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Quark imaging in the proton via quantum phase-space distributions
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We develop the concept of quantum phase-space~Wigner! distributions for quarks and gluons in the proton.
To appreciate their physical content, we analyze the contraints from special relativity on the interpretation of
elastic form factors, and examine the physics of the Feynman parton distributions in the proton’s rest frame.
We relate the quark Wigner functions to the transverse-momentum dependent parton distributions and gener-
alized parton distributions, emphasizing the physical role of the skewness parameter. We show that the Wigner
functions allow us to visualize quantum quarks and gluons using the language of classical phase space. We
present two examples of the quark Wigner distributions and point out some model-independent features.
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I. INTRODUCTION

In exploring the microscopic structure of matter, there
two frequently used approaches. First, the spatial distribu
of matter ~or charge! in a system can be probed throug
elastic scattering of electrons, or photons, or neutrons,
The physical quantity that one measures is the elastic f
~structure! factors which depend on three-momentum tra
fer to the system. The Fourier transformation of the fo
factors provides direct information on the spatial distrib
tions. The well-known examples include the study of cha
distribution in an atom and the atomic structure of a crys
The second approach is designed to measure the popul
of the constituents as a function of momentum, or the m
mentum distribution, through knock-out scattering. Here
well-known examples include the nucleon distributions
nuclei measured through quasielastic electron scattering,
the distribution of atoms in a quantum liquid probed throu
neutron scattering. The scattering cross section somet
depends on the reaction dynamics which must be unders
before the momentum distribution can be extracted.

Both approaches are complementary, but bear sim
drawbacks. The form factor measurements do not yield
information about the underlying dynamics of the syst
such as the speed of the constituents, whereas the mome
distribution does not give any information on the spatial
cation of the constituents. More complete information ab
the microscopic structure lies in the correlation between
momentum and coordinate spaces, i.e., to know where a
ticle is located and, at the same time, with what velocity
travels. This information is certainly attainable for a classi
system for which one can define and study the phase-s
distribution of the constituents. For a quantum mechan
particle, however, the notion of a phase-space distribu
seems less useful because of the uncertainty principle. N
theless, the first phase-space distribution in quantum
chanics was introduced by Wigner in 1932@1#, and many
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similar distributions have been studied thereafter. These
tributions have been used for various purposes in very
verse areas such heavy-ion collisions, quantum molec
dynamics, signal analysis, quantum information, optics,
age processing, nonlinear dynamics, etc.@2#. In certain cases
the Wigner distributions can even be measured directly
experiments@3–5#, providing much information about the
dynamics of a system.

The main interest of this paper is about the internal str
ture of the proton~or neutron!, for which the underlying
fundamental theory is quantum chromodynamics~QCD!.
With some changes to accommodate the relativistic natur
the problem, both experimental approaches alluded to ab
have been successfully used to unravel its quark and g
structure: The elastic form factors of the proton have be
measured since the 1950s and, at low-momentum tran
(< nucleon massMN) where the nucleon recoil effects ar
small, the three-dimensional~3D! Fourier transformation of
these form factors can be interpreted as spatial charge
current distributions of quarks@6#. Feynman parton distribu
tions, measurable in high-energy inelastic scattering suc
deep-inelastic scattering~DIS! and Drell-Yan process, have
simple interpretation as the momentum distributions of
quarks and gluons in the infinite momentum frame~IMF!
@7#. However, the notion of correlated position and mome
tum distributions of quarks and gluons has not been syst
atically investigated in the field, although it is clear that t
physics of a phase-space distribution must be very rich.

In this paper, we explore to what extent one can constr
physically interesting and experimentally measurable pha
space distributions in QCD, and what information it conta
about the QCD parton dynamics.~A brief account of some of
the results can be found in Ref.@8#, see also@9#.! To facilitate
the construction, we examine the uncertainty in the tra
tional interpretation of electromagnetic form factors due
relativity, and analyze the physical content of the Feynm
parton distributions in the rest frame of the proton. We th
introduce the phase-space Wigner distributions for the qua
and gluons in the proton, which contain most general o
body information of partons, corresponding to the full on
body density matrix in technical terms. After integrating ov
the spatial coordinates, one recovers the familiar transve
©2004 The American Physical Society14-1
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momentum dependent parton distributions@10#. On the other
hand, some reduced version of the distributions is rela
through a specific Fourier transformation, to the generali
parton distributions~GPDs! which have been studied exten
sively in the literature in recent years@11–17#. Roughly
speaking, a GPD is a one-body matrix element which co
bines the kinematics of both elastic form factors and Fe
man parton distributions, and is measurable in hard exclu
processes. Therefore, the notion of phase-space distribu
provides a new 3D interpretation of the GPDs in the r
frame of the proton. There are other interpretations of
GPD in the literature which are made in IMF and impa
parameter space@18–22#.

The presentation of the paper is as follows. In Sec. II,
examine the constraints on the physical interpretation of
form factors and parton distributions from relativistic effec
anticipating their extension to a full phase-space distributi
In Sec. III, we first briefly summarize the main features o
quantum mechanical Wigner distribution, then introduce
quantum phase-space distributions for the quarks and glu
in a rest-frame proton. In Sec. IV, we exhibit the spatial 3
images of quarks generated from slicing the quantum ph
space~Wigner! distributions at different Feynman mome
tum and comment on their general features. Section V c
tains the summary and conclusion.

II. RELATIVITY CONSTRAINT ON INTERPRETATION
OF FORM FACTORS AND PARTON DISTRIBUTIONS

In the literature, the quantum phase-space distributi
have been mostly applied to nonrelativistic systems. For
proton, however, relativity is essential. In measuring the e
tic form factors of the proton, the momentum transfer to
system can easily exceed the rest mass, resulting a
recoil and Lorentz contraction. The quarks and gluons ins
the proton follow relativistic dynamics. Moreover, when
quark is struck in a DIS experiment, it travels along t
lightcone: the trajectory of an extreme-relativistic partic
Therefore, to develop a phase-space distribution of the
ton, we must examine to what extent the notion actua
makes sense for relativistic systems.

In the first subsection, we examine the textbook interp
tation of the electromagnetic form factors of the proton,
minding the reader that there are intrinsic ambiguities in
interpretation. We emphasize, however, that different w
of the interpreting the form factors can be regarded as dif
ent choices of schemes. When used consistently, one sch
is in principle as good as any other. The degree of sche
dependence depends on the parameter 1/(MR), whereM is
the mass andR is some kind of radius; the parameter is 1
for the proton.

In the second subsection, we consider the Feynman pa
distributions, most-commonly interpreted as the moment
densities in IMF. Since the notion of a phase-space distr
tion is meant for a proton in its rest frame, and since
distribution should be reduced to the Feynman distribut
after integrating out the spatial coordinates, we are co
pelled to examine the physics of latter in the static system
coordinates. In particular, we need to understand the m
07401
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ing of Feynman momentumx in that context. This can be
achieved by introducing the so-called spectral function—
correlated momentum and energy distribution of t
constituents—familiar in nonrelativistic many-body physic
In the process, we find that the separation between par
and antiparticle, familiar in the IMF, disappears: One c
only keep track of the creation and annihilation of fermi
quantum numbers, such as the electric charge.

A. The proton form factors and scheme-dependent charge
distributions

The electromagnetic form factors are among the first m
sured and mostly studied observables of the nucleon. T
are defined as the matrix elements of the electromagn
current between the nucleon states of different fo
momenta. Because the nucleon is a spin one-half particle
matrix element defines two form factors

^p2u j m~0!up1&5Ū~p2!H F1~q2!gm1F2~q2!
ismnqn

2MN
J U~p1!,

~1!

whereF1 andF2 are the well-known Dirac and Pauli form
factors, respectively, depending on the momentum tran
q5p22p1, and U(p) is nucleon spinor normalized a
Ū(p)U(p)52MN .

Since the beginning, it has been known that the phys
interpretation of the nucleon form factors is complicated
relativistic effects@23#. Consider a system of sizeR and mass
M. In relativistic quantum theory, the system cannot be
calized to a precision better than its Compton wavelen
1/M . Any attempt to do this with an external potential w
result in creation of particle-antiparticle pairs. As a cons
quence, the static size of the system cannot be defined
precision better than 1/M . If R@1/M , which is the case for
all nonrelativistic systems, the above is not a significant c
straint. One can probe the internal structure of the sys
with a wavelength (1/uqW u) comparable to or even muc
smaller thanR, but still large enough compared to 1/M so
that the probe does not induce an appreciable recoil. A fam
iar example is the hydrogen atom for whichRMH
;MH /(meaem);105, and the form factor can be measure
through electron scattering with momentum transferuqW u
!MH .

When the probing wavelength is comparable to 1/M , the
form factors are no longer determined by the internal str
ture alone. They contain also the dynamical effects of L
entz boosts because the initial and final protons have dif
ent momenta. In relativistic quantum theory, the bo
operators involve nontrivial dynamical effects which res
in the nucleon wave function being different in differe
frame ~in the usual instant form of quantization!. Therefore
in the regionuqW u;M , the physical interpretation of the form
factors is complicated because of the entanglement of
internal and the center-of-mass motions in relativistic d
namics. In the limituqW u@M , the former factors depend a
most entirely on the physical mechanism producing the ov
4-2
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QUARK IMAGING IN THE PROTON VIA QUANTUM . . . PHYSICAL REVIEW D 69, 074014 ~2004!
all change of the proton momentum. The structural eff
involved is a very small part of the nucleon wave functi
~usually the minimal Fock component only!.

For the nucleon,MNRN;4. Although much less certain
than in the case of the hydrogen atom, it seems still sens
to have a rest-frame picture in terms of the electromagn
form factors, so long as one keeps in mind that equally j
tified definitions of the nucleon sizes can differ b
;1/MN(RNMN). For example, the traditional definition o
the proton charge radius in terms of the slope of the Sa
form factor GE(q2) is 0.86 fm. On the other hand, if on
uses the slope of the Dirac form factorF1 to define the
charge radius, one gets 0.79 fm, about 10% smaller.
form factors atuqW u>MN;1 GeV cannot be interpreted a
information about the internal structure alone.

To further clarify the uncertainty involved in the interpr
tation of the electromagnetic form factors, let us review
textbook explanation offered originally by Sachs@6#. To es-
tablish the notion of a static~charge! distribution, one needs
to create a wave packet representing a proton localizedRW

uRW &5E d3pW

~2p!3
eipW •RW C~pW !upW &, ~2!

where the plane-wave stateupW & is normalized in a
relativistic-covariant manner̂ pW 2upW 1&52EpW 1

(2p)3d (3)(pW 1

2pW 2), andC(pW ) is the momentum space profile normaliz
as 2*d3pW EpW uC(pW )u25(2p)3. The wave packet is not a
eigenstate of the free Hamiltonian. Therefore, as ti
progresses, the wave packet will spread. The character
spreading time is proportional tôMN /pW 2& which is long for
a nonrelativistic system. But for a relativistic particle, t
spread could happen much faster compared to the chara
istic time scale of a weakly interacting probe.

Having localized the wave packet atRW 50, we can calcu-
late, for example, the charge distribution in the wave pac

r~rW !5^RW 50u j 0~rW !uRW 50&, ~3!

where rW measures the relative distance to the centerRW 50.
Taking its Fourier transform, one gets

F~qW ![E d3rWeiqW •rWr~rW !

5E d3pW

~2p!3
C* ~pW 1qW /2!C~pW 2qW /2!

3^pW 1qW /2u j 0~0!upW 2qW /2&, ~4!

where we have changed the momentum integration variab
with pW representing the average momentum of the initial a
final protons. It is important to point out that the resoluti
momentumqW is now linked to the difference in the initial an
final state momenta. In nonrelativistic quantum systems,
cause of the large masses, the momentum transfer ca
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little change in velocity, and hence the initial and final sta
have practically the same intrinsic wave functions. In re
tivistic systems, this is the origin of the difficulty in inter
preting the form factor: we do not have a matrix eleme
involving the same intrinsic proton state.

To remove the effects of the wave packet, the necess
condition onC(pW ) is that the coordinate-space size of t
wave packet must be much smaller than the system
udrWu!RN . Furthermore, the probing wave length, or reso
tion scale, must also be large compared with the size of
wave packetdrW;1/pW !1/qW . Then one can ignoreqW depen-
dence inC, so thatC(pW 6 1

2 qW )'C(pW )

F~qW !5E d3pW

~2p!3
uC~pW !u2^pW 1qW /2u j 0~0!upW 2qW /2&. ~5!

On the other hand, to be insensitive to the antiparticle
grees of freedom, the size of the wave packet must be la
than the proton Compton wave lengthudrWu@1/MN . In the
momentum space this corresponds to restrictions on
menta allowed in the wave packetupW u!MN . Therefore the
combined constraint on the wave packet profile is 1/RN

!uqW u!upW u!MN . The extreme limit of the last inequality
yields a wave packet with a zero-momentum nucleon

uC~pW !u25
~2p!3

2MN
d (3)~pW !, ~6!

which gives

2MNF~qW !5^qW /2u j 0~0!u2qW /2&. ~7!

This is the matrix element of the charge density in the Br
frame, and is 2MNGE(t)w2* w1 where

GE~ t !5F1~ t !1
t

4MN
2

F2~ t ! ~8!

is the Sachs electric form factor (t52qW 2) and the Weyl
spinors involved are normalized conventionally byw* w
51. Hence, we arrive at the textbook interpretation ofGE as
a Fourier transformation of the proton charge distribution

Likewise, the Sachs magnetic form factorGM(t)5F1(t)
1F2(t) is obtained from the Breit frame matrix element
the electric current

^qW /2u jW~0!u2qW /2&52i @sW3qW #GM~ t !, ~9!

where the three-vector of spin issW5w2*
1
2 sW w1.

It must be pointed out that the charge and magnetiza
distributions thus defined contains the Lorentz contract
effects along the photon directionqW whenqW 2@4MN

2 , which
make the proton look like a pancake. Various prescriptio
exist in the literature which have been proposed to rem
the relativity effects and extract the ‘‘intrinsic’’ charge
4-3
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magnetization distributions from the experimental data@24–
26#. However, it is difficult to accomplish it in a mode
independent way.

Since relativity makes the interpretation of the elect
magnetic form factors nonunique, the best one can do i
choose one particular interpretation and work consisten
For example, when extracting the proton charge radius fr
the Lamb shift measurements, one shall use the same de
tion as from the electric form factor. The most frequen
used definition is that of Sachs, but other schemes
equally good and the scheme dependence disappears i
limit MR→`. This is very similar to the renormalizatio
scheme dependence of parton densities due to radiative
rections at finite strong coupling constantas: Although the
MS scheme is the most popular in the literature, one can
the parton densities in any other scheme to correlate phy
observables. In this paper, we adopt the Sachs interpreta
of the form factors.

Relativistic corrections and Lorentz contraction effects
the transverse dimensions are found to disappear in an
@19#. There the proton has an infinitely large effective ma
and hence for the interpretation of the form factors in
transverse dimensions, we are back to the nonrelativ
case. In particular, one can localize the proton in the tra
verse coordinate space with no recoil corrections. The D
form factorF1 is found to be related to the charge distrib
tion in transverse plane, with information along thez axis
integrated. The price one pays for eliminating the relativis
effects is the loss of a spatial dimension.

B. Parton distributions as seen in the rest frame of the proton

Parton distributions were introduced by Feynman to
scribe deep-inelastic scattering@7#. They have the simples
interpretation in the IMF as the densities of partons in
longitudinal momentumx. In QCD, the quark distribution is
defined through the matrix element

q~x!5
1

2p1E dl

2p
eilx^puC̄~0!g1C~ln!up&, ~10!

where we have used the standard lightcone notationp6

5(p06p3)/A2, andnm is a vector along the direction o
(1,0,0,21) andn•p51. C is a quark field with an associ
ated gauge link extending from the position of the quark
infinity along the light cone, and hence is gauge-invarian
nonsingular gauges. The renormalization scale dependen
implicit. In lightcone quantization@27#, it is easy to get

q~x!ux.0

5
1

2x (
l5↑↓

E d2kW'

~2p!3

^publ
†~k1,kW'!bl~k1,kW'!up&

^pup&
,

q~x!ux,0

5
21

2x (
l5↑↓

E d2kW'

~2p!3

^pudl
†~k1,kW'!dl~k1,kW'!up&

^pup&
,

~11!
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where b† and d† are creation operators of a quark and
antiquark, respectively, with longitudinal momentumk1

[xp1 and transverse momentumkW' . The interpretation as
parton densities is then obvious.

To construct the quantum phase-space distributions for
quarks, we need an interpretation of the Feynman dens
in the rest frame. This is because the IMF involves a Lore
boost along thez direction which destroys the rotationa
symmetry of the 3D space. However, if one works in the r
frame of the proton, the two quark fields in Eq.~10! are not
at the same time. If one Fourier-expands one of the field
terms of quark creation and annihilation operators, the ot
must be determined from Heisenberg equation of moti
The result is that the bilinear quark operator takes a v
complicated expression in terms of the creation and ann
lation operators in the equal-time quantization.

The physics of the Feynman quark distribution in the r
frame is made more clear through the notion of the spec
function

S~k!5
1

2p1E d4jeik•j^puC̄~0!g1C~j!up&, ~12!

which is the dispersive part of the single-quark Green’s fu
tion in the proton. The physical meaning ofS(k) can be seen
from its spectral representation

S~k!5(
n

~2p!4d (4)~p2k2pn!

3^puC̄kun&g1^nuC~0!up&/2p1

;(
n

~2p!4d (4)~p2k2pn!u^nuCk1up&u2,

~13!

where Ck is a Fourier transformation ofC(j): It is the
probability of annihilating a quark~or creating an antiquark!
of four-momentumk ~three-momentumkW and the off-shell
energyE5k0) in the nucleon, leading to an ‘‘on-shell’’ stat
of energy-momentumpn5p2k. The quark here is off shel
because ifpn andp are both ‘‘on shell,’’k2Þmq

2 in general.
~That the partons are off-shell are in fact also true in the IM
calculations.! Of course, in QCDun& is not in the Hilbert
space, but the spectral function itself is still a meaning
quantity.

Since the quarks are ultrarelativistic,Ck contains both
quark and antiquark Fock operators. One cannot in gen
separate quark and anti-quark contributions, unlike in
nonrelativistic systems in which only the particle or antipa
ticle contribute. In fact, if one expands the above express
one finds pair creations and annihilation terms. However,
is also true for the charge density discussed in the prev
subsection. Therefore we can speak ofS(k) as a distribution
of vector charges and currents, but not a particle density
nuclear physics where the nonrelativistic dynamics do
nates, the nucleon spectral function in the nucleus is posi
definite and can be regarded as a particle density. The nuc
4-4
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spectral function is directly measurable through pick-up a
knock-out experiments, in whichE andkW are called the miss
ing energy and missing momentum, respectively~see for ex-
ample, Ref.@28#!.

It is now easy to see that in the rest frame of the prot
the Feynman quark distribution is

q~x!5A2E d4k

~2p!4
d~k01kz2xMN!S~k!. ~14!

The x variable is simply a special combination of the o
shell energyk0 and momentumkz. The parton distribution is
the spectral function of quarks projected along a special
rection in the four-dimensional energy-momentum spa
The quarks with differentk0 andkz can have the samex, and
moreover, the bothx.0 andx,0 distributions contain con
tributions from quarks and antiquarks.

To summarize, in the proton rest frame, the quarks
naturally off-shell, and hence have a distribution in the fo
dimensional energy-momentum space. The Feynman di
bution comes from a reduction of the full distribution along
special direction.

III. QUANTUM PHASE-SPACE „WIGNER …

DISTRIBUTIONS

In classical physics, a state of a particle is specified by
position rW and momentumpW . In a gas of classical particles
the single-particle properties are described by a phase-s
distribution f (rW,pW ) representing the density of particles at
phase-space point (rW,pW ). Time evolution of the distribution
is governed by the Boltzmann equation, or Liouville equ
tion if the particles are not interacting.

In quantum mechanics, position and momentum opera
do not commute and hence, in principle, one cannot
about a joint momentum and position distribution of pa
ticles. Indeed the quantum mechanical wave functions
pend on either spatial coordinates or momentum, but ne
both. Nonetheless, Wigner introduced the first quant
phase-space distribution just a few years after quantum
chanics was formulated@1#. It is not positive definite and
hence cannot be regarded as a probability distribution. H
ever, it reduces to the positive-definite classical phase-sp
distribution in\→0 limit. The sign oscillation in the phas
space is necessary to reproduce quantum interference.
Wigner distribution contains the complete single-particle
formation about a quantum system~equivalent to the full
single-particle density matrix!, and can be used to calcula
any single-particle observable through classical-type ph
space averages.

In this section, we first remind the reader some basic f
tures of the quantum phase-space~Wigner! functions. We
then generalize the concept to the relativistic quarks and
ons in the proton. With the preparation in Sec. II, the co
struction is straightforward. However, the most gene
phase-space distribution we define is not measurable
present, and hence we proceed to make reductions by
grating out some dependent variables. After integrating
07401
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the spatial coordinates, we recover the transverse-momen
dependent parton distributions@10#. Upon integrating over
the parton transverse momentum, we have the redu
Wigner distributions depending on 3-space coordinates
Feynman momentumx, which are related to the GPDs by
simple Fourier transformation. Therefore, the reduced qu
tum phase-space distributions are physical observables.

A. General aspects of Wigner distributions

There is a vast literature on the quantum phase-space
tributions, and the Wigner distributions in particular. In th
subsection, we would like to summarize some of the sali
features.

Suppose we have a one-dimensional quantum mecha
system with wave functionc(x), the Wigner distribution is
defined as

W~x,p!5E dheiphc* ~x2h/2!c~x1h/2!, ~15!

where we have set\51. When integrating out the coordi
nate x, one gets the momentum densityuc(p)u2, which is
positive definite. When integrating outp, the positive-
definite coordinate space densityuc(x)u2 follows. For arbi-
trary p andx, the Wigner distribution is not positive definit
and does not have a probability interpretation. Nonethel
for calculating the physical observables, one can just t
averages over the phase space as if it is a classical dist
tion

^Ô~x,p!&5E dxdpW~x,p!O~x,p!, ~16!

where the operators are ordered according to the Weyl a
ciation rule. For a single-particle system, the Wigner dis
bution contains everything there is in the quantum wa
function. For a many-body system, the Wigner distributi
can be used to calculate the averages of all one-body op
tors. Sign changes in the phase-space are a hint that it ca
nontrivial quantum phase information.

In the classical limit, the Wigner distribution is expecte
to become classical phase-space distribution. For syst
which are statistical ensembles, the limit\→0 is often well
behaved. For example, for an ensemble of harmonic osc
tors at finite temperature, the Wigner distribution becom
the classical Boltzmann distribution as\→0, see, e.g., Ref
@29#. The Wigner distribution for thenth excited state of the
one-dimensional harmonic oscillator of energyEn5\v(n
1 1

2 ) is @30#

Wn~p,x!5
~21!n

p\
e22H/(\v)LnS 4H

\v D , ~17!

where H stands for the HamiltonianH(p,x)5p2/(2m)
1mv2x2/2 and Ln is the nth Laguerre polynomial. In the
quasiclassical limit—vanishing Planck constant and la
quantum numbers—the oscillator Wigner distribution tur
into the generalized distribution resided on the classical
jectoriesE`5fixed,
4-5
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lim
\→0, n→`

Wn~p,x!;d@H~p,x!2E`#. ~18!

Phase-space averaging with this kernel is equivalent to
culating observables using classical equations of mot
This can be easily understood from the semiclassical form
the wave function

c~x!5C~x!eiS(x)/\. ~19!

Substituting this into Eq.~15! and expandingS to the first
order in\, one gets the quasiclassical Wigner distribution

W~p,x!5uCu2dS p2
]S~x!

]x D , ~20!

where the argument of thed function describes a family o
classical paths.

The quantum-mechanical Wigner distribution is meas
able. The actual measurement has been performed for a
plest quantum system—the quantum state of a light mod~a
pulse of laser light of given frequency!—employing ideas of
Vogel and Risken@3#. It was extracted via the method o
homodyne tomography@4# by measurement of a margina
observable and subsequent reconstruction by the inverse
don transformation. Recently this Wigner distribution h
been measured directly by means of the photon coun
techniques based on a Mach-Zender interferometric sch
@5#.

Other versions of the phase-space distributions are
sible. They are all members of the so-called Cohen c
@31#, with Husimi and Kirkwood distributions@32# being its
well-known representatives. The Husimi distribution is
smeared version of the Wigner distribution defined by p
jection of the wave function on the coherent state~Gaussian
wave packet!

H~ p̄,x̄!5E dp8dx8W~p8,x8!Wcoh~p82 p̄,x82 x̄!,

which is real and positive definite. On the other hand,
Kirkwood function is complex. All these distributions ar
expected to reduce to the same phase-space distributio
the \→0 limit.

B. Quantum phase-space quark distributions in the proton

In this subsection, we generalize the concept of pha
space distributions to relativistic quarks and gluons in
proton. In quantum field theory, the single-particle wa
function must be replaced by quantum fields, and hence
natural to introduce the Wigner operator

ŴG~rW,k!5E d4heik•hC̄~rW2h/2!GC~rW1h/2!, ~21!

whererW is the quark phase-space position andk the phase-
space four-momentum conjugated to the spacetime sep
tion h. G is a Dirac matrix defining the types of quark de
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sities because the quarks are spin-1/2 relativistic partic
Depending on the choice ofG, we can have vector, axia
vector, or tensor density.

Since QCD is a gauge theory, the two quark fields
different spacetime points are not automatically gauge
variant. One can define a gauge-invariant quark field by a
ing a gauge link to the spacetime infinity along a const
four-vectornm,

C~h!5expS 2 igE
0

`

dln•A~ln1h! Dc~h!, ~22!

where we assume the nonsingular gauges in which the ga
potential vanish at the spacetime infinity@33–37#. Clearly,
the Wigner operator depends on the choice ofnm. While
theoretically anynm is possible, experimentallynm is con-
strained by the probes.

We have extended the Wigner distribution to including t
time variable. Therefore, in addition to the dependence
the 3-momentum, there is also a dependence on the en
For the bound states in a simple system such as those
simple harmonic oscillator, the energy dependence isd
function at the binding energies. For many-body syste
however, the energy dependence is more complicated,
reflects the distribution of the states after one particle is
moved from the system.

For nonrelativistic systems for which the center-of-ma
is well defined and fixed, one can define the phase-sp
distributions by taking the expectation value of the abo
Wigner operators in theRW 50 state. For the proton for which
the recoil effect cannot be neglected, the rest-frame s
cannot be uniquely defined, as discussed in Sec. II. Here
follow Sachs, defining a rest-frame matrix element as tha
the Breit frame, averaging over all possible 3-moment
transfers. Therefore, we construct the quantum phase-s
quark distribution in the proton as

WG~rW,k!5
1

2MN
E d3qW

~2p!3
^qW /2uŴG~rW,k!u2qW /2&

5
1

2MN
E d3qW

~2p!3
e2 iqW •rW^qW /2uŴG~0,k!u2qW /2&,

~23!

where the plane-wave states are normalized relativistica
The most general phase-space distribution depends onseven
independent variables.

The only way we know how to probe the single-partic
distributions is through high-energy processes, in which
light-cone energyk25(k02kz)/A2 is difficult to measure,
where thezaxis refers to the momentum direction of a prob
Moreover, the leading observables in these processes ar
sociated with the ‘‘good’’ components of the quark~gluon!
fields in the sense of light-cone quantization@27#, which can
be selected byG5g1, g1g5 or s1' where g15(g0

1gz)/A2. The direction of the gauge link,nm, is then deter-
mined by the trajectories of high-energy partons travel
4-6
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along the lightcone (1,0,0,21) @36,37#. Therefore, from now
on, we restrict ourselves to the reduced Wigner distributi
by integrating outk2,

WG~rW,kW !5E dk2

~2p!2
WG~rW,k!, ~24!

with a lightcone gauge link is now implied. Unfortunatel
there is no known experiment at present capable of mea
ing this 6-dimensional distribution which may be called t
‘‘master’’ or ‘‘mother’’ distribution.

Further phase-space reductions lead to measurable q
tities. Integrating out the transverse momentum of parto
we obtain a 4-dimensional quantum distribution

f̃ G~rW,k1!5E d2kW'

~2p!2
WG~rW,kW !

5
1

2MN
E d3qW

~2p!3
e2 iqW •rWE dh2

2p

3eih2k1
^qW /2uC̄~2h2/2!GC~h2/2!u2qW /2&.

~25!

The matrix element under the integrals is what defines
GPDs. More precisely, if one replacesk1 by Feynman vari-

able xp1 (p15Eq /A2, proton energyEq5AM21qW 2/4)
andh2 by l/p1, the reduced Wigner distribution becom
the Fourier transformation of the GPDFG(x,j,t)

f G~rW,x!5
1

2MN
E d3qW

~2p!3
e2 iqW •rWFG~x,j,t !. ~26!

In the present context, the relation between kinematic v
ables arej5qz/(2Eq) and t52qW 2. Taking G5A2g1, the
corresponding GPD has the expansion@12#

Fg1~x,j,t !5E dl

2p
eilx^qW /2uc̄~2ln/2!LA2g1c~ln/2!

3u2qW /2&

5H~x,j,t !Ū~qW /2!A2g1U~2qW /2!

1E~x,j,t !Ū~qW /2!
is1 iqi

A2M
U~2qW /2!, ~27!

whereL is the shorthand for the lightcone gauge link.
The phase-space functionf g1(rW,x) can be used to con

struct 3D images of the quarks for every selected Feynm
momentumx in the rest frame of the proton. These imag
provide the pictures of the proton seen through the Feynm
momentum~or ‘‘color’’ or x) filters. They also may be re
garded as the result of a quantum phase-space tomograp
the proton. We remind the reader again that the Feynm
momentum in the rest-frame sense is a special combina
of the off-shell energy and momentum alongz, namely,E
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1kz. Integrating over thez coordinate, the GPDs are set
j;qz50, and the resulting two-dimensional densi
f g1(rW' ,x) is just the impact-parameter-space distributi
@19#. Further integration overrW' recovers the usual Feynma
parton distribution.

The physical content of the above distribution is furth
revealed by examining its spin structure. Working out t
matrix element in Eq.~27!,

1

2MN
Fg1~x,j,t !5@H~x,j,t !2tE~x,j,t !#

1 i @sW3qW #z
1

2MN
@H~x,j,t !1E~x,j,t !#,

~28!

wheret5qW 2/4MN
2 . The first term is independent of the pro

ton spin, and is considered as the phase-space charge de

r1~rW,x!5E d3qW

~2p!3
e2 iqW •rW@H~x,j,t !2tE~x,j,t !#.

~29!

The second term depends on the proton spin and can
regarded as the third component of the phase-space ve
current

j 1
z ~rW,x!5E d3qW

~2p!3
e2 iqW •rWi @sW3qW #z

1

2MN

3@H~x,j,t !1E~x,j,t !#. ~30!

The E term generates a convection current due to the orb
angular momentum of massless quarks and vanishes w
all quarks are in thes orbit. The physics in separatingf g

1 into
r1 and j 1

z can be seen from the Dirac matrixg1 selected by
the high-energy probes, which is a combination of time a
space components. Because the current distribution ha
spherical symmetry, the quark charge seen in the infinite m
mentum framer11 j 1

z is deformed in the impact paramete
space@38#. This is the kinematic effect of Lorentz boost.

Integrating the phase-space charge distributionr1(rW,x)
over x, one recovers the spherically symmetric charge d
sity in space. On the other hand, if integrating overx in
j 1
z (rW,x), one obtains the electric current density. In the lat

case, if the integral is weighted withx, one obtains the me
chanical momentum density@8#.

Finally, when integrating overrW in the reduced Wigner
distributions in Eq. ~24!, one obtains the transverse
momentum dependent parton distributions

q~x,kW'!5
MN

A2p1E d3rW

~2p!2
W1~rW,kW !. ~31!

There is a lot of interesting physics associated with th
distributions which has been discussed recently in the lite
ture. For instance, in a transversely polarized proton,
quark momentum distribution has an azimuthal angular
4-7
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pendence@39–41#. The so-called Siver’s function can pro
duce a novel single-spin asymmetry in deep-inelastic sca
ing. We will not pursue this topic here, except emphasiz
that they have the same generating functions as the GP

IV. THREE-DIMENSIONAL IMAGES OF THE QUARKS
IN THE PROTON

Once the GPDs are extracted from experimental data
lattice QCD calculations@43–46#, the phase-space distribu
tions can be obtained by straightforward Fourier transform
tions. Without first-hand knowledge on the GPDs at pres
we may be able to learn some general features of the ph
space distributions form GPD models.

The GPDs have been parametrized directly to satisfy v
ous constraints@15,17,47#, including ~1! the first moments
reducing to the measured form factors,~2! the forward limit
reproducing the Feynman parton distributions,~3! the x mo-
ments satisfying the polynomiality condition@14#, and ~4!
the positivity conditions@48#. In the first subsection, we in
troduce a new parametrization without assuming factori
dependence on thet and other variables.

The GPDs were first calculated in a realistic nucle
model—the MIT bag model@49#. They have also been ca
culated in the chiral-quark soliton model@50,51#. Recently,
there are calculations in the quark models as well@52,53#. In
the second subsection, we will consider the Wigner distri
tions in the bag model.

A. A GPD parametrization

A generalized parton distributions depend on three v
ablesx, j, and t. The simplest way to satisfy the polynom
ality condition is to relate it to a double distribution@11,42#
and theD term @50#

H~x,j,t !5E
21

1 dy

j
J~yux,j!FS y,

x2y

j
,t D

1u~j.uxu!DS x

j
,t D . ~32!

The ‘‘step-function’’ kernel in Eq.~32! has the form

J~yux,j!5u~x.j!uS x1j

11j
>y>

x2j

12j D
1u~2j.x!uS x1j

12j
>y>

x2j

11j D
1u~j.uxu!uS x1j

11j
>y>

x2j

11j D .

The q-flavor double distributionFq5Fq
val1Fq

sea, including
both valence and sea, can be related to the nonforward q
distribution f q(y,t) through a profile functionp(y,z,b)

Fq
val~y,z,t !5 f q

val~y,t !u~y!p~ uyu,z;bval!, ~33!
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Fq
sea~y,z,t !5@ f̄ q~y,t !u~y!2 f̄ q~2y,t !u~2y!#

3p~ uyu,z;bsea!, ~34!

where att50 the functionf q(y,t50) reduces to the conven
tional parton distribution functions. The profile function wit
a single parameterb is assumed to be universal for valenc
and sea-quark species, and reads@42#

p~y,z;b!5
G~b13/2!

ApG~b11!

@~12y!22z2#b

~12y!2b11
. ~35!

To proceed further, we design a nonfactorized ans
@21,15,38# for the functionsf q(y,t) with intertwinedt andy
dependence. This is opposed to a factorized form of GP
with completely disentangled dependence of the momen
transfert and scaling variables (x,j). The latter is currently
accepted in almost all evaluations of physical observab
@17,47,54#. Due to a limited kinematical coverage in th
t-channel momentum transfert in experiments, theoretica
estimates confronted to data are currently insensitive to
feature. Our model will be based on the GRV leading ord
quark distributions@55# with discarded flavor asymmetry o
the sea and it reads

f u
val~y,t !51.239y2av2av8(12y)1/2t~121.8Ay19.5y!

3~12y!2.72,

f d
val~y,t !50.761y2av~2y2av8(12y)1/2t2y2bv8(12y)t!

3~121.8Ay19.5y!~12y!3.62, ~36!

f̄ u~y,t !5 f̄ d~y,t !50.76y2as2as8(12y)3/2t

3~123.6Ay17.8y!~12y!9.1.

These models naturally reduce to the quark form factors w
the dipole parametrization of proton and neutron Sachs fo
factors. The valenced-quark function has a more compl
cated structure since the corresponding form factorF1

d has a
node at utu'4M2/u2kn1kp11u: it is positive below this
value and is negative above it. The Regge intercepts
slope parameters are taken as

av50.52, av851.1 GeV22, bv851.0 GeV22,

as50.85, as850.3 GeV22. ~37!

The valence quarks Regge parameters are numerically c
to the ones ofr-Reggeons, while the sea quarks being ge
erated by gluon radiation are analogous to the one of
Pomeron. The form factor asymptotics at larget is governed
by the large-y behavior off (y,t). If the latter has the form
f (y,t);y2a2a8(12y)pt(12y)N then the corresponding form
factor is F(t→`);utu2(N11)/(p11). The perturbative QCD
asymptotics for valence quarks requiresp51. We use, how-
ever, p51/2 for them since this value fits better the for
factor at small and moderatet. For p51 one can get a decen
4-8
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FIG. 1. Theu-quark phase-space charge distribution at different values of the Feynman momentum for the nonfactorizable a

generalized parton distributions~36!. The vertical and horizontal axes correspond toz andurW'u, respectively, measured in femtometers. T
~dashed! contours separate regions of positive~darker areas! and negative~lighter areas! densities. Below each contour plot we presented
shape of three-dimensional isodensity contours (r5const).
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behavior at moderatet with au851.6 GeV2. We use in our
estimatesbval5bsea51. TheD term is parametrized as

D~z,t !5S 12
t

mD
2 D 23

~12z2!@d0C1
3/2~z!1•••#, ~38!

with the mass scalemD
2 50.6 GeV2 and the parameterd0

computed within thexQSM @15,51# and on the lattice
@45,46# with the results

d0
xQSM524.0

1

Nf
, d0

latt5d0
u'd0

d'20.5, ~39!

respectively, whereNf is the number of active flavors. In th
lattice case, the effect of disconnected diagrams was not
culated, however, they are known to produce a sizable n
tive contribution@44#. Once the latter are properly taken in
account the lattice result might approach the model calc
tion. For our present estimate we chose an intermediate v
d0521.0.
07401
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According to the previous section, the phase-space ch
distributionr1(rW,x) is just the Fourier transformation of th
above GPDs,

r1
q ~rW,x!5E d3qW

~2p!3
e2 iqW •rWHq~x,j,t !, ~40!

wherej5qz/2Eq , Eq5AM21qW 2/4, and t5qW 2. In the fol-
lowing, we consider the result of the quark densities from
above parametrization.

In Fig. 1 we show the up-quark charge distributions c
culated from Hu(x,j,t) for various values of x
5$0.01,0.4,0.7%. While the intensity of the plots indicate
the magnitude of the positive distribution, the lighter are
below the ground-zero contours indicate negative valu
The plots show significant change in the distribution on
longitudinal momentum fractionx. The image is rotationally
symmetric in therW' plane. At smallx, the distribution ex-
tends far beyond the nominal nucleon size along thez direc-
tion. The physical explanation for this is that the positi
4-9
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FIG. 2. The phase-space charge distribution for theu quark at negative Feynman momentumx520.05 andx520.4 ~two left panels!
andd quark for positivex50.4 andx50.6 ~two right panels!.
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space uncertainty of the quarks is large whenx is small, and
therefore the quarks are de-localized along the longitud
direction. This delocalization reflects a very peculiar part
the nucleon wave function and shows long-range correlat
as verified in high-energy scattering. In a nucleus, the pa
distributions at smallx are strongly modified because of th
spatial overlap between the nucleons. On the other han
largerx, the momentum alongz direction is of order nucleon
mass, the quarks are localized to within 1/MN . The
quantum-mechanical nature of the distribution becomes
tinct because there are significant changes in the sign at
ferent spatial regions.

It is also interesting to explore the distribution at negat
x. We show in Fig. 2~two left panels! the Wigner densities
for the up quark in the proton forx: 20.05 and20.4. These
plots show significantly different pattern than those of t
positivex. Finally, the two right panels we show the dens
for the down-quark in the proton. The essential features
quite similar to those of the up-quark densities.

B. The MIT bag model

The MIT bag model was invented more than a quarter
a century ago@56#. The model was motivated by the colo
confinement property of QCD. Massless quarks are confi
to a cavity of radiusR, and move freely inside. The quar
wave function is ultrarelativistic and can be solved from t
free Dirac equation with spherical boundary conditions. T
bag model has been used to calculate many static prope
of the nucleon and has had many notable successes.
model can also be used to describe the excitation spectru
hadrons@56#. The electromagnetic form factors@57# and par-
ton distributions have also been calculated for the bag qu
@58#.

The bag model has been used to calculate the GPD
Ref. @49#, where the boosted bag wave function has be
constructed using a simple prescription. In principle, one
perform a Fourier transformation of the GPDs to calcul
the bag-model Wigner distribution.

However, we choose a simpler way to calculate
Wigner distribution because the static bag has a fixed ce
In fact, we can calculate directly from the wave function
quarks in the static nucleon just as in nonrelativistic quant
mechanics. The rational for this is that assuming the GP
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are known, one can ‘‘correct’’ the relativistic effects asso
ated with the boosted nucleon to obtain a Wigner distribut
corresponding to the static structure, just like applying
relativistic corrections to extracting the static charge dis
butions. The Wigner distributions calculated from a sta
bag correspond to the ones with some relativistic correcti
applied.

As we have discussed in the last section, we define
Wigner distributions by the matrix elements of the Wign

operatorsW1(rW,k1) in the hadron states. In general, becau
of translational invariance, only the off-diagonal matrix el
ments between nucleon states with finite momentum dif

ences provide the 3DrW dependence. However, in the stat
models such as the MIT bag, the quark wave functions
solved in the rest frame of the nucleon which has no tra
lational invariance from start. With them, the Wigner dist
butions can be calculated as the diagonal matrix element
the Wigner operator for the model nucleon fixed at the ori
of the coordinates. For example,

r1~rW,x!5
1

2E dl

2p
eixl^RW 50uC̄@rW2~l/2!n2#g1

3C@rW1~l/2!n2#uRW 50&, ~41!

whereuRW 50& represents the bag-model nucleon atRW 50 and
x5k1/p1 the lightcone momenta fraction of the proton ca
ried by the quark,n a light-light vector with n150,n2

51/p1,n'50.
The quark field has the following expansion in the b

@56#:

Ca~rW,t !5 (
n.0,k561,m

N~nk!$ba~nkm!cnk j 51/2m~rW,t !

1da
†~nkm!c2n2k j 51/2m~rW,t !%, ~42!

whereba
† andda

† are the quark and antiquark creation ope
tors in the bag, andN(nk) is a normalization factor. The
4-10
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FIG. 3. The phase-space charge densityr1(rW,x) calculated in the bag model for values of Feynman momentumx50.1,0.33,0.5,0.9.
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wave function are solved from the Dirac equation with t
bag boundary condition. Forj 51/2 andk521, one has

cn,21,
1
2 m~rW,t !

5
1

A4p S i j 0S vn,21urWu
R0

D xm

2sW • r̂ j 1S vn,21urWu
R0

D xm

D e2 ivn,21t/R0.

~43!

For the lowest mode, we haven51, andv1,21'2.04. In the
above wave function,sW is the 232 Pauli matrix,xm is the
Pauli spinor, andR0 is the bag radius.r̂ represents the uni
vector in therW direction, andj i are sphere Bessel function

Substitute the above wave function into Eq.~41!, we find
the quark phase-space charge density

r1
f ~rW,x!5Cf

N2

4pE dl

2p
eil(x2v/MR0)

3$ j 0~r 1! j 0~r 2!1 j 1~r 1! j 1~r 2! r̂ 1• r̂ 2

1 i @ j 0~r 1! j 1~r 2! r̂ 2
z2 j 0~r 2! j 1~r 1! r̂ 1

z#%, ~44!

whereCf is a flavor factor withCu52 andCd51 for up and
down quarks, respectively. The position vectorsrW1 andrW2 are

rW15rW1
l

2

1

A2p1
êz, rW25rW2

l

2

1

A2p1
êz. ~45!

The above distribution satisfies the boundary constraint:
tegrating overrW yields the quark distribution function, while
integrating overx gives the charge density of the quar
inside the nucleon.

With r1(rW,x), one can visualize the quark charge dens
as the function ofx. In Fig. 3, we have shown a sequence
densities atx50.1,0.33,0.5, and 0.9. As the parton dens
indicates, the charge density is peaked aroundx51/3 where
the distribution is roughly spherical symmetric. This is co
07401
-

y
f

-

sistent with the finding that the bag model GPDs have
small j dependence. For smaller and largerx, the charge
density can be negative. Asx increases, the distribution at th
center of the bag becomes smaller. Asx further increases, the
density there becomes negative. Similar phenomena hap
asx decreases. Because the bag boundary limits the dist
of the spatial correlation, the small-x distribution does not
grow significantly as seen in experimental data.

V. SUMMARY AND CONCLUSIONS

In this paper, we have introduced the concept of quant
phase-space distributions for the quarks and gluons in
nucleon. These distributions contain much more informat
than conventional observables. In particular, various red
tions of the distribution lead to transverse-momentum dep
dent parton distributions and generalized parton distri
tions.

Any knowledge on the GPDs can be immediately tra
lated into the correlated coordinate and momentum distri
tions of partons. In particular, the GPDs can now be used
visualize the phase-space motion of the quarks, and he
allow studying the contribution of the quark orbital angul
momentum to the spin of the nucleon.~Note that a separation
of quarks’ spin and orbital angular momentum contributio
is scheme dependent; the scheme dependence can be s
in perturbative QCD@59#.! In light of this, measurements o
GPDs and/or direct lattice QCD calculations of them w
provide a fantastic window to the quark and gluon dynam
in the proton.
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