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Diffractive photon dissociation in the saturation regime from the Good-Walker picture
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Combining the QCD dipole model with the Good-Walker picture, we formulate the diffractive dissociation
of a photon of virtualityQ2 off a hadronic target, in the kinematical regime in whichQ is close to the saturation
scale and much smaller than the invariant mass of the diffracted system. We show how the formula obtained
compares to the DESY HERA data and discuss what can be learned from such a phenomenology. In particular,
we argue that the diffractive observables in these kinematics provide useful pieces of information on the
saturation regime of QCD.
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I. INTRODUCTION

Hard diffraction has triggered wide interest since its d
covery in high energy virtual photon-proton scattering at
DESY ep collider HERA@1#. It has been a major theoretica
challenge to understand the observed large rate of diffrac
events within QCD, especially for large virtualitiesQ2 of the
photon ~for a review, see Ref.@2#!. Among the attempts to
describe hard diffraction, the dipole picture of QCD@3,4#
including unitarization corrections@5# has proved particu-
larly successful and natural in embedding both inclusive
diffractive observables in the same conceptual framew
@3,6–8#.

There are two distinct processes contributing to diffract
final states. The first one consists in the photon splitting i
a qq̄ pair, which scatters elastically off the target without a
further radiation. The final state typically has a low invaria
massMX , of the order of the virtuality of the photon. Th
second contribution is due to theqq̄ pair interacting through
higher Fock state fluctuations, for exampleqq̄g, which go
instead to a large-mass final stateMX@Q. The latter process
is called diffractive dissociation of the photon. As there is
clear kinematical separation between the two processe
makes sense to analyze these contributions separately.
present paper deals with the second one, i.e., diffractive
sociation.

To select this particular process one needs a large hie
chy between the mass of the diffractive final state and
virtuality of the photon. This means in practice that one
forced to relatively low virtuality scalesQ2<1 GeV2, be-
cause of limited total center-of-mass energy available in
experiments. However, the process can still be computab
perturbative QCD provided that the energy is high enough
push the intrinsick' of the partons inside the proton to larg
valuesk';Qs@LQCD. This feature is a consequence of t
saturation of parton densities@9# and is now well understood
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within QCD @9–11#. Qs is called the saturation scale and
an increasing function of the rapidity of the proton.

The dipole picture is well suited because color dipol
which are two-body color neutral objects characterized
their longitudinal momentum, transverse size, and impact
rameter, are eigenstates of the QCD interaction at high
ergy. Both elastic scattering~and thus, from the optical theo
rem, the total cross section! and diffractive dissociation have
a straightforward formulation in terms of dipoles. The latt
is most simply obtained from the Good-Walker mechani
@12,13#.

Our interest in diffractive dissociation is triggered by th
wealth of new data that are being taken in the relevant ki
matical range at DESY HERA. On the other hand, wh
some theoretical calculations are already available in the
erature@14,15#, to our knowledge there has been no pheno
enological analysis of this particular kinematical doma
within QCD saturation models. Reference@5# also provides a
model for diffractive dissociation, but the approximatio
made there allowed only for high virtualities of the photo
Q@Qs ; therefore the formulas obtained are inapplicable
the recent data at lowQ2.

In the following, we wish to clearly distinguish what i
theoretically well under control and which are the mod
assumptions that have to be made to come to the descrip
of the HERA data. In this spirit, we will start by providing
complete derivation for the idealized process of diffracti
dissociation of a photon on a large nucleus, for which
saturation corrections can be implemented in an easier w
This will be done in Sec. II. Some analytical results are giv
in Sec. III. In Sec. IV, we turn to phenomenology and expla
how we can adapt the results obtained to photon-proton
actions at HERA. We compare our predictions to recen
analyzed data. Our conclusions are drawn in Sec. V.

II. DIFFRACTIVE DISSOCIATION OF A VIRTUAL
PHOTON ON A LARGE NUCLEUS

In this section, we compute the cross section for diffra
tive production of a hadronic system of large massMX in a
highly energetic photon-nucleus collision~Fig. 1!. We limit
©2004 The American Physical Society22-1
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ourselves to diffracted systems which have the follow
partonic content:qq̄ or qq̄g. Higher Fock states are indee
not needed for large but still moderate values ofMX . The
target is a large nucleus because, as will be discussed,
plete and numerically manageable results can be obtai
strictly speaking, only in this idealized framework. We w
also stick to the large-Nc limit, and to the semiclassical ap
proximation implied by the high energy kinematics.

A. High energy kinematics and dipoles

We go to a frame~the so-called dipole frame@16#! in
which the photon and the nucleus have respective fo
momenta qm5„q1,2Q2/(2q1),0'

… and pm5(0,p2,0').
The total squared center-of-mass energy is given bs
52q1p22Q2. Through an appropriate boost along the c
lision axis, the value ofq1 is chosen such that the who
diffracted partonic stateuqq̄& or uqq̄g& is viewed as a quan
tum fluctuation of the photon, which subsequently scatt
off the nucleus. The nucleus contains all partonic fluctuati
due to the remaining energy evolution as part of its wa
function at the time of the interaction. This is possible in
frame in which the rapidity of the slowest final-state partic
is close to zero. Of course, the observables will not dep
on the frame, but our choice provides a physical pict
which is particularly adapted to the study of unitarizati
effects. The event is diffractive if the nucleus does not bre
up, which requires the scattering to proceed through the
change of a color-neutral object.

It was proven@10,11# ~for a review, see@17#! that in the
dipole frame, the mean transverse momentum of the par
in the nucleus is shifted fromLQCD to a scaleQs ~the so-
called saturation scale! which increases with the rapidity o
the nucleus, due to multiple scatterings and saturation of
parton densities@9,18# that occur to preserve the unitarity o
the scattering matrix. If the energy is large, then the satu
tion scale can become high enough,Qs@LQCD, to justify
perturbative calculations for the diffracted partonic syste
even if the transverse momenta at the level of the pho
initially of order Q, are not large.

In the dipole frame, the time sequence of the interactio
the following: the photon couples to aqq̄ pair, which then
radiates~or not! a gluon before the whole system scatters
the nucleus through the exchange of a color-neutral obj
The leading terms at high center-of-mass energys come
about when the ordering in time is strict, i.e., when the
termediateqq̄ can be considered an almost on-shell oniu
state. The following factorization then holds:

dsdiff
g

d2b
5E d2r E

0

1

dz@ ucT
g~r ,z;Q!u21ucL

g~r ,z;Q!u2#
dsdiff

d2b
,

~1!

wherer is the transverse size of theqq̄ pair, b is its impact
parameter, andz is the longitudinal momentum fraction o
the antiquark.dsdiff /d2b is the onium-nucleus diffractive
cross section. The photon wave functionscT

g ,cL
g on a qq̄

pair are given by@19#
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ucT
g~r ,z;Q!u25

3aem

2p2 (
f

ef
2$@z21~12z!2#« f

2K1
2~« f ur u!

1mf
2K0

2~« f ur u!%,

ucL
g~r ,z;Q!u25

3aem

2p2 (
f

ef
24Q2z2~12z!2K0

2~« f ur u! ~2!

for a transversely and longitudinally polarized photon,
spectively. Here we sum over both polarizations, but in pr
tice in the kinematical domain of interest (Q2 not too large!
only the transverse component will be relevant. In the pre
ous formula,mf is the mass of quarkf and

« f5Az~12z!Q21mf
2. ~3!

Thanks to the factorization~1!, it will be enough to compute
the cross sectiondsdiff /d2b for diffractive dissociation of an
onium. Using that formula, we will be able to relate it final
in a straightforward way to the deep-inelastic scattering
servables.

Recalling thatq1 is the light-cone momentum of the in
cident photon, the four-momenta of the partons in its wa
function read

quark: S zqq1,
kq

2

2zqq1
,kqD ,

antiquark: S zq̄q1,
kq̄

2

2zq̄q1
,kq̄D ,

gluon: S zgq1,
kg

2

2zgq1
,kgD , ~4!

FIG. 1. One of the relevant graphs contributing to diffracti
dissociation of the photon. The blob denotes the elastic dou
dipole-proton cross section.
2-2
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DIFFRACTIVE PHOTON DISSOCIATION IN THE . . . PHYSICAL REVIEW D 69, 074022 ~2004!
wherezq1zq̄1zg51 andkq1kq̄1kg50 from conservation
of the three-momentum. The transverse momentakq , kq̄ ,
andkg are of the order of the external mass and/or virtua
scales, which we assume are all of the same magnitudQ
@LQCD. We require furthermore the diffracted system
have a large mass in the senseMX@Q. Then the squared
invariant mass of this partonic system reads

MX
25Q2S 1

zq
1

1

zq̄

1
1

zg
D ~5!

and gets large if eitherzq , zq̄ , or zg is small. Due to the
infrared singularity of QCD,zg is very small in a typical
configuration, in which caseMX

25Q2/zg . This configuration
with strong ordering of longitudinal momentazg!zq ,zq̄ is
the dominant contribution in the kinematical regime of inte
est. Thus the mass of the diffractive final state is direc
related to thelongitudinal momentum fraction of the photo
carried by the gluon.

Let us now introduce some more kinematics. The diff
ence between the rapidity of the onium and the rapidity
the slowest particle in the final state is denoted byyX . If b is
the fraction of momentum of this particle with respect to t
initial-state onium, then it is easy to see thatyX5 log(1/b).
One also sees thatb5zg for a uqq̄g& final state. The total
rapidity difference between the photon and the nucleu
denoted byy5 log(1/xB j), wherexB j is the Bjorken variable.
Then one introduces the rapidity gap variable1 yP5y2yX
and similarly tob, the variablexP such thatyP5 log(1/xP).
The relationship between these variables and the kinem
of the event reads

b5
Q2

Q21MX
2

, xB j5
Q2

Q21s
, xP5

xB j

b
5

Q21MX
2

Q21s
. ~6!

The quantity which is measured and which will be compu
is the differential cross sectiondsdiff

g /dMX or equivalently
dsdiff

g /d log(1/b). They are related by a simple kinematic
factor:

dsdiff
g

dMX

5
2MX

Q21MX
2

dsdiff
g

d log~1/b!
5

MX
2@Q2

2

MX

dsdiff
g

d log~1/b!
.

~7!

The calculation of the cross section for diffractive produ
tion of a gluon in onium-nucleus scattering will proceed
two steps. In the next subsection we compute the ela
scattering amplitude for the onium on the nucleus up to or
O(as). Then we will deduce the diffractive cross sectio
from the Good-Walker formula and with the help of the ela
tic amplitude.

1Note that the saturation scale, which characterizes the transv
momenta at the level of the nucleus, depends onxP , and grows
whenxP decreases.
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B. Elastic amplitude at next-to-leading order

We keep only the leading terms in a 1/Nc expansion.
Then, as is well known, the partonic content of a colo
neutral object can be represented as a set of dipoles~see Fig.
2!.

We denote byxi ~a two-dimensional vector! the transverse
position of the dipole constituenti with respect to the cente
of the target,xi j 5xi2xj , andzi is the fraction of longitudi-
nal momentum carried by constituenti. The normalization of
a generic dipole state is given by the orthogonality condit

^x,b,zux8,b8,z8&5d2~x2x8!d2~b2b8!d~z2z8! ~8!

for two dipoles of respective sizesx,x8 and center-of-mass
coordinate vectorsb,b8. In the following, unless it might
hamper understanding, we do not keep track of thez vari-
ables in order to simplify the notation.

The physical dipole stateux01,b&phys in the initial state of
the experiment is dressed with all possible fluctuations.
expansion in terms of bare Fock states reads

ux01,b&phys5AZ~x01!ux01,b&

1E d2x2dz2c~x02,x12,z2!ux02,x12,b&1•••,

~9!

where c(x02,x12,z2) is the probability amplitude that the
dipole x01 split into two dipoles of respective sizesx02 and
x12, which corresponds to a one-gluon fluctuation of the i
tial onium. The gluon has longitudinal momentum fractio
z2. Note thatucu2 is of orderas , and the higher Fock state
not written are at least of orderas

2 : this remark provides the
systematics for this Fock-state expansion, seen as a pertu
tive expansion in the parameteras . This expansion is rel-
evant sinceas is small because it runs with a scale betwe
Qs andQ, which we have assumed are both much larger th
LQCD. Also, note that the two-dipole state is not renorm
ized to this order, but would get renormalized from high
orders.

The quantity that will appear in the calculation of obser
ables is the squared wave function, summed over the po
izations and colors of the final-state gluon, whose express
can be found in@4#:

rse

FIG. 2. ~a! Theqq̄g Fock state decomposition of the photon.~b!
The same in the large-Nc limit.
2-3
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f~x02,x12,z2![ (
polarization and color

uc~x02,x12,z2!u2

5
asNc

2p2

1

z2

x01
2

x02
2 x12

2
. ~10!

From the unitarity condition~8! applied to the physical stat
ux01,b&phys in Eq. ~9!, one can compute the renormalizatio
constantZ,

Z~x01!512E
r2

d2x2E
b

1

dz2f~x02,x12,z2!, ~11!

wherer cuts off the ultraviolet divergences andb the infra-
red ones. In practice, as it should,r disappears from physica
quantities, andb is fixed by the kinematical limit. Note tha
Z represents physically the probability that the initial oniu
does not radiate any gluon.

Let us denote byS the scattering matrix of the onium o
the nucleus. Color dipoles form an orthogonal basis of
interaction eigenstates at high energy; thus theS-matrix ele-
ment between two dipole states reads

^x,buSux8,b8&5d2~x2x8!d2~b2b8!S~x,b,xP!. ~12!

The quantityuS(x,b,xP)u2 is the probability that a dipole o
sizex at impact parameterb doesnot interact with the target.
The xP dependence of this quantity reflects the high ene
evolution of the target.

The S-matrix element between two double dipole sta
reads

^x02,x12,buSux028 ,x128 ,b8&

5d2~x022x028 !d2~x122x128 !d2~b2b8!S~x02,x12,b,xP!.

~13!

The notation is the following:S(x02,x12,b,xP) is the elastic
diffusion matrix element for states formed of two adjace
dipoles of respective sizesx02 andx12, andb5(x01x1)/2.
The quantityuS(x02,x12,b,xP)u2 is the probability that nei-
ther x02 nor x12 interacts, which under the assumption th
the dipoles interact independently is the product of the pr
abilities that x02 and x12 do not interact, uS(x02,b
2x12/2,xP)u2uS(x12,b2x02/2,xP)u2. The latter assumption is
justified when the target is a large nucleus, since nucleons
color neutral and independent. As, furthermore,S is known
to be real at high energy, one can get rid of the squa
modulus and one gets

S~x02,x12,b,xP!5S~x02,b2x12/2,xP!S~x12,b2x02/2,xP!.
~14!

Next one expresses the scattering matrix for the phys
dipole ux01,b&phys as
07402
e

y

s

t

t
-

re

d

al

phyŝ x01,buSux018 ,b8&phys

5Z^x01,buSux018 ,b8&

1E
r2

d2x2d2x28E
b

1

dz2dz28c* ~x02,x12,z2!

3c~x028 ,x128 ,z28!^x02,x12,buSux028 ,x128 ,b8&.

~15!

Using Eqs.~11!, ~12!, ~14! and performing the integration
over x018 andb8, one gets for the diffusion amplitude

T~x01,b,b,xP!5T~x01,b,xP!

1
asNc

2p2 Eb

1dz2

z2
E d2x2

x01
2

x02
2 x12

2 @S~x01,b,xP!

2S~x02,b2x12/2,xP!S~x12,b2x02/2,xP!#,

~16!

whereT stands for the matrix elements ofT512S between
bare states, andT are its matrix elements between dress
states. The UV cutoff has been removed because when e
x02 or x12 tends to 0, then because of color transparency,
factor built from theS-matrix elements vanishes likex02

2

(x12
2 ), and thus the integral overx2 is finite. The first term in

Eq. ~16! is the Born term; the second one is theO(as) cor-
rection to it. Physically,T is the amplitude for inclusive pro
duction of a forward gluon having longitudinal momentu
larger thanbq1, when the total available rapidity isy
5 log(1/bxP).

At this point, it is interesting to note that the procedu
described above can be iterated to get the Balits
Kovchegov~BK! equation@11#. The latter gives the evolu
tion of the dipole-nucleusS-matrix element for a dresse

dipole Ŝ(x01,b,b,xP) when the total rapidityy5 log(1/xB j)
5 log(1/bxP) increases. Starting from the scattering of a ba
onium atb51, Eq.~16! gives the evolution of the amplitud

T512Ŝ(x01,b,b,xP) as one decreasesb, i.e., as one gives
a small boost to the onium while the rapidity of the target
kept fixed. The change of the amplitude comes from the f
that the onium can now be found with an extra gluon in
wave function: in the large-Nc limit, this means that the
onium has a probability to be formed oftwo adjacent dipoles.
Then, under the assumption that the dipoles interactindepen-
dently, for example with different nucleons of a larg
nucleus, this procedure can be iterated by simply replac
the S-matrix element forbare dipoles in the right-hand side
of Eq. ~16! ~for which b51) by theS-matrix element for the
scattering ofdresseddipoles at total rapidity log(1/z2xP)
, log(1/bxP), which readsŜ(x01,b,z2 ,xP). One gets the fol-
lowing integral equation:
2-4
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Ŝ~x01,b,b,xP!

5S~x01,b,xP!1
asNc

2p2 Eb

1dz2

z2
E d2x2

x01
2

x02
2 x12

2

3@Ŝ~x02,b2x12/2,z2 ,xP!Ŝ~x12,b2x02/2,z2 ,xP!

2Ŝ~x01,b,z2 ,xP!#. ~17!

One now takes the derivative of both sides with respec
log(1/b). As we keepxP fixed, this is equivalent to taking
the derivative with respect to the total rapidity log(1/xB j),
and one gets2

]Ŝ~x01,b,xB j!

] log~1/xB j!
5

asNc

2p2 E d2x2

x01
2

x02
2 x12

2

3@Ŝ~x02,b2x12/2,xB j!

3Ŝ~x12,b2x02/2,xB j!2Ŝ~x01,b,xB j!#,

~18!

which is indeed the BK equation@11# ~see Ref.@16# for a
derivation closely related to ours!. This equation resums th
so-called ‘‘fan diagrams.’’

Coming back to Eq.~16! for T, the total cross section
stems from the optical theorem, and the elastic cross sec
is the squared amplitudeT:

ds tot

d2b
52T~x01,b! and

dsel

d2b
5uT~x01,b!u2. ~19!

C. Diffraction from the Good-Walker picture

An elegant and most straightforward formulation of d
fractive dissociation is obtained by using the Good-Wal
@12# picture ~see also@20# and @13#!, according to which
inelastic diffraction is proportional to the dispersion in cro
sections for the diagonal channels of the scattering. The
son why we are relying on such a picture, developed in
context of early hadronic physics@12# and subsequently ex
tended to the parton model@20#, is that the dipoles form
precisely a complete set of eigenstates of the QCD inte
tion at high energy. The cross section for diffractive diss
ciation reads in this picture

2We suppress the dependence upon the two variablesb,xP in Eq.
~18! because an inclusive observable is sensitive only toxB j

5bxP . Our derivation holds in a specific frame defined by t
rapidity sharing between the onium and the target given byb,xP ,
but of course the physical observable computed here is indepen
of this choice.
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dsdiff

d2b
5E d2x018 d2b8(

X
phyŝ x01,buT†uX&^XuTux018 ,b8&phys

2U E d2x018 d2b8 phyŝ x01,buTux018 ,b8&physU2

, ~20!

whereX is any dipole final state, and the sum overX also
contains an integration over phase space of the t
*)d2xadza . One denotes by~I! and~II ! the ~positive! terms
appearing in this equation.

The second term is the easiest to compute since it is s
ply dsel /d

2b @see formula~19!#. Keeping only the terms
relevant at orderO(as), one gets

~II !5
dsel

d2b
5T2~x01,b,xP!1

asNc

p2 E
b

1dz2

z2
E d2x2

x01
2

x02
2 x12

2

3@12S~x01!#@S~x01!2S~x02!S~x12!#. ~21!

Coming back to the first term in Eq.~20!, the sum overX is
restricted to singleuxab ;b& and doubleuxac ,xbc ;b& dipole
states, since we limit ourselves to the orderO(as) of pertur-
bation theory. At high energy the interaction with the targ
cannot change the number of dipoles in the wave functi
the first term thus gives

~I!5E d2x018 d2b8HZ~x01!E d2xabd
2b9^x01,buT†uxab ,b9&

3^xab ,b9uTux018 ,b8&1E d2x2d2x28d
2xacd

2xbcd
2b9

3c†~x02,x12!c~x028 ,x128 !^x02,x12,buT†uxac ,xbc ,b9&

3^xac ,xbc ,b9uTux028 ,x128 ,b8&J . ~22!

Equation~11! enables one to expressZ(x01) and Eqs.~13!,
~14! to replace the matrix elements. Then one uses thd
functions coming in Eqs.~13!, ~14!, which are due to the fac
that the dipoles are eigenstates of the interaction, to perf
the integrations overx018 ,x28 ,xab ,xac ,xbc ,b8,b9. One finds

~I!5T2~x01!1
asNc

2p2 Eb

1dz2

z2
E d2x2

x01
2

x02
2 x12

2

3$@12S~x02!S~x12!#
22@12S~x01!#

2%. ~23!

Putting the two parts~I! and ~II ! together and taking the
derivative with respect to log(1/b), one gets after some
straightforward algebra

dsdiff

d2bd log~1/b!
5

asNc

2p2 E d2x2

x01
2

x02
2 x12

2 @S~x02,b2x12/2,xP!

3S~x12,b2x02/2,xP!2S~x01,b,xP!#2.

~24!

A few technical remarks are in order. Our result is identic
to the one obtained in earlier derivations within differe
frameworks~semiclassical@14#, eikonal@15#!. It is also con-
sistent, in the weak interaction limit in whichT512S!1,

ent
2-5
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with previous calculations@21#, and in particular with the
computation of all Feynman diagrams contributing to t
qq̄g final state@22#.

Diagrams with gluons emitted in the final state are n
included in our calculation since the radiative corrections
have concern exclusively the wave function: no final-st
interaction can be accounted for in our calculation. This cl
of diagrams contributes to the diffractive final state, but th
cancel out if one does not measure the transverse mome
of the gluon ~see @16,23#!. Note that we could not obtain
more detailed properties of the final state within our deri
tion, but as demonstrated earlier, thanks to the selected k
matics, we do not need them for our purpose.

Using the factorization~1! and the kinematical relation
~7!, one gets the cross section for diffractive dissociation o
virtual photon in the form

dsdiff
g

dMX
5

asNc

p2

1

MX
E d2x01E

0

1

dz@ ucT
g~z,x01;Q!u2

1ucL
g~z,x01;Q!u2#E d2x2

x01
2

x02
2 x12

2 E d2b

3@S~x02,b2x12/2,xP!S~x12,b2x02/2,xP!

2S~x01,b,xP!#2. ~25!

Equation~25! has to be evaluated numerically for a gene
dipole-nucleusS matrix, but there are two interesting limit
that can be studied analytically, namely,Q2@Qs

2 and Q2

!Qs
2 . This is done in the next section.

III. ANALYTICAL INSIGHT

We will need a few general properties of theS-matrix
element:

S~r ! !
ur u@1/Qs

1 ~black disk limit!, ~26!

12S~r ! ;
ur u!1/Qs

Qs
2r 2 ~color transparency!. ~27!

Let us also recall that this theoretical study assumes eno
center-of-mass energy so thatQs

2@LQCD
2 in the dipole frame.

This also means that the dipole sizes entering formula~24!,
of order 1/Qs , are always smaller than the typical sca
1/LQCD of the variations of theS matrix as a function of the
impact parameter. ThusS(x02,b2x12/2).S(x02,b) and
S(x12,b2x02/2).S(x12,b). We will no longer have to take
care of theb dependence in theS-matrix elements, because
factorizes completely.

A. Onium-nucleus cross section

1. Small onium: Collinear region

We now analyze formula~24! in the limit x01
2 Qs

2!1,
S(x01).1. The dipole splitting probability is singular fo
either ux02u!ux01u or ux12u!ux01u. Let us consider the firs
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case, the second one being exactly symmetric. The orde
relation impliesux12u;ux01u. The contribution of these dipole
configurations to the cross section in Eq.~24! can then be
rewritten as

asNc

2p2 Ex01
2

d2x2

1

x02
2 @S~x02!21#2. ~28!

In this domain one has 12S(x02);Qs
2x02

2 , so the integral
vanishes asQs

4x01
4 .

A second kinematical region which could bring large co
tributions to the integral overx2 is ux02u@ux01u, which im-
plies ux02u;ux12u. Then the contribution of these configura
tions to formula~24! is

asNc

2p2 Ex01
2

d2x2

x01
2

x02
4 @S2~x02!21#2. ~29!

Using Eq.~27!, one sees that this integral is of orderQs
2x01

2

and thus this kinematical region dominates over the previ
one. It corresponds to configurations for which theqq̄ pair is
small and well separated from the gluon, or, in moment
space, the gluon has a small transverse momentum with
spect to that of the quark~see Fig. 3!. This is the collinear
limit. The lower boundary of the integral~29! can be put to
zero since the regionux02u,ux01u gives a subleading contri
bution. The result reads most generally

dsdiff

d2bd log~1/b!
5

asNc

2p2
x01

2 E d2x

x4
@12S2~x!#2. ~30!

The integral appearing here is proportional toQs
2 . The value

of the associated proportionality constant has to be comp
in specific models forS.

The interpretation of the factor@12S2(x,b)#2 is the fol-
lowing. S2(x,b) is the probability that aqq̄ dipole of sizex
at impact parameterb does not interact with the nucleus. Th
elastic cross section reads in this casedsel /d

2b5@1
2S(x,b)#2. In the same way,S4(x,b) would be the prob-
ability that two independent but superimposed dipoles do
interact, anddsel /d

2b5@12S2(x,b)#2 would be the corre-
sponding cross section. So the quantity@12S2(x,b)#2 can
be understood as the elastic cross section for anoctetdipole,
because in the large-Nc limit the latter is represented by tw
independent lines of indices.

FIG. 3. ~a! The diffractive final state forQ@Qs . ~b! The same
in the large-Nc limit.
2-6
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2. Large onium: Saturation region

We now turn to the limitx01
2 Qs

2@1. The discussion is
more subtle in this case because unlike the previous case
cannot identify a typical dipole configuration which gives t
dominant contribution to the cross section. Let us split
integration domain into several relevant subdomains
shown in Fig. 4. First consider the disksD0 andD1 of radius
1/Qs around x0 and x1 respectively, inside whichS(x12)

FIG. 4. The transverse plane and the different integration
mainsD0 , D1 , I, andE. The crosses denote the positions of t
quark and the antiquark,x0 andx1, respectively.
t.
i

on
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;S(x01) and S(x02);1 @S(x02);S(x01) and S(x12);1].
Next define the domainI for which eitherux02u or ux12u is
smaller thanux01u ~the intersection withD0 and D1 is ex-
cluded!. The remaining part of the two-dimensional plane
denoted byE.

In the last integration regionE, necessarilyS(x02)S(x12)
!S(x01), but in I, the ordering relation depends on th
model for S. Taking the relevant approximations in the
different domains, the integral in Eq.~24! then reads

S2~x01!ED01D 1

d2x2S ]S

]x02
~x02! D 2

1S2~x01!EE
d2x2

x01
2

x02
2 x12

2

1E
I
d2x2

x01
2

x02
2 x12

2 @S~x02!S~x12!2S~x01!#
2. ~31!

The first term varies asS2(x01), and the second term is en
hanced by a factor of log(Qs

2x01
2 ). As for the third term, no

completely general statement can be made. IfS(x02)S(x12)
!S(x01) everywhere in domainI, the third term contributes
as much as the second term. Then the cross section vari
S2(x01)log(x01

2 Qs
2). This is the case for a color glass conde

sate ~CGC! for which S(x01);exp@2l log2(x01
2 Qs

2)#, with
l;0.2 @24,25#. If S(x02)S(x12)>S(x01) instead in some re-
gion inside I ~and in particular at the pointux02u5ux12u
5ux01u/2), the third term contributes asS4(x01/2)/x01

2 , and
can even dominate over the two other ones. This is w
happens whenS is given by the Golec-Biernat and Wu¨sthoff
~GBW! model. Thus we see that the diffractive cross sect
behavesqualitatively differently for the various models fo
the dipole-nucleusS matrix. To summarize, in these tw
kinds of model one finds the following estimates for t
asymptotic behaviors:

-

dsdiff

d2bd log~1/b!
.H asNc

p
S2~x01!log~x01

2 Qs
2! for CGC,

4asNc

p
S4~x01/2!/x01

2 for GBW, up to aO~1! factor.

~32!
ion

r
a

ell-

ve

pe of
For GBW-like models,O(1) factors are cumbersome to ge
The onium cross section is anyway strongly damped

this region of largex01
2 Qs

2 becauseS(x01) goes to 0 in this
limit much faster than 1/@ log(x01

2 Qs
2)# in all available models.

This is the black disk limit, in which the elastic cross secti
is half the total one, and thus the diffractive cross section
zero from the inequality

dsdiff

d2b
<

1

2

ds tot

d2b
2

dsel

d2b
, ~33!

which directly follows from unitarity@20#.
n

is

To summarize, we see that the diffractive cross sect
increases withux01u like x01

2 at small x01
2 Qs

2 and decreases
strongly at largex01

2 Qs
2 , so there must be a maximum fo

x01
2 ;1/Qs

2 . For a realistic target, the saturation scale is
decreasing function of the impact parameter. For a w
chosen value ofx01, it can happen thatQs

2(b)x01
2 @1 for

smallb andQs
2(b)x01

2 !1 for largeb ~this is always the case!.
In such a situation, the main contribution to the diffracti
cross section for an incident dipole of sizeux01u comes from
a zone in the impact parameter space which has the sha
a ring of radiusb0 such thatQs

2(b0);1/x01
2 . We have recov-

ered the well-known fact@20# that diffractive dissociation is
2-7
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peripheral, at variance with elastic or total scattering. Ho
ever, the ‘‘periphery’’ of the nucleus is defined with the he
of the saturation scale and not withLQCD, at variance with
soft processes.

The features just found are illustrated on Fig. 5 for t
Golec-Biernat and Wu¨sthoff model, and for the color glas
condensate in the large-x01

2 Qs
2 limit.

B. Limiting behaviors of the photon-nucleus cross section

Before we turn to the comparison to the data, we wish
study some analytical properties of the cross section~25! in
the two different limitsQ2@Qs

2 andQ2!Qs
2 . We focus here

on transversely polarized photons. To study asymptotic
haviors, it is enough to replace the photon wave function~2!
that appears in Eq.~25! by the following approximation:

ucT
g~x01,z;Q!u2.

3aem

2p2 (
f

ef
2@z21~12z!2#

1

x01
2

3Q„12z~12z!Q2x01
2
…. ~34!

Let us first treat the integration overz in Eq. ~25!. There are
two cases to distinguish. IfQ2x01

2 ,4 then theQ function in
Eq. ~34! can be ignored and

E
0

1

dzucT
g~x01,z;Q!u25

aem

p2 (
f

ef
2 1

x01
2

. ~35!

If Q2x01
2 .4 instead, then the leading contribution, obtain

for Q2x01
2 @4, comes from the end points

E
0

1

dzucT
g~x01,z;Q!u25E

0

1/(Q2x01
2 )

dzucT
g~x01,z;Q!u2

1E
121/(Q2x01

2 )

1

dzucT
g~x01,z;Q!u2

5
3aem

p2 (
f

ef
2 1

Q2x01
4

. ~36!

This is the well-known aligned-jet configuration@26#.
As for the caseQ2@Qs

2 , the integral overx01 can be split
into three integration regions@0,4/Q2#, @4/Q2,1/Qs

2#, and
@1/Qs

2 ,`#. Taking the relevant approximations for the wa
function ~35!,~36! and for the dipoleS-matrix element
~30!,~32! in each of these domains, one sees easily that
gion @4/Q2,1/Qs

2# dominates. Equation~25! reduces to

dsdiff
g

dMX
5

6aemNc

p2MX

1

Q2 ( ef
2 as

2pE d2b log
Q2

Qs
2

3E d2x

x4
@12S2~x,b,xP!#2. ~37!

This limit is consistent with previously derived results,
shown in the Appendix.
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As for the caseQ2!Qs
2 , one now splits the integral ove

x01 into @0,1/Qs
2#, @1/Qs

2,4/Q2#, and @4/Q2,`#. This time,
the first domain gives the main contribution, which reads

dsdiff
g

dMX
5

aemasNc

p2MX
( ef

2 1

Qs
2E d2b

3E d2x

x4
@12S2~x,b,xP!#2, ~38!

and which is independent ofQ2 andQs
2 ~recall that the inte-

gral over the vectorx is proportional toQs
2). This can be

illustrated graphically. As one goes to smallerQ2,
x01

2 *dz1ucg(x01,z1 ;Q)u2 stays constant for lower values o
x01

2 , and develops a plateau@27#, as seen in Eq.~35! and on
Fig. 6. This plateau contains configurations for which t
longitudinal momentum of the photon is equally shared
tween the quark and the antiquark. On the other ha
dsdiff /d log(1/b)/x01

2 is roughly a constant forx01
2 Qs

2!1 and
drops rapidly to zero forx01

2 Qs
2@1. Hence onceQ2 is small

enough to allow the plateau of the photon wave function
extend up to dipole sizes of the order ofux01u;1/Qs , the
cross section does not increase anymore whenQ2 decreases,
and tends to a constant. The precise value of the consta
model dependent.

These features are specific to the transverse photon an
the purely diffractive cross section.

IV. PHENOMENOLOGY

We are going to apply the formalism developed above
deep-inelastic scattering at HERA. Our starting point is E
~25!.

A. From a nucleus to a proton target

To go from scattering on a nucleus to scattering on
proton, one has to take some model assumptions for the
perturbative physics inherent to the target and that is
under theoretical control.

FIG. 5. The diffractive cross section compared to the appro
mations in extreme kinematical regimes.
2-8
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First, we assume that the incident dipole is always mu
smaller than the target proton, which is reasonable forQ2 not
too small compared toLQCD

2 . We also consider a cylindrica
target, i.e., we neglect all dependence upon the impact
rameter. As long as we do not consider observables wh
would depend on the momentum transfer to the proton,
assumption only hampers predictivity for the global norm
ization and brings significant technical simplification.

Although we are now dealing with a proton, we still kee
the hypothesis of independence of dipole interactions in

FIG. 6. The dipole cross section and the photon wave func
for three different values ofQ2. The former is divided by the
squared size of the dipole, and the latter is multiplied by the sa
so that the convolution of these two quantities is equal to the c
volution of the dipole cross section and photon wave function. T
saturation scaleQs

2 is set to 10 GeV2. For Q2510 GeV2, the de-
rivative of the wave function with respect to logQ2 is also shown.
07402
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derivation of Eq.~25!, which wasa priori justified for a large
nucleus only. This could be a problem forQ2,Qs

2 . But it
has recently been shown~see@25,28,29# for the theoretical
justification! that the proton can be seen effectively
formed of color-neutral domains of typical size 1/Qs . Thus,
deep in the saturation regimeQ2!Qs

2 , the proton is not
different from the nucleus, in the sense that the dipoles in
projectile interact at most once with each of these color
dependent domains in the proton.

B. The saturation model

In practice, we choose to stick to the Golec-Biernat a
Wüsthoff model @5# for the dipole-protonS matrix, which
reads

S~r ,b,xP!5Q~Rp2b!e2Qs
2(xP)r 2/41Q~b2Rp!, ~39!

whereQs
2(xP)5(x/x0)2l in units of 1 GeV2 and Rp is the

radius of the proton, related to the normalization parame
in the GBW model byRp

25s0 /(2p). x0 , l, ands0 were
fitted to the data for the total structure functionF2 in Ref.
@5#; we just take over the found parameterss0523 mb, l
50.288, andx053.0431024. The integration over the im-
pact parameter that appears in Eq.~25! can be performed and
yields a factors0/2. In addition, in the GBW model, three
light quarks were considered, and a mass of 140 MeV w
assigned to them, to ensure a sensible extrapolation to
toproduction. We take over this feature in our model.

C. A comparison to the data

We find it useful for numerical evaluation to rewrite th
onium diffractive dissociation cross section as

n

e,
n-
e

plane
o the
dsdiff

d2bd log~1/b!
5

2asCF

p2 E
0

1

dl1E
0

1

dl2

1

12l112l1l2

1

Al2~12l2!~11l1l2!~12l11l1l2!

3H 1

l1
S2~x01;l1 ;12l112l1l2!1l1S2~x01;1/l1 ;1/l12112l2!J , ~40!

whereS(x01;a;b)5S(ax01)S(bx01)2S(x01). Through an appropriate change of variable, we have mapped the complex
into the finite domain@0,1#3@0,1#. Note that the formula obtained is quite simple, and this feature might be related t
conformal invariance of the dipole splitting kernel.

Putting everything together, the formula that we have to evaluate numerically is

dsdiff
g

dMX
5

4asNc

p

s0

MX
E

0

`

dx01x01E
0

1

dz@ ucT
g~x01,z;Q!u21ucL

g~x01,z;Q!u2#

3E
[0,1]3[0,1]

dl1dl2

1

12l112l1l2

1

Al2~12l2!~11l1l2!~12l11l1l2!

3H 1

l1
S2~x01;l1 ;12l112l1l2!1l1S2~x01;1/l1 ;1/l12112l2!J , ~41!
2-9
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FIG. 7. Comparison of the
model with the data. The dashe
line is our computation of the in-
elastic component~41!. The dot-
ted line is the elastic componen
which is taken from Ref.@5#. The
full line is the sum of these two
components, which for high dif-
fracted masses reduces to the i
elastic component. The dat
points are taken from@33#.
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whereS is constructed from theS-matrix element~39!, and
the photon wave functions are given by Eq.~2!, with flavors
and quark masses chosen as explained in Sec. IV B.

The data do not distinguish between elastic and diffrac
contributions, so we have to add a component in which

final state is aqq̄ pair. This component is not of direct re
evance for us as it gives a non-negligible contribution
large b;1 only. As it has been extensively studied in t
literature within different models@5,30–32#, we just repro-
duce the parametrization obtained in Ref.@5# to estimate the
importance of this contribution.

A priori, there is no free parameter. However, by taki
as at its value at a phenomenologically realistic scaleQ2

;Qs
2;1 GeV2, we overshoot the data by a factor of 1.5–

We must setas to a lower value,as50.15.
However, the fact that we do not predict the global n

malization correctly does not come as a surprise. Inde
first, the~nonperturbative! assumption of a cylindrical targe
is certainly not realistic. Second, we took the size of
cylinder over from the normalization of the cross secti
fitted to total cross sections. Because diffractive dissocia
07402
e
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-
d,

e

n

is resonant with the saturation scale, the impact param
region which contributes to the cross section should be
fectively smaller,3 which would go in the right way as far a
the normalization is concerned.

Our predictions are presented on Fig. 7. As our mode
established in the limit of small values ofb, we choose to
restrict our calculation tob,0.2. This explains why our
curves do not extend to very largeQ2, especially atMX
55 GeV. We see that we get a good agreement with
data.

D. Future prospects on phenomenology

On Fig. 7 we see that the cross section tends to a cons
at low Q2, as anticipated in Sec. III B. This was shown to
due to the fact thatx01

2 *0
1dzucT

gu2 also tends to a constant a
low Q2 ~see Fig. 6!, which is unavoidable when the initia
state is a transversely polarized photon. The consequen

3We thank Edmond Iancu for having drawn our attention to t
point.
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that the high sensitivity of these diffractive observables
the exact form of theS matrix in the saturation region i
somewhat spoiled by this smearing.

However, this property is not true for a longitudinal
polarized photon. Alternatively, the plateau at smallx01

2 Qs
2

can also be eliminated by considering the derivative of
cross section with respect to logQ2, namely,
dsdiff

g /dMXd logQ2 @27# ~see Fig. 6!. A measurement of this
quantity would help the understanding of theS matrix in the
saturation regime, by enabling a direct scan of this inter
ing region. Note that the ability of the latter observable
discriminate between different models for diffraction was
ready advocated in Ref.@34#.

A more detailed study will be provided elsewhere.

V. CONCLUSION

Diffraction is a good place to study saturation effects
deep-inelastic scattering. It had already been shown
quasielastic diffractive scattering, like vector meson prod
tion, enables one to measure how far one is from the un
ity limit and gives a handle on the impact-parameter dep
dence of the saturation scale@35,36#. In this paper, we have
provided a theoretical tool to study ‘‘true’’~inelastic! diffrac-
tion in the saturation regime. We have formulated the diffr
tive cross section for a general model for the dipole-protoS
matrix, and we have rederived an already known formula
an elegant way using the Good-Walker picture. When
take forS the Golec-Biernat and Wu¨sthoff model, we obtain
parameter-free predictions~up to the global normalization!
for the observableds/dMX currently measured with goo
precision at HERA. An important highlight of our analysis
that diffractive observables can help to discriminate in
unique way between the predictions of different models
the saturation region. This point deserves more study, wh
we leave for the future.

On the theoretical side, the formalism used here base
the dipole model could be easily generalized to an arbitr
number of gluons in the final state. This program has alre
been explored in Refs.@7,37,38# but no unitarity corrections
were taken into account. Our method allows one to take
account these corrections. Whether a simple evolution eq
tion in b would be found is not clear. In any case, the ava
able energies at present colliders do not yet require s
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higher Fock states, nor the complete resummation of all le
ing logs, i.e., of the powers ofaslog(1/b).

On the phenomenological side, it would be worth taki
into account more accurately the dependence upon the
pact parameter, which is of great importance in the wh
discussion of saturation@35,39#. Therefore, one could replac
the GBW ansatz for the dipoleS matrix by the recent
Kowalski-Teaney model@40#, which takes into account the
transverse profile of the proton. This replacement might
necessary in order to describe accurately enough the
precision preliminary data, and we would have a predict
also for the normalization of the cross section, instead
tuning it as we have done here. Furthermore, more exclu
observables likeds/dMXdt, which will be measured in the
future, could be predicted.
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APPENDIX: HIGH MASS DIFFRACTION
FROM THE COLLINEAR LIMIT

In this appendix, we compare our approach@see Eq.~37!#
to the impact factor used by Golec-Biernat and Wu¨sthoff for
qq̄g final states. The latter is formally valid only forQ2

@Qs
2 , i.e., in the collinear limit. The two calculation

should, however, lead to the same result when bothQ2

@Qs
2 and b!1, which is the so-called double logarithm

limit.
According to Refs.@5,32#, the diffractive structure func-

tion reads
dsdiff
g

dMX

5
81aembMX

64p3BQ2~Q21MX
2 !

(
f

ef
2

as

2p
E

b

1dz

z
F S 12

b

z
D 2

1S b

z
D 2G z

~12z!3

3E d2k

~2p!2
k4logS ~12z!Q2

k2 D Q„~12z!Q22k2
…E d2rd2r 8eik(r 2r 8)sgg~r ,xP!sgg~r 8,xP!

3(
m,n

S dmn22
r mr n

r 2 D S dmn22
r 8mr 8n

r 82 D K2SA z

12z
kr D K2SA z

12z
kr8D , ~A1!

wheresgg is the adjoint dipole-proton cross section, andB is the exponentialt slope of the differential cross section:
2-11
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dsdiff
g

dt
5

dsdiff
g

dt
U

t50

e2Bt. ~A2!

One can extract the leading contribution to this cross s
tion in theb→0 limit. It comes from the integration regio
z;b. Using K2(x) 'x→0 2/x2 and performing the sum ove
helicitiesm,n, one gets

dsdiff
g

dMX
5

81aemb

8p3BQ2MX
(

f
ef

2 as

2pEb

1 dz

z2 F S 12
b

z D 2

1S b

z D 2G E d2k

~2p!2
logS Q2

k2 D Q~Q22k2!

3E d2r

r 2

d2r 8

r 82
eik(r 2r 8)sgg~r ,xP!sgg~r 8,xP!

3S 2
~r •r 8!2

r 2r 82
21D . ~A3!

The integral overz is now factorized and gives just a facto
2/3b in the limit b→0. The integral overk can be done
analytically:

E d2k

~2p!2
logS Q2

k2 D eik(r 2r 8)Q~Q22k2!

5
1

p

12J0~Qur 2r 8u!

ur 2r 8u2
. ~A4!

One performs the change of variablesR5Qsr ,X5Qs(r
2r 8). The following expression results:

dsdiff
g

dMX
5

27aem

4p4BQ2MX
(

f
ef

2 as

2p

3E duXu
12J0@~Q/Qs!uXu#

uXu
f ~ uXu!, ~A5!

where we have defined

f ~ uXu!5Qs
2E

0

2p

dfE d2R

R2~R2X!2
ŝgg~R,xP!ŝgg~R2X,xP!

3S 2
@R•~R2X!#2

R2~R2X!2
21D , ~A6!

andf is the angle of vectorX, ŝ is the dipole cross sectio
after change of variable.f (uXu) is a smooth regular function
of uXu having finite value atX50 and decreasing as 1/uXu2.
07402
c-

Let us choose a numberl.1 such thatuJ0(l)u!1. The
integral overuXu can be decomposed as follows:

f ~0!F E
0

lQs /Q

duXu
12J0@~Q/Qs!uXu#

uXu
f ~ uXu!
f ~0!

1E
lQs /Q

1 duXu
uXu

f ~ uXu!
f ~0!

1E
1

`duXu
uXu

f ~ uXu!
f ~0! G . ~A7!

As the integrand is bounded by a number proportional
Q/Qs , the first term in the large square brackets tends t
constant forQ@Qs . The third term is also a number sinc
f (uXu) decreases sufficiently quickly to ensure converge
of the integral. The leading contribution to the second term
log(Q/Qs). The coefficient of this logarithm is the value off
at zero, namely,

f ~0!52pE d2r
sgg

2 ~r ,xP!

r 4
. ~A8!

Putting everything together back into Eq.~A5!, one finally
gets

dsdiff
g

dMX
5

27aem

4p3B

1

Q2MX
(

f
ef

2 as

2p
log

Q2

Qs
2

3E d2r
sgg

2 ~r ,xP!

r 4
. ~A9!

In order to compare with our approach, one has to recall~see
Sec. IV A! that in the large-Nc limit sgg is given by

sgg~r ,xP!52E d2b@12S2~r ,b,xP!#

5s0@12S2~r ,xP!#, ~A10!

whereS is the 3-3̄dipole S matrix element. Replacing Eq
~A10! into Eq.~A9!, the ratio between~A9! and~37! reduces
to a constant:

3

4p

s0

B
. ~A11!

The fact that the results match only up to a factor is to
traced to the different treatments of the integration over
impact parameter in the two cases.
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