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We study the decay constants and form factors of the groundstatee and low-lyingp-wave mesons
within a covariant light-front approach. Numerical results of the form factors for transitions between a heavy
pseudoscalar meson and swave orp-wave meson and their momentum dependence are presented in detail.
In particular, form factors for heavy-to-light arl8—D** transitions, whereD** denotes generically a
p-wave charmed meson, are compared with other model calculations. The experimental measurements of the
decaysB™ —D** =~ and BHSDg* are employed to test the decay constantD@f and theB—D**
transition form factors. The heavy quark limit behavior of the decay constants and form factors is examined
and it is found that the requirement of heavy quark symmetry is satisfied. The universal IsguiWjse
functions, one fos-wave tos-wave and two fols-wave top-wave transitions, are obtained. The values of the
IW functions at zero recoil and their slope parameters can be used to test the Bjorken and Uraltsev sum rules.
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[. INTRODUCTION covariance. Another issue is that the usual recipe of taking
only the plus component of the current matrix elements will
Mesonic weak transition form factors and decay constantsiss the zero-mode contributions and render the matrix ele-
are two of the most important ingredients in the study ofment noncovariant. A well known example is the electromag-
hadronic weak decays of mesons. There exist many differentetic form factorF,(q?) of the vector mesoitsee e.g[8]).
model calculations. The light-front quark mod@l,2] is the  In other words, the familiar expressionfaf, for example, in
only relativistic quark model in which a consistent and fully the conventional light-front approadh] is not trustworthy
relativistic treatment of quark spins and the center-of-masslue to the lack of the zero-mode contributions. As a conse-
motion can be carried out. This model has many advantageguence, it is desirable to construct a covariant light-front
For example, the light-front wave function is manifestly Lor- model that can provide a systematic way of exploring the
entz invariant as it is expressed in terms of the momenturzero-mode effects. Such a covariant model has been con
fraction variables in analogy with the parton distributions instructed in[9] for heavy mesons within the framework of
the infinite momentum frame. Moreover, hadron spin carheavy quark effective theory.
also be correctly constructed using the so-called Melosh ro- Without appealing to the heavy quark limit, a covariant
tation. This model is very suitable to study hadronic formapproach of the light-front model for the usual pseudoscalar
factors. Especially, as the recoil momentum incregsese-  and vector mesons has been put forward by JaQk(for a
sponding to a decreasirgf), we have to start considering different approach, sdd1]). The starting point of the cova-
relativistic effects seriously. In particular, at the maximumriant approach is to consider the corresponding covariant
recoil point g?=0 where the final-state meson could be Feynman amplitudes in meson transitions. Then one can pass
highly relativistic, there is no reason to expect that the nonto the light-front approach by using the light-front decompo-
relativistic quark model is still applicable. sition of the internal momentum in covariant Feynman mo-
The relativistic quark model in the light-front approach mentum loop integrals and integrating out the=p°—p2
has been employed to obtain decay constants and weak foraomponenf12]. At this stage one can then apply some well-
factors[3—7]. There exist, however, some ambiguities andstudied vertex functions in the conventional light-front ap-
even some inconsistencies in extracting the physical quantproach aftep ™ integration. It is pointed out by Jaus that in
ties. In the light-front quark model formulation one often going from the manifestly covariant Feynman integral to the
picks up a specific Lorentz franfe.g., the purely longitudi- light-front one, the latter is no longer covariant as it receives
nal frameq, =0, or the purely transverse framg"=q°  additional spurious contributions proportional to the lightlike
+9®=0) and then calculates a particular componéhe  vector @*=(1,0,0—1). This spurious contribution is can-
“plus” componen) of the associated current matrix element. celled after correctly performing the integration, namely, by
Because of the lack of relativistic covariance, the results mayhe inclusion of the zero mode contributiph3], so that the
not be unique and may even cause some inconsistencies. Fasult is guaranteed to be covariant. Before proceeding, it is
example, it has been pointed out [ifi] that, in theq, =0  worth mentioning that in the literature there is a controversy
frame, the so-called-diagram contributions must be incor- about the zero mode contributions to the vector decay con-
porated in the form-factor calculations in order to maintainstantf,, and the form facto’\;(g?) in the pseudoscalar to
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vector transition: While Jaugl0,14 claimed that there are check if the calculated form factors and decay constants do
zero effects in the aforementioned two quantities, Bakkersatisfy these constraints. Furthermore, under HQS the num-
Choi and J{8,11] argued that botff,, andA,(qg?) are free of  ber of the independent form factors is reduced and they are
zero-mode contributions. This issue will be addressed in Secelated to some universal Isgur-Wig&V) functions. In this
I B. work, we shall follow[9] to evaluate the form factors and
The main purposes of this work are twofold: First, we decay constants in a covariant light-front formulism within
wish to extend the covariant analysis of the light-front modelthe framework of heavy quark effective theory. It is found
in [10] to even-parityp-wave mesons. Second, the momen-that the resultant decay constants and form factors do agree
tum dependence of the form factors is parametrized in avith those obtained from the covariant light-front approach
simple three-parameter form so that the reader is ready to ussd then extended to the heavy quark limit. The relevant IW
our numerical results as the analytic expressions of variouiinctions, namelyg, 71, and 75, are obtained. One can then
form factors in the covariant light-front model are usually study some properties of these IW functions, including the
complicated(see Sec. ). Interest in even-parity charmed slopes and sum ruld22,23.
mesons has been revived by recent discoveries of two narrow The paper is organized as follows. In Sec. I, we give the
resonances: the OstateDZ%,(2317) [15] and theP}? state  calculations for the decay constants sivave andp-wave
D41(2460) [16], and two broad resonance(2308) and mesons in a covariant light-front model. The calculation for
D,(2427)[17).} Furthermore, the hadron® decays such as Swave meson transitions has been done by Ja0s We
B—D** 7 and B—-D**D have been recently observed, extend it to thep-wave meson case. In Sec. IR—P,V,.SAT
whereD** denotes @-wave charmed meson. A theoretical (SAT standing for scalar, axial-vector and tensor mesons,
study of them requires the information of tBe-D** form  eSpectively transitions are considered. It is interesting to
factors and the decay constants@f* and D** . In the notice that the analytic forms &f— S, A transitions are simi-
meantime, three body decays Bf mesons have been re- lar to that of P— P,V transitions, respectively, while thie
cently studied at th& factories: BaBar and Belle. The Dalitz — T calculation needs formulas beyohd0]. We provide
plot analysis allows one to see the structure of exclusivéiumerical results foB andD decay form factors and thei
quasi-two-body intermediate states in the three-body signalslependence. These results are then compared to the other
The p-wave resonances observed in three-body decays beginodel calculations. In Sec. IV, properties of the decay con-
to emerge. Theoretically, the Isgur-Scora-Grinstein-Wisestants and form factors in the heavy quark limit are studied.
(ISGW) quark model[19] is so far the only model in the The universal Isgur-Wise functions, one fsrwave to
literature that can provide a systematical estimate of the trars-wave and two fors-wave to p-wave transitions, are ob-
sition of a ground-state-wave meson to a low-lying-wave  tained. Their values at zero recoil and their slope parameters
meson. However, this model and, in fact, many other modelgan be used to test the sum rules derived by Bjof&hand
in P—P,V (P: pseudoscalar mesoN;: vector mesoncal-  py Uraltsev23]. Conclusion is given in Sec. V followed by
culations, are based on the nonrelativistic constituent quarkyq Appendixes devoted to the derivations of conventional

picture. As noted in passing, the final-state meson at thggnt-front vertex functions and some useful formulas.
maximum recoil poing =0 or in heavy-to-light transitions

could be highly relativistic. It is thus important to consider a
relativistic approach.

It has been realized that the zero mode contributions can
be interpreted as residues of virtual pair creation processes in
the g —0 limit [20]. In [10], the calculation of the zero A. Formalism
mode contribution is obtained in a frame where the momen-
tum transferq® vanishes. Because of thig|{=0) condi-
tion, form factors are known only for spacelike momentum
transfer g?= —q?<0. One needs to analytically continue
them to the timelike regiof6], where the physical decay

Il. FORMALISM OF A COVARIANT LIGHT-FRONT
MODEL

In the conventional light-front framework, the constituent
quarks of the meson are required to be on their mass shells
(see Appendix A for an introductiorand various physical
quantities are extracted from the plus component of the cor-
processes are relevant. Recently, it has been shown th%ﬁspor)ding current matrix elements. However, this pro_cedure
within a specific model, form factors obtained directly from Will miss the zero-mode effects and render the matrix ele-
the timelike region(with q* >0) are identical to those ob- MeNts non-covariant. Jayd0] has proposed a covariant
tained by the analytic continuation from the spacelike regiorlht-front approach that permits a systematical way of deal-
[11]. ing with the zero mode contributions. Physical quantities
There are some theoretical constraints implied by heavguch as the decay constants and form factors can be calcu-
quark symmetry(HQS) in the case of heavy-to-heavy tran- lated in terms of Feynman momentum loop integrals which
sitions and heavy-to-vacuum decdd]. It is important to ~ are manifestly covariant. This of course means that the con-
stituent quarks of the bound state are off-shell. In principle,
this covariant approach will be useful if the vertex functions
“We follow the naming scheme of the Particle Data Grflgito ~ can be determined by solving the QCD bound state equation.
add a superscript®” to the states if the spin-parity is in the “nor- In practice, we would have to be contended with the phe-
mal” sense, JP=0",1",2%,.... nomenological vertex functions such as those employed in
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P TABLE I. Feynman rules for the verticesI{,,) of the incoming
mesons-quark-antiquark, whepg and p, are the quark and anti-
guark momenta, respectively. Under the contour integrals to be dis-
cussed belowH, andW,, are reduced tb,, andw,, , respectively,

P’ whose expressions are given by Eg.11). Note that for outgoing
mesons, we shall usiéfyol“,(,,Tyo) for the corresponding vertices.
P P,
2S+1 Bl
(a) (b) M( LJ) IFM
1 ’
FIG. 1. Feynman diagrams fg¢a) meson decay anth) meson pseudoscalarg) Hpys
transition amplitudes, where’(") is the incoming(outgoing me- tor €S i 1
son momentump; ") is the quark momentunp, is the antiquark vector (°S;) Ay V,L—W\,/(pl—pz)ﬂ
momentum anc denotes the correspondingA current vertex. -
scalar EP,) —iHg
1
the conventional light-front model. Therefore, using the axial CP,) iHap | ¥+ — (P1—P2), |75
light-front decomposition of the Feynman loop momentum, Wa,

sayp,,, and integrating out the minus component of the loop 1

momentump —, one goes from the covariant calculation to axial (*Py) —iH1, W(Di—pz)u ¥

the light-front one. Moreover, the antiquark is forced to be A

on its mass shell aftgy™ integration. Consequently, one can 1 1 ,
replace the covariant vertex functions by the phenomenologi-  tensor gP,) 1> H VM_W(/(pl_pZ)ﬂ (PL=P2),

cal light-front ones.
As stated in passing, in going from the manifestly cova-
riant Feynman integral to the light-front one, the latter is no

prEmi? | piZemd

longer covariant as it can receive additional spurious contri- M52=(e1+e2)2= ,
butions proportional to the lightlike four vect@. The un- X1 X2
desired spurious contributions can be eliminated by the in-

clusion of the zero mode contribution which amounts to '\7'6: \/M(’)Z_(mi_mz){

performing thep™ integration in a proper way in this ap-

proach. The advantage of this covariant light-front frame- o= \/m

work is that it allows a systematical way of handling the zero
mode contributions and hence permits to obtain covariant
X X M/ m2+ 12
matrix elements. ,_XeMo Mz Py 2.2
To begin with, we consider decay and transition ampli- Pz= 2 2x,M) 2.2
tudes given by one-loop diagrams as shown in Fig. 1 for the

decay constants and form factors of ground-stat@ve me-

X Here M/? can be interpreted as the kinetic invariant mass
sons and low-lyingp-wave mesons. We f(_)llow the approach squared of the incominggq system, ane, the energy of the
of [10] and use the same notation. The incomingtgoing quarki.

meson has the momentul' =p;"+p,, where p;*" It has been shown ifil2] that one can pass to the light-
andp, are the momenta of the off-shell quark and antiquark front approach by integrating out thE~ component of the
respectively, with massenai(”) andm,. These momenta can internal momentum in covariant Feynman momentum loop
be expressed in terms of the internal variabbes’ ), integrals. We need Feynman rules for the meson-quark-
antiquark vertices to calculate the amplitudes shown in Fig.
1. These Feynman rules for verticed(,) of ground-state
swave mesons and low-lying-wave mesons are summa-
rized in Table I. As we shall see later, the integration of the
minus component of the internal momentum in Fig. 1 will

, , bl e oy force the antiquark to be on its mass shell. The specific form
with X1++X2:1(') Notse that we 2useP =(P P PL). of the covariant vertex functions for on-shell quarks can be
whereP’==P’%=P’3, so thatP’*=P'"P'"—P[°. Inthe  getermined by comparing to the conventional vertex func-
covariant light-front approach, total four momentum is con-tjons as shown in Appendix A. Next, we shall use the decay

served at each vertex where quarks and antiquarks are Offpnstants as an example to illustrate a typical calculation in
shell. These differ from the conventional light-front approachthe covariant light-front approach.

(see, for examplg4,7]) where the plus and transverse com-
ponents of momentum are conserved, and quarks as well as
antiquarks are on-shell. It is useful to define some internal
guantities analogous to those defined in Appendix A for on- The decay constants fdr=0,1 mesons are defined by the
shell quarks: matrix elements

P1o=X1P' ", Piay =X P *p!, 2.1

B. Decay constants
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<o|AM|p(p')>EAZ:ifpp' , important. to check if the calculated decay constants satisfy
the nontrivial SUN)-flavor and HQS relations.

(O[V,|S(P"))=AS=fgP!, We now follow [10] to evaluate meson decay constants.
The matrix element for the annihilation of a pseudoscalar

(O|VM|V(P’ ,8')>EAX= M fye! state via axi_al currents can be easily written down and it has
the expression
! Sact ! ’
<O|AM|3(1)A(P”8 )>EAMA( A):M3A(1A)f3A(1A)8P«’ p 2 Nc 4 H,P P
A =i f d*p; S, 2.8

where the 25t ,=1s,, 3Py, 3S;, °P;, 'P; and °P,

states ofy;q, mesons are denoted By S V, 3A, A andT, where

respectively. Note that 4P, state cannot be produced by a o ) )

current. It is useful to note that in the 8W)-flavor limit S, =Ty, ys(P1+my) ys(—P2t+my)]
(m;=m,) we should have vanishinig; andf1,. The former _ P’ 4 N

can be seen by applying equations of motion to the matrix ALmy P+ (Mp=my)py, ], 2.9

element of the scalar resonance in E23) to obtain —pi2—m!2+ie andNy=p2—m2+ie. We need to inte-

o ;) — =] . g sy e
m2fs=i(m}—m,)(0[G;0s|S). (2.4) grate outp;~ in AM . ,As stressed |ﬁ10], if it is assumed ,trjat
the vertex functiorH’ has no pole in the upper complex
The latter is based on the argument that the ligRg and  Plane, then the covariant calculation of meson properties and

1p, states transfer under charge conjugation as the calculation of the light-front formulism will give identi-
cal results at the one-loop level. Therefore, by closing the

ME(CP)—ME(3P,), contour in the upper complep; ~ plane and assuming that
Hp is analytic within the contour the integration picks up a

M2(*P)——ME(*Py) (a=1,2,3), (2.5  residue aip,=p,, wherep5=mj3. The other momentum is

given by momentum conservatiofy;=P’'—p,. Conse-
where the light axial-vector mesons are represented by quently, one has the following replacements:
3% 3 matrix. Since the weak axial-vector current transfers as

(AM)aH(AM)b under charge conjugation, it is clear that the N1—>N1 f,iz— mj _Xl(M 12_ M(’JZ),
decay constant of théP; meson vanishes in the $8) limit
[24]. This argument can be generalized to heavy axial-vector HL AL =HL (P12 pD=h),

mesons. In fact, under similar charge conjugation argument
[(V,)2——(V,)2,MI(CPo)—MZ(®Py)] one can also prove
the vanishing offg in the SUN) limit.

Furthermore, in the heavy quark limitmg—©), the 4 -
heavy quark spirs, decouples from the other degrees of f d"py H s""ﬂ—iwf dxod“p h! &M (2.10
freedom so thasg and the total angular momentum of the NN, < M= :
light antiquark j are separately good quantum numbers.
Hence, it is more convenient to use thi= P32, p32 pl?2

WM_)WM WM(pszg) Wi »

in a generic one-loop vacuum to partidlée amplltudeA'VI

and Pl/2 basis. It is obvious that the first and the last of thesqn this work the explicit forms oh{, andw], are given by
states are’P, and P, respectively, whilg?25] (see Appendix A M
2 1
PSI :\/:lp +_3P ’ ’ ’ ’ ! X1X2 1 ’
| 12> 3| l> ‘/§| 1> hP:hV:(M Z_MOZ) ﬁ@ ,
C ‘/QMO
1 2
P12 = 1P - \[§|3P1>- (2.6 2 o e 1 Mg
3 hi=\/ =h3,=(M"2~Mg?) - , Pp
3 N, VZmyg 2v3My

Heavy quark symmetrfHQS) requires(see Sec. 1Y[21,26]

= = = X%, 1
fV fp, fAl/Z fs, fA3/2 O, (27) hiA:h-,r:(Mlz—Méz) 112 _ (,D';,
N¢ V2My

where we have denoted tfi}'? and P32 states byA'? and
A3 respectively. These relations in the above equation can
be understood from the fact thagy?,S1'?), (P&?,PY?) and S Mo?

32 3l wy=Mgy+m;+ms, W3A _
(P32,P3) form three doublets in the HQ limit and that the m;—m,
tensor meson cannot be induced fromthe A current. It is (2.11

;Wi =2,
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C
amplitudes forswave andp-wave mesons, respectively. fp= 3 2 T 5
There are several popular phenomenological light-front wave 16m X1X2(M"=My%)
functions that have been employed to describe various had- (2.1

ronic structures in the literature. In the present work, we shall
use the Gaussian-type wave functi@7] It should be stressed thé itself is free of zero mode con-

tributions as its derivation does not involve the replacement

Ty p/2+p'2 of N, (see also Sec. IlIB With the explicit form ofhp
<p’:<P'(X2,PD:4(_) . Zexp( _Z—L>, shown in Eq.(2.11), the familiar expression ofp in the
Xa

B'? 2pB'? conventional light-front approad,7], namely,

where¢’ and gD'; are the light-front momentum distribution N hp
jd 20°p, ( 4(MXp+MyXq).

2 dp, ee, V2N, 1
=o' (X, p )=\ — ', —= , (2.12 fpzz—f dxzdzp’—(m1x2+m2x1)
#o= e Py p2? : 16m° Vaxoh

dx; XXMy 9

XQDI(XZIpi)! (217)
The parameted’ is expected to be of ordehocp. The
derivation of these vertex functions is shown in Appendix A.is reproduced.

The matrix elemenlzélP can be evaluated readily by using  The decay constant of a scalar meson can be obtained in a
above equations. HoweveA,P obtained in this way contalns similar manner. By using the corresponding Feynman rules
a spurious contribution proportlonal ©“=(» ,»",@,) shownin Table I, we have
=(2,0,0,). It arises from the momentum decomposmon of

f)i,U« S__:2 NC H,
pi1¥=(P'—py)*=x,P"#+(0,0p] )" _
_2 5 X(=1)(=Po+my)]. (2.18
+E XP’*_sz‘—_l—rnz’“‘M (213)
2172 x,P'* @ ' Note that the tracezési) in the above equation is related to

sZ in Eq. (2.8 by the replacement om,— —m, and by
In fact, after the integratiom; can be expressed in terms of adding an overall factor of-i. Likewise, by using Egs.
two external vectorsP’ and®. Therefore, in the integrand (2.3), (2.10 and(2.15), it follows that

of A;‘f , one has

N, ) hg
p] p] fom s [ Dl a(mp—mpx,).
P tiu P1 P’+~1 ) P’.p'—w i 167° “X1Xa(M 2= M?)
%P2 P H 1 -P’ (2.19
. ) For m;=m,, the meson wave function is symmetric with
=XiP,t o=57 2% @,[—=Na+N; +my?—m3 respect tax; andx,, and hence s=0, as it should be.
We now turn to the decay constants of vector and axial-
+(1-2x)M ’2]. (2.14  vector mesons. The decay amplitude for a vector meson is
given by

The symbok= in the above equation reminds us that it is true

only in the.AM integration. There is one missing piece in the _ c iHy
contour integration, namely, the contribution of the zeroA,= —lzwj d4PiNr N
mode from thep; =0 region[13]. The appearance o, in 12

the numerator as shown in the above equati@i®) also (P1—P2),

prompts an extra care in performing theé~ contour integra- XTV' Yu(B1tmy)| y,— —w | pot mz)} g’
tion. It is interesting that this zero mode contribution pro- v

vides a cue for the spurious term il . As shown in[10], (2.20
the inclusion of the zero mode contrlbutlon mff matrix ) ) o
elements in practice amounts to the replacements We consider the case with the transverse polarization

Al ! ! 2 1
BloxiP’, Np—R+m2—m2+(1-2x)M'?, ot :<_8 P 0s ) R
(215) ( ) P/+ 1 1Yel | 1 ‘/2( ’ )

(2.2)
in the sM under the integration. By virtue of Eq$2.3),
(2.10 and(2.15, we obtain[10] ContractingAX with ¢* (=) and applying Egs(2.3), (2.10
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and(2.15 lead to[10]? TABLE Il. The input paramete8 (in units of GeVj in the
Gaussian-type wave functig.12).
f :LJ dx,d?p!" i UL, B Bs Ba Bs B
\ A473M’ 2 €L Xlxz(M/Z_M(/)Z) J ud su cu cs bu
, 180 0.3102 0.3864 0.4496 0.4945 0.5329
| X M72— (i — ) — 2 m+m; 35, 0.2632 02727 03814 03932 0.4764
1Mo WMy = M) =P = =P |- 3p, Ba, Br@ey 03305  0.3376  0.4253
v 3p, 0.2983 0.303 0.3305 0.3376 0.4253
(2.22 p, B,  Bxepy 03305 03376  0.4253

We wish to stress that the vector decay constant obtained in
the conventional Iight-front modéﬂ] does not coincide with Tables Il and Il are the input parametﬁrand decay con-
the above resul2.22) owing to the missing zero mode con- stants, respectively. In Table IIl the decay constants in paren-
tribution, whose presence is evidenced by its involvement theses are used to determige For the purpose of an esti-
N, [10,14]. SlnceA (A A) is related toAV by a suitable mation, forp-wave mesons iD, D andB systems we shall
replacement of Hv—> H3A(1A) and m,—-—m,, W, Use theB parameters obtained in the ISGW2 mop#0], the

VY . , . . improved version of the ISGW model, up to some simple
- 1W3A(1A) n Fhe trace(only the 1W terrns being kept in scaling. Several remarks are in ordéy: The values of the
the “A casg, this allows us to readily obtain

parameterBy presented in Table Il are slightly smaller than
N h! the ones obtained in the earlier literature. For examglge,
fan=— ¢ f dx,d?p’ °A =0.26, ,6’K*_=O.27 and,BD*=O.3_>8 are thained here using
lXlxz(|\/|’2_|\/|(’)2) the Gaussian-type wave function, while the corresponding
values are 0.30,0.31,0.46 [7]. This is because we have
o, 2 m; —m, utilized the correct light-front expression for the vector decay
XiMp“—ny(my+mp) —p, "= ———p,°|, constantfy [cf. Eq.(2.22]. It is interesting to notice thag,
Waa in the ISGW2 model also has a similar reduction due to
, hyperfine interactions, which have been neglected in the
N¢ 5, hi, original ISGW model in the mass spectrum calculati).
473M f pLxlxz(l\/I’—z—l\/I(’)z) The B parameters fop-wave states oD, Dy andB systems
are the smallest When compared/ﬁev (|||) The decay
y ( m;—m, ,2> constants ofP; and P32 states have opposite signs to that
PL

X

flA:

(223 of 'P, or P}2as can be easily seen from HG.6).
In pr|nC|pIe, the parameteg for p-wave mesons can be
determined from the study of the meson spectroscopy. Al-
though we have not explored this issue in this work, it is
important to keep in mind thaB's are closely related to

meson masses. In Table Il we have employgd, |
In order to have a numerical study for decay constants, we
need to specify the constituent quark masses and the param-203 MeV andfpx =fp_as inputs. It is generally argued
eter 8 appearing in the Gaussian-type wave functiari?.  thata;(1260) should have a similar decay constant aspthe
For constituent quark masses we (I6¢7,10,29 meson. Presumably,al can be extracted from the decay

—a41(1260)v .. Though this decay is not shown in the Par-
ticle Data Group(PDG) [18], an experimental value of

It is clear thatfi,=0 for m;=m,. The SUN)-flavor con-
straints onfg and f1, are thus satisfied. The HQS relations ;
on decay constants will be discussed in Sec. IV.

m, ¢=0.26 GeV, ms=0.37 GeV,

m.=1.40 GeV, m,=4.64 GeV. (2.29 TABLE lIl. Mesonic decay constantin units of MeV) obtained
. by using Egs(2.16), (2.19, (2.22 and(2.23. Those in parentheses
As we shall see in Sec. lll, the masses of strange andre taken as inputs to determine the correspongisgshown in

charmed quarks are constralned from the measured fornTable 1. The decay constarig L(1279=175 MeV is also used as an
factor ratios in semileptoni® —K* v decays. Shown in input (see the text for detail

28+1LJ fud fso feo fes fou
2When A is contracted with the longitudinal polarization vector 1

e®(0), fy v;\L/iII receive additional contributions characterized by the So (131) (160 (200 (230 (180
B functions defined in Appendix Bsee Eq.(3.5 of [14]] which 351 (216 (210 (220 (230 (180
give about 10% corrections g, for the vertex functiorhy, used in Po 0 21 86 71 112
Eq. (2.11). It is not clear to us why the result ¢f, depends on the P, (-203 -186  —-127  -121 = 123
polarization vector. Note that the new residual contributions are 'P1 0 1 45 38 68
absent in the approach (8] in which a different scheme has been Pi’z 130 122 140
developed to identify the zero mode contributions to the decay con- p3¥? -36 —-38 -15

stants and form factors.
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|fa1| =203+18 MeV is nevertheless quoted [81].2 Con-  vector mesons are the mixture oP, and 1P, states, while
trary to the nonstrange charmed meson case whé&r@as a thselzheavy axial-vector resonances are the mixtuﬂéi@fand
slightly larger decay constant thdd, the recent measure- Pi°. For exampleK;(1270) andK,(1400) are the mixture
ments ofB—D{*)D®*) [18,37 indicate that the decay con- Of Ksp, andKip (denoted byK,, andK,g, respectively, by
stants ofD{ and D are similar. Hence we shall takigx ~ PDG [18]) owing to the mass difference of the strange and

= st' As for the decay constant &*, a recent lattice cal- nonstrange light quarks:

culation yieldsfgs /f5=1.01*+0.01"337 [33]. Therefore we K1(1270=Ksp, sinf+Kip cosé,
will set fg«=fg in Table Ill.
It is clear from Eq.(2.4) that the decay constant of light K,(1400 = Kap, cos6—Kap, sing, (2.26

scalar resonances is largely suppressed relative to that of the

pseudoscalar mesons owing to the small mass difference b@ith #~-58° as implied from the study ofD

tween the constituent quark masses. However, as shown in,K,(1270)r, K,(1400)r decays[39]. We usefy (1270)
1

Table lI, this suppression becomes less restrictive for heavy_ ;-5 1oy fi - - vV
scalar mesons because of heavy and light quark mass imbal- 5MeV [39] to fix Brepy=Prry 0.303 GeV and

ance. Note that what is the underlying quark structure ofP®@iN fk (1400~ —87 MeV. Note that thesefyp,),
light scalar resonances is still controversial. While it hasBk(p,) are close t@Bx« . For the masses df1p andKsp ,
been widely advocated that the light scalar nonet formed bwe follow [24] to determine them from the mass relations
(600, (800, fy(980) anday(980) can be identified pri- 2mﬁ1
marily as four-quark states, it is generally believed that the 2 L
nonet states fo(1370), a(1450), KZ*(1430) and +Mic, (1400~ mKlpl. For D and B systems, it is clear from
fo(1500)/,(1710) are the conventionalq’ states(for a  Table Ill that|f sz <fs<fau2 in accordance with the ex-
review, see e.g[34]). Therefore, the prediction ofg  pectation from HQScf. Eq. (2.7)].

=21 MeV for the scalar meson in tis content(see Table

1) is most likely designated for thi€ (1430) state. Notice Ill. COVARIANT MODEL ANALYSIS OF FORM FACTORS

that this prediction is slightly smaller than the result of 42 In thi i first iew th \sis of the f
MeV obtained in[35] based on the finite-energy sum rules, n this section we 1irst review the analysis of Ineé lorm
factors fors-wave mesons within the framework of the co-

and far less than the estimate of (700) MeV in[36]. It is X . .
worth remarking that even if thgﬂlig?}t scalar[mgsons qrevariant light-front quark moddl10] and then extend it to the

made from 4 quarks, the decay constants of the neutral scR-Wave meson case followed by numerical results and dis-
lars o(600), fy(980) and a8(980) must vanish owing to ussion.
charge conjugation invariance.

In principle, the decay constant of the scalar strange
charmed meso}, can be determined from the hadronic ~ Form factors forP— P, V transitions are defined by

decay B*)SD:O since it proceeds only via_ external (P(P)|V,|P(P"))=Pf (q2)+q f (q2)
W-emission. Indeed, a recent measurement ofXBe, pro- a m e

— 2 2 2 _ . 2
P, M, (12327 Mh, (1380) and mKspl— M, (1270)

A. Form factors

duction inB decays by Bell¢37] indicates a‘Da;0 of order 60 (V(P",&")|V,|P(P"))=€,,0p8" "Peqhg(g?),

MeV [38] which is close to the expectation of 71 Me{Vee

Table Il1). In Sec. IllE we will discuss more abolD3* (V(P",e"[AL[P(P)

productions irB decays. The smallness of the decay constant = ile" f(a2)+e*" P[P a.(d®)+q.a_ (g2
fp* relative tofp can be seen from Eq&2.16) and(2.19 fey fla)te [Pua+(q")+a,a-(an)l},
that ) @D

where P=P’+P"”, gq=P’'—P” and the conventiorey;ss
fo o )ocf dXyr [ MeXotMg(1—Xy)]. (2.25 =1 is adopted. These form factors are related to thg com-
s0 monly used Bauer-Stech-Wirb@SW) form factors[40] via

Since the momentum fractiox, of the strange quark in the g2

D¢(D%,) meson is small, its effect being constructiveDy FIP(a®)=f.(q%), Fg'(@®)=f.(q)+ .—Pf—(qz),
case and destructive iD%, is sizable and explains why g
fD;rO/st""o.?J. f(qz)

Except fora; andb, mesons which cannot have mixing  V°¥(g%)=—(M'+M")g(q?), ATY(g?)=—

because of the opposite-parities, physical strange axial- M7+ M
A(@)=(M"+M"a.(¢?),
3The decay constant of; can be tested in the deca§™ qz
—>50a1+ which receives the main contribution from the color- APY(g?) = APV(g?)= ——a 2 3.2
allowed amplitude proportional tbalFBD(mgl). 3 () —Ag (0% 2M" -(a, 32

074025-7
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where the latter form factors are defined [8y]

12 __ M//2
(P(P)IV,[P(P))=| Py= =70, [FT7(a?)
M/Z_M//2
+ TQMFEP(QZ),
(V(P",e")|V,|P(P"))
1
— "% VPanVPV(qz),

- M "4 MII EIU’QBS

(V(P",e")|A,IP(P"))
8”* . P

=i M’ +M" //*APV 2\
( )8/,/, 1 (q) M""M”

P,ASY(?)

n .

&
—2M" = qLAFV (@) —-AG (@D, (3.3
with FYP(0)=FfP(0), ASY(0)=A%Y(0), and
APV(qZ): MAPV(qZ)_ ;Apv(qz)
3 2M" 1 2M// 2 .
(3.9

The general expressions fér to low-lying p-wave meson

transitions are given bj19]
(S(PM)|ALIP(P))=i[u,(q*)P,+u_(a%)q,],
(AYA(P",e")|V,,|P(P"))
=i{ti 0}t +&"* - P[P, cY(a?) +a,c %) ]},
(AVAP", )| A[P(P'))= = Qua 07) €paps”™ P 0P,
(AAP",e"M|V,|P(P")
=i{lyAq?) e +&" - P[P,c¥Aq?) +q,c¥a)]},
(AY(P",&")| AL IP(P)) = = U3 07) €ape”™ PGP,
(T(P",&")|V,[P(P"))=h(a?) €, ape" "P\PQ”,

(T(P",&")|A,[P(P))
= —i{k(@))e5P"+ 5P PP[P,b. (%)

+q,b_(g?)1}. (3.5

PHYSICAL REVIEW D69, 074025 (2004

i AcA) JACH)
The corresponding form factofa,a), € ,C_ and
diacay for P—'A(PA) transitions can be defined in an
analogous was.
Note that only the form factorsi, (g?), u_(g?) and

k(g?) in the above parametrization are dimensionless. It is

thus convenient to define dimensionless form factors by

(S(P)IALIP(P"))

M 12 _ M”Z
=—i[(P#—Tq#)FES<q2>
M 12 _ M//Z
+—2qMF5’S(q2)}
q
(A(P",&")|V,|P(P"))

* ’

=i [ (Mp—mg)esViA(g?) — P,V2%(a%)

Mp— My

8*_P/
—2my 7 qM[vs?A(qZ)—VEA(qZ)]],

(A(P",&")[A,|P(P"))
1

[ — *vppr0 APA/~2
o™ PPATAA), (36
with
Mp—m Mmp+m
PA/q2y— P AVPA 2y TP TTAPA 2
Va (@)= 5~ Vi (@) = 5=V (A,
3.7

andV5A(0)=VEA(0). They are related to the form factors in
Eq. (3.3 via

2
FIE2) =~ (e, FEa%)=~u.(q?)~ o5 u-(aP)

APA(GY) =—(M'=M")q(q?), ViAg?)=- )
’ 1 M’ —M" ’
VEAG?)=(M'=M")c.(g?),
q2
VEA(G?) = V5A(0%) = 5y e (a?). (38

In above equations, the axial-vector megostands forA'/?

“The form factord1a ) , CACA) cTACA) andquaza are dubbed

as £(v), c,(s;), c_(s_) and q(r), respectively, in the ISGW

1/2(3/2 1/2(3/2
The form factorst iz, ¢52¥?, ¢ and gy (31 are model[19].

defined for the transitions to the heaiy'” (P7%) state. For sthe gefinition here for dimensionlegsA transition form fac-
transitions to light axial-vector mesons, it is more appropri-iors differs than Eq.3.17 of [38] where the coefficientsnfp
ate to employ thé.-S coupled statesP; and *P; denoted  +m,) are replaced byrt,=m,). It will become clear in Sec. IV
by the particles'A and ®A in our notation. The relation that this definition will lead to HQS relations & D} ,D; tran-
betweenP}? P32 and 1P, , °P, states is given by Eq2.6). sitions[cf. Eq. (4.7)] similar to that forB—D,D* ones.
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or A%2 Besides the dimensionless form factors, this param-
etrization has the advantage that e dependence of the
form factors is governed by the resonances of the same spin,
for instance, the momentum dependencd gfq?) is deter-
mined by scalar resonances.

To obtain theP— M transition form factors wittM being
a ground-state-wave meson or a low-lying-wave meson,
we shall consider the matrix elements

(M(P")|V,=A,[P(P"))=B;", (3.9

where the corresponding Feynman diagram is shown in Fig.
1(b). We follow [10] to obtainP— P, V form factors before
extending the formalism to thp-wave meson case. As we
shall see, thé®>— S(A) transition form factors can be easily
obtained by some suitable modifications Br-P(V) ones,
and we need some extension of the analysifldl to the
P—T case.

For the case oM =P, it is straightforward to obtain

! n

PP_ _ .3
BM i

where

SU=Til ys(B1+ M) ¥, (=B 1+ my) ys(—Bo+my)],
(3.1)
Nj=pj?—m;?+ie and the subscript 08, stands for the
transition vector current. As noted in the Introduction we

consider theg™ =0 frame[10]. As in theAZ case, thep;
integration picks up the residys=p, and leads to

Ni(//)_},’\‘li(//)le(M r(m?2_ M(/)(//)Z),

I’jiMNZHqM

N J’d4 , MpHp S\P,P (3.10
p AN ! : Ar
(2m)* 1N1N1N2 . P1

q
_)(gp,vqa+ g,u,aQV+ gvaq,u,)I:A(ZS)ZZ—i_

PHYSICAL REVIEW D 69, 074025 (2004
N . 1 1
P1.=PuAY +a,AL,

pi.p1,=9,,AP+P,PAY

+(P,q,+09,P,) AP +0q,q9,A%,

A’ A’ A"

plp,p lvp la
=(0,,Pat9.aP,+0,uP A

+(9ulat 9palst Gual,) A
+P,P,P,AY+(P,P,Q,+P,4,P,+0,P,P)AY

+(0,0,Put A,P, 0t PLa,0.)AY +0,9,0,A8

N2—>22, X1N2—>0,

ADZ o+ EA(Z)
2 <2 q2 1 |

Z’LVNZ_)g,u,VASZ)ZZ—F q,u,qv

q-P
APZ,+2 ?Ag“A(f)

P A2
3_(]2( )

g-P 1
+ q,U«qan[ ASZ,+3 ?{ ASVAT - 3 (A(lz))zﬂ,

(3.19

whereA{",Z, are functions ok, ,, p/%, p| -q, andg?, and

their explicit expressions are given [ih0]. We do not show
the spurious contributions in the above equation since they

vanish either after applying the above rules or after integra-

-

tion. The last rule orplﬂplypialilz in the above equation,

which is needed in th® — T calculation, is extended in this

work. One needs to consider the product of f@rs. For
completeness, the formulas for the product of fpyts and

the expressions foAJ(i) ,Z, can be found in Appendix B.

From Egs.(3.10—(3.14) one can obtain the form factors

f. (g% for g>=—q°<0 [see Eq.(B3)]. We will return to

the issue of the momentum dependence of form factors in the
next subsection. The explicit expressions fior can be
evaluated readily by using the explicit representations of

N h'(" given in Egs.(3.12 and (2.11). At g?>=0, the

Hl,\/f,,)*)hl(ﬂ(/,) ,
Wy, — Wy,
d*p} dx,d?p! A
[ SR s i [ T g eem
N1NiNo x,NjNj
(3.12
where
12 "2 "2 2
+m +m
Mgzzpi L P 2, (313
X1 Xo

with p7=p| —x,q, . In general, after the integration in
B°M. B can be expressed in terms of three external vectors,
P’, g and®. Furthermore, the inclusion of the zero mode
contribution cancels away tle dependence and in practice

for p; andN, in S°™ under the integration, we hay&0]

074025-9

form factorf ,(0) is reduced to the familiar forri3,41]

1
f.(0)= @f dxd?p] ¢"* (x,p]) e’ (X,p])

A/A,/+pi2
X L
\/AIZ_"piz\/A”z‘{'piz

(3.19
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where

A'=mix+my(1—x), A"=mix+my(1l-x),

(3.16
with Xx=xX,.
For theP— S transition amplitude, we have
BPS . N j d4pl ” S (3 17)
e ) PR, e @
with
—Tr[ —)(B1+m))y,ys(B1+my)ys(—po+my)]
= —iSV#(m’l’—>—m’l’ . (3.18

Thus, theP— S transition form factors are related fa by

U __f (ml_) r‘ﬂl,h"_> g). (3.19)

To be specific, we give the explicit forms of. (q%) obtained
in the covariant light-front model

N
P''S

N
u,(g?)= 16;3

X[ =X (M§Z+M§?) = X,0%+ Xo(my +mj)?

+X1(M]—mMy)2+ X, (M +my)?],

! n

2
d?p} X1XaM "2+ p]

N
u_(gq?= —
16m° XzNiN'i

+mymy+ (M7 +my) (Xomg +X,my)

P r.g )2 ".q,)?
0P oz 2Pl Zh) )_Z(pi ;Zn)

q q q
SR e g P (g x)M
+2x1|v|52—2(m1—m2)(m1—m';)]]. (3.20

It is ready to evaluate these form factors by using the explicit
expressions oN andh. Numerical study of these form fac-

tors will be given in the next subsection.

We next turn to theP—V, A transition form factors. For

the P—V transition, we have

N /('H//)
PV_ _:3 °C 4.1 P
B,u I (277)4J’ d pl N N”N

SPV "% V, (32])

where

PHYSICAL REVIEW D69, 074025 (2004
PV_
Sw,—

(SPY=S2) s

(p1+m]

1
:Tr[( Yv— w (p;{_ pZ)
\Y

X (V™ Yuys)(B1tmy) ys(—Potmy)|. (3.22

As will be seen later, this expression $fis also useful for
the P—T calculation, and hence its explicit representation is
included in Appendix B. By the aid of Eq&3.12 and(3.14),

it is straightforward to obtain thB—V form factors,g(qg?),
f(g?),a-(g? [10]. For reader’s convenience, the explicit
forms of these form factors are summarized in Appendix B.
Note that the vector form factorV(g?=0)=—(M’
+M")g(g?=0) is consistent with that ifi7,41] obtained by

a Taylor expansion of thé /N’l’ term in g(q%) [see Eq.
(B4)] with respect tgp’/%. To show this, we write

h, R , d_hy

@IE —2X2pi'qi dp//2'\_,,

1 Tlprz_pr2 T
+0O(x39?), (3.29

and see that the second term on the right-hand side is needed
when considering thg, —0 limit of the p’-q, /g term in

the integrand ofg(g?), while O(x3g?) terms in the above
equation vanish in the same limit. We perform the angular
integration in theg| plane before taking thg—0 limit.

After these steps, we obtain the same expressiol (of

=0) as in[7,41].

The extension td®— A transitions is straightforward and,
as we shall see shortly, the resulting form factors have very
similar expressions as that in the above case. ForRhe
—3A, A transitions, we have

Ho(—iH%
P( SA) P 3A8/I* v

NiNIN,  *7

BP A= 3 Ne f 4p; He(—iH1) P tA kv
# YUONININ, M ’
(3.29

where

3 3 3
Sun =87 =S

1
= r(yy— —(P1—P2), )75(¢1+m1 (Y= Yu¥s)
W3,

X (Py+my)ys(—po+my)

=Tr

1
( Yv— WT(pI_ p2)v> (mz_m;)(’)/,u’)/S_ 7’#)

3A

X (Pytmy)ys(—potmy)
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1 1 1
SP,A=(ST =Sk M),

1 "
———(p1— P2

1A

=Tr

)V) FY5(¢€|,.

M) (Y= Vu¥s)(B1+my) ys(—Pot+my)

Tr

1 '’
— ——(pP1—P2)
1A

V) (pli_ m;l{)(’y,u,’)/5_ 7,4)

X(P1+my)ys(—Patmy) |. (3.29

We therefore havéS\F,’( P A =Sp, with the replacement
mj— —mj, WV—>W3A 15- Note that only the W" terms
are kept inSP "A. Consequently,

AN =1(0?)

with (m]— —m7,h{— th,lA WY—Wap 10),

a2 A0 =g(q?)

. n 4
W|th (ma{*) - mljl_ ,h(’/*) hSA,lA ;W«/;}W3A’1A)y

AP =2, (o)

H 14 "
Wlth (m;{H - m;l’_ ’h(’/—>h3A,lA ’WQ/_)WSA,]'A)’

N, 2hoh!
-ga(q )lh”%h”"' deZdsz P
16m° XN N

h(g®) =

2
—miAY AL+ AT 2AT AT |,

\%

/ I/

k(@®)=—1(9?)]n
A\ T
X2N1 1

_m:/l(M//Z_NH "2 )

ml _m2 Eli 'vl’2 N,
+16(m,—m;) (AP + AP) +4(2m;] —

X (2A3+2A% —AP) -4

(my—
’

2(A +AZ ) [my(q? = Ny —Nj —my?

4
mj —my) AL + )

q-P
AY'Zy+ 3—qz(A(12))2

PHYSICAL REVIEW D 69, 074025 (2004

A D) =a ()

. n "
with (m]— —m] ,H(’,—>h3A,1A ,W(’/—>W3A’1A),

(3.2

where only the W” terms inP—'A form factors are kept.
It should be cautious that the replacementngf— —mj
should not be applied tm] in w” andh”. These form factors
can be expressed in the3? and P}? basis by using
Eq. (2.6).

Finally we turn to theP—T transition given by

BPT= i3 Ne fd4p HP(iSPT "k A
M 4 [N (AN ’
(2m) N3NiNo
(3.27
where
S,LPLIA SD//( —q+Ppp- (3.28

The contribution from theS),/(—q), part is trivial, sinceq,

can be taken out from the integration, which is already done
in the P—V case. Contributions from thBPVpl)\ part can

be worked out by using E43.14). In partlcular the calcu-
lation of k(g?) andb_(q?) needs to use th@;p;p;N, for-
mula. Putting all these together leads to

m}) (A +AP) + (m]+mj—2m,) (AP +AP)

"2

P
12— m3) —2mimim,]+2(m}+mj}) A<21>zz+q—2A<12>

[M/2+M//2

|

g2+ 2(m;—my)(m}+my)]
\Y

+2AP?7,
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N ! ”n
it 16; jdxzdzpi ’: . [8(m2—mi)(Ag3>+2Ag3>+Ag3>)—2m;(A<11>+A<21>)
XN Ny

b.(g?)=-a.(q?

+4(2m;—mi—my) (A +AP) + 2(my+m)) (AP +2A% + AP))

2
+ V7[2[|v| 24 M"2— g2+ 2(m;—my) (M) +my) J(AY +2A3 + AZ — ALY — A
Vv

+[0%= N = Nj— (mg+mD)? (AP + 2A2 + AP — AP = AT)]

! n

N , hPhT
b_(q2):—a_(q2)|h<,ﬁh4+ :I_G;:_SfdxzdzpL R
XoN1 N7

8(my—m) (AP +2A% + A —6m (ALY +AY)

+42m;—m]—my,) (AP + AP) +2(3m} + m| — 2m,) (AP + 2A%2) + A?))

2[M"24+M"2— g2+ 2(m;— my) (m;+my) (A + 2A5 + AP — AP — AP))

2
+ —
"
\%

P
+2Z,(3AP - 2A — AY) + 2 q—2
q

2
6ANAY —BANAR + " (AP)2—AP

+[g2—2M "2+ Nj— Nj = (m}+m})2+2(m; —m,) 2 (AP + 2A%2 + AP — AlY — ALY) (3.29

To summarize, equipped with the explicit expressions ofvertex without the W part in the above expression. Jaus
the form factorsf . (g2),f_(g?) [Eq. (B3)] for P—P transi- employed a simple multipole ansatz for the meson vertex
tions, u.(g?),u_(q? [Eq. (3.20] for P—S transitions, function
9(a?),f(9%),a,(9%),a_(g%) [Eq. (B4)] for P—V transi-
tions, €(9%),9(9%),c.(g?),c_(q?) [Eq. (3.26] for P—A

transition andh(q?),k(g?),b. (9%),b_(q?) [Eq. (3.29] for Hu(p1.p3) = —5—5— (3.31)
P—T transitions, we are ready to perform numerical studies (p1—A“+ie)"

of them. TheP— S A, T transition form factors are the main

new results in this work. as the starting point of his simple covariant toy model. Then

the zero mode contributions can be systematically calculated
in this toy model. Note that the vertex functi¢®.32) is not
symmetric in the four momenta of the constituent quarks and
In the present paper we have followed and extended thgence can hardly be considered a realistic approximation of
work of Jaug10] to the p-wave meson case. As stressed bythe meson vertex. To remedy this difficulty, Bakker, Choi

Jaus, there are two classes of form factors and decay coand Ji(BCJ) [8] proposed to replace the point gauge-boson
stants. There is one class of form factors likg(q®) for  yertex y,(1— ys) by

transitions between pseudoscalar mesdfttg?) andA,(q?)
for transitions between pseudoscalar and vector mesons, and A2 A2
the pseudoscalar decay constinthat are free of zero mode (1— ve)— 1 (1— 76) 2
contributions. Another class of form factors like (q?) [or Yul2T s pP—AZ+ie Yul2T s pi—A2+ie
f(g?)] and the vector decay constafit are associated with (3.32
zero modes. The full vector vertex operator f&8;-state
meson has the expressi@ee Table)l

B. Comments on zero-mode effects

It is easily seen that the two methods due to Jaus and BCJ
1 should give the same result for form factors, but may lead to
iHy| v,— w (P~ P2) |- (3.30 different results for decay constants. Indeed, BP) (with-
out the 1W parh of Jaus[14] for the form factorf(qg?)
agrees with Eqs(37) and (38) of BCJ[11]. Moreover, it is
To begin with, we first consider the “simple” vector meson interesting to notice that E¢43.16) of Jauq 14] for the decay
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constantfy, (by considering the longitudinal polarization case = Several remarks are in ordef) Our meson light-front
as in BCJ also agrees with Eq41) of BCJ[8], though the vertex functions(2.11) are symmetric in quark momenta.
analytic expressions for the respective vertex functiBiys  However,B andC functions do not appear ifi, [Eq. (2.22)]
are differenf42]. Since the associated trace foris free of  and f(g?) [Eq. (B4)] for two reasons. First of all, we have

minus components of the internal momenta and there are ne(Y=0 from Eqs.(3.14) and(B9). Second, we contract”
zero modes in that case. Therefore, to the level without thfsee Eq.(2.20] and SV [Eq. (3.22] with the transve#se
(2. o . (3.

1MW part in the vertex operatd3.30, there is no discrep-
2
ancy between Jaus and BCJ and bigfias well asf(q7) are for the vertex functions given in Eq2.11), the coefficients

free of zero mode effects. M under i : di cally al
However, things are very different when the full vector B under integratior(see Appendix Bare numerically al-

meson vertex3.30 is used. The W part of the trace con- most vanishing and the form factb¢q?) is affected at most

tains minus components of the momenta and the zero moofélI one percent Igvel. For our purpeses, we can theref_ore ne-
problem must be faced. While BCJ claimed that bbgrand 9 ect aII_ thg residual contributions to the form factofis)
f(q2) are immune to the zero mode even for the full vector | "€ derivation of the decay constatand the form factors
meson vertex, Jaus obtained nontrivial zero mode contribuf+(9°).9(d%),a.+(a%), u+(9%,9(9%,c+(a%), and
tions. It appears to us that the controversy about the rol8(d%),b (g% does not depend ol and those relations
played by the zero mode lies in the fact that Jaus and BCdonnected toN, [see Eq.(3.14 and recall thatN,=Z,
have different procedures for identifying zero-mode effects— C{!]. These form factors are free of zero mode effects and
In the covariant light-front approach of Jqug)], the decom-  can be obtained using the conventional light-front approach.
position of the current-induced matrix element into 4-vectors(jii) Zero mode effects vanish in the heavy quark lisiee
will require to introduce a lightlike 4-vectdd which is not  Sec. I\). For example, the HQS relatiofy,= f,, indicates
covariant. Zero modes are required to eliminate the spurioughat f,, is immune to the zero mode contribution.
® dependence. BCJ decompose the propagator into on-shell
and instantaneousiot on-shell parts and show that only the ¢ Form_factor momentum dependence and numerical results
latter part can be the origin of a zero mode contribution. A ] ]
More precisely, the contour integration oy&r in Jaus is not Because of the conditiog” =0 we have imposed during
a regularized one, while in BCJ the contour can be regularlyn€ course of calculation, form factors are known only for
closed due to the presence of the nonlocal boson vertex ariPacelike momentum transfer’=—q? <0, whereas only
the zero modes display their effects at the levepdf (see the timelike form factors are relevant for the physical decay
Sec. 11 B2 of[8] for more detail about the BCJ approach for Processes. It has been proposed[6ii to recast the form
zero modes factors as explicit functions af? in the spacelike region and
The covariant toy model cannot be generalized beyondhen analytically continue them to the timelike region. An-
the simple meson vertex given by E@.31), namely, there Oother approach is to construct a double spectral representa-
are some possible residual contributions. In[14] Jaus has tion for form factors af®<0 and then analytically continue
developed a method that permits the calculation of the conif to g°>0 region[43]. It has been shown recently that,
tribution of zero modes associated with the current-inducedvithin a specific model, form factors obtained directly from
matrix element. Through the study of the angular conditiorthe timelike region(with q™>0) are identical to the ones
imposed on helicity amplitudes, several consistency condiobtained by the analytic continuation from the spacelike re-
tions can be derived under some plausible assumptions argfion [11].
used to determine the zero mode contributions. Within this In principle, form factors ag”>0 can be evaluated di-
approach, botti,, andf(q?) receive additional residual con- rectly in the frame where the momentum transfer is purely
tributions [see Eqs.(3.16 and (3.9) of [14], respectively  longitudinal, i.e.,q, =0, so thaﬁlzzqu covers the entirg
which can be expressed in termsgif” andC!™ functions ~ fange of momentum transfgr]. The price one has to pay is
defined in Appendix B.These functions depend qj ~ and that, besides the c'onventlonal valence-quark colntrlbutlon,
behavior like 0, 7)'(p,")l. Jaus then gave a counting rule one must also consider the nonvalence configurgiorihe

for detecting zero modd44]: For theB functionsi<j, there so-calledZ-graph) arising from quark-pair creation from the
. e ' vacuum. However, a reliable way of estimating thgraph
is no zero mode contribution and the valueBff” can be

; contribution is still lacking unless one works in a specific
calculated unambiguously at the spectator quark pole. F%odel, for example, the one advocated 1]. Fortunately,
the C functionsi=|+ 1 and the value o€{™ is the sum of

this additional nonvalence contribution vanishes in the frame
a spectator quark pole term and an unknown zero mode Cofghere the momentum transfer is purely transverse Gé.,
tribution. TheseB and C functions vanish in the covariant _

toy model, as it should be. Beyond the toy model, @€ 14 hroceed we find that except for the form factor to

functions contain unknown zero-mode contributions. Jausgye discussed below. the momentum dependence of form fac-
used some consistency conditions to fix some of@ffenc- 45 in the spacelike region can be well parametrized and

tions. reproduced in the three-parameter form:

polarization vectoe*(£). We have checked explicitly that

F(0)

1—a(g¥m3p) +b(a?/mg 5))

5The remaining spuriou® contribution to the form factoa_(q?) F(qz) =
cannot be determined in the same manner.

5 (333
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TABLE V. Form factors ofD— r,p,a0(1450) a,(1260) p,(1235) a,(1320) transitions obtained in the
covariant light-front model are fitted to the 3-parameter formB®R3 except for the form factov, denoted
by * for which the fit formula Eq(3.34) is used. All the form factors are dimensionless excephfdr, , b_
with dimensions GeV?2. For the parameteB; appearing in the tensor-meson wave function, we assume that
it is the same as thg parameter op-wave meson with the same quark content.

F F0O)  F(dra) a b F F(0)  F(d7a) a b
Fom 0.67 2.71 119 036 FJ” 0.67 1.16 0.50  0.01
vbr 0.86 1.36 1.24 0.48 Agf’ 0.64 0.93 1.07 0.54
APr 0.58 0.71 0.51 0.03 A 0.48 0.68 095 0.30
Fo% 0.52 0.54 107 026 Fg¥ 0.52 052  —0.08 0.03
ADPa 0.20 0.22 0.98 0.20 Vgal 0.31 0.34 0.85 0.49
V'fal 1.54 1.53 —-0.05 0.05 VZDal 0.06 0.06 0.12 0.10
APP1 0.11 0.13 1.08 0.54 ngl 0.49 0.54 0.89 0.28
vy 1.37 1.45 046 005 V> -010°  -0.r 021 0.67
h 0.188 0.208 121 109 k 0.340 0.338 —-0.07 0.12
b, —-0.084 —-0.091 0.97 058 b_ 0.120 0.133 1.15 0.66
for B(D)— M transitions. The parameteasb andF(0) are F(0)
first determined in the spacelike region. We then employ this F(q?) =
parametrization to determine the physical form factors at (1= a?/mgp)[ 1 —a(a?/mgp)) +b(q?/ Mg p))?]
g?=0. In practice, the parameteasb andF(0) are obtained (3.34

by performing a 3-parameter fit to the form factors in the

raggfe—DZ?jGe\Fs_clq_;$O for B decays and-10 G”e\/'%qz ~and achieve a substantial improvement. For example, we

<0 for D decays. These parameters are generally insensitiy, _ _ BKip, . o

to theq? range to be fitted except for the form facts(q?) ﬁa\(;etz;\] 2518 andt)_ 1670: thiri/é 121 'S fltt_T_dglo 5?'(3'33

in B(D)—'P,,P3? transitions. The corresponding param- a;]n i ?y eclsorlga—sé an o d(see able V[ when

etersa andb are rather sensitive to the chosen rangegfor t el 't_l_obrPuﬁ/ 9/.I(II. 4 'Shemﬁ)hoyi’ : tact d thei?

This sensitivity is attributed to the fact that the form factor n 1ables V= we show the form factors and €
dependence for the transition8(D)— m,p,a0(1450),

V,(q?) approaches to zero at very large|q?| where the
three-parameter parametrizatid8.33 becomes question- a,(1260), b,(1235), a,(1320), B(D) — K, K*'Kﬁglé%%)'
1 1

able. To overcome this difficulty, we will fit this form factor Ktp,,Kzp,K3(1430) and8—D,D* D5 (2308) D
to the form D% (2460). Theb—c transition form factors are plotted in

TABLE V. Same as Table IV except fd — K,K* K5 (1430) K1p,,Kzp ,K3 (1430) transitions.

F F(0) F(a2a) a b F F(0) F(a2a0) a b
FoK 0.78 1.57 1.05 023 FgK 0.78 0.99 0.38  0.00
\/DK* 0.94 1.33 117 042 ADK 0.69 0.92 1.04 044
ADK* 0.65 0.75 050 0.02 ADK* 0.57 0.75 094 027
FloKs 0.48 0.51 1.01 0.24 Fng; 0.48 050 —-0.11 0.02
ADKzp, 0.10 0.11 1.03 048 VEKlm 0.44 0.47 0.80 0.27
VlDKlFu 1.53 1.58 0.39  0.05 VgKlpl -0.09% -0.09 -0.16 0.5
APKzp, 0.98 1.05 092 0.17 V§K3P1 0.34 0.38 144 0.5
VlDK3P1 2.02 2.02 -0.01 0.03 VZK3P1 0.03 0.03 -0.18 0.10

h 0.192 0.205 117 099 k 0.368 0.367 -0.04 0.1
b, —-0.096 —0.102 1.05 058 b_ 0.137 0.147 117  0.69
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TABLE VI. Same as Table IV except f@d— , p,a,(1450) a,(1260) b,(1235) a,(1320) transitions.

F F(O)  F(dha) @ b F F(0) F(dha) a b
Fo7 0.25 1.16 173 095 F&7 0.25 0.86 0.84 0.10
VEP 0.27 0.79 1.84 128 A¥ 0.28 0.76 173 1.20
APP 0.22 0.53 095 021 Ad 0.20 0.57 165 1.05
o 0.26 0.68 157 070 F% 0.26 0.35 0.55  0.03
ABa 0.25 0.76 151 064 Vo™ 0.13 0.32 171  1.23
Vo 0.37 0.42 029 014 vim 0.18 0.36 1.14  0.49
ABb1 0.10 0.23 192 162 v 0.39 0.98 141  0.66
Vo 0.18 0.36 103 032 Vi -00% -0.15° 213 239
h 0.008 0.015 220 230 k 0.031 0.010 —2.47 247
b, -0.006 -0011 195 180 b_ 0.0016 0.0011 -0.23 1.18
Figs. 2-5. Because the quark contents offthef,, f, me- (pl-q,)? 1
sons lying in the mass region of 1.3-1.7 GeV are not well f d?p| ———=— —f d?p|p/? (3.39
established, we will not consider them in this work. In cal- q 2

culations, we have taken the meson masses frb8h The
masses oD§ andD, have been measured recently by Belle
to be 230&17+15+x28MeV and 242%26+20
+15 MeV, respectively17]. SinceD,(2427) andD;(2420) h.h’

in the g™ =0 frame. In analytic studies, however, it is more
convenient to utilize the identity obtained fifh0]

oh
are almost degenerate, we shall takepue~mpa2 fdxzdzpiﬂZB(lz)
1 1 N/N//
~2427 MeV. XN N7y
Several remarks are in order. h'n
(1) Many form factors contain terms likep( - q,)/g? in =f dx,d?p| f E" (X1Z,—2A?)=0. (3.36

their integrands. At first sight, it appears that linparterms
will not make contributions after integrating ovet . But
this is not the case. As noted before, a Taylor expansion d/sing the expressions &, andA{? given in Eq.(B9), it is
the h,/N7 term with respect ta;? will generate a term easily seen that thep( - q,)/q* term under integration can
proportional top! - g, [cf. Eq.(3.23]. When combined with pe related to otheg-independent quantities. The_ above iden-
the (p/ -q, )/q? term in the integrand of transition form fac- ity allows us to integrate out thp; -q, term without ex-
tors, this leads to plicitly performing the Taylor expansion dfy,/N’ . Instead

XoN1NY

TABLE VII. Same as Table IV except deHK,K*,KE(1430)K1P1,K3pl,K§(1430) transitions.

F FO)  F(gha) @ b F F0)  F(dha) a b
FBK 0.35 2.17 158 068 F§« 0.35 0.80 0.71  0.04
VBK* 0.31 0.96 179 118 ABK 0.31 0.87 1.68  1.08
ABK* 0.26 0.58 093 019 pBK 0.24 0.70 1.63  0.98
FfKS 0.26 0.70 152 0.64 F§K3 0.26 0.33 0.44  0.05
ABKep, 0.26 0.69 1.47 059 Vs'“m 0.14 0.31 162 114
V?K% 0.39 0.42 0.21 0.16 VSK3P1 0.17 0.30 1.02  0.45
ABKip, 0.11 0.25 1.88  1.53 V§K1P1 0.41 0.99 1.40 064
Vlepl 0.19 0.35 0.96 0.30 VSKlpl -0.08*  —0.16" 1.78 212
h 0.008 0.018 217 222 k 0.015 0.004 -3.70 1.78
b, —-0.006 —0.013 196 179 b_ 0.002 0.002 0.38 0.92
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TABLE VIII. Same as Table IV except faB—D,D*,D% ,D}?,032 D% transitions. For the purpose of
comparing with heavy quark symmetry, the form factots, c.., €, q are also shown.

F FO) Flonw) @ b F F0)  F(dra) @ b
FoP 0.67 1.22 125 039 F§P 0.67 0.92 0.65 0.00
\/BD* 0.75 1.32 129 045 ABD* 0.64 1.17 1.30 0.31
ABD* 0.63 0.83 065 0.02 ABD* 0.61 0.95 1.14 0.52
B0 0.24 0.34 1.03 027 80; 0.24 020 —0.49 0.35
1 0
ABDY?  —0.12  -0.14 071 018 ;80 0.08 0.13 128 -0.29
0
ye0r? 019  -013  -125 097 B0* -012  -0.14 0.67 0.20
1 2
ABDI®  0.23 0.33 117 039 B0f* 047 0.70 117 0.03
0
yBPi° 055 051 -019 027 #®0i* -009 -0.17 214 421
1 2
u, -0.24  -0.34 1.03 027 u_ 0.31 0.42 0.86 0.20
€1 0.56 038 -125 097 Qg 0.041 0.050 0.71 0.18
¢ —-0.042 -0.050 067 020 c* 0.045 0.055 0.71 0.20
€y,  —156  —145  -019 027 gy, —0.079 —0.114 1.17 0.39
¢ —0.03% -0.06F 214 427 ¢¥  -0.027 -0.026 0.03 0.45
h 0.015 0.024 167 120 k 0.79 1.12 1.29 0.93
b, -0.013 —0.021 1.68 098 b_ 0.011 0.016 1.50 0.91

of using Eq.(3.39 or (3.36 we have taken into account such and fixing B4=0.3073 GeV fromf,=237 MeV we have
effects in numerical calculations by substituting the relationa|so computed the similar form factor ratios for; — ¢
p!=p! —x,q, into hy,/Nj. transition and found

(2) Owing to the less energy release, form factorsDor
—,p,... andD—K,K* K** transitions are more sensitive (339
to the masses of charmed and light quarks. For this we can .

. . _\JPV PV, in good agreement with the very recent FOCUS measure-
utilize the form-factor ratiosr,=V""(0)/A;"(0) andr, ment of theD? — ¢ * v form factor ratiog[45]
=A5Y(0)/ATY(0) measured i — V{7 decays to constrain s oKV
the quark masses. The most recent and most precise mea-

surement oD * —K*%¢ *3 by FOCUS yieldd44]

ry(Ds— ¢)=1.569, ry(Ds— ¢)=0.865,

rv(Ds— ¢)=1.549+0.250+= 0.145,

ro(Ds— ) =0.713+ 0.202+ 0.266.
(3.39

(3) In the absence of any information for the parameter
B+t appearing in the wave function of tensor mesons, we have
taken B to be the same as the parameter of the-wave
The best quark massesg,, ms andm, obtained in this man- meson with the same quark content, for exampéD3)
ner are listed in Eq(2.24). Using this set of quark masses =B(D%)=0.331. Note that among the fo— T transition

ry(D—K*)=1.504+0.057+0.039,

r,(D—K*)=0.875-0.049-0.064.  (3.37)

0.4

B-D*

0.35

0.3 /
0.25 or— Fo

0.2 e

e e
N W

0O N ®W LW o RN W

cCoocoRr R RERR

o o o o
o = © ©

0.15
8 10 0 2

6 8 10

6 8 4
o (GeV?)

4 6 4 6 4

o (GeV?) ¢ (GeV?d) o (GeV?)
FIG. 2. Form factorsF;(g?) and Fy(q? for B—D and B

—Dg transitions.

FIG. 3. Form factorsV(g?), Aq(g?), A.(g?) and Ay(q?) for
B—D* transitions.
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FIG. 4. Form factorsA(q?), Vo(g?), Vi(g?) andV,(q?) for B—DY2¥2transitions.

form factors, the on&(q?) is particularly sensitive t@r. It~ ¢%?, ¢¥?, ¢¥2 andb, be negative{see Eqs(4.3—(4.5)].
is not clear to us if the complicated analytic expression forOur results are indeed in accordance with H@8e Table
k(g?) in Eq. (3.29 is not complete. To overcome this diffi- vy ).
culty, we apply the heavy quark symmetry relations in Eq. (5) For P—A transitions, the form factoV, is always
(4.4) below to obtaink(g?®) for B—D3 transition positive, while the sign of other form facto’sV,,V, de-
pends on the process under consideration, for example, they
are all positive inB(D)Hal,KaPl transitions and negative
in B—D; transitions.

(6) The form factors oB to light axial-vector meson tran-

1 1 sitions obey the relations/>*<A%P<VE™ and VSK3P1
h<q2>—5b+(q2>+§b_(q2>] (340  <ABK <V P,
(7) It is pointed out in[7] that forB—D,D* transitions,

the form factorsF,,Aq,A,,V exhibit a dipole behavior,
while Fy andA; show a monopole dependence. According to

2
m3+ Mo —q2>

k(g?) = mBsz( 1+ Pmamos
2

X

This can be tested iB~—D3°7~ decays to be discussed

be'iw 'i:n Sﬁc' Il Et h ¢ i h BssD. D* the three-parameter parametrizati@m33), the dipole behav-
(4) For heavy-to-heavy transitions such Bs-D, D*, 5 corresponds th=(a/2)2, while b=0 anda+0 induces

D**, the sign of various form factors can be checked by, monopole dependence. An inspection of Tables IV-VII|

heavy quark symmetry. In the heavy quark limit, heavy. . BD  BD* BK Bap
quark symmetry requires that the form factars, €4, |ngl|<cates that form factors, ", A_l ’ F? i DFo a'*"d
Qus €¥2, h, k andb_ be positive, whileu, , €, Gz, Fo " have a monopole behavior, whilg$®, VBP",
ABDL’ FB(DIK  AB(D)KSp, VSKlPl, Fo(®)% and FlDKO have
ey, 004 5503 a dipole dependence.
i k e . b L * *
I B i TR ] (8) In the heavy quark limit, FfDo(qz)ngDO/[l
T —q?/(mg—mpx)®],  while  F£(q®)=Fg°/[1-q%/(mg
0.4 _ V. | . .
Y o b +mp)?] [see Eqs(4.6) and(4.7)]. This explains whyF; and
Yo i 2 5 o4 s 6y UM Fo in the B—D§ transition deviate at largg? faster than
o (Gev?) & (Gev?) that in theB— D case(Fig. 2.
(9) Unlike the form factorF, in P—ag, K§ transitions
FIG. 5. Form factork(g?), h(g?), b. (g% andb_(g?) for B o o  _BD* . _
—D?} transitions. Except for the dimensionlekéq?), all other ~ Which is almost flat in itsy® behavior,F~° is decreasing
form factors are in units of Ge2. with g2 as it must approach to zero at the maximgfrwhen
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TABLE IX. Form factors ofD— ,p,K,K* transitions aq2=0 in various models.

Model ~ FP3(0)  AGP(0)  APP(0)  AR"(0)  VPP(0)  FPG(0)  ADK*(0)  APK*(0)  ADK*(0)  VPK*(0)
This work 0.67 0.64 0.58 0.48 0.86 0.78 0.69 0.65 0.57 0.94
MS [46] 0.69 0.66 0.59 0.49 0.90 0.78 0.76 0.66 0.49 1.03
QSR[47] 0.5 0.6 0.5 0.4 1.0 0.6 0.4 0.5 0.6 1.1
BSW [40] 0.69 0.67 0.78 0.92 1.23 0.76 0.73 0.88 1.15 1.23

mo— [see Eq.(4.7)]. In general, form factors foP—S  the covariant light-front model predictions are most close to
transitions increase slowly with®> compared to that foP  that of the MS model except f@—K* transitions.

— P ones. For examplé;8%(0)~FB7(0) atq®=0, while at

zero recoilF8%(q? ) <FF"(q2,,,). Note that the form factors ISGW model

g2=0, while FTSE(OK F?%(O). This can be understood Mmodel that can provide a systematical estimate of the transi-

from the fact thatP—S form factors are the same 4  tion of a ground-stats-wave meson to a low-lying-wave

P ones except for the replacementrof— —m/ andh meson. However, this model is based on the nonrelativistic
! P constitutent quark picture. In general, the form factors evalu-

(216;] ?s[iﬁgjeEc?.S-rzncz]rleCs::z;;?g:gggyi,ntﬁiv;ft;njhgasf:[rangted in the original version of the ISGW model are reliable

2_ 2 ; .
sitions than in heavy-to-light ones. We shall see in Sec. llI gonly atg”=gp, the maximum momentum transfer. The rea

that the suppression of ti— D form factor relative to the son |s_that the-form-factoq Zdepgzndence in the ISGW
B—D one is supported by experiment. model is proportional to eXxp-(g5,—q")] and hence the form

(10) To determine the physical form factors f@(D)  [actor decreases exponentially as a function af € a?).
—K,(1270), K,(1400), B—D,(2427), D,(2420), This has been improved in the ISGW2 mo@@])] in which
D,(2460), D,(2536) transitions, one needs to know thethe form factor has a more realistic behavior at larg@, (
mixing angles of !P,—3P, [see Eq.(2.26] and D}? —@?) which is expressed in terms of a certain polynomial
—D?¥2. As noted in passing, the mixing angle 16 systems :ﬁm]'slgv?gd't'og tlo_the form-tfactor morkr;entufm dependencte,
is about —58° as implied from the study ofD € model Incorporates a number of improvements,
—K,(1270)7. K,(1400)r decays[39]. A mixing angle such as the constraints imposed by heavy quark symmetry,

= 0 : ; hyperfine distortions of wave functions, ef80].
0D1_(5'7i2'4) Is obtained by Belle through a detailBd The ISGW2 model predictions foB—D** transition

—D*mm analysis[17], while 6p_~7° is determined from ¢4 factors are shown in Table XII. Note that form factors
the quark potential modé¢B8] as the present upper limits on
the widths ofD;(2460) andD,(2536) do not provide any
constraints on th®2— D32 mixing angle.

* 1/2
FSDO(qZ), VfDl (9?) [or £15(g%)] cannot be parametrized
in the form of Eq.(3.33 or Eq.(3.349 since they vanish at

1/2

certaing?, e.g. aroundy®~8 Ge\? for V?Dl (9%). We see
from the comparison of Table XII with Table VIII th&k) the
form factors at smaltj?> obtained in the covariant light-front

It is useful to compare our results based on the covarianing [ISGW2 models agree within 40%, afit) as g2 in-
light-front model with other theoretical calculations. Except BDY, o\ ABDY? 2y \,BDY% o ) 5
for the Isgur-Scora-Grinstein-WiséSGW) quark model Creasesk, °(q%), A°P1(a%), Vo (g%, h(a?), [b. (a9
[19], all the existing studies on mesonic form factors focusand b_(g?) increase more rapidly in the LF model than
mainly on the ground-statewave tos-wave transitions. For ihose in the ISGW2 model, whereaESDS(qZ) and
P—P, V form factors we choose the BSW moddD], the Bpl2 .
Melikhov-Stech(MS) model[46], QCD sum rulg QSR [47] |V1 1 (q2)| decrease more sharply in the latter model so that
and light-cone sum rule§LCSR) [48] for comparison. they even flip a sign near the zero recoil point.
Shown in Tables IX-XI are@,B)— m,p,K,K*,D,D* tran- The fact that both LF and ISGW2 models have similar
sition form factors calculated in various models. We see thaB—D** form factors at smallg?> implies that relativistic

D. Comparison with other model calculations

TABLE X. Form factors ofB— ,p,K,K* transitions a?=0 in various models.

Model FI5(0)  ASP(0)  Af(0)  AZ/(0)  VB(0)  FI5(0)  ABK'(0)  ABK'(0)  ABK'(0)  VEK'(0)
This work 0.25 0.28 0.22 0.20 0.27 0.35 0.31 0.26 0.24 0.31

MS [46] 0.29 0.29 0.26 0.24 0.31 0.36 0.45 0.36 0.32 0.44
LCSR[48]  0.26 0.37 0.26 0.22 0.34 0.34 0.47 0.34 0.28 0.46
BSW [40] 0.33 0.28 0.28 0.28 0.33 0.38 0.32 0.33 0.33 0.37
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TABLE Xl. Form factors ofB—D,D* transitions aq2=0 in various models.

Model F£5(0) ABP*(0) ABY* (0) ABD* (0) VED* (0)
This work 0.67 0.64 0.63 0.62 0.75
MS [46] 0.67 0.69 0.66 0.62 0.76
BSW [40] 0.69 0.62 0.65 0.69 0.71
effects could be mild iBB—D** transitions. Nevertheless, E. Comparison with experiment

relativistic effects may manifest ir_l heavy-to-light f[ransiti(_)ns, There are several experimentally measured decay modes,
zﬁgif;atl)lglg\}v.the maximum recoil. An example is prov'dednamely,B—>DD§* andB*_—>D** 7~ decays, which allow
to test our model calculations of decay constants and form
Others factors forp-wave charmed mesoi3** andD3* .

For B—~DDZ* decays, they proceed only via external
W-emission and hence can be used to determine the decay
constant ofDY* . More precisely, their factorizable ampli-
tudes are simply given by

Based on the light-cone sum rules, Chernyak] has
estimated theB—ay(1450) transition form factor and ob-
tainedFigo(O)zo.46, while our result is 0.26 and is similar
to the B— 7 form factor atq?=0. For B—a,(1260) form
factors, there are two existing calculations: one in a quark- Gr _ _
meson mode(CQM) [49] and the other based on the QCD A(B—DDg™*)= 5Vcbvzsal<D:* |(sc)|0)(D|(cb)|B),
sum rule(QSR [50]. The results are quite different, for ex- (3.41)
ample,Vsal(O) obtained in the quark-meson model, 1.20, is '
larger than the sum-rule predictior,0.23+0.05, by a factor  where {;0,)=0,7,.(1— vs)d, anda, is a parameter of or-
of five apart from a sign difference. Predictions in variousder unity. The recent Belle measurements rg&d
models are summarized in Table XIlIl. ,(1260) behaves — N o
as the partner of the meson, it is expected tha;tgSal is B[B—DD(2317 ][ Do(2317)—Ds]
similar to A(E)"’. Therefore, it appears to us that a magnitude =(8.5f§:§i 2.6)x 104,
of order unity forvg’al(O) as predicted by the ISGW2 model _
and CQM is very unlikely. Notice that the sign of the form B[B—DDs(246018[ D5, (2460 — D 7°]
factors predicted by QSR is opposite to oursé In hadrd@hic =(17.833+5.3 X104, (3.42
—a,P decays, the relevant form factors ar§™ and F5” '
under the factorization approximation. Presumably, the mearhe D%,(2317) width is dominated by its hadronic decay to

surement oB°—a; 7~ will enable us to tesvgal. D7 as the upper limit on the ratib(D%,— D% y)/T' (D%,

TABLE XIl. Form factors ofB—D** transitions calculated in the ISGW2 model.

F F(O)  F(d7a) a b F F0)  F(gna) @ b
FE‘DS 0.18 0.24 028 025 FEDS 0.18  —0.008
ABDY®  -0.16  -021 0.87 024 80" 0.18 023 089 025
0
yB01? —0.19 0.006 v -018 024 087 024
1 2
ABDY? 0.16 0.19 0.46  0.065 ;807" 0.43 051 054 0.074
0
/B0 0.40 032 -0.60 115 B0}  —0.12 -0.19 145 0.83
1 2
u, -0.18 —0.24 0.88 0.25 u_ 0.46 0.062 0.87 025
C1p 054  —0.016 Q2 0.057 0.074 0.87 0.24
cl? —-0.064  —0.083 0.87 0.24 ct? 0.068 0.088 087 0.24
O -1.15 -0.90  -0.60 1.15 s -0.057 -0.066 0.46  0.065
c3? —-0.043  —0.066 1.45  0.83 c¥? -0.018 -0.013 023 5.8
h 0.011 0.014 086  0.23 k 0.60 0.68 040  0.68
b, -0.010 -0.013 0.86 0.23 b_ 0.010 0013 0.86 0.23
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TABLE XIll. B—a,(1260) transition form factors a”=0 in various models. The results of CQM and
QSR have been rescaled according to the form-factor definition if3g).

Model A®%(0) Vo™(0) V;™(0) V;7(0)
This work 0.25 0.13 0.37 0.18
ISGW2[30] 0.21 1.01 0.54 —0.05
CQM [49] 0.09 1.20 1.32 0.34
QSR[50] —0.41+0.06 —0.23+0.05 —0.68+0.08 —0.33£0.03

—Dg") was set to be 0.059 recently by CLE®G]. There-
fore, 0.94<B[D¥,(2317)-D¢n°]<1.0. It follows from
Eqgs.(3.42 and(3.41) that (see[38] for detail

fpr ~47-73 MeV, (3.43

for a;=1.07. To estimate the branching ratios f 7° in

fo,= fDif cosfs+ fDﬁ’f SR (3.46
with 6,~7° inferred from the potential mod¢B8], are in
agreement with experiment.

Ideally, the neutraB decaysB’—D** * 7~ that receive
only color-allowed contributions can be used to extrBct
—D** transition form factors. Unfortunately, such decays

the D, (2460) decay, we need some experimental and theg;aye not yet been measured. Nevertheless, the degays
retical inputs. There are two different measurements of the ,p*x 0~ that receive both contributions from color-

radiative mode by Belle: a value of 0.3®.11+ 0.04 for the

ratio Dyy/D¥ #° is determined fronB— DDy, decayq37],
while the result of 0.5%50.13+0.08 is obtained from the

charm fragmentation af* e~ —cc[51]. These two measure-

allowed and color-suppressed diagrams provide a nice
ground for testing tha8—D** form factors and théD**
decay constants. Followin§38], we show the predicted
branching ratios in Table XIV. The experimental results are

ments are consistent with each other, though the central vataken from Belle[17], BaBar[54] and PDG[18]. For B~
ues are somewhat different. We shall take the averaged value D’;Ow‘ we combine the Belle and BaBar measurements

of 0.44+0.09 forDyy/D¥ #°. The ratioDsm* 7 /D¥ 70 is
measured to be 0.140.04+0.02 by Belle [51]. As for

D! y/D*#° itis found to be less than 0.22, 0.31 and 0.16,

respectively, by BaBaf52], Belle [51] and CLEO[16].
Theoretically, theM 1 transitionDg;— D%,y turns out to be
quite small[53]. Assuming that th®,(2460) decay is satu-
rated byD* 7% Dgy, DXy andDgmrm, we are led to

0.53<B(D;(2460—D* 7%=<0.68.  (3.49

This in turn implies B[B%SD51(2460)]:(1.6‘“4.6)
x1073. As a result, the decay constant bfy;(2460) is
found to be

fp_(2460~110-190 MeV. (3.45

Our predictionsf Dt = 71 MeV andeslz 117 MeV with the
latter being obtained from the relation

B(B~—D3°7 )B(D3°—D 7 )=(3.1+0.4x10 4,

B(B~—D3%r)B(D3°—D* "7 )=(1.8+0.4x10 4,
(3.47)

to arrive at
B(B~—D3% " )B(D3°—D 7 ,D* ")

=(4.9+0.6)x 10" “. (3.48
Using B(D3°—D" 7~ ,D* " 7~)=2/3 following from the
assumption that thB 9 width is saturated b = andD* 7,

we are led toB(B~—D3%77)=(7.4+0.8)X 10" *. We see
from the Table XIV that the agreement between theory and
experiment is generally good. In particular, the suppression
of the D7~ production relative to theD®7~ one (the
branching ratio for the latter being (5:3.5)x 102 [18])

TABLE XIV. The predicted branching ratios f@~ —D** %~ decays in the covariant light-fro€LF)
and ISGW2 models. Since the decay constantp-afave charmed mesons are not provided in the latter
model, we employ the CLF decay constants and the ISGW2 form factors for the ISGW2 results quoted
below. Experimental results are taken from Béll§], BaBar[54] and PDG[18]. The axial-vector meson
mixing angle is taken to bé=12° [38] and the parametegs, , are given bya; =1.07 anda,=0.27.

Decay This work ISGW2 Expt.
B~ —D§ (2308 7" 7.3x10°* 4.8x10°4 (9.2£2.9)x 10 * [17]
B~ —D, (24270 % 4.6x10°4 9.4x10 4 (7.521.7)x 104 [17]
B~ —D; (242007~ 1.1x10°° 8.2x 104 (9.3+1.4)x10 *[17,54
(1.5+0.6)x 10 2 [18]
B~ — D} (2460 7" 1.0x10°3 5.7x10°* (7.4+0.8)x 10 *[17,54
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clearly indicates a smalle8—D§ form factor relative toaB ~ Therefore, the calculation based on the light-front model in
—D one. For comparison, we also show the ISGW2 predic{9] is covariant.(ii) Since the heavy quark-pair creation is
tions in the same table. Since the decay constangsvedve  forbidden in themg—co limit, the Z-graph is no longer a
charmed mesons are not provided in the ISGW2 model, wgroblem in the reference frame whegé=0. This allows us
employ the decay constants in this work and the ISGW2o compute the Isgur-Wise functions directly in the timelike
form factors to obtain the ISGW2 results quoted in Tableregion.
XIV. Predictions in the other models are summarizef5ig|. In this work, we will adopt two different approaches to
Since the tensor meson cannot be produced fromvthe elaborate on the heavy quark limit behavior of physical
—A current, the deca™—D3%°7~ can be used to deter- quantities: one from top to bottom and the other from bottom
mine the form factor combination 7(g%)=k(q?) to top. In the top-to-bottom apprc_>ach, we w!II de.rive the
n b+(q2)(m§—m2D*)+b_(q2)q2 atq?= me. The measured decay cqngtants and form fac;tors in the covariant light-front
2 model within HQET and obtain model-independent HQS re-
rate implies thatp(mZ)=0.43+0.02, to be compared with |ations. In the bottom-to-top approach, we study the heavy
the predictions of 0.52 and 0.38 in the covariant LF andquark limit behavior of the decay constants and transition

ISGWZ models, re_spgctively. . form factors of heavy mesons obtained in Secs. Il and Il and
It is worth mentioning that the ratio show that they do match the covariant model results based
on HQET.
B(B~—D3(2460°7 ) Q
= — - - (3.49
B(B~—D;(2420°7") A. Heavy quark symmetry relations

In the infinite quark mass limit, the decay constants of
heavy mesons must satisfy the HQS relations given by Eq.
(2.7), while all the heavy-to-heavy mesonic decay form fac-
tors are reduced to three universal Isgur-Wi8&/) func-
tions, ¢ for sswave tos-wave andry, as well asrg, for
swave top-wave transitions. SpecificallB—D,D* form
factors are related to the IW functigjiw) by [21]

is measured to be 0.800.07+0.16 by BaBar[54], 0.77
+0.15 by Belleg[17] and 1.8-0.8 by CLEQ[55]. The early
prediction by Neuberf56] yields a value of 0.35. The pre-
dictions of R=0.91 in the covariant light-front model and
0.67 in the ISGW2 model are in accordance with the data.

IV. HEAVY QUARK LIMIT
o 1
In the heavy quark limit, heavy quark symmeiyQS é(w)= ——=[(mg+mp)f.(g®)+(mg—mp)f_(g?)]

[21] provides model-independent constraints on the decay 2\mgmy

constants and form factors. For example, pseudoscalar and )

vector mesons would have the same decay constants and all _ 1 f(a°) _ _ZW (9?)

the heavy-to-heavy mesonic decay form factors are reduced Jmgmp« 1+ BMp+g(q

to some universal Isgur-Wise functions. Therefore, it is im-

portant to study the heavy quark limit behavior of these = Vmgmp=«(a, (g% —a_(g?)), 4.9

physical quantities to check the consistency of calculations.
Since the analysis of heavy hadron structures and their dyand obey two additional HQS relations
namics in the infinite quark mass limit has been tremen-

dously simplified by heavy quark symmetry and heavy quark a(g’)+a_(q?)=0,
effective theory(HQET) developed from QCD in terms of
1/mq expansior{57], it would be much simpler to study the (mg—mp)f.(g?)+(mg+mp)f_(g?) =0, (4.2

decay constants and form factors directly within the frame-
work of a covariant light-front model of heavy mesons fully \yhere = (m2+ m?2 q%)/(2mgmp)). TheB— D} and

D)
based on HQS and HQET. Indeed, we have constructed S.L’%LD}’Z from factors in the heavy quark limit are related to
a model in[9] which can be viewed as the heavy quark limit A @) via [25]
of the covariant light-front approach discussed in Sec. Il. We 12

shall show explicitly that the decay constants and form fac-

tors obtained in the covariant light-front model and then ex- _ 1 _ 2 2
tended to the heavy quark limit do agree with those derived ¥2 @)= 4 Jmamex [(mg = mpy)u. (@) + (Mg Mo )u—(q)]
directly in the light-front model based on HQET. 0

Before proceeding, it is worth making a few remarks: 1 €1:(9%) )
Just as in the conventional light-front model, it is assumed in - 2\/m o1~ VMsMpy(d )
[9] that the valance quarks of the meson are on their mass BD;
shell in the covariant light-front model based on HQET. \/mBTDl/Z
However, this is not in contradiction to the covariant light- - —l(ci’z(qz)—cl,’z(qz)), (4.3
front approach discussed in Sec. Il. As stressed before, the 2

antiquark is on its mass shell aftgr integration in the
covariant light-front calculation. Moreover, the off shellnesswhile B—D3? and B—D} transition form factors are re-
of the heavy quark vanishes in the strict heavy quark limit.lated torg(w) by
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2 €3/2(q2)

MpMp32 w’—1

1 ng 3/2/ 2 32/ 2
=“3Vn 3/2(c+ (99)+cZ1g%))
Dl

2mg 24 g?) - c¥4q?)

Ty @)= —

Mp32 w—2
M3Moy Mg k(c?)
=2 h(g®)=\/-———
3 3mps 1+ o
V2 ,
== m mBme’Z%/z(q )
mng;
=- 3 (b (g®)—b_(g?), (4.4

and subject to the HQS relations
b.(6®)+b_(6%)=0, ciig*+c’g?)=0,

(Mg + Mo ) U (6) + (Mg —Mpe)u_(6?)=0. (4.9

PHYSICAL REVIEW D69, 074025 (2004

\/MgMp1/2 112
1 BD
vEP1

mg— mDiIZ 0

mBmD1/2

V 1 1/2

=————ABP1(g?)=
mB_ mDi/2

MrMpn1/2
_ V!B Dl BD}’Z 2
- 1/2V2 (q )
mg—n D1

1/2
o o
= 2 . .

- Mg — Mp12 q
_
(mg—mo2)?

(a?)

In next subsections we will derive the above HQS relations
for form factors and IW functions using the covariant light-
front model based on HQET.

We see from Table VIII that HQS relatiori4.5) for form
factorsb. andc'? are respected even for finite heavy quark
masses. From the numerical resultsrgf(w=1)=0.31 and
m3(w=1)=0.61 to be presented below in Sec. VIF, one
can check the HQS relatiori4.7) and(4.4) at the zero-recaoill
point. It turns out that, among the fourte&—-D** form

factors, the covariant light-front model predictions for
spl2(2)  BDY?  BD? .
A®Fr VvV, bbby b are in good agreement

with those in the heavy quark limit, while the agreement is

. _— BD}
fair for c¥* and c¥*. However, the predictions foF, °,
BD1/2(3/2) ’

V] andk at zero recoil show a large deviation from the

In terms of the dimensionless form factors defined in EqSHQS expectation. Indeed, Eqgl.7) and (4.4) indicate that

(3.2 and(3.6), Egs.(4.1) and(4.2) can be recast to

(@) 2VmBmDFBD 5 2\mgmp FSD(QZ)
tlw)= mg+mp  mg+mp q?
1_—
(Mg+mp)?
2\ mgMmpx BD* - 2
=——V"" (g9
mB+mD*
2N MgMp« BD* 2\ MgMp« BD*
=—A; (@)=—"A;" (99
mB+mD* mB+mD*
2ymgmps AP ()
= > ) (4.6
Mg+ Mp« q }
(Mg+Mpx)?

Likewise, Egs.(4.3) and(4.5) can be rewritten as

except forFfDO, these form factors should approach to zero

wheng? reaches its maximum value, a feature not borne out
in the covariant light-front calculations for finite quark
masses. This may signal thAcp/mg corrections are par-
ticularly important in this case. Phenomenologically, it is
thus dangerous to determine all the form factors directly
from the IW functions and HQS relations sinceng/ correc-
tions may play an essential role for some of them and the
choice of thepB parameters fois-wave andp-wave wave
functions will affect the IW functions.

B. Covariant light-front model within HQET

To begin with, we rescale the bound state of a heavy
meson by [P} Py, ,3,J,)=VMy|H(v,J,3,)). It is well
known that in the heavy quark limit, the heavy quark propa-
gator can be replaced by

i i(1+4)
Po—Motie 20-Ktie’

4.9

wherepo=mgqu +k andk is the residual momentum of the
heavy quark. One can then redo all the calculations in Sec. Il
by using the above propagator fgf andq; and perform the
contour integral as before. Since the contour integral forces
the antiquark to be on its mass shell, it is equivalent to using
the so-called on-shell Feynman rul&g in calculations. The
zero mode effect arises from tipg " =p} " =0 region and it

can be interpreted as virtual pair creation proce$26§ In
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the infinite quark mass limit, both quarks are close to their <I>(X,pf)—><1>(v.pq). (4.14)
mass shell and far from thp;*=p]"=0 region. Conse-

quently, the pair creation is forbidden and the zero moddS We Will see later, the widely used Gaussian-type wave

contribution vanishes in the heavy quark limit. Hence, we ddunctions have such a structure in the heavy quark limit,
not need to stick to the* =0 frame and are able to study while the BSW wave function does not have one. The nor-

form factors directly in the timelike region malization condition ofP (v - pg) can be recast in a covariant

To extract the on-shell Feynman rules, we use the calcuf—orm'
lation of the pseudoscalar meson annihilatich Fig. 1(a)] d4pq y )
as an illustration. By virtue of Eq4.8), the matrix element f (27)4(277)5(Dq—mq)|@(v'pq)| =1, (419
of Eq. (2.8) can be rewritten as

p or
T [ i
M o X J 2(2m)® L '
2 fd“p Héf e
== Putting everything together we have
(27T)4 q2U'kN2 MH g y g g
N
XT vy, vs(1+8) ys(— gt mg)], <O|AM|P(U)>=—i2(27TC)4f d*pg(—27i) 8(p5—m3)
(4.9

1 1
where we have use@;=pqg, P2=pq, My=my, N2=p§ X
—m§+ie and k=—pg+(My—mg)v from 4-momentum 2\/N—C VU - Pyt Mg
conservation. As in Sec. I, we need to perform the contour B
integral by closing the upper complg@y ~-plane, or equiva- XTIy, ys(1+8) vs(=Pgtmg)].

d(v- pq)

lently, the lower complexp, -plane. The integration forces (4.17
2_ 2
Pq=my and consequently, In practice, we can use the following on-shell Feynman rules
(0|A,|P(v)) to obtain the above and other amplitudes. The diagrammatic
o

rule is given as follow$9].

o Ne 4 . s 5 (i) The heavy meson bound state in the heavy quark limit
= (2m)* d”pg(—2i) 8(pg—mg) gives a vertexwave function as follows:
hp — ! \ ! dv.p)il'y (4.18
XWM—HW[VMV&;(PF%)%(—I25q+mq)]- \/]l\l_c v-p,+m, a

[ 1 _
(4.10 — N v‘pq_‘_mqq)*(v-pq)iFH, (4.19

Sincex, is of orderA ocp/Mg in the heavy quark limit, itis — with I'yy= y°T',¥°. For p-wave mesons, we denote the co-

useful to defineX=mgx,, which is of orderAocp even if  variant wave function byb (v pg).

Mg— . For on-shellp, we havep;=(p§l+mq)/p§ and (i) The internal line attached to the bound state gives an
on-mass-shell propagator,

1
2 2 2
U Pq= 5y (P +mg+X9). (4.11 1+
2X __..k__ Do 5 Y (for heavy quarks), (4.20
It is then straightforward to obtain - . i(—p,+m,) (for light antiquarks), (4.21
, q
hp _ 1 1 O'(X.p?), (412 wherev?=1 andpi=mj.
2v-kyMy 2N, ‘/v-pq+ Mg L ' (ii ) For the internal antiquark line attached to the bound
state, sum over helicity and integrate the internal momentum
with the aid of Eqs(2.2), (2.11) and the replacements using
Mo—2(v - pg+mg)mg, d*pq .
™ Ma/TTQ ch —(277 4(—27-r|)5(p§—m§), (4.22
m
2 R 2
¢(x,p1)— X P (X.p1)- (413 where the delta function comes from the on-mass-shell con-

dition andN. comes from the color summation.
An important feature of the covariant model is the require- (iv) For all other lines and vertices that do not attach to
ment that the light-front wave function must be a function ofthe bound states, the diagrammatic rules are the same as the
v-Pq [9): Feynman rules in the conventional field theory.
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These are the basic rules for the subsequent evaluations in
the covariant model. The vertdX, for the incoming heavy A, =
meson can be read from Table | or from E¢811) and

(A19) by applying Eq.(4.13. Hence, the vertex
the heavy quark limit have the expressions

St —ivs

35S, ¢

*Py: —i(v~pq+mq)
V3

Py €:PqVs

3p,: —swv"pé-

In terms of theP¥? and P32 states, the relevant
tions read

1
pl2. \/_3_,(0 “PgtMy)é ¥s

P3/2.

C. Decay constants

In the infinite quark mass limit, the decay constants are

defined by
(O[gy*ysh,|P(v))=iF pv*,

<O|a’y#hv| P*(018)>= Fvs",
<0|a7’”hv|s(v,8)>= Fsl)”“,
<0|57"7/5hUIA1’2(v ,&))=F p12e",

<O|a')"u’)’5hv|A3/2(U !8)> = FA3/28'LL1

where the decay constaRf, is related to the usual orfg by
Fy=VMyfy. Note that the tensor meson cannot be created
from theV — A current. HQS demands thig21,26|

F\/:Fp, FA1/2=F5, FA3/2=0.

Using the Feynman rules shown above, it is ready to
evaluate the one-body matrix elements for heavy scalar and

axial-vector mesons:

(O[St >>=—iTr[ W10
gy v 3 Y

1 1+
H 172 = M
(O[qy*ysh,|A*(v,e)) ‘/ij(V Y55

where

1
- %[(U pq+mq)é —3e- pq]75-

¥
£ysMy,
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d4p q)p(v'pq)
2m)0 _— .
J_f(z i (2malpi- )m —
functions in
X (v pgt+my). (4.28

Letting M;=a;+b ¥, we obtain
f(z )
XM\ - pg+ Mg,

d*pq 2
== JN—f (3, (2™ 8P

XANv-Pgtmy.

4(277)5(|0q mg)® (v - Pg)

%S ma)® (v pg)

(4.29

Thus,
vertex func- 5
FS_ FAl/Z— - _(a1+ bl)

NP

XANv - pgtmy(v-pg—mg)

5 s

p? +(my+X)? p?+(my—X)?
2X 2X

(4.23

(27m) S(p2— M) D (v - Pq)

(4.29

dXd2pl

2(2m)3X X.p0)

p

X

(4.30

Likewise, for the axial-vectoP3> meson

(O[gy*ysh,|A¥v,))

1 +7
—=Tr 2 [é(7a+va)_38a]75Mg ’

(4.25 %

[ Y*vs

(4.3)
with
(4.26
M= [ 2P 2 0 -
q)p(v : pq)
X ————=(my— <. 4.3
\/v.pq+mq( a Ibq)pq ( 2)
} The general expression g5 is
Mg=a2v“+ bz,)/a+ Czﬁl}a"' dzlé ,ya' (433

Sincee-v=0 and the contraction of,, with the spin 3/2
field vanishes, namely,

(4.27)

(1+3)[£(vatv,a)—3e,]y*=0, (4.34
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we are led td-,32=0 in the heavy quark limit.
For completeness, the decay constants of sheave
heavy mesons are included héfgd

., [(X+mg)?+p?
%Pl 2X '

(4.39

dXdsz
227 )3x

Fo=Fy= 2\/—f

We now show that the decay constants obtained in the X
covariant light-front model in Sec. Il do respect the heavy

quark symmetry relations given in E@.7) or Eq.(4.26) in

PHYSICAL REVIEW D 69, 074025 (2004

16— — ,
oA 2 ) 202m3 X J(x+mg2+p?
— dXdPp,  Pp(X,pf)
me3A_>\/N_cj 2 2 2\/— > 2
(2m) VX V(X+mg)“+p?

(mi+p?)?
x2

-ms |, (4.39

q

where use of Eq(4.37) has been applied for deriving the

the infinite quark mass limit and have expressions in agreeexpression off 1. By virtue of the identities

ment with Egs(4.30 and (4.35. To illustrate this, we con-

sider the decay constants of pseudoscalar and vector mesons.

In them;=
to

mg—e limit, Egs. (2.17 and(2.22 are reduced

dXdPp, X+mg

N
N T N
2 J 2(2m) \/— V( X+mq)2+pL

(4.39

where mg=m,, X=mgx and use of Eq(4.13 has been
made. Since the wave function is evenpp, a quantity
defined in Eq(2.2), it follows that

‘P(vai)
fdxdzpL p,=0
\/[mQx+mq(1—x)]2+pf
dXdp,  ®(X,p?) ma+p?

- X~ -

VX X+ mg)?+p? X

(4.37)
Therefore, fy=fp in the heavy quark limit. Moreover,

Vmgfp is identical toFp in Eq. (4.39 after applying the
identity

dXdp, 2 2(X+myg)
VX : VX+mg)2+p?
dXdp, V(X+mg)2+p?
=f d(X,p?) —————, (4.39
JX X

following from Eq. (4.37).

Likewise, Eq.(2.23 for the decay constants of axial-

vector mesons is reduced in the heavy quark limit to

f dXdp,  Py(X,p?) ( 2/2)=0,
p p
\/— \/(X+mq)2+pL o
dXdPp,  @p(X.pf)
f (X°=mg)=0,
X V(X+mg)2+p?
(4.40
and
3Jo|x<:|2pL Pu(X,pd)
— P
V2l X X mg2+p?
dXdp, )
:f cI)p(leL)

,pf+(mq+X)2 pi"_(mq_x)z
>< L
2X 2X

(4.41

following from the first equation of Eq4.40, one can show
that fsn=—v2f1, and hencef ,32=0 and Vmgf a12=F p12
=Fgin the mg—co limit.

D. Isgur-Wise functions

It is well known that thesswave tos-wave meson transi-
tion in the heavy quark limit is governed by a single univer-
sal IW function&w) [21]. Likewise, there exist two univer-
sal functionsy(w) and m3,(w) describing ground-state
swave top-wave transitiong25]. Since the IW functioné
has been discussed in detail 81, we will focus on the other
two IW functions 7y, and 755.

Let us first consider the function,,,, which can be ex-
tracted from theB—Dg or B— D1’ transition

(D& (v")[nE,ThY|B(v))

I

AT T M M)
(DYAv'" )N, ThY|B(v))

1 el ¢ 1+4’ 1+9 4d

—|‘/—§r Ys| 5 TVsMs. (4.42
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where M is the transition matrix element for the light an-

tiquark:

M3:J [d4pq](mq_¢q)(v,'pq+mq)- (4.43

and we have introduced the short-hand notation
d*pyq
_ 2 2
[d*pql= W(2W)5(pq—mq)
DX (0" Pg) (v Py)

\/(U/'pq+mq)(v' pq+mq) .

(4.44

The structure ofM; dictated by Lorentz invariance has the

form [58]

M3:a3+ bgﬁ +C3Ié ,+d3¢¢’. (445)

This covariant decomposition allows us to easily determine

the coefficientsag,bs,c5,d5 with the results:
az= j [d4pq]mq(v " Pgt mq),

1
b3=—f [d*pgl(v” pgtmg) 5

(v—v')-pq
1-w !

x{(vﬂr)'pq 4.46

1+w
4 ’ 1
C3=~— [d pq](v 'pq+mq)§

(v—=v")pq
1-w '

(v+v')-pq
1+w

wherew=v-v'.
ThenB—D} andB— D} transitions are simplified to

(D§(v")[hS,ThYB(v))

) 1+’ 1+4
=—i27y(w)Tr 5 > Y51,
(DY’ e)|hS, +Th?[B(v))
) 1+4’ 1+49
=27 @)Tr{ ¢ ¥s > | 75(

(4.47)

with

PHYSICAL REVIEW D69, 074025 (2004

1
= ——(az—bs+cz—d
Ty ®) 2ha(3 37 (3 3)

(v—v’)'pq)

1
z‘/—jf[d4pq](v’~pq+mq) Mg+ ———

(4.48

Since

1 1
— 2 2 2 ’ _ 2 2 12
U'pq_ﬂ(pi—'—mq"—x ): v 'pq_y(pL+mq+X )!
(4.49
the IW functionry, can be explicitly expressed as
1 f dXd?p, 1
ov3 J 2(2m)%X% \[z(1-2)

[p? +(my+2X)? ,
X m[pL‘F(mq'f‘X)(mq_ZX)],

Tyl @)= D% (zXp?)D(X,pT)

(4.50
wherez=X'/X and it can be related to-v’ by
1
2z =t \Jw2-1, z,=—, (4.51)
z_

with the + (—) sign corresponding to® greater(lesg than
v'3. Note thatv® greater(les9 than v’ corresponds the
daughter meson recoiling in the negatiyositive z direc-
tion in the rest frame of the parent meson. In other words,
after settingy, =v | =0, the daughter meson recoiling in the
positive and negative directions are the only two possible
choices of Lorentz frames. It is easily seen thagy(w) re-
mains the same under the replacement-efl/z. This indi-
cates that the Isgur-Wise function thus obtained is indepen-
dent of the recoiling direction, namely, it is truly Lorentz
invariant.

Next consider th&— D% or B— D3’ transition to extract
the second universal functiory,

(D3 (v',&)|nS,ThlB(v))

, . 1+4’ 1+4 P
=—]Tr €487 T T T y5M4 s
(4.52
(D¥(v' )|, Th2|B(v))
i
=—%Tr [(—yotvl)é+3e,]
1+4' 1+4 N
Xvs| 75 > YsMy (s (4.52

where
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1 94
M“=f [d*pal(mg—B4)Pg - (4.53 f =——f d* A=A )PP ———— |,
4 al{Mgq=Pq)Pq 4= =7 ) 1d7pal{ (A =ho) (1t (1w

Its most general expression is (4.56

and
M4a=a4va+ b4U;+C4Iéva+d4lé,Ua+e4lél);+f4lé ,U&
o 1 1 1
TaYathad yathyd 'y, . (4.59 94:—§J [d4pq]<m§_5(1+w)>\i—§(1—w)>\2>,

Although only terms proportional ta,, ¢, andd, will con- (4.57)

tribute toB— D} and B— D} transitions after contracting yitn

with the vertex of the spin 3/2 particles, all the terms\ity,,

have to be retained in order to project out the coefficients. _(v+v')-pq _(v=v')-pq

With M,, contracting withv®, v’ and y* we find the N=—r 0 MN=—q— - (458

following equations:
Since onlyv ,,, ¥v, andé v, terms inM,, survive after
tracting with the vertex oD% and D3 particles, the
+bw= “pglmgu - contr o -2 ! ’
3+ by J[d PalMqv - Pg matrix elementg4.52 are simplified to

, (D% (v',e)|hS,ThE[B(v))
a4w+b4=f [d*pglmgv’ - Py, 2

, 1+4'\ [1+4
=—|1/§7'3,2(w)8aﬁvﬂ Tr§ v > r EREE
C4+2d4w+f4+4g4=—f [d4pq]m<24’
(D3’ &)|hC,ThE[B(v))
C4+d4(1)+g4 i
i
- f[dpq] 2 e | 1-w |
1+4' 1+4
d4+f4w X’)/S 2 r 2 Y5 (45g
o 4. U Pg[(vFtv")-pg (v—0) Pq with
- f[d P 27| 17 1o '
1
Caw+dy 7'3/2((1)):‘/_3(514_04_(14)
:—J[d4pq]v'épq((v—;—l—)’_’z),pq+(v—lv_’i).pq), _if[d"'p]()\ ) (ML)
2v3 o R
dswTatgs A2 (14 0) N2 (1— 0)—m
__f[d4p]v’-pq((v+u’)~pq (v—v’)~pq) - 2(1+w) - (480
B o2 1+ 1- ’
@ @ A more explicit expression ofg, reads
(4.595
. . . 1  dXdp,
ande,=d,, h,=h,=0. Solving the above equations yields Ty w)= —f
v3J 22m)3
My
a4=7f [d*pal(N 4 +10), 2\/E<1>;(zx,pf)q>(x,pf)

X
" VIp? +(mg+X)2][p? + (mg+2X)?]
b= 3¢ [ [apln 1),

1
. 0, stz
_ _ = 4 2 9
Ca= 4f[d pq](”‘”)‘—) (1+w)(1—w))' X (20+0") pg+3(v - Pg)2— (1— w?)m?]
1 1
e LGRS ] Pl Pam el P (460
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After some manipulation, we obtain a simple relation be- (D3’2 v'e) |V IB(v))
tweenry, and 7q5:

=j %7’3/2((»){(1— a)z)s::— (e* ~v)[3UM+(2_w)U,,L]},

Ty ©) = 1+w71/2(w)
_‘f} dxdp] 2 ’2 312,y
o] Sam X (D¥(v",2)|A,B(v)
\/— 12 = 1 *xv ra, B
Zp; —Erg/z(w)(l-l—w)eﬂmﬂs v VP,

X .
VP2 + (Mg +X)2][p12+ (Mg +2X)?]
(4.62

Finally we include the usual IW functiof{w) for the sake of
completenes§9]

(D3 (v",2)[V,|B(v))

J— * vV ra
=V373 ©) €, 058" TV U vh,

®* (zX,pF)P(X,p?) (D3 (v",2)|AL[B(v))

dXcPp, 2z
o |
=—i\/§7'3/2(w){(1+a))sz,,v"—szﬂvavﬂv/;}. (4.65

2(27)3X 1+72

p? + (My+X)(Mmy+2zX)
2 211 2 21 (4.63
VIP? +(mg+X)2][p? + (mg+2X)?] It is easily seen that thB—D** matrix elements of weak
currents vanish at the zero recoil poiat=1 owing to the
and the relevant matrix elements are given by orthogonality of the wave functions & and D** . Setting
N pg=mgv andpp=mpv’,..., etc. in Egs(3.1) and(3.5) and
(D(v’)lhi,PhElB(v)) comparing with Eq.(4.69 yields all the form-factor HQS
) relations given in Sec. IV A.
)Tt 1+4 1+4 We are ready to check the heavy quark limit behavior of
Y5\ 72 2 |75 form factors to see if they satisfy the HQS constraints. Con-
_ sider the form factoFBDé(qz)z —u. (g first. Letx,=x
! [ b 1 1
(D*(v",8)lh, Thy|B(v)) X3=1=X, my=my, X=myX, X' =mcx, it follows from Eq.
. 1+4' 1+4 - (32@ that
=¢(w)Tr{ ¢ 5 — |irs
(4.69 hphg
U ( q2)— {2 X+mgy) X' —2mgX
. . x 2NN
E. Form factors in the heavy quark limit
From Eqs.(4.64), (4.47) and(4.59 we obtain the matrix —2m3(1—x)2—x2q2+ 2mgx(X—X') = 2p}?
elements oB—D,D*,D** transitions in the heavy quark )
limit +2xpL-q.}, (4.69

(D(v")|V,B(v))=E&(w)(v+v"),,
where use of Eq(2.2) andp =p] —xq, has been used. In

(D*(v',8)|VM|B(v)>= — () €, papE” ey, the heavy quark limik~O(A gcp/Mg) — 0, we have

(D*(v',8)|A,IB(v))=ié(w)[(1+ w)ey, —(e*-v)v, ], _
1 [ dXdPp, Mg

_ U (g ———— ——— o (X,p2) e(x,p}?)
(DE()|ABO)=i27 (@) (v-0v"),, ’ 23 ) 22w My .
(DYAv",&)|V,|B(v)) X[p1 2+ (Mg +X)(mg—X")]. (4.67)
=—i2r0)[(1-w)ey+(e*-v)v,],
(D0’ ,8)|ALIB(v)) =~ 271 @) €,pape™ v VP, Substituting the replacements
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M g— N mp[ (X+mg)2+pi2J/X,

Mo— Vmdl (X' +mg)2+p )X,

P06 p%)— \ 52 @ X, p),
mC
ep(x,P1%) =\ 57 Pp(X'.p17)

valid in the infinite quark mass limit and noting that
=X'IX=m./m,, we arrive at

(4.68

1 dXd?p] 1

o) 202732 2

¥ (zX,p?)D(X,p!?)
2V3

us(g?—

P12+ (mg+2zX)?
>< F—

P2+ (mg+X)?

X[p! 2+ (my+X)(my—2zX)], (4.69

and hence

o

BD
°(gq?) — Ty @
[rm— mD* (09)— T ).

(4.70

Likewise, it is easily shown that

VMgMp E

Mg+ Mp

P0(g?) — &(w). (4.70

In order to demonstrate that tiile—D* form factors are
related to the IW functiod(w), we need to apply the identity
(3.36 which has the expression

hehy,
((Q- P)
N/

2 !
fdxdzpl APA
XN

AN
1"

pl-d.
1

12 2 2
1+ mg—X9)

4.72

in the mg— e limit. This identity allows us to integrate out
the (p| -q,)/q? term. Then the form factag(g?) that reads

[see Eq(B4)]
2h/ h"
[ axcen; =2
x2N;NJ

!

P.- CIL

N¢

Mg+ Mpx 1672

9(g?)=—

[(X+X )(X+mg)+x(q-P)

XIOLZer—pL fi) ]
q

is reduced under the heavy quark limit to

Mg+ Mpx*

"
\Y
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1 J dXd?p! -
- zX, d(X
Mg+ Mpx J 2(27)3X P*(2XpHP(X.p%)
P12+ (Mmg+X)(my+2X)

X ., (479
VP2 + (Mg +X)2][p12+ (Mg +2X)?]

where use of Eq¥2.11), (3.36) and (4.68 has been made.
Comparing with Eq(4.63) it is evident that the heavy quark
limit of g(g?) has the same expression &&) apart from a
mass factor. Therefore, we arrive at

PN
2" VD" ()= - 21 mgoe (a) — £(0).
B D*

4.77

We next turn to the form factorg,,, and g, and see if
they are related to the IW functions, and 75,,, respec-
tively. We first study the heavy quark limit behavior gt*
andg®A. It follows from Eq.(3.26) that

\ mBmDilquA(qz)
\/mBlelz—f dxd?

, (pl-a)?
P T

4

2hphi,

XN/N//

dXd?p!
2(2m)3

¥ (zX,p?)P(X,p;?)

Vzp?

VP! 2+ (Mgt X)2][ 2+ (Mg +2X)2]

(4.78

and

"If the Taylor expansion olh(’,/N’l’ is performed to take care of the
p!-q, term in the integrand of(q?), it turns out that the heavy
quark limit of theB—D* form factors will be related to the IW
function

dXdPp!
do= 55

S (X pAB(X, P

X' (X+mg)+X'(X—X")p/?0y

X
VIpI2+ (mg+X)2][pi2+(

N[ d
0= hy
W, \dp?Ry)

lp

. (479
mg+X")?]
where

(4.76

This function{(w) first obtained if 7] was found numerically iden-
tical to &w), as it should be. However, one has to appeal to the
identity (4.72 in order to prove this equivalence analytically.
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pl+X?
Xexp — ,
232

77)3’4 X2+ m§+ p?

MaMn3/ 3A/~2
\VMeMp2g™7(q%) Dpen(X,p2) =4v2
1 dXdPp! @}(zXpHD(X,pi?)

2(2)3X? _
2v2J 2(2m) Vz(1-2) Bo(X,p2)= 4

2
[P %+ (my+2X)? , P
X\ —5———5p“+(mg+X)(mg—zX)] 1
P12+ (my+X)? . K K ><exp{—

K
i

2
! dXd’p] 2 2 (4.83
o) 2(2m)° 5 (2Xp)X,PL) '
where@G(X,pf) is the heavy quark limit expression of the

\/Epf Gaussian-type wave function given in Eg.12. For p-wave
4.79 heavy mesons, the wave functions are

2X
. X mz+p?
2 2X

X .
VP 2+ (mg+X)2][p/2+ (Mg +2X)2]

2
Since (X, pl)= \/%@Bswx,pi),
: NG ’
2 = = qlA2) — ~ [ S q3A 2
2 1 As pointed out in[9], not all the phenomenological light-
2 1A( 42 3A[ 2 . :
AzAd°) = 34 (q9)+ 7§q (99, front wave functions have the covariant property. We found

that the Gaussian wave function and the invariant-mass wave
(4.80 f i f iom- h
unction can be reexpressed as a pure function-@f,. The

following from Eq.(2.6), we obtain wave function®g can be rewritten in terms af - py:

3/4 X2+m2+ 2
\/mBmoif"‘%/z(qz)HTuz(w) (48D @y (x,p?)=4 1 \ /—qpl
B? 2X
and 1 [(Xx m2+p?|?
xexp — —| | =+ -m:
282\ 2 2X a

V2
1tV mBme’zqs/z(qz)ﬁ T3 @), (4.82
—4

T ) 3/4 1 , ,
—| Vo-pgexp — =—[(v-py)?—mal|.
as promised before. B2 v Pq Zﬁz[(v Pq) ol

All other HQS relations in Eqg4.1), (4.3) and(4.4) can (4.85
be proved in the same manner except for Bhe D3 form
factorsh,k,b, ,b_ for which we are not able to show at Therefore this wave function preserves the Lorentz covari-
present that they are related tg(w) in the heavy quark ance of Eqs(4.54), (4.45 and(4.28. This also can be ex-
limit. Perhaps one needs some identitieg 19] and those amined by a numerical check of the covariant condition
derived in Appendix B to verify the HQS relations between

2. 2
B— D3 form factors andrz(w). This remains to be inves- dXcp, 2y dXdp, 2 Mg TP
; oo PXp)X= 3o P(X,p7) ,
tigated. 2(2m)°X 2(2m)°X X
(4.86

F. N ical Its for IW functi d di i L e . .
umercal results for unclions and discussion which is satisfied if®(X,p?) is a function ofv-pg. How-

Covariance requires that light-front wave functions be aever, very surprisingly, the commonly used BSW wave func-
function ofv - p,. Currently, there exist several phenomeno-tion cannot be recast as a pure functiorvep,. Hence the
logical light-front wave functions commonly utilized in the BSW wave function breaks the Lorentz covariance. Indeed,
literature. There are several popular phenomenological lightwe have already found previous]y] that there is some in-
front wave functions that have been employed to describgonsistent problem by using the BSW wave function to cal-
various hadronic structures in the literature. Two of them, thesylate various transition form factors. Now we can under-
Bauer-Stech-WirbelBSW) wave function®gsy(x,p?) [40]  stand why the BSW wave function gives such results
and the Gaussian-type wave functidn(x,p?) [27], have inconsistent with HQS found if¥7,59]. Hence, by demanding
been widely used in the study of heavy mesons. In the heawselativistic covariance, we can rule out certain types of heavy
quark limit, we denote these wave functions as follows:  meson light-front wave functions.
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1.0 — 71— TABLE XV. The Isgur-Wise functions-,, and s, at zero recoil
L ] and their slope parameters. The numerical result$18y61,63,64
08 F ¢ i denoted by *” are quoted from[60].
06 A1) pi 73(1) 3 Ref.
0.31 1.18 0.61 1.73 This work
0.4 0.06 0.73 0.52 1.45 [61]*
0.09 1.1 0.28 0.9 [62]
0.2 0.13 0.57 0.43 1.39 [63]*
’ 0.22 0.83 0.54 1.50 [64]*
o 0.34 1.08 0.59 1.76 [19]*
%0 i1 12 13 14 15 0.35:0.08  2.5-1.0 [65]

0.41+0.04 1.30:0.23 0.66-0.02 1.93-0.16 [66]
0.74+0.15 0.90:-0.05 [67]

FIG. 6. The Isgur-Wise functiong 7, and 73, as a function
of w.

1
To perform numerical calculations of the decay constants ; |T§?%(1)|2—; |T(1?2)(1)|2:Z’ (4.90
and IW functions in the heavy quark limit, we folloj@] to
use the inputm,=250 MeV andfg=180 MeV to fix the  wheren stands for radial excitations. This sum rule clearly
parameteB.. to be 0.49. For decay constants we then obtainmplies that 75,(1)|>|71,5(1)|. Our results indicate that this
sum rule is slightly oversaturated even by=0 p-wave

Fp=Fy=413 MeV?? Fg=Fa12=399 Me\?~ states. Another sum rule due to Bjorkg2] reads
30 ! =7+ 3 ApLIE2S IARE @
The decay constant of the;’ heavy meson vanishes in the R L ~ 17312 ' :

infinite quark mass limit. We see that the decay constants of
ground-states-wave mesons and low-lying-wave mesons where p? is the slope of the IW functior(w). Combined
are similar in the heavy quark limit. with the Uraltsev sum rulé4.90 leads to
The IW functions(4.63), (4.50 and (4.62 can be fitted 3
nicely to the form
Y ) pP=7+32 7RI (4.92
g
flw)=f(1)|1-p(0— 1)+ 5 (0—1)?|, (4.89 . . : .
2 Note that while the Bjorken sum rule receives perturbative
correctiong 71], the Uraltsev sum rule does n@dbr a recent

and it is found thatsee Fig. 6 study, sed72]).
w)=1-1.220-1)+0.850—1)?, V. CONCLUSIONS
1l ©)=0.311-1.18 0 — 1)+ 0.8T w—1)?), In this work we have studied the decay constants and

form factors of the ground-stats-wave and low-lying
5 p-wave mesons within a covariant light-front approach. This
73 ©)=0.601-1.73 0~ 1)+ L4G 0~ 1)), formalism that preserves the Lorentz covariance in the light-
(489 front framework has been developed and applied success-

fully to describe various properties of pseudoscalar and vec-
where we have used the sarfe parameter for both wave (o mesons. One of our main goals is to extend this approach

functions® and®,, . It should be stressed that unlikg(1)  to the p-wave meson case. Our main results are as follows.
and 73(1), the normalization¢(1)=1 at the zero recoil  The main ingredients of the covariant light-front model,
point is a model-independent consequence; that is, it is indg;amely, the vertex functions, are explicitly worked out for
pendent of the structure of wave functions. In Table XV wepgth s-wave andp-wave mesons.

have compared this work for the IW functiong,(») and The decay constant of light scalar mesons is largely sup-
732(w) with other model calculations. It turns out that our pressed relative to that of the pseudoscalar mesons and this
results are similar to that obtained in the ISGW modél]  gyppression becomes less effective for heavy scalar reso-

resultp®=1.22 for the slope parameter is consistent with the S0

current world average of 1.440.14 extracted from exclu- st1(2460)| =117 MeV are consistent with the corresponding

sive semileptoi® decayq70]. values of 47-73 MeV and 110-190 MeV inferred from the
It is interesting to notice that there is a sum rule derivedmeasurement dbD¥, andDDyg; productions inB decays.
by Uraltsev[23] In the limit of SUN)-flavor symmetry, the decay con-
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stants of the scalar meson and the, axial-vector meson search was supported in part by the National Science Council

are found to be vanished, as it should be. of R.O.C. under Grant Nos. NSC92-2112-M-001-016,
The analytic expressions fé&t— S, A transition form fac- NSC92-2811-M-001-054 and NSC92-2112-M-017-001.

tors can be obtained from that &— P,V ones by some

simple replacements. We have also worked out the form fac- APPENDIX A: VERTEX EUNCTIONS
tors inP—T transitions. _ IN THE CONVENTIONAL LIGHT-FRONT
The momentum dependence of the physical form factors APPROACH
is determined by first fitting the form factors obtained in the _ .
spacelike region to a 3-parameter functiongf and then In the conventional light-front approach, a meson bound

analytically continuing them to the timelike region. Some of State consisting of a quaidgg and an antiquark, with the
the V,(q?) form factors inP—A transitions are fitted to a total momentumP and spinJ can be written agsee, for
different 3-parameter form so that the fit parameters ar&xample[7])

stable within the choseg? range.

Numerical results of the form factors foB(D)—m, |IM(P?*"'L;.3,)
p, ay(1450),a,(1260),b;(1235) a,(1320),B(D)—K, K*,
K** andB—D,D*,D** transitions are presented in detail, =f {d®*p H{d%p,}2(2m)38%(P—P1—P2)

whereK** andD** denote genericallp-wave strange and
charmed mesons, respectively.

Comparison of this work with the ISGW2 model based on szi WPy, Ba 1, 2)|02(P1, A ) T2(P2,N2)),
the nonrelativistic constituent quark picture is made Bor 172
—D** transition form factors. In general, the form factors (A1)

at small g? in both models agree within 40%. However,

Fng(qz) andV?Di/z(qz) have a very differentj?> behavior
in these two models ag® increases. Relativistic effects are m?+ p?
mild in B—~D** transitions but can manifest in heavy-to- B=(p*.p.), p.=(pLp?), P =—F—, (A2)
light transitions at maximum recoil. For examp\;é(B,al(O) is P

found to be 0.13 in the covariant LF model, while it is as big gnd

as 1.01 in the ISGW2 model.

wherep; andp, are the on-mass-shell light-front momenta,

The decay amplitudes @~ —D** %7~ involve the B 3 dp*d?p,
—D** form factors andD** decay constants. We have {d p}E—s—z(zw) :

compared the model calculations with experiment and found

a good agreement. In particular, the suppression of the

Dg%— production relative td %z~ one clearly indicates a

smallerB—Dg§ form factor relative to th&8—D one. ot gt
The heavy quark limit behavior of decay constants and {by(p"),by(p)}={dy:(p"),dy\(p)}

form factors is examined and it is found that the requirement _ 33=r =

of heavy quark symmetry is satisfied. 22T @ =P (A3
Decay constants and form factors are also evaluated indgs terms of the light-front relative momentum variables

pendently in a covariant light-front formalism within the (x,p,) defined by

framework of heavy quark effective theory. The resultant de-

cay constants and form factors agree with those obtained pf:X1P+, pz*:sz*, X1+ %=1,

from the covariant light-front model and then extended to the

heavy quark limit. The universal Isgur-Wise functiof(®),

T15(w) and 735(w) are obtained and a relation betweep

and Ty, is found. In the infinite quark mass limit, all the form 3, "

factors are related to the Isgur-Wise functions. In addition tc;[he momentum-space wave functigf s for a ST, me-

£(1)=1 at zero recoiko=1, it is found thatry,(1)=0.61, SON can be expressed as

732(1)=0.31 andp?=1.22 for the slope parameter é&fw).

The Bjorken and Uraltsev sum rules for the Isgur-Wise func-

tions are fairly satisfied.

|A(P1. A A(P2,12)) =D} (p1)d} (p)[0),

P =XP,+p,, P=%XP,—p,, (A4)

1
Wﬂg(ﬁlypz,kl,hz): W(LS;LZSZ“‘S;JJZ)
Cc
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ing Clebsch-Gordan coefficient arﬂtffiz constructs a state 1 (—Mj+P?

/\M - St +
of definite spin §,S,) out of light-front helicity (\1,\>) #40) Mo P* PTPL (A10)
eigenstates. Explicitly,

For the pseudoscalar and vector mesons, we have
S
RYZ (6p)= 2 (MIRM(1=x,p. ,my)lsy)
12 S1.5;

X (Nl RYy 0, P o) 52) Fe=7s  (pocudoscalas=0)

11 |11
X\ 35:91%2)3 559 (A6) I'y=—#(S,) (vectorS=1). (A11)

where|s;) are the usual Pauli spinors, aRy, is the Melosh o _ ) ) ]
transformation operatdi3,68]: It is instructive to derive the above expressions by using the

relations
Up(p;,S)u(p;,\)

2m; ) . )
1

<S|RM(vaL 1mi)|)\>=

_U_(p| 1)\)UD(pi 13)

2m
mi+XMo+ige P, X0 (D hy) = —vp(P2,52)vp(P2,S2) (Pahs)
_ MimXiMo s P , (A7) v(P2,A2 2m, v(P2,A2),
\/(mi+XiM0)2+pJ2_
with upy, a Dirac spinor in the light-frontinstany form, PaM
n=(0,0,1), a unit vector in thedirection, andcf. Eq.(2.2)] T s 0 s
o(P1,S1) 2M, ¥s5vp(P2,S2)
M2:m§+pi n m§+p12_ (A8) . yo—{—l
0 X1 Xy :UD((elaﬁ)asl)T7SUD((92:_ﬁ)152)

Note thatup(p,s)=u(p,\){\|Ry|s) and, consequently, the

= + +my)ixl ooxk
state|q(p,\)}(\|Ry|s) transforms like|q(p,s)) under ro- Viertmy)(e; M2)iXs, 72X,

tation, i.e. its transformation does not depend on its momen- 11 11
tum. =\/2(e1+m1)(e2+m2)<——;5152 ——;00>,
In practice it is more convenient to use the covariant form 22 22

for Rflsiz [4]:

. B E+MO( ' s))
RSS (x.p )= —— T(p: A ) (P +M Up(P1,S1) —#(S;))vp(P2,S2)
aoa, K PL) VIR (Mot Mot my) u(p1,Aa)( 0) 2M,
_ Yo+l _
XTo(pz.hz), (A9) =Up((e1,P),5) ——&(S) Fup((e2,~B).%2)
with
= V(er+my) (e, +my)ixL &(S,)- Goox?,
Mo=VM§—(my—m,)?, 11 11
B =2(ey+my)(ep+my) 555152 55;132 ,
PEpl+p21
2 ) Mo(Mg+my+m,)
BH(+1)= Féi(il)-Pi,O,él(il), V2(eg+my)(ept mp) = — ‘O/iMl 2, (A12)
0
g (x1)=F(1,=1)v2, where[cf. Eq.(2.2)]
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2, .2 ith
XoMg ma+p7 wit
Mo=e;+e,, e=\m’+p?+p2, p,= - : =y
0=€1 7€ [ i TPL TPz P2 > 2Mo 1/K.P
s =—|——K|,
(A13) Po v3\ Mo
Xs IS the usual Pauli spinor and we have used the usual Il —5.K
properties, especially, the covariant one, of Dirac s@nors. 1, T ERYs
Note that momenta in EqA12) should be given in thé
=(_M0,0_) rest frame. Applying equations of motion on s :i(( _ K E)é—“~K)y5,
spinors in Eq(A9) leads to PL v2 Mo
U(P1) (P +Mg) y50(P2) = Mo+ My +my)U(py) ysv(p2), s, =8, 7(=K"), (A19)
U(PL)(P +Mo)dv(p2) =U(py)[(Mo-+my+my)d where
—2-(pi-p2)lu(pa), (A1) K=(P2mPo)/2,

&,,(m)=(11;m'm"|11;2m)& ,(m")& (m").
and Rflsiz is reduced to a more familiar forfd]. It is, how-  Note that the polarization tensor of a tensor meson satisfies
ever, more convenient to use the form shown in B&p)  therelationsg,,=¢,, andé, P*=0=¢/ and that , &,
when extending to thp-wave meson case. Two remarks areare identical te , ., , respectively, for maximal transverse
in order. First,p;+p, is not equal to the meson’s four- polarized statesnj==*J). The above expressions foP,
momentum in the conventional LF approach as both theénd 3P, states are consistent wif4,5] and [69], respec-
guark and antiquark are on-shell. On the contrary, the totdiively.
four-momentum is conserved at each vertex in the covariant The vertex functions shown in Table | and Eg.11) fol-
LF framework. Second, the longitudinal polarization low from the above explicit expressions fdri“;z_ For ex-
4-vectore#(0) given above is notExactIy the same as that Ofample, by taking ,,(—K?") in place ofz,, in Eq. (A14) we
the vector meson and we hageP=0. We normalize the obtain the®P, vertex in the form shown in Table I. Note that
meson state as there are an overall factor and sign to be determined. The
overall factor, M?—M3)\x;x, [cf. Eq. (2.11)], is fixed by
comparing the pseudoscalar decay consfagnbbtained in
both covariant and conventional approacfese Eqs(2.16)
and(2.17], while the overall sign can be fixed by the HQS
expectation for decay constants and form factors. For ex-

<M(P/7‘J,1‘]£)|M(P1‘J1‘]Z)>

=2(2m)°P" %(P'—P)8y3855,  (ALD)

so that ample, the sign of th@1’? state relative to>Py is fixed by
dxdp, the HQS relatiorrl‘pifzzfs. An additional factor ofi is as-
f m QD;_’;L'(Xpr)(PLLZ(XapL): Ol Lo L, signed in Table | as in the usual Feynman rules to ensure that
(2w ‘ (A16) the corresponding operators are Hermitian. For example, we
have ani in front of y, but notys, just like the usual QED
Explicitly, we have and Yukawa vertices, respectively. Similarly, polarization
vectors are decoupled from the vertex Feynman rules as
®00= @, @1, =PL,Pp. (A17)  usual.
Where pLZ:tl: T (pLXi ipLy)/‘/Zi pLZ:O: pZ are propor- APPEND'X B: SOME USEFUL FORMULAS
tional to the spherical harmonicé;,  in momentum space,  In this Appendix we first collect some formulas [@0]

and ¢, ¢, are the distribution amplitudes cfwave and relevant for the present work and then we proceed to sum-

p-wave mesons, respectively. For a Gaussian-like wave funagnarize the formula for the product of foiir;’s needed for

tion as shown in Eq(2.12) [7], one hasp,= \2/82%¢. the calculation in Sec. Il _
For p-wave mesons, it is straightforward to obtain The explicit representation of the traces in E¢s11) and
(3.22 can be found in[10]. For completeness we collect
them below:

. . S§
<1S! LZSZ| 1Sl‘]‘]z>pLzR)\l)\2(X!pL) S\IZF:: ZpiM[M /2+ M n2__ q2_ 2N2— (mi_ m2)2

1 _ — —(mj—my,)%+(m;—m])?]+q,[g°—2M "2
— - u(ply)\l)(P—i'_M()) ( 1 2 ( 1 1 ] q,u[q
V2Mo(Mo+my+m;) + N = N+ 2Ny 2(mf — mj) 2= (mj = mi)?]
XF23+1PJU(p2,)\2), (A18) +Pﬂ[q2_Ni_Nl£_(m£_m1 2], (Bl)

074025-34



COVARIANT LIGHT-FRONT APPROACH FORs-WAVE . . . PHYSICAL REVIEW D 69, 074025 (2004

and

SPV_ (V-5

,uv

1
= = 2i€,,0p{P1"PP(m] —my) +pi“qP(m] + m; — 2m2)+q“P3m1}+W(4piv—3q,,—Py)
v

X1 €,05,P1 0 PP+ 29,,,{My(9° = N = Nj —m;*— mi?) —m; (M2 = Nj — Np — m}?—ms)
mZM,Z_Nl N2 _m2) 2m1 m2}+8p:’L,u,in(m2_m:’L)_z(P,U.qV_l—q,uPV—i_qu,qv)mi

+2pJ,_,u,Pv(mi_ma{)+2p1’_,u,ql/(3mi 2m2)+2P,uply(ml+m )+2q,u.plv(3ml+m 2m2)

1
WMPV 30,~P,){2p1,[M'?+M"?=q?= 2N, +2(m; — my) (M +my)]
\%

+0,[0%—2M’2+Nj—Nj+2N,— (mg +m])?+2(m; —m,)?]+ P, [g?—Nj—NJ — (m;+mj7)?]}. (B2)

Note that our convention fog,,,, 5, namely,eqi.5=1, is different from that ir{10].
The analytic expressions f&t— S, A transition form factors can be obtained from that?f: P, V ones by some simple
replacements. Hence, we list the explicit expression$ferP and P—V transition form factors irf10]:

/ U

f.(0?) [Xl(M 24+ M%) + X207 = Xo(My — M7)2 = X (M] —My)® =Xy (Mf —my)?],
X2 N7
’ ” ! ! ’ " ’ q.P ! (p"q )2
f,(qz)— — XXM 2—pf—mlm2+(ml—mz)(x2m1+xlm2)+2—2(pL2+2L—2l
X2 N7 q
(Pl-qu)? Pl ., -
+2 7 7 [M"2=x5(q2+Qq- P)— (Xo— X1 )M 2+ 2x;M 2= 2(mj — my) (m; + m{)] |, (B3)
and
h.nh" [ 2
9(a®)= el [szi+xlm2+(m1 my Pl qu+_u 12+(pl gl) ”,
iR o
f(qz)— AP " [le(mz m;) (M2 +Mg2) — 4x,miM {2+ 2x,m; q- P+ 2m,q2— 2x;my(M 2+ M"?)
x2N N
’. 2
4 2(my— mp)(mi+ 2+ 8(mg—mp)| pr2+ P I oty a2 g Py P
a’p.+(p.-q,)? , "o
—4—— | 24(M "2+ Mg?) ~q?—q-P—2(q —mp)(my-my) | ¢,
q Wy
2 p " pj_ qL
a+(Q)— (X1 = X2) (XoMj +XqMy) — [2X; My + M+ (Xp—Xq) My |
X2 O\

2 ’
X2q°+p.-a; .,
_ZTZLH[ T (Xgmy T+ Xomp ) (XgMy—Xom) ] 1
2

074025-35



CHENG, CHUA, AND HWANG PHYSICAL REVIEW D69, 074025 (2004

a_(g?)=

N hphy, 2 (pl-q,)?
ng dx,d?p] — — {2(2x1—3)(x2mi+xlm2)—8(mi—m2) p%*‘z%

167 x,NiNj q q

—[(14— 12x;)m}— 2m — (8— 12x;) m, ] piq-zcu
4

+—| [M'2+M"2= g2+ 2(m]—my) (M} +my) [(AP + AP — ALY) + Z,(3ATY — 2AY — 1)
\Y

1
+ 5 D0 +a-P)=2M"2=2p] - g, —2my(m{ +mp) —2my(mj —my) J(Ay+ Ay~ 1)

p®  (pL-a))’

+q-P
9? q*

(4A<21>—3)> } : (B4)

We next give the results fdu; p;p;p; andp;p;p;N,. In Eq.(3.12, under the typical integration

hphy, SPM, (B5)

Nc fdxzdzpi
16m° ) xRN

in aP—M transition matrix elemenfy;p;p;p; in S° can be expressed in terms of three external moméhtanda. Up
to the first order irw, we have

where

9 4 2
PLAPLPLPLS= 2 NiwnasA Y+ 2 JiregBi + 2 KiunasCl'+ O(@2), (B6)

1100 (99) uvap=™ 990t 9pa9pt 905900 s

1240ap=(IPP) 4yap=9,uPaPpst9,aP Pt 9,5P,Pot94sP Pt 9,5PPat9,.PLPs,
I300ap= (9P D urap=0,s(Palpst q.Pp) +permutations,

l40vep= (99D 4vap=9u8elst T 9400951 9,.50,90t 90pd,9r+ 9059, 910005
I5uvap=(PPPP),,a3=P,P,P.Ppg,

l6uvap=(PPPO) ,,0p=P,P,P.ag+P,P.a.Ps+P,q,P,Ps+q,P,P.Pg,
17vap=(PPAO) ,,ap= P ,P,0,0s+ permutations,

lguvap=(PAAD 4vep=P,d,d,95+d,.P.0.05+0,9,P.05+d,9,9.Pgs,

I9,U.chB: (qqq)p,vaﬁz qp,qvqaqﬁ '

1 .
J1uvap=(9 P’(I))ﬂm[,:ﬁ[gw( P, 05+ ®,Pg)+permutations,

J24vap=(PPP) (P,P,P@sg+P,P®,Ps+P,0,P,Pst+®,P,P,Ppg),

ures= P

1 .
J3uvap= (Pqu)Mva[g:ﬁ[( P.P.,d,+P,q,P,+0q,P,P,) ®s+permutations,
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1
‘J43,uvaﬂ (quw),u,vaﬁ [(P/.quqa_l—q/.t an+q/.LqV a)wﬁ+permu':atlon$'
1
Kl,u.vaB (ng)uvaﬁ [g,uv(qawﬁ'+ waqﬂ) + permUIatlon$

1
KZ,uVaB (qqu);l,vaﬁ (Q;LQVQQwB+q;LQV aqﬁ+qM anqB+wuqvqaqﬁ) (B7)

By contractingd; p;,p1,P1s with @7, g andg*”, and comparing with the complete expression$fd;,p1,, andp;,p1,
" o
shown in[10], we obtain

1
AO=Z(ARR, AD=APAR, AP=ADAD,

1
4) _ 1 3 4 4) _ 1 3
AE)—AE )A(Z)_@A(l)i A(S)_A(l )A(3)

A(4) A(l)A A(4) A(l)A , A(4) A(l)A(3)

3

A(94)=A(11)Ag3)— —2A24) , B(4) A(l)c(3) )
q

B(4) A(l)B A(24) , B(34):A(11)B(23)_A(34) ,

P
B =ALCE - AP, C(14)=A(23)C(11)+q—2A(4),
q

4 3 1 a P (4
C=APCcV+3—- = AP, (B8)

where[10]

pl-d.

(1) X1 (1) (1)
A7 :E' A=A — >

Cg_l): - N2+ Zz,

I 5 p - QL

Z,=Nj+m;2—m3+(1-2x,)M'?+(q?+q-P) ——,
(pl-qu)?

A= —pi- g A= (ALY A=A,

1
AZZ): (A(Zl))Z_ ?A&Z) , Ags):Ag_l)Ag_Z) , A(23):A(21)Ag_2) ,
A(33):A(11)A(22) ’ Af):A(Zl)A(ZZ) ’ A(3)_A )A(Z)
2
A(63):A(21)A£12)_ _2A(21)A(2) '
q
8= ALz, AP, BY-AP(BE- AD),
q-P
B(3) A(l)B(2)+ ~ A(lz) ] (B9)
q
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Following the prescription if10], the spurious contributior@(lf‘z) should be vanished by including the zero mode contribution

and we have

~ q-
3 3 4
A(Z )N2—>A(2 )22+ ?Ag ) ,

. q-P
AN, —APZ,+3 ?Ag@ : (B10)

which lead to thed/,p.p. N, formula shown in Eq(3.14. Note that in generaB{" are non-vanishing by themselves, but they
do vanish under integration in some choice of vertex fundtidi. There are some attempts to include these effects for generic
vertex functiong 14]. The importance of these effects can be checked numerically. For example, we have checked numerically

that the integral of Eq(B5) with S”M replaced b)Bi(j) are vanishingly small. In practice, one only neé(}l'é terms forp; ...p;
formulas.
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