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Confinement from merons
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It is shown that an effective theory with meron degrees of freedom produces confinemenjnyahyg-
Mills theory. When the scale is set by the string tension, the action density and topological susceptibility are
similar to those arising in lattice QCD. The potential for this effective theory to produce center symmetry in

SU(2) is discussed.
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I. INTRODUCTION residual discrete gauge symmetry, is realized in the confined
phase and broken in the deconfined phase. I(25denter

Although confinement is one of the most striking and fun-symmetry transformations change the sign of the Polyakov
damental phenomena that arises from the deceptively simpleop, defined in the compattdirection as
QCD Lagrangian, its physical mechanism has yet to be un-
dgrstood. One_important element is sufficient disorder to P(x,y,z)=1trPexp[i jgtho(X,y,Z,t)}-
drive a large Wilson loop to produce an area law as seen, for 2

example, in the strong coupling expansion of lattice QCD, o o L
which produces an area law already in lowest order. How he realization of the center symmetry implies the vanishing

ever, disorder alone is not the whole story, as evidenced b§f the expectation value of the Polyakov loop which in turn

the fact that the strong coupling expansion also erroneouslguarantees an exponential decrease in the Polyakov loop cor-
yields confinement in (1) gauge theory. A second important relator related to confinement. In the deconfined phase, the
feature is center symmetry. By gauge fixing in continuumPolyakov loop expectation value is finite. The Polyakov loop

QCD up to a residual center symmetry or in lattice QCD bythus serves as an order parameter. In the construction of en-
multiplying all the links in the time direction on a single time Sémbles of field configurations with which to explore con-

slice by an element of the center, it follows that the effectivelinement, it is useful to study the Polyakov loop of the build-
ing blocks. As Fig. 1 shows, unlike the winding number, the

action has the symmet§,«(P) = Se( ZP), whereP denotes - ) )
a Polyakov loop andZ is a center elemertL,2]. A serious asymptotic value of the Polyakov loop of an instanton is not
candidate for the confinement mechanism should have thghanged in the tunneling process and is identical for instan-

potential of realizing this symmetry. One appealing analyti-{onS and anti-instantons. Thus, tunneling processes do not
cal approach to understanding nonperturbative QCD is exd!Ve rise to a coherent superposition qf fields with oppqsne

pansion of the path integral for the partition function aroundv@lués of P so that a center-symmetric ensemble of field

stationary classical solutions and evaluating the fluctuation§onfigurations cannot be generated in a natural way by the
around these solutions. The development of highly success- :
ful instanton liquid models and the observation of instantons /
and their zero modes in lattice QCD have provided clear | |
insight into how chiral symmetry breaking arises in QCD !
[3,4]. However, singular gauge instantons fail to produce 05
confinement and, as will be seen below, also fail to produce i
center symmetry.

In this work we reexamine the possibility that merons, |
another set of solutions to the classical field equations, car
produce confinement. As noted long &3, merons are suf- L
ficiently disordering that they have the potential to produce
confinement. In contrast to instantons, whose gauge field«:5
fall off asr 2 in singular gauge, merons can only be written
in regular gauge with fields that decreaseras. In the I i
absence of correlations between distant merons, this long L1/ . |
range gauge field would give rise to an unphysical back- :
ground field. Since analytic treatment of these correlations g, 1. Polyakov loopP(x,0,0) as a function ok. The solid
appears to be intractable, the behavior of meron ensembl@ge corresponds to one instanton centered at the origin. The dashed
has not previously been analyzed. and dotted-dashed lines show the results for a meron-meron pair

In SU(N) gauge theories, the deconfinement transition iSocated on thex axis atx=—7,— 2 and an antimeron-meron pair at

associated with a symmetry property. Center symmetry, a=2,7.
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superposition of singular gauge instantons. In contrast, the Nm

tunneling process described by a single meron changes the A#(x)=2 h(i)aﬂ[x—z(i)]hfl(i). (6)
sign of the Polyakov loop, as can be seen from the figure. =1

Furthermore, the asymptotic values &f for a meron-  gych a configuration is specified by the position of the cen-
antimeron pair and a meron-meron pair are of opposite Sighersz(i) and the color orientations

Thus, merons do not single out Polyakov loops of a definite

sign and therefore have the potential of generating a center- h(i)=ho(i)+ih(i)-e, h(i)+h*(i)=1. (7)

symmetric ensemble. In the ensembles to be discussed, the location of the merons

is restricted to a hypercube

—1=<z,(i)<1, V=16.

. MERON EFFECTIVE THEORY

In this work we explore the idea that merons are the es-

sential degrees of freedom in ) Yang-Mills gauge theory ~We identify the effective action in Eq1) with the Yang-
by Wrmng the partition function as a path integra' of an Mills action. Our standard choice for meron size and cou-

effective action, depending on the positions and color orienPling constant is

tations of an ensemble of merons, p=0.16, g?=32.
2 L It is essential to note that the infrared divergence of the ac-
/= dz.dh:e (1199) S[A(z 1hl)]. (1) . . .
ish tion of a single meron does not prevent the construction of

physical ensembles having an extensive action with a large
The gauge field for a meron in Lorentz gauge with its centeflumber of merons. For instance, with the following choice of
at the origin, after the appropriate choice of the coordinatdéhe color orientations of a system of four merdios four
system in color space and after regularization of the singuantimerong

larity, is given by (i) = 6, 14, ®
NauXy 02 the action density decays a4/
a,(x) o2 2 2 The meron ensembles have been generated by the Monte
p

Carlo sampling of the action in the path integral, Ef. In

) ~each step of a Metropolis update, the position and color ori-
Color and space-time dependence are correlated via thgytation of a given meron are tentatively changed, the in-
't Hooft tensor #,,, [3]. For the vanishing meron size,  gyced changes in the action density are evaluated at a set of
a(x) is a solution of the Euclidean classical field equationsmesh points distributed over the whole volume, and the con-
[6]. Antimerons differ in sign if one of the space-time indices figyration is accepted or rejected based on the global change

the changes extend throughout the whole system.

1 4 - 4 We first present the results for the central quantity in the
S(x)= ztrFMvFuv:m[x +4x"p"+8p"]. discussion of confinement, the Wilson loop
3 1 ,
o . ' W= Etr{ P expi igcdx“A#(x)] . (9
Unlike instantons, the field strength decays asymptotically as

1/x?, giving rise to an infrared logarithmic singularity in the The integral is ordered along the closed pattOur standard

ac_tion. F(_)r vanish_ing meron s@ze, the action_is also logarithshoice is a rectangular path located in ap,k;) plane with
mically divergent in the ultraviolet, so we will useas an  the center at the origin and with the ratio of the sides equal to
ultraviolet regulator. The topological charge density of ap For a given configuration, we evaluate 12 different Wilson
meron or antimeron loopsW;; and obtain our final results by taking the ensemble

average and the average over the 12 orientations. The statis-

~ 1 ~ ) ) tical errors are calculated from the variance of the 12 orien-
s(x)ztztrFWFW:i(Xer—z)‘l[x +2p°] (4 tations. Figure 2 shows the universal behavior of Wilson
P loops calculated with meron ensembles with a range of

meron numbers. After rescaling the atda>\ A, the values
of the Wilson loop lie on a universal scaling curve, where
deviations from scaling are within the statistical uncertain-

2

leads to a finite, size-independent topological charge

. 1 f EX5(x) = +1 5) ties. For loops that are not too small, the universal curve can
872 2 be parametrized by the sum of a perimeter term and an area
term
The meron ensembles to be considered in this study contain | _
) . : . " (W)= w+ 7AP—a\ 10
field configurations obtained by superposition of merons and (W)=e WP onA (10
antimerons of fixed and equal numkéy,/2, as shown in Fig. 2. The values of the parameters are
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0 e, ' ' - TABLE I. Meron density, meron size, action density and topo-

(] 3

logical susceptibility for meron ensembles containg = 1000,
500, 200, 100 and 50 merons.

Ny P (s) x4
(fm=%) (fm™1) (fm™%) (MeV)
4.8 0.30 222 123
4.1 0.26 234 121
3.3 0.22 237 126
2.9 0.19 238 126
2.9 0.16 240 128

, | , | large changes in the coupling constant. Hence, we will write
0 05 ] the action density and topological susceptibility as

FIG. 2. Logarithm of Wilson loop as function of are& The
data correspond to meron ensemblegg&t 32 with Ny, =1000,
500, 200, 100, and 50. The area has been rescaled by 1.86, 1.41, va U a4 2
1.0, 0.75, and 0.53, respectively. The line shows the fit with Eq. x =031 %" (np",g7), (13
(10).

(s)=13.157s(np*,g?),

where, within 5%s~1, Y4~ 1. In the regime of parameters
w=-072, 7=093 ¢=8.17. (11) investigated,_ breakin_g the scale inva_riance of the meron
fields by the introduction of the meron sigeappears to have
an effect similar to that of introducing a finite lattice size in

arises from the difference in sign between the area and péhe.quantum t.heory._ In bo_th cases, the underlying SC?"e In-
rimeter terms and makes the presence of a positive string riance .mamfests'lts_elf in the_ appearance of logarithmic
tension unambiguous. Numerical results also confirm the e >ingularities for vanishing coordinate space regulators.

pected increase of the Wilson loop with increasing perimeter To understand the interplay between meron size and

at fixed area. These results thus demonstrate confinement fAEON density we observg that the action density in the cen-
these meron ensembles. ter of a meror{cf. Eq. (3)] is much larger than the average

action density in the meron ensembles

The concave shape of (W) as a function of the area

lll. TOPOLOGICAL SUSCEPTIBILITY AND ACTION s(0) 0.87
DENSITY g =3 =13.5. (14
POl ,—0.25m

In view of this impressive scaling behavior, it is useful to
scale all subsequent results with a physical scale set by thEhis suggests a separation of the action density into back-
string tension. For convenience in thinking about physicalground and meron peak contributions,
magnitudes, although we are considering (3U we will
identify the value ofa with the physical value 4.2 fi? of (s)=sg+Su - (15
the string tension. Ultimately we will compare dimensionless S ) ) )
ratios involving powers ofr with SU(2) lattice results, so | Ne meron peak contribution is obtained by integras(x)
that this arbitrary physical scale in no way affects our quanlEd- (3)] over a sphere of radius which for small meron
titative results. Thus, our unit of length.l.) is converted to ~ SiZ€ (0<r) becomes
physical units by

r 5 r
smznf d4xs(x)—>37r2n(1—2+ln— . (16)
1 ul=14x fm. (12) P

. — . The matching requirement an
Table | summarizes our principal results for the action
density(s), and the topological susceptibilify calculated in s(r)=sg (17)
meron ensembles for different values of the meron density

nw=Npy/V and scaled to the string tension. A striking fea- yields the following expression for the action density:
ture is the fact that the action density and topological suscep-
tibility depend essentially on a single scale, which we have 3m?(5 2,
chosen as the string tension. Indeed, despite the changes in (s)=[setn——|3~Ingser
the number of merons by up to a factor of 20, and of meron

size and meron density by factors of 2 and 3, respectivelyThis expression makes explicit the logarithmic singularity of
the action density and topological susceptibility vary by lesg(s) with the meron size in the smalllimit if sg is identified
than=5%. The results turn out to be similarly insensitive to with the physical(i.e. regularizedl value of the action den-
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sity. With the action densitg as an input(cf. Table ), the  to note that in the lattice calculations of R&8], the diver-
relative strength of the background contribution can be degent contributions are about a factor of 20—500 larger than
termined numerically the extracted value d@fs). As noted above, the meron action
density also contains a divergent contribution that, if sub-
S—B=0.65— 0.75. trgcteq, will significantly reduce the value of the condensate
s) given in Table I.

This result indicates that a significant fraction of the action
density is associated with the logarithmically singular contri- IV. CONCLUSIONS
bution in Eq.(16).

We can now compare the meron results in E®) with
known QCD results. The topological susceptibility

In conclusion, we have shown that an effective theory
with meron degrees of freedom succeeds in describing essen-
tial features of QCD. The long-range gauge fields provide the

1 \2 correlations and disorder needed for confinement while the
X=< 2) f d4X<Fiv'~:Zv(X)Fiv'~:Zv(o)> (18 short range fluctuations play an essential role in other physi-
327 cal observables. They render the meron dynamics more com-

. . , plicated than for ensembles of weakly interacting singular
is a robust quantity that can be measured unambiguously i, ge instantons and must therefore be treated numerically.

our effective theory and in lattice QCD. It has a direct physi-The "central feature and a major success of this approach is
cal interpretation because of its relation to the mass by  producing confinement. We have demonstrated a confining
the Veneziano-Witten formula. The most extensive Iatticearea law and discussed how a meron ensemble may imple-
measurement of thBU(2) topological susceptibility by ex-  ment center symmetry. We also observe scaling behavior,
tracting the continuum limit from Cf’*":U'atist oyer a large reminiscent of lattice Yang-Mills theory which might nat
range of the coupling constaff] yields x™/0~*~0.483  piori have been expected. In our effective theory there are
+.006. The meron resufg™¥ o?~0.31 from Eq.(13) isin  tyree parameters?, p, andny,, and one combination gf
qualitative agreement with this lattice result. Note_tjaaian and ny, is determined by fitting to the string tension at a
be computed reliably for the meron ensembles since the tQ5ien g2 The action density and topological charge density
pological charge of a single meron, E), is finite. The 316 rather insensitive to the other combination and the Wil-
topological susceptibility is dominated by the short-rangéssp, |oops scale to a universal curve. This scaling behavior is
peaks in the topological charge density associated with indigresymably connected with the scale invariance of the multi-
vidual merons and antimerons, and not by the long rangeron action in the limip— 0. In addition, we have shown
background field. The contribution due to single peaks yieldg,ajitative agreement with the topological susceptibility and

XM*=0.5054, (19) action density measured in ) lattice QCD.

The weak variation inc’* and the magnitude of this estimate
are in qualitative agreement with the results of Table I.
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