PHYSICAL REVIEW D 69, 074015 (2004

Subleading shape function contributions to the hadronic invariant mass spectrum
in B—X,lv, decay
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We study theD(A gcp/my,) corrections to the singly and doubly differential hadronic invariant mass spectra
dI'/ds, and dT'/ds,dg? in §—>qu7| decays, and discuss the implications for the extraction of the CKM
matrix element|V,,|. Using simple models for the subleading shape functions, the effects of subleading
operators are estimated to be at the few percent level for experimentally relevant cuts. The subleading correc-
tions proportional to the leading shape function are larger, but largely cancel in the relation between the
hadronic invariant mass spectrum and the photon spectrlﬁmlxsy. We also discuss the applicability of the
usual prescription of convoluting the partonic level rate with the leading light-cone wave function bf the
quark to subleading order.
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[. INTRODUCTION in restricted regions of phase space where the charm back-
ground is absent. Of particular interest have been the large
Th(_e Cabibbo-Kobayas_hi-M_askawziCKM) parameter  lepton energy regiorg, > (m3—m3)/2mg , the low hadronic
|Vl is of phenomenological interest both because it is anvariant mass regionny= sy <mp, [8], the large lepton
basic parameter of the standard model and because of tiigariant mass regiog?> (mg—mp)2 [9], and combinations
role it plays in precision studies c(tP' violation in the B of these[10]. The charged lepton cut is the easiest to imple-
meson system. Currently, th_e the_oretlcally clean_est determiy,ant experimentally, while the hadronic mass cut has the
hations Of [Vl come from mclusw_e sem|lept0|_1|c Qecays, advantage that it contains roughly 80% of the semileptonic
which are not sensitive to the details of hadronization. rate [11]. However, in both cases the kinematic cuts con-
raterormZUﬁLCe'e\,T,ﬂﬁe'QC;zsgﬁeegbzﬁg\i/g:ﬁs]ogl%S'Zfdéffaystrain the final hadronic state to consist of energetic, low-
Y P P invariant mass hadrons, and the local operator product ex-

The leading order result corresponds to the decay of abfree . .
guark to quarks and gluons, while the subleading correctioné),‘;’ms'o_n(opa breaks dovx_/r(thls is not the case for the "'?“ge
region or for appropriately chosen mixed qutk this

proportional to powers ol 5cp/my,, describe the deviations : : X _
from the parton model. Up tﬁ’(/\écr/mﬁ)v only two opera- case, the relevant -spectrum is dgtermlned at !eadlng order in
Aqcp/my, by the light-cone distribution function of thi

tors arise, .
quark in the mesoh12,13,
j— _
— D)2
A= ZmB(B|hv(|D) h,|B), - o
(B|bS(w+in-D)b|B)
2mg '

w)= ()

1 _
Na(1)= g (BIN,0*"G ., [B). (1)

The B-B* mass splitting determinek,(m,)=0.12 GeV,  wheren* is a lightlike vector, and hatted variables are nor-
while a recent fit to moments of the charged lepton spectrun,4jized tom,: ﬁ,uED,u/mb_l f(w) is often referred to as
in semileptonicb— c decay obtained?] the shape function, and corresponds to resumming an infinite
1s_ series of local operators in the usual OPE. The physical spec-
my =4.82£0.0£=0.1% GeV, tra are determined by convoluting the shape function with
the appropriate kinematic functions:

A= —0.25+0.0270.05y*0.14, Ge\?, 2
wherem;® is the short-distance “$ mass” of theb quark
[3,4]. (Moments of other spectra give similar resUl&6].) id_l"(§%x |7):4f 0(1—2E,— w)f(w)dw+- -
These uncertainties correspond to an uncertainty 8% in o dE, ur ol ! '
the relation betweefV,,,| and the inclusivé8— X, | v, width (4)
[3,7].

Unfortunately, the semileptonic—u decay rate is diffi-
cult to measure experimentally, because of the large back-!Because in our definition df(w) its argument is dimensionless,
ground from charmed final states. As a result, there has beew) differs by a factor ofm, from the usual definitions in the
much theoretical and experimental interest in the decay ratkterature.
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1 dI _ Choosing our axes such that the momentum transfer to the
— —(B=X/») leptons g is in the —nA direction, we can writeg”
o d8y =n-qn*/2+n-qn*/2. The decay rate takes a particularly
Zgﬁ(3w—2§H) i simple form in terms of the variables q andn-q:
_f—40(w—§H)f(w—A)dw+---, - o,
® dl'(B—Xlv)=967T"'W,, L*"(n-g—n-q)°0(n-q)
(5 X 6(n-§—n-g)dn-gdn- g, 9
where 1-2E;<Aqcp/My, $i=Agcp/M, and A=mg  where
—Mp. ) G2|V..|2m?3
Sincef(w) also determines the shape of the photon spec- .= Fl Vol “mp (10
trum in B— X,y at leading order, " 19273
1 dI°T _ R The hadron tensoW*” is defined by
FT(B—)XS’)/)ZZf(l—ZEy)'F"‘ (6) . .
o dE 1 _(BIT[I[*(x)3!(0)]|B
y W“VE——Im(—iJ'd4xe"q'x< Tl |_2(m ((0)][B) '
there has been much interest in extractfiig) from radia- i B (11)

tive B decay and applying it to semileptonic decay. However,
the relationg4)—(6) hold only at the tree level and at leading \here the weak current &‘=Uy*(1— ys)b, while the lep-
order in Agcp/M,, SO a precision determination ¢¥,,|  ton tensor is

requires an understanding of the size of the corrections. Ra-

diative corrections were considered ifi2-15, while ,
O(Aqcp/mp) corrections have been studied more recently in L’“’Ej dio(a;py,p,) T, Y b1 y"PL]

[16—19. In [16], the nonlocal distribution functions arising
at subleading order were enumerated, and their contribution

to B—X.y decay was studied. Ifil7], the corresponding
corrections to the lepton endpoint spectrunBin: X, v, de-
cay were studied, and it was shown that these effects we o .

To calculate the hadronic invariant mass spectrum we

potentially large. Similar results were obtained 19], where switch to the variabless(,,q?). These are related to the

the sub-subleading contribution from annihilation graphsvariables in Eq(9) b
was also shown to be large. In this paper, we study the sub- q y
leading corrections to the hadronic invariant mass spectrum

in semileptonicdo— u decay, and estimate the theoretical un-

1 2
= E(q”q”—q g*") (12

Sy=(mg—n-q)(Mg—n-Qq)

certainties introduced by these terms. In addition, we present =(Mp+A—n-gq)(my,+A—-n-q), (13

results for the doubly differential spectrudi’/ds,dg? at -

leading and subleading order. g’=n-gn-q, (14
and

Il. MATCHING CALCULATION
A. The full theory spectrum dr

In the shape function region the final hadronic state has dn-qdn-q
large energy but small invariant mass, and so its momentum

lies close to the light cone. It is therefore convenient to in- _ \/((mb+A)2+q2—SH)2—4(mb+A)2q2 _
troduce two lightlike vectors* andn* related to the veloc- dsydo?
ity of the heavy mesow* by v#=1/2(n*+n*), and satis- (15)
fying

2_m2_( =1 2 7 Here A=mg—my, is the difference between thB meson
n“=n==0, v-n=v-n=L, n-n=c (7 mass and the quark mass. It i©(A ocp) and has an expan-

In the frame in which th& meson is at rest, these vectors areSlon in terms of HQET parameters

given by n*#=(1,0,0,1), n*=(1,0,0~1) and v* — N3N,

=(1,0,0,0). The projection of an arbitrary four-vectaf A=A—T+--- (16)
onto the directions which are perpendicular to the light cone b

is given byaf'=g{a,, where SinceA simply enters in the definition of,, it is unrelated

1 to the 1m expansion in the OPE, so we will not expand it via
v_ uw v Eqg. (16). With this change of variables, we define the cor-
HY — MY — — (n*nY 4Nt .
9 =9 2(n n*+n¥n’) ® relator T(sy,q°%) by

074015-2



SUBLEADING SHAPE FUNCTION CONTRIBUTIONS TO ... PHYSICAL REVIEW B9, 074015 (2004

1 dI 1 — _ .
- - 2 _ . in. D+
T, W 2mB<B|T(SH ,q4%)|B). 7 O4(w) j dwdw,8(wq,w,;w)h,8(in- D+ w,)
In Ref.[16] a nonlocal expansion was performed for the Xiet'[iD,,iD,]8(in-D+wy)h,,
hadron tensolW*”, based on the power counting (22

e = PJ(w)=h,8(w+in-D)y7ysh,,
(Mpr —q)-n=my—q-n~0(my),
P4 (w)=h,{iD* &(w+in-D)}y7ysh, ,
(Mo —@)-n=m,—q-n~O(Agcp), 1"(@)=hy{ ( )} y"s
18 — 4 -
18 P5"(w)=h,[iD#,6(w+in-D)]y7ysh,,
k'u""O(AQCD),
7 — C R S(in R
where the heavy quark momentum is definedofis myv* Pi(w) f do,dw,8(wy,wy;0)h,8(in-D+ w,)
+k*. However, the limits of phase space integration in Eq.

(9) include regions of phase space where this power counting xgt!{iD,,iD,}8(in-D+w1)y"ysh,,
is violated. Hence, to keep our power counting consistent,
we do not perform a nonlocal OPE fav*”, but rather for TR J' CNR S R
: ) . P =— | dwdw,8(wq,wy;w)h,5(in-D+
T(sy,0%). In these variables, the shape function region cor- i) w1dwz8(w1,02;0)h, & ©2)

responds to the region of low invariant mass, . A a 4
Xiel"[iD,,iD,]é(in-D+ wq) y7ysh,,

Sy~ O(Aocpmy)- 19
H™ OlAqcoMy) (19 where theh,’s are heavy quark fields in HQET, and we have
Since A~ Aqcp and k“~Aqcp, expanding the light quark defined

ropagator in powers ok /my, gives at leading order
propag In pow! Qcp/ My giv ing 50— w1)— Sw—wy)

S LWy w)= 23
i¢u i (1_q2) (w1,0; w) 01—, (23
_2 = ~ ~ 4. (20)
Pu  2My [5,—(A—n-k)(1-67)] and
(whereA=A/my). Since both terms in the denominator are efP=e"t7y n,. (24)

O(Agcp/Mp), T(sy ,g%) cannot be expanded in powers of
k# and matched onto local operatofgnless we also are
restricted to large?, such that <1, in which case the
second term in the denominator is subleading, and a loc
OPE may be performef®,10]). Instead, the OPE takes the
schematic form

These definitions differ slightly from the definitions in Refs.
[16,17], because we have chosen to normalize all momenta
dpmy, to keep the resulting formulas simpler.

It is convenient to calculate the matching conditions onto
a slightly different set of operators, defined in terms of full
QCD b quark fields:

T(6.09-3 [ Cw.80.890,(w)d0, @21 Qo(,T)=ba(in- D+ )b,

where theO,(w)’s are bilocal operators in which the two Qf(w,I')=b{iD*,5(in- D+ w)}T'b,
points are separated along the light cone. . .
H(w,I")=Db[iD*, 6(in-D+w)]l'b,
B. Nonlocal operators

In Refs.[16], [17], it was shown that up to subleading Q3(w,r):f dw dw,8(w1,0,;0)b8(IN- D+ wy)
order inA gcp/my,, the following operators were required in
the OPE(21): xgt{iD,, ,iD,}8(in- D+ wy)Th,
Oy(w)=h,8(w+in-D)h,, _ .
Q4(w,F)=—f dwdw,8(wq,w,;0)b8(In- D+ w,)
O4(w)=h,{iD* 8(w+in-D)}h,, o X
xie“[iD, ,iD,]18(in-D+wy)lb. (25

Ew)=h [iD* +in-B
O%(w)=h,[iD*,&8(w+in-D)lh,, We have defined

os(w)zf dwdw,8(wy,w,;w)h,8(in-D+ w,) iD*=iD*—myv* (26)
oA a . so thatiD* acting on theb fields just bring down factors of
xgi"{iD,,iD,}é(in-D+wy)h,, the residual momenturk®. The Feynman rules for th®;’s
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Qo(w,T) Qfw,I)

;
;
;

PHYSICAL REVIEW D 69, 074015 (2004

Qs(w,T)

8w +n-k)T 2%#8(w+n - B)T — 228 (w+n- B
K w,I) Qw,T) Qs(w,I)
k/' 0 k/' N k/' 0 FIG. 1. Feynman rules for the
£ £ ¢ operators Q;(w,I') in n-A=0
- ”f;“ ar - Mfé“ ar @a 5n-B) gauge. We have defined..(x)
T 6) o 0-(n-6) ZgT"(%H)‘I( - )F =8(w+n-k+x)* (w+n-k).
Qu(w,T) Qs(w,I) Qy(w,T)
¢ 4
[ Zl/a,a, ﬁ’b\é El/fa,a ﬁ’bk‘éz
R 5—(”'2)) 02 fra b a,az(ﬁ—("'(il“-fz))) - 2 T b owz(5—("'(@14'22)))
21gTeJ_ZJ_( )T % {1, 7%} g7 W AR T 2ig?[1° T &t o lirh) T

andP;’s are given in[16,17]. The rules for theQ;’s are given inn-A=0 gauge in Fig. 1, where we have defined

5. (X)=8(w+n-k+x)*8(w+n-k).

(27)

It is simpler to match onto th®;’s initially since this match-ing does not require us to relate the QCD quark fields to HQET
quark fields. However, because the additional symmetries of HQET reduce the number of independent functions needed to
parametrize the matrix elements, it is convenient to then expresg;thén terms of theO,;’s andP;’s. For an arbitrary Dirac

structurel” we have

_ . _ iD . iD
bb‘(w+in-D)Fb=hU(1+ —) 5(w+in-D)r(1+ o

Zmb

v

h R
b

1 1 1 1
= 5THTP,100(0) = 5TIT's,IP(w) + 5 (TANTP. 1+ THT %P, ))ONw) + 5 (TTHTP,]

1 1
~ TP 1)03(w) = g (T 7 IS, 1+ T %s,)Pi"(w) ~ g (T yI's,]

— T 7S, P (w)+---,

where

1
P.=5(1+¢) and s"=P,y"ysP, (29)

and we have used the fact that
— 1 — 1 _
thhU=§Tr[F P.lh,h,— ETF[FSn]hUY”YshU . (30

For our purposes, we will only need the cake y, P,
which allows us to write

(28)

1 1
QO(w’Y(r PL): Evu‘OO(a))_ E(g(rn_vav n)Pg(w)
1
+ Zg)\aol(w)_ Z(g(rnv)\_g)w;v(r)

PM( )+ L PPAT(C () 4+
XP1 ((,()) Zleo')u]pv 2 ((1)) )
(31)

where the first line gives the leading order relation and sub-
sequent lines contain the sub-leading correction.

Similar relations may be derived for the subleading opera-
tors, though in these cases it is not necessary to consider the
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subleading terms in the relation between the QCD operatol

g
and the HQET operator, such terms being of higher order N

overall. Thus we have 3

P} Pb/ a

t

q

1 1 %

QfLL(w!ﬂ)’O'PL): Evaof(w)_ E(gna_vrjva)PiLn(w)—’—. T a, a

{a) (b)

1 1
Qg(w!’YO'PL): Evaog(w)_ E(gna_van)Pg”(w)+"' ’

1 1
QS(w!’YUPL): zvrro3(w)_ E(gn(r_vnvrr)Pg(w)—i_”' )

(c)

1 1
Q4(w170'PL): 50004((1))_ E(gno_vrjva)PZ(w)—’—' .

FIG. 2. Full-theory forward scattering diagrams.
(32
The leading and subleading operators can then be com-

: ; ; ; 1
pletely parametrized in terms of five functiofk5]: wv— BV — 20V
L 1277(q a’—a°g*")

_ _ t(w) mg

<B|Oo(w)|B>=2mB(f(w)+ T) =ﬁ{ﬁ“ﬁuqz(n“ﬁuﬁf‘n”)+q4n“n“—4ng“”}
2 & A(1_a2

_ _ my Gu—A(1-8%)) e

(B|O¥(w)|B)=2mg(n—N)* wf(w), —EW{W‘W—Q n“n"}+--- (34

(B|O3(w)|B)=4mgGy(w), (where we have used the decompositiéFt=n-gn*/2

+n-gn*/2), while the phase space factors give
(BIP4"(w)[B)=—2mgi €t hy(w),

— — AT A2
(B[PJ(w)|B)=4mg(v—n)"Hy(w) (33 (n-9—n-q)
o | | V((a+R)2+62-8,)2-4(1+4)%?
(once again, unlike ipl6], these are defined here in terms of

dimensionless argumentsThe matrix elements of the other =(1-6%)6(§%) 0(1—§°)
operators vanish.

6(n-g—n-g)6(n-q)

(1+8%)84—28%(1-9%A

C. Matching conditions 1-¢°

0(6%) 0(1—-g%)

The Wilson coefficient€;(w) of the operators in Eq21)
are obtained by taking partonic matrix elements of both sides
of the OPE. In particular we take zero-, one-, and two-gluon
matrix elements, which corresponds to calculating the imagi-
nary parts of the full-theory forward-scattering diagrams in
Fig. 2, multiplying by the lepton tensdr*” and appropriate
phase space factors and matching them onto linear combina-
tions of the effective diagramgThe matching conditions iAo=iy“p—2u Y'P,. (36)
may be completely determined from just the zero-gluon and Pu
one-gluon matrix elements, but we have calculated the rest
as a check of the resuls.

The lepton tensor has the expansion Taking the imaginary part of this amplitude gives

—28,8(1— %)+ -- . (35)

The zero-gluon diagram in Fig(@ gives the amplitude
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mb v A2
—7|m[Ao]=7"¢u7 PLé(Py)
1 . .
=§V“m7’”PL (1-§%) 8(h(n-k))

S . -
+|1_“q2(A(l—q“>—éHq2)—<1—q2>ki

x 8" (h(n-k)) |+ y*k, y"P_ S8(h(n-k))

—+ ..

, (37

where we have expanded the amplitude to subleading order
using Eq.(19) and we have simplified the expression by

integrating by parts. The functidm(x) appearing in Eq(37)
is

h(x)=84—(A—x)(1—-§?). (39

Multiplying this result by the lepton tensdB4) and phase
space factorg35), and expanding to subleading order we

find

(BIT3.0I0) =3 [ doCy(,34.07)

X({b|Qn(w,y’PL)|b), (39)
where
Eg(wng 'qz)
=4(1-8%%(26°n"+n") 0(§%) 8(1—§%) S(h(— w))
+8(1-§)(A(1-30%) — w§A(3—89)In”
—[A+w(2-8)TN")6(8°) 8(1—§2) 8(h(— w))
+4An78(6%) 6(h(— w)) +-+-,
Ch7(0,54,85) =40%(1-8%)g"70(8%) 0(1— )
X S(h(—w))+--, (40
C3(0,54,89)=—2(1-8)(28°n"+1n7) 6(¢?)
X 0(1—8%) s(h(—w))+--.

In order to determine the other matching coefficients, we

calculate the one-gluon amplitude in Figb® Definingl to
be the incoming gluon momentum, we have

iA.=igTe YH(Bu+t) Yy Buy 'PL (41)
A, =i ,
119 (Pyt1)%p?

PHYSICAL REVIEW D 69, 074015 (2004

Taking into account the two cuts which result from taking
Im[A;] and scaling the gluon momentum ES~O(A qcp),
we obtain, after expanding to leading order mA=0
gauge,

mg _ gTa a4 N T\«
——Im[A;]=— Y4 2yTS (n-1)+2h (2k+1)¢
T 4
ERGH - .
x( (A ))+2ief'8y3y55(n-|)
n-l

- 5.(n-1
+2|€fﬁ|l5m‘y5( (T )>]’}/VPL+".1
n-

(42

where, in analogy with E¢27), we have defined
5. (x)=8(h(n-k+x))= 8(h(n-k)). (43)

Again, multiplying by the lepton tensor and phase space fac-
tors gives

(b|T(5y ,q2)|bg>=; f doCl(w,54,8%)

X(b|Qn(w,y"P1)[bg). (44

Part of Eq.(42) is reproduced by combining the Wilson co-
efficients (40) determined earlier with the one-gluon Feyn-
man rules forQ, f(w,y’P), while the remainder corre-
sponds to matrix elements 0Q, 4 w,y"P) with the
coefficients
Ch%(w,34,89)=40°(1-")ie!70(8%)
X 6(1=8°%) 8(h(— )+,

C3(w,84,8%)=—2(1- 8% (26°n"+7")
X 0(62) 0(1— %) S(h(— w))+---.
(45

The final matrix element to evaluate is the two-gluon am-
plitude, Fig. Zc). The amplitude is
(Puttitt) y U putta) v 2Py

(Pu+11+12)2(put12)%p

(Bt ti)y*(py+t) y i,
+ 70T 5 o)
(pu+|1+|2) (pu'Hl) pu

iA,=ig?yH) T2TP

Y'PL

(46)

where (@,a) are, respectively, the Lorentz and color indicesso that after cutting the diagrams and expanding to leading

of the gluon field.

order, again im-A=0 gauge, we obtain
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m3 g2 results of Eqs(40) and (45) for C3 andC,; hence, no new
_® IM[A,]= — y*t 7VPL{gf1“2{Ta,Tb} operators are required, as expected.
Integrating these expressions ovgrwe obtain the OPE
for dI'/dsy
S_(n-(T,+1
_ifflaz[Ta,Tb]} ( A( lA 2))+“. . L .
n-(ly+12) - Jm o & VBl B
FO d'sH 2mB; 7wdwcn(wrSH)<B|Qn(a’ayaPL)|B>y
(47) (48

The two gluon matrix element oF(3y,8%) agrees with the where

482234 —A—w)n"— (A + 0)n” . 3 R
CElw,8y)= — SH (2 T BE O oA+ 08+ (Rt 8w+ dwh+ 3R2)
(A+w)* (A+w)?
—2(A+ 0))Nn7— (A + 0)(A%+20A + 0(84+ ©))N 7} 0(34) (A + 0—8,) + 4ANTS(A+ 0—8) +- -+,
[
43,(34—A—w)g"” 28, (2(3u—A— )n"— (A+ )"
CE(,8) = SH(SHA w)gf CI(,50) = SH(2(5y Aw)n (A+w)n?)
(A w)? (A+w)?
X 0(84) O(A+w—8)+---, X O3 0(A+ w58 +---,
28,4(2(34—A—w)n?— (A+ w)n”
ol 80p) = S1(2(5+ Aw)n (A+w)n?)
e (A+w)3
ol __4SH(SH—A—w)|ef
C2"(w,8y)= X 0(8) O(A+ 0—8) -+ (49)

(A+w)®
~ . R Finally, relating theQ;’s to theO;’s andP;’s via Eqs.(31)
X O(5p) O(A+w—=5y)+- -, and(32) and taking the matrix elemen¢83), we obtain the
expression for the hadronic invariant mass spectrum:

6(34) 0(w—3y) +2Af(w—A)0(3,) S(w—3y)

| R 28%(3w—28,)f(w—A)
J e :

o d3y w
28,(48%(0—A) +340(TA— 0)—60)f(0—A) 82(Bw—235)t(w—A) 28,(3w—28,)G(w—A)
+ + —
w4 w4 a)3
28,(28%+ w3y —20)hy(0—A)  28,(28 - w)Hy(w—A)| i
+ w4 - w3 0(SH)0((D—SH) e (50)
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Equation(50) is the principal result of this paper. It may

be checked for consistency with the result obtained via the t(w)=— )\1+§)\2 ' (w)+ Ls Sw)+--,
local OPE by expanding the matrix elements of the operators My m
(22) such thatiin-D~O(Aqcp). This gives[16] (51)
flw)=6w)— i 8" (w)— (@) 4+, where each term in the expansion is of the same order in the
6m3 18m3 shape function region, but the terms indicated by ellipses are
higher order in the local OPE. The, , parameters are de-
N1 p1 fined in Eq.(1) and thep, , parameters are defined by
of(w)=—d(0)+ —5"(0)+ -, ’
3mg 6my

11
N, , P2 Y Z_rnB<B|hU|DaID,u|DBhU|B>:§(gaﬂ_vav,8)v,uplv
hl(w)=F5(a))+F5(w)+'~,

b My
2Ny i|3|hDDD h,|B} !
Ga(w)=——8"(w)+, ( iD,iD ,iD gs;sh,|B)= vaaﬁﬁv "V up2-
My (52
A2
Hy(w)=——d(0)+ -, When substituted into the spectruff0) and integrated
my over o we obtain to subleading order
1dr 284(3A-28,) . . [ 48%(108,—97) . 2 .
e T T a(A—éHw(éH)m(%am—éme(émf«m—m
I dsy A% 3A8 3A?
_208%(45,—-3A) . 18,(54—A) . R,
-‘rplTH(A—SH)H(SH) + (A8, 0(8) +2A5(3,—A)

8,(565% — 12975, + 36A2)
3A°

+Xq

R 11 R
O(A—38,)0(8,) + —Aé(éH—A))
3A

SH(40§H 9ASH 12A2)

A 1 o
O(A—54) 0(5y) — E5(§H—A)>

6 n
O(A—5y) 0(5y) + — 5(§H_A))
AZ

SH(10§H + 3ASH 3A?)

( 43,,(2082 33ASH+3A2) )

H(A—QH)G(éH)—%é(éH—A)) e (53

where the terms in curly brackets are the leading order resulgxactly reproduces the resyg3).
and the other terms are the subleading order correction.

The local OPE spectrum can be obtained from the double- lll. RELATION TO PREVIOUS WORK
differential spectrundl’/ds,dE, presented if5] and[20]. At leading order in Ih,, the effects of the distribution
After changing variables tos(; ,Eo) and expanding in pow- function f(») may be simply included by replacing, in
ers of Agep/M, (treatingsy as orderA oepmy), performing  the tree-level partonic rate
the Ey integral we obtain the local OPE fail'/d5y, which Mp— M =my(1— o) (54)
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and then convoluting the differential radé” with the distri-
bution functionf(w) [12],

f(w)dw.
b

dr= f drpa"O" (55)

mbﬂ m

Because of the leading factor mg in the rate(10), this

prescription leads to large subleading corrections if the factor

of mg is included in the replacemer®4).
In Ref.[11] this prescription was applied to tisg spec-
trum, although themg term was not included in the replace-

ment. This is perfectly consistent at leading order, but since

other subleading effects were introduced in Réf] by the
replacement54), it is instructive to compare our resyf0)
with the results of Ref[11], expanded consistently to sub-
leading order in Ih,. At leading order, the results are
identical®

1dr® e R

1_,—0 REY =f0A(§H,w)f(w—A)dw, (56)
where

A 282(3w—25,) A

Al )= — g B0 8). (57)

At subleading order, the relevant terms in E§0) may be
written as

1dr® e -
F_()E:,fo SA(Sy ,0)f(w—A)dw+---,

(58)

PHYSICAL REVIEW B9, 074015 (2004

0 0.05 0.1

s (GeV)

0.15

0.2

FIG. 3. Plot of the kinematic corrections to the hadronic invari-
ant mass spectrum, E¢68). The dashed line is the leading order
result(56), while the solid line includes the full set of kinetic cor-
rections. The dotted line corresponds to the expansion of the results
of [11] to subleading order, while the dot-dashed line also includes
the contribution from then; term. The difference between the dot-
dashed and solid curves is due to the expansion of the heavy quark
spinors.

The first two terms of Eq(59) agree with the expansion of
the results of Ref[11] to subleading order. The third term
agrees with the expansion if ttmeag factor is also included in
the convolution. Finally, the last term in E(9) arises from
the expansion of the quark fields in terms of HQET fields in
the relation(28). Thus, we see that to be consistent to sub-
leading order, one must include th@ term in the replace-
ment(54). However, like the subleading shape functions, the
subleading effects arising from the expansion of the quark
fields cannot be reproduced by this procedure.

The relative sizes of each of the terms in E§9) is

where the ellipses denote subleading shape functions, thfiotted in Fig. 3, using the simple one-parameter model for
effects of which cannot be reproduced by the prescriptiory () introduced in[13]

(55). We will refer to these corrections as true subleading

corrections, and the terms arising frof\(5y,w) as kine-
matic corrections. The functiodA(5y, w) is

28, (34 (5w+A)—6w?
SA(S, @) = e ww3 ) %)

G(w—éH)

+2A8(w—3y)

28,(83%(A — w) + 38, 0(50—3A) — 603)
= !

w

~ 108%(28,—3w)(w—A
+2A8(w—8y) + Hl Hw4 o= 4)

28%(28,— 0)(w—A)
+ .

w4

(59

2lf Ref. [11] the upper limit of integration isv=/3,; however,
the difference is higher order. In addition, the region v5,>3,

32 R . R
Frmod @) = —— (1+ w/A)2e~ #mA+e/dZg1 1 /)
A

(60)

and withA=0.1. Numerically, the most important of these
corrections corresponds to smearing thg term, while the
correction from expanding the quark fields is quite small.
However, such large corrections may be misleading, since
if they are universal they may simply be absorbed in a re-
definition of the leading order shape function. Instead, one
should look at the corresponding relation between the had-
ronic invariant mass spectrum and tBe- X,y photon en-
ergy spectrum. One might expect that the effect of convolut-
ing them;, term would cancel in the relation, since both rates

are proportional tcmg. However, in theB— X,y spectrum
only three powers ofn, come from the kinematics, while
two arise from the factor ofng, in the Wilson coefficient of
O, and hence for this rate one should only convolute three

is outside the region of support of the shape function, and so ipowers ofm, . This may be verified by writing the results of

expected to be suppressed.

Ref.[16] as

074015-9



BURRELL, LUKE, AND WILLIAMSON PHYSICAL REVIEW D 69, 074015 (2004

1dr — 8, A
S o (BXe) =F(1-X)~3(1-x)f(1-x) OF(®,54,8)
0 2§H(2§H—3w)(§|-|_w) ~
+H(1=x)f(1=x)+-++, (61) == o Ga(w—A)
where once again the dots denote additional form factors, 45,(28,+ 0)(5y— w) .
and the partonic rate is + 2 hi(w—A)
w
. GEIVVil*alCFmg 28,(282 — 408+ w?) )
0= 2 : (62) + Hy(w—A)|[0(w—5,) (66)
327 ot

In the expression(61), the second term corresponds to contains the subleading shape functiofiéote that the de-
smearing three powers afj, in the rate, while the third term pendence on the T-produtitx) drops out of this relatior.
arises from the expansion of the quark fields. Thus there is an To extract|V,;|, we are interested in the integrated rate
incomplete cancellation of the kinematic corrections between
the two spectra. . & dr |

(80 [ R, 7
IV. PHENOMENOLOGY o
up to a maximum valuesf,. The integrated rate foB

—X,|7; is free of backgrounds fronB— X7 for s
_ _ _ _ ~<m3, although because of experimental resolution the ex-
As discussed in the previous section, there are large kingserimental cut is typically somewhat lower: a recBABAR

matic corrections to the leading order results, largely due t9neasuremerie?2] usedsS, = (1.55 GeVy. From Eq.(65), we
the m; term in the rate. However, these are reduced in the,aye

relation between the hadronic invariant mass spectrum and

the B—Xgy photon energy spectrum. Similarly, the
T-productt(x) is universal for all processes involvirgme-
son decaysit only differentiates betweeB andB*, D and
D* decay$ and so its effects similarly cancel. Hence, it is + 5ﬁ(w,§ﬁ)}dw, (68
useful to express the hadronic invariant mass spectrum in

terms of the experimentally measuraBle- Xy photon en-  Where
ergy spectrum.

A. The §—»XUI v hadronic invariant mass spectrum
and the B— Xy photon energy spectrum

1 © ~ -
F—FSH(QCH)ZJ {(A(w,5})) + 6A(w,5))F(w—A)
0 0

(37)%(20— &)

The§—>xsy photon energy spectrum is given at the tree ‘A(w’éH): 0(3%— w)+ . O w—355),
level to subleading order in iy, by [16] w
1 dr - < ey 8B-0)
— —— —2F(1-2E,), (63 SA(w,8)) = ——— (8}, — o)
I'y dE, 3
2(8%)2(85(A +50) —9w?) i
where + 353 0—8}),

F(x)=f(x)+|hy(x)+ %_ 2xf(x) — G,(X) +Hy(x)

OF (0,8,

o 2
T (64) :_g(Gz(w—A)+2h1(w—A)+Hz(w—ﬁ))ﬁ(scrw)

(Note that at the tree level only the opera@y contributes.
At one loop, effects of other operators must be included

(8%)2(3(87)%— 10085, + 9w?) A

[21].) Substituting this into Eq(50) gives 30t
1.dll (= . . . 2(87)2%(3(87)2— 208, — 30?) .
F_oﬁ_fo do{(A(w,54)+ 5A(w,54))F(w—A) + » hi(w—A)
+ 6F(w,34,A) o, (65) (8%)%(3(85,)°— 8ws’, + 3w?) .
+ 307 Ha(0—4) | o).
whereA(w,54) and A(w,5y) are defined in Eqe56) and @
(59), and (69

074015-10
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Note that the upper limit of integration ia corresponds to a photon energy= 1+A—w<0; however, as discussed earlier,
this region is outside the region of support of the shape function, and its contribution should be highly suppressed. Thus, in the
relation between the spectra we may set the lower limikpto zero.

Comparing the two forms for the integrated spectngn(éH) in Egs.(63) and(68), we can isolate the CKM parameter

|Vub|:

1/2

Jgg dr "
Vo 1 6a|CS2| 2 O gy,

=|1- =6l (8, X , (70)

|thVfS 2 : m Me/2, % / & & aC X £ ac d [
0 (A(mB—ZEy,sH)Jr6A(mB—2E7,sH))d?dE7
Y
|
where we have defined N1+3N,
tmodi( @)= — —gfr{noa(w)
0 = AC mb
JooF(w,5)dw (73

ol's (87)= (71
JoA (0,85 f(0—A)dw

to reproduce the leading terms in E§L).
The second model was introduced[ib8], in which the

which contains the effects of the new subleading dIStrIbUtlor%ubleading functions are defined in terms of a single function

functions. For comparison purposes, we also define
b2 - R R
5 oR(0,85)F(0—A) + 6F (0,55 do s(w,b)=— Ee‘b(“‘"m(b(Hw/M—1)0(1+w/A)-
ST (8h) = (74)
f A(0,85)f(w—A)dw

The dimensionless free parameteris constrained to be
O(1) by the requirement that th&gh moments of the func-

; ilkeA Nt 1 ; —1 i -
which gives the full fractional subleading correction to thet'olns scafll;a “kdeA t.hWeﬁWIIIttakfetl;—l Iglou(;_plotsr,] Iarge;r
relation between the two spectra. To proceed further we mugf?ues o1b reduce the etiects of tne subleading shape func-

introduce a model for the shape functions. tions. We have

(72

B. Shape function models N1 moad @,0)= _225(w b)
] mb 1 1

The shape functions are nonperturbative functions which
cannot at present be calculated from first principles. We do,
however, know several moments of these functidr@, and 2N\q
we can use this information to constrain possible models of G2 modd @,0)=— Ws(w’b)’ (75
the shape functions. b

The leading order shape function is modeled vijth{ w)

defined in Eq(60). We will use three models of the sublead- e
ing shape functions. The first was introduced 16], based ) 1o\
on the leading order functiofy,,( ). The subleading func- / '\
tions are defined as | \
1 : .
N2 ha(w) ! \
hl modl(w):_zfmog(w)- ~ ‘\
my 05 T [T =
v LN
21, ab o\ \
G, modl(w)z_Ffr’nog(w)1 o/ S
My -0.1 0 0.1 0.2 0.3
w
A2
Ho modi(@)=—— frod @), FIG. 4. Three models df;(w): model 1(solid curve, model 2
my (dashed curveand model Jdot-dashed curye
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m,=4.8 GeV m,=4.5 GeV

sy (GeV) sy (GeV)

FIG. 5. Model calculations of the hadronic invariant mass spectilifds,, for m,=4.8 GeV(a) andm,=4.5 GeV (b). The dotted
curve is the leading order result; the other curves are the results in the models discussed in the text. The curves are denoted as in Fig. 4. The
right vertical line denotes the kinematic Iinﬂ;,:m%; the left line denotes thBABARcut s, = (1.55 GeVY.

) Although the models have very different behavior, we can
H2 modd @,b)=——s(w,b), verify that they are all reasonable by calculating the first few
M, momentsM,=[”  o"H,(w)dw in each model and show-

(A +30,) ing that they are of order Nocp/my,)"**. For m,
toud 0,b) = — L 2 Sw.b). =4.8 GeV, for model 1 we findM,|=(0.35 GeViny)?,
moda mg ’ | M,|=0, | M3|=(0.35 GeVimy)? and | M,
=(0.29 GeVin,)®>. For model 2 we find |[M,]
Note that in the first model the subleading shape functions=(0.35 GevVim,)?, | M,|=(0.49 GeVim,)3, | M|

vanish atw= A, while in the second they are finite but non- =(0.70 GeVinp)* and | M,|=(0.90 GeVin,)®, while for

zero. model 3 the corresponding moments aréM,|
In our third modef we use a model for the subleading = (0.35 GeVin,)?, | M,|=(0.54 GeVimy)?, | M|
shape functions that has an additional sign flip in the regiorr (0.54 GeVin,)* and | M,|=(0.58 GeVim,)®. Thus the
of integration. We take first few moments of each model scale like typical hadronic
scales to the appropriate power. Similar results are obtained
A2 for the moments oG ,(w) andh;(w).

N1 modd @)= —zfé((u),
M

C. Numerical results

Gy mogd @)=— ZL;fé(w), Both the Wilson coefficients and models for the shape
My functions depend on thb quark massmy,. While in our
formulas we are implicitly using the pole mass, it is well
A2 , known that this leads to badly behaved perturbative series,
Hz moad @)=~ Ff2(“’)’ and so we expect that radiative corrections to these results
b will be minimized if a sensible short-distance mass is used
(A 1+3\,) instead. TheV'S massmy(m,) is well defined, but does not
1 2 H .
tmogs @) = —Zfé(w), lead to small perturbative corrections Bdecays[23,24.
My The “threshold” masses, including theSlmass, PS mass

(76) and kinetic mass, are preferable in this context. At two loops,
a pole mass ofm,=4.8 GeV corresponds to a kinetic mass
mi"(1 GeV) of about 4.6 GeV, PS andSImasses of about
) d 4.7 GeV and aMMS masam,(m,) of about 4.3 GeV. Thus, to

where

w
1+ —

32 -
folw)=———(w+A)0
2 A

ks

w
(1+T

— give an estimate of thin, dependence of our results, we plot
do them form,=4.8 GeV andm,=4.5 GeV.

In Fig. 5, we plot the hadronic invariant mass spectrum
e—(4/w)(1+w/i>2)_ 77 using the three models of the previous section for the sub-

3

X . . )
leading corrections. These corrections are clearly large and

model dependent over much of the spectrum. However, the
We plot the functiorh,(w) in each of these models in Fig. 4. intégrated rate is much less sensitive $0u the subleading cor-
rections. The functionsT's (8}) and I's (&) defined in
Eqgs.(71) and(72) are plotted in Fig. 6 for the three models
3We thank C. Bauer for discussions of this model. presented in the previous section.

A
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ful OF T L=a=r=] s T [ L=
EFSH ’;_:-f—__'_:—_--_— 5F8H 0 B . i ——
——
-0.05 002 A2~ #
7
- 0.04 >
- 0.1 Y
- 0.06 7
-0.15 mp=4.8 GeV A mp=4.8 GeV
- 0.08 7
7
-02 01t s
-
4 45 2 2.5 3 3.5 4 45
c 2
(b) Sy (GeV?)
full 0 0
ors oL,
-0.05 ' o
~0:1 - 0.02
-0.15 8
-02 - 0.04
-0.25 005 P .
- . mp=4.5 GeV
03 - 0.06 e Z
-035 oo
2 25 3 35 4 45 2 25 3 35 4 45
c 2 c 2
© 85 (GeV?) @ 5% (GeV?)

FIG. 6. Model calculations of the fractional correctioﬁELﬂ' and 6T’ to the cut width, as defined in Eq&71) and (72), for my
=4.8 GeV(a), (b) andm,=4.5 GeV(c), (d). The three curves refer to the three different models in Fi@l“é‘a" includes all the subleading
corrections, including those proportional to the leading order shape function,ﬂry!'eonly includes the corrections from subleading shape
functions. The right vertical line denotes the kinematic ligjt=m3; the left line denotes thBABARcut s;;=(1.55 GeVY.

From these figures it is clear that, at least for the particulaf1], the subleading corrections must vanish when integrated
models we have chosen, the subleading shape functions awer the full spectrum. Since the experimental cuts include a
not contribute a large uncertainty in the extraction\df,|, large fraction of the rate, the contribution to the integrated
and that the dominant subleading effects are from the kinerate from the subleading corrections is correspondingly sup-
matic terms. This should not be surprising: since there are npressed. This is evident from the plots in Fig. 6, where the
O(Aqcp/my) corrections to the total semileptonic decay ratefractional correction tends to zero as the cut is increased.

a
/
F
L.«
N my=4.8 Gev 202 \.\ mp=4.5 GeV
\ %
- 04 \ -0.4 ;
\ N\
19 2 21 22 23 24 25 19 2 21 22 23 24 25
C c
E; (GeV) E; (GeV)

FIG. 7. Model calculations of the fractional correctioi?EEI for the semileptoni®— X, decay width with a charged lepton energy cut,
as defined in Eq(79). The three curves refer to the three different models in Fig. 4. The solid line denotes the kinematic upper limit from
B— X, decay.
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It is useful to compare these results with analogous results for the lepton energy spectrum in sembBegémaigs, given
in [17]. In this case, only-~10% of the rate is included, and the subleading corrections are substantial. The analogous relation
to Eq.(70) is

1/2

1/2
Vaol 6a|C7"?

| Vt bv?s

: (78)

™

1 ~
1——5FE<E.°>>
2 - P
Ef 8(E7—E|)(1—E},)EdE7
Y

where

?B‘ZEF(mB—zéf—w)(Hz(w—A)—hl(w—A))dw
ST, (EP)=2 — : (79)
o8 2 (g — 2E¢— ) f(0—A)dw

In Fig. 7 we plot 5I‘E|(E,) for my=4.8GeV andm, function, and so, given a determination of the shape function

=4.5 GeV in the three models used in this paper. It is cleafrom B— X4y decay, do not increase the theoretical uncer-
from the figures that for lepton cuts near the kinematic limittainty. Assuming our spread of models provides a reasonable
E;=2.3GeV, the uncertainty iV, from higher order measure of the theoretical uncertainty, we can conclude that
shape functions is much greater for the lepton energy speghe theoretical uncertainty V| due to higher order shape
trum than from the hadronic invariant mass spectrum. functions is at the few percent level. This is substantially less
than the corresponding uncertainty in the integrated lepton
energy spectrum with the current experimental cuts. This is

We have calculated the hadronic invariant mass spectru also much less than the other sources of experimental and
P Theoretical error in the current measurements of the inte-

for B—X,l'» in terms of shape functions to subleading or- grated hadronic energy spectrum.
der. Introducing some simple models for the shape functions
we have studied thdl'/dsy spectrum numerically.

Since we know little about the form of the subleading
shape functions, it is difficult to estimate the corresponding
theoretical uncertainty ifiV,,|. However, using the spread  We thank C. Bauer and Z. Ligeti for useful discussions.
of models as a guide, we can conclude that the largest suli-his work was supported in part by the Natural Sciences and
leading effects are proportional to the leading order shap&ngineering Research Council of Canada.

V. CONCLUSIONS
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