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Diffractive photon dissociation in the saturation regime from the Good-Walker picture
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Combining the QCD dipole model with the Good-Walker picture, we formulate the diffractive dissociation
of a photon of virtualityQ? off a hadronic target, in the kinematical regime in whiglis close to the saturation
scale and much smaller than the invariant mass of the diffracted system. We show how the formula obtained
compares to the DESY HERA data and discuss what can be learned from such a phenomenology. In particular,
we argue that the diffractive observables in these kinematics provide useful pieces of information on the
saturation regime of QCD.
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[. INTRODUCTION within QCD [9—-11]. Q; is called the saturation scale and is
an increasing function of the rapidity of the proton.

Hard diffraction has triggered wide interest since its dis- The dipole picture is well suited because color dipoles,
covery in high energy virtual photon-proton scattering at thewhich are two-body color neutral objects characterized by
DESY ep collider HERA[1]. It has been a major theoretical their longitudinal momentum, transverse size, and impact pa-
challenge to understand the observed large rate of diffractivemeter, are eigenstates of the QCD interaction at high en-
events within QCD, especially for large virtualiti@® of the ~ €rgy. Both elastic scatteringnd thus, from the optical theo-
photon (for a review, see Ref2]). Among the attempts to &M the total cross sectlb_and_dlffracnve dl_ssouanon have
describe hard diffraction, the dipole picture of QGB4] a streughtforward for_mulat|on in terms of dipoles. The Iat.ter
including unitarization corrections] has proved particu- S Most simply obtained from the Good-Walker mechanism

larly successful and natural in embedding both inclusive an&lz’lg-l'

diffractive observables in the same conceptual framework Our interest in diffractive dls_somatlon IS triggered by t_he

[3,6—8. Wea_lth of new data that are being taken in the relevant k|_ne-

There are two distinct processes contributing to diffractivemat'cal range at DESY .HERA' On the other han(_j, wh||<_a
some theoretical calculations are already available in the lit-

final states. The first one consists in the photon splitting mtoerature[l4,15], to our knowledge there has been no phenom-

aqq pair, which scatters elastically off the target without anYenological analysis of this particular kinematical domain
further radiation. The final state typically has a low invariant,yihin QCD saturation models. Referer{&d also provides a

massMy, of .the.ord.er of the wﬁualllty. of the .photon. The model for diffractive dissociation, but the approximations
second contribution is due to thgy pair interacting through  made there allowed only for high virtualities of the photon

higher Fock state fluctuations, for exammlgg, which go  Q>Qs; therefore the formulas obtained are inapplicable to
instead to a large-mass final stilg> Q. The latter process the recent data at l0@?.
is called diffractive dissociation of the photon. As there is a In the following, we wish to clearly distinguish what is
clear kinematical separation between the two processes, titeoretically well under control and which are the model
makes sense to analyze these contributions separately. Thgsumptions that have to be made to come to the description
present paper deals with the second one, i.e., diffractive dif the HERA data. In this spirit, we will start by providing a
sociation. complete derivation for the idealized process of diffractive
To select this particular process one needs a large hieraglissociation of a photon on a large nucleus, for which the
chy between the mass of the diffractive final state and thé&aturation corrections can be implemented in an easier way.
virtuality of the photon. This means in practice that one isThis will be done in Sec. Il. Some analytical results are given
forced to relatively low virtuality scaleQ?<1 Ge\?, be- inSec. lll. In Sec. IV, we turn to phenomenology and explain
cause of limited total center-of-mass energy available in théow we can adapt the results obtained to photon-proton re-
experiments. However, the process can still be computable iactions at HERA. We compare our predictions to recently
perturbative QCD provided that the energy is high enough t@nalyzed data. Our conclusions are drawn in Sec. V.
push the intrinsidk, of the partons inside the proton to large

Valt“estlfi%%s%:@c%' Th.'ts. fgat“rs Isa Consﬁlq“e(;‘ce t°f t(;‘e II. DIFFRACTIVE DISSOCIATION OF A VIRTUAL
saturation or parton aensi |é ] and Is how well understoo PHOTON ON A LARGE NUCLEUS

In this section, we compute the cross section for diffrac-
*Electronic address: Stephane.Munier@cpht.polytechnique.fr  tive production of a hadronic system of large masg in a
"Electronic address: shoshi@phys.columbia.edu highly energetic photon-nucleus collisigRig. 1). We limit
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ourselves to diffracted systems which have the following

partonic contentgq or qqg. Higher Fock states are indeed
not needed for large but still moderate valueshbf. The
target is a large nucleus because, as will be discussed, com-
plete and numerically manageable results can be obtained,
strictly speaking, only in this idealized framework. We will
also stick to the larg®¥. limit, and to the semiclassical ap-
proximation implied by the high energy kinematics.

Q

A. High energy kinematics and dipoles

We go to a frame(the so-called dipole framgl6]) in
which the photon and the nucleus have respective four-
momenta gq“=(q*,— Q% (2q%),0") and p*=(0,p ,0").
The total squared center-of-mass energy is given sby
=2q*p~ — Q%2 Through an appropriate boost along the col-
lision axis, the value ofj™ is chosen such that the whole

diffracted partonic statéqq) or |qqg) is viewed as a quan-
tum fluctuation of the photon, which subsequently scatters
off the nucleus. The nucleus contains all partonic fluctuations F|G. 1. One of the relevant graphs contributing to diffractive
due to the remaining energy evolution as part of its wav&jissociation of the photon. The blob denotes the elastic double
function at the time of the interaction. This is possible in adipole-proton cross section.

frame in which the rapidity of the slowest final-state particle

is close to zero. Of course, the observables will not depend

on the frame, but our choice provides a physical picture |y(r,z;Q)|?=
which is particularly adapted to the study of unitarization
effects. The event is diffractive if the nucleus does not break
up, which requires the scattering to proceed through the ex-
change of a color-neutral object.

It was proven[10,1]] (for a review, seg¢17]) that in the
dipole frame, the mean transverse momentum of the partons
in the nucleus is shifted fromk ocp to a scaleQg (the so-
called saturation scalavhich increases with the rapidity of for a transversely and longitudinally polarized photon, re-
the nucleus, due to multiple scatterings and saturation of thgpectively. Here we sum over both polarizations, but in prac-
parton densitie§9,18] that occur to preserve the unitarity of tice in the kinematical domain of interes®¢ not too large
the scattering matrix. If the energy is large, then the saturaenly the transverse component will be relevant. In the previ-
tion scale can become high enou@ds>Aqcp, to justify  ous formula,m; is the mass of quarkand
perturbative calculations for the diffracted partonic system,
even if the transverse momenta at the level of the photon, gf= Vz(1-2)Q%+ m?. (3)
initially of order Q, are not large.

In the dipole frame, the time sequence of the interaction isThanks to the factorizatiofl), it will be enough to compute
the following: the photon couples togq pair, which then  the cross sectioda g /d®b for diffractive dissociation of an
radiates(or nod a gluon before the whole system scatters offonium. Using that formula, we will be able to relate it finally
the nucleus through the exchange of a color-neutral objecin a straightforward way to the deep-inelastic scattering ob-
The leading terms at high center-of-mass enesggome  servables.
about when the ordering in time is strict, i.e., when the in- Recalling thatg™ is the light-cone momentum of the in-

termediateqq can be considered an almost on-shell oniumcident photon, the four-momenta of the partons in its wave
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state. The following factorization then holds: function read
2
dofi J' 1 do gt + K
= dzrf dZ|p2(r,z;Q) |2+ |4 (r,z,Q) |2 ]——, quark: | z,q",——,Kq |,
b . 4|y3(r,z;Q) "+l (r,z;Q)|7] b oz
.y 2
wherer is the transverse size of thgy pair, b is its impact antiquark: (Zaq+'2an ,ka) :
q

parameter, ana is the longitudinal momentum fraction of
the antiquark.dog/d?b is the onium-nucleus diffractive 5
cross sec_tion. The photon wave functiop$,{ on aqq gluon: | z,q*, Kg k.| @)
pair are given by19]

g
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wherez,+z;+z4=1 andk,+ky+ky=0 from conservation
of the three-momentum. The transverse moméqta Irq

andk, are of the order of the external mass and/or virtuality

scales, which we assume are all of the same magni@ude
>Aqcp. We require furthermore the diffracted system to
have a large mass in the sendgg>Q. Then the squared
invariant mass of this partonic system reads

» o1 1 1
My=Q —+—+— (5)
Zq ZCT Zg
and gets large if eithez,, z;, or z4 is small. Due to the

infrared singularity of QCDgz, is very small in a typical
configuration, in which casmf(z Qzlzg. This configuration
with strong ordering of longitudinal momentg<z,,z; is
the dominant contribution in the kinematical regime of inter-
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FIG. 2. (a) Theqqg Fock state decomposition of the photcb)
The same in the largh limit.

B. Elastic amplitude at next-to-leading order

We keep only the leading terms in aNL/ expansion.
Then, as is well known, the partonic content of a color-
neutral object can be represented as a set of difgetesFig.

2)

We denote by; (a two-dimensional vectpthe transverse

est. Thus the mass of the diffractive final state is directlyPOSition of the dipole constituentwith respect to the center

related to thdongitudinalmomentum fraction of the photon ©f the targetx;; =x;—x;, andz is the fraction of longitudi-

carried by the gluon. nal momentum carried by constituaniThe normalization of
Let us now introduce some more kinematics. The differ-& generic dipole state is given by the orthogonality condition

ence between the rapidity of the onium and the rapidity of f Lt s a2 " D , ,

the slowest particle in the final state is denoted/Ry If 3 is (x,b,z|x",b",2") = *(x—x") 6*(b—b") 8(z=2") (8)

the fraction of momentum of this particle with respect to the

initial-state onium, then it is easy to see tlygt=1og(1/8).

One also sees th@#=z, for a |qqg) final state. The total
rapidity difference between the photon and the nucleus i
denoted by =log(1/gj), wherexg; is the Bjorken variable.
Then one introduces the rapidity gap variabje=y—yy
and similarly tog, the variablex; such thatyp=log(1kyp).

;

for two dipoles of respective sizesx’ and center-of-mass
oordinate vectord,b’. In the following, unless it might
amper understanding, we do not keep track of zhari-
ables in order to simplify the notation.

The physical dipole statixy;,b)pnysin the initial state of

The relationship between these variables and the kinematid8€ experiment is dressed with all possible fluctuations. Its

of the event reads

QZ
Q%+s

QZ

B xBj_Q2+M>2(
=, x "X
Q%+ My

Q%+s

B Xgj= (6)

X“n:

5=

The quantity which is measured and which will be computed

is the differential cross sectiodoz/dMy or equivalently
doi/dlog(1/B8). They are related by a simple kinematical
factor:

dor i

dUgiﬁ_ 2My do i 2

dMy Q2+ M2 dlog(1/8) wZ=q? My dlog(1/8)”
(7

The calculation of the cross section for diffractive produc-

expansion in terms of bare Fock states reads

|X01,0) phys= VZ(X01)[X01,b)

+f d2X,d Zy1(X02,X12,22) [ X0z, X12,0) + + - -,

9

where /(Xg,,X12,2,) is the probability amplitude that the
dipole xp; split into two dipoles of respective sizeg, and
X12, Which corresponds to a one-gluon fluctuation of the ini-
tial onium. The gluon has longitudinal momentum fraction
z,. Note that||? is of orderasg, and the higher Fock states
not written are at least of order? : this remark provides the

tion of a gluon in onium-nucleus scattering will proceed in Systematics for this Fock-state expansion, seen as a perturba-
two steps. In the next subsection we compute the elastiive expansion in the parametes. This expansion is rel-
scattering amplitude for the onium on the nucleus up to ordefvant sincex is small because it runs with a scale between
O(ag). Then we will deduce the diffractive cross section Qs andQ, which we have assumed are both much larger than
from the Good-Walker formula and with the help of the elas-Aqcp- Also, note that the two-dipole state is not renormal-
tic amplitude. ized to this order, but would get renormalized from higher
orders.
The quantity that will appear in the calculation of observ-
Note that the saturation scale, which characterizes the transvergbles is the squared wave function, summed over the polar-

momenta at the level of the nucleus, dependsxpn and grows
whenx; decreases.

izations and colors of the final-state gluon, whose expression
can be found irf4]:
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Xo1,b[S|X41,0’
Q’)(on a2 722) - Polariza% and color| lﬂ( Xo2:X12, Zz) | ’ phy5< ” > >phys
=Z(Xo1,b[S[x0g,b")
aNg 1 x5, w0 o
= —_— . ! ! *
212 2o X33, + J'pzd Xod Xzfﬁdzzdzzl,[/ (X02,X12,23)
From the unitarity conditiori8) applied to the physical state X (X02:X12:22)(Xo2:X12,b[ 5[ X0z, X12,0").
|x01,b>physin Eqg. (9), one can compute the renormalization (15)

constantzZ,

5 1 Using Egs.(11), (12), (14) and performing the integration
Z(Xo) =1~ fpzd XZLdZZd’(XOZ’Xl%ZZ)’ (1D) overxg, andb’, one gets for the diffusion amplitude

wherep cuts off the ultraviolet divergences agtthe infra-
red ones. In practice, as it shoujddisappears from physical
guantities, ang3 is fixed by the kinematical limit. Note that aN- (1dz
Z represents physically the probability that the initial onium +— Cf —ZJ d?x,
does not radiate any gluon. 2m?Jp 22

Let us denote by the scattering matrix of the onium on
the nucleus. Color dipoles form an orthogonal basis of the = S(X02:0= X122 Xp) S(X12,0 = X0 2 Xp) ],
interaction eigenstates at high energy; thusihmatrix ele- (16
ment between two dipole states reads

7—(X01abaﬁ1XP) :T(XOLb!XP)
2

Xo1
72 [ S(Xo1,D,Xp)

Xo2X12

(x,b[S|x",b"y=8%(x—x")8*(b—b")S(x,b,xp). (12)  WhereT stands for the matrix elements 6f=1—5 between
bare states, and are its matrix elements between dressed
The quantity|S(x,b,x,) 2 is the probability that a dipole of states. The UV cutoff has been removed because when either

sizex at impact parametdy doesnotinteract with the target. Xo2 OF X3, tends to 0, then because of color transparency, the

. a . . o2
The x; dependence of this quantity reflects the high energ;’agtor built from the S-matrix elements vanishes likep,

evolution of the target. (x1,), and thus the integral oves, is finite. The first term in
The S-matrix element between two double dipole statesEd. (16) is the Born term; the second one is tf¥as) cor-
reads rection to it. PhysicallyZ is the amplitude for inclusive pro-
duction of a forward gluon having longitudinal momentum
(Xo2:X12,b]S|X0p: X 12,0 larger thanBq*, when the total available rapidity iy
= Iog(l/BXu)) .
= 52(Xo2— X0p) 8%(X12— X15) 8% (b —Db")S(Xg2,X12,0,Xp). At this point, it is interesting to note that the procedure

(13) described above can be iterated to get the Balitsky-
Kovchegov(BK) equation[11]. The latter gives the evolu-

L . . . tion of the dipole-nucleus-matrix element for a dressed
The notation is the followingS(xg,,X12,0,%p) is the elastic ) N o
diffusion matrix element for states formed of two adjacentdiPOle S(Xo1,b,8,xy) when the total rapidity = log(1/g))
dipoles of respective sizeg, andxy,, andb=(xo+x;)/2.  —109(1/Bxyp) increases. Starting from the scattering of a bare
The quantity|S(Xg2,X12,b,Xp)|2 is the probability that nei- Onium iitﬂzl, Eq.(16) gives the evolution of the amplitude
ther xq, nor x,, interacts, which under the assumption that7=1-S(xq;,b,8,Xp) as one decreases i.e., as one gives
the dipoles interact independently is the product of the proba small boost to the onium while the rapidity of the target is
abilities that xg, and x;, do not interact, |S(Xp,,b kept fixed. The change of the amplitude comes from the fact
— X122 Xp)|?|S(X12,0— X2 Xp) |2, The latter assumption is that the onium can now be found with an extra gluon in its
justified when the target is a large nucleus, since nucleons agave function: in the largé4, limit, this means that the
color neutral and independent. As, furthermdtés known  onjum has a probability to be formed tvfo adjacent dipoles.
to be real at high energy, one can get rid of the squareghen, under the assumption that the dipoles interatepen-

modulus and one gets dently, for example with different nucleons of a large
nucleus, this procedure can be iterated by simply replacing
S(Xg2,X12,0,Xp) = S(Xg2,0— X122 Xp) S(X12,b—X0o/2 Xp). the S-matrix element foibare dipoles in the right-hand side

(14 of Eq. (16) (for which 8=1) by theS-matrix element for the
scattering ofdresseddipoles at total rapidity log(Zxp)

Next one expresses the scattering matrix for the physicaklog(1/8x;), which readsS(xq;,b,z,,Xp). One gets the fol-
dipole [Xg;,b)pnys @s lowing integral equation:
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S(xo1.b.B.X0) do i 2 b1,b’
dil):f d2X01d2b Ex: phys<X011b|TT|X><X|T|X01’b >phys

Wz, [, Xo
_Z d Xo > 2 2
B2 Xo2X12 _J’ g2

asN
212

= S(XOl!bIXI‘) +
X(l)ldzb, phy&X011b|T|X611b’>phy ' (20)

X[ & - )& - ,
[S(X02,0=X122.25 Xp)S(X12,0=X02222. X0) oo i any dipole final state, and the sum ovérlso
—8(X01.0.25.xp)]. 1 contains an integration over phase space of the type
S0 2:%p)] (17 fTd?x,dz,. One denotes bgl) and(Il) the (positive) terms
appearing in this equation.

One now takes the derivative of both sides with respect toI Tge S/edc%n?;:éﬂ;f;ﬁ?a?fg;i]es&;%C%mpgrt]? Siﬂgetgrﬁsim'
log(1/8). As we keepx; fixed, this is equivalent to taking Ply doe : ping only

the derivative with respect to the total rapidity log(), relevant at ordeO(as), one gets

and one gefs do N (1dz 2
(”): zelsz(X01,b,X][))+ SZCJ —2J d2X22—012
d“b w Jp 22 XgX12
& 2
9S(Xo1,0,Xgj) _ “sNCJ 42, 0L X[1=S(Xo1) 1 S(X01) = S(X02) S(X12)]- (21)
N 2 222

dlog(lhg)  2m X02X12 Coming back to the first term in EqR0), the sum oveiX is
- restricted to singléx,,;b) and double|X,.,Xyc;b) dipole
X[S(X02,0 = X122 Xg)) states, since we limit ourselves to the ord¥) of pertur-

& _ - _ bation theory. At high energy the interaction with the target
X S(X12,0=%02/2,Xg) =~ S(Xo1,b.Xe )], cannot change the number of dipoles in the wave function;
(18)  the first term thus gives

| =fd2x' d2b’{z X fdzx d2b"(Xo1,b|TT|Xap ,b”
which is indeed the BK equatiofll] (see Ref[16] for a () ot (X2 ab (Xo1,BITxap,b")

derivation closely related to oyrsThis equation resums the

so-called “fan diagrams.” x(xab,b”|T|x(’,1,b’)+j d2x,d?x 502X, d%x;,d%b"
Coming back to Eq(16) for 7, the total cross section

stems from the optical theorem, and the elastic cross section X " (Xgp,X12) (X4, X12){ X02,X12, 0] T Xac , Xpe 0"

is the squared amplitud&

X<XacaXbcab"|T|X62:X12’b,>]- (22

door dog 2 Equation(11) enables one to expre{xy,) and E

- - 0 gs(13),

d2p 2T(Xo1,b) and d2p T ) (19 (14) to replace the matrix elements. Then one usesdhe
functions coming in Eq913), (14), which are due to the fact
that the dipoles are eigenstates of the interaction, to perform

1 1 ! ! ! " H
C. Diffraction from the Good-Walker picture the integrations OVeXqy, X3 Xap Xac:Xpe,0’,b". One finds

2

An elegant and most straightforward formulation of dif- 5 asNe (1dz [, Xop
fractive dissociation is obtained by using the Good-Walker (N=T(Xo0) + > zf z_f A% 5
[12] picture (see also[20] and [13]), according to which s 2 X012
inelastic diffraction is proportional to the dispersion in cross X{[1=S(Xg) S(X12) 12— [1—S(Xon 1%}, (23)

sections for the diagonal channels of the scattering. The rea- ]

son why we are relying on such a picture, developed in théutting the two partgl) and (Il) together and taking the
context of early hadronic physi¢42] and subsequently ex- derivative with respect to log(g), one gets after some
tended to the parton modgR0], is that the dipoles form Straightforward algebra

precisely a complete set of eigenstates of the QCD interac- 2

tion at high energy. The cross section for diffractive disso- __ 978 _ achf 2y, 0L [S(x0y.b— X1 2X0)
.. . : . 2 2 2 2 021 1 |
ciation reads in this picture d“bdlog(1/8) 2= XgX12
X S(X12,b=Xga2 Xp) = S(Xo1,0,Xp) 1%
2We suppress the dependence upon the two varighbesin Eq. (24)

(18) because an inclusive observable is sensitive onlyxgp ) . o )
=Bxp. Our derivation holds in a specific frame defined by the A few technical remarks are in order. Our result is identical

rapidity sharing between the onium and the target giverghy, to the one obtained in earlier derivations within different
but of course the physical observable computed here is independefiameworks(semiclassical14], eikonal[15]). It is also con-
of this choice. sistent, in the weak interaction limit in which=1-S<1,
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with previous calculation$21], and in particular with the
computation of all Feynman diagrams contributing to the

gqg final state[22].
Diagrams with gluons emitted in the final state are not

included in our calculation since the radiative corrections we

have concern exclusively the wave function: no final-state (@) (b)

interaction can be accounted for in our calculation. This class

of diagrams contributes to the diffractive final state, but they

cancel out if one does not measure the transverse momentum

of the gluon(see[16,23). Note that we could not obtain

FIG. 3. (a) The diffractive final state foQ> Q.. (b) The same
n the largeN, limit.

more detailed properties of the final state within our deriva-
tion, but as demonstrated earlier, thanks to the selected kin

matics, we do not need them for our purpose.

Using the factorization1l) and the kinematical relation

case, the second one being exactly symmetric. The ordering

gelation implies X1, ~|Xo1|. The contribution of these dipole

configurations to the cross section in E@4) can then be

(7), one gets the cross section for diffractive dissociation of a

virtual photon in the form

d"giff
dMX

N 1
s fdzxolj' d7 |4(z,%01;Q)|?

f d%b

X[S(X02,0—= X122 Xp) S(X12,0— X0 2 Xp)
—S(Xo1,0,xp) 1.

+|'//E/(ZaX01;Q)|2]f d2X2

22
X02X12

(29

Equation(25) has to be evaluated numerically for a general
dipole-nucleuss matrix, but there are two interesting limits

that can be studied analytically, name®?>QZ? and Q?
<Q?2. This is done in the next section.
I1l. ANALYTICAL INSIGHT

We will need a few general properties of tlematrix
element:

S(r) < 1 (black disk limib, (26)
[r|>1/Qg

1-S(r) ~ Q2?2 (colortransparendy (27
[r|<1/Qg

Let us also recall that this theoretical study assumes enough

center-of-mass energy so tr@g> A 3¢ in the dipole frame.
This also means that the dipole sizes entering forni24i,

rewritten as
asN¢ X01,42
—2 > f d<x (28

In this domain one has 4S(xq) ~Q2x3,, so the integral
vanishes agQixg; .

A second kinematical region which could bring large con-
tributions to the integral ovex, is |Xg)>|Xqi, Which im-
plies |Xgg ~|X15]. Then the contribution of these configura-
tions to formula(24) is

l
2 — [S(xe2) — 177
Xo02

aSNC 2 Xgl 2 2
02 )2 d x2X—4[S (Xg2) —1]°. (29
01 02

Using Eq.(27), one sees that this integral is of ord@gx3,
and thus this kinematical region dominates over the previous

one. It corresponds to configurations for which tregpair is
small and well separated from the gluon, or, in momentum
space, the gluon has a small transverse momentum with re-
spect to that of the quartsee Fig. 3. This is the collinear
limit. The lower boundary of the integréR9) can be put to
zero since the regiofxyy <|Xg| gives a subleading contri-
bution. The result reads most generally

aN

dO’d'ff d2X
I o 2X31f 7[1_520()]2-

d?bdlog(1/8)

(30

The integral appearing here is proportionatzté). The value

of order 1Qg, are always smaller than the typical scale of the associated proportionality constant has to be computed

1/A ocp of the variations of the& matrix as a function of the
impact parameter. ThusS(Xg,,b—X12/2)=S(xg,,b) and
S(X12,0—X%02)=S(X45,b). We will no longer have to take

care of theb dependence in th&matrix elements, because it

factorizes completely.

A. Onium-nucleus cross section
1. Small onium: Collinear region

We now analyze formulg24) in the limit x3,Q2<1,

in specific models fofs

The interpretation of the factdrl— S?(x,b)]? is the fol-
lowing. S?(x,b) is the probability that ajq dipole of sizex
at impact parametdy does not interact with the nucleus. The
elastic cross section reads in this cade/d’b=[1
—S(x,b)]%. In the same wayS*(x,b) would be the prob-
ability thattwo independent but superimposed dipoles do not
interact, anddo/d’b=[1— S?(x,b)]? would be the corre-
sponding cross section. So the quanfify— S?(x,b)]? can
be understood as the elastic cross section favaetdipole,

S(xp)=1. The dipole splitting probability is singular for because in the largd; limit the latter is represented by two

either |Xol| <€ |Xg1| Or |X1J<€|Xqq. Let us consider the first

independent lines of indices.
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~S(Xgp) and S(Xg2) ~1 [S(Xgp) ~S(Xg1) and S(xq5)~1].

€ Next define the domaif for which either|xq,| or |xy9 is
smaller than|x,, (the intersection withD, and D, is ex-
cluded. The remaining part of the two-dimensional plane is
denoted bye.

In the last integration regio#i, necessarilysS(Xq,) S(X12)
<S(Xgp), but in Z, the ordering relation depends on the
model for S Taking the relevant approximations in these
different domains, the integral in E(R4) then reads

2 2 IS ? 2 2 Xgl
S™(Xo1) d*x; (X02) | +S(Xo1) | dXo—5—
Dot D1 X0z & XoXiz
2
2 Xo1 2
+fd X2 =55 [ S(X02) S(X12) = S(X01) ]* (31
I Xo2X12

The first term varies aS?(x,;), and the second term is en-
hanced by a factor of lo@®<3,). As for the third term, no
completely general statement can be mades(Ky,) S(X1,)
<S(Xg1) everywhere in domaiff, the third term contributes
as much as the second term. Then the cross section varies as
FIG. 4. The transverse plane and the different integration doS?(x,;)log(x3;Q2). This is the case for a color glass conden-
mainsDy, D, Z, and&. The crosses denote the positions of the sate (CGC) for which S(XODNqu_)\|og2(X(2)1Q§)], with
quark and the antiquark, andx,, respectively. A~0.2[24,25. If S(Xqp)S(X12)=S(Xey) instead in some re-
gion inside Z (and in particular at the poinfXgy=|X14|
=|xo4/2), the third term contributes &&*(xo,/2)/x5;, and
We now turn to the limitx5,Q2>1. The discussion is can even dominate over the two other ones. This is what
more subtle in this case because unlike the previous case ohappens wheis given by the Golec-Biernat and tnoff
cannot identify a typical dipole configuration which gives the (GBW) model. Thus we see that the diffractive cross section
dominant contribution to the cross section. Let us split thebehavesqualitatively differently for the various models for
integration domain into several relevant subdomains athe dipole-nucleuss matrix. To summarize, in these two
shown in Fig. 4. First consider the disk% andD; of radius  kinds of model one finds the following estimates for the
1/Q¢ around x, and x; respectively, inside whictB(x;,) asymptotic behaviors:

2. Large onium: Saturation region

agN
4 — 2 (xgplog(x3,Q2) for CGC,
O ditf ™

d?bdlog(1/8) | 4asN.

w

(32

SH(x0/2)/X3, for GBW, up to a®(1) factor.

For GBW-like models((1) factors are cumbersome to get.  To summarize, we see that the diffractive cross section

The onium cross section is anyway strongly damped irincreases witHx| like x3, at smallx3,Q? and decreases
this region of largex§,Q3 becauseS(xo;) goes to 0 in this strongly at largex2,QZ, so there must be a maximum for
limit much faster than 1og(x,Qz)] in all available models. x2 ~1/Q2. For a realistic target, the saturation scale is a
This is the black disk limit, in which _the el_astic Cross Se‘?tior_‘decreasing function of the impact parameter. For a well-
is half the total one, and thus the diffractive cross section igposen value ok, it can happen thaQZ(b)x21 for

zero from the inequality smallb andQﬁ(b)xSﬁl for largeb (this is always the cage

In such a situation, the main contribution to the diffractive
, (33)  Cross section for an incident dipole of sizg,| comes from
a zone in the impact parameter space which has the shape of
a ring of radiusb, such thaQ?(bg) ~ 1/x3,. We have recov-
which directly follows from unitarity{ 20]. ered the well-known fadt20] that diffractive dissociation is

dffdiff - 1 dCTtot_ dUel
d? 2 d*» d%
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peripheral, at variance with elastic or total scattering. How-

ever, the “periphery” of the nucleus is defined with the help
of the saturation scale and not with,cp, at variance with
soft processes.

The features just found are illustrated on Fig. 5 for the
Golec-Biernat and Wathoff model, and for the color glass
condensate in the large;Q? limit.

B. Limiting behaviors of the photon-nucleus cross section

Before we turn to the comparison to the data, we wish to

study some analytical properties of the cross sed& in
the two different limitsQ?>QZ andQ?< Q2. We focus here

on transversely polarized photons. To study asymptotic be-

haviors, it is enough to replace the photon wave funct®)n
that appears in Eq25) by the following approximation:

1
ef[Z2+(1-2)%]
Xo1

|'/’}r/(X01,ZJQ)|2:

X0 (1-2z(1-2)Q>2, (34)

Let us first treat the integration oveiin Eq. (25). There are
two cases to distinguish. (D2x(2)1<4 then the® function in

Eq. (34) can be ignored and

f d2|$3(x01,2;Q)|>= ‘”“2 ef (35)

01
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0.1

Arbitrary scale

0.001

0.0001

dogpidiog(1/) (GBW)
limiting behavior
dogy/diog(1/8) (CGC)

1e-05

limiting behavior %
L

1e-06

L
0.1 1

%01Qs

FIG. 5. The diffractive cross section compared to the approxi-
mations in extreme kinematical regimes.

As for the cas€Q2<Q§, one now splits the integral over

Xo1 into [0,1Q2%], [1/Q2,4/Q?], and[4/Q?,]. This time,
the first domain gives the main contribution, which reads

Eef—fdzb

2
_4[1_ SZ(leIXP)]Zu
X

fdx
X

(38

If Q2x§1>4 instead, then the leading contribution, obtainedand which is independent &> andQ§ (recall that the inte-

for Q2x§1>4, comes from the end points

fdzll/f¥(X01,ZQ)|2 f”@ 042 (x01,Z, Q)2

1
g
1-

3aem

71_2

U@y dz ¥ (x01,2;Q)[?

2
€}
204
Qo1

This is the well-known aligned-jet configurati¢@6)].

As for the cas&Q?s> Qg, the integral ovekg,; can be split
into three integration regiong0,4Q2], [4/Q%,1/Q?], and
[1/QZ,]. Taking the relevant approximations for the wave
function (35),(36) and for the dipoleS-matrix element

(36)

f

gral over the vectox is proportional toQg). This can be
illustrated graphically. As one goes to smalleép?,
x?,lfdzllW(xm,zl;Q)|2 stays constant for lower values of
x5,, and develops a plate4@7], as seen in E¢(35) and on
Fig. 6. This plateau contains configurations for which the
longitudinal momentum of the photon is equally shared be-
tween the quark and the antiquark. On the other hand,
dogi /d log(1/8)/x3, is roughly a constant fax3,Q2<1 and
drops rapidly to zero for3,Q2>1. Hence onc®? is small
enough to allow the plateau of the photon wave function to
extend up to dipole sizes of the order |ofy;|~1/Qs, the
cross section does not increase anymore wéuecreases,
and tends to a constant. The precise value of the constant is
model dependent.

These features are specific to the transverse photon and to
the purely diffractive cross section.

(30),(32) in each of these domains, one sees easily that re-

gion [4/Q2,1/Q§] dominates. Equatio(25) reduces to

2
d?b IogQ—2
Qs

2

d
xf X—:([l—Sz(x,b,xP)]z. (37

This limit is consistent with previously derived results, as
shown in the Appendix.

07402

IV. PHENOMENOLOGY

We are going to apply the formalism developed above to
deep-inelastic scattering at HERA. Our starting point is Eq.
(25).

A. From a nucleus to a proton target

To go from scattering on a nucleus to scattering on a
proton, one has to take some model assumptions for the non-
perturbative physics inherent to the target and that is not
under theoretical control.

2-8
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14 T T

derivation of Eq(25), which wasa priori justified for a large

T
dogn/dlog(1/B) ixy

-didiog Q%2 iz [y71%) for Q2=10" Gev2 - nucleus only. This could be a problem f@2<Q§. But it
"l G gzt e ] has recently been show(isee[25,28,29 for the theoretical
[ Q210" GavE —— justification that the proton can be seen effectively as

formed of color-neutral domains of typical sizeQLl/. Thus,
deep in the saturation regin@2<Q§, the proton is not
different from the nucleus, in the sense that the dipoles in the
projectile interact at most once with each of these color in-
dependent domains in the proton.

Arbitrary scale

B. The saturation model

In practice, we choose to stick to the Golec-Biernat and
_____ Wausthoff model[5] for the dipole-protons matrix, which
1 reads

FIG. 6. The dipole cross section and the photon wave function S(r,b,xp)=0O(R,—b)e” RACAN O(b—Rp), (39
for three different values of?. The former is divided by the
squared size of the dipole, and the latter is multiplied by the samewherng(xP) =(x/Xo) " in units of 1 GeV\ and R, is the
so that the convolution of these two quantities is equal to the conradius of the proton, related to the normalization parameter
volutlor.1 of the dlgqle cross section and ph;)t_on wave function. Thqn the GBW model byR§= 00/(27). X9, N, and oy, were
saturation scal@; is set to 10 Ge¥. For Q=10 GeV, the de- e 1o the data for the total structure functién in Ref.
rivative of the wave function with respect to I()j is also shown. [5]; we just take over the found parameterg=23 mb, A

) o ) ) =0.288, andx,=3.04x 10" %. The integration over the im-

First, we assume that the incident dipole is always mUCfbact parameter that appears in E2p) can be performed and
smaller than the target proton, which is reasonabl€Xonot  yields a factoroo/2. In addition, in the GBW model, three
too small compared td §cp. We also consider a cylindrical jight quarks were considered, and a mass of 140 MeV was
target, i.e., we neglect all dependence upon the impact passigned to them, to ensure a sensible extrapolation to pho-
rameter. As long as we do not consider observables whickyproduction. We take over this feature in our model.
would depend on the momentum transfer to the proton, this
assumption only hampers predictivity for the global normal-
ization and brings significant technical simplification.

Although we are now dealing with a proton, we still keep ~ We find it useful for numerical evaluation to rewrite the
the hypothesis of independence of dipole interactions in thenium diffractive dissociation cross section as

C. A comparison to the data

da—diff —ZaSCFfld)\ fld)\ 1 1
d?bdlog(1/8) @2 Jo o tJo T PL=N1t2NNa (N y(1— A (1NN (L— Nyt Agh,)

1
X{)\—EZ(X01??\121_)\1+27\1)\2)+7\122(X01§1/)\1;1/)\1_ 1+2N,) ¢, (40
1

whereX (Xq1;a;b) = S(axgy) S(bxp1) — S(Xe1). Through an appropriate change of variable, we have mapped the complex plane
into the finite domairf 0,1]X[0,1]. Note that the formula obtained is quite simple, and this feature might be related to the
conformal invariance of the dipole splitting kernel.

Putting everything together, the formula that we have to evaluate numerically is

doly  4daNe o (= 1
dMIX: ; CM_X . dX01X01fOdz[|¢¥(X01:ZiQ)|2+|¢Z(X01:ZiQ)|2]

1
d\,dh
J[O,1]><[O,1] P21 N 200, VA=) (L+NA ) (1= Ng+Aq\y)

X

1
3 2(Xop N1 1= N+ 2N N0) F A S (Ko I 1IN — 1+ 2N,) ¢, (41)

X
N
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) components, which for high dif-
1040 et 5 L fracted masses reduces to the in-
W-ISO-“_ LENN (,;,Efg,‘?j—"\ :fs;lfg)ce\/ elastic component. The data
103 ;_(n,osm)- --------------------- _ _ \ points are taken frori33].
2 £ === T £ o
102 [ w=130 > L w= ""\ L w=130 Gev
Ry S = }1’,,,130‘},""’ t . g mm\
F . f e
o £ v F =
1 ;&-l%m\ i L
E (S.0E+00).......ccvvemn..... E w= s E W=100 GeV
E E W=100 GeV £
aF F (stooo)s‘\\. [ (1.0e401)
10 = e 3
2f F F
10 = L L
2 -1 -2 -1 -2 -1
107 10 1 10 107 10 1 10 107 10 1 10

Q* (GeV?)

where is constructed from th&-matrix element39), and is resonant with the saturation scale, the impact parameter

the photon wave functions are given by Eg), with flavors  region which contributes to the cross section should be ef-

and quark masses chosen as explained in Sec. IV B. fectively smaller® which would go in the right way as far as
The data do not distinguish between elastic and diffractivéhe normalization is concerned.

contributions, so we have to add a component in which the Our predictions are presented on Fig. 7. As our model is
final state is agq pair. This component is not of direct rel- established in the limit of small values @ we choose to

evance for us as it gives a non-negligible contribution forreStrICt our calculation 1g8<<0.2. This explains why our

2 .
large B~1 only. As it has been extensively studied in the (;ufr)vgse\t/joVr\}gtsiget?](;ttsvevergt I:rg%(; dezpfecelzzrin”)e/n?tvai?h the
literature within different model$5,30-33, we just repro- ' 9 g g

duce the parametrization obtained in R& to estimate the data.
importance of this contribution.

A priori, there is no free parameter. However, by taking D. Future prospects on phenomenology
as at its value at a phenomenologically realistic scQ® On Fig. 7 we see that the cross section tends to a constant
~Q3%~1 GeV?, we overshoot the data by a factor of 1.5-2. at low Q?, as anticipated in Sec. Il B. This was shown to be
We must setrs to a lower valueas=0.15. due to the fact thax3,/3dZ ¢3|? also tends to a constant at

However, the fact that we do not predict the global nor-low Q? (see Fig. 6, which is unavoidable when the initial
malization correctly does not come as a surprise. Indeedtate is a transversely polarized photon. The consequence is
first, the (nonperturbativeassumption of a cylindrical target
is certainly not realistic. Second, we took the size of the
cylinder over from the normalization of the cross section 3we thank Edmond lancu for having drawn our attention to this
fitted to total cross sections. Because diffractive dissociatiopoint.
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that the high sensitivity of these diffractive observables tohigher Fock states, nor the complete resummation of all lead-
the exact form of theés matrix in the saturation region is ing logs, i.e., of the powers atgslog(1/8).
somewhat spoiled by this smearing. On the phenomenological side, it would be worth taking
However, this property is not true for a longitudinally into account more accurately the dependence upon the im-
polarized photon. Alternatively, the plateau at smejJQ?  pact parameter, which is of great importance in the whole
can also be eliminated by considering the derivative of theliscussion of saturatidi85,39. Therefore, one could replace
cross section with respect to 1Qf, namely, the GBW ansatz for the dipol& matrix by the recent
dols/dMxd log Q? [27] (see Fig. 6. A measurement of this Kowalski-Teaney mode]40], which takes into account the
quantity would help the understanding of thenatrix in the  transverse profile of the proton. This replacement might be
saturation regime, by enabling a direct scan of this interesti€cessary in order to describe accurately enough the high
ing region. Note that the ability of the latter observable toPrecision preliminary data, and we would have a prediction

discriminate between different models for diffraction was al-also for the normalization of the cross section, instead of
ready advocated in Reff34]. tuning it as we have done here. Furthermore, more exclusive

A more detailed study will be provided elsewhere. observables likelo/dMydt, which will be measured in the
future, could be predicted.

V. CONCLUSION

Diffraction is a good place to study saturation effects in ACKNOWLEDGMENTS

deep-inelastic scattering. It had already been shown that \ye thank Yuri Kovchegov and Magno Machado for use-
quasielastic diffractive scattering, like vector meson producy, | correspondence, Edmond lancu and Robi Peschanski for

tion, enables one to measure how far one is from the unitarz,|,aphie suggestions, Al Mueller for useful discussions, and
ity limit and gives a handle on the impact-parameter depengernarg Pire for his reading of the manuscript. This work

dence of the saturation scdle5,36. In this paper, we have a5 started while S.M. was funded by the European Com-

provided a theoretical tool to study “trudinelastio diffrac-  ission IHP program under contract HPRN-CT-2000-00130.
tion in the saturation regime. We have formulated the diffraca 5150 thanks the Service de Physique dffeie, CEA/

tive cross section for a gen_eral model for the dlpole-prdion. Saclay for hospitality when this paper was being completed
matrix, and we have rederived an already known formula inyq financial support. A.Sh. is supported by the Deutsche

an elegant way using the Good-Walker picture. When we-schungsgemeinschaft under contract Sh 92/1-1. Centre de
take forSthe Golec-Biernat and \Athoff model, we obtain Physique Theorique is UMR 7644, Unibdixte de Recher-

parameter-free prediction@ip to the global normalization & qu CNRS.

for the observablelo/dMy currently measured with good

precision at HERA. An important highlight of our analysis is

that diffractive observables can help to discriminate in a APPENDIX: HIGH MASS DIFFRACTION
unique way between the predictions of different models in FROM THE COLLINEAR LIMIT

the saturation region. This point deserves more study, which . .
we leave for the?‘uture. P Y In this appendix, we compare our approgste Eq(37)]

On the theoretical side, the formalism used here based otr?_the impact factor used by Golec-Biernat andstoff for
the dipole model could be easily generalized to an arbitrarfidg_final states. The latter is formally valid only fa@?
number of gluons in the final state. This program has already” Q3. i.€., in the collinear limit. The two calculations
been explored in Ref$7,37,39 but no unitarity corrections Should, however, lead to the same result when bQth
were taken into account. Our method allows one to take int@Qﬁ and B<1, which is the so-called double logarithmic
account these corrections. Whether a simple evolution equdimit.
tion in 8 would be found is not clear. In any case, the avail- According to Refs[5,32], the diffractive structure func-
able energies at present colliders do not yet require suction reads

( B
1——
z

0(1-2)Q*- kz)f d2rd2r’ € oy (1 Xp) orgg(r' Xp)

z z
K, Ekl’ K, Ekr’ s (A1)

whereo gy is the adjoint dipole-proton cross section, d@as the exponential slope of the differential cross section:

2
+

2

B

z

doix 8laemBMy , Qs 1dz z

= e [
dMy  647%BQ?(Q*+M2) T 2mlp z (1-2)3

d?k 1-2)Q?
(2m)? k?

rmrn rrmrrn
x> ( 5”’“—2—) ( 52
m,n 2

r r'2
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Y. Y.
do i _ do i

dt  dt |,

e Bt

(A2)

One can extract the leading contribution to this cross sec-

tion in the 8—0 limit. It comes from the integration region
2~ B. Using K,(X) =0 2/x*> and performing the sum over
helicitiesm,n, one gets

dolig 8laen8 ,as (1dz (1 ﬂ)z
= e — —_— N
dMy — 873BQ2My T 27l 22 z
B)Z J d2k 2
+| = log| — | ®(Q%—k?
(Z (2m2 %2 | @
d?r d?r’

K(r—r’
(2 ?el (r r)U'gg(r,X]p)O'gg(l”,X]p)

(r-r’)?
X(Z 212 —-1].

The integral over is now factorized and gives just a factor
2/3B in the limit 3—0. The integral ovelk can be done
analytically:

J

(A3)

d?k
(2m)?

_11-34(Qlr=r"])
T |r=r'2

Q2 ik(r—r’
Iog<ﬁ>ek( )@ (Q?—k?)

(A4)

One performs the change of variabl&s=Qgr,X=Qq(r
—r"). The following expression results:

270

dMy  47*BQ2My T
1-J3,[(Q/Qy)|X
de|x| o[ (Q/Q4)[X[]

IX]
where we have defined

Y.
do i _ ezﬁ
F 2

f(IxD,

(A5)

5 2 d2R ~ -~
f(|X|)=Q5fo d¢f mggg(va\P)agg(R_X!X\I’)

[R-(R-X)J

R%(R— X)2 1 (A6)

and ¢ is the angle of vectok, o is the dipole cross section
after change of variablef(|X|) is a smooth regular function
of |X| having finite value aX=0 and decreasing as|X/?.
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Let us choose a number>1 such that|Jy(\)|<1. The
integral over|X| can be decomposed as follows:

M@ 1-3[(QIQIXI] F(IX)

1) fo dX| X 70)

o dIX|F(X])  =dIX]f(]X])
*Loslgm 7(0) +L X T(0) } &7

As the integrand is bounded by a number proportional to
Q/Qg, the first term in the large square brackets tends to a
constant forQ>Qg. The third term is also a number since
f(|X]) decreases sufficiently quickly to ensure convergence
of the integral. The leading contribution to the second term is
log(Q/Qy). The coefficient of this logarithm is the value of

at zero, namely,

2
Ugg( r !X]P)

= (A8)

f(0)=27rf d?r

Putting everything together back into E@\5), one finally
gets

do'giﬁ _ 27aem 1
dMyx  47°B Q%My

Q2
%

o
2 S
Ee—lo
T f2m

2
P O'gg(r,X]P)

xjdr 7

In order to compare with our approach, one has to résat
Sec. IV A) that in the largeN, limit ogyq is given by

. (A9)

agg(r,xp)zzf d?b[1—S*(r,b,xp)]

= o[ 1= S%(r,xp)], (A10)

whereS is the 3-3 dipole S matrix element. Replacing Eg.
(A10) into Eq.(A9), the ratio betweefA9) and(37) reduces
to a constant:

(A11)

The fact that the results match only up to a factor is to be
traced to the different treatments of the integration over the
impact parameter in the two cases.
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