can receive additional spurious con
butions proportional to the lightlike four vectorṽ. The un-
desired spurious contributions can be eliminated by the
clusion of the zero mode contribution which amounts
performing thep2 integration in a proper way in this ap
proach. The advantage of this covariant light-front fram
work is that it allows a systematical way of handling the ze
mode contributions and hence permits to obtain covar
matrix elements.

To begin with, we consider decay and transition amp
tudes given by one-loop diagrams as shown in Fig. 1 for
decay constants and form factors of ground-states-wave me-
sons and low-lyingp-wave mesons. We follow the approac
of @10# and use the same notation. The incoming~outgoing!
meson has the momentumP8(9)5p18

(9)1p2 , where p18
(9)

andp2 are the momenta of the off-shell quark and antiqua
respectively, with massesm18

(9) andm2 . These momenta ca
be expressed in terms of the internal variables (xi ,p'8 ),

p1,2815x1,2P81, p1,2'8 5x1,2P'8 6p'8 , ~2.1!

with x11x251. Note that we useP85(P82,P81,P'8 ),
whereP865P806P83, so thatP825P81P822P'8

2. In the
covariant light-front approach, total four momentum is co
served at each vertex where quarks and antiquarks are
shell. These differ from the conventional light-front approa
~see, for example@4,7#! where the plus and transverse com
ponents of momentum are conserved, and quarks as we
antiquarks are on-shell. It is useful to define some inter
quantities analogous to those defined in Appendix A for
shell quarks:

FIG. 1. Feynman diagrams for~a! meson decay and~b! meson
transition amplitudes, whereP8(9) is the incoming~outgoing! me-
son momentum,p18

(9) is the quark momentum,p2 is the antiquark
momentum andX denotes the correspondingV-A current vertex.
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M08
25~e181e2!25

p'8
21m18

2

x1
1

p'8
21m2

2

x2
,

M̃085AM08
22~m182m2!2,

ei
~8 !5Am1

~8 !21p'8
21pz8

2,

pz85
x2M08

2
2

m2
21p'8

2

2x2M08
. ~2.2!

Here M08
2 can be interpreted as the kinetic invariant ma

squared of the incomingqq̄ system, andei the energy of the
quark i.

It has been shown in@12# that one can pass to the ligh
front approach by integrating out thep2 component of the
internal momentum in covariant Feynman momentum lo
integrals. We need Feynman rules for the meson-qua
antiquark vertices to calculate the amplitudes shown in F
1. These Feynman rules for vertices (iGM8 ) of ground-state
s-wave mesons and low-lyingp-wave mesons are summa
rized in Table I. As we shall see later, the integration of t
minus component of the internal momentum in Fig. 1 w
force the antiquark to be on its mass shell. The specific fo
of the covariant vertex functions for on-shell quarks can
determined by comparing to the conventional vertex fu
tions as shown in Appendix A. Next, we shall use the dec
constants as an example to illustrate a typical calculation
the covariant light-front approach.

B. Decay constants

The decay constants forJ50,1 mesons are defined by th
matrix elements

TABLE I. Feynman rules for the vertices (iGM8 ) of the incoming
mesons-quark-antiquark, wherep18 and p2 are the quark and anti
quark momenta, respectively. Under the contour integrals to be
cussed below,HM8 andWM8 are reduced tohM8 andwM8 , respectively,
whose expressions are given by Eq.~2.11!. Note that for outgoing
mesons, we shall usei (g0GM8

†g0) for the corresponding vertices.

M (2S11LJ) iGM8

pseudoscalar (1S0) HP8g5

vector (3S1) iHV8 Fgm2
1

WV8
~p182p2!mG

scalar (3P0) 2 iH S8

axial (3P1) iH3A
8 Fgm1

1

W3A
8

~p182p2!mGg5

axial (1P1) 2iH1A
8 F 1

W1A
8

~p182p2!mGg5

tensor (3P2) i
1

2
HT8 Fgm2

1

WV8
~p182p2!mG~p182p2!n
5-3
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^0uAmuP~P8!&[Am
P5 i f PPm8 ,

^0uVmuS~P8!&[Am
S5 f SPm8 ,

^0uVmuV~P8,«8!&[Am
V5MV8 f V«m8 ,

^0uAmu3~1!A~P8,«8!&[Am

3A~1A!5M 3A~1A!
8 f 3A~1A!«m8 ,

~2.3!

where the 2S11LJ51S0 , 3P0 , 3S1 , 3P1 , 1P1 and 3P2

states ofq18q̄2 mesons are denoted byP, S, V, 3A, 1A andT,
respectively. Note that a3P2 state cannot be produced by
current. It is useful to note that in the SU~N!-flavor limit
(m185m2) we should have vanishingf S and f 1A . The former
can be seen by applying equations of motion to the ma
element of the scalar resonance in Eq.~2.3! to obtain

mS
2f S5 i ~m182m2!^0uq̄1q2uS&. ~2.4!

The latter is based on the argument that the light3P1 and
1P1 states transfer under charge conjugation as

Ma
b~3P1!→Mb

a~3P1!,

Ma
b~1P1!→2Mb

a~1P1! ~a51,2,3!, ~2.5!

where the light axial-vector mesons are represented b
333 matrix. Since the weak axial-vector current transfers
(Am)a

b→(Am)b
a under charge conjugation, it is clear that t

decay constant of the1P1 meson vanishes in the SU~3! limit
@24#. This argument can be generalized to heavy axial-ve
mesons. In fact, under similar charge conjugation argum
@(Vm)a

b→2(Vm)b
a ,Ma

b(3P0)→Mb
a(3P0)# one can also prove

the vanishing off S in the SU~N! limit.
Furthermore, in the heavy quark limit (m18→`), the

heavy quark spinsQ decouples from the other degrees
freedom so thatsQ and the total angular momentum of th
light antiquark j are separately good quantum numbe
Hence, it is more convenient to use theLJ

j 5P2
3/2, P1

3/2, P1
1/2

andP0
1/2 basis. It is obvious that the first and the last of the

states are3P2 and 3P0 , respectively, while@25#

uP1
3/2&5A2

3
u1P1&1

1

)
u3P1&,

uP1
1/2&5

1

)
u1P1&2A2

3
u3P1&. ~2.6!

Heavy quark symmetry~HQS! requires~see Sec. IV! @21,26#

f V5 f P , f A1/25 f S , f A3/250, ~2.7!

where we have denoted theP1
1/2 and P1

3/2 states byA1/2 and
A3/2, respectively. These relations in the above equation
be understood from the fact that (S0

1/2,S1
1/2), (P0

1/2,P1
1/2) and

(P1
3/2,P2

3/2) form three doublets in the HQ limit and that th
tensor meson cannot be induced from theV2A current. It is
07402
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important to check if the calculated decay constants sat
the nontrivial SU~N!-flavor and HQS relations.

We now follow @10# to evaluate meson decay constan
The matrix element for the annihilation of a pseudosca
state via axial currents can be easily written down and it
the expression

Am
P52 i 2

Nc

~2p!4 E d4p18
HP8

N18N2

sm
P , ~2.8!

where

sm
P[Tr@gmg5~p” 181m18!g5~2p” 21m2!#

524@m18Pm8 1~m22m18!p1m8 #, ~2.9!

N185p18
22m18

21 i e and N25p2
22m2

21 i e. We need to inte-
grate outp18

2 in Am
P . As stressed in@10#, if it is assumed that

the vertex functionH8 has no pole in the upper complexp18
2

plane, then the covariant calculation of meson properties
the calculation of the light-front formulism will give identi
cal results at the one-loop level. Therefore, by closing
contour in the upper complexp18

2 plane and assuming tha
HP8 is analytic within the contour, the integration picks up
residue atp25 p̂ 2 , wherep̂ 2

25m2
2. The other momentum is

given by momentum conservation,p̂ 185P82 p̂ 2 . Conse-
quently, one has the following replacements:

N18→N̂185 p̂ 18
22m18

25x1~M 822M08
2!,

HM8 →ĤM8 5HM8 ~ p̂ 18
2,p̂ 2

2![hM8 ,

WM8 →ŴM8 5WM8 ~ p̂ 18
2,p̂ 2

2![wM8 ,

E d4p18

N18N2

HM8 sM→2 ipE dx2d2p'8

x2N̂18
hM8 ŝM, ~2.10!

in a generic one-loop vacuum to particleM amplitudeAm
M .

In this work the explicit forms ofhM8 andwM8 are given by
~see Appendix A!

hP8 5hV85~M 822M08
2!A x1x2

Nc

1

&M̃08
w8,

hS85A2

3
h3A
8 5~M 822M08

2!Ax1x2

Nc

1

&M̃08

M̃08
2

2)M08
wp8 ,

h1A
8 5hT85~M 822M08

2!Ax1x2

Nc

1

&M̃08
wp8 ,

wV85M081m181m2 , w3A
8 5

M̃08
2

m182m2
, w1A

8 52,

~2.11!
5-4
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wherew8 andwp8 are the light-front momentum distributio
amplitudes for s-wave and p-wave mesons, respectivel
There are several popular phenomenological light-front w
functions that have been employed to describe various h
ronic structures in the literature. In the present work, we s
use the Gaussian-type wave function@27#

w85w8~x2 ,p'8 !54S p

b82D 3/4Adpz8

dx2

expS 2
pz8

21p'8
2

2b82 D ,

wp85wp8~x2 ,p'8 !5A 2

b82 w8,
dpz8

dx2

5
e18e2

x1x2M08
. ~2.12!

The parameterb8 is expected to be of orderLQCD. The
derivation of these vertex functions is shown in Appendix

The matrix elementAm
P can be evaluated readily by usin

above equations. However,Am
P obtained in this way contain

a spurious contribution proportional toṽm5(ṽ2,ṽ1,ṽ')
5(2,0,0'). It arises from the momentum decomposition
p̂ 18

m

p̂ 18
m5~P82 p̂ 2!m5x1P8m1~0,0,p̄'8 !m

1
1

2 S x2P822
p̄ 2'

2 1m2
2

x2P81 D ṽm. ~2.13!

In fact, after the integration,p18 can be expressed in terms
two external vectors,P8 and ṽ. Therefore, in the integrand
of Am

M , one has

p1m8 8
ṽ•p18

ṽ•P8
Pm8 1

1

ṽ•P8
ṽmS P8•p182

ṽ•p18

ṽ•P8
P82D

8x1Pm8 1
1

2ṽ•P8
ṽm@2N21N181m18

22m2
2

1~122x1!M 82#. ~2.14!

The symbol8 in the above equation reminds us that it is tr
only in theAM integration. There is one missing piece in t
contour integration, namely, the contribution of the ze
mode from thep18

150 region@13#. The appearance ofN2 in
the numerator as shown in the above equation~2.8! also
prompts an extra care in performing thep18

2 contour integra-
tion. It is interesting that this zero mode contribution pr
vides a cue for the spurious term inAm

M . As shown in@10#,
the inclusion of the zero mode contribution inAm

M matrix
elements in practice amounts to the replacements

p̂ 18→x1P8, N̂2→N̂181m18
22m2

21~122x1!M 82,
~2.15!

in the ŝM under the integration. By virtue of Eqs.~2.3!,
~2.10! and ~2.15!, we obtain@10#
07402
e
d-
ll

.

f

-

f P5
Nc

16p3 E dx2d2p'8
hP8

x1x2~M 822M08
2!

4~m18x21m2x1!.

~2.16!

It should be stressed thatf P itself is free of zero mode con
tributions as its derivation does not involve the replacem
of N̂2 ~see also Sec. III B!. With the explicit form of hP8
shown in Eq.~2.11!, the familiar expression off P in the
conventional light-front approach@4,7#, namely,

f P52
A2Nc

16p3 E dx2d2p'8
1

Ax1x2M̃08
~m18x21m2x1!

3w8~x2 ,p'8 !, ~2.17!

is reproduced.
The decay constant of a scalar meson can be obtained

similar manner. By using the corresponding Feynman ru
shown in Table I, we have

Am
S52 i 2

Nc

~2p!4 E d4p18
HS8

N18N2
Tr@gm~p” 181m18!

3~2 i !~2p” 21m2!#. ~2.18!

Note that the trace ([sm
S) in the above equation is related t

sm
P in Eq. ~2.8! by the replacement ofm2→2m2 and by

adding an overall factor of2 i . Likewise, by using Eqs.
~2.3!, ~2.10! and ~2.15!, it follows that

f S5
Nc

16p3 E dx2d2p'8
hS8

x1x2~M 822M08
2!

4~m18x22m2x1!.

~2.19!

For m185m2 , the meson wave function is symmetric wit
respect tox1 andx2 , and hencef S50, as it should be.

We now turn to the decay constants of vector and ax
vector mesons. The decay amplitude for a vector meso
given by

Am
V52 i 2

Nc

~2p!4 E d4p18
iH V8

N18N2

3TrH gm~p” 181m18!Fgn2
~p182p2!n

WV8
G ~2p” 21m2!J «8n.

~2.20!

We consider the case with the transverse polarization

«~6 !5S 2

P81 «'•P'8 ,0,«'D , «'57
1

&
~1,6 i !.

~2.21!

ContractingAm
V with «* (6) and applying Eqs.~2.3!, ~2.10!
5-5
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and ~2.15! lead to@10#2

f V5
Nc

4p3M 8
E dx2d2p'

IH
hV8

x1x2~M 822M08
2!

3F x1M08
22m18~m182m2!2p'8

21
m181m2

wV8
p'8

2G .

~2.22!

We wish to stress that the vector decay constant obtaine
the conventional light-front model@4# does not coincide with
the above result~2.22! owing to the missing zero mode con
tribution, whose presence is evidenced by its involvemen

N̂2 @10,14#. SinceAm

3A (Am

1A) is related toAm
V by a suitable

replacement of HV8→2H 3A(1A)
8 and m2→2m2 , WV8

→2W3A(1A)
8 in the trace~only the 1/W8 terms being kept in

the 1A case!, this allows us to readily obtain

f 3A52
Nc

4p3M 8
E dx2d2p'8

h3A
8

x1x2~M 822M08
2!

3F x1M08
22n18~m181m2!2p'8

22
m182m2

w3A
8

p'8
2G ,

f 1A5
Nc

4p3M 8
E dx2d2p'8

h1A
8

x1x2~M 822M08
2!

3S m182m2

w1A
8

p'8
2D . ~2.23!

It is clear thatf 1A50 for m185m2 . The SU~N!-flavor con-
straints onf S and f 1A are thus satisfied. The HQS relation
on decay constants will be discussed in Sec. IV.

In order to have a numerical study for decay constants,
need to specify the constituent quark masses and the pa
eterb appearing in the Gaussian-type wave function~2.12!.
For constituent quark masses we use@6,7,10,29#

mu,d50.26 GeV, ms50.37 GeV,

mc51.40 GeV, mb54.64 GeV. ~2.24!

As we shall see in Sec. III, the masses of strange
charmed quarks are constrained from the measured fo
factor ratios in semileptonicD→K* , n̄ decays. Shown in

2WhenAm
V is contracted with the longitudinal polarization vect

«m(0), f V will receive additional contributions characterized by t
B functions defined in Appendix B@see Eq.~3.5! of @14## which
give about 10% corrections tof V for the vertex functionhV8 used in
Eq. ~2.11!. It is not clear to us why the result off V depends on the
polarization vector. Note that the new residual contributions
absent in the approach of@28# in which a different scheme has bee
developed to identify the zero mode contributions to the decay c
stants and form factors.
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in

f

e
m-

d
-

Tables II and III are the input parameterb and decay con-
stants, respectively. In Table III the decay constants in pa
theses are used to determineb. For the purpose of an esti
mation, forp-wave mesons inD, Ds andB systems we shal
use theb parameters obtained in the ISGW2 model@30#, the
improved version of the ISGW model, up to some simp
scaling. Several remarks are in order:~i! The values of the
parameterbV presented in Table II are slightly smaller tha
the ones obtained in the earlier literature. For example,br

50.26, bK* 50.27 andbD* 50.38 are obtained here usin
the Gaussian-type wave function, while the correspond
values are 0.30,0.31,0.46 in@7#. This is because we hav
utilized the correct light-front expression for the vector dec
constantf V @cf. Eq. ~2.22!#. It is interesting to notice thatbV
in the ISGW2 model also has a similar reduction due
hyperfine interactions, which have been neglected in
original ISGW model in the mass spectrum calculation.~ii !
The b parameters forp-wave states ofD, Ds andB systems
are the smallest when compared tobP,V . ~iii ! The decay
constants of3P1 and P1

3/2 states have opposite signs to th
of 1P1 or P1

1/2 as can be easily seen from Eq.~2.6!.
In principle, the parameterb for p-wave mesons can b

determined from the study of the meson spectroscopy.
though we have not explored this issue in this work, it
important to keep in mind thatb’s are closely related to
meson masses. In Table III we have employedu f a1

u
5203 MeV and f D

s*
5 f Ds

as inputs. It is generally argue

that a1(1260) should have a similar decay constant as thr
meson. Presumably,f a1

can be extracted from the decayt

→a1(1260)nt . Though this decay is not shown in the Pa
ticle Data Group~PDG! @18#, an experimental value o

e

n-

TABLE II. The input parameterb ~in units of GeV! in the
Gaussian-type wave function~2.12!.

2S11LJ bud̄ bsū bcū bcs̄ bbū

1S0 0.3102 0.3864 0.4496 0.4945 0.5329
3S1 0.2632 0.2727 0.3814 0.3932 0.4764
3P0 ba1

bK(3P1) 0.3305 0.3376 0.4253
3P1 0.2983 0.303 0.3305 0.3376 0.4253
1P1 ba1

bK(3P1) 0.3305 0.3376 0.4253

TABLE III. Mesonic decay constants~in units of MeV! obtained
by using Eqs.~2.16!, ~2.19!, ~2.22! and~2.23!. Those in parenthese
are taken as inputs to determine the correspondingb’s shown in
Table II. The decay constantf K1(1270)5175 MeV is also used as a
input ~see the text for detail!.

2S11LJ f ud̄ f sū f cū f cs̄ f bū

1S0 ~131! ~160! ~200! ~230! ~180!
3S1 ~216! ~210! ~220! ~230! ~180!
3P0 0 21 86 71 112
3P1 ~2203! 2186 2127 2121 2123
1P1 0 11 45 38 68
P1

1/2 130 122 140
P1

3/2 236 238 215
5-6
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u f a1
u5203618 MeV is nevertheless quoted in@31#.3 Con-

trary to the nonstrange charmed meson case whereD* has a
slightly larger decay constant thanD, the recent measure
ments ofB→Ds

(* )D (* ) @18,32# indicate that the decay con
stants ofDs* and Ds are similar. Hence we shall takef D

s*

5 f Ds
. As for the decay constant ofB* , a recent lattice cal-

culation yieldsf B* / f B51.0160.0120.01
10.04 @33#. Therefore we

will set f B* 5 f B in Table III.
It is clear from Eq.~2.4! that the decay constant of ligh

scalar resonances is largely suppressed relative to that o
pseudoscalar mesons owing to the small mass difference
tween the constituent quark masses. However, as show
Table III, this suppression becomes less restrictive for he
scalar mesons because of heavy and light quark mass im
ance. Note that what is the underlying quark structure
light scalar resonances is still controversial. While it h
been widely advocated that the light scalar nonet formed
s~600!, k~800!, f 0(980) anda0(980) can be identified pri-
marily as four-quark states, it is generally believed that
nonet states f 0(1370), a0(1450), K0* (1430) and
f 0(1500)/f 0(1710) are the conventionalqq̄8 states~for a
review, see e.g.@34#!. Therefore, the prediction off S
521 MeV for the scalar meson in thesū content~see Table
III ! is most likely designated for theK0* (1430) state. Notice
that this prediction is slightly smaller than the result of
MeV obtained in@35# based on the finite-energy sum rule
and far less than the estimate of (70610) MeV in @36#. It is
worth remarking that even if the light scalar mesons
made from 4 quarks, the decay constants of the neutral
lars s~600!, f 0(980) and a0

0(980) must vanish owing to
charge conjugation invariance.

In principle, the decay constant of the scalar stran
charmed mesonDs0* can be determined from the hadron

decay B→D̄Ds0* since it proceeds only via externa

W-emission. Indeed, a recent measurement of theDD̄s0* pro-
duction inB decays by Belle@37# indicates af D

s0*
of order 60

MeV @38# which is close to the expectation of 71 MeV~see
Table III!. In Sec. III E we will discuss more aboutD̄Ds**
productions inB decays. The smallness of the decay const
f D

s0*
relative to f Ds

can be seen from Eqs.~2.16! and ~2.19!

that

f Ds~D
s0* !}E dx2¯@mcx26ms~12x2!#. ~2.25!

Since the momentum fractionx2 of the strange quark in the
Ds(Ds0* ) meson is small, its effect being constructive inDs

case and destructive inDs0* is sizable and explains wh
f D

s0*
/ f Ds

;0.3.

Except fora1 andb1 mesons which cannot have mixin
because of the oppositeC-parities, physical strange axia

3The decay constant ofa1 can be tested in the decayB1

→D̄0a1
1 which receives the main contribution from the colo

allowed amplitude proportional tof a1
FBD(ma1

2 ).
07402
the
e-
in
y
al-
f

s
y

e

,

e
a-

e

nt

vector mesons are the mixture of3P1 and 1P1 states, while
the heavy axial-vector resonances are the mixture ofP1

1/2 and
P1

3/2. For example,K1(1270) andK1(1400) are the mixture
of K 3P1

andK 1P1
~denoted byK1A andK1B , respectively, by

PDG @18#! owing to the mass difference of the strange a
nonstrange light quarks:

K1~1270!5K 3P1
sinu1K 1P1

cosu,

K1~1400!5K 3P1
cosu2K 1P1

sinu, ~2.26!

with u'258° as implied from the study ofD
→K1(1270)p, K1(1400)p decays@39#. We use f K1(1270)

5175 MeV @39# to fix bK(3P1).bK(1P1)50.303 GeV and

obtain f K1(1400)5287 MeV. Note that thesebK(3P1) ,

bK(1P1) are close tobK* . For the masses ofK 1P1
andK 3P1

,
we follow @24# to determine them from the mass relatio
2mK1P1

2 5mb1(1232)
2 1mh1(1380)

2 and mK3P1

2 5mK1(1270)
2

1mK1(1400)
2 2mK1P1

2 . For D and B systems, it is clear from

Table III that u f A3/2u! f S, f A1/2, in accordance with the ex
pectation from HQS@cf. Eq. ~2.7!#.

III. COVARIANT MODEL ANALYSIS OF FORM FACTORS

In this section we first review the analysis of the for
factors fors-wave mesons within the framework of the c
variant light-front quark model@10# and then extend it to the
p-wave meson case followed by numerical results and
cussion.

A. Form factors

Form factors forP→P, V transitions are defined by

^P~P9!uVmuP~P8!&5Pm f 1~q2!1qm f 2~q2!,

^V~P9,«9!uVmuP~P8!&5emnab«9* nPaqbg~q2!,

^V~P9,«9!uAmuP~P8!&

52 i $«m9* f ~q2!1«* 9•P@Pma1~q2!1qma2~q2!#%,

~3.1!

where P5P81P9, q5P82P9 and the conventione0123
51 is adopted. These form factors are related to the co
monly used Bauer-Stech-Wirbel~BSW! form factors@40# via

F1
PP~q2!5 f 1~q2!, F0

PP~q2!5 f 1~q2!1
q2

q•P
f 2~q2!,

VPV~q2!52~M 81M 9!g~q2!, A1
PV~q2!52

f ~q2!

M 81M 9
,

A2
PV~q2!5~M 81M 9!a1~q2!,

A3
PV~q2!2A0

PV~q2!5
q2

2M 9
a2~q2!, ~3.2!
5-7
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where the latter form factors are defined by@40#

^P~P9!uVmuP~P8!&5S Pm2
M 822M 92

q2 qmDF1
PP~q2!

1
M 822M 92

q2 qmF0
PP~q2!,

^V~P9,«9!uVmuP~P9!&

52
1

M 81M 9
emnab«9* nPaqbVPV~q2!,

^V~P9,«9!uAmuP~P8!&

5 i H ~M 81M 9!«m9* A1
PV~q2!2

«9* •P

M 81M 9
PmA2

PV~q2!

22M 9
«9* •P

q2 qm@A3
PV~q2!2A0

PV~q2!#J , ~3.3!

with F1
PP(0)5F0

PP(0), A3
PV(0)5A0

PV(0), and

A3
PV~q2!5

M 81M 9

2M 9
A1

PV~q2!2
M 82M 9

2M 9
A2

PV~q2!.

~3.4!

The general expressions forP to low-lying p-wave meson
transitions are given by@19#

^S~P9!uAmuP~P8!&5 i @u1~q2!Pm1u2~q2!qm#,

^A1/2~P9,«9!uVmuP~P8!&

5 i $,1/2~q2!«m9* 1«9* •P@Pmc1
1/2~q2!1qmc2

1/2~q2!#%,

^A1/2~P9,«9!uAmuP~P8!&52q1/2~q2!emnab«9* nPaqb,

^A3/2~P9,«9!uVmuP~P8!&

5 i $,3/2~q2!«m9* 1«9* •P@Pmc1
3/2~q2!1qmc2

3/2~q2!#%,

^A3/2~P9,«9!uAmuP~P8!&52q3/2~q2!emnab«9* nPaqb,

^T~P9,«9!uVmuP~P8!&5h~q2!emnab«9* nlPlPaqb,

^T~P9,«9!uAmuP~P8!&

52 i $k~q2!«mn9* Pn1«ab9* PaPb@Pmb1~q2!

1qmb2~q2!#%. ~3.5!

The form factors,1/2(3/2), c1
1/2(3/2), c2

1/2(3/2) and q1/2(3/2) are
defined for the transitions to the heavyP1

1/2 (P1
3/2) state. For

transitions to light axial-vector mesons, it is more approp
ate to employ theL-S coupled states1P1 and 3P1 denoted
by the particles1A and 3A in our notation. The relation
betweenP1

1/2,P1
3/2 and 1P1 , 3P1 states is given by Eq.~2.6!.
07402
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The corresponding form factors, 1A(3A) , c1

1A(3A) , c2

1A(3A) and
q1A(3A) for P→1A(3A) transitions can be defined in a
analogous way.4

Note that only the form factorsu1(q2), u2(q2) and
k(q2) in the above parametrization are dimensionless. I
thus convenient to define dimensionless form factors by5

^S~P9!uAmuP~P8!&

52 i F S Pm2
M 822M 92

q2 qmDF1
PS~q2!

1
M 822M 92

q2 qmF0
PS~q2!G ,

^A~P9,«9!uVmuP~P8!&

52 i H ~mP2mA!«m* V1
PA~q2!2

«* •P8

mP2mA

PmV2
PA~q2!

22mA

«* •P8

q2 qm@V3
PA~q2!2V0

PA~q2!#J ,

^A~P9,«9!uAmuP~P8!&

52
1

mP2mA
emnrs«* nPrqsAPA~q2!, ~3.6!

with

V3
PA~q2!5

mP2mA

2mA
V1

PA~q2!2
mP1mA

2mA
V2

PA~q2!,

~3.7!

andV3
PA(0)5V0

PA(0). They are related to the form factors i
Eq. ~3.3! via

F1
PS~q2!52u1~q2!, F0

PS~q2!52u1~q2!2
q2

q•P
u2~q2!,

APA~q2!52~M 82M 9!q~q2!, V1
PA~q2!52

,~q2!

M 82M 9
,

V2
PA~q2!5~M 82M 9!c1~q2!,

V3
PA~q2!2V0

PA~q2!5
q2

2M 9
c2~q2!. ~3.8!

In above equations, the axial-vector mesonA stands forA1/2

4The form factors,1A(3A) , c1

1A(3A) , c2

1A(3A) andq1A(3A) are dubbed
as ,(v), c1(s1), c2(s2) and q(r ), respectively, in the ISGW
model @19#.

5The definition here for dimensionlessP→A transition form fac-
tors differs than Eq.~3.17! of @38# where the coefficients (mP

6mA) are replaced by (mP7mA). It will become clear in Sec. IV
that this definition will lead to HQS relations forB→D0* ,D1 tran-
sitions @cf. Eq. ~4.7!# similar to that forB→D,D* ones.
5-8
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or A3/2. Besides the dimensionless form factors, this para
etrization has the advantage that theq2 dependence of the
form factors is governed by the resonances of the same s
for instance, the momentum dependence ofF0(q2) is deter-
mined by scalar resonances.

To obtain theP→M transition form factors withM being
a ground-states-wave meson or a low-lyingp-wave meson,
we shall consider the matrix elements

^M ~P9!uVm2AmuP~P8!&[Bm
PM , ~3.9!

where the corresponding Feynman diagram is shown in
1~b!. We follow @10# to obtainP→P, V form factors before
extending the formalism to thep-wave meson case. As w
shall see, theP→S(A) transition form factors can be easi
obtained by some suitable modifications onP→P(V) ones,
and we need some extension of the analysis in@10# to the
P→T case.

For the case ofM5P, it is straightforward to obtain

Bm
PP52 i 3

Nc

~2p!4 E d4p18
HP8HP9

N18N19N2

SVm
PP , ~3.10!

where

SVm
PP5Tr@g5~p” 191m19!gm~2p” 11m18!g5~2p” 21m2!#,

~3.11!

N195p19
22m19

21 i e and the subscript ofSV stands for the
transition vector current. As noted in the Introduction w
consider theq150 frame@10#. As in theAm

P case, thep18
2

integration picks up the residuep25 p̂ 2 and leads to

N18
~9 !→N̂18

~9 !5x1~M 8~9 !22M08
~9 !2!,

HM8
~9 !→hM8

~9 ! ,

WM9 →wM9 ,

E d4p18

N19N19N2

HP8HM9 SPM→2 ipE dx2d2p'8

x2N̂18N̂19
hP8hM9 ŜPM,

~3.12!

where

M09
25

p'8
21m19

2

x1
1

p'9
21m2

2

x2
, ~3.13!

with p'9 5p'8 2x2q' . In general, after the integration i
BPM, p̂ 18 can be expressed in terms of three external vect
P8, q and ṽ. Furthermore, the inclusion of the zero mo
contribution cancels away theṽ dependence and in practic
for p̂ 18 and N̂2 in ŜPM under the integration, we have@10#
07402
-

in,

g.

s,

p̂ 1m8 8PmA1
~1!1qmA2

~1! ,

p̂ 1m8 p̂ 1n8 8gmnA1
~2!1PmPnA2

~2!

1~Pmqn1qmPn!A3
~2!1qmqnA4

~2! ,

p̂ 1m8 p̂ 1n8 p̂ 1a9

8~gmnPa1gmaPn1gnaPm!A1
~3!

1~gmnqa1gmaqn1gnaqm!A2
~3!

1PmPnPaA3
~3!1~PmPnqa1PmqnPa1qmPnPa!A4

~3!

1~qmqnPa1qmPnqa1Pmqnqa!A5
~3!1qmqnqaA6

~3! ,

N̂2→Z2 , x1N̂2→0,

p̂ 1m8 N̂2→qmFA2
~1!Z21

q•P

q2 A1
~2!G ,

p̂ 1m8 p̂ 1n8 N̂2→gmnA1
~2!Z21qmqnFA4

~2!Z212
q•P

q2 A2
~1!A1

~2!G ,

p̂ 1m8 p̂ 1n8 p1a8 N̂2

→~gmnqa1gmaqn1gnaqm!FA2
~3!Z21

q•P

3q2 ~A1
~2!!2G

1qmqnqaH A6
~3!Z213

q•P

q2 FA2
~1!A2

~3!2
1

3q2 ~A1
~2!!2GJ,

~3.14!

whereAj
( i ) ,Z2 are functions ofx1,2, p'8

2, p'8 •q' andq2, and
their explicit expressions are given in@10#. We do not show
the spurious contributions in the above equation since t
vanish either after applying the above rules or after integ
tion. The last rule onp̂ 1m8 p̂ 1n8 p1a8 N̂2 in the above equation
which is needed in theP→T calculation, is extended in this
work. One needs to consider the product of fourp̂ 18’s. For
completeness, the formulas for the product of fourp̂ 18’s and
the expressions forAj

( i ) ,Z2 can be found in Appendix B.
From Eqs.~3.10!–~3.14! one can obtain the form factor

f 6(q2) for q252q'
2 <0 @see Eq.~B3!#. We will return to

the issue of the momentum dependence of form factors in
next subsection. The explicit expressions forf 6 can be
evaluated readily by using the explicit representations
N̂18

(9) ,h8(9) given in Eqs.~3.12! and ~2.11!. At q250, the
form factor f 1(0) is reduced to the familiar form@3,41#

f 1~0!5
1

16p3 E dxd2p'8 w9* ~x,p'8 !w8~x,p'8 !

3
A8A91p'8

2

AA821p'8
2AA921p'8

2
, ~3.15!
5-9
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where

A85m18x1m2~12x!, A95m19x1m2~12x!,
~3.16!

with x[x2 .
For theP→S transition amplitude, we have

Bm
PS52 i 3

Nc

~2p!4 E d4p18
HP8HS9

N18N19N2
SAm

PS , ~3.17!

with

SAm
PS5Tr@~2 i !~p” 191m19!gmg5~p” 181m18!g5~2p” 21m2!#

52 iSVm
PP~m19→2m19!. ~3.18!

Thus, theP→S transition form factors are related tof 6 by

u652 f 6~m19→2m19 ,hP9→hS9!. ~3.19!

To be specific, we give the explicit forms ofu6(q2) obtained
in the covariant light-front model

u1~q2!5
Nc

16p3 E dx2d2p'8
hP8hS9

x2N̂18N̂19

3@2x1~M08
21M09

2!2x2q21x2~m181m19!2

1x1~m182m2!21x1~m191m2!2#,

u2~q2!5
Nc

16p3 E dx2d2p'8
2hP8hS9

x2N̂18N̂19
H x1x2M 821p'8

2

1m18m21~m191m2!~x2m181x1m2!

22
q•P

q2 S p'8
212

~p'8 •q'!2

q2 D 22
~p'8 •q'!2

q2

1
p'8 •q'

q2
@M 922x2~q21q•P!2~x22x1!M 82

12x1M08
222~m182m2!~m182m19!#J . ~3.20!

It is ready to evaluate these form factors by using the exp
expressions ofN̂ andh. Numerical study of these form fac
tors will be given in the next subsection.

We next turn to theP→V, A transition form factors. For
the P→V transition, we have

Bm
PV52 i 3

Nc

~2p!4 E d4p18
HP8 ~ iH V9 !

N18N19N2
Smn

PV«9* n, ~3.21!

where
07402
it

Smn
PV5~SV

PV2SA
PV!mn

5TrF S gn2
1

WV9
~p192p2!nD ~p” 191m19!

3~gm2gmg5!~p” 11m18!g5~2p” 21m2!G . ~3.22!

As will be seen later, this expression ofS is also useful for
theP→T calculation, and hence its explicit representation
included in Appendix B. By the aid of Eqs.~3.12! and~3.14!,
it is straightforward to obtain theP→V form factors,g(q2),
f (q2),a6(q2) @10#. For reader’s convenience, the explic
forms of these form factors are summarized in Appendix
Note that the vector form factorV(q250)52(M 8
1M 9)g(q250) is consistent with that in@7,41# obtained by
a Taylor expansion of thehV9 /N̂19 term in g(q2) @see Eq.
~B4!# with respect top'9

2. To show this, we write

hV9

N̂19
5

hV9

N̂19
U

p
'9

2→p
'8

2

22x2p'8 •q'S d

dp'9
2

hV9

N̂19
D

p
'9

2→p
'8

2

1O~x2
2q2!, ~3.23!

and see that the second term on the right-hand side is ne
when considering theq'→0 limit of the p8•q' /q2 term in
the integrand ofg(q2), while O(x2

2q2) terms in the above
equation vanish in the same limit. We perform the angu
integration in thepW'8 plane before taking theq2→0 limit.
After these steps, we obtain the same expression ofV(q2

50) as in@7,41#.
The extension toP→A transitions is straightforward and

as we shall see shortly, the resulting form factors have v
similar expressions as that in the above case. For thP
→3A, 1A transitions, we have

Bm
P 3A52 i 3

Nc

~2p!4 E d4p18
HP8 ~2 iH 3A

9 !

N18N19N2

Smn
P 3A«9* n,

Bm
P 1A52 i 3

Nc

~2p!4 E d4p18
HP8 ~2 iH 1A

9 !

N18N19N2

Smn
P 1A«9* n,

~3.24!

where

Smn
P 3A5~SV

P 3A2SA
P 3A!mn

5TrF S gn2
1

W3A
9

~p192p2!nD g5~p” 191m19!~gm2gmg5!

3~p” 181m18!g5~2p” 21m2!G
5TrF S gn2

1

W3A
9

~p192p2!nD ~p” 192m19!~gmg52gm!

3~p” 181m18!g5~2p” 21m2!G ,
5-10
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Smn
P 1A5~SV

P 1A2SA
P 1A!mn

5TrF S 2
1

W1A
9

~p192p2!nD g5~p” 19

1m19!~gm2gmg5!~p” 181m18!g5~2p” 21m2!G
5TrF S 2

1

W1A
9

~p192p2!nD ~p” 192m19!~gmg52gm!

3~p” 181m18!g5~2p” 21m2!G . ~3.25!

We therefore haveSV(A)
P3A,P 1A5SA(V)

PV with the replacemen
m19→2m19 , WV9→W3A,1A

9 . Note that only the 1/W9 terms

are kept inSP 1A. Consequently,

,
3A,1A~q2!5 f ~q2!

with ~m19→2m19 ,hV9→h3A,1A
9 ,wV9→w3A,1A

9 !,

q
3A,1A~q2!5g~q2!

with ~m19→2m19 ,hV9→h3A,1A
9 ,wV9→w3A,1A

9 !,

c1

3A,1A~q2!5a1~q2!

with ~m19→2m19 ,hV9→h3A,1A
9 ,wV9→w3A,1A

9 !,
07402
c2

3A,1A~q2!5a2~q2!

with ~m19→2m19 ,HV9→h3A,1A
9 ,wV9→w3A,1A

9 !,

~3.26!

where only the 1/W9 terms inP→1A form factors are kept.
It should be cautious that the replacement ofm19→2m19
should not be applied tom19 in w9 andh9. These form factors
can be expressed in theP1

3/2 and P1
1/2 basis by using

Eq. ~2.6!.
Finally we turn to theP→T transition given by

Bm
PT52 i 3

Nc

~2p!4 E d4p18
HP8 ~ iH T9 !

N18N19N2

Smnl
PT «9* nl,

~3.27!

where

Smnl
PT 5Smn

PV~2q1p18!l . ~3.28!

The contribution from theSmn
PV(2q)l part is trivial, sinceql

can be taken out from the integration, which is already do
in the P→V case. Contributions from theŜmn

PVp̂ 1l8 part can
be worked out by using Eq.~3.14!. In particular, the calcu-
lation of k(q2) andb2(q2) needs to use thep̂ 18p̂ 18p̂ 18N̂2 for-
mula. Putting all these together leads to
h~q2!52g~q2!uh
V9→h

T9
1

Nc

16p3 E dx2d2p'8
2hP8hT9

x2N̂18N̂19
F ~m182m19!~A3

~2!1A4
~2!!1~m191m1822m2!~A2

~2!1A3
~2!!

2m18~A1
~1!1A2

~1!!1
2

wV9
~2A1

~3!12A2
~3!2A1

~2!!G ,

k~q2!52 f ~q2!uh
V9→h

T9
1

Nc

16p3 E dx2d2p'8
hP8hT9

x2N̂18N̂19
H 2~A1

~1!1A2
~1!!@m2~q22N̂182N̂192m18

22m19
2!

2m18~M 922N̂192m19
22m2

2!2m19~M 822N̂182m18
22m2

2!22m18m19m2#12~m181m19!S A2
~1!Z21

q•P

q2
A1

~2!D
116~m22m18!~A1

~3!1A2
~3!!14~2m182m192m2!A1

~2!1
4

wV9
S @M 821M 922q212~m182m2!~m191m2!#

3~2A1
~3!12A2

~3!2A1
~2!!24FA2

~3!Z21
q•P

3q2
~A1

~2!!2G12A1
~2!Z2D J ,
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b1~q2!52a1~q2!uh
V9→h

T9
1

Nc

16p3 E dx2d2p'8
hP8hT9

x2N̂18N̂19
H 8~m22m18!~A3

~3!12A4
~3!1A5

~3!!22m18~A1
~1!1A2

~1!!

14~2m182m192m2!~A2
~2!1A3

~2!!12~m181m19!~A2
~2!12A3

~2!1A4
~2!!

1
2

wV9
@2@M 821M 922q212~m182m2!~m191m2!#~A3

~3!12A4
~3!1A5

~3!2A2
~2!2A3

~2!!

1@q22N̂182N̂192~m181m19!2#~A2
~2!12A3

~2!1A4
~2!2A1

~1!2A2
~1!!#J ,

b2~q2!52a2~q2!uh
V9→h

T9
1

Nc

16p3 E dx2d2p'8
hP8hT9

x2N̂18N̂19
H 8~m22m18!~A4

~3!12A5
~3!1A6

~3!!26m18~A1
~1!1A2

~1!!

14~2m182m192m2!~A3
~2!1A4

~2!!12~3m181m1922m2!~A2
~2!12A3

~2!1A4
~2!!

1
2

wV9
F2@M 821M 922q212~m182m2!~m191m2!#~A4

~3!12A5
~3!1A6

~3!2A3
~2!2A4

~2!!

12Z2~3A4
~2!22A6

~3!2A2
~1!!12

q•P

q2 S 6A2
~1!A1

~2!26A2
~1!A2

~3!1
2

q2
~A1

~2!!22A1
~2!D

1@q222M 821N̂182N̂192~m181m19!212~m182m2!2#~A2
~2!12A3

~2!1A4
~2!2A1

~1!2A2
~1!!G J . ~3.29!
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To summarize, equipped with the explicit expressions
the form factorsf 1(q2), f 2(q2) @Eq. ~B3!# for P→P transi-
tions, u1(q2),u2(q2) @Eq. ~3.20!# for P→S transitions,
g(q2), f (q2),a1(q2),a2(q2) @Eq. ~B4!# for P→V transi-
tions, ,(q2),q(q2),c1(q2),c2(q2) @Eq. ~3.26!# for P→A
transition andh(q2),k(q2),b1(q2),b2(q2) @Eq. ~3.29!# for
P→T transitions, we are ready to perform numerical stud
of them. TheP→S,A,T transition form factors are the mai
new results in this work.

B. Comments on zero-mode effects

In the present paper we have followed and extended
work of Jaus@10# to thep-wave meson case. As stressed
Jaus, there are two classes of form factors and decay
stants. There is one class of form factors likeF1(q2) for
transitions between pseudoscalar mesons,V(q2) andA2(q2)
for transitions between pseudoscalar and vector mesons
the pseudoscalar decay constantf P that are free of zero mod
contributions. Another class of form factors likeA1(q2) @or
f (q2)] and the vector decay constantf V are associated with
zero modes. The full vector vertex operator for3S1-state
meson has the expression~see Table I!

iH VFgm2
1

W
~p12p2!mG . ~3.30!

To begin with, we first consider the ‘‘simple’’ vector meso
07402
f

s

e

n-

nd

vertex without the 1/W part in the above expression. Ja
employed a simple multipole ansatz for the meson ver
function

HV~p1
2,p2

2!5
g

~p1
22L21 i e!n

~3.31!

as the starting point of his simple covariant toy model. Th
the zero mode contributions can be systematically calcula
in this toy model. Note that the vertex function~3.31! is not
symmetric in the four momenta of the constituent quarks a
hence can hardly be considered a realistic approximatio
the meson vertex. To remedy this difficulty, Bakker, Ch
and Ji~BCJ! @8# proposed to replace the point gauge-bos
vertexgm(12g5) by

gm~12g5!→
L1

2

p1
22L1

21 i e
gm~12g5!

L2
2

p2
22L2

21 i e
.

~3.32!

It is easily seen that the two methods due to Jaus and
should give the same result for form factors, but may lead
different results for decay constants. Indeed, Eq.~3.9! ~with-
out the 1/W part! of Jaus@14# for the form factor f (q2)
agrees with Eqs.~37! and ~38! of BCJ @11#. Moreover, it is
interesting to notice that Eq.~3.16! of Jaus@14# for the decay
5-12
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constantf V ~by considering the longitudinal polarization ca
as in BCJ! also agrees with Eq.~41! of BCJ @8#, though the
analytic expressions for the respective vertex functionsHV
are different@42#. Since the associated trace forf V is free of
minus components of the internal momenta and there ar
zero modes in that case. Therefore, to the level without
1/W part in the vertex operator~3.30!, there is no discrep-
ancy between Jaus and BCJ and bothf V as well asf (q2) are
free of zero mode effects.

However, things are very different when the full vect
meson vertex~3.30! is used. The 1/W part of the trace con-
tains minus components of the momenta and the zero m
problem must be faced. While BCJ claimed that bothf V and
f (q2) are immune to the zero mode even for the full vec
meson vertex, Jaus obtained nontrivial zero mode contr
tions. It appears to us that the controversy about the
played by the zero mode lies in the fact that Jaus and B
have different procedures for identifying zero-mode effec
In the covariant light-front approach of Jaus@10#, the decom-
position of the current-induced matrix element into 4-vect
will require to introduce a lightlike 4-vectorṽ which is not
covariant. Zero modes are required to eliminate the spur
ṽ dependence. BCJ decompose the propagator into on-
and instantaneous~not on-shell! parts and show that only th
latter part can be the origin of a zero mode contributio
More precisely, the contour integration overp2 in Jaus is not
a regularized one, while in BCJ the contour can be regula
closed due to the presence of the nonlocal boson vertex
the zero modes display their effects at the level ofp1 ~see
Sec. II B 2 of@8# for more detail about the BCJ approach f
zero modes!.

The covariant toy model cannot be generalized bey
the simple meson vertex given by Eq.~3.31!, namely, there
are some possible residualṽ contributions. In@14# Jaus has
developed a method that permits the calculation of the c
tribution of zero modes associated with the current-indu
matrix element. Through the study of the angular condit
imposed on helicity amplitudes, several consistency con
tions can be derived under some plausible assumptions
used to determine the zero mode contributions. Within t
approach, bothf V and f (q2) receive additional residual con
tributions @see Eqs.~3.16! and ~3.9! of @14#, respectively#
which can be expressed in terms ofBn

(m) andCn
(m) functions

defined in Appendix B.6 These functions depend onp18
2 and

behavior like (p18
2) i(p18

1) j . Jaus then gave a counting ru
for detecting zero modes@14#: For theB functionsi< j , there
is no zero mode contribution and the value ofBn

(m) can be
calculated unambiguously at the spectator quark pole.
the C functionsi> j 11 and the value ofCn

(m) is the sum of
a spectator quark pole term and an unknown zero mode
tribution. TheseB and C functions vanish in the covarian
toy model, as it should be. Beyond the toy model, theC
functions contain unknown zero-mode contributions. J
used some consistency conditions to fix some of theC func-
tions.

6The remaining spuriousṽ contribution to the form factora2(q2)
cannot be determined in the same manner.
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Several remarks are in order.~i! Our meson light-front
vertex functions~2.11! are symmetric in quark momenta
However,B andC functions do not appear inf V @Eq. ~2.22!#
and f (q2) @Eq. ~B4!# for two reasons. First of all, we hav
C1

(1)80 from Eqs.~3.14! and~B9!. Second, we contractAm
V

@see Eq.~2.20!# and Smn
PV @Eq. ~3.22!# with the transverse

polarization vector«m(6). We have checked explicitly tha
for the vertex functions given in Eq.~2.11!, the coefficients
Bj

( i ) under integration~see Appendix B! are numerically al-
most vanishing and the form factorf (q2) is affected at most
at one percent level. For our purposes, we can therefore
glect all the residual contributions to the form factors.~ii !
The derivation of the decay constantf P and the form factors
f 1(q2),g(q2),a1(q2), u1(q2),q(q2),c1(q2), and
h(q2),b1(q2) does not depend onN̂2 and those relations
connected toN̂2 @see Eq.~3.14! and recall thatN̂25Z2

2C1
(1)]. These form factors are free of zero mode effects a

can be obtained using the conventional light-front approa
~iii ! Zero mode effects vanish in the heavy quark limit~see
Sec. IV!. For example, the HQS relationf P5 f V indicates
that f V is immune to the zero mode contribution.

C. Form-factor momentum dependence and numerical results

Because of the conditionq150 we have imposed during
the course of calculation, form factors are known only f
spacelike momentum transferq252q'

2 <0, whereas only
the timelike form factors are relevant for the physical dec
processes. It has been proposed in@6# to recast the form
factors as explicit functions ofq2 in the spacelike region and
then analytically continue them to the timelike region. A
other approach is to construct a double spectral represe
tion for form factors atq2,0 and then analytically continue
it to q2.0 region @43#. It has been shown recently tha
within a specific model, form factors obtained directly fro
the timelike region~with q1.0) are identical to the one
obtained by the analytic continuation from the spacelike
gion @11#.

In principle, form factors atq2.0 can be evaluated di
rectly in the frame where the momentum transfer is pur
longitudinal, i.e.,q'50, so thatq25q1q2 covers the entire
range of momentum transfer@7#. The price one has to pay i
that, besides the conventional valence-quark contribut
one must also consider the nonvalence configuration~or the
so-calledZ-graph! arising from quark-pair creation from th
vacuum. However, a reliable way of estimating theZ-graph
contribution is still lacking unless one works in a speci
model, for example, the one advocated in@11#. Fortunately,
this additional nonvalence contribution vanishes in the fra
where the momentum transfer is purely transverse i.e.,q1

50.
To proceed we find that except for the form factorV2 to

be discussed below, the momentum dependence of form
tors in the spacelike region can be well parametrized
reproduced in the three-parameter form:

F~q2!5
F~0!

12a~q2/mB~D !
2 !1b~q2/mB~D !

2 !2
, ~3.33!
5-13
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TABLE IV. Form factors ofD→p,r,a0(1450),a1(1260),b1(1235),a2(1320) transitions obtained in th
covariant light-front model are fitted to the 3-parameter form Eq.~3.33! except for the form factorV2 denoted
by * for which the fit formula Eq.~3.34! is used. All the form factors are dimensionless except forh, b1 , b2

with dimensions GeV22. For the parameterbT appearing in the tensor-meson wave function, we assume
it is the same as theb parameter ofp-wave meson with the same quark content.

F F(0) F(qmax
2 ) a b F F(0) F(qmax

2 ) a b

F1
Dp 0.67 2.71 1.19 0.36 F0

Dp 0.67 1.16 0.50 0.01

VDr 0.86 1.36 1.24 0.48 A0
Dr 0.64 0.93 1.07 0.54

A1
Dr 0.58 0.71 0.51 0.03 A2

Dr 0.48 0.68 0.95 0.30

F1
Da0 0.52 0.54 1.07 0.26 F0

Da0 0.52 0.52 20.08 0.03

ADa1 0.20 0.22 0.98 0.20 V0
Da1 0.31 0.34 0.85 0.49

V1
Da1 1.54 1.53 20.05 0.05 V2

Da1 0.06 0.06 0.12 0.10

ADb1 0.11 0.13 1.08 0.54 V0
Db1 0.49 0.54 0.89 0.28

V1
Db1 1.37 1.45 0.46 0.05 V2

Db1 20.10* 20.11* 0.21* 0.67*

h 0.188 0.208 1.21 1.09 k 0.340 0.338 20.07 0.12

b1 20.084 20.091 0.97 0.58 b2 0.120 0.133 1.15 0.66
th
a

he

iti

-

or

-
r

we
for B(D)→M transitions. The parametersa, b andF(0) are
first determined in the spacelike region. We then employ
parametrization to determine the physical form factors
q2>0. In practice, the parametersa,b andF(0) are obtained
by performing a 3-parameter fit to the form factors in t
range220 GeV2<q2<0 for B decays and210 GeV2<q2

<0 for D decays. These parameters are generally insens
to theq2 range to be fitted except for the form factorV2(q2)
in B(D)→1P1 ,P1

3/2 transitions. The corresponding param
etersa andb are rather sensitive to the chosen range forq2.
This sensitivity is attributed to the fact that the form fact
V2(q2) approaches to zero at very large2uq2u where the
three-parameter parametrization~3.33! becomes question
able. To overcome this difficulty, we will fit this form facto
to the form
07402
is
t

ve

F~q2!5
F~0!

~12q2/mB~D !
2 !@12a~q2/mB~D !

2 !1b~q2/mB~D !
2 !2#

~3.34!

and achieve a substantial improvement. For example,

havea52.18 andb56.08 whenV
2

BK1P1 is fitted to Eq.~3.33!

and they becomea51.78 andb52.12 ~see Table VII! when
the fit formula Eq.~3.34! is employed.

In Tables IV–VIII we show the form factors and theirq2

dependence for the transitionsB(D)→p,r,a0(1450),
a1(1260), b1(1235), a2(1320), B(D) → K, K* ,K0* (1430),
K 1P1

,K 3P1
,K2* (1430) andB→D,D* ,D0* (2308),D1

1/2, D1
3/2,

D2* (2460). Theb→c transition form factors are plotted in
TABLE V. Same as Table IV except forD→K,K* ,K0* (1430),K1P1
,K3P1

,K2* (1430) transitions.

F F(0) F(qmax
2 ) a b F F(0) F(qmax

2 ) a b

F1
DK 0.78 1.57 1.05 0.23 F0

DK 0.78 0.99 0.38 0.00

VDK* 0.94 1.33 1.17 0.42 A0
DK* 0.69 0.92 1.04 0.44

A1
DK* 0.65 0.75 0.50 0.02 A2

DK* 0.57 0.75 0.94 0.27

F1
DK0* 0.48 0.51 1.01 0.24 F0

DK0* 0.48 0.50 20.11 0.02

ADK1P1 0.10 0.11 1.03 0.48 V
0

DK1P1 0.44 0.47 0.80 0.27

V
1

DK1P1 1.53 1.58 0.39 0.05 V
2

DK1P1 20.09* 20.09* 20.16* 0.51*

ADK3P1 0.98 1.05 0.92 0.17 V
0

DK3P1 0.34 0.38 1.44 0.15

V
1

DK3P1 2.02 2.02 20.01 0.03 V
2

DK3P1 0.03 0.03 20.18 0.10

h 0.192 0.205 1.17 0.99 k 0.368 0.367 20.04 0.11

b1 20.096 20.102 1.05 0.58 b2 0.137 0.147 1.17 0.69
5-14
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TABLE VI. Same as Table IV except forB→p,r,a0(1450),a1(1260),b1(1235),a2(1320) transitions.

F F(0) F(qmax
2 ) a b F F(0) F(qmax

2 ) a b

F1
Bp 0.25 1.16 1.73 0.95 F0

Bp 0.25 0.86 0.84 0.10

VBr 0.27 0.79 1.84 1.28 A0
Br 0.28 0.76 1.73 1.20

A1
Br 0.22 0.53 0.95 0.21 A2

Br 0.20 0.57 1.65 1.05

F1
Ba0 0.26 0.68 1.57 0.70 F0

Ba0 0.26 0.35 0.55 0.03

ABa1 0.25 0.76 1.51 0.64 V0
Ba1 0.13 0.32 1.71 1.23

V1
Ba1 0.37 0.42 0.29 0.14 V2

Ba1 0.18 0.36 1.14 0.49

ABb1 0.10 0.23 1.92 1.62 V0
Bb1 0.39 0.98 1.41 0.66

V1
Bb1 0.18 0.36 1.03 0.32 V2

Bb1 20.03* 20.15* 2.13* 2.39*

h 0.008 0.015 2.20 2.30 k 0.031 0.010 22.47 2.47

b1 20.005 20.011 1.95 1.80 b2 0.0016 0.0011 20.23 1.18
e
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Figs. 2–5. Because the quark contents of thef 0 , f 1 , f 2 me-
sons lying in the mass region of 1.3–1.7 GeV are not w
established, we will not consider them in this work. In c
culations, we have taken the meson masses from@18#. The
masses ofD0* andD1 have been measured recently by Be
to be 2308617615628 MeV and 2427626620
615 MeV, respectively@17#. SinceD1(2427) andD18(2420)
are almost degenerate, we shall takemD

1
1/2'mD

1
3/2

'2427 MeV.
Several remarks are in order.
~1! Many form factors contain terms like (p'8 •q')/q2 in

their integrands. At first sight, it appears that linearp'8 terms
will not make contributions after integrating overp'8 . But
this is not the case. As noted before, a Taylor expansion
the hM9 /N̂19 term with respect top'9

2 will generate a term
proportional top'8 •q' @cf. Eq. ~3.23!#. When combined with
the (p'8 •q')/q2 term in the integrand of transition form fac
tors, this leads to
07402
ll

of

E d2p'8
~p'8 •q'!2

q2 52
1

2
E d2p'8 p'8

2 ~3.35!

in the q150 frame. In analytic studies, however, it is mo
convenient to utilize the identity obtained in@10#

E dx2d2p'8
hP8hM9

x2N̂18N̂19
2B1

~2!

5E dx2d2p'8
hP8hM9

x2N̂18N̂19
~x1Z222A1

~2!!50. ~3.36!

Using the expressions ofZ2 andA1
(2) given in Eq.~B9!, it is

easily seen that the (p'8 •q')/q2 term under integration can
be related to otherq-independent quantities. The above ide
tity allows us to integrate out thep'8 •q' term without ex-

plicitly performing the Taylor expansion ofhM9 /N̂19 . Instead
TABLE VII. Same as Table IV except forB→K,K* ,K0* (1430),K1P1
,K3P1

,K2* (1430) transitions.

F F(0) F(qmax
2 ) a b F F(0) F(qmax

2 ) a b

F1
BK 0.35 2.17 1.58 0.68 F0

BK 0.35 0.80 0.71 0.04

VBK* 0.31 0.96 1.79 1.18 A0
BK* 0.31 0.87 1.68 1.08

A1
BK* 0.26 0.58 0.93 0.19 A2

BK* 0.24 0.70 1.63 0.98

F1
BK0* 0.26 0.70 1.52 0.64 F0

BK0* 0.26 0.33 0.44 0.05

ABK3P1 0.26 0.69 1.47 0.59 V
0

BK3P1 0.14 0.31 1.62 1.14

V
1

BK3P1 0.39 0.42 0.21 0.16 V
2

BK3P1 0.17 0.30 1.02 0.45

ABK1P1 0.11 0.25 1.88 1.53 V
0

BK1P1 0.41 0.99 1.40 0.64

V
1

BK1P1 0.19 0.35 0.96 0.30 V
2

BK1P1 20.05* 20.16* 1.78* 2.12*

h 0.008 0.018 2.17 2.22 k 0.015 0.004 23.70 1.78

b1 20.006 20.013 1.96 1.79 b2 0.002 0.002 0.38 0.92
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TABLE VIII. Same as Table IV except forB→D,D* ,D0* ,D1
1/2,D1

3/2,D2* transitions. For the purpose o
comparing with heavy quark symmetry, the form factorsu6 , c6 , ,, q are also shown.

F F(0) F(qmax
2 ) a b F F(0) F(qmax

2 ) a b

F1
BD 0.67 1.22 1.25 0.39 F0

BD 0.67 0.92 0.65 0.00

VBD* 0.75 1.32 1.29 0.45 A0
BD* 0.64 1.17 1.30 0.31

A1
BD* 0.63 0.83 0.65 0.02 A2

BD* 0.61 0.95 1.14 0.52

F1
BD0* 0.24 0.34 1.03 0.27 F0

BD0* 0.24 0.20 20.49 0.35

ABD1
1/2

20.12 20.14 0.71 0.18 V0
BD1

1/2 0.08 0.13 1.28 20.29

V1
BD1

1/2
20.19 20.13 21.25 0.97 V2

BD1
1/2

20.12 20.14 0.67 0.20

ABD1
3/2 0.23 0.33 1.17 0.39 V0

BD1
3/2 0.47 0.70 1.17 0.03

V1
BD1

3/2 0.55 0.51 20.19 0.27 V2
BD1

3/2
20.09* 20.17* 2.14* 4.21*

u1 20.24 20.34 1.03 0.27 u2 0.31 0.42 0.86 0.20

,1/2 0.56 0.38 21.25 0.97 q1/2 0.041 0.050 0.71 0.18

c1
1/2 20.042 20.050 0.67 0.20 c2

1/2 0.045 0.055 0.71 0.20

,3/2 21.56 21.45 20.19 0.27 q3/2 20.079 20.114 1.17 0.39

c1
3/2 20.032* 20.061* 2.14* 4.21* c2

3/2 20.027 20.026 0.03 0.45

h 0.015 0.024 1.67 1.20 k 0.79 1.12 1.29 0.93

b1 20.013 20.021 1.68 0.98 b2 0.011 0.016 1.50 0.91
h
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of using Eq.~3.35! or ~3.36! we have taken into account suc
effects in numerical calculations by substituting the relat
p'9 5p'8 2x2q' into hM9 /N̂19 .

~2! Owing to the less energy release, form factors forD
→p,r,... andD→K,K* ,K** transitions are more sensitiv
to the masses of charmed and light quarks. For this we
utilize the form-factor ratiosr V[VPV(0)/A1

PV(0) and r 2

[A2
PV(0)/A1

PV(0) measured inD→V, n̄ decays to constrain
the quark masses. The most recent and most precise
surement ofD1→K̄* 0,1n̄ by FOCUS yields@44#

r V~D→K* !51.50460.05760.039,

r 2~D→K* !50.87560.04960.064. ~3.37!

The best quark massesmu , ms andmc obtained in this man-
ner are listed in Eq.~2.24!. Using this set of quark masse

FIG. 2. Form factorsF1(q2) and F0(q2) for B→D and B
→D0* transitions.
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and fixing bf50.3073 GeV from f f5237 MeV we have
also computed the similar form factor ratios forDs

1→f
transition and found

r V~Ds→f!51.569, r 2~Ds→f!50.865, ~3.38!

in good agreement with the very recent FOCUS measu
ment of theDs

1→fm1n form factor ratios@45#

r V~Ds→f!51.54960.25060.145,

r 2~Ds→f!50.71360.20260.266.
~3.39!

~3! In the absence of any information for the parame
bT appearing in the wave function of tensor mesons, we h
takenbT to be the same as theb parameter of thep-wave
meson with the same quark content, for example,b(D2* )
5b(D0* )50.331. Note that among the fourP→T transition

FIG. 3. Form factorsV(q2), A0(q2), A1(q2) and A2(q2) for
B→D* transitions.
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FIG. 4. Form factorsA(q2), V0(q2), V1(q2) andV2(q2) for B→D1
1/2,3/2 transitions.
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III
form factors, the onek(q2) is particularly sensitive tobT . It
is not clear to us if the complicated analytic expression
k(q2) in Eq. ~3.29! is not complete. To overcome this diffi
culty, we apply the heavy quark symmetry relations in E
~4.4! below to obtaink(q2) for B→D2* transition

k~q2!5mBmD
2* S 11

mB
21mD

2*
2

2q2

2mBmD
2*

D
3Fh~q2!2

1

2
b1~q2!1

1

2
b2~q2!G . ~3.40!

This can be tested inB2→D2*
0p2 decays to be discusse

below in Sec. III E.
~4! For heavy-to-heavy transitions such asB→D, D* ,

D** , the sign of various form factors can be checked
heavy quark symmetry. In the heavy quark limit, hea
quark symmetry requires that the form factorsu2 , ,1/2,
q1/2, c2

1/2, h, k and b2 be positive, whileu1 , ,3/2, q3/2,

FIG. 5. Form factorsk(q2), h(q2), b1(q2) and b2(q2) for B
→D2* transitions. Except for the dimensionlessk(q2), all other
form factors are in units of GeV22.
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c1
1/2, c1

3/2, c2
3/2 and b1 be negative@see Eqs.~4.3!–~4.5!#.

Our results are indeed in accordance with HQS~see Table
VIII !.

~5! For P→A transitions, the form factorV0 is always
positive, while the sign of other form factorsA,V1 ,V2 de-
pends on the process under consideration, for example,
are all positive inB(D)→a1 ,K 3P1

transitions and negative

in B→D1 transitions.
~6! The form factors ofB to light axial-vector meson tran

sitions obey the relationsV0
Ba1,A0

Br,V0
Bb1 and V

0

BK3P1

,A0
BK* ,V

0

BK1P1 .

~7! It is pointed out in@7# that for B→D,D* transitions,
the form factorsF1 ,A0 ,A2 ,V exhibit a dipole behavior,
while F0 andA1 show a monopole dependence. According
the three-parameter parametrization~3.33!, the dipole behav-
ior corresponds tob5(a/2)2, while b50 andaÞ0 induces
a monopole dependence. An inspection of Tables IV–V

indicates that form factorsF0
BD , A1

BD* , F0
BK , F0

Ba0 and

F0
DK(p) have a monopole behavior, whileF1

BD , VBD* ,

ABD1
3/2

, F1
B(D)K , AB(D)K3P1, V

0

BK1P1 , F1
B(D)a0 andF

1
DK0* have

a dipole dependence.

~8! In the heavy quark limit, F
1
BD0* (q2)5F

0
BD0* /@1

2q2/(mB2mD
0*
)2#, while F1

BD(q2)5F0
BD/@12q2/(mB

1mD)2# @see Eqs.~4.6! and~4.7!#. This explains whyF1 and
F0 in the B→D0* transition deviate at largeq2 faster than
that in theB→D case~Fig. 2!.

~9! Unlike the form factorF0 in P→a0 , K0* transitions

which is almost flat in itsq2 behavior,F
0
BD0* is decreasing

with q2 as it must approach to zero at the maximumq2 when
5-17
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TABLE IX. Form factors ofD→p,r,K,K* transitions atq250 in various models.

Model F1,0
Dp(0) A0

Dr(0) A1
Dr(0) A2

Dr(0) VDr(0) F1,0
DK(0) A0

DK* (0) A1
DK* (0) A2

DK* (0) VDK* (0)

This work 0.67 0.64 0.58 0.48 0.86 0.78 0.69 0.65 0.57 0.9
MS @46# 0.69 0.66 0.59 0.49 0.90 0.78 0.76 0.66 0.49 1.03
QSR @47# 0.5 0.6 0.5 0.4 1.0 0.6 0.4 0.5 0.6 1.1
BSW @40# 0.69 0.67 0.78 0.92 1.23 0.76 0.73 0.88 1.15 1.23
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mQ→` @see Eq.~4.7!#. In general, form factors forP→S
transitions increase slowly withq2 compared to that forP
→P ones. For example,FBa0(0);FBp(0) atq250, while at
zero recoilFBa0(qmax

2 )!FFp(qmax
2 ). Note that the form factors

of B→a0 or B→K0* are similar to that ofB→p or B→K at

q250, while F
1,0
BD0* (0)!F1,0

BD(0). This can be understoo
from the fact thatP→S form factors are the same asP
→P ones except for the replacement ofm19→2m19 and hP9
→2hS9 @see Eq.~3.20!#. Consequently, theA9 term in Eq.
~3.16! is subject to more suppression in heavy-to-heavy tr
sitions than in heavy-to-light ones. We shall see in Sec. I
that the suppression of theB→D0* form factor relative to the
B→D one is supported by experiment.

~10! To determine the physical form factors forB(D)
→K1(1270), K1(1400), B→D1(2427), D1(2420),
Ds1(2460), Ds1(2536) transitions, one needs to know t
mixing angles of 1P123P1 @see Eq. ~2.26!# and D1

1/2

2D1
3/2. As noted in passing, the mixing angle forK1 systems

is about 258° as implied from the study ofD
→K1(1270)p. K1(1400)p decays @39#. A mixing angle
uD1

5(5.762.4)° is obtained by Belle through a detailedB

→D* pp analysis@17#, while uDs1
'7° is determined from

the quark potential model@38# as the present upper limits o
the widths ofDs1(2460) andDs18 (2536) do not provide any
constraints on theDs1

1/22Ds1
3/2 mixing angle.

D. Comparison with other model calculations

It is useful to compare our results based on the covar
light-front model with other theoretical calculations. Exce
for the Isgur-Scora-Grinstein-Wise~ISGW! quark model
@19#, all the existing studies on mesonic form factors foc
mainly on the ground-states-wave tos-wave transitions. For
P→P, V form factors we choose the BSW model@40#, the
Melikhov-Stech~MS! model@46#, QCD sum rule~QSR! @47#
and light-cone sum rules~LCSR! @48# for comparison.
Shown in Tables IX–XI are (D,B)→p,r,K,K* ,D,D* tran-
sition form factors calculated in various models. We see t
07402
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the covariant light-front model predictions are most close
that of the MS model except forB→K* transitions.

ISGW model

Before our work, the ISGW quark model@19# is the only
model that can provide a systematical estimate of the tra
tion of a ground-states-wave meson to a low-lyingp-wave
meson. However, this model is based on the nonrelativi
constitutent quark picture. In general, the form factors eva
ated in the original version of the ISGW model are reliab
only at q25qm

2 , the maximum momentum transfer. The re
son is that the form-factorq2 dependence in the ISGW
model is proportional to exp@2(qm

2 2q2)# and hence the form
factor decreases exponentially as a function of (qm

2 2q2).
This has been improved in the ISGW2 model@30# in which
the form factor has a more realistic behavior at large (qm

2

2q2) which is expressed in terms of a certain polynom
term. In addition to the form-factor momentum dependen
the ISGW2 model incorporates a number of improvemen
such as the constraints imposed by heavy quark symm
hyperfine distortions of wave functions, etc.@30#.

The ISGW2 model predictions forB→D** transition
form factors are shown in Table XII. Note that form facto

F
0
BD0* (q2), V

1
BD1

1/2

(q2) @or ,1/2(q
2)] cannot be parametrized

in the form of Eq.~3.33! or Eq. ~3.34! since they vanish a

certainq2, e.g. aroundq2'8 GeV2 for V
1
BD1

1/2

(q2). We see
from the comparison of Table XII with Table VIII that~i! the
form factors at smallq2 obtained in the covariant light-fron
and ISGW2 models agree within 40%, and~ii ! as q2 in-

creases,F
1
BD0* (q2), ABD1

3/2
(q2), V

0
BD1

3/2

(q2), h(q2), ub1(q2)u
and b2(q2) increase more rapidly in the LF model tha

those in the ISGW2 model, whereasF
0
BD0* (q2) and

uV
1
BD1

1/2

(q2)u decrease more sharply in the latter model so t
they even flip a sign near the zero recoil point.

The fact that both LF and ISGW2 models have simi
B→D** form factors at smallq2 implies that relativistic
1

TABLE X. Form factors ofB→p,r,K,K* transitions atq250 in various models.

Model F1,0
Bp(0) A0

Br(0) A1
Br(0) A2

Br(0) VBr(0) F1,0
BK(0) A0

BK* (0) A1
BK* (0) A2

BK* (0) VBK* (0)

This work 0.25 0.28 0.22 0.20 0.27 0.35 0.31 0.26 0.24 0.3
MS @46# 0.29 0.29 0.26 0.24 0.31 0.36 0.45 0.36 0.32 0.44

LCSR @48# 0.26 0.37 0.26 0.22 0.34 0.34 0.47 0.34 0.28 0.46
BSW @40# 0.33 0.28 0.28 0.28 0.33 0.38 0.32 0.33 0.33 0.37
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TABLE XI. Form factors ofB→D,D* transitions atq250 in various models.

Model F1,0
BD(0) A0

BD* (0) A1
BD* (0) A2

BD* (0) VBD* (0)

This work 0.67 0.64 0.63 0.62 0.75
MS @46# 0.67 0.69 0.66 0.62 0.76

BSW @40# 0.69 0.62 0.65 0.69 0.71
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effects could be mild inB→D** transitions. Nevertheless
relativistic effects may manifest in heavy-to-light transition
especially at the maximum recoil. An example is provid
shortly below.

Others

Based on the light-cone sum rules, Chernyak@36# has
estimated theB→a0(1450) transition form factor and ob
tainedF1,0

Ba0(0)50.46, while our result is 0.26 and is simila
to the B→p form factor atq250. For B→a1(1260) form
factors, there are two existing calculations: one in a qua
meson model~CQM! @49# and the other based on the QC
sum rule~QSR! @50#. The results are quite different, for ex
ample,V0

Ba1(0) obtained in the quark-meson model, 1.20,
larger than the sum-rule prediction,20.2360.05, by a factor
of five apart from a sign difference. Predictions in vario
models are summarized in Table XIII. Ifa1(1260) behaves
as the partner of ther meson, it is expected thatV0

Ba1 is
similar to A0

Br. Therefore, it appears to us that a magnitu
of order unity forV0

Ba1(0) as predicted by the ISGW2 mod
and CQM is very unlikely. Notice that the sign of the for
factors predicted by QSR is opposite to ours. In hadroniB
→a1P decays, the relevant form factors areV0

Ba1 and F1
BP

under the factorization approximation. Presumably, the m
surement ofB̄0→a1

1p2 will enable us to testV0
Ba1.
07402
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E. Comparison with experiment

There are several experimentally measured decay mo
namely,B→D̄Ds** andB2→D** p2 decays, which allow
to test our model calculations of decay constants and fo
factors forp-wave charmed mesonsD** andDs** .

For B̄→DD̄s** decays, they proceed only via extern
W-emission and hence can be used to determine the d
constant ofDs** . More precisely, their factorizable ampl
tudes are simply given by

A~B̄→DD̄s** !5
GF

&
VcbVcs* a1^D̄s** u~ s̄c!u0&^Du~ c̄b!uB̄&,

~3.41!

where (q̄1q2)[q̄1gm(12g5)q2 anda1 is a parameter of or-
der unity. The recent Belle measurements read@37#

B@B→D̄Ds0* ~2317!#B@Ds0* ~2317!→Dsp
0#

5~8.521.9
12.162.6!31024,

B@B→D̄Ds1~2460!#B@Ds1~2460!→Ds* p0#

5~17.823.9
14.565.3!31024. ~3.42!

The Ds0* (2317) width is dominated by its hadronic decay
Dsp

0 as the upper limit on the ratioG(Ds0* →Ds* g)/G(Ds0*
TABLE XII. Form factors ofB→D** transitions calculated in the ISGW2 model.

F F(0) F(qmax
2 ) a b F F(0) F(qmax

2 ) a b

F1
BD0* 0.18 0.24 0.28 0.25 F0

BD0* 0.18 20.008

ABD1
1/2

20.16 20.21 0.87 0.24 V0
BD1

1/2 0.18 0.23 0.89 0.25

V1
BD1

1/2
20.19 0.006 V2

BD1
1/2

20.18 20.24 0.87 0.24

ABD1
3/2 0.16 0.19 0.46 0.065 V0

BD1
3/2 0.43 0.51 0.54 0.074

V1
BD1

3/2 0.40 0.32 20.60 1.15 V2
BD1

3/2
20.12 20.19 1.45 0.83

u1 20.18 20.24 0.88 0.25 u2 0.46 0.062 0.87 0.25

,1/2 0.54 20.016 q1/2 0.057 0.074 0.87 0.24

c1
1/2 20.064 20.083 0.87 0.24 c2

1/2 0.068 0.088 0.87 0.24

,3/2 21.15 20.90 20.60 1.15 q3/2 20.057 20.066 0.46 0.065

c1
3/2 20.043 20.066 1.45 0.83 c2

3/2 20.018 20.013 0.23 5.38

h 0.011 0.014 0.86 0.23 k 0.60 0.68 0.40 0.68

b1 20.010 20.013 0.86 0.23 b2 0.010 0.013 0.86 0.23
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TABLE XIII. B→a1(1260) transition form factors atq250 in various models. The results of CQM an
QSR have been rescaled according to the form-factor definition in Eq.~3.6!.

Model ABa1(0) V0
Ba1(0) V1

Ba1(0) V2
Ba1(0)

This work 0.25 0.13 0.37 0.18
ISGW2 @30# 0.21 1.01 0.54 20.05
CQM @49# 0.09 1.20 1.32 0.34
QSR @50# 20.4160.06 20.2360.05 20.6860.08 20.3360.03
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→Dsp
0) was set to be 0.059 recently by CLEO@16#. There-

fore, 0.94&B@Ds0* (2317)→Dsp
0#&1.0. It follows from

Eqs.~3.42! and ~3.41! that ~see@38# for detail!

f D
s0*

'47– 73 MeV, ~3.43!

for a151.07. To estimate the branching ratios ofDs* p0 in
the Ds1(2460) decay, we need some experimental and th
retical inputs. There are two different measurements of
radiative mode by Belle: a value of 0.3860.1160.04 for the
ratio Dsg/Ds* p0 is determined fromB→D̄Ds1 decays@37#,
while the result of 0.5560.1360.08 is obtained from the
charm fragmentation ofe1e2→cc̄ @51#. These two measure
ments are consistent with each other, though the central
ues are somewhat different. We shall take the averaged v
of 0.4460.09 for Dsg/Ds* p0. The ratioDsp

1p2/Ds* p0 is
measured to be 0.1460.0460.02 by Belle @51#. As for
Ds* g/Ds* p0, it is found to be less than 0.22, 0.31 and 0.1
respectively, by BaBar@52#, Belle @51# and CLEO @16#.
Theoretically, theM1 transitionDs1→Ds0* g turns out to be
quite small@53#. Assuming that theDs1(2460) decay is satu
rated byDs* p0, Dsg, Ds* g andDspp, we are led to

0.53&B„Ds1~2460!→Ds* p0
…&0.68. ~3.44!

This in turn implies B@B→D̄Ds1(2460)#5(1.6;4.6)
31023. As a result, the decay constant ofDs1(2460) is
found to be

f Ds1
~2460!'110– 190 MeV. ~3.45!

Our predictionsf D
s0*

571 MeV andf Ds1
5117 MeV with the

latter being obtained from the relation
07402
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,

f Ds1
5 f D

s1
1/2 cosus1 f D

s1
3/2 sinus ~3.46!

with us'7° inferred from the potential model@38#, are in
agreement with experiment.

Ideally, the neutralB decaysB̄0→D** 1p2 that receive
only color-allowed contributions can be used to extractB
→D** transition form factors. Unfortunately, such deca
have not yet been measured. Nevertheless, the decaysB2

→D** 0p2 that receive both contributions from colo
allowed and color-suppressed diagrams provide a n
ground for testing theB→D** form factors and theD**
decay constants. Following@38#, we show the predicted
branching ratios in Table XIV. The experimental results a
taken from Belle@17#, BaBar @54# and PDG@18#. For B2

→D2*
0p2 we combine the Belle and BaBar measuremen

B~B2→D2*
0p2!B~D2*

0→D1p2!5~3.160.4!31024,

B~B2→D2*
0p2!B~D2*

0→D* 1p2!5~1.860.4!31024,

~3.47!

to arrive at

B~B2→D2*
0p2!B~D2*

0→D1p2,D* 1p2!

5~4.960.6!31024. ~3.48!

Using B(D2*
0→D1p2,D* 1p2)52/3 following from the

assumption that theD2*
0 width is saturated byDp andD* p,

we are led toB(B2→D2*
0p2)5(7.460.8)31024. We see

from the Table XIV that the agreement between theory a
experiment is generally good. In particular, the suppress
of the D0*

0p2 production relative to theD0p2 one ~the
branching ratio for the latter being (5.360.5)31023 @18#!
tter
uoted
TABLE XIV. The predicted branching ratios forB2→D** 0p2 decays in the covariant light-front~CLF!
and ISGW2 models. Since the decay constants ofp-wave charmed mesons are not provided in the la
model, we employ the CLF decay constants and the ISGW2 form factors for the ISGW2 results q
below. Experimental results are taken from Belle@17#, BaBar @54# and PDG@18#. The axial-vector meson
mixing angle is taken to beu512° @38# and the parametersa1,2 are given bya151.07 anda250.27.

Decay This work ISGW2 Expt.

B2→D0* (2308)0p2 7.331024 4.831024 (9.262.9)31024 @17#

B2→D1(2427)0p2 4.631024 9.431024 (7.561.7)31024 @17#

B2→D18(2420)0p2 1.131023 8.231024 (9.361.4)31024 @17,54#
(1.560.6)31023 @18#

B2→D2* (2460)0p2 1.031023 5.731024 (7.460.8)31024 @17,54#
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clearly indicates a smallerB→D0* form factor relative toB
→D one. For comparison, we also show the ISGW2 pred
tions in the same table. Since the decay constants ofp-wave
charmed mesons are not provided in the ISGW2 model,
employ the decay constants in this work and the ISG
form factors to obtain the ISGW2 results quoted in Ta
XIV. Predictions in the other models are summarized in@38#.

Since the tensor meson cannot be produced from thV
2A current, the decayB2→D2*

0p2 can be used to deter
mine the form factor combination h(q2)[k(q2)
1b1(q2)(mB

22mD
2*

2
)1b2(q2)q2 at q25mp

2 . The measured

rate implies thath(mp
2 )50.4360.02, to be compared with

the predictions of 0.52 and 0.38 in the covariant LF a
ISGW2 models, respectively.

It is worth mentioning that the ratio

R5
B„B2→D2* ~2460!0p2

…

B„B2→D18~2420!0p2
…

~3.49!

is measured to be 0.8060.0760.16 by BaBar@54#, 0.77
60.15 by Belle@17# and 1.860.8 by CLEO@55#. The early
prediction by Neubert@56# yields a value of 0.35. The pre
dictions of R50.91 in the covariant light-front model an
0.67 in the ISGW2 model are in accordance with the dat

IV. HEAVY QUARK LIMIT

In the heavy quark limit, heavy quark symmetry~HQS!
@21# provides model-independent constraints on the de
constants and form factors. For example, pseudoscalar
vector mesons would have the same decay constants an
the heavy-to-heavy mesonic decay form factors are redu
to some universal Isgur-Wise functions. Therefore, it is i
portant to study the heavy quark limit behavior of the
physical quantities to check the consistency of calculatio
Since the analysis of heavy hadron structures and their
namics in the infinite quark mass limit has been trem
dously simplified by heavy quark symmetry and heavy qu
effective theory~HQET! developed from QCD in terms o
1/mQ expansion@57#, it would be much simpler to study th
decay constants and form factors directly within the fram
work of a covariant light-front model of heavy mesons fu
based on HQS and HQET. Indeed, we have constructed
a model in@9# which can be viewed as the heavy quark lim
of the covariant light-front approach discussed in Sec. II.
shall show explicitly that the decay constants and form f
tors obtained in the covariant light-front model and then
tended to the heavy quark limit do agree with those deri
directly in the light-front model based on HQET.

Before proceeding, it is worth making a few remarks:~i!
Just as in the conventional light-front model, it is assumed
@9# that the valance quarks of the meson are on their m
shell in the covariant light-front model based on HQE
However, this is not in contradiction to the covariant ligh
front approach discussed in Sec. II. As stressed before,
antiquark is on its mass shell afterp2 integration in the
covariant light-front calculation. Moreover, the off shellne
of the heavy quark vanishes in the strict heavy quark lim
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Therefore, the calculation based on the light-front mode
@9# is covariant.~ii ! Since the heavy quark-pair creation
forbidden in themQ→` limit, the Z-graph is no longer a
problem in the reference frame whereq1>0. This allows us
to compute the Isgur-Wise functions directly in the timeli
region.

In this work, we will adopt two different approaches
elaborate on the heavy quark limit behavior of physic
quantities: one from top to bottom and the other from bott
to top. In the top-to-bottom approach, we will derive th
decay constants and form factors in the covariant light-fr
model within HQET and obtain model-independent HQS
lations. In the bottom-to-top approach, we study the he
quark limit behavior of the decay constants and transit
form factors of heavy mesons obtained in Secs. II and III a
show that they do match the covariant model results ba
on HQET.

A. Heavy quark symmetry relations

In the infinite quark mass limit, the decay constants
heavy mesons must satisfy the HQS relations given by
~2.7!, while all the heavy-to-heavy mesonic decay form fa
tors are reduced to three universal Isgur-Wise~IW! func-
tions, j for s-wave to s-wave andt1/2 as well ast3/2 for
s-wave top-wave transitions. Specifically,B→D,D* form
factors are related to the IW functionj~v! by @21#

j~v!5
1

2AmBmd

@~mB1mD! f 1~q2!1~mB2mD! f 2~q2!#

52
1

AmBmD*

f ~q2!

11v
522AmBmD* g~q2!

5AmBmD* „a1~q2!2a2~q2!…, ~4.1!

and obey two additional HQS relations

a1~q2!1a2~q2!50,

~mB2mD! f 1~q2!1~mB1mD! f 2~q2!50, ~4.2!

wherev5(mB
21mD(* )

2
2q2)/(2mBmD(* )). The B→D0* and

B→D1
1/2 from factors in the heavy quark limit are related

t1/2(v) via @25#

t1/2~v!5
1

4AmBmD
0*

@~mB2mD
0*
!u1~q2!1~mB1mD

0*
!u2~q2!#

5
1

2AmBmD
1
1/2

,1/2~q2!

v21
5AmBmD

1
1/2q1/2~q2!

52
AmBmD

1
1/2

2
„c1

1/2~q2!2c2
1/2~q2!…, ~4.3!

while B→D1
3/2 and B→D2* transition form factors are re

lated tot3/2(v) by
5-21
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t3/2~v!52A 2

mBmD
1
3/2

,3/2~q2!

v221

52
1

3
A2mB

3

mD
1
3/2
„c1

3/2~q2!1c2
3/2~q2!…

5A2mB
3

mD
1
3/2

c1
3/2~q2!2c2

3/2~q2!

v22

52AmB
3mD

2*

3
h~q2!5A mB

3mD
2*

k~q2!

11v

52
2&

11v
AmBmD

1
3/2q3/2~q2!

52AmB
3mD

2*

3
„b1~q2!2b2~q2!…, ~4.4!

and subject to the HQS relations

b1~q2!1b2~q2!50, c1
1/2~q2!1c2

1/2~q2!50,

~mB1mD
0*
!u1~q2!1~mB2mD

0*
!u2~q2!50. ~4.5!

In terms of the dimensionless form factors defined in E
~3.2! and ~3.6!, Eqs.~4.1! and ~4.2! can be recast to

j~v!5
2AmBmD

mB1mD

F1
BD~q2!5

2AmBmD

mB1mD

F0
BD~q2!

F12
q2

~mB1mD!2G
5

2AmBmD*

mB1mD*
VBD* ~q2!

5
2AmBmD*

mB1mD*
A0

BD* ~q2!5
2AmBmD*

mB1mD*
A2

BD* ~q2!

5
2AmBmD*

mB1mD*

A1
BD* ~q2!

F12
q2

~mB1mD* !2G
. ~4.6!

Likewise, Eqs.~4.3! and ~4.5! can be rewritten as

t1/2~v!5
AmBmD

0*

mB2mD
0*

F
1
BD0* ~q2!

5
AmBmD

0*

mB2mD
0*

F
0
BD0* ~q2!

F12
q2

~mB2mD
0*
!2G
07402
.

52
AmBmD

1
1/2

mB2mD
1
1/2

ABD1
1/2

~q2!5
AmBmD

1
1/2

mB2mD
1
1/2

V
0
BD1

1/2

~q2!

52
AmBmD

1
1/2

mB2mD
1
1/2

V
2
BD1

1/2

~q2!

52
AmBmD

1
1/2

mB2mD
1
1/2

V
1
BD1

1/2

~q2!

F12
q2

~mB2mD
1
1/2!2G . ~4.7!

In next subsections we will derive the above HQS relatio
for form factors and IW functions using the covariant ligh
front model based on HQET.

We see from Table VIII that HQS relations~4.5! for form
factorsb6 andc6

1/2 are respected even for finite heavy qua
masses. From the numerical results oft1/2(v51)50.31 and
t3/2(v51)50.61 to be presented below in Sec. VI F, o
can check the HQS relations~4.7! and~4.4! at the zero-recoil
point. It turns out that, among the fourteenB→D** form
factors, the covariant light-front model predictions f

ABD1
1/2(3/2)

,V
0
BD1

1/2

,V
2
BD1

1/2

,h,b1 ,b2 are in good agreemen
with those in the heavy quark limit, while the agreement

fair for c1
3/2 and c2

3/2. However, the predictions forF
1,0
BD0* ,

V
1
BD1

1/2(3/2)

andk at zero recoil show a large deviation from th
HQS expectation. Indeed, Eqs.~4.7! and ~4.4! indicate that

except forF
1
BD0* , these form factors should approach to ze

whenq2 reaches its maximum value, a feature not borne
in the covariant light-front calculations for finite quar
masses. This may signal thatLQCD/mQ corrections are par-
ticularly important in this case. Phenomenologically, it
thus dangerous to determine all the form factors direc
from the IW functions and HQS relations since 1/mQ correc-
tions may play an essential role for some of them and
choice of theb parameters fors-wave andp-wave wave
functions will affect the IW functions.

B. Covariant light-front model within HQET

To begin with, we rescale the bound state of a hea
meson by uPH

1 ,PH' ,J,Jz&5AMHuH(v,J,Jz)&. It is well
known that in the heavy quark limit, the heavy quark prop
gator can be replaced by

i

p” Q2mQ1 i e
→ i ~11v” !

2v•k1 i e
, ~4.8!

wherepQ5mQv1k andk is the residual momentum of th
heavy quark. One can then redo all the calculations in Se
by using the above propagator forq18 andq19 and perform the
contour integral as before. Since the contour integral for
the antiquark to be on its mass shell, it is equivalent to us
the so-called on-shell Feynman rules@9# in calculations. The
zero mode effect arises from thep18

15p19
150 region and it

can be interpreted as virtual pair creation processes@20#. In
5-22



e

d
d
y

lc

ou

s

re
o

ve
it,

or-
t

les
atic

mit

o-

an

nd
tum

on-

to
s the

COVARIANT LIGHT-FRONT APPROACH FORs-WAVE . . . PHYSICAL REVIEW D 69, 074025 ~2004!
the infinite quark mass limit, both quarks are close to th
mass shell and far from thep18

15p19
150 region. Conse-

quently, the pair creation is forbidden and the zero mo
contribution vanishes in the heavy quark limit. Hence, we
not need to stick to theq150 frame and are able to stud
form factors directly in the timelike region.

To extract the on-shell Feynman rules, we use the ca
lation of the pseudoscalar meson annihilation@cf. Fig. 1~a!#
as an illustration. By virtue of Eq.~4.8!, the matrix element
of Eq. ~2.8! can be rewritten as

^0uAmuP~v !&5
Am

P

AMH

52 i 2
Nc

~2p!4 E d4pq

HP8

2v•kN2AMH

3Tr@gmg5~11v” !g5~2p” q1mq!#,

~4.9!

where we have usedp185pQ , p25pq , m25mq , N25pq
2

2mq
21 i e and k52pq1(MH2mQ)v from 4-momentum

conservation. As in Sec. II, we need to perform the cont
integral by closing the upper complexp18

2-plane, or equiva-
lently, the lower complexpq

2-plane. The integration force
pq

25mq
2 and consequently,

^0uAmuP~v !&

52 i 2
Nc

~2p!4 E d4pq~22p i !d~pq
22mq

2!

3
hP8

2v•kAMH

Tr@gmg5~11v” !g5~2p” q1mq!#.

~4.10!

Sincex2 is of orderLQCD/mQ in the heavy quark limit, it is
useful to defineX[mQx2 , which is of orderLQCD even if
mQ→`. For on-shellpq we havepq

25(pq'
2 1mq

2)/pq
1 and

v•pq5
1

2X
~p'

2 1mq
21X2!. ~4.11!

It is then straightforward to obtain

hP8

2v•kAMH

→ 1

2ANc

1

Av•pq1mq

F8~X,p'
2 !, ~4.12!

with the aid of Eqs.~2.2!, ~2.11! and the replacements

M̃0→A2~v•pq1mq!mQ,

w~x,p'
2 !→AmQ

X
F~X,p'

2 !. ~4.13!

An important feature of the covariant model is the requi
ment that the light-front wave function must be a function
v•pq @9#:
07402
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e
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F~X,p'
2 !→F~v•pq!. ~4.14!

As we will see later, the widely used Gaussian-type wa
functions have such a structure in the heavy quark lim
while the BSW wave function does not have one. The n
malization condition ofF(v•pq) can be recast in a covarian
form:

E d4pq

~2p!4 ~2p!d~pq
22mq

2!uF~v•pq!u251, ~4.15!

or

E
0

` dX

X
E d2p'

2~2p!3 uF~X,p'
2 !u251.

~4.16!

Putting everything together we have

^0uAmuP~v !&52 i 2
Nc

~2p!4 E d4pq~22p i !d~pq
22mq

2!

3
1

2ANc

1

Av•pq1mq

F~v•pq!

3Tr@gmg5~11v” !g5~2p” q1mq!#.

~4.17!

In practice, we can use the following on-shell Feynman ru
to obtain the above and other amplitudes. The diagramm
rule is given as follows@9#.

~i! The heavy meson bound state in the heavy quark li
gives a vertex~wave function! as follows:

~4.18!

~4.19!

with ḠH5g0GHg0. For p-wave mesons, we denote the c
variant wave function byFp(v•pq).

~ii ! The internal line attached to the bound state gives
on-mass-shell propagator,

~4.20!

~4.21!

wherev251 andpq
25mq

2.
~iii ! For the internal antiquark line attached to the bou

state, sum over helicity and integrate the internal momen
using

NcE d4pq

~2p!4 ~22p i !d~pq
22mq

2!, ~4.22!

where the delta function comes from the on-mass-shell c
dition andNc comes from the color summation.

~iv! For all other lines and vertices that do not attach
the bound states, the diagrammatic rules are the same a
Feynman rules in the conventional field theory.
5-23
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These are the basic rules for the subsequent evaluatio
the covariant model. The vertexGH for the incoming heavy
meson can be read from Table I or from Eqs.~A11! and
~A19! by applying Eq.~4.13!. Hence, the vertex functions i
the heavy quark limit have the expressions

1S0 : 2 ig5

3S1 : «”

3P0 : 2
1

)
~v•pq1mq!

1P1 : «•pqg5

3P1 : 2
1

&
F ~v•pq1mq!S «” 2

«•pq

v•pq1mq
D Gg5

3P2 : 2«mngmpq
n .

~4.23!

In terms of theP1
1/2 andP1

3/2 states, the relevant vertex func
tions read

P1
1/2:

1

)
~v•pq1mq!«” g5

P1
3/2: 2

1

A6
@~v•pq1mq!«” 23«•pq#g5 . ~4.24!

C. Decay constants

In the infinite quark mass limit, the decay constants
defined by

^0uq̄gmg5hvuP~v !&5 iF Pvm,

^0uq̄gmhvuP* ~v,«!&5FV«m,

^0uq̄gmhvuS~v,«!&5FSvm,

^0uq̄gmg5hvuA1/2~v,«!&5FA1/2«m,

^0uq̄gmg5hvuA3/2~v,«!&5FA3/2«m, ~4.25!

where the decay constantFH is related to the usual onef H by
FH5AMHf H . Note that the tensor meson cannot be crea
from theV2A current. HQS demands that@21,26#

FV5FP , FA1/25FS , FA3/250. ~4.26!

Using the Feynman rules shown above, it is ready
evaluate the one-body matrix elements for heavy scalar
axial-vector mesons:

^0uq̄gmuS~v !&52
1

)
TrH gm

11v”
2

M1J ,

^0uq̄gmg5hvuA1/2~v,«!&5
1

)
TrH gmg5

11v”
2

«” g5M1J ,

~4.27!

where
07402
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M15ANcE d4pq

~2p!4 ~2p!d~pq
22mq

2!
Fp~v•pq!

Av•pq1mq

~mq2p” q!

3~v•pq1mq!. ~4.28!

Letting M15a11b1v” , we obtain

a15ANcE d4pq

~2p!4 ~2p!d~pq
22mq

2!Fp~v•pq!

3mqAv•pq1mq,

b152ANcE d4pq

~2p!4
~2p!d~pq

22mq
2!Fp~v•pq!

3Av•pq1mq. ~4.29!

Thus,

FS5FA1/252
2

)
~a11b1!

52ANc

3
E d4pq

~2p!4 ~2p!d~pq
22mq

2!Fp~v•pq!

3Av•pq1mq~v•pq2mq!

52ANc

3
E dXd2p'

2~2p!3X
Fp~X,p'

2 !

3Ap'
2 1~mq1X!2

2X

p'
2 1~mq2X!2

2X
. ~4.30!

Likewise, for the axial-vectorP1
3/2 meson

^0uq̄gmg5hvuA3/2~v,«!&

5
1

A6
TrH gmg5

11v”
2

@«” ~ga1va!23«a#g5M2
aJ ,

~4.31!

with

M2
a5ANcE d4pq

~2p!4 ~2p!d~pq
22mq

2!

3
Fp~v•pq!

Av•pq1mq

~mq2p” q!pq
a . ~4.32!

The general expression ofM2
a is

M2
a5a2va1b2ga1c2v” va1d2v” ga. ~4.33!

Since«•v50 and the contraction ofgm with the spin 3/2
field vanishes, namely,

~11v” !@«” ~ga1va!23«a#ga50, ~4.34!
5-24
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we are led toFA3/250 in the heavy quark limit.
For completeness, the decay constants of thes-wave

heavy mesons are included here@9#

FP5FV52ANcE dXd2p'

2~2p!3X
F~X,p'

2 !A~X1mq!21p'
2

2X
.

~4.35!

We now show that the decay constants obtained in
covariant light-front model in Sec. II do respect the hea
quark symmetry relations given in Eq.~2.7! or Eq. ~4.26! in
the infinite quark mass limit and have expressions in ag
ment with Eqs.~4.30! and ~4.35!. To illustrate this, we con-
sider the decay constants of pseudoscalar and vector me
In them185mQ→` limit, Eqs. ~2.17! and~2.22! are reduced
to

AmQf P→4ANc

2
E dXd2p'

2~2p!3AX
F~X,p'

2 !
X1mq

A~X1mq!
21p'

2
,

AmQf V→4ANc

2
E dXd2p'

2~2p!3AX
F~X,p'

2 !

3
1

A~X1mq!21p'
2
S mq

21p'
2

X
1mqD ,

~4.36!

where mq5m2 , X5mQx and use of Eq.~4.13! has been
made. Since the wave function is even inpz , a quantity
defined in Eq.~2.2!, it follows that

E dxd2p'

w~x,p'!

A@mQx1mq~12x!#21p'
2

pz50

→E dXd2p'

AX

F~X,p'
2 !

A~X1mq!21p'
2
S X2

mq
21p'

2

X
D 50.

~4.37!

Therefore, f V5 f P in the heavy quark limit. Moreover
AmQf P is identical toFP in Eq. ~4.35! after applying the
identity

E dXd2p'

AX
F~X,p'

2 !
2~X1mq!

A~X1mq!21p'
2

5E dXd2p'

AX
F~X,p'

2 !
A~X1mq!21p'

2

X
, ~4.38!

following from Eq. ~4.37!.
Likewise, Eq. ~2.23! for the decay constants of axia

vector mesons is reduced in the heavy quark limit to
07402
e
y
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ns.

AmQf 1A→2ANc

2
E dXd2p'

2~2p!3AX

Fp~X,p'
2 !

A~X1mq!21p'
2

p'
2 ,

AmQf 3A→ANcE dXd2p'

2~2p!2AX

Fp~X,p'
2 !

A~X1mq!21p'
2

3S ~mq
21p'

2 !2

X2 2mq
2D , ~4.39!

where use of Eq.~4.37! has been applied for deriving th
expression off 1A . By virtue of the identities

E dXd2p'

AX

Fp~X,p'
2 !

A~X1mq!21p'
2

~pz
22p'

2 /2!50,

E dXd2p'

AX

Fp~X,p'
2 !

A~X1mq!21p'
2

~X22mq
2!50,

~4.40!

and

3

&
E dXd2p'

AX

Fp~X,p'
2 !

A~X1mq!21p'
2

p'
2

5E dXd2p'

X
Fp~X,p'

2 !

3Ap'
2 1~mq1X!2

2X

p'
2 1~mq2X!2

2X
,

~4.41!

following from the first equation of Eq.~4.40!, one can show
that f 3A52& f 1A and hencef A3/250 andAmQf A1/25FA1/2

5FS in the mQ→` limit.

D. Isgur-Wise functions

It is well known that thes-wave tos-wave meson transi-
tion in the heavy quark limit is governed by a single unive
sal IW functionj~v! @21#. Likewise, there exist two univer
sal functionst1/2(v) and t3/2(v) describing ground-state
s-wave top-wave transitions@25#. Since the IW functionj
has been discussed in detail in@9#, we will focus on the other
two IW functionst1/2 andt3/2.

Let us first consider the functiont1/2, which can be ex-
tracted from theB→D0* or B→D1

1/2 transition

^D0* ~v8!uh̄v8
c Ghv

buB~v !&

52 i
1

)
TrH S 11v” 8

2 DGS 11v”
2 Dg5M3J ,

^D1
1/2~v8,«!uh̄v8

c Ghv
buB~v !&

5 i
1

)
TrH «” g5S 11v” 8

2 DGS 11v”
2 Dg5M3J , ~4.42!
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whereM3 is the transition matrix element for the light an
tiquark:

M35E @d4pq#~mq2p” q!~v8•pq1mq!, ~4.43!

and we have introduced the short-hand notation

@d4pq#[
d4pq

~2p!4 ~2p!d~pq
22mq

2!

3
Fp* ~v8•pq!F~v•pq!

A~v8•pq1mq!~v•pq1mq!
. ~4.44!

The structure ofM3 dictated by Lorentz invariance has th
form @58#

M35a31b3v”1c3v” 81d3v” v” 8. ~4.45!

This covariant decomposition allows us to easily determ
the coefficientsa3 ,b3 ,c3 ,d3 with the results:

a35E @d4pq#mq~v8•pq1mq!,

b352E @d4pq#~v8•pq1mq!
1

2

3H ~v1v8!•pq

11v
1

~v2v8!•pq

12v J , ~4.46!

c352E @d4pq#~v8•pq1mq!
1

2

3H ~v1v8!•pq

11v
2

~v2v8!•pq

12v J ,

d350,

wherev[v•v8.
ThenB→D0* andB→D1

1/2 transitions are simplified to

^D0* ~v8!uh̄v8
c Ghv

buB~v !&

52 i2t1/2~v!TrH S 11v” 8

2 DGS 11v”
2 Dg5J ,

^D1
1/2~v8,«!uh̄v8

c
1Ghv

buB~v !&

5 i2t1/2~v!TrH «” g5S 11v” 8

2 DGS 11v”
2 Dg5J ,

~4.47!

with
07402
e

t1/2~v!5
1

2ha
~a32b31c32d3!

5
1

)
E @d4pq#~v8•pq1mq!S mq1

~v2v8!•pq

12v D .

~4.48!

Since

v•pq5
1

2X
~p'

2 1mq
21X2!, v8•pq5

1

2X8
~p'

2 1mq
21X82!,

~4.49!

the IW functiont1/2 can be explicitly expressed as

t1/2~v!5
1

2)
E dXd2p'

2~2p!3X2

1

Az~12z!
Fp* ~zX,p'

2 !F~X,p'
2 !

3Ap'
2 1~mq1zX!2

p'
2 1~mq1X!2

@p'
2 1~mq1X!~mq2zX!#,

~4.50!

wherez[X8/X and it can be related tov•v8 by

z→z65v6Av221, z15
1

z2

, ~4.51!

with the 1 ~2! sign corresponding tov3 greater~less! than
v83. Note thatv3 greater~less! than v83 corresponds the
daughter meson recoiling in the negative~positive! z direc-
tion in the rest frame of the parent meson. In other wor
after settingv'5v'8 50, the daughter meson recoiling in th
positive and negativez directions are the only two possibl
choices of Lorentz frames. It is easily seen thatt1/2(v) re-
mains the same under the replacement ofz→1/z. This indi-
cates that the Isgur-Wise function thus obtained is indep
dent of the recoiling direction, namely, it is truly Loren
invariant.

Next consider theB→D2* or B→D1
3/2 transition to extract

the second universal functiont3/2

^D2* ~v8,«!uh̄v8
c Ghv

buB~v !&

52 i TrH «abgaS 11v” 8

2 DGS 11v”
2 Dg5M4

bJ ,

~4.52!

^D1
3/2~v8,«!uh̄v8

c Ghv
buB~v !&

52
i

A6
TrH @~2ga1va8 !«” 13«a#

3g5S 11v” 8

2 DGS 11v”
2 Dg5M4

aJ , ~4.52!

where
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M4
a5E @d4pq#~mq2p” q!pq

a . ~4.53!

Its most general expression is

M4a5a4va1b4va81c4v” va1d4v” 8va1e4v” va81 f 4v” 8va8

1g4ga1h4v” ga1h48v” 8ga . ~4.54!

Although only terms proportional toa4 , c4 andd4 will con-
tribute to B→D2* and B→D1

3/2 transitions after contracting
with the vertex of the spin 3/2 particles, all the terms inM4a
have to be retained in order to project out the coefficien
With M4a contracting withva, v8a and ga we find the
following equations:

a41b4v5E @d4pq#mqv•pq ,

a4v1b45E @d4pq#mqv8•pq ,

c412d4v1 f 414g452E @d4pq#mq
2,

c41d4v1g4

52E @d4pq#
v•pq

2 S ~v1v8!•pq

11v
1

~v2v8!•pq

12v D ,

d41 f 4v

52E @d4pq#
v•pq

2 S ~v1v8!•pq

11v
2

~v2v8!•pq

12v D ,

c4v1d4

52E @d4pq#
v8•pq

2 S ~v1v8!•pq

11v
1

~v2v8!•pq

12v D ,

d4v1 f 41g4

52E @d4pq#
v8•pq

2 S ~v1v8!•pq

11v
2

~v2v8!•pq

12v D ,

~4.55!

ande45d4 , h45h4850. Solving the above equations yield

a45
mq

2 E @d4pq#~l11l2!,

b45
mq

2 E @d4pq#~l12l2!,

c452
1

4 E @d4pq#S ~l11l2!22
g4

~11v!~12v! D ,

d452
1

4 E @d4pq#S ~l1
2 2l2

2 !1
g4v

~11v!~12v! D ,
07402
s.

f 452
1

4
E @d4pq#S ~l12l2!22

g4

~11v!~12v!
D ,

~4.56!

and

g452
1

2 E @d4pq#S mq
22

1

2
~11v!l1

2 2
1

2
~12v!l2

2 D ,

~4.57!
with

l1[
~v1v8!•pq

11v
, l2[

~v2v8!•pq

12v
. ~4.58!

Since onlyva , v” va andv” 8va terms inM4a survive after
contracting with the vertex ofD2* and D1

3/2 particles, the
matrix elements~4.52! are simplified to

^D2* ~v8,«!uh̄v8
c Ghv

buB~v !&

52 i)t3/2~v!«abvb TrH gaS 11v” 8

2 DGS 11v”
2 Dg5J ,

^D1
3/2~v8,«!uh̄v8

c Ghv
buB~v !&

52
i

&
t3/2~v!TrH @«” ~11v!13«•v#

3g5S 11v” 8

2 DGS 11v”
2 Dg5J , ~4.59!

with

t3/2~v!5
1

)
~a42c42d4!

5
1

2)
E @d4pq#F ~l11l2!~mq1l1!

1
l1

2 ~11v!1l2
2 ~12v!2mq

2

2~11v!
G . ~4.60!

A more explicit expression oft3/2 reads

t3/2~v!5
1

)
E dXd2p'

2~2p!3

3
2AzFp* ~zX,p'

2 !F~X,p'
2 !

A@p'
2 1~mq1X!2#@p'

2 1~mq1zX!2#

3H 1

2~12v!~11v!2 @~122v!~v8•pq!

3~2v1v8!•pq13~v•pq!22~12v2!mq
2#

1
1

12v2 @v•pq2v~v8•pq!#mqJ . ~4.61!
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After some manipulation, we obtain a simple relation b
tweent3/2 andt1/2:

t3/2~v!5
2

11v
t1/2~v!

1
)

11v
E dXd2p'8

2~2p!3 Fp* ~zX,p'8
2!F~X,p'8

2!

3
Azp'8

2

A@p'8
21~mq1X!2#@p'8

21~mq1zX!2#
.

~4.62!

Finally we include the usual IW functionj~v! for the sake of
completeness@9#

j~v!5E dXd2p'

2~2p!3X

2Az

11z
F* ~zX,p'

2 !F~X,p'
2 !

3
p'

2 1~mq1X!~mq1zX!

A@p'
2 1~mq1X!2#@p'

2 1~mq1zX!2#
, ~4.63!

and the relevant matrix elements are given by

^D~v8!uh̄v8
c Ghv

buB~v !&

5j~v!TrH g5S 11v” 8

2 DGS 11v”
2 Dg5J ,

^D* ~v8,«!uh̄v8
c Ghv

buB~v !&

5j~v!TrH «” * S 11v” 8

2 DGS 11v”
2 D ig5J .

~4.64!

E. Form factors in the heavy quark limit

From Eqs.~4.64!, ~4.47! and ~4.59! we obtain the matrix
elements ofB→D,D* ,D** transitions in the heavy quar
limit

^D~v8!uVmuB~v !&5j~v!~v1v8!m ,

^D* ~v8,«!uVmuB~v !&52j~v!emnab«* nv8avb,

^D* ~v8,«!uAmuB~v !&5 i j~v!@~11v!«m* 2~«* •v !vm8 #,

^D0* ~v8!uAmuB~v !&5 i2t1/2~v!~v2v8!m ,

^D1
1/2~v8,«!uVmuB~v !&

52 i2t1/2~v!@~12v!«m* 1~«* •v !vm8 #,

^D1
1/2~v8,«!uAmuB~v !&522t1/2~v!emnab«* nv8avb,
07402
- ^D1
3/2~v8,«!uVmuB~v !&

5 i
1

&
t3/2~v!$~12v2!«m* 2~«* •v !@3vm1~22v!vm8 #%,

^D1
3/2~v8,«!uAmuB~v !&

5
1

&
t3/2~v!~11v!emnab«* nv8avb,

^D2* ~v8,«!uVmuB~v !&

5)t3/2~v!emnab«* ngvgv8avb,

^D2* ~v8,«!uAmuB~v !&

52 i)t3/2~v!$~11v!«mn* vn2«ab* vavbvm8 %. ~4.65!

It is easily seen that theB→D** matrix elements of weak
currents vanish at the zero recoil pointv51 owing to the
orthogonality of the wave functions ofB and D** . Setting
pB5mBv andpD5mDv8,..., etc. in Eqs.~3.1! and~3.5! and
comparing with Eq.~4.65! yields all the form-factor HQS
relations given in Sec. IV A.

We are ready to check the heavy quark limit behavior
form factors to see if they satisfy the HQS constraints. C

sider the form factorF
1
BD0* (q2)52u1(q2) first. Let x25x,

x1512x, m25mq , X5mbx, X85mcx, it follows from Eq.
~3.20! that

u1~q2!5
Nc

16p3 E dxd2p'8
hP8hS9

x2N̂18N̂19
$2~X1mq!X822mqX

22mq
2~12x!22x2q212mqx~X2X8!22p'8

2

12xp'8 •q'%, ~4.66!

where use of Eq.~2.2! andp'9 5p'8 2xq' has been used. In
the heavy quark limitx;O(LQCD/mQ)→0, we have

u1~q2!→2
1

2)
E dXd2p'8

2~2p!3X

M̃09

M̃08M09
wp* ~x,p'8

2!w~x,p'8
2!

3@p'8
21~mq1X!~mq2X8!#. ~4.67!

Substituting the replacements
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M̃08→Amb@~X1mq!21p'8
2#/X,

M̃09→Amc@~X81mq!21p'8
2#/X8,

w~x,p'8
2!→Amb

X
F~X,p'8

2!,

wp~x,p'8
2!→Amc

X8
Fp~X8,p'8

2! ~4.68!

valid in the infinite quark mass limit and noting thatz
5X8/X5mc /mb , we arrive at

u1~q2!→2
1

2)
E dXd2p'8

2~2p!3X2

1

z
Fp* ~zX,p'8

2!F~X,p'8
2!

3Ap'8
21~mq1zX!2

p'8
21~mq1X!2

3@p'8
21~mq1X!~mq2zX!#, ~4.69!

and hence

AmBmD
0*

mB2mD
0*

F
1
BD0* ~q2!→t1/2~v!. ~4.70!

Likewise, it is easily shown that

AmBmD

mB1mD
F1

BD~q2!→j~v!. ~4.71!

In order to demonstrate that theB→D* form factors are
related to the IW functionj~v!, we need to apply the identity
~3.36! which has the expression

E dxd2p'8
2hP8hV9

xN̂18N̂19
S ~q•P!

p'8 •q'

q2
2

1

x
~p'8

21mq
22X2!D 50

~4.72!

in the mQ→` limit. This identity allows us to integrate ou
the (p'8 •q')/q2 term. Then the form factorg(q2) that reads
@see Eq.~B4!#

g~q2!52
1

mB1mD*

Nc

16p3 E dxd2p'8
2hP8hV9

x2N̂18N̂19

3H ~X1X8!~X1mq!1x~q•P!
p'8 •q'

q2

12
mB1mD*

wV9
S xp'8

21x
p'8 •q'

q2 D J ~4.73!

is reduced under the heavy quark limit to
07402
2
1

mB1mD*
E dXd2p'8

2~2p!3X
F* ~zX,p'8

2!F~X,p'8
2!

3
p'8

21~mq1X!~mq1zX!

A@p'8
21~mq1X!2#@p'8

21~mq1zX!2#
, ~4.74!

where use of Eqs.~2.11!, ~3.36! and ~4.68! has been made
Comparing with Eq.~4.63! it is evident that the heavy quar
limit of g(q2) has the same expression asj~v! apart from a
mass factor. Therefore, we arrive at7

2AmBmD*
mB1mD*

VBD* ~q2!522AmBmD* g~q2!→j~v!.

~4.77!

We next turn to the form factorsq1/2 and q3/2 and see if
they are related to the IW functionst1/2 and t3/2, respec-
tively. We first study the heavy quark limit behavior ofq1A

andq3A. It follows from Eq. ~3.26! that

AmBmD
1
1/2q1A~q2!

5AmBmD
1
1/2

Nc

16p3
E dxd2p'8

2hP8h1A9

xN̂18N̂19

3S p'8
21

~p'8 •q'!2

q2 D
→2

1

2
E dXd2p'8

2~2p!3
Fp* ~zX,p'8

2!F~X,p'8
2!

3
Azp'8

2

A@p'8
21~mq1X!2#@p'8

21~mq1zX!2#
~4.78!

and

7If the Taylor expansion ofhV9 /N̂19 is performed to take care of th
p'8 •q' term in the integrand ofg(q2), it turns out that the heavy
quark limit of theB→D* form factors will be related to the IW
function

z~v!5E dXd2p'8

2~2p!3 F* ~X8,p'8
2!F~X,p'8

2!

3
X8~X1mq!1X8~X2X8!p'8

2QV

A@p'8
21~mq1X!2#@p'8

21~mq1X8!2#
, ~4.75!

where

QV5
N̂19

hV9
S d

dp'9
2

hV9

N̂19
D

p
'9

2→p
'8

2

. ~4.76!

This functionz~v! first obtained in@7# was found numerically iden-
tical to j~v!, as it should be. However, one has to appeal to
identity ~4.72! in order to prove this equivalence analytically.
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AmBmD
1
3/2q3A~q2!

→2
1

2&
E dXd2p'8

2~2p!3X2

Fp* ~zX,p'8
2!F~X,p'8

2!

Az~12z!

3Ap'8
21~mq1zX!2

p'8
21~mq1X!2

@p'8
21~mq1X!~mq2zX!#

2
1

2&
E dXd2p'8

2~2p!3 Fp* ~zX,p'8
2!F~X,p'8

2!

3
Azp'8

2

A@p'8
21~mq1X!2#@p'8

21~mq1zX!2#
. ~4.79!

Since

q1/2~q2!5
1

)
q1A~q2!2A2

3
q3A~q2!,

q3/2~q2!5A2

3
q1A~q2!1

1

)
q3A~q2!,

~4.80!

following from Eq. ~2.6!, we obtain

AmBmD
1
1/2q1/2~q2!→t1/2~v! ~4.81!

and

2
2&

11v AmBmD
1
3/2q3/2~q2!→t3/2~v!, ~4.82!

as promised before.
All other HQS relations in Eqs.~4.1!, ~4.3! and ~4.4! can

be proved in the same manner except for theB→D2* form
factors h,k,b1 ,b2 for which we are not able to show a
present that they are related tot3/2(v) in the heavy quark
limit. Perhaps one needs some identities in@10# and those
derived in Appendix B to verify the HQS relations betwe
B→D2* form factors andt3/2(v). This remains to be inves
tigated.

F. Numerical results for IW functions and discussion

Covariance requires that light-front wave functions be
function ofv•pq . Currently, there exist several phenomen
logical light-front wave functions commonly utilized in th
literature. There are several popular phenomenological lig
front wave functions that have been employed to desc
various hadronic structures in the literature. Two of them,
Bauer-Stech-Wirbel~BSW! wave functionFBSW(x,p'

2 ) @40#
and the Gaussian-type wave functionFG(x,p'

2 ) @27#, have
been widely used in the study of heavy mesons. In the he
quark limit, we denote these wave functions as follows:
07402
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-

t-
e
e

vy

FBSW~X,p'
2 !54&S p

b2DX expH 2
p'

2 1X2

2b2 J ,

FG~X,p'
2 !54S p

b2D 3/4AX21mq
21p'

2

2X

3expH 2
1

2b2 Fp'
2 1S X

2
2

mq
21p'

2

2X
D 2G J ,

~4.83!

whereFG(X,p'
2 ) is the heavy quark limit expression of th

Gaussian-type wave function given in Eq.~2.12!. Forp-wave
heavy mesons, the wave functions are

Fp
BSW~X,p'

2 !5A 2

b2 FBSW~X,p'
2 !,

Fp
G~X,p'

2 !5A 2

b2 FG~X,p'
2 !. ~4.84!

As pointed out in@9#, not all the phenomenological light
front wave functions have the covariant property. We fou
that the Gaussian wave function and the invariant-mass w
function can be reexpressed as a pure function ofv•pq . The
wave functionFG can be rewritten in terms ofv•pq :

FG~X,p'
2 !54S p

b2D 3/4AX21mq
21p'

2

2X

3expH 2
1

2b2 F S X

2
1

mq
21p'

2

2X
D 2

2mq
2G J

54S p

b2D 3/4

Av•pq expH 2
1

2b2 @~v•pq!22mq
2#J .

~4.85!

Therefore this wave function preserves the Lorentz cov
ance of Eqs.~4.54!, ~4.45! and ~4.28!. This also can be ex-
amined by a numerical check of the covariant condition

E dXd2p'

2~2p!3X
F~X,p'

2 !X5E dXd2p'

2~2p!3X
F~X,p'

2 !
mq

21p'
2

X
,

~4.86!

which is satisfied ifF(X,p'
2 ) is a function ofv•pq . How-

ever, very surprisingly, the commonly used BSW wave fun
tion cannot be recast as a pure function ofv•pq . Hence the
BSW wave function breaks the Lorentz covariance. Inde
we have already found previously@7# that there is some in-
consistent problem by using the BSW wave function to c
culate various transition form factors. Now we can und
stand why the BSW wave function gives such resu
inconsistent with HQS found in@7,59#. Hence, by demanding
relativistic covariance, we can rule out certain types of hea
meson light-front wave functions.
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To perform numerical calculations of the decay consta
and IW functions in the heavy quark limit, we follow@9# to
use the inputmq5250 MeV and f B5180 MeV to fix the
parameterb` to be 0.49. For decay constants we then obt

FP5FV5413 MeV3/2, FS5FA1/25399 MeV3/2.

~4.87!

The decay constant of theP1
3/2 heavy meson vanishes in th

infinite quark mass limit. We see that the decay constant
ground-states-wave mesons and low-lyingp-wave mesons
are similar in the heavy quark limit.

The IW functions~4.63!, ~4.50! and ~4.62! can be fitted
nicely to the form

f ~v!5 f ~1!F12r2~v21!1
s2

2
~v21!2G , ~4.88!

and it is found that~see Fig. 6!

j~v!5121.22~v21!10.85~v21!2,

t1/2~v!50.31„121.18~v21!10.87~v21!2
…,

t3/2~v!50.61„121.73~v21!11.46~v21!2
…,

~4.89!

where we have used the sameb` parameter for both wave
functionsF andFp . It should be stressed that unliket1/2(1)
and t3/2(1), the normalizationj(1)51 at the zero recoil
point is a model-independent consequence; that is, it is in
pendent of the structure of wave functions. In Table XV w
have compared this work for the IW functionst1/2(v) and
t3/2(v) with other model calculations. It turns out that o
results are similar to that obtained in the ISGW model@19#
~numerical results for the latter being quoted from@60#!. Our
resultr251.22 for the slope parameter is consistent with
current world average of 1.4460.14 extracted from exclu
sive semileptoicB decays@70#.

It is interesting to notice that there is a sum rule deriv
by Uraltsev@23#

FIG. 6. The Isgur-Wise functionsj, t1/2 and t3/2 as a function
of v.
07402
ts

n

of

e-

e

d

(
n

ut3/2
~n!~1!u22(

n
ut1/2

~n!~1!u25
1

4
, ~4.90!

wheren stands for radial excitations. This sum rule clea
implies thatut3/2(1)u@ut1/2(1)u. Our results indicate that this
sum rule is slightly oversaturated even byn50 p-wave
states. Another sum rule due to Bjorken@22# reads

r25
1

4
1(

n
ut1/2

~n!~1!u212(
n

ut3/2
~n!~1!u2, ~4.91!

where r2 is the slope of the IW functionj~v!. Combined
with the Uraltsev sum rule~4.90! leads to

r25
3

4
13(

n
ut1/2

~n!~1!u2. ~4.92!

Note that while the Bjorken sum rule receives perturbat
corrections@71#, the Uraltsev sum rule does not~for a recent
study, see@72#!.

V. CONCLUSIONS

In this work we have studied the decay constants a
form factors of the ground-states-wave and low-lying
p-wave mesons within a covariant light-front approach. T
formalism that preserves the Lorentz covariance in the lig
front framework has been developed and applied succ
fully to describe various properties of pseudoscalar and v
tor mesons. One of our main goals is to extend this appro
to thep-wave meson case. Our main results are as follow

The main ingredients of the covariant light-front mode
namely, the vertex functions, are explicitly worked out f
both s-wave andp-wave mesons.

The decay constant of light scalar mesons is largely s
pressed relative to that of the pseudoscalar mesons and
suppression becomes less effective for heavy scalar r
nances. The predicted decay constantsu f D

s0*
u571 MeV and

u f Ds1(2460)u5117 MeV are consistent with the correspondi
values of 47–73 MeV and 110–190 MeV inferred from t
measurement ofD̄Ds0* and D̄Ds1 productions inB decays.

In the limit of SU~N!-flavor symmetry, the decay con

TABLE XV. The Isgur-Wise functionst1/2 andt3/2 at zero recoil
and their slope parameters. The numerical results for@19,61,63,64#
denoted by ‘‘* ’’ are quoted from@60#.

t1/2(1) r1/2
2 t3/2(1) r3/2

2 Ref.

0.31 1.18 0.61 1.73 This work
0.06 0.73 0.52 1.45 @61#*
0.09 1.1 0.28 0.9 @62#

0.13 0.57 0.43 1.39 @63#*
0.22 0.83 0.54 1.50 @64#*
0.34 1.08 0.59 1.76 @19#*
0.3560.08 2.561.0 @65#

0.4160.04 1.3060.23 0.6660.02 1.9360.16 @66#

0.7460.15 0.9060.05 @67#
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stants of the scalar meson and the1P1 axial-vector meson
are found to be vanished, as it should be.

The analytic expressions forP→S,A transition form fac-
tors can be obtained from that ofP→P,V ones by some
simple replacements. We have also worked out the form
tors in P→T transitions.

The momentum dependence of the physical form fac
is determined by first fitting the form factors obtained in t
spacelike region to a 3-parameter function inq2 and then
analytically continuing them to the timelike region. Some
the V2(q2) form factors inP→A transitions are fitted to a
different 3-parameter form so that the fit parameters
stable within the chosenq2 range.

Numerical results of the form factors forB(D)→p,
r, a0(1450),a1(1260),b1(1235),a2(1320),B(D)→K, K* ,
K** andB→D,D* ,D** transitions are presented in deta
whereK** andD** denote genericallyp-wave strange and
charmed mesons, respectively.

Comparison of this work with the ISGW2 model based
the nonrelativistic constituent quark picture is made forB
→D** transition form factors. In general, the form facto
at small q2 in both models agree within 40%. Howeve

F
0
BD0* (q2) andV

1
BD1

1/2

(q2) have a very differentq2 behavior
in these two models asq2 increases. Relativistic effects ar
mild in B→D** transitions but can manifest in heavy-t
light transitions at maximum recoil. For example,V0

Ba1(0) is
found to be 0.13 in the covariant LF model, while it is as b
as 1.01 in the ISGW2 model.

The decay amplitudes ofB2→D** 0p2 involve the B
→D** form factors andD** decay constants. We hav
compared the model calculations with experiment and fo
a good agreement. In particular, the suppression of
D0*

0p2 production relative toD0p2 one clearly indicates a
smallerB→D0* form factor relative to theB→D one.

The heavy quark limit behavior of decay constants a
form factors is examined and it is found that the requirem
of heavy quark symmetry is satisfied.

Decay constants and form factors are also evaluated i
pendently in a covariant light-front formalism within th
framework of heavy quark effective theory. The resultant
cay constants and form factors agree with those obta
from the covariant light-front model and then extended to
heavy quark limit. The universal Isgur-Wise functionsj~v!,
t1/2(v) andt3/2(v) are obtained and a relation betweent1/2
andt3/2 is found. In the infinite quark mass limit, all the form
factors are related to the Isgur-Wise functions. In addition
j(1)51 at zero recoilv51, it is found thatt1/2(1)50.61,
t3/2(1)50.31 andr251.22 for the slope parameter ofj~v!.
The Bjorken and Uraltsev sum rules for the Isgur-Wise fu
tions are fairly satisfied.
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APPENDIX A: VERTEX FUNCTIONS
IN THE CONVENTIONAL LIGHT-FRONT

APPROACH

In the conventional light-front approach, a meson bou
state consisting of a quarkq1 and an antiquarkq̄2 with the
total momentumP and spinJ can be written as~see, for
example@7#!

uM ~P,
2S11LJ ,Jz!&

5E $d3p1%$d
3p2%2~2p!3d3~ P̃2 p̃12 p̃2!

3 (
l1 ,l2

CLS
JJz~ p̃1 ,p̃2 ,l1 ,l2!uq1~p1 ,l1!q̄2~p2 ,l2!&,

~A1!

wherep1 andp2 are the on-mass-shell light-front moment

p̃5~p1,p'!, p'5~p1,p2!, p25
m21p'

2

p1 , ~A2!

and

$d3p%[
dp1d2p'

2~2p!3 ,

uq~p1 ,l1!q̄~p2 ,l2!&5bl1

† ~p1!dl2

† ~p2!u0&,

$bl8~p8!,bl
†~p!%5$dl8~p8!,dl

†~p!%

52~2p!3d3~ p̃82 p̃!dl8l . ~A3!

In terms of the light-front relative momentum variable
(x,p') defined by

p1
15x1P1, p2

15x2P1, x11x251,

p1'5x1P'1p' , p2'5x2P'2p' , ~A4!

the momentum-space wave functionCLS
JJz for a 2S11LJ me-

son can be expressed as

CLS
JJz~ p̃1 ,p̃2 ,l1 ,l2!5

1

ANc

^LS;LzSzuLS;JJz&

3Rl1l2

SSz ~x,p'!wLLz
~x,p'!,

~A5!

where wLLz
(x,p') describes the momentum distribution

the constituent quarks in the bound state with the orb
angular momentumL, ^LS;LzSzuLS;JJz& is the correspond-
5-32
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ing Clebsch-Gordan coefficient andRl1l2

SSz constructs a state

of definite spin (S,Sz) out of light-front helicity (l1 ,l2)
eigenstates. Explicitly,

Rl1l2

SSz ~x,p'!5 (
s1 ,s2

^l1uRM
† ~12x,p' ,m1!us1&

3^l2uRM
† ~x,2p' ,m2!us2&

3 K 1

2

1

2
;s1s2U12 1

2
;SSzL , ~A6!

whereusi& are the usual Pauli spinors, andRM is the Melosh
transformation operator@3,68#:

^suRM~x,p' ,mi !ul&5
ūD~pi ,s!u~pi ,l!

2mi

52
v̄~pi ,l!vD~pi ,s!

2mi

5
mi1xiM01 isW sl•pW'3nW

A~mi1xiM0!21p'
2

, ~A7!

with u(D) , a Dirac spinor in the light-front~instant! form,
nW 5(0,0,1), a unit vector in thez direction, and@cf. Eq.~2.2!#

M0
25

m1
21p'

2

x1
1

m2
21p'

2

x2
. ~A8!

Note thatuD(p,s)5u(p,l)^luRMus& and, consequently, th
stateuq(p,l)&^luRMus& transforms likeuq(p,s)& under ro-
tation, i.e. its transformation does not depend on its mom
tum.

In practice it is more convenient to use the covariant fo
for Rl1l2

SSz @4#:

Rl1l2

SSz ~x,p'!5
1

&M̃0~M01m11m2!
ū~p1 ,l1!~P”̄ 1M0!

3Gv~p2 ,l2!, ~A9!

with

M̃0[AM0
22~m12m2!2,

P̄[p11p2 ,

«̂m~61!5F 2

P1 «W '~61!•PW',0,«W'~61!G ,
«W'~61!57~1,6 i !/&,
07402
n-

«̂m~0!5
1

M0
S 2M0

21P'
2

P1 ,P1,P'D . ~A10!

For the pseudoscalar and vector mesons, we have

GP5g5 ~pseudoscalar,S50!,

GV52«”̂ ~Sz! ~vector,S51!. ~A11!

It is instructive to derive the above expressions by using
relations

ū~p1 ,l1!5ū~p1 ,l1!
uD~p1 ,s1!ūD~p1 ,s1!

2m1

v~p2 ,l2!5
2vD~p2 ,s2!v̄D~p2 ,s2!

2m2
v~p2 ,l2!,

ūD~p1 ,s1!
P”̄ 1M0

2M0

g5vD~p2 ,s2!

5ūD„~e1 ,pW !,s1…
g011

2
g5vD„~e2 ,2pW !,s2…

5A~e11m1!~e21m2!ixs1

† s2xs2
*

5A2~e11m1!~e21m2!K 1

2

1

2
;s1s2U1

2

1

2
;00L ,

ūD~p1 ,s1!
P”̄ 1M0

2M0

„2«”̂ ~Sz!…vD~p2 ,s2!

5ūD„~e1 ,pW !,s1…
g011

2
«W ~Sz!•gW vD„~e2 ,2pW !,s2…

5A~e11m1!~e21m2!ixs1

† «W ~Sz!•sW s2xs2
*

5A2~e11m1!~e21m2!K 1

2

1

2
;s1s2U1

2

1

2
;1SzL ,

A2~e11m1!~e21m2!5
M̃0~M01m11m2!

&M0

, ~A12!

where@cf. Eq. ~2.2!#
5-33
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M05e11e2 , ei5Ami
21p'

2 1pz
2, pz5

x2M0

2
2

m2
21p'

2

2x2M0

,

~A13!

xs is the usual Pauli spinor and we have used the us
properties, especially, the covariant one, of Dirac spino
Note that momenta in Eq.~A12! should be given in theP̄
5(M0,0

⇀
) rest frame. Applying equations of motion o

spinors in Eq.~A9! leads to

ū~p1!~P”̄ 1M0!g5v~p2!5~M01m11m2!ū~p1!g5v~p2!,

ū~p1!~P”̄ 1M0!«”̂ v~p2!5ū~p1!@~M01m11m2!«”̂

2 «̂•~p12p2!#v~p2!, ~A14!

andRl1l2

SSz is reduced to a more familiar form@4#. It is, how-

ever, more convenient to use the form shown in Eq.~A9!
when extending to thep-wave meson case. Two remarks a
in order. First, p11p2 is not equal to the meson’s four
momentum in the conventional LF approach as both
quark and antiquark are on-shell. On the contrary, the t
four-momentum is conserved at each vertex in the covar
LF framework. Second, the longitudinal polarizatio
4-vector«̂m(0) given above is not exactly the same as tha
the vector meson and we have«̂• P̄50. We normalize the
meson state as

^M ~P8,J8,Jz8!uM ~P,J,Jz!&

52~2p!3P1d3~ P̃82 P̃!dJ8JdJ
z8Jz

, ~A15!

so that

E dxd2p'

2~2p!3 wL8L
z8

8* ~x,p'!wLLz
~x,p'!5dL8,LdL

z8 ,Lz
.

~A16!

Explicitly, we have

w005w, w1Lz
5pLz

wp , ~A17!

where pLz56157(p'x6 ip'y)/&, pLz505pz are propor-

tional to the spherical harmonicsY1Lz
in momentum space

and w, wp are the distribution amplitudes ofs-wave and
p-wave mesons, respectively. For a Gaussian-like wave fu

tion as shown in Eq.~2.12! @7#, one haswp5A2/b2w.
For p-wave mesons, it is straightforward to obtain

^1S;LzSzu1S;JJz&pLz
Rl1l2

SSz ~x,p'!

5
1

&M̃0~M01m11m2!
ū~p1 ,l1!~P”̄ 1M0!

3G 2s11
PJ

v~p2 ,l2!, ~A18!
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G 3
P0

5
1

)
S K• P̄

M0
2K” D ,

G 1
P1

5 «̂•Kg5 ,

G 3
P1

5
1

&
XS K” 2

K• P̄

M0
D «/̂ 2 «̂•K Cg5 ,

G 3
P2

5 «̂mngm~2Kn!, ~A19!

where

K[~p22p1!/2,

«̂mn~m!5^11;m8m9u11;2m&«̂m~m8!«̂n~m9!.

Note that the polarization tensor of a tensor meson satis
the relations:«̂mn5 «̂nm and«̂mnP̄m505 «̂m

m and that«̂m ,«̂mn

are identical to«m ,«mn , respectively, for maximal transvers
polarized states (m56J). The above expressions for3P1
and 3P0 states are consistent with@4,5# and @69#, respec-
tively.

The vertex functions shown in Table I and Eq.~2.11! fol-
low from the above explicit expressions forCLS

JJz. For ex-
ample, by taking«̂mn(2Kn) in place of«̂m in Eq. ~A14! we
obtain the3P2 vertex in the form shown in Table I. Note tha
there are an overall factor and sign to be determined.
overall factor, (M22M0

2)Ax1x2 @cf. Eq. ~2.11!#, is fixed by
comparing the pseudoscalar decay constantf P obtained in
both covariant and conventional approaches@see Eqs.~2.16!
and ~2.17!#, while the overall sign can be fixed by the HQ
expectation for decay constants and form factors. For
ample, the sign of theP1

1/2 state relative to3P0 is fixed by
the HQS relationf P

1
1/25 f S . An additional factor ofi is as-

signed in Table I as in the usual Feynman rules to ensure
the corresponding operators are Hermitian. For example,
have ani in front of gm but notg5 , just like the usual QED
and Yukawa vertices, respectively. Similarly, polarizati
vectors are decoupled from the vertex Feynman rules
usual.

APPENDIX B: SOME USEFUL FORMULAS

In this Appendix we first collect some formulas in@10#
relevant for the present work and then we proceed to s
marize the formula for the product of fourp̂ 18’s needed for
the calculation in Sec. III.

The explicit representation of the traces in Eqs.~3.11! and
~3.22! can be found in@10#. For completeness we collec
them below:

SVm
PP52p1m8 @M 821M 922q222N22~m182m2!2

2~m192m2!21~m182m19!2#1qm@q222M 82

1N182N1912N212~m182m2!22~m182m19!2#

1Pm@q22N182N192~m182m19!2#, ~B1!
5-34
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and

Smn
PV5~SV

PV2SA
PV!mn

522i emnab$p18
aPb~m192m18!1p18

aqb~m191m1822m2!1qaPbm18%1
1

WV9
~4p1v8 23qn2Pn!

3 i emabrp18
aqbPr12gmn$m2~q22N182N192m18

22m19
2!2m18~M 922N192N22m19

22m2
2!

2m19~M 822N182N22m18
22m2

2!22m18m19m2%18p1m8 p1n8 ~m22m18!22~Pmqn1qmPn12qmqn!m18

12p1m8 Pn~m182m19!12p1m8 qn~3m182m1922m2!12Pmp1n8 ~m181m19!12qmp1n8 ~3m181m1922m2!

1
1

2WV9
~4pn823qn2Pn!$2p1m8 @M 821M 922q222N212~m182m2!~m191m2!#

1qm@q222M 821N182N1912N22~m11m19!212~m182m2!2#1Pm@q22N182N192~m181m19!2#%. ~B2!

Note that our convention foremnab , namely,e012351, is different from that in@10#.
The analytic expressions forP→S, A transition form factors can be obtained from that ofP→P, V ones by some simple

replacements. Hence, we list the explicit expressions forP→P andP→V transition form factors in@10#:

f 1~q2!5
Nc

16p3 E dx2d2p'8
hP8hP9

x2N̂18N̂19
@x1~M08

21M09
2!1x2q22x2~m182m19!22x1~m182m2!22x1~m192m2!2#,

f 2~q2!5
Nc

16p3 E dx2d2p'8
2hP8hP9

x2N̂18N̂19
H 2x1x2M 822p'8

22m18m21~m192m2!~x2m181x1m2!12
q•P

q2 S p'8
212

~p'8 •q'!2

q2 D
12

~p'8 •q'!2

q2
2

p'8 •q'

q2
@M 922x2~q21q•P!2~x22x1!M 8212x1M08

222~m182m2!~m181m19!#J , ~B3!

and

g~q2!52
Nc

16p3 E dx2d2p'8
2hP8hV9

x2N̂18N̂19
H x2m181x1m21~m182m19!

p'8 •q'

q2
1

2

wV9
F p'8

21
~p'8 •q'!2

q2 G J ,

f ~q2!5
Nc

16p3 E dx2d2p'8
hP8hV9

x2N̂18N̂19
H 2x1~m22m18!~M08

21M09
2!24x1m19M08

212x2m18q•P12m2q222x1m2~M 821M 92!

12~m182m2!~m181m19!218~m182m2!F p'8
21

~p'8 •q'!2

q2 G12~m181m19!~q21q•P!
p'8 •q'

q2

24
q2p'8

21~p'8 •q'!2

q2wV9
F2x1~M 821M08

2!2q22q•P22~q21q•P!
p'8 •q'

q2
22~m182m19!~m182m2!G J ,

a1~q2!5
Nc

16p3 E dx2d2p'8
2hP8hV9

x2N̂18N̂19
H ~x12x2!~x2m181x1m2!2@2x1m21m191~x22x1!m18#

p'8 •q'

q2

22
x2q21p'8 •q'

x2q2wV9
@p'8 •p'9 1~x1m21x2m18!~x1m22x2m19!#J ,
074025-35
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a2~q2!5
Nc

16p3 E dx2d2p'8
hP8hV9

x2N̂18N̂19
H 2~2x123!~x2m181x1m2!28~m182m2!F p'8

2

q2
12

~p'8 •q'!2

q4 G
2@~14212x1!m1822m192~8212x1!m2#

p'8 •q'

q2

1
4

wV9
S @M 821M 922q212~m182m2!~m191m2!#~A3

~2!1A4
~2!2A2

~1!!1Z2~3A2
~1!22A4

~2!21!

1
1

2
@x1~q21q•P!22M 8222p'8 •q'22m18~m191m2!22m2~m182m2!#~A1

~1!1A2
~1!21!

1q•PF p'8
2

q2
1

~p'8 •q'!2

q4 G ~4A2
~1!23!D J . ~B4!

We next give the results forp̂18p̂18p̂18p̂18 and p̂18p̂18p̂18N̂2 . In Eq. ~3.12!, under the typical integration

Nc

16p3 E dx2d2p'8

x2N̂18N̂19
hP8hM9 ŜPM, ~B5!

in a P→M transition matrix element,p̂18p̂18p̂18p̂18 in ŜPM can be expressed in terms of three external momenta,P, q andṽ. Up
to the first order inṽ, we have

p̂1m8 p̂1n8 p̂1a8 p̂1b8 8(
i 51

9

I imnabAi
~4!1(

j 51

4

Jj mnabBj
~4!1 (

k51

2

KkmnabCk
~4!1O~ṽ2!, ~B6!

where

I 1mnab5~gg!mnab5gmngab1gmagnb1gmbgna ,

I 2mnab5~gPP!mnab5gmnPaPb1gmaPnPb1gmbPnPa1gabPmPn1gnbPmPa1gnaPmPb ,

I 3mnab5~gPq!mnab5gmn~Paqb1qaPb!1permutations,

I 4mnab5~gqq!mnab5gmnqaqb11gmaqnqb1gmbqnqa1gabqmqn1gnbqmqa1gnaqmqb ,

I 5mnab5~PPPP!mnab5PmPnPaPb ,

I 6mnab5~PPPq!mnab5PmPnPaqb1PmPnqaPb1PmqnPaPb1qmPnPaPb ,

I 7mnab5~PPqq!mnab5PmPnqaqb1permutations,

I 8mnab5~Pqqq!mnab5Pmqnqaqb1qmPnqaqb1qmqnPaqb1qmqnqaPb ,

I 9mnab5~qqq!mnab5qmqnqaqb ,

J1mnab5~gPṽ !mnab5
1

ṽ•P
@gmn~Paṽb1ṽaPb!1permutations#,

J2mnab5~PPPṽ !mnab5
1

ṽ•P
~PmPnPaṽb1PmPnṽaPb1PmṽnPaPb1ṽmPnPaPb!,

J3mnab5~PPqṽ !mnab5
1

ṽ•P
@~PmPnqa1PmqnPa1qmPnPa!ṽb1permutations#,
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J43mnab5~Pqqṽ !mnab5
1

ṽ•P
@~Pmqnqa1qmPnqa1qmqnPa!ṽb1permutations#,

K1mnab5~gqṽ !mnab5
1

ṽ•P
@gmn~qaṽb1ṽaqb!1permutations#,

K2mnab5~qqqṽ !mnab5
1

ṽ•P
~qmqnqaṽb1qmqnṽaqb1qmṽnqaqb1ṽmqnqaqb!. ~B7!

By contractingp̂1m
8 p̂1n8 p̂1a8 p̂1b8 with ṽb, qb andgab, and comparing with the complete expressions ofp̂1m

8 p̂1n8 p̂1a8 and p̂1m8 p̂1n8

shown in@10#, we obtain

A1
~4!5

1

3
~A1

~2!!2, A2
~4!5A1

~1!A1
~3! , A3

~4!5A1
~1!A2

~3! ,

A4
~4!5A2

~1!A2
~3!2

1

q2 A1
~4! , A5

~4!5A1
~1!A3

~3! ,

A6
~4!5A1

~1!A4
~3! , A7

~4!5A1
~1!A5

~3! , A8
~4!5A1

~1!A6
~3! ,

A9
~4!5A1

~1!A6
~3!2

3

q2 A4
~4! , B1

~4!5A1
~1!C1

~3!2A1
~4! ,

B2
~4!5A1

~1!B1
~3!2A2

~4! , B3
~4!5A1

~1!B2
~3!2A3

~4! ,

B4
~4!5A1

~1!C2
~3!2A4

~4! , C1
~4!5A2

~3!C1
~1!1

q•P

q2 A1
~4! ,

C2
~4!5A6

~3!C1
~1!13

q•P

q2 A4
~4! , ~B8!

where@10#

A1
~1!5

x1

2
, A2

~1!5A1
~1!2

p'8 •q'

q2 , C1
~1!52N̂21Z2 ,

Z25N̂181m18
22m2

21~122x1!M 821~q21q•P!
p'8 •q'

q2 ,

A1
~2!52p'8

22
~p'8 •q'!2

q2 , A2
~2!5~A1

~1!!2, A3
~2!5A1

~1!A2
~1! ,

A4
~2!5~A2

~1!!22
1

q2 A1
~2! , A1

~3!5A1
~1!A1

~2! , A2
~3!5A2

~1!A1
~2! ,

A3
~3!5A1

~1!A2
~2! , A4

~3!5A2
~1!A2

~2! , A5
~3!5A1

~1!A4
~2! ,

A6
~3!5A2

~1!A4
~2!2

2

q2 A2
~1!A1

~2! ,

B1
~2!5A1

~1!Z22A1
~2! , B1

~3!5A1
~1!~B1

~2!2A1
~2!!,

B2
~3!5A2

~1!B1
~2!1

q•P

q2 A1
~2! . ~B9!
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Following the prescription in@10#, the spurious contributionsC1,2
(4) should be vanished by including the zero mode contribut

and we have

A2
~3!N̂2→A2

~3!Z21
q•P

q2 A1
~4! ,

A6
~3!N̂2→A6

~3!Z213
q•P

q2 A4
~4! , ~B10!

which lead to thep̂m8 p̂n8p̂a8 N̂2 formula shown in Eq.~3.14!. Note that in generalBj
( i ) are non-vanishing by themselves, but th

do vanish under integration in some choice of vertex function@10#. There are some attempts to include these effects for gen
vertex functions@14#. The importance of these effects can be checked numerically. For example, we have checked num
that the integral of Eq.~B5! with ŜPM replaced byBi

( j ) are vanishingly small. In practice, one only needsAj
( i ) terms forp̂18 ...p̂18

formulas.
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