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Subleading shape function contributions to the hadronic invariant mass spectrum
in B̄\Xul n̄ l decay

Craig N. Burrell, Michael E. Luke, and Alexander R. Williamson
Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7
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We study theO(LQCD/mb) corrections to the singly and doubly differential hadronic invariant mass spectra

dG/dsH and dG/dsHdq2 in B̄→Xul n̄ l decays, and discuss the implications for the extraction of the CKM
matrix elementuVubu. Using simple models for the subleading shape functions, the effects of subleading
operators are estimated to be at the few percent level for experimentally relevant cuts. The subleading correc-
tions proportional to the leading shape function are larger, but largely cancel in the relation between the

hadronic invariant mass spectrum and the photon spectrum inB̄→Xsg. We also discuss the applicability of the
usual prescription of convoluting the partonic level rate with the leading light-cone wave function of theb
quark to subleading order.
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I. INTRODUCTION

The Cabibbo-Kobayashi-Maskawa~CKM! parameter
uVubu is of phenomenological interest both because it i
basic parameter of the standard model and because o
role it plays in precision studies ofCP violation in the B
meson system. Currently, the theoretically cleanest dete
nations of uVubu come from inclusive semileptonic decay
which are not sensitive to the details of hadronization.

For sufficiently inclusive observables, inclusive dec
rates may be written as an expansion in local operators@1#.
The leading order result corresponds to the decay of a frb
quark to quarks and gluons, while the subleading correctio
proportional to powers ofLQCD/mb , describe the deviation
from the parton model. Up toO(LQCD

2 /mb
2), only two opera-

tors arise,

l1[
1

2mB
^B̄uh̄v~ iD !2hvuB̄&,

l2~m![
1

6mB
^B̄uh̄vsmnGmnhvuB̄&. ~1!

The B-B* mass splitting determinesl2(mb).0.12 GeV2,
while a recent fit to moments of the charged lepton spect
in semileptonicb→c decay obtained@2#

mb
1S54.8260.07E60.11T GeV,

l1520.2560.02ST60.05SY60.14T GeV2, ~2!

wheremb
1S is the short-distance ‘‘1S mass’’ of theb quark

@3,4#. ~Moments of other spectra give similar results@5,6#.!
These uncertainties correspond to an uncertainty of;5% in
the relation betweenuVubu and the inclusiveB̄→Xul n̄ l width
@3,7#.

Unfortunately, the semileptonicb→u decay rate is diffi-
cult to measure experimentally, because of the large ba
ground from charmed final states. As a result, there has b
much theoretical and experimental interest in the decay
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in restricted regions of phase space where the charm b
ground is absent. Of particular interest have been the la
lepton energy region,El.(mB

22mD
2 )/2mB , the low hadronic

invariant mass region,mX[AsH,mD @8#, the large lepton
invariant mass regionq2.(mB2mD)2 @9#, and combinations
of these@10#. The charged lepton cut is the easiest to imp
ment experimentally, while the hadronic mass cut has
advantage that it contains roughly 80% of the semilepto
rate @11#. However, in both cases the kinematic cuts co
strain the final hadronic state to consist of energetic, lo
invariant mass hadrons, and the local operator product
pansion~OPE! breaks down~this is not the case for the larg
q2 region or for appropriately chosen mixed cuts!. In this
case, the relevant spectrum is determined at leading ord
LQCD/mb by the light-cone distribution function of theb
quark in the meson@12,13#,

f ~v![
^B̄ub̄d~v1 in•D̂ !buB̄&

2mB
, ~3!

wherenm is a lightlike vector, and hatted variables are no
malized tomb : D̂m[Dm/mb .1 f (v) is often referred to as
the shape function, and corresponds to resumming an infi
series of local operators in the usual OPE. The physical sp
tra are determined by convoluting the shape function w
the appropriate kinematic functions:

1

G0

dG

dÊl

~B̄→Xul n̄ l !54E u~122Êl2v! f ~v!dv1¯ ,

~4!

1Because in our definition off (v) its argument is dimensionless
f (v) differs by a factor ofmb from the usual definitions in the
literature.
©2004 The American Physical Society15-1
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1

G0

dG

dŝH

~B̄→Xul n̄ l !

5E 2ŝH
2 ~3v22ŝH!

v4 u~v2 ŝH! f ~v2D̂ !dv1¯ ,

~5!

where 122Êl&LQCD/mb , ŝH&LQCD/mb and D[mB
2mb .

Sincef (v) also determines the shape of the photon sp
trum in B̄→Xsg at leading order,

1

G0
s

dG

dÊg

~B̄→Xsg!52 f ~122Êg!1¯ ~6!

there has been much interest in extractingf (v) from radia-
tive B decay and applying it to semileptonic decay. Howev
the relations~4!–~6! hold only at the tree level and at leadin
order in LQCD/mb , so a precision determination ofuVubu
requires an understanding of the size of the corrections.
diative corrections were considered in@12–15#, while
O(LQCD/mb) corrections have been studied more recently
@16–19#. In @16#, the nonlocal distribution functions arisin
at subleading order were enumerated, and their contribu
to B̄→Xsg decay was studied. In@17#, the corresponding
corrections to the lepton endpoint spectrum inB̄→Xul n̄ l de-
cay were studied, and it was shown that these effects w
potentially large. Similar results were obtained in@19#, where
the sub-subleading contribution from annihilation grap
was also shown to be large. In this paper, we study the s
leading corrections to the hadronic invariant mass spect
in semileptonicb→u decay, and estimate the theoretical u
certainties introduced by these terms. In addition, we pre
results for the doubly differential spectrumdG/dsHdq2 at
leading and subleading order.

II. MATCHING CALCULATION

A. The full theory spectrum

In the shape function region the final hadronic state
large energy but small invariant mass, and so its momen
lies close to the light cone. It is therefore convenient to
troduce two lightlike vectorsnm andn̄m related to the veloc-
ity of the heavy mesonvm by vm51/2(nm1n̄m), and satis-
fying

n25n̄250, v•n5v•n̄51, n•n̄52. ~7!

In the frame in which theB meson is at rest, these vectors a
given by nm5(1,0,0,1), n̄m5(1,0,0,21) and vm

5(1,0,0,0). The projection of an arbitrary four-vectoraa

onto the directions which are perpendicular to the light co
is given bya'

a5g'
abab , where

g'
mn5gmn2

1

2
~nmn̄n1n̄mnn!. ~8!
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Choosing our axes such that the momentum transfer to
leptons qW is in the 2nW direction, we can writeqm

5n•qn̄m/21n̄•qnm/2. The decay rate takes a particular
simple form in terms of the variablesn•q and n̄•q:

dG~B̄→Xul n̄ l !596pG0WmnLmn~n•q̂2n̄•q̂!2u~ n̄•q̂!

3u~n•q̂2n̄•q̂!dn•q̂dn̄•q̂, ~9!

where

G05
GF

2 uVubu2mb
5

192p3 . ~10!

The hadron tensorWmn is defined by

Wmn[2
1

p
ImS 2 i E d4xe2 iq•x

^B̄uT@JL
†m~x!JL

n~0!#uB̄&
2mB

D ,

~11!

where the weak current isJL
m5ūgm(12g5)b, while the lep-

ton tensor is

Lmn[E dP2~q;pl ,pn!Tr@p” ngmp” lg
nPL#

5
1

12p
~qmqn2q2gmn! ~12!

andPL[1/2(12g5).
To calculate the hadronic invariant mass spectrum

switch to the variables (sH ,q2). These are related to th
variables in Eq.~9! by

sH5~mB2n•q!~mB2n̄•q!

5~mb1D2n•q!~mb1D2n̄•q!, ~13!

q25n•qn̄•q, ~14!

and

dG

dn•qdn̄•q

5A~~mb1D!21q22sH!224~mb1D!2q2
dG

dsHdq2 .

~15!

Here D5mB2mb is the difference between theB meson
mass and theb quark mass. It isO(LQCD) and has an expan
sion in terms of HQET parameters

D5L̄2
l113l2

2mb
1¯ . ~16!

SinceD simply enters in the definition ofsH , it is unrelated
to the 1/m expansion in the OPE, so we will not expand it v
Eq. ~16!. With this change of variables, we define the co
relatorT(sH ,q2) by
5-2
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1

G0

dG

dsHdq2 5
1

2mB
^B̄uT~sH ,q2!uB̄&. ~17!

In Ref. @16# a nonlocal expansion was performed for t
hadron tensorWmn, based on the power counting

~mbv2q!•n̄5mb2q•n̄;O~mb!,

~mbv2q!•n5mb2q•n;O~LQCD!,
~18!

km;O~LQCD!,

where the heavy quark momentum is defined aspb
m5mbvm

1km. However, the limits of phase space integration in E
~9! include regions of phase space where this power coun
is violated. Hence, to keep our power counting consiste
we do not perform a nonlocal OPE forWmn, but rather for
T(sH ,q2). In these variables, the shape function region c
responds to the region of low invariant mass,

sH;O~LQCDmb!. ~19!

SinceD;LQCD and km;LQCD, expanding the light quark
propagator in powers ofLQCD/mb gives at leading order

ip” u

pu
2

5
in”

2mb

~12q̂2!

@ ŝH2~D̂2n• k̂!~12q̂2!#
1¯ ~20!

~whereD̂[D/mb). Since both terms in the denominator a
O(LQCD/mb), T(sH ,q2) cannot be expanded in powers
km and matched onto local operators~unless we also are
restricted to largeq2, such that 12q̂2!1, in which case the
second term in the denominator is subleading, and a lo
OPE may be performed@9,10#!. Instead, the OPE takes th
schematic form

T~ ŝH ,q̂2!5(
n
E Cn~v,ŝH ,q̂2!On~v!dv, ~21!

where theOn(v)’s are bilocal operators in which the tw
points are separated along the light cone.

B. Nonlocal operators

In Refs. @16#, @17#, it was shown that up to subleadin
order inLQCD/mb , the following operators were required i
the OPE~21!:

O0~v!5h̄vd~v1 in•D̂ !hv ,

O1
m~v!5h̄v$ iD̂

m,d~v1 in•D̂ !%hv ,

O2
m~v!5h̄v@ iD̂ m,d~v1 in•D̂ !#hv ,

O3~v!5E dv1dv2d~v1 ,v2 ;v!h̄vd~ in•D̂1v2!

3g'
mn$ iD̂ m ,iD̂ n%d~ in•D̂1v1!hv ,
07401
.
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O4~v!52E dv1dv2d~v1 ,v2 ;v!h̄vd~ in•D̂1v2!

3 i e'
mn@ iD̂ m ,iD̂ n#d~ in•D̂1v1!hv ,

~22!
P0

h~v!5h̄vd~v1 in•D̂ !ghg5hv ,

P1
mh~v!5h̄v$ iD̂

m,d~v1 in•D̂ !%ghg5hv ,

P2
mh~v!5h̄v@ iD̂ m,d~v1 in•D̂ !#ghg5hv ,

P3
h~v!5E dv1dv2d~v1 ,v2 ;v!h̄vd~ in•D̂1v2!

3g'
mn$ iD̂ m ,iD̂ n%d~ in•D̂1v1!ghg5hv ,

P4
h~v!52E dv1dv2d~v1 ,v2 ;v!h̄vd~ in•D̂1v2!

3 i e'
mn@ iD̂ m ,iD̂ v#d~ in•D̂1v1!ghg5hv ,

where thehv’s are heavy quark fields in HQET, and we ha
defined

d~v1 ,v2 ;v!5
d~v2v1!2d~v2v2!

v12v2
~23!

and

e'
ab5eabsrvsnr . ~24!

These definitions differ slightly from the definitions in Ref
@16,17#, because we have chosen to normalize all mome
to mb , to keep the resulting formulas simpler.

It is convenient to calculate the matching conditions on
a slightly different set of operators, defined in terms of f
QCD b quark fields:

Q0~v,G!5b̄d~ in•D̂1v!Gb,

Q1
m~v,G!5b̄$ i D̂m,d~ in•D̂1v!%Gb ,

Q2
m~v,G!5b̄@ i D̂m,d~ in•D̂1v!#Gb ,

Q3~v,G!5E dv1dv2d~v1 ,v2 ;v!b̄d~ in•D̂1v2!

3g'
mn$ i D̂m ,i D̂n%d~ in•D̂1v1!Gb,

Q4~v,G!52E dv1dv2d~v1 ,v2 ;v!b̄d~ in•D̂1v2!

3 i e'
mn@ i D̂m ,i D̂n#d~ in•D̂1v1!Gb. ~25!

We have defined

iDm[ iD m2mbvm ~26!

so thatiDm acting on theb fields just bring down factors o
the residual momentumkm. The Feynman rules for theOi ’s
5-3
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andPi ’s are given in@16,17#. The rules for theQi ’s are given inn•A50 gauge in Fig. 1, where we have defined

d6~x!5d~v1n• k̂1x!6d~v1n• k̂!. ~27!

It is simpler to match onto theQi ’s initially since this match-ing does not require us to relate the QCD quark fields to H
quark fields. However, because the additional symmetries of HQET reduce the number of independent functions n
parametrize the matrix elements, it is convenient to then express theQi ’s in terms of theOi ’s andPi ’s. For an arbitrary Dirac
structureG we have

b̄d~v1 in•D̂!Gb5h̄vS 11
iD”

2mb
D d~v1 in•D̂ !GS 11

iD”

2mb
Dhv1¯

5
1

2
Tr@GP1#O0~v!2

1

2
Tr@Gsh#P0

h~v!1
1

8
~Tr@glGP1#1Tr@GglP1# !O1

l~v!1
1

8
~Tr@glGP1#

2Tr@GglP1# !O2
l~v!2

1

8
~Tr@glGsh#1Tr@Gglsh#!P1

lh~v!2
1

8
~Tr@glGsh#

2Tr@Gglsh#!P2
lh~v!1¯ , ~28!

FIG. 1. Feynman rules for the
operators Qi(v,G) in n•A50
gauge. We have definedd6(x)

5d(v1n• k̂1x)6d(v1n• k̂).
ub-

ra-
r the
where

P15
1

2
~11v” ! and sh5P1ghg5P1 ~29!

and we have used the fact that

h̄vGhv5
1

2
Tr@GP1#h̄vhv2

1

2
Tr@Gsh#h̄vghg5hv . ~30!

For our purposes, we will only need the caseG5gsPL ,
which allows us to write
07401
Q0~v,gs PL!5
1

2
vsO0~v!2

1

2
~gsh2vsvh!P0

h~v!

1
1

4
glsO1

l~v!2
1

4
~gshvl2glhvs!

3P1
lh~v!1

1

4
i eslhrvrP2

lh~v!1¯ ,

~31!

where the first line gives the leading order relation and s
sequent lines contain the sub-leading correction.

Similar relations may be derived for the subleading ope
tors, though in these cases it is not necessary to conside
5-4
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subleading terms in the relation between the QCD oper
and the HQET operator, such terms being of higher or
overall. Thus we have

Q1
m~v,gsPL!5

1

2
vsO1

m~v!2
1

2
~ghs2vhvs!P1

mh~v!1¯ ,

Q2
m~v,gsPL!5

1

2
vsO2

m~v!2
1

2
~ghs2vhvs!P2

mh~v!1¯ ,

Q3~v,gsPL!5
1

2
vsO3~v!2

1

2
~ghs2vhvs!P3

h~v!1¯ ,

Q4~v,gsPL!5
1

2
vsO4~v!2

1

2
~ghs2vhvs!P4

h~v!1¯ .

~32!

The leading and subleading operators can then be c
pletely parametrized in terms of five functions@16#:

^B̄uO0~v!uB̄&52mBS f ~v!1
t~v!

2 D ,

^B̄uO1
m~v!uB̄&52mB~n2n̄!mv f ~v!,

^B̄uO3~v!uB̄&54mBG2~v!,

^B̄uP2
mh~v!uB̄&522mBi e'

mhh1~v!,

^B̄uP4
h~v!uB̄&54mB~v2n!hH2~v! ~33!

~once again, unlike in@16#, these are defined here in terms
dimensionless arguments!. The matrix elements of the othe
operators vanish.

C. Matching conditions

The Wilson coefficientsCi(v) of the operators in Eq.~21!
are obtained by taking partonic matrix elements of both si
of the OPE. In particular we take zero-, one-, and two-glu
matrix elements, which corresponds to calculating the ima
nary parts of the full-theory forward-scattering diagrams
Fig. 2, multiplying by the lepton tensorLmn and appropriate
phase space factors and matching them onto linear comb
tions of the effective diagrams.~The matching conditions
may be completely determined from just the zero-gluon a
one-gluon matrix elements, but we have calculated the
as a check of the results.!

The lepton tensor has the expansion
07401
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Lmn5
1

12p
~qmqn2q2gmn!

5
mb

2

48p
$n̄mn̄n1q̂2~nmn̄n1n̄mnn!1q̂4nmnn24q̂2gmn%

2
mb

2

24p

„ŝH2D̂~12q̂2!…

~12q̂2!
$n̄mn̄n2q̂4nmnn%1¯ ~34!

~where we have used the decompositionq̂m5n•q̂n̄m/2
1n̄•q̂nm/2), while the phase space factors give

~n•q̂2n̄•q̂!2

A
„~11D̂ !21q̂22 ŝH…

224~11D̂ !2q̂2
u~n•q̂2n̄•q̂!u~ n̄•q̂!

5~12q̂2!u~ q̂2!u~12q̂2!

2
~11q̂2!ŝH22q̂2~12q̂2!D̂

12q̂2 u~ q̂2!u~12q̂2!

22ŝHd~12q̂2!1¯ . ~35!

The zero-gluon diagram in Fig. 2~a! gives the amplitude

iA05 igm
p” u

pu
2 gnPL . ~36!

Taking the imaginary part of this amplitude gives

FIG. 2. Full-theory forward scattering diagrams.
5-5
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2
mb

p
Im@A0#5gmp”̂ ugnPLd~ p̂ u

2!

5
1

2
gmn” gnPLF ~12q̂2!d„h~n• k̂!…

1H ŝH

12q̂2 „D̂~12q̂4!2 ŝHq̂2
…2~12q̂2!k̂'

2 J
3d8„h~n• k̂!…G1gmk”̂'gnPLd„h~n• k̂!…

1¯ , ~37!

where we have expanded the amplitude to subleading o
using Eq. ~19! and we have simplified the expression
integrating by parts. The functionh(x) appearing in Eq.~37!
is

h~x!5 ŝH2~D̂2x!~12q̂2!. ~38!

Multiplying this result by the lepton tensor~34! and phase
space factors~35!, and expanding to subleading order w
find

^buT~ ŝH ,q̂2!ub&5(
n
E dvC̃n

s~v,ŝH ,q̂2!

3^buQn~v,gsPL!ub&, ~39!

where

C̃0
s~v,ŝH ,q̂2!

54~12q̂2!2~2q̂2ns1n̄ s!u~ q̂2!u~12q̂2!d„h~2v!…

18~12q̂2!„@D̂~123q̂2!2vq̂2~32q̂2!#ns

2@D̂1v~22q̂2!#n̄ s
…u~ q̂2!u~12q̂2!d„h~2v!…

14D̂n̄ sd~ q̂2!d„h~2v!…1¯ ,

C̃1
ms~v,ŝH ,q̂2!54q̂2~12q̂2!g'

msu~ q̂2!u~12q̂2!

3d„h~2v!…1¯ , ~40!

C̃3
s~v,ŝH ,q̂2!522~12q̂2!~2q̂2ns1n̄ s!u~ q̂2!

3u~12q̂2!d„h~2v!…1¯ .

In order to determine the other matching coefficients,
calculate the one-gluon amplitude in Fig. 2~b!. Defining l to
be the incoming gluon momentum, we have

iA15 igTa
gm~p” u1 ł !gap” ugnPL

~pu1 l !2pu
2 , ~41!

where (a,a) are, respectively, the Lorentz and color indic
of the gluon field.
07401
er

e

Taking into account the two cuts which result from takin
Im@A1# and scaling the gluon momentum asl a;O(LQCD),
we obtain, after expanding to leading order inn•A50
gauge,

2
mb

2

p
Im@A1#52

gTa

4
gmH 2g'

a d̃1~n• l̂ !12n” ~2k̂1 l̂ !'
a

3S d̃2~n• l̂ !

n• l̂
D 12i e'

abgbg5d̃2~n• l̂ !

12i e'
ab l̂'bn” g5S d̃2~n• l̂ !

n• l̂
D J gnPL1¯ ,

~42!

where, in analogy with Eq.~27!, we have defined

d̃6~x!5d„h~n• k̂1x!…6d„h~n• k̂!…. ~43!

Again, multiplying by the lepton tensor and phase space f
tors gives

^buT~ ŝH ,q̂2!ubg&5(
n
E dvC̃n

s~v,ŝH ,q̂2!

3^buQn~v,gsPL!ubg&. ~44!

Part of Eq.~42! is reproduced by combining the Wilson co
efficients ~40! determined earlier with the one-gluon Fey
man rules forQ1,3(v,gsPL), while the remainder corre
sponds to matrix elements ofQ2,4(v,gsPL) with the
coefficients

C̃2
ms~v,ŝH ,q̂2!54q̂2~12q̂2!i e'

msu~ q̂2!

3u~12q̂2!d„h~2v!…1¯ ,

C̃4
s~v,ŝH ,q̂2!522~12q̂2!~2q̂2ns1n̄ s!

3u~ q̂2!u~12q̂2!d„h~2v!…1¯ .

~45!

The final matrix element to evaluate is the two-gluon a
plitude, Fig. 2~c!. The amplitude is

iA25 ig2gmH TaTb
~p” u1 ł 11 ł 2!ga1~p” u1 ł 2!ga2p” u

~pu1 l 11 l 2!2~pu1 l 2!2pu
2

1TbTa
~p” u1 ł 11 ł 2!ga2~p” u1 ł 1!ga1p” u

~pu1 l 11 l 2!2~pu1 l 1!2pu
2 J gnPL

~46!

so that after cutting the diagrams and expanding to lead
order, again inn•A50 gauge, we obtain
5-6
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2
mb

3

p
Im@A2#5

g2

2
gmn” gnPLˆg'

a1a2$Ta,Tb%

2 i e
'

a1a2@Ta,Tb#‰
d̃2„n•~ l̂ 11 l̂ 2!…

n•~ l̂ 11 l̂ 2!
1¯ .

~47!

The two gluon matrix element ofT( ŝH ,q̂2) agrees with the
07401
results of Eqs.~40! and ~45! for C3 andC4 ; hence, no new
operators are required, as expected.

Integrating these expressions overq2 we obtain the OPE
for dG/dsH

1

G0

dG

dŝH
5

1

2mB
(

n
E

2`

`

dvCn
s~v,ŝH!^B̄uQn~v,gsPL!uB̄&,

~48!

where
C0
s~v,ŝH!52

4ŝH
2
„2~ ŝH2D̂2v!ns2~D̂1v!n̄ s

…

~D̂1v!4
u~ ŝH!u~D̂1v2 ŝH!1

8ŝH

~D̂1v!4
$„ŝH

2 v1 ŝH~v214vD̂13D̂2!

22~D̂1v!3
…ns2~D̂1v!„D̂212vD̂1v~ ŝH1v!…n̄ s%u~ ŝH!u~D̂1v2 ŝH!14D̂n̄ sd~D̂1v2 ŝH!1¯ ,
C1
ms~v,ŝH!52

4ŝH~ ŝH2D̂2v!g'
ms

~D̂1v!3

3u~ ŝH!u~D̂1v2 ŝH!1¯ ,

C2
ms~v,ŝH!52

4ŝH~ ŝH2D̂2v!i e'
ms

~D̂1v!3

3u~ ŝH!u~D̂1v2 ŝH!1¯ ,
C3
s~v,ŝH!5

2ŝH„2~ ŝH2D̂2v!ns2~D̂1v!n̄ s
…

~D̂1v!3

3u~ ŝH!u~D̂1v2 ŝH!1¯ ,

C4
s~v,ŝH!5

2ŝH„2~ ŝH2D̂2v!ns2~D̂1v!n̄ s
…

~D̂1v!3

3u~ ŝH!u~D̂1v2 ŝH!1¯ . ~49!

Finally, relating theQi ’s to theOi ’s andPi ’s via Eqs.~31!
and ~32! and taking the matrix elements~33!, we obtain the
expression for the hadronic invariant mass spectrum:
1

G0

dG

dŝH

5E
2`

`

dvH 2ŝH
2 ~3v22ŝH! f ~v2D̂ !

v4 u~ ŝH!u~v2 ŝH!12D̂ f ~v2D̂ !u~ ŝH!d~v2 ŝH!

1F2ŝH„4ŝH
2 ~v2D̂ !1 ŝHv~7D̂2v!26v3

…f ~v2D̂ !

v4 1
ŝH

2 ~3v22ŝH!t~v2D̂ !

v4 2
2ŝH~3v22ŝH!G2~v2D̂ !

v3

1
2ŝH~2ŝH

2 1v ŝH22v2!h1~v2D̂ !

v4 2
2ŝH~2ŝH2v!H2~v2D̂ !

v3 Gu~ ŝH!u~v2 ŝH!J 1¯ . ~50!
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Equation~50! is the principal result of this paper. It ma
be checked for consistency with the result obtained via
local OPE by expanding the matrix elements of the opera
~22! such thatin•D;O(LQCD). This gives@16#

f ~v!5d~v!2
l1

6mb
2 d9~v!2

r1

18mb
3 d-~v!1¯ ,

v f ~v!5
l1

3mb
2 d8~v!1

r1

6mb
3 d9~v!1¯ ,

h1~v!5
l2

mb
2 d8~v!1

r2

2mb
3 d9~v!1¯ ,

G2~v!52
2l1

3mb
2 d8~v!1¯ ,

H2~v!52
l2

mb
2 d8~v!1¯ ,
su

bl

07401
e
rs

t~v!52
l113l2

mb
2

d8~v!1
t

2mb
3

d9~v!1¯ ,

~51!

where each term in the expansion is of the same order in
shape function region, but the terms indicated by ellipses
higher order in the local OPE. Thel1,2 parameters are de
fined in Eq.~1! and ther1,2 parameters are defined by

1

2mB
^B̄uh̄viD aiD miD bhvuB̄&5

1

3
~gab2vavb!vmr1 ,

1

2mB
^B̄uh̄viD aiD miD bsdhvuB̄&5

1

2
i enabdvnvmr2 .

~52!

When substituted into the spectrum~50! and integrated
over v we obtain to subleading order
1

G0

dG local

dŝH

5H 2ŝH
2 ~3D̂22ŝH!

D̂4
u~D̂2 ŝH!u~ ŝH!1l̂1S 4ŝH

2 ~10ŝH29D̂ !

3D̂6
u~D̂2 ŝH!u~ ŝH!1

2

3D̂2
d~ ŝH2D̂ !D

1 r̂1

20ŝH
2 ~4ŝH23D̂ !

3D̂7
u~D̂2 ŝH!u~ ŝH!J 1

12ŝH~ ŝH2D̂ !

D̂2
u~D̂2 ŝH!u~ ŝH!12D̂d~ ŝH2D̂ !

1l̂1S ŝH~56ŝH
2 2129D̂ ŝH136D̂2!

3D̂5
u~D̂2 ŝH!u~ ŝH!1

11

3D̂
d~ ŝH2D̂ !D

1l̂2S ŝH~40ŝH
2 29D̂ ŝH212D̂2!

D̂5
u~D̂2 ŝH!u~ ŝH!2

1

D̂
d~ ŝH2D̂ !D

1 r̂1S 4ŝH~20ŝH
2 233D̂ ŝH13D̂2!

3D̂6
u~D̂2 ŝH!u~ ŝH!1

6

D̂2
d~ ŝH2D̂ !D

1 r̂2S 4ŝH~10ŝH
2 13D̂ ŝH23D̂2!

D̂6
u~D̂2 ŝH!u~ ŝH!2

8

D̂2
d~ ŝH2D̂ !D 1¯ , ~53!
where the terms in curly brackets are the leading order re
and the other terms are the subleading order correction.

The local OPE spectrum can be obtained from the dou
differential spectrumdG/ds0dE0 presented in@5# and @20#.
After changing variables to (sH ,E0) and expanding in pow-
ers ofLQCD/mb ~treatingsH as orderLQCDmb), performing
the E0 integral we obtain the local OPE fordG/dŝH , which
lt,

e-

exactly reproduces the result~53!.

III. RELATION TO PREVIOUS WORK

At leading order in 1/mb , the effects of the distribution
function f (v) may be simply included by replacingmb in
the tree-level partonic rate

mb→mb* 5mb~12v! ~54!
5-8
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and then convoluting the differential ratedG with the distri-
bution functionf (v) @12#,

dG5E dGpartonU
mb→m

b*
f ~v!dv. ~55!

Because of the leading factor ofmb
5 in the rate~10!, this

prescription leads to large subleading corrections if the fa
of mb

5 is included in the replacement~54!.
In Ref. @11# this prescription was applied to thesH spec-

trum, although themb
5 term was not included in the replace

ment. This is perfectly consistent at leading order, but si
other subleading effects were introduced in Ref.@11# by the
replacement~54!, it is instructive to compare our result~50!
with the results of Ref.@11#, expanded consistently to sub
leading order in 1/mb . At leading order, the results ar
identical:2

1

G0

dG~0!

dŝH
5E

0

`

A~ ŝH ,v! f ~v2D̂ !dv, ~56!

where

A~ ŝH ,v!5
2ŝH

2 ~3v22ŝH!

v4 u~v2 ŝH!. ~57!

At subleading order, the relevant terms in Eq.~50! may be
written as

1

G0

dG~1!

dŝH
5E

0

`

dA~ ŝH ,v! f ~v2D̂ !dv1¯ , ~58!

where the ellipses denote subleading shape functions,
effects of which cannot be reproduced by the prescript
~55!. We will refer to these corrections as true sublead
corrections, and the terms arising fromdA( ŝH ,v) as kine-
matic corrections. The functiondA( ŝH,v) is

dA~ ŝH,v!5
2ŝH„ŝH~5v1D̂ !26v2

…

v3 u~v2 ŝH!

12D̂d~v2 ŝH!

5
2ŝH„8ŝH

2 ~D̂2v!13ŝHv~5v23D̂ !26v3
…

v4

12D̂d~v2 ŝH!1
10ŝH

2 ~2ŝH23v!~v2D̂ !

v4

1
2ŝH

2 ~2ŝH2v!~v2D̂ !

v4 . ~59!

2If Ref. @11# the upper limit of integration isv5AŝH; however,
the difference is higher order. In addition, the regionv;AŝH@ ŝH

is outside the region of support of the shape function, and s
expected to be suppressed.
07401
r

e

he
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The first two terms of Eq.~59! agree with the expansion o
the results of Ref.@11# to subleading order. The third term
agrees with the expansion if themb

5 factor is also included in
the convolution. Finally, the last term in Eq.~59! arises from
the expansion of the quark fields in terms of HQET fields
the relation~28!. Thus, we see that to be consistent to su
leading order, one must include themb

5 term in the replace-
ment~54!. However, like the subleading shape functions, t
subleading effects arising from the expansion of the qu
fields cannot be reproduced by this procedure.

The relative sizes of each of the terms in Eq.~59! is
plotted in Fig. 3, using the simple one-parameter model
f (v) introduced in@13#

f mod~v!5
32

p2D̂
~11v/D̂ !2e2~4/p!~11v/D̂ !2

u~11v/D̂ !

~60!

and with D̂50.1. Numerically, the most important of thes
corrections corresponds to smearing themb

5 term, while the
correction from expanding the quark fields is quite small.

However, such large corrections may be misleading, si
if they are universal they may simply be absorbed in a
definition of the leading order shape function. Instead, o
should look at the corresponding relation between the h
ronic invariant mass spectrum and theB̄→Xsg photon en-
ergy spectrum. One might expect that the effect of convo
ing themb

5 term would cancel in the relation, since both rat

are proportional tomb
5. However, in theB̄→Xsg spectrum

only three powers ofmb come from the kinematics, while
two arise from the factor ofmb in the Wilson coefficient of
O7 , and hence for this rate one should only convolute th
powers ofmb . This may be verified by writing the results o
Ref. @16# as

is

FIG. 3. Plot of the kinematic corrections to the hadronic inva
ant mass spectrum, Eq.~58!. The dashed line is the leading orde
result ~56!, while the solid line includes the full set of kinetic co
rections. The dotted line corresponds to the expansion of the re
of @11# to subleading order, while the dot-dashed line also inclu
the contribution from themb

5 term. The difference between the do
dashed and solid curves is due to the expansion of the heavy q
spinors.
5-9
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1

G0
s

dG

dx
~B̄→Xsg!5 f ~12x!23~12x! f ~12x!

1~12x! f ~12x!1¯ , ~61!

where once again the dots denote additional form fact
and the partonic rate is

G0
s5

GF
2 uVtbVts* u2auC7

effu2mb
5

32p4 . ~62!

In the expression~61!, the second term corresponds
smearing three powers ofmb in the rate, while the third term
arises from the expansion of the quark fields. Thus there i
incomplete cancellation of the kinematic corrections betw
the two spectra.

IV. PHENOMENOLOGY

A. The B̄\Xul n hadronic invariant mass spectrum
and the B̄\Xsg photon energy spectrum

As discussed in the previous section, there are large k
matic corrections to the leading order results, largely due
the mb

5 term in the rate. However, these are reduced in
relation between the hadronic invariant mass spectrum
the B̄→Xsg photon energy spectrum. Similarly, th
T-productt(x) is universal for all processes involvingB me-
son decays~it only differentiates betweenB andB* , D and
D* decays! and so its effects similarly cancel. Hence, it
useful to express the hadronic invariant mass spectrum
terms of the experimentally measurableB̄→Xsg photon en-
ergy spectrum.

The B̄→Xsg photon energy spectrum is given at the tr
level to subleading order in 1/mb by @16#

1

G0
s

dG

dÊg

52F~122Êg!, ~63!

where

F~x!5 f ~x!1Fh1~x!1
t~x!

2
22x f~x!2G2~x!1H2~x!G

1¯ . ~64!

~Note that at the tree level only the operatorO7 contributes.
At one loop, effects of other operators must be includ
@21#.! Substituting this into Eq.~50! gives

1

G0

dG

dŝH
5E

0

`

dv$„A~v,ŝH!1dA~v,ŝH!…F~v2D̂ !

1dF~v,ŝH ,D̂ !%dv, ~65!

whereA(v,ŝH) anddA(v,ŝH) are defined in Eqs.~56! and
~59!, and
07401
s,

an
n

e-
to
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nd
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d

dF~v,ŝH ,D̂ !

5F2
2ŝH~2ŝH23v!~ ŝH2v!

v4 G2~v2D̂ !

1
4ŝH~2ŝH1v!~ ŝH2v!

v4 h1~v2D̂ !

1
2ŝH~2ŝH

2 24v ŝH1v2!

v4 H2~v2D̂ !Gu~v2 ŝH! ~66!

contains the subleading shape functions.@Note that the de-
pendence on the T-productt(x) drops out of this relation.#

To extractuVubu, we are interested in the integrated rat

GsH
~ ŝH

c !5E
0

ŝH
c dG

dŝH
dŝH ~67!

up to a maximum valueŝH
c . The integrated rate forB̄

→Xul n̄ l is free of backgrounds fromB̄→Xcl n̄ l for sH
c

,mD
2 , although because of experimental resolution the

perimental cut is typically somewhat lower: a recentBABAR
measurement@22# usedsH

c 5(1.55 GeV)2. From Eq.~65!, we
have

1

G0
GsH

~ ŝH
c !5E

0

`

$„Ã~v,ŝH
c !1dÃ~v,ŝH

c !…F~v2D̂ !

1dF̃~v,ŝH
c !%dv, ~68!

where

Ã~v,ŝH
c !5u~ ŝH

c 2v!1
~ ŝH

c !3~2v2 ŝH
c !

v4 u~v2 ŝH
c !,

dÃ~v,ŝH
c !5

8~D̂2v!

3
u~ ŝH

c 2v!

1
2~ ŝH

c !2
„ŝH

c ~D̂15v!29v2
…

3v3 u~v2 ŝH
c !,

dF̃~v,ŝH
c !

52
2

3
„G2~v2D̂ !12h1~v2D̂ !1H2~v2D̂ !…u~ŝH

c 2v!

1F2
~ ŝH

c !2
„3~ ŝH

c !2210v ŝH
c 19v2

…

3v4 G2~v2D̂ !

1
2~ ŝH

c !2
„3~ ŝH

c !222v ŝH
c 23v2

…

3v4 h1~v2D̂ !

1
~ ŝH

c !2
„3~ ŝH

c !228v ŝH
c 13v2

…

3v4 H2~v2D̂ !Gu~v2ŝH
c !.

~69!
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Note that the upper limit of integration inv corresponds to a photon energyxg511D̂2v,0; however, as discussed earlie
this region is outside the region of support of the shape function, and its contribution should be highly suppressed. Thu
relation between the spectra we may set the lower limit onxg to zero.

Comparing the two forms for the integrated spectrumGsH
( ŝH

c ) in Eqs.~63! and ~68!, we can isolate the CKM paramete

uVubu:

uVubu

uVtbVts* u
5S 12

1

2
dGsH

~ ŝH
c !D S 6auC7

effu2

p
D 1/2

3F E 0
ŝH
c dG

dŝH

dŝH

E 0
m̂B/2

„Ã~m̂B22Êg ,ŝH
c !1dÃ~m̃B22Êg ,ŝH

c !…
dG

dÊg

dÊg
G 1/2

, ~70!
io

he
u

ic
d

o

d-

ion

nc-
where we have defined

dGsH
~ ŝH

c !5
*0

`dF̃~v,ŝH
c !dv

*0
`Ã~v,ŝH

c ! f ~v2D̂ !dv
~71!

which contains the effects of the new subleading distribut
functions. For comparison purposes, we also define

dGsH

full~ ŝH
c !5

E 0
`dÃ~v,ŝH

c ! f ~v2D̂ !1dF̃~v,ŝH
c !dv

E 0
`Ã~v,ŝH

c ! f ~v2D̂ !dv

~72!

which gives the full fractional subleading correction to t
relation between the two spectra. To proceed further we m
introduce a model for the shape functions.

B. Shape function models

The shape functions are nonperturbative functions wh
cannot at present be calculated from first principles. We
however, know several moments of these functions@16#, and
we can use this information to constrain possible models
the shape functions.

The leading order shape function is modeled withf mod(v)
defined in Eq.~60!. We will use three models of the sublea
ing shape functions. The first was introduced in@16#, based
on the leading order functionf mod(v). The subleading func-
tions are defined as

h1 mod1~v!5
l2

mb
2 f mod8 ~v!,

G2 mod1~v!52
2l1

3mb
2 f mod8 ~v!,

H2 mod1~v!52
l2

mb
2 f mod8 ~v!,
07401
n

st

h
o,

f

tmod1~v!52
l113l2

mb
2 f mod8 ~v!

~73!

to reproduce the leading terms in Eq.~51!.
The second model was introduced in@18#, in which the

subleading functions are defined in terms of a single funct

s~v,b!52
b2

D̂2
e2b~11v/D̂ !

„b~11v/D̂ !21…u~11v/D̂ !.

~74!

The dimensionless free parameterb is constrained to be
O(1) by the requirement that thenth moments of the func-
tions scale likeD̂n11. We will takeb51 in our plots; larger
values ofb reduce the effects of the subleading shape fu
tions. We have

h1 mod2~v,b!5
l2

mb
2 s~v,b!,

G2 mod2~v,b!52
2l1

3mb
2 s~v,b!, ~75!

FIG. 4. Three models ofh1(v): model 1~solid curve!, model 2
~dashed curve! and model 3~dot-dashed curve!.
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FIG. 5. Model calculations of the hadronic invariant mass spectrumdG/dsH , for mb54.8 GeV ~a! and mb54.5 GeV ~b!. The dotted
curve is the leading order result; the other curves are the results in the models discussed in the text. The curves are denoted as in
right vertical line denotes the kinematic limitsH5mD

2 ; the left line denotes theBABARcut sH5(1.55 GeV)2.
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H2 mod2~v,b!52
l2

mb
2 s~v,b!,

tmod2~v,b!52
~l113l2!

mb
2 s~v,b!.

Note that in the first model the subleading shape functi
vanish atv5D̂, while in the second they are finite but no
zero.

In our third model,3 we use a model for the subleadin
shape functions that has an additional sign flip in the reg
of integration. We take

h1 mod3~v!5
l2

mb
2 f 28~v!,

G2 mod3~v!52
2l1

3mb
2 f 28~v!,

H2 mod3~v!52
l2

mb
2 f 28~v!,

tmod3~v!5
~l113l2!

mb
2 f 28~v!,

~76!

where

f 2~v!52
32

p2D̃
~v1D̂ !uS 11

v

D̂
D d

dv

3XS 11
v

D̂
D 3

e2~4/p!~11v/D̂ !2C. ~77!

We plot the functionh1(v) in each of these models in Fig. 4

3We thank C. Bauer for discussions of this model.
07401
s

n

Although the models have very different behavior, we c
verify that they are all reasonable by calculating the first f
momentsMn[*2`

` vnH2(v)dv in each model and show
ing that they are of order (LQCD/mb)n11. For mb
54.8 GeV, for model 1 we finduM1u5(0.35 GeV/mb)2,
uM2u50, uM3u5(0.35 GeV/mb)4 and uM4u
5(0.29 GeV/mb)5. For model 2 we find uM1u
5(0.35 GeV/mb)2, uM2u5(0.49 GeV/mb)3, uM3u
5(0.70 GeV/mb)4 and uM4u5(0.90 GeV/mb)5, while for
model 3 the corresponding moments areuM1u
5(0.35 GeV/mb)2, uM2u5(0.54 GeV/mb)3, uM3u
5(0.54 GeV/mb)4 and uM4u5(0.58 GeV/mb)5. Thus the
first few moments of each model scale like typical hadro
scales to the appropriate power. Similar results are obta
for the moments ofG2(v) andh1(v).

C. Numerical results

Both the Wilson coefficients and models for the sha
functions depend on theb quark massmb . While in our
formulas we are implicitly using the pole mass, it is we
known that this leads to badly behaved perturbative ser
and so we expect that radiative corrections to these res
will be minimized if a sensible short-distance mass is us
instead. TheMS massm̄b(m̄b) is well defined, but does no
lead to small perturbative corrections inB decays@23,24#.
The ‘‘threshold’’ masses, including the 1S mass, PS mass
and kinetic mass, are preferable in this context. At two loo
a pole mass ofmb54.8 GeV corresponds to a kinetic ma
mb

kin(1 GeV) of about 4.6 GeV, PS and 1S masses of abou
4.7 GeV and anMS massm̄b(m̄b) of about 4.3 GeV. Thus, to
give an estimate of themb dependence of our results, we pl
them formb54.8 GeV andmb54.5 GeV.

In Fig. 5, we plot the hadronic invariant mass spectru
using the three models of the previous section for the s
leading corrections. These corrections are clearly large
model dependent over much of the spectrum. However,
integrated rate is much less sensitive to the subleading
rections. The functionsdGsH

( ŝH
c ) and dGsH

full( ŝH
c ) defined in

Eqs.~71! and ~72! are plotted in Fig. 6 for the three mode
presented in the previous section.
5-12
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FIG. 6. Model calculations of the fractional correctionsdGsH

full and dGsH
to the cut width, as defined in Eqs.~71! and ~72!, for mb

54.8 GeV~a!, ~b! andmb54.5 GeV~c!, ~d!. The three curves refer to the three different models in Fig. 4.dGsH

full includes all the subleading
corrections, including those proportional to the leading order shape function, whiledGsH

only includes the corrections from subleading sha
functions. The right vertical line denotes the kinematic limitsH5mD

2 ; the left line denotes theBABARcut sH5(1.55 GeV)2.
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From these figures it is clear that, at least for the particu
models we have chosen, the subleading shape function
not contribute a large uncertainty in the extraction ofuVubu,
and that the dominant subleading effects are from the k
matic terms. This should not be surprising: since there are
O(LQCD/mb) corrections to the total semileptonic decay ra
07401
r
do

e-
o

@1#, the subleading corrections must vanish when integra
over the full spectrum. Since the experimental cuts includ
large fraction of the rate, the contribution to the integrat
rate from the subleading corrections is correspondingly s
pressed. This is evident from the plots in Fig. 6, where
fractional correction tends to zero as the cut is increased
t,
it from
FIG. 7. Model calculations of the fractional correctionsdGEl
for the semileptonicB→Xu decay width with a charged lepton energy cu

as defined in Eq.~79!. The three curves refer to the three different models in Fig. 4. The solid line denotes the kinematic upper lim
B→Xc decay.
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It is useful to compare these results with analogous results for the lepton energy spectrum in semileptonicB decays, given
in @17#. In this case, only;10% of the rate is included, and the subleading corrections are substantial. The analogous
to Eq. ~70! is

uVubu

uVtbVts* u
5S 12

1

2
dGEl

~Êl
c!D S 6auC7

effu2

p
D 1/2F E

Ê
l
c

m̂B/2 dG

dÊl

dÊl

E
Ê

l
c

m̂B/2
8~Êg2Êl

c!~12Êg!
dG

dÊg

dÊg
G 1/2

, ~78!

where

dGEl
~Êl

c!52

E 0
m̂B22Êl

c

~m̂B22Êl
c2v!„H2~v2D̂ !2h1~v2D̂ !…dv

E 0
m̂B22Êl

c

~m̂B22Êl
c2v! f ~v2D̂ !dv

. ~79!
ea
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pe
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and
In Fig. 7 we plot dGEl
(El) for mb54.8 GeV and mb

54.5 GeV in the three models used in this paper. It is cl
from the figures that for lepton cuts near the kinematic lim
El52.3 GeV, the uncertainty inuVubu from higher order
shape functions is much greater for the lepton energy s
trum than from the hadronic invariant mass spectrum.

V. CONCLUSIONS

We have calculated the hadronic invariant mass spect
for B̄→Xul n̄ l in terms of shape functions to subleading o
der. Introducing some simple models for the shape functi
we have studied thedG/dsH spectrum numerically.

Since we know little about the form of the subleadi
shape functions, it is difficult to estimate the correspond
theoretical uncertainty inuVubu. However, using the sprea
of models as a guide, we can conclude that the largest
leading effects are proportional to the leading order sh
tt.

07401
r
t

c-

m

s

g

b-
e

function, and so, given a determination of the shape func

from B̄→Xsg decay, do not increase the theoretical unc
tainty. Assuming our spread of models provides a reason
measure of the theoretical uncertainty, we can conclude
the theoretical uncertainty inuVubu due to higher order shap
functions is at the few percent level. This is substantially le
than the corresponding uncertainty in the integrated lep
energy spectrum with the current experimental cuts. Thi
also much less than the other sources of experimental
theoretical error in the current measurements of the in
grated hadronic energy spectrum.
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