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Confinement from merons
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It is shown that an effective theory with meron degrees of freedom produces confinement in SU~2! Yang-
Mills theory. When the scale is set by the string tension, the action density and topological susceptibility are
similar to those arising in lattice QCD. The potential for this effective theory to produce center symmetry in
SU~2! is discussed.
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I. INTRODUCTION

Although confinement is one of the most striking and fu
damental phenomena that arises from the deceptively sim
QCD Lagrangian, its physical mechanism has yet to be
derstood. One important element is sufficient disorder
drive a large Wilson loop to produce an area law as seen
example, in the strong coupling expansion of lattice QC
which produces an area law already in lowest order. Ho
ever, disorder alone is not the whole story, as evidenced
the fact that the strong coupling expansion also erroneo
yields confinement in U~1! gauge theory. A second importan
feature is center symmetry. By gauge fixing in continuu
QCD up to a residual center symmetry or in lattice QCD
multiplying all the links in the time direction on a single tim
slice by an element of the center, it follows that the effect
action has the symmetrySeff(P)5Seff(ZP), whereP denotes
a Polyakov loop andZ is a center element@1,2#. A serious
candidate for the confinement mechanism should have
potential of realizing this symmetry. One appealing analy
cal approach to understanding nonperturbative QCD is
pansion of the path integral for the partition function arou
stationary classical solutions and evaluating the fluctuati
around these solutions. The development of highly succ
ful instanton liquid models and the observation of instanto
and their zero modes in lattice QCD have provided cl
insight into how chiral symmetry breaking arises in QC
@3,4#. However, singular gauge instantons fail to produ
confinement and, as will be seen below, also fail to prod
center symmetry.

In this work we reexamine the possibility that meron
another set of solutions to the classical field equations,
produce confinement. As noted long ago@5#, merons are suf-
ficiently disordering that they have the potential to produ
confinement. In contrast to instantons, whose gauge fi
fall off as r 23 in singular gauge, merons can only be writt
in regular gauge with fields that decrease asr 21. In the
absence of correlations between distant merons, this lo
range gauge field would give rise to an unphysical ba
ground field. Since analytic treatment of these correlati
appears to be intractable, the behavior of meron ensem
has not previously been analyzed.

In SU(N) gauge theories, the deconfinement transition
associated with a symmetry property. Center symmetry
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residual discrete gauge symmetry, is realized in the confi
phase and broken in the deconfined phase. In SU~2!, center
symmetry transformations change the sign of the Polya
loop, defined in the compactt direction as

P~x,y,z!5
1

2
tr P expH i R dtA0~x,y,z,t !J .

The realization of the center symmetry implies the vanish
of the expectation value of the Polyakov loop which in tu
guarantees an exponential decrease in the Polyakov loop
relator related to confinement. In the deconfined phase,
Polyakov loop expectation value is finite. The Polyakov lo
thus serves as an order parameter. In the construction o
sembles of field configurations with which to explore co
finement, it is useful to study the Polyakov loop of the buil
ing blocks. As Fig. 1 shows, unlike the winding number, t
asymptotic value of the Polyakov loop of an instanton is n
changed in the tunneling process and is identical for inst
tons and anti-instantons. Thus, tunneling processes do
give rise to a coherent superposition of fields with oppos
values of P so that a center-symmetric ensemble of fie
configurations cannot be generated in a natural way by

FIG. 1. Polyakov loopP(x,0,0) as a function ofx. The solid
line corresponds to one instanton centered at the origin. The da
and dotted-dashed lines show the results for a meron-meron
located on thex axis atx527,22 and an antimeron-meron pair a
x52,7.
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superposition of singular gauge instantons. In contrast,
tunneling process described by a single meron changes
sign of the Polyakov loop, as can be seen from the figu
Furthermore, the asymptotic values ofP for a meron-
antimeron pair and a meron-meron pair are of opposite s
Thus, merons do not single out Polyakov loops of a defin
sign and therefore have the potential of generating a cen
symmetric ensemble.

II. MERON EFFECTIVE THEORY

In this work we explore the idea that merons are the
sential degrees of freedom in SU~2! Yang-Mills gauge theory
by writing the partition function as a path integral of a
effective action, depending on the positions and color ori
tations of an ensemble of merons,

Z5E dzidhie
2(1/g2)S[A(zi ,hi )] . ~1!

The gauge field for a meron in Lorentz gauge with its cen
at the origin, after the appropriate choice of the coordin
system in color space and after regularization of the sin
larity, is given by

am~x!5
hamnxn

x21r2

sa

2
. ~2!

Color and space-time dependence are correlated via
’t Hooft tensor hamn @3#. For the vanishing meron sizer,
a(x) is a solution of the Euclidean classical field equatio
@6#. Antimerons differ in sign if one of the space-time indic
is 0. The action density of merons and antimerons is given

s~x!5
1

2
tr FmnFmn5

3

2~x21r2!4
@x414x2r218r4#.

~3!

Unlike instantons, the field strength decays asymptotically
1/x2, giving rise to an infrared logarithmic singularity in th
action. For vanishing meron size, the action is also logar
mically divergent in the ultraviolet, so we will user as an
ultraviolet regulator. The topological charge density of
meron or antimeron

s̃~x!56
1

2
tr FmnF̃mn56

6r2

~x21r2!4
@x212r2# ~4!

leads to a finite, size-independent topological charge

n5
1

8p2E d4xs̃~x!56
1

2
. ~5!

The meron ensembles to be considered in this study con
field configurations obtained by superposition of merons
antimerons of fixed and equal numberNM/2,
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Am~x!5(
i 51

NM

h~ i !am@x2z~ i !#h21~ i !. ~6!

Such a configuration is specified by the position of the c
tersz( i ) and the color orientations

h~ i !5h0~ i !1 ih~ i !•s, h0
2~ i !1h2~ i !51. ~7!

In the ensembles to be discussed, the location of the me
is restricted to a hypercube

21<zm~ i !<1, V516.

We identify the effective action in Eq.~1! with the Yang-
Mills action. Our standard choice for meron size and co
pling constant is

r50.16, g2532.

It is essential to note that the infrared divergence of the
tion of a single meron does not prevent the construction
physical ensembles having an extensive action with a la
number of merons. For instance, with the following choice
the color orientations of a system of four merons~or four
antimerons!

hk~ i !5d i 21,k , ~8!

the action density decays as 1/x6.
The meron ensembles have been generated by the M

Carlo sampling of the action in the path integral, Eq.~1!. In
each step of a Metropolis update, the position and color
entation of a given meron are tentatively changed, the
duced changes in the action density are evaluated at a s
mesh points distributed over the whole volume, and the c
figuration is accepted or rejected based on the global cha
in action. The long range nature of the meron fields ma
the changes extend throughout the whole system.

We first present the results for the central quantity in
discussion of confinement, the Wilson loop

W5
1

2
trH P expi R

C
dxmAm~x!J . ~9!

The integral is ordered along the closed pathC. Our standard
choice is a rectangular path located in an (xi ,xj ) plane with
the center at the origin and with the ratio of the sides equa
2. For a given configuration, we evaluate 12 different Wils
loopsWi j and obtain our final results by taking the ensem
average and the average over the 12 orientations. The s
tical errors are calculated from the variance of the 12 ori
tations. Figure 2 shows the universal behavior of Wils
loops calculated with meron ensembles with a range
meron numbers. After rescaling the areaA→lA, the values
of the Wilson loop lie on a universal scaling curve, whe
deviations from scaling are within the statistical uncerta
ties. For loops that are not too small, the universal curve
be parametrized by the sum of a perimeter term and an
term

ln^W&5v1tAlP2slA ~10!

as shown in Fig. 2. The values of the parameters are
9-2
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v520.72, t50.93, s58.17. ~11!

The concave shape of ln^W& as a function of the area
arises from the difference in sign between the area and
rimeter terms and makes the presence of a positive st
tension unambiguous. Numerical results also confirm the
pected increase of the Wilson loop with increasing perime
at fixed area. These results thus demonstrate confineme
these meron ensembles.

III. TOPOLOGICAL SUSCEPTIBILITY AND ACTION
DENSITY

In view of this impressive scaling behavior, it is useful
scale all subsequent results with a physical scale set by
string tension. For convenience in thinking about physi
magnitudes, although we are considering SU~2!, we will
identify the value ofs with the physical value 4.2 fm22 of
the string tension. Ultimately we will compare dimensionle
ratios involving powers ofs with SU~2! lattice results, so
that this arbitrary physical scale in no way affects our qu
titative results. Thus, our unit of length~u.l.! is converted to
physical units by

1 u.l.51.4Al fm. ~12!

Table I summarizes our principal results for the acti
density^s&, and the topological susceptibilityx calculated in
meron ensembles for different values of the meron den
nM5NM /V and scaled to the string tension. A striking fe
ture is the fact that the action density and topological susc
tibility depend essentially on a single scale, which we ha
chosen as the string tension. Indeed, despite the chang
the number of merons by up to a factor of 20, and of me
size and meron density by factors of 2 and 3, respectiv
the action density and topological susceptibility vary by le
than65%. The results turn out to be similarly insensitive

FIG. 2. Logarithm of Wilson loop as function of areaA. The
data correspond to meron ensembles atg2532 with NM51000,
500, 200, 100, and 50. The area has been rescaled by 1.86,
1.0, 0.75, and 0.53, respectively. The line shows the fit with
~10!.
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large changes in the coupling constant. Hence, we will w
the action density and topological susceptibility as

^s&513.1s2s̃~nr4,g2!,

x1/450.31s1/2x̃1/4~nr4,g2!, ~13!

where, within 5%s̃'1, x̃1/4'1. In the regime of parameter
investigated, breaking the scale invariance of the me
fields by the introduction of the meron sizer appears to have
an effect similar to that of introducing a finite lattice size
the quantum theory. In both cases, the underlying scale
variance manifests itself in the appearance of logarithm
singularities for vanishing coordinate space regulators.

To understand the interplay between meron size
meron density we observe that the action density in the c
ter of a meron@cf. Eq. ~3!# is much larger than the averag
action density in the meron ensembles

s~0!

^s&
5

0.87

r4s2U
r50.25f m

513.5. ~14!

This suggests a separation of the action density into ba
ground and meron peak contributions,

^s&5sB1sM . ~15!

The meron peak contribution is obtained by integratings(x)
@Eq. ~3!# over a sphere of radiusr, which for small meron
size (r!r ) becomes

sM5nE r

d4xs~x!→3p2nS 5

12
1 ln

r

r D . ~16!

The matching requirement onr

s~r !5sB ~17!

yields the following expression for the action density:

^s&5FsB1n
3p2

4 S 5

3
2 ln

2

3
sBr4D G .

This expression makes explicit the logarithmic singularity
^s& with the meron size in the smallr limit if sB is identified
with the physical~i.e. regularized! value of the action den-

41,
.

TABLE I. Meron density, meron size, action density and top
logical susceptibility for meron ensembles containingNM51000,
500, 200, 100 and 50 merons.

nM r ^s& x1/4

(fm24) (fm21) (fm24) ~MeV!

4.8 0.30 222 123
4.1 0.26 234 121
3.3 0.22 237 126
2.9 0.19 238 126
2.9 0.16 240 128
9-3
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sity. With the action densitys as an input~cf. Table I!, the
relative strength of the background contribution can be
termined numerically

sB

^s&
50.6520.75.

This result indicates that a significant fraction of the act
density is associated with the logarithmically singular con
bution in Eq.~16!.

We can now compare the meron results in Eq.~13! with
known QCD results. The topological susceptibility

x5S 1

32p2D 2E d4x^Fmn
a F̃mn

a ~x!Fmn
a F̃mn

a ~0!& ~18!

is a robust quantity that can be measured unambiguous
our effective theory and in lattice QCD. It has a direct phy
cal interpretation because of its relation to theh8 mass by
the Veneziano-Witten formula. The most extensive latt
measurement of theSU(2) topological susceptibility by ex
tracting the continuum limit from calculations over a lar
range of the coupling constant@7# yields x1/4/s1/2;0.483
6.006. The meron resultx1/4/s1/2;0.31 from Eq.~13! is in
qualitative agreement with this lattice result. Note thatx can
be computed reliably for the meron ensembles since the
pological charge of a single meron, Eq.~5!, is finite. The
topological susceptibility is dominated by the short-ran
peaks in the topological charge density associated with i
vidual merons and antimerons, and not by the long ra
background field. The contribution due to single peaks yie

x1/450.505nM
1/4. ~19!

The weak variation inx1/4 and the magnitude of this estima
are in qualitative agreement with the results of Table I.

Because of the necessity of subtracting divergent term
define the continuum limit, the action density, or equivalen
the gluon condensate, is more difficult than the topologi
susceptibility to evaluate accurately in either QCD or
meron ensemble. LatticeSU(2) calculations for the action
density range from̂s&/s254.5 @8# to 25.3@9# and QCD sum
rule results range from̂s&/s254.5 @10# to 10 @11#. The
meron result̂ s&/s2;13.1 from Eq.~13! is thus consisten
with our present knowledge of the action density. It is use
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to note that in the lattice calculations of Ref.@8#, the diver-
gent contributions are about a factor of 20–500 larger th
the extracted value of̂s&. As noted above, the meron actio
density also contains a divergent contribution that, if su
tracted, will significantly reduce the value of the condens
given in Table I.

IV. CONCLUSIONS

In conclusion, we have shown that an effective theo
with meron degrees of freedom succeeds in describing es
tial features of QCD. The long-range gauge fields provide
correlations and disorder needed for confinement while
short range fluctuations play an essential role in other ph
cal observables. They render the meron dynamics more c
plicated than for ensembles of weakly interacting singu
gauge instantons and must therefore be treated numeric
The central feature and a major success of this approac
producing confinement. We have demonstrated a confin
area law and discussed how a meron ensemble may im
ment center symmetry. We also observe scaling behav
reminiscent of lattice Yang-Mills theory which might nota
priori have been expected. In our effective theory there
three parameters,g2, r, andnM , and one combination ofr
and nM is determined by fitting to the string tension at
given g2. The action density and topological charge dens
are rather insensitive to the other combination and the W
son loops scale to a universal curve. This scaling behavio
presumably connected with the scale invariance of the mu
meron action in the limitr→0. In addition, we have shown
qualitative agreement with the topological susceptibility a
action density measured in SU~2! lattice QCD.
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