Effects of an extra $U(1)$ axial condensate on the radiative decay $\eta' \rightarrow \gamma \gamma$ at finite temperature

E. Meggiolaro

Dipartimento di Fisica, Universita` di Pisa, Via Buonarroti 2, I–*56127 Pisa, Italy* (Received 3 December 2003; published 20 April 2004)

Supported by recent lattice results, we consider a scenario in which a *U*(1)-breaking condensate survives across the chiral transition in QCD. This scenario has important consequences for the pseudoscalar-meson sector, which can be studied using an effective Lagrangian model. In particular, generalizing the results obtained in a previous paper (where the zero-temperature case was considered), we study the effects of this *U*(1) chiral condensate on the radiative decay $\eta' \rightarrow \gamma \gamma$ at finite temperature.

DOI: 10.1103/PhysRevD.69.074017 PACS number(s): 12.39.Fe, 11.15.Pg, 11.30.Rd, 12.38.Aw

I. INTRODUCTION

There is evidence from some lattice results $\lceil 1-3 \rceil$ that a new *U*(1)-breaking condensate survives across the chiral transition at T_{ch} , staying different from zero up to a temperature $T_{U(1)} > T_{ch}$. $T_{U(1)}$ is, therefore, the temperature at which the $U(1)$ axial symmetry is (effectively) restored, meaning that, for $T>T_{U(1)}$, there are no $U(1)$ -breaking condensates. This scenario has important consequences for the pseudoscalar-meson sector, which can be studied using an effective Lagrangian model $[4-7]$, including also the new $U(1)$ chiral condensate. This one has the form $C_{U(1)}$ $=$ $\langle O_{U(1)}\rangle$, where, for a theory with *L* light quark flavors, $\mathcal{O}_{U(1)}$ is a 2*L*-fermion local operator that has the chiral transformation properties of $[8]$:¹

$$
\mathcal{O}_{U(1)} \sim \det_{st}(\overline{q}_{sR}q_{tL}) + \det_{st}(\overline{q}_{sL}q_{tR}), \tag{1.1}
$$

where $s, t = 1, \ldots, L$ are flavor indices; the color indices $\lceil \text{not} \rceil$ explicitly indicated in Eq. (1.1) are arranged in such a way that (i) $\mathcal{O}_{U(1)}$ is a color singlet and (ii) $C_{U(1)} = \langle \mathcal{O}_{U(1)} \rangle$ is a *genuine* 2*L*-fermion condensate; i.e., it has no *disconnected* part proportional to some power of the quark-antiquark chiral condensate $\langle \bar{q}q \rangle$ (see Refs. [6,7,9]).

The low-energy dynamics of the pseudoscalar mesons, including the effects due to the anomaly, the $q\bar{q}$ chiral condensate, and the new *U*(1) chiral condensate, can be described, in the limit of large number N_c of colors, and expanding to the first order in the light quark masses, by an effective Lagrangian written in terms of the topological charge density *Q*, the mesonic field $U_{ij} \sim \overline{q}_{jk} q_{iL}$ (up to a multiplicative constant), and the new field variable $X \sim \det(\overline{q}_{sR}q_{tL})$ (up to a multiplicative constant), associated with the new $U(1)$ condensate $[4-7]$:

 $\mathcal{L}(U, U^{\dagger}, X, X^{\dagger}, O)$ $= \frac{1}{2} \text{Tr}(\partial_{\mu}U\partial^{\mu}U^{\dagger}) + \frac{1}{2}\partial_{\mu}X\partial^{\mu}X^{\dagger} - V(U, U^{\dagger}, X, X^{\dagger})$ $\! + \!$ $\frac{i}{2} \omega_1 Q \operatorname{Tr}(\ln U - \ln U^{\dagger})$ $\! + \!$ $\frac{i}{2}(1 - \omega_1)Q(\ln X - \ln X^{\dagger}) + \frac{1}{2A}Q^2,$ (1.2)

where the potential term $V(U, U^{\dagger}, X, X^{\dagger})$ has the form

$$
V(U, U^{\dagger}, X, X^{\dagger}) = \frac{\lambda_{\pi}^{2}}{4} \text{Tr}[(U^{\dagger}U - \rho_{\pi}\mathbf{I})^{2}] + \frac{\lambda_{X}^{2}}{4} (X^{\dagger}X - \rho_{X})^{2}
$$

$$
-\frac{B_{m}}{2\sqrt{2}} \text{Tr}(MU + M^{\dagger}U^{\dagger})
$$

$$
-\frac{c_{1}}{2\sqrt{2}} [\det(U)X^{\dagger} + \det(U^{\dagger})X]. \qquad (1.3)
$$

 $M = diag(m_1, \ldots, m_L)$ is the quark mass matrix and *A* is the topological susceptibility in the pure Yang-Mills (YM) theory. (This Lagrangian generalizes the one originally proposed in Refs. [10], which included only the effects due to the anomaly and the $q\bar{q}$ chiral condensate.) All the parameters appearing in the Lagrangian must be considered as functions of the physical temperature *T*. In particular, the parameters ρ_{π} and ρ_{X} determine the expectation values $\langle U \rangle$ and $\langle X \rangle$ and so they are responsible respectively for the behavior of the theory across the $SU(L) \otimes SU(L)$ and the $U(1)$ chiral phase transitions, as follows:

$$
\rho_{\pi}|_{T 0, \quad \rho_{\pi}|_{T>T_{ch}} < 0,
$$

$$
\rho_{X}|_{T 0, \quad \rho_{X}|_{T>T_{U(1)}} < 0.
$$
 (1.4)

The parameter F_{π} is the well-known pion decay constant, while the parameter F_X is related to the new $U(1)$ axial condensate. Indeed, from Eq. (1.4), $\rho_X = \frac{1}{2}F_X^2 > 0$ for

¹Throughout this paper we use the following notation for the lefthanded and right-handed quark fields: $q_{L,R} \equiv (1 \pm \gamma_5) q/2$, with γ_5 $\equiv -i\gamma^0\gamma^1\gamma^2\gamma^3$.

T<*T*_{*U*(1)}, and therefore, from Eq. (1.3), $\langle X \rangle = F_X / \sqrt{2 \neq 0}$. Remembering that $X \sim \det(\overline{q}_{sR}q_{tL})$, up to a multiplicative constant, we find that F_X is proportional to the new 2*L*-fermion condensate $C_{U(1)} = \langle \mathcal{O}_{U(1)} \rangle$ introduced above.

In the same way, the pion decay constant F_{π} , which controls the breaking of the $SU(L) \otimes SU(L)$ symmetry, is related to the $q\bar{q}$ chiral condensate by a simple and wellknown proportionality relation (see Refs. $[4,7]$ and references therein): $\langle \overline{q}_i q_i \rangle_{T \le T_{ch}} \approx -\frac{1}{2} B_m F_\pi$. (Moreover, in the simple case of *L* light quarks with the same mass *m*, $m_{NS}^2 = mB_m / F_\pi$ is the squared mass of the nonsinglet pseudoscalar mesons and one gets the well-known Gell-Mann– Oakes–Renner relation: $m_{NS}^2 F_\pi^2 \approx -2m\langle \bar{q}_i q_i \rangle_{T \leq T_{ch}}$.)

It is not possible to find, in a simple way, the analogous relation between F_X and the new condensate $C_{U(1)}$ $= \langle \mathcal{O}_{U(1)} \rangle.$

However, as we have shown in a previous paper $[11]$, information on the quantity F_X [i.e., on the new $U(1)$ chiral condensate, to which it is related] can be derived, in the realistic case of $L=3$ light quarks with nonzero masses m_u , m_d , and m_s , from the study of the radiative decays of the pseudoscalar mesons η and η' in two photons. In Ref. [11] only the zero-temperature case $(T=0)$ has been considered and a first comparison of our results with the experimental data has been performed: the results are encouraging, pointing toward some evidence of a nonzero $U(1)$ axial condensate.

In this paper, generalizing the results obtained in Ref. [11], we study the effects of the $U(1)$ chiral condensate on the radiative decay $\eta' \rightarrow \gamma \gamma$ at finite temperature (*T* \neq 0), so opening the possibility of a comparison with future heavyion experiments. In Sec. II we first rediscuss the radiative decays of the pseudoscalar mesons at $T=0$, considering a *more general* electromagnetic anomaly interaction term, obtained by adding a *new* electromagnetic interaction term to the original electromagnetic anomaly term adopted in Ref. $[11]$ [see Eqs. (2.8) – (2.10) below]. As we shall see, the inclusion of this new electromagnetic interaction term does not modify for $T=0$ (or, more generally, for $T < T_{ch}$) the decay amplitudes for the processes $\pi^0 \rightarrow \gamma \gamma$, $\eta \rightarrow \gamma \gamma$, and η' $\rightarrow \gamma \gamma$: therefore, all the results (both analytical and numerical) obtained in Ref. [11] concerning these processes remain unaffected. However, the new electromagnetic interaction term will prove to be crucial in the discussion of the η' $\rightarrow \gamma \gamma$ radiative decay at finite temperature (in particular for $T>T_{ch}$), which will be studied in detail in Sec. III.

II. RADIATIVE DECAYS OF THE PSEUDOSCALAR MESONS AT $T=0$

In order to study the radiative decays of the pseudoscalar mesons to two photons, we have to introduce the electromagnetic interaction in our effective model (1.2) . Under *local U*(1) electromagnetic transformations

$$
q \rightarrow q' = e^{i\theta e} Q_q, \quad A_{\mu} \rightarrow A_{\mu}' = A_{\mu} - \partial_{\mu} \theta, \quad (2.1)
$$

the fields *U* and *X* transform as follows:

$$
U \to U' = e^{i\theta e} \mathbf{Q} U e^{-i\theta e} \mathbf{Q}, \quad X \to X' = X. \tag{2.2}
$$

Therefore, we have to replace the derivative of the fields $\partial_{\mu}U$ and $\partial_{\mu}X$ with the corresponding *covariant* derivatives:

$$
D_{\mu}U = \partial_{\mu}U + ieA_{\mu}[\mathbf{Q}, U], \quad D_{\mu}X = \partial_{\mu}X. \tag{2.3}
$$

Here Q is the quark charge matrix (in units of e , the absolute value of the electron charge):

$$
\mathbf{Q} = \begin{pmatrix} \frac{2}{3} & & & \\ & -\frac{1}{3} & & \\ & & -\frac{1}{3} & \\ & & & -\frac{1}{3} \end{pmatrix} .
$$
 (2.4)

In addition, we have to reproduce the effects of the electromagnetic anomaly, whose contribution to the four-divergence of the *U*(1) axial current $J_{5,\mu} = \bar{q} \gamma_{\mu} \gamma_{5} q$ and of the *SU*(3) axial currents $A_{\mu}^a = \overline{q} \gamma_{\mu} \gamma_5(\tau_a/\sqrt{2}) q$ [the matrices τ_a , with $a=1, \ldots, 8$, are the generators of the algebra of *SU*(3) in the fundamental representation, with normalization $Tr(\tau_a \tau_b) = \delta_{ab}$, is given by

$$
(\partial^{\mu} J_{5,\mu})_{anomaly}^{e.m.} = 2 \operatorname{Tr}(\mathbf{Q}^{2}) G,
$$

$$
(\partial^{\mu} A_{\mu}^{a})_{anomaly}^{e.m.} = 2 \operatorname{Tr} \left(\mathbf{Q}^{2} \frac{\tau_{a}}{\sqrt{2}} \right) G,
$$
(2.5)

where $G \equiv (e^2 N_c/32\pi^2) \varepsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}$ [$F_{\mu\nu}$ being the electromagnetic field strength tensor], thus breaking the corresponding chiral symmetries. We observe that $\text{Tr}(\mathbf{Q}^2 \tau_a) \neq 0$ only for $a=3$ or $a=8$.

We must look for an interaction term \mathcal{L}_I (constructed with the chiral Lagrangian fields and the electromagnetic operator *G*) which, under a $U(1)$ axial transformation $q \rightarrow q'$ $=e^{-i\alpha\gamma_5}q$, transforms as

$$
U(1)_A: \mathcal{L}_I \to \mathcal{L}_I + 2\alpha \operatorname{Tr}(\mathbf{Q}^2)G, \tag{2.6}
$$

while, under *SU*(3) axial transformations of the type *q* $\rightarrow q' = e^{-i\beta \gamma_5 \tau_a/\sqrt{2}} q$ (with $a=3,8$), it transforms as

$$
SU(3)_A: \mathcal{L}_I \to \mathcal{L}_I + 2\beta \operatorname{Tr}\left(\mathbf{Q}^2 \frac{\tau_a}{\sqrt{2}}\right) G. \tag{2.7}
$$

By virtue of the transformation properties of the fields *U* and *X* under a $U(3) \otimes U(3)$ chiral transformation $\left[q_L \rightarrow V_L q_L\right]$ $q_R \rightarrow V_R q_R \Rightarrow U \rightarrow V_L U V_R^{\dagger}$ and $X \rightarrow det(V_L) det(V_R)^* X$, where V_L and V_R are arbitrary 3×3 unitary matrices [4,7], one can see that the simplest term describing the electromagnetic anomaly interaction term is the following:

$$
\mathcal{L}_I = \frac{i}{2} G \operatorname{Tr}[\mathbf{Q}^2 (\ln U - \ln U^{\dagger})],\tag{2.8}
$$

which is exactly the one originally proposed in Ref. $[12]$ and also adopted in Ref. $[11]$. However, the presence of the new meson field *X* allows us to construct also another electromagnetic interaction term, still proportional to the pseudoscalar operator *G*, but totally *invariant* under $U(3) \otimes U(3)$ chiral transformations:

$$
\Delta \mathcal{L}_I = f_\Delta \frac{i}{6} G \operatorname{Tr}(\mathbf{Q}^2) [\ln(X \det U^\dagger) - \ln(X^\dagger \det U)],
$$
\n(2.9)

where f_{Δ} is an (up to now) arbitrary real parameter (the coefficient 1/6 has been introduced for convenience; see Sec. III). We can thus add the two expressions (2.8) and (2.9) to form a new (more general) electromagnetic anomaly interaction term $\overline{\mathcal{L}}_I$, which, of course, satisfies both the transformation properties (2.6) and (2.7) , exactly as \mathcal{L}_I :

$$
\overline{\mathcal{L}}_I = \mathcal{L}_I + \Delta \mathcal{L}_I = \frac{i}{2} G \operatorname{Tr}[\mathbf{Q}^2 (\ln U - \ln U^{\dagger})] + f_{\Delta} \frac{i}{6} G \operatorname{Tr}(\mathbf{Q}^2)
$$

×[ln(X det U[†]) - ln(X[†] det U)]. (2.10)

Therefore, we shall consider the following effective chiral Lagrangian, which includes the new electromagnetic interaction terms described above:

$$
\mathcal{L}(U, U^{\dagger}, X, X^{\dagger}, Q, A^{\mu})
$$
\n
$$
= \frac{1}{2} \text{Tr}(D_{\mu} U D^{\mu} U^{\dagger}) + \frac{1}{2} \partial_{\mu} X \partial^{\mu} X^{\dagger} - V(U, U^{\dagger}, X, X^{\dagger})
$$
\n
$$
+ \frac{i}{2} \omega_1 Q \text{ Tr}(\ln U - \ln U^{\dagger}) + \frac{i}{2} (1 - \omega_1)
$$
\n
$$
\times Q(\ln X - \ln X^{\dagger}) + \frac{1}{2A} Q^2 + \bar{L}_I - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}, \tag{2.11}
$$

where the potential term $V(U, U^{\dagger}, X, X^{\dagger})$ is the one written in Eq. (1.3) .

The decay amplitude of the generic process ''meson $\rightarrow \gamma \gamma$ " is entirely due to the electromagnetic anomaly interaction term \mathcal{L}_I , which can be written more explicitly in terms of the meson fields $\pi_a(a=1,\ldots,8)$, S_π , and S_X , defined as follows $[4,6,7]$:

$$
U = \frac{F_{\pi}}{\sqrt{2}} \exp\left(\frac{i\sqrt{2}}{F_{\pi}} \left(\sum_{a=1}^{8} \pi_a \tau_a + \frac{S_{\pi}}{\sqrt{3}} \mathbf{I}\right)\right),
$$

$$
X = \frac{F_X}{\sqrt{2}} \exp\left(\frac{i\sqrt{2}}{F_X} S_X\right).
$$
 (2.12)

The π_a are the self-Hermitian fields describing the octet pseudoscalar mesons; S_{π} is the usual "quark-antiquark" $SU(3)$ -singlet meson field associated with *U*, while S_X is the "exotic" six-fermion meson field associated with X [4,6,7].

Inserting the expressions (2.12) into Eq. (2.10) , one finds that

$$
\bar{\mathcal{L}}_I = -G \frac{1}{3F_\pi} \left[\pi_3 + \frac{1}{\sqrt{3}} \pi_8 + \frac{2\sqrt{2}}{\sqrt{3}} S_\pi \right. \\
\left. - f_\Delta \frac{2\sqrt{2}}{3F_X} (\sqrt{3} F_X S_\pi - F_\pi S_X) \right]. \tag{2.13}
$$

The fields π_3, π_8, S_π , and S_X mix together, while the remaining π_a are already diagonal [6]. However, neglecting the experimentally small mass difference between the quarks up and down [i.e., neglecting the experimentally small violations of the $SU(2)$ isotopic spin], π_3 also becomes diagonal and can be identified with the physical state π^0 . The fields (π_8 , S_π , S_χ) can be written in terms of the eigenstates (η,η',η_X) as follows:

$$
\begin{pmatrix} \pi_8 \\ S_{\pi} \\ S_X \end{pmatrix} = \mathbf{C} \begin{pmatrix} \eta \\ \eta' \\ \eta_X \end{pmatrix}, \qquad (2.14)
$$

where **C** is the following 3×3 orthogonal matrix [11]:

$$
C = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \\ \gamma_1 & \gamma_2 & \gamma_3 \end{pmatrix}
$$

=
$$
\begin{pmatrix} \cos \tilde{\varphi} & -\sin \tilde{\varphi} & 0 \\ \sin \tilde{\varphi} \frac{F_{\pi}}{F_{\eta'}} & \cos \tilde{\varphi} \frac{F_{\pi}}{F_{\eta'}} & \frac{\sqrt{3}F_X}{F_{\eta'}} \\ \sin \tilde{\varphi} \frac{\sqrt{3}F_X}{F_{\eta'}} & \cos \tilde{\varphi} \frac{\sqrt{3}F_X}{F_{\eta'}} & -\frac{F_{\pi}}{F_{\eta'}} \end{pmatrix} .
$$
(2.15)

Here $F_{n'}$ is defined as follows [11]:

$$
F_{\eta'} \equiv \sqrt{F_{\pi}^2 + 3F_{X}^2},\tag{2.16}
$$

and can be identified with the η' decay constant in the chiral limit of zero quark masses. Moreover, $\tilde{\varphi}$ is a mixing angle, which can be related to the masses of the quarks m_u , m_d , m_s , and therefore to the masses of the octet mesons, by the following relation $[11]$:

$$
\tan \tilde{\varphi} = \frac{F_{\pi} F_{\eta'}}{6\sqrt{2}A} (m_{\eta}^2 - m_{\pi}^2),
$$
 (2.17)

where $m_{\pi}^2 = 2B\tilde{m}$ and $m_{\eta}^2 = \frac{2}{3}B(\tilde{m} + 2m_s)$, with $B = B_m/2F_{\pi}$ and $\widetilde{m} \equiv (m_u + m_d)/2$.

Concerning the masses of the two singlet states, we recall that $[4-7]$ the field η' has a "light" mass, in the sense of the $N_c \rightarrow \infty$ limit, being, in the chiral limit of zero quark masses²

$$
m_{\eta'}^2 = \frac{6A}{F_{\eta'}^2} = \frac{6A}{F_{\pi}^2 + 3F_X^2} = \mathcal{O}\left(\frac{1}{N_c}\right). \tag{2.18}
$$

[If we put $F_X=0$, Eq. (2.18), or the corresponding expression including the light-quark masses $[6]$ reported in footnote 2, reduces to the well-known Witten-Veneziano relation for the η' mass [13].] On the contrary, the field η_X has a sort of "heavy hadronic" mass of order $O(N_c^0)$ in the large- N_c limit. Both η' and η_X have the same quantum numbers (spin, parity, and so on), but they have a different quark content: one is mostly $S_{\pi} \sim i(\overline{q}_L q_R - \overline{q}_R q_L)$, while the other is mostly S_X $\sim i[\det(\overline{q}_{sL}q_{tR}) - \det(\overline{q}_{sR}q_{tL})]$, as one can see from Eqs. $(2.14), (2.15).$

The interaction Lagrangian (2.13) , written in terms of the physical fields π^0 , η , η' , and η_X , reads as follows:

$$
\bar{\mathcal{L}}_I = -G \frac{1}{3F_\pi} (\pi^0 + a_1 \eta + a_2 \eta' + \bar{a}_3 \eta_X), \qquad (2.19)
$$

where $a_i = (\alpha_i + 2\sqrt{2}\beta_i)/\sqrt{3}$ (or $i = 1,2,3$), so that

$$
a_1 = \sqrt{\frac{1}{3}} \left(\cos \tilde{\varphi} + 2\sqrt{2} \sin \tilde{\varphi} \frac{F_\pi}{F_{\eta'}} \right), \tag{2.20}
$$

$$
a_2 = \sqrt{\frac{1}{3}} \left(2\sqrt{2} \cos \tilde{\varphi} \frac{F_\pi}{F_{\eta'}} - \sin \tilde{\varphi} \right), \qquad (2.21)
$$

$$
a_3 = 2\sqrt{2}\left(\frac{F_X}{F_{\eta'}}\right),\tag{2.22}
$$

and, moreover,

$$
\overline{a}_3 = a_3 + \Delta a_3 \quad \text{ with } \quad \Delta a_3 = -f_\Delta \frac{2\sqrt{2}F_{\eta'}}{3F_X}.
$$
 (2.23)

The values of the coefficients a_1 , a_2 , and a_3 are exactly the same as were calculated in Ref. [11]: therefore, the inclusion of the new electromagnetic interaction term (2.9) in the expression for the electromagnetic anomaly interaction term (2.10) modifies only (for $T=0$ or, more generally, for *T* $\langle T_{ch}$; see the discussion in the next section) the decay amplitude for the process $\eta_X \rightarrow \gamma \gamma$, while leaving unchanged the other decay amplitudes for the processes $\pi^0 \rightarrow \gamma \gamma$, η $\rightarrow \gamma \gamma$, and $\eta' \rightarrow \gamma \gamma$. Indeed, from Eqs. (2.14) and (2.15) we derive that

$$
\eta_X = \frac{1}{F'_\eta} (\sqrt{3} F_X S_\pi - F_\pi S_X),\tag{2.24}
$$

and thus we immediately see that the term proportional to f_{Δ} in Eq. (2.13) is simply equal to

$$
\Delta \mathcal{L}_I = -G \frac{1}{3F_\pi} \left(-f_\Delta \frac{2\sqrt{2}F_{\eta'}}{3F_X} \right) \eta_X = -G \frac{1}{3F_\pi} \Delta a_3 \eta_X. \tag{2.25}
$$

The expressions for the decay amplitudes are

$$
A(\pi^0 \to \gamma \gamma) = \frac{e^2 N_c}{12\pi^2 F_\pi} I,\tag{2.26}
$$

$$
A(\eta \to \gamma \gamma) = \frac{e^2 N_c}{12\pi^2 F_\pi} \sqrt{\frac{1}{3}} \left(\cos \tilde{\varphi} + 2\sqrt{2} \sin \tilde{\varphi} \frac{F_\pi}{F_{\eta'}} \right) I, \tag{2.27}
$$

$$
A(\eta' \to \gamma \gamma) = \frac{e^2 N_c}{12\pi^2 F_\pi} \sqrt{\frac{1}{3}} \left(2\sqrt{2} \cos \tilde{\varphi} \frac{F_\pi}{F_{\eta'}} - \sin \tilde{\varphi} \right) I, \tag{2.28}
$$

$$
A(\eta_X \to \gamma \gamma) = \frac{e^2 N_c}{12\pi^2 F_\pi} 2\sqrt{2} \left(\frac{F_X}{F_{\eta'}} - f_\Delta \frac{F_{\eta'}}{3F_X} \right) I,\tag{2.29}
$$

where $I = \varepsilon_{\mu\nu\rho\sigma} k_1^{\mu} \epsilon_1^{\nu *} k_2^{\rho} \epsilon_2^{\sigma *}$ (*k*₁, *k*₂ being the four-momenta of the two final photons and ϵ_1, ϵ_2 their polarizations). Consequently, the following decay rates (in the real case N_c $=$ 3) are derived:

$$
\Gamma(\pi^0 \to \gamma \gamma) = \frac{\alpha^2 m_\pi^3}{64 \pi^3 F_\pi^2},\tag{2.30}
$$

$$
\Gamma(\eta \to \gamma \gamma) = \frac{\alpha^2 m_\eta^3}{192 \pi^3 F_\pi^2} \left(\cos \tilde{\varphi} + 2\sqrt{2} \sin \tilde{\varphi} \frac{F_\pi}{F_{\eta'}} \right)^2, \tag{2.31}
$$

$$
\Gamma(\eta' \to \gamma \gamma) = \frac{\alpha^2 m_{\eta'}^3}{192 \pi^3 F_\pi^2} \left(2 \sqrt{2} \cos \tilde{\varphi} \frac{F_\pi}{F_{\eta'}} - \sin \tilde{\varphi} \right)^2, \tag{2.32}
$$

$$
\Gamma(\eta_X \to \gamma \gamma) = \frac{\alpha^2 m_{\eta_X}^3}{8 \pi^3 F_\pi^2} \left(\frac{F_X}{F_{\eta'}} - f_\Delta \frac{F_{\eta'}}{3F_X} \right)^2, \tag{2.33}
$$

where $\alpha = e^2/4\pi \approx 1/137$ is the fine-structure constant.

The results (2.30) – (2.32) are exactly the same as were found in Ref. [11]. [If we put $F_X=0$, i.e., if we neglect the new *U*(1) chiral condensate, the expressions written above reduce to the corresponding ones derived in Ref. $[12]$ using an effective Lagrangian which includes only the usual $q\bar{q}$ chiral condensate.] Therefore also the numerical results obtained in Ref. [11] concerning the processes $\eta \rightarrow \gamma \gamma$ and $\eta' \rightarrow \gamma \gamma$ remain unaffected. In particular, using the experimental values for the various quantities which appear in Eqs. (2.31) and (2.32) , i.e.,

²The expression for the η' mass, when including the light-quark masses, reads as follows [6]: $(1+3F_X^2/F_\pi^2) m_\eta'^2 + m_\eta^2 - 2m_K^2$ $= 6A/F_{\pi}^{2}$, with $m_{K}^{2} = B(\tilde{m} + m_{s})$.

$$
F_{\pi} = 92.4(4) \text{ MeV},
$$

\n
$$
m_{\eta} = 547.30(12) \text{ MeV},
$$

\n
$$
m_{\eta'} = 957.78(14) \text{ MeV},
$$

\n
$$
\Gamma(\eta \to \gamma \gamma) = 0.46(4) \text{ keV},
$$

\n
$$
\Gamma(\eta' \to \gamma \gamma) = 4.26(19) \text{ keV},
$$

\n(2.34)

we can extract the following values for the quantity F_X and for the mixing angle $\tilde{\varphi}$ [11]:

$$
F_X = 27(9)
$$
 MeV, $\tilde{\varphi} = 16(3)^\circ$, (2.35)

and these values are perfectly consistent with the relation (2.17) for the mixing angle, if we use for the pure YM topological susceptibility the estimate $A=(180\pm5 \text{ MeV})^4$, obtained from lattice simulations $[14]$.

Nevertheless, the new electromagnetic interaction term will play a crucial role in the discussion of the $\eta' \rightarrow \gamma\gamma$ radiative decay at finite temperature, in particular for *T* $>T_{ch}$; this will be studied in detail in the next section.

III. RADIATIVE DECAYS OF THE PSEUDOSCALAR MESONS AT $T \neq 0$

We want now to address the finite-temperature case (*T* \neq 0). As already said in the Introduction, this will be done $~(u\sin g$ a sort of mean-field approximation) simply by considering all the parameters appearing in the Lagrangian as functions of the physical temperature *T*. In such a way, the results obtained in the previous section can be extended to the whole region of temperatures below the chiral transition (*T* $\langle T_{ch} \rangle$, provided that the *T* dependence is included in all the parameters appearing in Eqs. (2.30) – (2.33) .

What happens when approaching the chiral transition temperature T_{ch} from below $(T \rightarrow T_{ch}$ ⁻)? We know that $F_{\pi}(T) \rightarrow 0$ when $T \rightarrow T_{ch}$ - Let us consider, for simplicity, the chiral limit of zero quark masses. From Eq. (2.18) we see that $m_{\eta'}^2 \rightarrow 2A(T_{ch})/F_X^2(T_{ch})$ when $T \rightarrow T_{ch}^-$ and, from Eqs. $(2.14), (2.15),$ we derive

$$
\eta' = \frac{1}{F'_{\eta}} (F_{\pi} S_{\pi} + \sqrt{3} F_X S_X),
$$
\n(3.1)

so that $\eta' \rightarrow S_X$ when $T \rightarrow T_{ch}^-$. In this same limit, the η' $\frac{1}{2}$ decay rate (2.32) tends to the value

$$
\Gamma(\eta' \to \gamma \gamma) \xrightarrow{T \to T_{ch-}} \frac{\alpha^2 m_{\eta'}^3(T_{ch})}{72\pi^3 F_X^2(T_{ch})}.
$$
 (3.2)

What happens, instead, in the region of temperatures T_{ch} $_{U(1)}, above the chiral phase transition [where the$ $SU(3) \otimes SU(3)$ chiral symmetry is restored, while the $U(1)$ chiral condensate is still present]? First of all, we observe that we have continuity in the mass spectrum of the theory through the chiral phase transition at $T=T_{ch}$. In fact, if we study the mass spectrum of the theory in the region of temperatures $T_{ch} < T < T_{U(1)}$ [4,6,7], we find that the singlet meson field S_X , associated with the field *X* in the chiral Lagrangian, according to the second Eq. (2.12) [instead, the first Eq. (2.12) is no longer valid in this region of temperatures], has a squared mass given by (in the chiral limit) $m_{S_X}^2 = 2A/F_X^2$. This is nothing but the *would-be* Goldstone particle coming from the breaking of the *U*(1) chiral symmetry, i.e., the η' , which, for $T>T_{ch}$, is a sort of "exotic" matter field of the form $S_X \sim i$ [det($\overline{q}_{sL}q_{tR}$) - det($\overline{q}_{sR}q_{tL}$)]. Its existence could be proved perhaps in the near future by heavy-ion experiments.

And what about the η' radiative decay rate in the region of temperatures $T_{ch} < T < T_{U(1)}$? Since $\eta' = S_X$ above T_{ch} , the electromagnetic anomaly interaction term describing the process $\eta' \rightarrow \gamma \gamma$ for $T>T_{ch}$ is only the part of $\bar{\mathcal{L}}_I$, written in Eq. (2.10) , which depends on the field *X*:

$$
\Delta \mathcal{L}_{S_X \gamma \gamma} = f_{\Delta} \frac{i}{6} G \operatorname{Tr}(\mathbf{Q}^2) (\ln X - \ln X^{\dagger}) = -f_{\Delta} \frac{2 \sqrt{2}}{9F_X} G S_X. \tag{3.3}
$$

From this equation we easily derive the following expression for the $\eta' \rightarrow \gamma \gamma$ decay amplitude above T_{ch} :

$$
A(\eta' \to \gamma \gamma)|_{T>T_{ch}} = f_{\Delta} \frac{e^2 N_c \sqrt{2}}{18\pi^2 F_X} I, \tag{3.4}
$$

and, consequently, the following expression for the η' $\rightarrow \gamma \gamma$ decay rate (in the real case *N_c*=3) above *T_{ch}*:

$$
\Gamma(\eta' \to \gamma \gamma)|_{T>T_{ch}} = f_{\Delta} \frac{\alpha^2 m_{\eta'}^3}{72\pi^3 F_X^2}.
$$
 (3.5)

If we require that $\Gamma(\eta' \rightarrow \gamma \gamma)$ is a continuous function of *T* across the chiral transition at T_{ch} , then from Eqs. (3.2) and (3.5) we obtain the following condition for f_{Δ} :

$$
f_{\Delta}(T_{ch}) = 1. \tag{3.6}
$$

This means that

$$
\Gamma(\eta' \to \gamma \gamma)|_{T=T_{ch}} = \frac{\alpha^2 m_{\eta'}^3(T_{ch})}{72\pi^3 F_X^2(T_{ch})}.
$$
 (3.7)

The decay rates and the masses at finite temperature could be determined in the near future heavy-ion experiments and then Eq. (3.7) will provide an estimate for the value of F_X at $T=T_{ch}$. Vice versa, if we were able to determine the value of F_X in some other independent way (e.g., by lattice simulations; see Ref. $[11]$), then Eq. (3.7) would give a theoretical estimate of the ratio $\Gamma(\eta' \to \gamma \gamma)/m_{\eta'}^3$ at $T = T_{ch}$, which could be compared with the experimental results. For example, if we make the (very plausible indeed) assumption that the value of F_X does not change very much going from *T*=0 up to *T*=*T_{ch}* (it will vanish at a temperature *T*_{*U*(1)} above T_{ch}), i.e., $F_X(T_{ch}) \approx F_X(0)$, and if we take for $F_X(0)$ the value reported in Eq. (2.35) , then Eq. (3.7) furnishes the following estimate:

$$
\Gamma(\eta' \to \gamma \gamma)|_{T = T_{ch}} / m_{\eta'}^3(T_{ch})
$$

=
$$
\frac{\alpha^2}{72\pi^3 F_X^2(T_{ch})} \approx 3.3^{+4.1}_{-1.4} \times 10^{-11} \text{ MeV}^{-2}.
$$
 (3.8)

In other words, comparing with the corresponding quantities at $T=0$, reported in Eq. (2.34) , one gets that

$$
\frac{\Gamma(\eta' \to \gamma\gamma)|_{T=T_{ch}}/m_{\eta'}^3(T_{ch})}{\Gamma(\eta' \to \gamma\gamma)|_{T=0}/m_{\eta'}^3(0)} \simeq 7_{-3}^{+8}.
$$
 (3.9)

Thus, even with very large errors, due to our poor knowledge of the value of F_X , there is a quite definite prediction that the ratio $\Gamma(\eta' \to \gamma \gamma)/m_{\eta'}^3$ should have a sharp increase on approaching the chiral transition temperature T_{ch} . [Of course, a smaller value of F_X would result in a larger value for the ratio in Eq. (3.9) , and this case seems indeed to be favored from the upper limit $F_X \le 20$ MeV obtained from the *generalized* Witten-Veneziano formula for the η' mass [6].] One could also argue that it is physically plausible that the η' mass (of the order of 1 GeV) remains practically unchanged when going from $T=0$ up to T_{ch} (which, from lattice simulations, is known to be of the order of 170 MeV: see, e.g., Ref. $[2]$); in that case, Eq. (3.9) would give an estimate for the ratio between the η' decay rates at $T=T_{ch}$ and $T=0$. However, we want to stress that our result (3.9) is more general and does not rely on any given assumption on the behavior of $m_{\eta'}(T)$ with the temperature *T*.

IV. CONCLUSIONS

There is evidence from some lattice results that a new $U(1)$ -breaking condensate survives across the chiral transition at T_{ch} , staying different from zero up to $T_{U(1)} > T_{ch}$. This fact has important consequences for the pseudoscalarmeson sector, which can be studied using an effective Lagrangian model, including also the new *U*(1) chiral condensate. This model could perhaps be verified in the near future by heavy-ion experiments, by analyzing the pseudoscalarmeson spectrum in the singlet sector.

In Ref. $|11|$ we have also investigated the effects of the new *U*(1) chiral condensate on the radiative decays, at *T* =0, of the pseudoscalar mesons η and η' to two photons. A first comparison of our results with the experimental data has been performed: the results are encouraging, pointing toward some evidence of a nonzero $U(1)$ axial condensate. In this paper, generalizing the results obtained in Ref. $[11]$, we have studied the effects of the $U(1)$ chiral condensate on the radiative decay $\eta' \rightarrow \gamma \gamma$ at finite temperature (*T* \neq 0). In particular, we have been able to get a quite definite theoretical prediction [see Eq. (3.9)] for the ratio between the $\eta' \rightarrow \gamma\gamma$ decay rate and the third power of the η' mass in the proximity of the chiral transition temperature T_{ch} (which, from lattice simulations, is expected to be of the order of 170 MeV); this prediction could in principle be tested in future heavy-ion experiments.

However, as we have already stressed in the conclusions of Ref. [11], one should keep in mind that our results have been derived from a very simplified model, obtained by doing a first-order expansion in $1/N_c$ and in the quark masses. We expect that such a model can furnish only qualitative or, at most, ''semiquantitative'' predictions. When going beyond the leading order in $1/N_c$, it becomes necessary to take into account questions of renormalization-group behavior of the various quantities and operators involved in our theoretical analysis. This issue has been widely discussed in the literature, both in relation to the proton-spin crisis problem $[15]$, and also in relation to the study of η , η' radiative decays [16]. Further studies are therefore necessary in order to continue this analysis from a more quantitative point of view. We expect that some progress will be made along this line in the near future.

- $[1]$ C. Bernard *et al.*, Nucl. Phys. B (Proc. Suppl.) **53**, 442 (1997); Phys. Rev. Lett. **78**, 598 (1997).
- $[2]$ F. Karsch, Nucl. Phys. B (Proc. Suppl.) $83-84$, 14 (2000) .
- [3] P.M. Vranas, Nucl. Phys. B (Proc. Suppl.) 83-84, 414 (2000).
- [4] E. Meggiolaro, Z. Phys. C 62, 669 (1994).
- $[5]$ E. Meggiolaro, Z. Phys. C 62 , 679 (1994) .
- [6] E. Meggiolaro, Z. Phys. C 64, 323 (1994).
- [7] E. Meggiolaro, "Remarks on the $U(1)$ axial symmetry in QCD at zero and non-zero temperature,'' Report No. IFUP-TH/2002-24, hep-ph/0206236.
- @8# G. 't Hooft, Phys. Rev. Lett. **37**, 8 ~1976!; Phys. Rev. D **14**, 3432 (1976).
- [9] A. Di Giacomo and E. Meggiolaro, Nucl. Phys. B (Proc. Suppl.) 42, 478 (1995).
- [10] P. Di Vecchia and G. Veneziano, Nucl. Phys. **B171**, 253 (1980); E. Witten, Ann. Phys. (N.Y.) 128, 363 (1980); C. Rosenzweig, J. Schechter, and C.G. Trahern, Phys. Rev. D **21**,

3388 (1980); P. Nath and R. Arnowitt, *ibid.* **23**, 473 (1981); K. Kawarabayashi and N. Ohta, Nucl. Phys. **B175**, 477 (1980).

- $[11]$ M. Marchi and E. Meggiolaro, Nucl. Phys. **B665**, 425 (2003) .
- [12] P. Di Vecchia, F. Nicodemi, R. Pettorino, and G. Veneziano, Nucl. Phys. **B181**, 318 (1981).
- [13] E. Witten, Nucl. Phys. **B156**, 269 (1979); G. Veneziano, *ibid.* **B159**, 213 (1979).
- [14] M. Teper, Phys. Lett. B **202**, 553 (1988); M. Campostrini, A. Di Giacomo, Y. Günduc, M.P. Lombardo, H. Panagopoulos, and R. Tripiccione, *ibid.* **252**, 436 (1990); B. Allés, M. D'Elia, and A. Di Giacomo, Nucl. Phys. **B494**, 281 (1997).
- [15] G.M. Shore and G. Veneziano, Phys. Lett. B 244, 75 (1990); Nucl. Phys. **B381**, 23 (1992); S. Narison, G.M. Shore, and G. Veneziano, *ibid.* **B433**, 209 (1995); **B546**, 235 (1999).
- [16] G.M. Shore and G. Veneziano, Nucl. Phys. **B381**, 3 (1992); G.M. Shore, Nucl. Phys. B (Proc. Suppl.) 86, 368 (2000); Nucl. Phys. **B569**, 107 (2000); Phys. Scr., T 99, 84 (2002).