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Quark imaging in the proton via quantum phase-space distributions
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We develop the concept of quantum phase-s@tgner distributions for quarks and gluons in the proton.
To appreciate their physical content, we analyze the contraints from special relativity on the interpretation of
elastic form factors, and examine the physics of the Feynman parton distributions in the proton’s rest frame.
We relate the quark Wigner functions to the transverse-momentum dependent parton distributions and gener-
alized parton distributions, emphasizing the physical role of the skewness parameter. We show that the Wigner
functions allow us to visualize quantum quarks and gluons using the language of classical phase space. We
present two examples of the quark Wigner distributions and point out some model-independent features.
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[. INTRODUCTION similar distributions have been studied thereafter. These dis-
tributions have been used for various purposes in very di-
In exploring the microscopic structure of matter, there areverse areas such heavy-ion collisions, quantum molecular
two frequently used approaches. First, the spatial distributiodlynamics, signal analysis, quantum information, optics, im-
of matter (or charge in a system can be probed through age processing, nonlinear dynamics, £2¢. In certain cases,
elastic scattering of electrons, or photons, or neutrons, et¢he Wigner distributions can even be measured directly in
The physical quantity that one measures is the elastic forrexperiments[3-5], providing much information about the
(structure factors which depend on three-momentum trans-dynamics of a system.
fer to the system. The Fourier transformation of the form The main interest of this paper is about the internal struc-
factors provides direct information on the spatial distribu-ture of the proton(or neutron, for which the underlying
tions. The well-known examples include the study of charggundamental theory is quantum chromodynami€3CD).
distribution in an atom and the atomic structure of a crystalWith some changes to accommodate the relativistic nature of
The second approach is designed to measure the populatitime problem, both experimental approaches alluded to above
of the constituents as a function of momentum, or the mohave been successfully used to unravel its quark and gluon
mentum distribution, through knock-out scattering. Here thestructure: The elastic form factors of the proton have been
well-known examples include the nucleon distributions inmeasured since the 1950s and, at low-momentum transfer
nuclei measured through quasielastic electron scattering, ar{égs nucleon mas#y) where the nucleon recoil effects are
the distribution of atoms in a quantum liquid probed throughsmall, the three-dimensioné&BD) Fourier transformation of
neutron scattering. The scattering cross section sometimekese form factors can be interpreted as spatial charge and
depends on the reaction dynamics which must be understoaairrent distributions of quark$]. Feynman parton distribu-
before the momentum distribution can be extracted. tions, measurable in high-energy inelastic scattering such as
Both approaches are complementary, but bear similadeep-inelastic scatterin@IS) and Drell-Yan process, have a
drawbacks. The form factor measurements do not yield angimple interpretation as the momentum distributions of the
information about the underlying dynamics of the systemquarks and gluons in the infinite momentum fraihelF)
such as the speed of the constituents, whereas the moment{i#]. However, the notion of correlated position and momen-
distribution does not give any information on the spatial lo-tum distributions of quarks and gluons has not been system-
cation of the constituents. More complete information abouttically investigated in the field, although it is clear that the
the microscopic structure lies in the correlation between thg@hysics of a phase-space distribution must be very rich.
momentum and coordinate spaces, i.e., to know where a par- In this paper, we explore to what extent one can construct
ticle is located and, at the same time, with what velocity itphysically interesting and experimentally measurable phase-
travels. This information is certainly attainable for a classicalspace distributions in QCD, and what information it contains
system for which one can define and study the phase-spaedout the QCD parton dynamid# brief account of some of
distribution of the constituents. For a quantum mechanicathe results can be found in R¢8], see als¢9].) To facilitate
particle, however, the notion of a phase-space distributiothe construction, we examine the uncertainty in the tradi-
seems less useful because of the uncertainty principle. Non&enal interpretation of electromagnetic form factors due to
theless, the first phase-space distribution in quantum merelativity, and analyze the physical content of the Feynman
chanics was introduced by Wigner in 198P], and many parton distributions in the rest frame of the proton. We then
introduce the phase-space Wigner distributions for the quarks
and gluons in the proton, which contain most general one-
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momentum dependent parton distributi¢h6]. On the other ing of Feynman momenturr in that context. This can be
hand, some reduced version of the distributions is relatedachieved by introducing the so-called spectral function—the
through a specific Fourier transformation, to the generalizedorrelated momentum and energy distribution of the
parton distribution§GPDg which have been studied exten- constituents—familiar in nonrelativistic many-body physics.
sively in the literature in recent yeafd1-17. Roughly In the process, we find that the separation between particle
speaking, a GPD is a one-body matrix element which comand antiparticle, familiar in the IMF, disappears: One can
bines the kinematics of both elastic form factors and Feynonly keep track of the creation and annihilation of fermion
man parton distributions, and is measurable in hard exclusivguantum numbers, such as the electric charge.
processes. Therefore, the notion of phase-space distribution
provides a new 3D interpretation of the GPDs in the rest
frame of the proton. There are other interpretations of the
GPD in the literature which are made in IMF and impact
parameter spadd8—27. The electromagnetic form factors are among the first mea-
The presentation of the paper is as follows. In Sec. II, wesured and mostly studied observables of the nucleon. They
examine the constraints on the physical interpretation of th@re defined as the matrix elements of the electromagnetic
form factors and parton distributions from relativistic effects,current between the nucleon states of different four-
anticipating their extension to a full phase-space distributionmomenta. Because the nucleon is a spin one-half particle, the
In Sec. Ill, we first briefly summarize the main features of amatrix element defines two form factors
guantum mechanical Wigner distribution, then introduce the o g
guantum phase-space distributions for the quarks and gluo ; Y 2 2 Ty
in a rest-frame proton. In Sec. IV, we exhibit the spatial 3D 21,(0)P1) =U(p2)) Fa(@") yu+ Fala?) 2My Ulpy),
images of quarks generated from slicing the quantum phase- 1)
space(Wignen distributions at different Feynman momen-

tum and comment on their general features. Section V conyhereF, andF, are the well-known Dirac and Pauli form

A. The proton form factors and scheme-dependent charge
distributions

tains the summary and conclusion. factors, respectively, depending on the momentum transfer
gq=p,—p;, and U(p) is nucleon spinor normalized as
IIl. RELATIVITY CONSTRAINT ON INTERPRETATION U(p)u(p)=2My. _
OF FORM FACTORS AND PARTON DISTRIBUTIONS Since the beginning, it has been known that the physical

interpretation of the nucleon form factors is complicated by
In the literature, the quantum phase-space distributiongelativistic effect§23]. Consider a system of sifand mass

have been mostly applied to nonrelativistic systems. For th@/. In relativistic quantum theory, the system cannot be lo-
proton, however, relativity is essential. In measuring the elascalized to a precision better than its Compton wavelength
tic form factors of the proton, the momentum transfer to thei/M. Any attempt to do this with an external potential will
system can easily exceed the rest mass, resulting a largesult in creation of particle-antiparticle pairs. As a conse-
recoil and Lorentz contraction. The quarks and gluons insidguence, the static size of the system cannot be defined to a
the proton follow relativistic dynamics. Moreover, when a precision better than M. If R>1/M, which is the case for
quark is struck in a DIS experiment, it travels along theall nonrelativistic systems, the above is not a significant con-
lightcone: the trajectory of an extreme-relativistic particle.straint. One can probe the internal structure of the system
Therefore, to develop a phase-space distribution of the prqzih, 4 wavelength (16]) comparable to or even much

ton, we must examine to what extent the notion actuallyg,4jier thanR, but still large enough compared toM/so

makes Sense for relafcivistic systems. , that the probe does not induce an appreciable recoil. A famil-
In the first subsection, we examine the textbook interpre-

. f the el ic f ¢ t th lar example is the hydrogen atom for whicRMy
tation of the electromagnetic form factors of the proton, re'~MH/(meaem)~105, and the form factor can be measured

minding the reader that there are intrinsic ambiguities in theh h elect teri ith i i ~
interpretation. We emphasize, however, that different Way§ rough electron scattering with momentum transfef

of the interpreting the form factors can be regarded as differ=< Hh. h bi | hi bl th
ent choices of schemes. When used consistently, one sche eW fen the pro '”gl wave Sngt IS cgrrt])parha € M1 | e
is in principle as good as any other. The degree of schem@™ factors are no longer determined by the internal struc-

dependence depends on the parametevl R, whereM is ture alone. They contain also the dynamical effects of Lor-
the mass an® is some kind of radius: the p,arameter is 1/4 €Ntz boosts because the initial and final protons have differ-
for the proton ’ ent momenta. In relativistic quantum theory, the boost

In the second subsection, we consider the Feynman partd}perators involve nontrivial dynamical effects which result

distributions, most-commonly interpreted as the momentu the _nucleon wave function being different in_different
densities in IMF. Since the notion of a phase-space distribulf@mMe (in the usual instant form of quantizatipriherefore

tion is meant for a proton in its rest frame, and since thein the region|g|~M, the physical interpretation of the form
distribution should be reduced to the Feynman distributiorfactors is complicated because of the entanglement of the
after integrating out the Spatiaj coordinates, we are Comlnternal and the center-of-mass motions in relativistic dy-
pelled to examine the physics of latter in the static system ohamics. In the Iimit|ﬁ|>M, the former factors depend al-
coordinates. In particular, we need to understand the meamrost entirely on the physical mechanism producing the over-
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all change of the proton momentum. The structural effectittle change in velocity, and hence the initial and final states

involved is a very small part of the nucleon wave functionhave practically the same intrinsic wave functions. In rela-

(usually the minimal Fock component ohly tivistic systems, this is the origin of the difficulty in inter-
For the nucleonMRy~4. Although much less certain preting the form factor: we do not have a matrix element

than in the case of the hydrogen atom, it seems still sensibli@volving the same intrinsic proton state.

to have a rest-frame picture in terms of the electromagnetic To remove the effects of the wave packet, the necessary

form factors, so long as one keeps in mind that equally juscondition onW(p) is that the coordinate-space size of the
tified definitions of the nucleon sizes can differ by wave packet must be much smaller than the system size

~1My(RyMy). For example, the traditional definition of | o' < Eurthermore. the probing wave lenath. or resolu-
the proton charge radius in terms of the slope of the Sach'E <Ry ' ’ J o

o ) on scale, must also be large compared with the size of the
form factor Gg(q©) is 0.86 fm. On the other hand, if one KetsT ~ 1/5<1/G. Th . = d
uses the slope of the Dirac form factér to define the W&v€ pac elor—1p Qq'l 1hen one can ignorg depen-
charge radius, one gets 0.79 fm, about 10% smaller. Theence in¥, so that¥(p+3q)~¥(p)

form factors at|&|>MN~1 GeV cannot be interpreted as

3
information about the internal structure alone. S d°p YT e~
To further clarify the uncertainty involved in the interpre- F(q)—f (277)3|\If(p)| (p+ai2ljo(0)lp—ai2). (5)

tation of the electromagnetic form factors, let us review the

textbook explanation offered originally by Saditd. To es-  On the other hand, to be insensitive to the antiparticle de-
tablish the notion of a statiecharge distribution, one needs grees of freedom, the size of the wave packet must be larger

to create a wave packet representing a proton localiz&l at than the proton Compton wave lengthr|>1/My. In the
- momentum space this corresponds to restrictions on mo-

|§>:J d’p eiﬁ-ﬁw(5)|5> ) menta allowed in the wave packigi| <M. Therefore the

(2m)3 ' combined constraint on the wave packet profile i&yl/

R <|q|<|p|<My. The extreme limit of the last inequality
where the plane-wave stat¢p) is normalized in a yields a wave packet with a zero-momentum nucleon

relativistic-covariant manner<§2||5l>=2E,;1(27-r)35(3)(51

- s . : R 2m)3
—p,), and¥(p) is the momentum space profile normalized |\If(p)|2=(2|\7/1|-)
as 2 d°pE;|¥(p)|?=(2m)°. The wave packet is not an N
eigenstate of the free Hamiltonian. Therefore, as time{N
progresses, the wave packet will spread. The characteristic
spreading time is proportional ((MN/52> which is long for OMAE() = (a/2li(0)—a/2 7
a nonrelativistic system. But for a relativistic particle, the NF()=(a/2]jo(0)] - a/2). @
spread could happen much faster compared to the charact
istic time scale of a weakly interacting probe.

Having localized the wave packet R0, we can calcu-
late, for example, the charge distribution in the wave packet

5®)(p), (6)

hich gives

Shis is the matrix element of the charge density in the Breit
frame, and is #MGg(t)w;w; where

t
. Ge(t)=Fy(t) + —=F,(1) 8
p(r)=(R=0jo(r)|R=0), ©) 4My
wherer measures the relative distance to the ceRer0. is the Sachs electric form factot=£—q?) and the Weyl
Taking its Fourier transform, one gets spinors involved are normalized conventionally kyw

=1. Hence, we arrive at the textbook interpretatiorisgfas

a Fourier transformation of the proton charge distribution.
Likewise, the Sachs magnetic form fact®g,(t) =F,(t)

+F,(t) is obtained from the Breit frame matrix element of

H@Ef&k@%®

d3p . o the electric current
=J 2 )B\P*(p+q/2)*1’(p—q/2)
iy - - e
(a/2j(0)|—q/2)=2i[sXq]Gw(1), 9
X(p+a/2jo(0)|p—a/2), (4

where the three-vector of spin $s&=w3 2 ow;,.
where we have changed the momentum integration variables, |t must be pointed out that the charge and magnetization
with p representing the average momentum of the initial andlistributions thus defined contains the Lorentz contraction
final protons. It is important to point out that the resolution effects along the photon directicﬁ1when52>4M2 , Which
momentunﬁ is now linked to the difference in the initial and make the proton look like a pancake. Various prescriptions
final state momenta. In nonrelativistic quantum systems, beexist in the literature which have been proposed to remove
cause of the large masses, the momentum transfer caustee relativity effects and extract the “intrinsic” charge/
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magnetization distributions from the experimental d@&4—  whereb' andd" are creation operators of a quark and an
26]. However, it is difficult to accomplish it in a model- antiquark, respectively, with longitudinal momentukt
independent way. =xp* and transverse momentukn . The interpretation as
Since relativity makes the interpretation of the eIectro—parton densities is then obvious.
magnetic form factors nonunique, the best one can do is t0 Tg construct the quantum phase-space distributions for the
choose one particular interpretation and work consistentlyqyarks, we need an interpretation of the Feynman densities
For example, when extracting the proton charge radius frony, the rest frame. This is because the IMF involves a Lorentz
the Lamb shift measurements, one shall use the same defitinost along thez direction which destroys the rotational
tion as from the electric form factor. The most frequentlysymmetry of the 3D space. However, if one works in the rest
used definition is that of Sachs, but other schemes argame of the proton, the two quark fields in E40) are not
equally good and the scheme dependence disappears in thethe same time. If one Fourier-expands one of the fields in
limit MR—co. This is very similar to the renormalization terms of quark creation and annihilation operators, the other
scheme dependence of parton densities due to radiative cqfyst be determined from Heisenberg equation of motion.
rections at finite strong coupling constany: Although the  The result is that the bilinear quark operator takes a very
MS scheme is the most popular in the literature, one can ussomplicated expression in terms of the creation and annihi-
the parton densities in any other scheme to correlate physicadtion operators in the equal-time quantization.
observables. In this paper, we adopt the Sachs interpretation The physics of the Feynman quark distribution in the rest
of the form factors. frame is made more clear through the notion of the spectral
Relativistic corrections and Lorentz contraction effects infunction
the transverse dimensions are found to disappear in an IMF
[19]. There the proton has an infinitely large effective mass, 1 ) _
and hence for the interpretation of the form factors in the S(k)= —+f d*¢e {p|w(0)y W (&)lp), (12
transverse dimensions, we are back to the nonrelativistic 2p
case. In particular, one can localize the proton in the trans-
verse coordinate space with no recoil corrections. The Dira
form factorF is found to be related to the charge distribu-
tion in transverse plane, with information along thexis
integrated. The price one pays for eliminating the relativistic
effects is the loss of a spatial dimension. S(k)=2>, (2m)*8“(p—k—pp)
n

hich is the dispersive part of the single-quark Green'’s func-
ion in the proton. The physical meaning $fk) can be seen
from its spectral representation

B. Parton distributions as seen in the rest frame of the proton — N N
. . X(P|Wym)y™(n|¥(0)[p)/2p
Parton distributions were introduced by Feynman to de-

scribe deep-inelastic scatterifig]. They have the simplest
interpretation in the IMF as the densities of partons in the ~E (2m) 46 (p—k—pp)|(n|¥ . |p)|?,

longitudinal momentunx. In QCD, the quark distribution is . (19
defined through the matrix element

1 ™ B where ‘;’_k is a Fpu.rie.r transformation o_ﬂf(g): It i_s the

f —e™(p|¥(0)y*¥(rn)|p), (10) Pprobability of annihilating a quarkor creating an antiquayk

2p* 2m of four-momentumk (three-momentunﬁ and the off-shell
energyE=k°) in the nucleon, leading to an “on-shell” state
of energy-momentunp,=p—k. The quark here is off shell

a(x)=

where we have used the standard lightcone notafion
=(p°+p3/4y2, andn* is a vector along the direction of . . o 2
(1,0,0/~1) andn-p=1. ¥ is a quark field with an associ- because i, andp are both “on shell, K" mg in g_eneral.
ated gauge link extending from the position of the quark to(That th_e partons are off-;hell are in fact alsp true m_the IMF
infinity along the light cone, and hence is gauge-invariant incaICUIat't;)rlg;{hOf courtse,l :cn Qt.CDl n.,z |s|fr_10t |tr_1”the H"b’?” l
nonsingular gauges. The renormalization scale dependenceﬁgace' ut the spectral function itsell is st a meaningtu

. .. . N . quantity.
implicit. In lightcone quantizatioh27], it is easy to get Since the quarks are ultrarelativisti#;, contains both
q(X)|x=0 quark and antiquark Fock operators. One cannot in general
. . separate quark and anti-quark contributions, unlike in the
1 dZIZl <p|b{(k*,kl)bk(k*,kl)|p> nonrelativistic systems in which only the particle or antipar-
~ox &y f (2m)3 (plp) ' ticle contribute. In fact, if one expands the above expression,
one finds pair creations and annihilation terms. However, this
a(X)|x<o is also true for the charge density discussed in the previous
subsection. Therefore we can speakS@k) as a distribution
-1 d?k, (pldl(k*,k )dy(k*.k )|p) of vector charges and currents, but not a particle density. In
% | j (2m)° {plp) ) nuclear physics where the nonrelativistic dynamics domi-

nates, the nucleon spectral function in the nucleus is positive
(11 definite and can be regarded as a particle density. The nuclear
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spectral function is directly measurable through pick-up andhe spatial coordinates, we recover the transverse-momentum

knock-out experiments, in whidg andk are called the miss- dependent parton distributiori40]. Upon integrating over
ing energy and missing momentum, respectivsie for ex- the parton transverse momentum, we have the reduced

ample, Ref[28)). Wigner distributions depending on 3-space coordinates and
It is now easy to see that in the rest frame of the protonFeynman momentur, which are related to the GPDs by a
the Feynman quark distribution is simple Fourier transformation. Therefore, the reduced quan-
tum phase-space distributions are physical observables.
d*k 0. s
q(x)=12 2m)* S(K*+k*=xMy)S(k). (14 A. General aspects of Wigner distributions
an

There is a vast literature on the quantum phase-space dis-
The x variable is simply a special combination of the off- tributions, and the Wigner distributions in particular. In this
shell energy(o and momentunk®. The parton distribution is subsection, we would like to summarize some of the salient
the spectral function of quarks projected along a special difeatures.
rection in the four-dimensional energy-momentum space. Suppose we have a one-dimensional quantum mechanical
The quarks with differenk® andk? can have the same and  system with wave function(x), the Wigner distribution is
moreover, the bottt>0 andx<0 distributions contain con- defined as
tributions from quarks and antiquarks.

To summarize, in the proton rest frame, the quarks are W(X.p)=f dpeP7y* (x— pl2) p(x+ n2),  (15)

naturally off-shell, and hence have a distribution in the four-
dimensional energy-momentum space. The Feynman distri-

bution comes from a reduction of the full distribution along aVWhere we have sdt=1. When integrating O%t the.coo'rdi—
special direction. natex, one gets the momentum density(p)|*, which is

positive definite. When integrating oup, the positive-
definite coordinate space densjiy(x)|? follows. For arbi-

lll. QUANTUM PHASE-SPACE  (WIGNER) trary p andx, the Wigner distribution is not positive definite
DISTRIBUTIONS and does not have a probability interpretation. Nonetheless,

In classical physics, a state of a particle is specified by itdor calculating tEe prr:ysical observables, 0”? can jlugf‘ ta_Ige
positionf and momentunﬁ. In a gas of classical particles, averages over the phase space as if itis a classical distribu-

the single-particle properties are described by a phase—spaggn

distributionf(F, 5) representing the density of particles at a .

phase-space point (). Time evolution of the distribution <O(X’p)>:f dxdpWx,p)O(x,p), (16)

is governed by the Boltzmann equation, or Liouville equa-

tion if the particles are not interacting. where the operators are ordered according to the Weyl asso-

In quantum mechanics, position and momentum operatorsiation rule. For a single-particle system, the Wigner distri-
do not commute and hence, in principle, one cannot talloution contains everything there is in the quantum wave
about a joint momentum and position distribution of par-function. For a many-body system, the Wigner distribution
ticles. Indeed the quantum mechanical wave functions decan be used to calculate the averages of all one-body opera-
pend on either spatial coordinates or momentum, but nevdprs. Sign changes in the phase-space are a hint that it carries
both. Nonetheless, Wigner introduced the first quanturmontrivial quantum phase information.
phase-space distribution just a few years after quantum me- In the classical limit, the Wigner distribution is expected
chanics was formulateffl]. It is not positive definite and to become classical phase-space distribution. For systems
hence cannot be regarded as a probability distribution. Howwhich are statistical ensembles, the lifait-0 is often well
ever, it reduces to the positive-definite classical phase-spadehaved. For example, for an ensemble of harmonic oscilla-
distribution in2—0 limit. The sign oscillation in the phase tors at finite temperature, the Wigner distribution becomes
space is necessary to reproduce quantum interference. Thge classical Boltzmann distribution &s-0, see, e.g., Ref.
Wigner distribution contains the complete single-particle in-[29]. The Wigner distribution for thath excited state of the
formation about a quantum systefaquivalent to the full one-dimensional harmonic oscillator of energy=%w(n
single-particle density matrixand can be used to calculate + 3) is [30]
any single-particle observable through classical-type phase-
space averages.

In this section, we first remind the reader some basic fea-
tures of the quantum phase-spa@ignen functions. We
then generalize the concept to the relativistic quarks and gluwhere H stands for the HamiltoniarH (p,x)=p?/(2m)
ons in the proton. With the preparation in Sec. Il, the con-+ mw?x?/2 andL, is the nth Laguerre polynomial. In the
struction is straightforward. However, the most generalquasiclassical limit—vanishing Planck constant and large
phase-space distribution we define is not measurable auantum numbers—the oscillator Wigner distribution turns
present, and hence we proceed to make reductions by int@to the generalized distribution resided on the classical tra-
grating out some dependent variables. After integrating oufectoriesE.. = fixed,

(—1)n 3 4H
Wn(DyX)=79 Hlho) 7l (17)
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lim  W,(p,x)~8[H(p,x)—E..]. (18)  sities because the quarks are spin-1/2 relativistic particles.
#—0, N Depending on the choice df, we can have vector, axial
vector, or tensor density.
Phase-space averaging with this kernel is equivalent to cal- Since QCD is a gauge theory, the two quark fields at
culating observables using classical equations of motiondifferent spacetime points are not automatically gauge in-
This can be easily understood from the semiclassical form ofariant. One can define a gauge-invariant quark field by add-
the wave function ing a gauge link to the spacetime infinity along a constant
four-vectorn*,

(X)) =C(x)e'SW/, (19
Substituting this into Eq(15) and expandings to the first W(ﬂ):eXF( —igfo dxn-A(Nn+7n) [4(n), (22
order in#, one gets the quasiclassical Wigner distribution
IS(X) where we assume the nonsingular gauges in which the gauge
W(p,x)=|C|26(p— ) (20) potential vanish at the spacetime infin{t$3—37. Clearly,
IxX the Wigner operator depends on the choicen6f While

theoretically anyn* is possible, experimentallg” is con-

where the argument of thé function describes a family of gtrained by the probes.
classical paths. . _ o We have extended the Wigner distribution to including the

The quantum-mechanical Wigner distribution is measurtime variable. Therefore, in addition to the dependence on
able. The actual measurement has been performed for a sifflie 3-momentum, there is also a dependence on the energy.
plest quantum system—the quantum state of a light nade For the bound states in a simple system such as those in a
pulse of laser light of given frequengy-employing ideas of  simple harmonic oscillator, the energy dependence & a
Vogel and Risker{3]. It was extracted via the method of fynction at the binding energies. For many-body systems,
homodyne tomographj4] by measurement of a marginal powever, the energy dependence is more complicated, as it
observable and subsequent reconstruction by the inverse Rasfiects the distribution of the states after one particle is re-
don transformation. Recently this Wigner distribution hasmgyved from the system.
been measured directly by means of the photon counting For nonrelativistic systems for which the center-of-mass
techniques based on a Mach-Zender interferometric schemeg \well defined and fixed, one can define the phase-space
[5]. distributions by taking the expectation value of the above

. Other versions of the phase-space distributions are po%/'\/igner operators in thR=0 state. For the proton for which
sible. They are _aII mer_nbers of _the_ S0 called then Clasﬁwe recoil effect cannot be neglected, the rest-frame state
[31], with Husimi and Kirkwood distributiong32] being its cannot be uniquely defined, as discussed in Sec. Il. Here we

well-known representatives. The_ HF‘S"T" d|str!but|on 'S Agsllow Sachs, defining a rest-frame matrix element as that in
smeared version of the Wigner distribution defined by pro-

jection of the wave function on the coherent st@@aussian the Breit frame, averaging over all possible 3-momentum
{N ave packet transfers. Therefore, we construct the quantum phase-space

quark distribution in the proton as

H(p,x)= | dp’dxX’W(p’,x" )W (p'—p,X’ —X), R 1 d3q
(p,X) f p (p" X" )Weo{p'—Pp ) Wi (F k) = q

M) (2 VRN -2

which is real and positive definite. On the other hand, the

Kirkwood function is complex. All these distributions are 1 3& o R
expected to reduce to the same phase-space distribution in =3 f s€ ' (a2wr(0k)|—al2),
the 0 limit. MnJ (2m)

(23)
B. Quantum phase-space quark distributions in the proton where the plane-wave states are normalized relativistically.
In this subsection, we generalize the concept of phasefhe most general phase-space distribution dependewen
space distributions to relativistic quarks and gluons in théndependent variables.
proton. In quantum field theory, the single-particle wave The only way we know how to probe the single-particle
function must be replaced by quantum fields, and hence it iglistributions is through high-energy processes, in which the
natural to introduce the Wigner operator light-cone energyk ™ = (k°—k?/+2 is difficult to measure,
where thez axis refers to the momentum direction of a probe.
WF(F.k)=J d* 7 M (F— g2 TV (F + 7/2), (21) Moreover, Fhe leading observables in these processes are as-
sociated with the “good” components of the quaiduon)
fields in the sense of light-cone quantizat{@Y], which can
wherer is the quark phase-space position dnthe phase- be selected byl'=y", y*ys or ot where y"=(»°
space four-momentum conjugated to the spacetime separa-y?)/\2. The direction of the gauge link/, is then deter-
tion ». I' is a Dirac matrix defining the types of quark den- mined by the trajectories of high-energy partons traveling
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along the lightcone (1,0,8,1) [36,37). Therefore, from now  +k2 Integrating over the coordinate, the GPDs are set to
on, we restrict ourselves to the reduced Wigner distributiong_qz—0, and the resulting two-dimensional density

by integrating ouk", f7+(r1 ,X) Is just the impact-parameter-space distribution

. dk~ ) [19]. Further integration overﬂ recovers the usual Feynman
Wr(r,k)zf 2Wr(r,k), (24 parton distribution.
(27) The physical content of the above distribution is further

. . L o revealed by examining its spin structure. Working out the
with a lightcone gauge link is now implied. Unfortunately, matrix element in Eq(27)

there is no known experiment at present capable of measur-
ing this 6-dimensional distribution which may be called the 1
“master” or “mother” distribution. WFw(X,f,t):[H(X,%J)— TE(X,§,1)]
Further phase-space reductions lead to measurable quan-
tities. Integrating out the transverse momentum of partons, R |
we obtain a 4-dimensional quantum distribution +i[sX CI]ZWN[H(X@I)JFE(X’?U]:

- - d?k . (28)
fr(r,k+):J (ZW;ZWF(r’k)

wherer= 52/4Mﬁ,. The first term is independent of the pro-
ton spin, and is considered as the phase-space charge density

1 J d3q e,.qﬁ;JL -
= N d > -
2MN (277)3 27T p+(r,X)=f (ZTq)seIqr[H(Xagvt)_TE(X7§1t)]
x e K QW (5 12T V(5 12)|—q/2). (29)

(29) The second term depends on the proton spin and can be

The matrix element under the integrals is what defines th&®9arded as the third component of the phase-space vector
GPDs. More precisely, if one replack$ by Feynman vari- CUent

able xp* (p*=E,/+/2, proton energyE,=\M?+q?%/4) ) g ..
and = by Np*, the reduced Wigner distribution becomes ji(r,x)=f 3e"q"i[sx q]ZZM
the Fourier transformation of the GPBE}-(x, &,t) (2m) N
dga . X[H(Xagvt)+E(X!§1t)] (30)
fr(r,x)= 2|\/|Nf (Zﬁ)seilq'rFF(x’g't)' (26) The E term generates a convection current due to the orbital

angular momentum of massless quarks and vanishes when
In the present context, the relation between kinematic variall quarks are in the orbit. The physics in separatirfg into
ables aret=q%(2E,) andt= _& 2 TakingT=+2y", the P+ andj’ can be seen from the Dirac matrix” selected by
corresponding GPS has the expansiag] the high-energy probes, which is a combination of time and

space components. Because the current distribution has no

(o ) N — spherical symmetry, the quark charge seen in the infinite mo-
Fyr(X,€0)= f Ze‘“(q/2| (= \nI2) L2y p(Nn/2) mentum framep , + 7% is deformed in the impact parameter
R space[38]. This is the kinematic effect of Lorentz boost.
X|-ql2) Integrating the phase-space charge distribummf,x)
. over x, one recovers the spherically symmetric charge den-
=H(x,&1)U(g/2) 2y U(—q/2) sity in space. On the other hand, if integrating owemn

N j2(r,x), one obtains the electric current density. In the latter

e Lo i - case, if the integral is weighted with one obtains the me-
+E(x,£1)U(qg/2 U-g/2), (2 ’_ 9 9
(x.&HU(a/2) J2M (—ai2) @) chanical momentum densifg].
) ) ) Finally, when integrating over in the reduced Wigner
where L is the shorthand for the lightcone gauge link. distributions in Eq. (24), one obtains the transverse-

The phase-space functicﬂq/+(F,x) can be used to con- momentum dependent parton distributions
struct 3D images of the quarks for every selected Feynman
momentumx in the rest frame of the proton. These images , My .
provide the pictures of the proton seen through the Feynman q0x.kp)= \/§p+ (277)2W+(r’k)' (3D
momentum(or “color” or x) filters. They also may be re-
garded as the result of a quantum phase-space tomographyDfere is a lot of interesting physics associated with these
the proton. We remind the reader again that the Feynmadistributions which has been discussed recently in the litera-
momentum in the rest-frame sense is a special combinatiofure. For instance, in a transversely polarized proton, the
of the off-shell energy and momentum alomgnamely, E quark momentum distribution has an azimuthal angular de-

3>
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pendencg39-41. The so-called Siver’s function can pro- FSeqy 7 1) =[F-(v.1)O(V)— F(—v.t)6(—
duce a novel single-spin asymmetry in deep-inelastic scatter- a 20 =, D 0) = fo(=y.H 6(=y)]
ing. We will not pursue this topic here, except emphasizing X 7(]y|,Z;Dsea, (39

that they have the same generating functions as the GPDs.
where att =0 the functionf 4(y,t=0) reduces to the conven-
tional parton distribution functions. The profile function with
a single parametds is assumed to be universal for valence-
and sea-quark species, and reptid

Once the GPDs are extracted from experimental data or
lattice QCD calculation§43—46, the phase-space distribu- _ I'(b+3/2) [(1-y)?=Z*]°
tions can be obtained by straightforward Fourier transforma- m(y.z,b)= JaT(b+1) (1—y)®+t
tions. Without first-hand knowledge on the GPDs at present,
we may be able to learn some general features of the phase- To proceed further, we design a nonfactorized ansatz
space distributions form GPD models. [21,15,3§ for the functionsf,(y,t) with intertwinedt andy

The GPDs have been parametrized directly to satisfy varigependence. This is opposed to a factorized form of GPDs
ous constraint$15,17,41, including (1) the first moments  with completely disentangled dependence of the momentum
reducing to the measured form factof®) the forward limit  transfert and scaling variablesx(¢). The latter is currently
reproducing the Feynman parton distributio(®,thex mo-  accepted in almost all evaluations of physical observables
ments satisfying the polynomiality conditidi4], and (4)  [17,47,54. Due to a limited kinematical coverage in the
the positivity conditiong48]. In the first subsection, we in-  t-channel momentum transférin experiments, theoretical
troduce a new parametrization without assuming factorize@stimates confronted to data are currently insensitive to this
dependence on thteand other variables. feature. Our model will be based on the GRV leading order

The GPDs were first calculated in a realistic nucleonguark distributiong55] with discarded flavor asymmetry of
model—the MIT bag mod€l49]. They have also been cal- the sea and it reads

culated in the chiral-quark soliton modg80,51. Recently,

IV. THREE-DIMENSIONAL IMAGES OF THE QUARKS
IN THE PROTON

(35

there are calculations in the quark models as y&153. In fYaly t)= 1.23g %~ a@-NY%(1-1 8y +9.5/)
the second subsection, we will consider the Wigner distribu-
tions in the bag model. X (1—-y)?7?
_ 11U _n'(1—
A. A GPD parametrization féal(y,t):0-76]y %(2y” %Y Zt_y A=)
A generalized parton distributions depend on three vari- X(l_l_g\/er 9.5y)(1—y)362 (36)

ablesx, &, andt. The simplest way to satisfy the polynomi-
ality condition is to relate it to a double distributi¢fl,42]

¥ e — 7asfa;(lfy)3/2t
and theD term [50] fuly,)=1fa(y,1)=0.76y

X (1—-3.6Jy+7.8y)(1—y)%L

These models naturally reduce to the quark form factors with
the dipole parametrization of proton and neutron Sachs form
X N i i-
+0(§>|x|)D<—,t). 32) factors. The valgncei quark functlon_has a more compli
cated structure since the corresponding form faEl‘i)has a
node at|t|~4M?/|2k,+k,+1|: it is positive below this
The “step-function” kernel in Eq(32) has the form value and is negative above it. The Regge intercepts and
slope parameters are taken as

dy

1 _
Hocen= [ Yooy Pl

2(y|x,&)=0(x>&)0 )1(1_?;23’2)1(72 a,=0.52, a;=1.1GeV?, ;=10 GeV?
X+ & X— & as=0.85, a/=0.3 GeV 2 (37)
+60(—&>x)0 rgzylef .
The valence quarks Regge parameters are numerically close
X+ & X—§& to the ones op-Reggeons, while the sea quarks being gen-
+0(E>1x]) 0 1T§>y21T§ . erated by gluon radiation are analogous to the one of the

Pomeron. The form factor asymptotics at latge governed
by the largey behavior off(y,t). If the latter has the form
f(y,0)~y @« @91 _y)N then the corresponding form
Ahctor is F(t— o) ~|t| " (NFD/P+1) The perturbative QCD
asymptotics for valence quarks requiges 1. We use, how-
val val ever, p=1/2 for them since this value fits better the form
Fo(y,z) =1 (y,0) 8(y) 7(|yl,z;bya), (33 factor at small and moderateForp=1 one can get a decent

The g-flavor double distributionF ,=Fy*+F:®, including
both valence and sea, can be related to the nonforward qu
distributionf(y,t) through a profile functionr(y,z,b)
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x=0.01 x=0.40 x=0.70

FIG. 1. Theu-quark phase-space charge distribution at different values of the Feynman momentum for the nonfactorizable ansatz of
generalized parton distributiori86). The vertical and horizontal axes correspona tmd|F |, respectively, measured in femtometers. The
(dashedlcontours separate regions of positidarker aregsand negativélighter areasdensities. Below each contour plot we presented the
shape of three-dimensional isodensity contoyrs ¢onst).

behavior at moderatewith «/=1.6 Ge\?. We use in our According to the previous section, the phase-space charge
estimates, 5= bses=1. TheD term is parametrized as distributionp , (r,X) is just the Fourier transformation of the
above GPDs,

. d3q
a = -
p+(rlx) f (277)3

2

-3
D(Z,t)=(1—i) (1—22)[d0Ci/2(Z)+-~-], (38
Mp

e 1 THI(X, £,1), (40)

with the mass scalen3=0.6 GeV? and the parameted,

computed within theyQSM [15,51] and on the lattice where £= q,/2E,, Eq= /M2+52/4, andt=g2. In the fol-

[45,46 with the results lowing, we consider the result of the quark densities from the
1 above parametrization.
YOSM_ _ latt_ qu__ d__ In Fig. 1 we show the up-quark charge distributions cal-
o= 4'0N_f’ do"=do~do~—05, (39 1zted from Hy(x,&t) for various values of x
={0.01,0.4,0.7. While the intensity of the plots indicates
respectively, wher&\; is the number of active flavors. In the the magnitude of the positive distribution, the lighter areas
lattice case, the effect of disconnected diagrams was not capelow the ground-zero contours indicate negative values.
Cu|ated, however, they are known to produce a sizable nega—_he plOtS show Significant Change in the distribution on the
tive contribution[44]. Once the latter are properly taken into longitudinal momentum fractior. The image is rotationally
account the lattice result might approach the model calculasymmetric in ther, plane. At smallx, the distribution ex-
tion. For our present estimate we chose an intermediate valuends far beyond the nominal nucleon size alongztieec-
do=-—1.0. tion. The physical explanation for this is that the position

074014-9



A. V. BELITSKY, XIANGDONG JI, AND FENG YUAN PHYSICAL REVIEW D 69, 074014 (2004

x=-0.05 x=-0.40 x=0.40 x=0.60

0.5 |
0.5 3 0.5 0.5

O 0 . o . O

~0.5 -0.5 -0.5

FIG. 2. The phase-space charge distribution forutgpiark at negative Feynman momentum —0.05 andx= — 0.4 (two left panel$
andd quark for positivex=0.4 andx=0.6 (two right panels

space uncertainty of the quarks is large whaa small, and are known, one can “correct” the relativistic effects associ-

therefore the quarks are de-localized along the longitudinahted with the boosted nucleon to obtain a Wigner distribution
direction. This delocalization reflects a very peculiar part ofcorresponding to the static structure, just like applying the
the nucleon wave function and shows long-range correlationgelativistic corrections to extracting the static charge distri-

as verified in high-energy scattering. In a nucleus, the partoButions. The Wigner distributions calculated from a static

distributions at smalk are strongly modified because of the pag correspond to the ones with some relativistic corrections
spatial overlap between the nucleons. On the other hand, gpplied.

largerx, the momentum alongdirection is of order nucleon As we have discussed in the last section, we define the

mass, the quarks are localized to withinM. The \igner distributions by the matrix elements of the Wigner
guantum-mechanical nature of the distribution becomes dis-

-
tinct because there are significant changes in the sign at digperators)/_\/+(r,l_< ) n the hadron states. I_n general, b(_acause
ferent spatial regions. of translational invariance, only the off-diagonal matrix ele-

It is also interesting to explore the distribution at negativeMeNts between nucleon states with finite momentum differ-

X. We show in Fig. Ztwo left panel the Wigner densities ences provide the 3D dependence. However, in the static

for the up quark in the proton fot —0.05 and—0.4. These models such as the MIT bag, the quark wave functions are

plots show significantly different pattern than those of thesolved in the rest frame of the nucleon which has no trans-

positivex. Finally, the two right panels we show the density lational invariance from start. With them, the Wigner distri-

for the down-quark in the proton. The essential features arputions can be calculated as the diagonal matrix elements of

quite similar to those of the up-quark densities. the Wigner operator for the model nucleon fixed at the origin
of the coordinates. For example,

B. The MIT bag model 1 d\
; R RN 'O W2 = o Y 7Y el — 1A+
The MIT bag model was invented more than a quarter of p+(r.x)= 2f ¢ (R=0[W[r—(\2)n"]y
a century agd56]. The model was motivated by the color R R
confinement property of QCD. Massless quarks are confined XW[r+(N2)n"]|R=0), (41
to a cavity of radiusRk, and move freely inside. The quark

wave function is ultrarelativistic and can be solved from the

free Dirac equation with spherical boundary conditions. Th%here|l§=0) represents the bag-model nucleorRat0 and
bag model has been used to calculate many static properti S=k+/p+ the lightcone momenta fraction of the proton car-
of the nucleon and has had many notable successes. Tn?d by the quarkn a light-light vector withn*=0n"

model can also be used to describe the excitation spectrum 0

; =1/p*,n, =0.
hadrong56]. The electromagnetic form factofS7] and par- e . . L
ton distributions have also been calculated for the bag quarli%(;{_he quark field has the following expansion in the bag

[58].
The bag model has been used to calculate the GPDs in
Ref. [49], where the boosted bag wave function has been

constructed using a simple prescription. In principle, one can  (r t)= > N(nK){ba(nKm)l//nKj=1/Zn(F,t)
perform a Fourier transformation of the GPDs to calculate n>0x=x1m
the bag-model Wigner distribution. T -

However, we choose a simpler way to calculate the +d,(NkM) ¢ j=1m(T 1}, (42)

Wigner distribution because the static bag has a fixed center.

In fact, we can calculate directly from the wave function of

quarks in the static nucleon just as in nonrelativistic quantunwherebz anddfx are the quark and antiquark creation opera-
mechanics. The rational for this is that assuming the GPD#ors in the bag, andN(n«) is a normalization factor. The
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x=0.10 x=0.33 x=0.50 x=0.90

1 ) . )

il -0.5 0 0.5 1 " =05 0 0.5 1 w3 =08 0 0.5 1 . 4 =0.5 0 0.5 1

FIG. 3. The phase-space charge dens'n;ﬁ,x) calculated in the bag model for values of Feynman momentef.1,0.33,0.5,0.9.

wave function are solved from the Dirac equation with thesistent with the finding that the bag model GPDs have a

bag boundary condition. Fgr=1/2 andk=—1, one has small ¢ dependence. For smaller and largerthe charge
. density can be negative. Aancreases, the distribution at the
'r//n,—l,% m(r,t) center of the bag becomes smaller.Afsirther increases, the
. density there becomes negative. Similar phenomena happens
[ wn—qlr] asx decreases. Because the bag boundary limits the distance
1 o Ro m . of the spatial correlation, the smalldistribution does not
= - e 'on-1tRo, grow significantly as seen in experimental data.
\/E > F ( wn,71| r | )
o] Ro Xm
(43

V. SUMMARY AND CONCLUSIONS

For the lowest mode, we hawe=1, andw, _,~2.04. In the In this paper, we have introduced the concept of quantum
above wave functiong is the 2x2 PaAU“ matrix,xm is the  phase-space distributions for the quarks and gluons in the
Pauli spinor, andR, is the bag radius: represents the unit nucleon. These distributions contain much more information

vector in ther direction, andj; are sphere Bessel functions. than conventional observables. In particular, various reduc-

Substitute the above wave function into E41), we find tions of the distribution lead to transverse-momentum depen-
the quark phase-space charge density dent parton distributions and generalized parton distribu-

tions.

Any knowledge on the GPDs can be immediately trans-
lated into the correlated coordinate and momentum distribu-
tions of partons. In particular, the GPDs can now be used to
visualize the phase-space motion of the quarks, and hence
allow studying the contribution of the quark orbital angular
momentum to the spin of the nuclediote that a separation
. . ay . "y of quarks’ spin and orbital angular momentum contributions
Hilio(r)ja(r2ar2—jo(r2)ja(r)rill, (44 s scheme dependent; the scheme dependence can be studied
. o B in perturbative QCO59].) In light of this, measurements of
whereCy is a flavor fa.ctor W'tm“_z,?ndcd_} forupand  Gpps andlor direct lattice QCD calculations of them will
down quarks, respectively. The position vectoyndr, are  provide a fantastic window to the quark and gluon dynamics

in the proton.

N2 [ d\
f oz _ iIN(X—o/MRg)
p(rX) Cf477f 2’

X{jo(r)jo(ra) +ia(r)ja(r)ra-ro

Al Al

r=r+— e, r,=r—— e’ (45
2 \Jop*

2\5p+ '

The above distribution satisfies the boundary constraint: In- We thank M. Burkardt and T. Cohen for many helpful

tegrating over yields the quark distribution function, while giscussions on the subject of the paper, and M. Diehl for
integrating overx gives the charge density of the quarks critical comments. We thank the Department of Energy’s In-
inside the nucleon. stitute for Nuclear Theory at the University of Washington

With p . (r,Xx), one can visualize the quark charge densityfor its hospitality during the program “Generalized parton
as the function ok. In Fig. 3, we have shown a sequence of distributions and hard exclusive processes” and the Depart-
densities atx=0.1,0.33,0.5, and 0.9. As the parton densityment of Energy for the partial support during the completion
indicates, the charge density is peaked aroxsd/3 where  of this paper. This work was supported by the U. S. Depart-
the distribution is roughly spherical symmetric. This is con-ment of Energy via Grant No. DE-FG02-93ER-40762.
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