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Eigenvalue decomposition of meson correlators
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Euclidean space hadronic correlators are computed in quenched QCD at a small quark mass using trunca-
tions of quark propagators which include or exclude low eigenvalue eigenmodes of the Dirac operator. High
modes provide the dominant contribution to parity averaged correlators, especially at short distances. Differ-
ences of correlators of opposite parity receive most of their contributions from low modes and are much
smaller in size than parity averages at short distances. The pion propagator in any correlator to which it couples
receives a large contribution from low modes, while the tensor meson correlator receives a tiny contribution
from low eigenmodes.
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I. INTRODUCTION

Are all hadrons alike? This question was asked most
mously @1# in the context of QCD sum rules, but it appea
repeatedly in phenomenological descriptions of hadro
structure. In this work I investigate a particular kind of sim
larity: how eigenmodes of the 4-dimensional Dirac opera
contribute to Euclidean space hadronic correlators, and
~indirectly! how these eigenmodes contribute to hadro
spectroscopy and couplings in different channels. My res
might have implications for the questions of whether exci
states of mesons show features of chiral symmetry rest
tion ~namely, that the masses of various states, and their
plings to currents, show degeneracies!, what the origin of
these features might be, and how excited states differ f
low lying meson states.

Lattice simulations encode ‘‘snapshots’’ of the QC
vacuum, and could presumably address questions abou
composition of hadronic states. This subject has been in
tigated before@2,3#. The idea is to compare the behavior
hadronic correlators built from quark propagators which c
respond to a truncated set of eigenmodes of the mas
Dirac operator with that of correlators computed ‘‘exactly
Low eigenmodes of the Dirac operator saturate the pseu
scalar and axial vector correlators at large distance and
tribute somewhat to the nucleon channel, less so the ve
and Delta channels. They also make the dominant contr
tion to the eta-prime channel, as expected from the Witt
Veneziano formula@4#. In this work I revisit these studies
with an eye toward contrasting the Dirac eigenmode com
sition of the long-distance part of hadronic correlators w
the short-distance parts, as well as the composition of c
elators which are sums and differences of parity partnersg5
and 1,g i andg ig5). All these calculations reveal the follow
ing qualitative features of mesons in quenched QCD: L
eigenmodes of the Dirac operator do not affect the par
correlators where high-lying states appear. These low mo
are the ones which determine the quark condensate via
Banks-Casher@5# relation, as well as eigenmodes ‘‘at th
QCD scale’’~a few hundred MeV!. Other ways of describing
the properties of low modes are that they are strongly in
enced by chirality-mixing interactions, and that they are
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main contributors to the strong interaction observed in
pseudoscalar current-current correlator.

High modes contribute strongly to hadron correlators
short distance, where the correlators would be dominated
excited states. They contribute less to the long distance
of meson correlators. They do not make a major contribut
to parity asymmetric correlators. In this sense, valen
quarks in high-lying states decouple from the condens
This also means that even for light quarks, chiral symme
breaking and confinement are not directly related. These
servations are rather simple, and perhaps one does not
lattice simulations to make them. I suspect that no pheno
enologist will find them surprising~although I suspect tha
different phenomenologists will be unsurprised for differe
reasons!. Instanton models plus lattice simulations have a
been used to compute the amplitude for chiral mixing ofqq̄
correlators@6,7#. Reference@2# also observed that the lowes
eigenvalue modes had a large autocorrelation in both den
and chirality at short distance, which slowly dies away as
eigenmode rises.

Analyses of hadronic spectroscopy@8–14# have been
used to argue that excited states of the meson and ba
spectrum are effectively chirally restored, in the sense t
particles of opposite parity are nearly degenerate in mas
is argued that this ‘‘effective restoration of chiral symmetr
is a natural consequence of the soft nature of chiral sym
try breaking: generally in quantum mechanics, low exci
tions are sensitive to symmetry breaking but high excitatio
are not. For mesons, the crossover to chiral symmetry
argued to occur in the range 1.5–2 GeV.

In perturbation theory, correlators of currents which a
chiral partners of each other~the vector and axial vecto
currents, for example! are identical, because QCD is a vect
theory and chirality is conserved at all quark-gluon vertic
Condensates allow one to parameterize nonperturba
physics, and can lead to differences in correlators. Howe
QCD is a confining theory, and the spectrum of QCD is o
of bound states, so identity of the correlators must have c
sequences for spectroscopy and matrix elements. That is
pecially true for the large-Nc limit of QCD, where all exci-
tations are narrow resonances. Arguments based on semi
duality favoring effective chiral restoration at high excitatio
have been made@15#, but have been criticized as being cuto
©2004 The American Physical Society24-1
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THOMAS DEGRAND PHYSICAL REVIEW D69, 074024 ~2004!
dependent@16#. A summary of ideas supporting chiral rest
ration and its connection to the quark model has rece
been given by Swanson@17#.

In instanton models@18# low eigenmodes of the Dirac
operator are built from an overlap of single-instanton z
modes, and are strongly chirally asymmetric. As the mag
tude of the quark eigenmode rises, the eigenfunctions co
less and less to instantons, and there should be a ‘‘crosso
to chirally symmetric physics.

The common lattice correlators used to extract spect
copy involve projections onto momentum eigenstates.
example, thepW 50W correlator is found by averaging over tim
slices:

Cj~ t !5(
x

^0uOj~x,t !Oj~0,0!u0&

5(
n

^0uOj un&u2

2mn
exp~2mnt !. ~1!

A second kind of observable is just the point-to-point c
relator

P i~x!5Tr^Ji
a~x!Ji

a~0!&, ~2!

where the current will be proportional toJi
a(x)

5c̄(x)taG( i )c(x), and its ratio to the free-field correlato
Ri(x)5P i(x)/P i

0(x). It is very difficult to compute masse
of highly excited states from lattice simulations. Their s
nals vanish exponentially compared to~and underneath! the
lightest state in the channel. Each new state requires
with two more parameters~the mass and̂0uOj un&u2), which
in turn requires a fine lattice with many lattice points.
very short distances~order one lattice spacing! lattice dis-
cretization artifacts affect results.@Note that correlators like
C(t) probe long distances, even at smallt.# I have not done
direct calculations of spectra, and so my approach is m
indirect and my results are tentative.

I will look at correlators with point sources and sink
Oj (x,t)5c̄(x,t)G jc(x,t). Lattice simulations usually do
not use pointlike currents as interpolating fields because
do not couple to low states as well as more extended op
tors, and parameters of the lowest states are usually the g
of the simulation. However, for our purposes, it will be i
teresting to keep this simple form, and look atG j ’s which are
chiral partners. In contrast to usual lattice simulations,
results presented here are qualitative.

II. EXACT RESULTS FROM OVERLAP ACTIONS

The calculations presented here are done with ove
@19# fermions. This lattice discretization preserves a latt
version of exact chiral symmetry at nonzero lattice spaci
without flavor doubling, making it particularly useful for ad
dressing questions associated with chiral symmetry. The
lowing properties of overlap actions are relevant to t
work.

The eigenmodes of any massless overlap operator ar
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cated on a circle in the complex plane of radiusx0 with a
center at the point (x0,0). The corresponding eigenfunction
are either chiral~for the eigenmodes with real eigenvalu
located atl50 or l52x0) or nonchiral and paired; the two
eigenvalues of the paired nonchiral modes are complex c
jugates.

The massive overlap Dirac operator for bare quark m
m is conventionally defined to be

D~m!5S 12
m

2x0
DD~0!1m ~3!

and it is also conventional to define the propagator so that
chiral modes atl52x0 are projected out,

D̂21~m!5
1

12m/~2x0! S D21~m!2
1

2x0
D . ~4!

The contribution to the propagator of a single~positive
chirality! zero mode in the basis whereg55diag(1,21) is

D̂~m!215
1

m S u j 1&^ j 1u 0

0 0D . ~5!

Nonzero eigenvalue eigenmodes ofD(0)†D(0) are also
chirality eigenmodes. Thej th pair of nonchiral modes con
tributes a term to the propagator

D̂~m! j
215S a j u j 1&^ j 1u 2b j u j 1&^ j 2u

b j u j 2&^ j 1u a j u j 2&^ j 2u D , ~6!

where, usingD(0)†D(0)u jh&5l j
2u jh& for chirality h, m

5m/(2x0), ande j5l j /(2x0), the entries are

a j5
1

2x0

m~12e j
2!

e j
21m2~12e j

2!
~7!

b j5
1

2x0

e jA12e j
2)

e j
21m2~12e j

2!
. ~8!

@The eigenmodes ofD(0) have eigenvalues 2x0(e j
2

6 i e jA12e j
2).# For a summary of these~and other! useful

formulas, see Ref.@20# ~for the special casex051/2).
What is important about these well-known results is th

application to correlators expressing the sum and differe
of opposite parity channels:

C6G~x,x8!}Tr D̂21~m!GD6G ~9!

where

D65D̂21~m!7g5D̂21~m!g5 . ~10!

The parity difference is particularly simple: it involves th
sum combination, which because of the Ginsparg-Wilson
lation @21# is equal to

D252m@D̂21~m!#†D̂21~m!. ~11!
4-2



e,

le

ic
ym
nl
f
or
a
r,

l-

ow

e

en
se

r

es

b

th

te-
u-

ors
w
gly
that
tor,

e of

s
l-

ng a

of
ient

en-
ains
nty
e
ero

EIGENVALUE DECOMPOSITION OF MESON CORRELATORS PHYSICAL REVIEW D69, 074024 ~2004!
The volume-summed trace ofD2 gives the Gell-Mann-
Oakes-Renner~GMOR! relation. Eigenmode by eigenmod
D1 and D2 can be evaluated directly from Eq.~6!; the
former contribution comes from the off-diagonal part ofD̂21

while the latter contribution comes from the diagonal e
ments.

This decomposition makes no reference to any dynam
Thus the parameter which differentiates between chiral s
metry and asymmetry is just the quark mass—it is the o
chiral breaking parameter which is available. The ratio o
contribution of an eigenmode to the chiral-difference c
relator to the chiral symmetric correlator scales roughly
m/l j . This is rather similar to continuum free-field behavio
with D2(p)5m/p2, D1(p)5p” /p2. It is not the behavior
seen for Wilson-like fermions, which have an explicit chira
symmetry breaking term at large momentum,D21(m)5m
1 i (mgm sin(pma)/a12a(m sin2(pma/2). Staggered fermion
correlators entangle parity partners in a way I do not kn
how to present simply.

Naively, this means that, unless them→0 limit is singu-
lar, parity difference correlators will go to zero with th
quark mass. However, we have to be more careful@22#, be-
cause the eigenmode densityr(l) diverges in the ultraviolet
asl3. Mode sums generally require subtraction: high eig
modes do contribute to all channels. For example, the p
doscalar susceptibility@time integral ofCj (t) for G j5g5] is

xp5
1

V
(
x,y

^pa~x!pa~y!&5E dlr~l!
1

l21m2 ~12!

and the scalar susceptibility is

xa0
5

1

V
(
x,y

^a0
a~x!a0

a~y!&5E dlr~l!
l22m2

~l21m2!2 .

~13!

For either susceptibility, it is necessary to break the integ
over l into two parts, one for the low modes 0,l,Lc
whereLc@m, and one for the high modes. The low mod
give the Banks-Casher relation forxp , xp5r(0)/(pm)1
••• . The high frequency part of the integral must be su
tracted twice,

xp5
1

m
S E

0

Lc
dlr~l!

m

l21m2D
1g01g2m21m4Kp~Lc ,m!. ~14!

The scalar susceptibility has a similar behavior, except
there is no contribution froml50 @23#. For overlap fermi-
ons, the GMOR relation is exact,

xp5
2

m
^c̄c~m!& ~15!

and the scalar susceptibility is

xa0
52

d

dm
^c̄c~m!&, ~16!
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so that the expansion coefficients in the expansions forxp

andxa0
are related. In the differencexp2xa0

the contribu-
tion from the chiral condensate~which comes from eigen-
modes nearl50) survives and dominates in them→0
limit. The mass-independent term inxp2xa0

cancels. The

chiral sumxp1xa0
retains the high-l dependentg0 coeffi-

cient. The terms proportional to positive powers ofm vanish
in the massless limit in either case. What is true for an in
gral is not necessarily true for an integrand, but it is a pla
sible assumption to expect that chiral difference correlat
themselves will receive large contributions only from lo
eigenmodes, while high eigenmodes will contribute stron
to chiral sum correlators. For example, one might expect
the low modes would dominate the pseudoscalar correla
then @24#,

CPS~x,x8!

5K H (
l

^ j ,l,xu j ,l,x&
1

l21m2 ^ j ,l,x8u j ,l,x8&J L .

~17!

This reasoning is dangerous because of the UV divergenc
r(l), but it can be tested by simulation.

Zero modes decouple fromC1(x,x8). They make a large
contribution toC2(x,x8). This is not surprising: zero mode
are chiral. They will, however, considerably distort chira
difference correlators in small volumes.

III. EXAMPLES

I have done a set of quenched spectroscopy runs usi
particular implementation of the overlap operator@25# with
hypercubic~HYP! @26# gauge connections. Eigenmodes
the Dirac operator are computed using the conjugate grad

FIG. 1. Histogram of eigenvalues of the Dirac operator of eig
modes recorded for this study. The peak at the lowest box cont
all zero modes. The solid lines shows the distribution of the twe
lowest eigenmodes ofD†D, while the dashed lines separate th
distribution of ten modes. The bin closest to zero counts exact z
modes.
4-3
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THOMAS DEGRAND PHYSICAL REVIEW D69, 074024 ~2004!
algorithm of Ref.@27#. These studies are done on a sm
data set of quenched configurations. It has 20 164 lattices
generated with the Wilson gauge action at couplingb
56.1, corresponding to a lattice spacing of about 0.09
These lattices have the same lattice spacing and q
masses as were used in a large scale matrix element sim
tion @28#, so all necessary hadron masses and matrix
ments are in principle known. I have computed the lowest
eigenmodes ofD(0)†D(0) and recoupled them into eigen
modes of D: there areN0 chiral zero modes and 2(2
2N0) nonchiral paired modes. Eigenmodes of the over
Dirac operator whose eigenvalue is less than around
MeV have been computed. The spectrum of the imagin
part of the eigenvalue is shown in Fig. 1. The energy
inferred from the lattice data assuming an inverse lat
spacing of 2200 MeV. I compute hadron correlators us
full quark propagators, and several kinds of quark propa
tors built of truncated mode sums: quark propagators w
only zero modes, propagators without zero modes,
propagators from which the lowest 10 or 20 eigenmodes
D†D have been excluded.

I will show results corresponding to bare quark masse

FIG. 2. Combinations of point-to-point pseudoscalar and sc
(p6a0) sum @~a! and ~b!# and difference@~c! and ~d!# correlators.
The curve is the contribution to the correlator from the pion, us
its measured mass and decay constant from Ref.@28#. The full
correlators are shown by open squares. Panels~a! and ~c! show
high-mode contributions to the correlator from quark propaga
with 20 and 10 low modes excluded as crosses and diamonds.
els ~b! and~d! show the low-mode contributions to the correlato
their approximation by restricted-mode quark propagators with
lowest modes~octagons! or 10 lowest modes~bursts!. In panel~d!
the pure zero mode contribution is shown as pluses. The contr
tion of the lowest 20 eigenmodes with zero modes excluded
shown by pluses, and is well separated from the other~coincident!
sets of plotting symbols.
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lattice units ofamq50.020, which is about half the strang
quark mass. A meson made of a pair ofamq50.020 quarks
is an approximation to the physical kaon. Results for ot
small quark masses are similar. At higher quark mas
~aboveamq50.050 ormq>2.5ms) the qualitative features
present no longer occur. Pictures shown in Refs.@2,3# show
that low modes cease to contribute a dominant part of
correlator.

Because these simulations are done in finite volume,
in a quenched approximation, some channels have contr
tions from zero modes of the Dirac operator. These contri
tions would not be present in infinite volume. In other cha
nels these modes are absent.

A. ‘‘Spectroscopic’’ correlators with point sources

I begin first with correlatorsC(t) of Eq. ~1!. Results for
pseudoscalars and scalars are shown in Fig. 2. Panels~a! and
~b! show the sum of pseudoscalar and scalar correlat
Note the complete saturation of the correlator fort.5 by
low modes, and the essentially complete saturation of
correlator by high modes at shorter distances. The pio
contribution to the correlator, using^0uc̄g5cuPS&

r

g

s
an-
:
0

u-
is

FIG. 3. Combinations of point-to-point axial vectorg0g5

2g0g5 and scalarg02g0 sum@~a! and~b!# and difference@~c! and
~d!# correlators. The curve is the contribution to the correlator fro
the pion, using its measured mass and decay constant from
@28#. The full correlators are shown by open squares. Panels~a! and
~c! show high-mode contributions to the correlator from qua
propagators with 20 and 10 low modes excluded as crosses
diamonds. Panels~b! and ~d! show the low-mode contributions to
the correlators: their approximation by restricted-mode qu
propagators with 20 lowest modes~octagons!. In panel~d! the con-
tribution of the lowest 20 eigenmodes with zero modes exclude
shown in pluses, and is well separated from the other~coincident!
sets of plotting symbols.
4-4
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EIGENVALUE DECOMPOSITION OF MESON CORRELATORS PHYSICAL REVIEW D69, 074024 ~2004!
5mPS
2 fPS/(2m) ~with the fitted parametersmPS and f PS from

Ref. @28#!, is superimposed. The low modes make up
bulk of the pion’s contribution to the correlator.

Panels~c! and~d! show the difference of pseudoscalar a
scalar correlators. This signal is heavily influenced by z
modes, so that while low modes again contribute a ‘‘
onlike’’ signal, most of this contribution involves at least on
zero mode. High eigenmodes make a negligible contribu
to the correlator at any time separation.

The axial-scalar (g0g52g5g0)6(g02g0) combination
shows similar behavior~Fig. 3!. The axial vector current de
couples from the Goldstone mode in the chiral limit, and t
is reflected in the ‘‘sum’’ correlator by a slower saturation
the pion contribution to the correlator by low modes. Aga
the bulk of the signal at small time steps comes from h
modes. High modes do not contribute to the chiral diff
ence.

Vector and axial combinations~Fig. 4! lack any single
state which is dominated by low modes. High modes ag
make a tiny contribution to the chiral-asymmetric chann
and saturate the signal in the chirally symmetric channel.
absolute size of the correlators in the two channels is q
different at short distances. The tensor channel~shown in
Fig. 5! receives little contribution from low eigenmodes.

The correlatorC1(t) is almost two orders of magnitud
larger thanC2(t) in the vector-axial vector channel, an

FIG. 4. Point-to-point (g i2g i)6(g ig52g ig5)(r6a1) cor-
relator: ~a! and ~b!, sum;~c! and ~d!, difference. Panels~a! and ~c!
show high-mode contributions,~b! and~d! low-mode contributions.
Full correlators are shown as squares. In~a! and ~c!, crosses and
diamonds show the contribution to the correlators from qu
propagators with 20 and 10 low modes excluded. The contribu
and their approximation by restricted-mode quark propagators
the 20 lowest modes~octagons! are shown in~b! and ~d!, and in
panel~d! I also show the contribution of the lowest 20 eigenmod
with zero modes excluded~pluses!.
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almost two orders of magnitude larger in the pseudosca
scalar channel. This is not a direct observation that the sp
trum of quenched QCD is parity-doubled at high excitatio
However, this is the ‘‘raw data’’ from which masses are e
tracted, so it is likely that any fit to it for masses will produc
parity symmetric results.

Perhaps direct comparisons, in Fig. 6, are clearer. P
~a! shows the pseudoscalar and scalar correlators; I have
tracted the measured pion contribution from the pseudosc
channel. Panel~b! shows the vector and axial vector correl
tors. The correlatorsCj (t) defined in Eq.~1!, whereG j are
parity partners (g5 and 1,g i andg ig5), become equal fort
less than about 0.2 fm.

B. Point-to-point correlators

One can also compute point-to-point correlators@Eq. ~2!#.
The short distance, parity-summed correlators receive l

k
n
th

s

FIG. 5. Point-to-point tensor ora2 correlator (g ig j2g ig j ). The
full correlator is shown as squares, and its approximation
restricted-mode quark propagators with 20 lowest modes~octa-
gons!, and pure zero mode contribution~fancy crosses! are also
shown. Crosses and diamonds show the contribution to the
relator from quark propagators with 20 and 10 low modes exclud
The squares, crosses, and diamonds are nearly superimposed

FIG. 6. ~a! Point-to-point (g52g5) correlator, with pionic con-
tribution removed~squares! and 121 ~crosses! correlators at bare
massamq50.02. ~b! Point-to-point (g i2g i) ~squares! and (g ig5

2g ig5) ~crosses! correlators.
4-5
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THOMAS DEGRAND PHYSICAL REVIEW D69, 074024 ~2004!
contribution from low eigenmodes. That their ratios a
proach unity at smallx is just asymptotic freedom. Howeve
this is a confining theory: the spectrum of quenched Q
consists of zero width resonances plus quenched artif
~mostly associated with eta prime hairpins!. A more correct
statement of what is seen is that the resonances which m
up the low-x part of the sum correlators receive little cont
bution from low modes. Results are shown in Figs. 7 and

The parity difference correlators vanish at lowx. Low
eigenmodes~including zero modes! dominate the correlator
at largex, where the lightest states in the channel app
Alternatively, the strong attraction seen at largex in the pseu-
doscalar channel comes almost entirely from eigenmodes
low 500 MeV.

In the absence of reliable spectroscopy calculations,
can roughly quantify the ‘‘breakpoint’’ between low and hig
mode contributions by considering the contribution of
single resonance of massm to one of these ratios. This curv
is proportional to the ratiox5K(m,x), whereK(m,x) is the
free field propagator for a particle of massm. A family of
curves of varying masses~in lattice units! is shown in Fig. 9;
the height has been rescaled asm2 to produce a plateau o
maxima. What is important from this picture is not the heig

FIG. 7. Point-to-point (gm2gm)6(gmg52gmg5) vector-axial
vector sum~a! and difference~b! normalized by the free field vecto
current. The full correlator is labeled by F, the correlator made
propagators truncated to the lowest 20 eigenmodes is labeled L
the correlator made of propagators from which the lowest 20 eig
modes are excluded is labeled by H.

FIG. 8. Point-to-point (g52g5)6(121) pseudoscalar-scala
sum ~a! and difference~b!, normalized by the free field pseudo
scalar correlator. The full correlator is labeled by F, the correla
made of propagators truncated to the lowest 20 eigenmodes i
beled L, and the correlator made of propagators from which
lowest 20 eigenmodes are excluded is labeled by H. In~b! the F and
L correlators are nearly coincident.
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of the peaks, it is their location. If we compare the hi
eigenmode and full propagator curves in Figs. 7 and 8,
see that they separate at a lattice distance of about 5 u
Any resonance with a lattice mass lighter thanamH,0.75
would make its peak contribution at largerx. This mass is
about 1700 MeV, and is the rough dividing point betwe
hadrons built dominantly of chiral sensitive modes and o
which are not, for quenched QCD.~Again, recall that the
inverse lattice spacing of these simulations, above which
cretization effects dominate physics, is about 2.2 Ge!.
Swanson’s estimate@17# of 2.5 GeV for the crossover corre
sponds toma.1.1, but given the roughness of either es
mate, I would not take the difference seriously.

FIG. 10. Octagons showRNS(x) as defined in Eq.~18! and,
bunched together at the bottom of the figure, its contribution fr
propagators, from which the lowest 20~diamonds! and 10~squares!
eigenmodes ofD†(0)D(0) are excluded.

f
nd
n-

r
la-
e

FIG. 9. x5K(x), the contribution of a resonance of massm to
one of the point-to-point correlator ratios. The peaks correspon
lattice masses~from left to right! of mHa51.5, 1.25, 1.0, 0.75, 0.5
and 0.25~the peak of the last curve lies outside the graph!.
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Finally, we show in Fig. 10 the saturation of the amplitu
for chirality flipping proposed by Ref.@29# and computed on
the lattice in Ref.@6#,

RNS~x!5
Pp~x!2Pa0

~x!

Pp~x!1Pa0
~x!

, ~18!

using complete quark propagators and high-eigenmode t
cations. Clearly the high eigenmodes make a tiny contri
tion to RNS; it is the low modes that are strongly influence
by chirality mixing interactions.

IV. CONCLUSIONS

Lattice simulations in which contributions to quark prop
gators from low and high eigenvalue eigenmodes of
Dirac operator are separated identify the following quali
tive features of light-quark mesons in quenched QCD: L
eigenmodes make a large contribution to the pion propaga
They are responsible for the strong long-distance attrac
interaction seen in the pseudoscalar channel. Low eig
modes of the Dirac operator make a small contribution to
short distance part of correlators~where excited states con
tribute!. These are the eigenmodes which determine
quark condensate via the Banks-Casher relation, as we
eigenmodes at the QCD scale~a few hundred MeV!. This
v.

07402
n-
-

e
-

or.
e
n-
e

e
as

implies that valence quarks in high-lying states decou
from the condensate.

I have not directly observed parity doubling at high ex
tation in the meson spectrum, but lattice correlation functio
in parity-partner channels~from which fits to masses would
be performed! are equal at a part in 103–104 at short dis-
tances. Point-to-point correlators suggest that hadrons
mass above 1.7 GeV are insensitive to low Dirac eig
modes. Low modes do not contribute to the tensor me
correlator.

Perhaps these results can be used to constrain phe
enological models of hadron structure. Results such as
2~a! suggest that it might be profitable for lattice calculatio
done at small quark mass to exploit low eigenmodes of
Dirac operator in simulations.
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