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Analytical approach to chiral symmetry breaking in Minkowski space
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The mass gap equation for spontaneous chiral symmetry breaking is studied directly in Minkowski space. In
hadronic physics, spontaneous chiral symmetry breaking is crucial to generate a constituent mass for the
quarks, and to produce the partially conserved axial vector current theorems, including a small mass for the
pion. Here a class of finite kernels is used, expanded in Yukawa interactions. The Schwinger-Dyson equation
is solved with an analytical approach. This improves the state of the art of solving the mass gap equation,
which is usually solved with the equal-time approximation or with the Euclidean approximation. The mapping
from Euclidean space to Minkowski space is also illustrated.
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. INTRODUCTION 5 b
(p—a) = (—q2—\ltie 2

Here | solve directly in Minkowski space the mass gap
equation for spontaneous chiral symmetry breakiBgSB). 14 ensure that the kernels are finite in the ultraviolet limit of
SxSB was _mtroduced_b_y the original work of Nambu ar_‘dlarge (0—q)2 | assume thak,«; =0, since this implies that
Jona-Lgsmlo[l_], and it is presently accepted_ to occur in iha kernel vanishes at least E9—q)2] 2. In the infrared
hadronic physics, whe_re 't. generates a constituent mass f(ﬂFnit the kernels are finite when thg; are finite, or when
the quarks. SS% also |2pl|gs Ith; partially (I‘,Ionserv?d a;]qal infrared cancellations occur. The class of kernels defined in
vector current t eorem], including a small mass for the g.(2) is quite general, for instance it includes the Coulomb
pion. In the literature the mass gap equation is usually solve teraction regularized by a Pauli-Villars term. It also in-

either in equal tim¢3] or in Euclidean spacgt], in order to e the Fourier transform of the confining linear potential
avoid the poles and complex quantities which are expected in

full Minkowski calculations. Recently the scientific commu- d2 4
nity has been exploring different approaches to Minkowski FT(|r|e‘”|r|):—2 —— (3)
spacq5]. An exact solution in Minkowski space will test the AN k24

quality of the approximate solutions. Moreover a solution in i . . . i
Minkowski space opens wider applications. For instance, th@nd of the linear potential with a negative infinite shift
Bethe-Salpeter amplitudes can be computed on the mass

shell momentump?=M?2>0, and at the same token it is FT(—e‘”")=i 4m @
possible to boost the hadrons to any convenient frame. In this dN k24 )\2’

paper an analytical approach is applied to finite and analytic

kernels. For simplicity the infrared or ultraviolet divergenceswhich are both obtained in the limit of vanishing Using
are not addressed here. Although a complete solution cafinite differences, the derivatives lcan be decomposed in
only be achieved numerically, an interesting insight is nevthe class of potentials of Eq2). The class of kernels ad-

ertheless presented by the analytical approach. dressed in this paper is not only general, it is also covariant,
In the Schwinger-Dyson formalism truncated at the rain-analytical, and forward propagating, and this is convenient to
bow level, the mass gap equation is study the mass gap equation in Minkowski space.

Chiral symmetry breaking occurs when a nonvanishing
mass is dynamically generated. For clarity let us also assume
e : s@ - thatA=1 in Eq.(1). This approximation is qualitatively ac-
S (p)=S8y (p)— 4—E22 47 ceptable when the kernel is finif8,4]. ComputingA is not
difficult, but it obscures the result of the paper. Then the

.....

S(p)= : mass gap equation is a single nonlinear and integral equation
g A(p)p—B(p?)+ie for B=M,
» id'g M(a%)
i 2y _ aq . M@
S(p)= I . n M(p )—mo+f_w(27r)4V(p Q)qz—Mz(qZ)Jrie’
A(p?)p—B(p?) +ie 5

For the quark-quark interaction | consider the class of kerwhere all Dirac and color algebraic factors are absorbed in
nels that can be decomposed in a class of Yukawa potentialthe coupling constants; of the potentiaM(p—q). The chi-
which is finite both in the ultraviolet and infrared limits ral limit of vanishing current quark magshe mass in the
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free quark propagatpmy=0, is also assumed. This is par- " i -
ticularly interesting because it applies to the physics of the f dq = 7)
quarksu and d. It is clear that Eq.(5) then has a trivial AG-[g?+MA(gD)—ie] VPE+M2(g?)

solutionM (p?)=0. The problem that this paper addresses is

the other possible solutions of E@), with the kernel of Eq. and the mass gap equation in the instantaneous approxima-
(2). The technical difficulties reside in the multiple integral tion is
with poles and complex quantities and in the nonlinearity of

the self-consistent equation. ) ||Q| (|p| —la)?+\?
In Sec. Il standard approximations are applied to the rain- ~ M(p )‘f d|Q|E 4] | S
7P (|p|+|q|) +\|

bow Schwinger-Dyson, and the need to perform a calculation

in Minkowski space is motivated. In Sec. Ill the integral in 2
o . : M(qg9)

the mass gap equation is computed analytically in the case %

where the quark mass is assumed to be constant. The solu- /q2+M2(q2).

tion of the Minkowski nonlinear integral mass gap equation

is addressed in Sec. IV. Finally in Sec. V the results andrhis is a one-dimensional nonlinear integral equation. It has

®

conclusion are presented. no singularities and it is solvable numerical§.
In the Euclidean approximation, it is assumed that the
Il. USING STANDARD APPROXIMATIONS time component of the momentum can be replaggd

—ipy or — po—> p4 A convenient angular description of the
In the literature the mass gap equation is usually solveqariaples is

either in equal timg3] or in Euclidean spacé4]. In the

equal time approximation, the Lorentz invariance is lost. The p1=PpPeSing sinfsinn,

stpace anq time component_s pf physical constantsf$ay P,=PeCOS sinfsin 7,

f, may differ[6]. Moreover it is not clear how to boost the . 9)
hadrons outside the center-of-mass frame. In the Euclidean P3=peCosésinz,

approximation it is not clear if a simple Wick rotatigm, p4= PeCOS7,

—1ipy, is exact because there may exist poles in the path ot

the p, axis. Moreover it is very hard to rotate back to Where the Euclidean momentum pg = — p?= p$+ p3+ p3
Minkowski with the inverse rotationp,—py when only a  + p4 In this case the boson exchange potential of yis
numerical expression of the dynamical mass is known. Thisinite for all momenta. Covariance allows the choice of the
is connected to the topological problem of discretizing aexternal momentum parallel to the fourth axis, and three an-
curved surface. Although these two methods are approxigular integrals can be performed,

mate, they are used in the literature because they are fully
consistent with dynamical symmetry breaking, providing the —47Taq3E’ - Sirfy
same approximation is also used in the bound state equations 5 J

[2]. At the same token these methods avoid the technical Ye 0
problem of addressing poles and complex quantities, which 5 55
are expected in Minkowski space. By providing a solution of , LPTTATTATE V(p?+0?—\?)?-4p’q

n
PE+QE— 2pEgeCosn+\?

the mass gap equation, both Lorentz invariant and in =2maq 4p2q?
Minkowski space, both the equal time and the Euclidean
time approximations may be better understood. Here the ap- 7_rza
proximate methods for solving the Schwinger-Dyson equa- ——[V=(p+q)2+ 2= = (p—q)2+\2]?
tion are reviewed. ap?
In the instantaneous or equal time approximation, it is (10

assumed that the dependencejnand inqq is irrelevant in
the kernel of the mass gap equation. The angular integral
the Coulomb potential with neglected time component is

dzyhlch is a function of the real and positive variabteq?
. Again the mass gap equation is reduced to a one-
d|menS|onaI nonlinear integral equation

fl q 2mg°«;
1 pP @ 2lpl g+ A2 J d(-q Ap*at-
27Tq2a'i (|p|_|Q|)2+)\|2 (q2)
= 0g : (6) 20 2\ 2\2_ 1202
=2[pllal 7| (|p|+ )2+ N2 +V(p?+02-22)?-4pZq gy W

where the notation for quadrivectors and for trivectorpis which has no singularities and is solvable numericgdly
=(po.p). In what concerns the mass, a solution exists where A third perspective, differing from the equal-time ap-
the mass is independent of, and the integral ingy is  proximation because it includes the retardation in the kernel
trivial, and differing from the Euclidean approximation because it
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addresses timelike momenta, is provided by the couplewhere it is clear that whe&>M +\;, the threshold for a
channel approach. Here the approximation consists in onljposon production is open. This produces a cut in the func-
considering the positive energy poles of the propagators. Fafon M(p), with an imaginary component for the mass. Ac-
simplicity | consider here a single Yukawa term tually more cuts appear when the energy is further increased,
and the system couples to 1 fermion and 2 bosons, 1 fermion
1 1 1 . )
5 —— S and 3 bosons, etc. Therefore cusps and imaginary compo-
qQ°—M%+ie Qgo—Hi+ie 2H; nents are expected to appear whEs=M+\;, E=M

+2)\;, etc.
1 _ 1 1 When the mass gap equation is solved in the Minkowski
(p—a)’—\+ie E—Qo—Hyt+ie2H,’ space, then all the features of the three different approaches
of Egs.(8), (11), and(16) are expected to appear. Nontrivial
He(a)=\og?+M?, solutions of the mass gap equation, and imaginary masses
above thresholds are expected. Moreover It will be interest-
Hp(p—0q)= V(p—0q)?+ )\iz (12 ing to study the effect of the negative energy components on
eigenvalues.
then the integral iy produces
dgg [ i i
f 2w Qo H FTe E—qy—Hoiic E—H,—H,fic IIl. ONE LOOP ANALYTICAL CALCULATION
(13

As a first approach to the Minkowski integral, | assume a
The 1/H;, 1/2H,,, and the fermion madd can be included real constant maskl and compute analytically the integral

in the boson creation vertex of Eq. (5). This can be regarded a one loop approximation
to the mass gap equation, in the sense that the correct solu-

e [ M 14 tion can be obtained iteratively, in an infinite loop calcula-

- AHH, (14 tion. The analytical result may also be eventually used to

remove poles form the numerical iterative program. In this
then the mass gap equation is equivalent to a coupled chasense | choose to perform the multiple integrals in the same
nel Hamiltonian equation, where the one fermion channel i®rdering that may be used in a numerical integration. A first
coupled to the fermion plus boson channel by the bosomttempt to start by an analytical integral of the three angular
creation and annihilation vertices integrals(both trigonometric and hyperboligvas abandoned
. because the result was indeterminate. Therefore the two an-
Hf_ ie—E r ¢f . . ) . .
_ ( ):O. (15) gular mtegr.atlons of th_e th_ree d|men3|ongl space are first
rf Hi+Hp,—ie—E]\ ¢¢p performed, in order to simplify the kernel. Finally the double
Reducing the equation by substitution of the fermion pluslfgtrer'ﬁézflon in the temporaj, and in the spatia are per
boson wavefunction, the secular equation is

The main aim of this section is the covariant study of the
d%p positivep? case which was not accessible to the approximate

0=|E—Hq(p)— f ——T'(p,q) approaches. Covariance allows one to consider phe
(2m) =(p°,0) case. Analyticity can be used later, to continue this

function to ap? negative case. The two dimensional angular
T(p,q) | 4(p)=0, (16) integrals are trivial. The integral igq is also directly com-
’ ’ puted, using the residue theorem

1
X -
E—H{(q)—Hp(p—q)tie

@; iq2

1(po,0)= f d*qdgo . .
" (do—Po)*— P —A{+ie g5—g*~M*+ie

— 74 7Tq2ai

= | dlg/>

i 2\/q2+)\i2—ie\/q2+M2—ie

1 1
X + . (17)
( Pot V2N —iet VP + MZ—ie  —pot V2N —iet g+ M2 —ie
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The integral inq= |cﬂ can also be performed analytically. It

is interesting to remark that the threshold for an imaginary

contribution appears whep,>M + \; . Indeed the pole ap-
pears at the rogb of

Po= a2+ M2+ {2+ \?= g =p, (18)

\/(p%—
e

M2—=\7)2—4M2\}
ap;

+ie,

where p coincides with the mass shell momentum above

threshold. A simple algebraic simplification transforms the
integral into

—a 4mq?

|:fd|Q|E a5

| 4p0q —p
M2+p2—\?  —M?+p3+2r2

X

19

+ )
VM2+¢? Va2 +N?

where the pole defined in Eq(19) is real when the thresh-
old opens, atpg>M-+\;. p is also real whenpy<|M
—\i|, below the pseudothreshold

\/[p%—(Mﬂi)
e

ps—(M—=r)?]
4p3 +le,

(20

2 o 2112432 i 21 012132 p - p® 4\
1(pH)=3 ——| (~ M2+ p2+\2)log—+ (—M?+ p+\2)| ———1 log| i| 1- ~——
i 2p A Vp2+ A2 P
| VP2+}\i2) ] (M2+p2—)\2) p [| ( Vp?+M? | ( Vp?+M? ]
—logi| 1+ ——— +(M2+p§—N)——=1log|i| 1- — | |—log|i| 1+ ———— :
p MRRNPORVE p p

wherep is defined in Eq(19). The result of Eq(21) is not
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FIG. 1. Real and imaginary part of the integtdp?) that dy-
namically generates quark mass. Here the parametdrs
=0.3 GeV,\;=0.1 GeV and\,=0.2 GeV, @;=1, anda,
are used. The cusps occur precisely where the thresholds open, at
p?=M+\; and atp?’=M + .

however, in this case the residue vanishes, theréfrenly
expected to possess an imaginary component above the
threshold for the fermion-boson production.

After cumbersome calculations, where the ultraviolet di-
vergent terms cancel because they are proportional 4o,
the integrall(py,0) can finally be reduced to the exact
form

(21)

Another important particular case is the matching point,

only correct for time-like momentum, it also applies to nega-between the timelike momentum and the spacelike momen-

tive pS, where the integrals of Eq17) remain correct. The
integral 1 (p?) is depicted in Fig. 1. Figures 1 and 2 are
obtained with two Yukawa terms.

There are three particular cases of Etj7) that can be

tested independently. The imaginary part can be directly

computed with the residue theorem applied to ELD).
Whenpy>M +\; the imaginary part is

V(PG —M?=A7)?—4M2A?

P

Im[1(po,0)]=2> — a7’
(22

07400

tum, of p?=p3=0. The integral of Eq(17) is then easy to
compute:

,M?log(M?) - \flog(\f)
M2Z—\7

1(0,0=2 —ay7 (23)

Finally in the spacelike cage=(0,p) can be considered.
This implies that the poles are on the correct quadrants to
enable a trivial Wick rotation. | can also use the angular
integrals already performed in E¢L0). The resulting inte-
gral can be computed analytically,

3-4
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FIG. 2. The initial massV;, the one loop masM,(p?), and
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FIG. 3. Phases with one and two solutions of the mass gap

\/P are illustrated. They all coincide at 0.3 GeV, and the param-equation().

eters andw; = — a,=36 are adjusted accordingly. The parameters
areh;=0.055 GeV and\,=0.105 GeV. This case also includes a
second solution of the mass gap equafiéf= p?>=(0.18 GeVyY.

1(0p)

M2+ p2+ A2+ (M2+ 2+ \2)2— 4M2\ 2

2
A i

M2

_ai’JTZ

(M2+p2—>\?)log(

2p?

+ V(P2 M2+ 2 2)?— 4M2\?

X log

M2+ p2+ N 2= \(M2+ 2+ \2)2— 4M2\?
(24)

These three particular cases comply with E2{L).

IV. APPROXIMATE ANALYTICAL SOLUTION

M;=M,(p?)=p®. (26)
This is equivalent to assume that the mass dependence of the
integral in Eqg.(5) is dominated by the pole neighborhood.
The quark mass, dynamically generated in the mass gap
equation, is expected to coincide with the constituent quark
mass. The constituent quark mass is estimated in the quark
model, where it is a crucial parameter to produce the had-
ronic spectrum, and where it is of the order of 0.3 GeV.
Therefore the coupling constants of the quark interaction
(2) are adjusted to reprodudé,=0.3 GeV. An example of
this is illustrated in Fig. 2.

I now discuss the different scenarios for the parameters
of the potential. | start with the case with three Yukawa
terms. In the particular case of in E®), this corresponds to
the linear potential, which vanishes in the infrared limit. It
occurs that in this case the generated quark rivag®?) is
quite small close to the origip?=0. It is then very difficult
to arrive at a quark mass of 0.3 GeV. This may be related to

Here the mass gap equation is solved in an analytical on#e infrared cancellation
loop approximation. The standard method to solve the mass

gap equatiorn{) is the iterative method, where one starts by
an initial educated guess for the mads(p?). | consider a
constantM 1, which allows the analytical computation of the
integral in Eq.(5), with the techniques used in Sec. Ill. This
produces the next mass in the iterative series

41

M;—My(p?)= 2" (25

M1(p?),

where the integral (p?) is defined in Eq.21). To find an

exact solution to the mass gap equation, one would then nee
to continue this iterative process, computing again the inte-

gral with the functionM ,(p?)— M3(p?) and so on until the

d3k
(2m)®

4 4 4
22 YT
ke+A]  Kk+N5; K°+A3

(27)

J

which occurs when the; are equally spacedys—A,=X\,
—\;. Moreover the structure of the potential is quite com-
plicated above threshold, with large cusps. Therefore this
class of models is abandoned.

Next the simpler case of two Yukawa terms is studied.
This is related to the first derivative of E@L). In this case it
is, easy to adjust the strength parametefs- — a5, to pro-
uce a quark mass of 0.3 GeV at the pole positiorpdf
0.3 Ge\t. This seems to agree with the infrared finite re-

method converges. However these further iterative steps

would probably need a numerical computation, since the

function M ,(p?) is already a complicated one. Therefore, in

this analytical approach, | choose to stop at the second step

of the iteration. To minimize the error of this one loop com-
putation, | demand that the mask,(p?) coincides with the
mass M, at the mass shell momenturM,(p?)=p?,

d3k
27)3

A 4
k24N k243

A=A
T Ax

(28)

[ |

Nevertheless, in this simple case of two Yukawa terms, there
are two different scenarios. Depending on the steepness of
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the functionM?(p?), it intercepts the functiop? either at a L AT a—agh —
single point or in two points. From a numerical exploration M(p )HE (DTW@,
one concludes that the two scenarios are separated by the line
A1(A,—\;)=0.2 Ge\f. This line is depicted in Fig. 3, in _ = id%q M(g?)
the parameter spade\,. There is a single solution when <¢¢>ZQJ_W(27)4 P—MADTie (33
M (A= \p)=0.2 Ge\. (29) and therefore the mass should vanish proportionally to

1/(p?)2. In the one loop approximation the mass only van-
ishes as P?, see Fig. 1. Therefore the large momentum

For instance, this includes the case of a laxgewhich acts  pehavior of the generated quark mass is expected to improve
as an ultraviolet Pauli-Villars cutoff, say,;=0.3 GeV, \, in the next iterations.

=3 GeV. When\; and \, are quite large, the solution
M(p?) of the mass gap equation is very smooth, and the V. RESULTS AND CONCLUSION

instantaneous or the Euclidean approaches constitute very | address the technically challenging problem of solvin
good approximations to the actual Minkowski solution. It is €ss the ically ¢ gng p | of Solving
the nonlinear integral Schwinger-Dyson equation in full

also clear that in the case of a Pauli-Villars regularization_,. . ) )
g Minkowski space. An analytical approach is followed, and

A=1 is not acceptableA would need to be computed, nev- . ) X
ertheless its computation could be performed with the tech@pproxmate but analytical expressions for the quark mass

- P are obtained.
niques presented in this paper. . .
One also concludes that there is a double solution when | find that the quark mass _exh|b|t_s a bra}nch put above the
threshold for boson creation, including an imaginary compo-

nent. In the case of a linear potential the mass gap equation is
Ai(A,—\1)<0.2 GeV. (300 expected to have at least two solutions, and this agrees with
Ref.[7].
The analytical continuation of a the numerical Euclidean
space solutionwith negativep?) into the full Minkowski
has been studied in the literatyrg]. Here | verify that this
analytical continuation is not uniquely defined, even when a
dense set of points is known in the spacelike<0 sector. In
particular, Eq(5) includes at least three vanishing imaginary
numbers—ie, summed, respectively, to the mas3gsh,,
andM. For external spacelike momentd<O0, these e are
irrelevant. However for timelike momenta®>0 there are
possible branch cuts both above threshpfd>(M +\;)?
and below the pseudothreshol&®?< (M —\;)?, and the
integral depends on the sign of each of the three vanishing
Only one integral, with all the three>0 is causally correct
[8]. For instance, in Fig. 1 the correct imaginary part of the
mass is negative, but a continuation with a positive imagi-
a(Ay—N\1)=1.8 GeV, nary would also be analytically possible. As another ex-
ample, a naive extension of the Euclidean E2f) to p?
>0 fails to coincides with the full Minkowski solutiof21)
M+}\2=0.08 GeV, (32) for some timelike momenta. . o .
2 The next step of this study will consist in applying nu-
merical methods to proceed with the study of the mass gap

and this implies that the potential also includes a negativ€duation. A numerical integration seems to be necessary to
constant shift of the order of 1.7 GeV. An example of the compute the quark condensaté). Moreover the exact
generated masses is depicted in Fig. 2. numerical solution of the mass gap equatibpmay also be

To proceed iterating Eq(5), say at two loop order or attempted. With the analytical method of this paper, it may

more, or to compute the quark condens(afe’/), the analyti- be possible t_o subtr_act_the poles_ from the integ_rand and to
cal integral becomes quite complicated. A numerical study icompute their contribution anal_ytlcally. Another interesting
probably necessary and this is not addressed in this papdpethod may be the fully numerical MonteCarlo metHeg
Nevertheless the qualitative changes to the one loop compd-1€s€ numerical methods will be applied elsewhere.

tation can be anticipated. In what concerns the posfifjet
is expected that new channels will open whengver (M
+n\;+m\,)2, wherem and n are positive integers. This I am thankful for discussions with Frieder Kleefeld, Fe-
will affect the imaginary part of the mass. In what concernslipe Llanes-estrada, and Kim Maung-Maung on the difficul-
the behavior of the masil (p?) for very large positive or ties of continuing analytically Euclidean space solutions to
negativep?, an inspection of Eq(5) shows that the Minkowski space.

This includes the case of small and similgr. This case is
related to the first derivative of E@4). In the limit of van-
ishing parametery;, Eq. (4) corresponds to a linear poten-
tial with a negative and infinite constant shift

_ge*)\mz__o-_'_a.r_ (31
A A

Comparing with the potential defined in E) the string
tension iso=a;(A3—\%)/2. Assuming a string constant of
the order of 0.14 Ge¥estimated from the quark spectrum,
one arrives at the following parameters:
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