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Analytical approach to chiral symmetry breaking in Minkowski space
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The mass gap equation for spontaneous chiral symmetry breaking is studied directly in Minkowski space. In
hadronic physics, spontaneous chiral symmetry breaking is crucial to generate a constituent mass for the
quarks, and to produce the partially conserved axial vector current theorems, including a small mass for the
pion. Here a class of finite kernels is used, expanded in Yukawa interactions. The Schwinger-Dyson equation
is solved with an analytical approach. This improves the state of the art of solving the mass gap equation,
which is usually solved with the equal-time approximation or with the Euclidean approximation. The mapping
from Euclidean space to Minkowski space is also illustrated.
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I. INTRODUCTION

Here I solve directly in Minkowski space the mass g
equation for spontaneous chiral symmetry breaking~SxSB!.
SxSB was introduced by the original work of Nambu a
Jona-Lasinio@1#, and it is presently accepted to occur
hadronic physics, where it generates a constituent mass
the quarks. SxSB also implies the partially conserved axi
vector current theorems@2#, including a small mass for the
pion. In the literature the mass gap equation is usually sol
either in equal time@3# or in Euclidean space@4#, in order to
avoid the poles and complex quantities which are expecte
full Minkowski calculations. Recently the scientific comm
nity has been exploring different approaches to Minkow
space@5#. An exact solution in Minkowski space will test th
quality of the approximate solutions. Moreover a solution
Minkowski space opens wider applications. For instance,
Bethe-Salpeter amplitudes can be computed on the m
shell momentump25M2.0, and at the same token it i
possible to boost the hadrons to any convenient frame. In
paper an analytical approach is applied to finite and anal
kernels. For simplicity the infrared or ultraviolet divergenc
are not addressed here. Although a complete solution
only be achieved numerically, an interesting insight is n
ertheless presented by the analytical approach.

In the Schwinger-Dyson formalism truncated at the ra
bow level, the mass gap equation is

S~p!5
i

A~p2!p”2B~p2!1 i e
. ~1!

For the quark-quark interaction I consider the class of k
nels that can be decomposed in a class of Yukawa poten
which is finite both in the ultraviolet and infrared limits
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a i4p

~p2q!22l i
21 i e

. ~2!

To ensure that the kernels are finite in the ultraviolet limit
large (p2q)2 I assume that( ia i50, since this implies that
the kernel vanishes at least as@(p2q)2#22. In the infrared
limit the kernels are finite when thel i are finite, or when
infrared cancellations occur. The class of kernels defined
Eq. ~2! is quite general, for instance it includes the Coulom
interaction regularized by a Pauli-Villars term. It also i
cludes the Fourier transform of the confining linear poten

FT~ ur ue2lur u!5
d2

dl2

4p

k21l2
, ~3!

and of the linear potential with a negative infinite shift

FT~2e2lur u!5
d

dl

4p

k21l2
, ~4!

which are both obtained in the limit of vanishingl. Using
finite differences, the derivatives inl can be decomposed i
the class of potentials of Eq.~2!. The class of kernels ad
dressed in this paper is not only general, it is also covari
analytical, and forward propagating, and this is convenien
study the mass gap equation in Minkowski space.

Chiral symmetry breaking occurs when a nonvanish
mass is dynamically generated. For clarity let us also ass
that A.1 in Eq. ~1!. This approximation is qualitatively ac
ceptable when the kernel is finite@3,4#. ComputingA is not
difficult, but it obscures the result of the paper. Then t
mass gap equation is a single nonlinear and integral equa
for B5M ,

M ~p2!5m01E
2`

` id4q

~2p!4 V~p2q!
M ~q2!

q22M2~q2!1 i e
,

~5!

where all Dirac and color algebraic factors are absorbed
the coupling constantsa i of the potentialV(p2q). The chi-
ral limit of vanishing current quark mass~the mass in the
©2004 The American Physical Society03-1



r-
th

i

al
o

in
tio
in
a
so
ion
n

ve

h

e
e

h
to

h
a

ox
fu
h
tio
ic
ic
o
i

a
a

ua

i

l

er

ima-

as

the

e

he
an-

ne-

-
nel

it

PEDRO BICUDO PHYSICAL REVIEW D69, 074003 ~2004!
free quark propagator! m0.0, is also assumed. This is pa
ticularly interesting because it applies to the physics of
quarksu and d. It is clear that Eq.~5! then has a trivial
solutionM (p2)50. The problem that this paper addresses
the other possible solutions of Eq.~5!, with the kernel of Eq.
~2!. The technical difficulties reside in the multiple integr
with poles and complex quantities and in the nonlinearity
the self-consistent equation.

In Sec. II standard approximations are applied to the ra
bow Schwinger-Dyson, and the need to perform a calcula
in Minkowski space is motivated. In Sec. III the integral
the mass gap equation is computed analytically in the c
where the quark mass is assumed to be constant. The
tion of the Minkowski nonlinear integral mass gap equat
is addressed in Sec. IV. Finally in Sec. V the results a
conclusion are presented.

II. USING STANDARD APPROXIMATIONS

In the literature the mass gap equation is usually sol
either in equal time@3# or in Euclidean space@4#. In the
equal time approximation, the Lorentz invariance is lost. T
space and time components of physical constants, sayf p

s or
f p

t may differ @6#. Moreover it is not clear how to boost th
hadrons outside the center-of-mass frame. In the Euclid
approximation it is not clear if a simple Wick rotationp0
→ ip4 is exact because there may exist poles in the pat
the p0 axis. Moreover it is very hard to rotate back
Minkowski with the inverse rotationi p4→p0 when only a
numerical expression of the dynamical mass is known. T
is connected to the topological problem of discretizing
curved surface. Although these two methods are appr
mate, they are used in the literature because they are
consistent with dynamical symmetry breaking, providing t
same approximation is also used in the bound state equa
@2#. At the same token these methods avoid the techn
problem of addressing poles and complex quantities, wh
are expected in Minkowski space. By providing a solution
the mass gap equation, both Lorentz invariant and
Minkowski space, both the equal time and the Euclide
time approximations may be better understood. Here the
proximate methods for solving the Schwinger-Dyson eq
tion are reviewed.

In the instantaneous or equal time approximation, it
assumed that the dependence inp0 and inq0 is irrelevant in
the kernel of the mass gap equation. The angular integra
the Coulomb potential with neglected time component is

E
21

1

dv
2pq2a i

p21q222upuuquv1l i
2

5
2pq2a i

22upuuqu
logF ~ upu2uqu!21l i

2

~ upu1uqu!21l i
2G , ~6!

where the notation for quadrivectors and for trivectors isp
5(p0 ,p). In what concerns the mass, a solution exists wh
the mass is independent ofq0, and the integral inq0 is
trivial,
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dq0

i

q0
22@q21M2~q2!2 i e#

5
p

Aq21M2~q2!
~7!

and the mass gap equation in the instantaneous approx
tion is

M ~p2!5E
0

`

duqu(
i

2a i uqu

4pupu
logF ~ upu2uqu!21l i

2

~ upu1uqu!21l i
2G

3
M ~q2!

Aq21M2~q2!
. ~8!

This is a one-dimensional nonlinear integral equation. It h
no singularities and it is solvable numerically@3#.

In the Euclidean approximation, it is assumed that
time component of the momentum can be replacedp0

→ ip4 or 2p0
2→p4

2. A convenient angular description of th
variables is

5
p15pEsinf sinu sinh,

p25pEcosf sinu sinh,

p35pEcosu sinh,

p45pEcosh,

~9!

where the Euclidean momentum ispE
252p25p1

21p2
21p3

2

1p4
2. In this case the boson exchange potential of Eq.~2! is

finite for all momenta. Covariance allows the choice of t
external momentum parallel to the fourth axis, and three
gular integrals can be performed,

24paqE
3

2qE
E

0

p

dh
sin2h

pE
21qE

222pEqEcosh1l2

52p2aq2
p21q22l21A~p21q22l2!224p2q2

4p2q2

5
p2a

4p2 @A2~p1q!21l22A2~p2q!21l2#2

~10!

which is a function of the real and positive variable2q2

5qE
2 . Again the mass gap equation is reduced to a o

dimensional nonlinear integral equation

M ~p2!5E
0

`

d~2q2!(
i

a i

2pp2@p21q22l2

1A~p21q22l2!224p2q2#
M ~q2!

2q21M2~q2!
~11!

which has no singularities and is solvable numerically@4#.
A third perspective, differing from the equal-time ap

proximation because it includes the retardation in the ker
and differing from the Euclidean approximation because
3-2
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addresses timelike momenta, is provided by the coup
channel approach. Here the approximation consists in o
considering the positive energy poles of the propagators.
simplicity I consider here a single Yukawa term

1

q22M21 i e
→ 1

q02H f1 i e

1

2H f
,

1

~p2q!22l i
21 i e

→ 1

E2q02Hb1 i e

1

2Hb
,

H f~q!5Aq21M2,

Hb~pÀq!5A~pÀq!21l i
2 ~12!

then the integral inq0 produces

E dq0

2p

i

q02H f1 i e

i

E2q02Hb1 i e
5

i

E2H f2Hb1 i e
.

~13!

The 1/2H f , 1/2Hb , and the fermion massM can be included
in the boson creation vertex

G†5A M

4H fHb

, ~14!

then the mass gap equation is equivalent to a coupled c
nel Hamiltonian equation, where the one fermion channe
coupled to the fermion plus boson channel by the bo
creation and annihilation vertices

FH f2 i e2E G

G† H f1Hb2 i e2EG S f f

f f ,b
D 50. ~15!

Reducing the equation by substitution of the fermion p
boson wavefunction, the secular equation is

05FE2H f~p!2E d3p

~2p!3 G~p,q!

3
1

E2H f~q!2Hb~p2q!1 i e
G†~p,q!Gf~p!50, ~16!
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where it is clear that whenE.M1l i , the threshold for a
boson production is open. This produces a cut in the fu
tion M (p), with an imaginary component for the mass. A
tually more cuts appear when the energy is further increa
and the system couples to 1 fermion and 2 bosons, 1 ferm
and 3 bosons, etc. Therefore cusps and imaginary com
nents are expected to appear whenE5M1l i , E5M
12l i , etc.

When the mass gap equation is solved in the Minkow
space, then all the features of the three different approac
of Eqs.~8!, ~11!, and~16! are expected to appear. Nontrivia
solutions of the mass gap equation, and imaginary ma
above thresholds are expected. Moreover It will be intere
ing to study the effect of the negative energy components
eigenvalues.

III. ONE LOOP ANALYTICAL CALCULATION

As a first approach to the Minkowski integral, I assume
real constant massM and compute analytically the integra
of Eq. ~5!. This can be regarded a one loop approximat
to the mass gap equation, in the sense that the correct s
tion can be obtained iteratively, in an infinite loop calcul
tion. The analytical result may also be eventually used
remove poles form the numerical iterative program. In t
sense I choose to perform the multiple integrals in the sa
ordering that may be used in a numerical integration. A fi
attempt to start by an analytical integral of the three angu
integrals~both trigonometric and hyperbolic! was abandoned
because the result was indeterminate. Therefore the two
gular integrations of the three dimensional space are
performed, in order to simplify the kernel. Finally the doub
integration in the temporalq0 and in the spatialq are per-
formed.

The main aim of this section is the covariant study of t
positivep2 case which was not accessible to the approxim
approaches. Covariance allows one to consider thep
5(p0,0) case. Analyticity can be used later, to continue t
function to ap2 negative case. The two dimensional angu
integrals are trivial. The integral inq0 is also directly com-
puted, using the residue theorem
I ~p0,0!5E d3qdq0(
i

a i

~q02p0!22q22l i
21 i e

iq2

q0
22q22M21 i e

5E duqu(
i

2p4pq2a i

2Aq21l i
22 i eAq21M22 i e

3S 1

p01Aq21l i
22 i e1Aq21M22 i e

1
1

2p01Aq21l i
22 i e1Aq21M22 i e

D . ~17!
3-3
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The integral inq5uquW can also be performed analytically.
is interesting to remark that the threshold for an imagin
contribution appears whenp0.M1l i . Indeed the pole ap
pears at the rootr of

p05Aq21M21Aq21l i
2⇒uqu5r, ~18!

r5A~p0
22M22l i

2!224M2l i
2

4p0
2 1 i e,

where r coincides with the mass shell momentum abo
threshold. A simple algebraic simplification transforms t
integral into

I 5E duqu(
I

a i

2p

4p0
2

4pq2

q22r2

3S M21p0
22l i

2

AM21q2
1

2M21p0
21l i

2

Aq21l i
2 D , ~19!

where the poler defined in Eq.~19! is real when the thresh
old opens, atp0.M1l i . r is also real whenp0,uM
2l i u, below the pseudothreshold

r5A@p0
22~M1l i !

2#@p0
22~M2l i !

2#

4p0
2 1 i e, ~20!
a

re

ct

07400
y
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however, in this case the residue vanishes, thereforeI is only
expected to possess an imaginary component above
threshold for the fermion-boson production.

After cumbersome calculations, where the ultraviolet
vergent terms cancel because they are proportional to( ia i ,
the integral I (p0,0) can finally be reduced to the exa
form

FIG. 1. Real and imaginary part of the integralI (p2) that dy-
namically generates quark mass. Here the parametersM
50.3 GeV, l150.1 GeV andl250.2 GeV, a151, anda2521
are used. The cusps occur precisely where the thresholds ope
p25M1l1 and atp25M1l2.
I ~p2!5(
i

a ip
2

2p2 F ~2M21p21l i
2!log

M2

l i
2 1~2M21p21l i

2!S r

Ar21l i
2
H logF i S 12

Ar21l i
2

r
D G

2 logF i S 11
Ar21l i

2

r
D G J D 1~M21p0

22l i
2!

r

Ar21M2
H logF i S 12

Ar21M2

r
D G2 logF i S 11

Ar21M2

r
D G J D ,

~21!
nt,
en-

.
to

lar
wherer is defined in Eq.~19!. The result of Eq.~21! is not
only correct for time-like momentum, it also applies to neg
tive p0

2, where the integrals of Eq.~17! remain correct. The
integral I (p2) is depicted in Fig. 1. Figures 1 and 2 a
obtained with two Yukawa terms.

There are three particular cases of Eq.~17! that can be
tested independently. The imaginary part can be dire
computed with the residue theorem applied to Eq.~19!.
Whenp0.M1l i the imaginary part is

Im@ I ~p0,0!#5(
i

2a ip
3
A~p0

22M22l i
2!224M2l i

2

p0
2

.

~22!
-

ly

Another important particular case is the matching poi
between the timelike momentum and the spacelike mom
tum, of p25p0

250. The integral of Eq.~17! is then easy to
compute:

I ~0,0!5(
i

2a ip
2

M2log~M2!2l i
2log~l i

2!

M22l i
2 . ~23!

Finally in the spacelike casep5(0,p) can be considered
This implies that the poles are on the correct quadrants
enable a trivial Wick rotation. I can also use the angu
integrals already performed in Eq.~10!. The resulting inte-
gral can be computed analytically,
3-4
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I ~0,p!

5(
i

2a ip
2

2p2 H ~M21p22l i
2!logS l i

2

M2D
1A~p21M21l i

2!224M2l i
2

3 logF M21p21l i
21A~M21p21l i

2!224M2l i
2

M21p21l i
22A~M21p21l i

2!224M2l i
2G J .

~24!

These three particular cases comply with Eq.~21!.

IV. APPROXIMATE ANALYTICAL SOLUTION

Here the mass gap equation is solved in an analytical
loop approximation. The standard method to solve the m
gap equation~5! is the iterative method, where one starts
an initial educated guess for the massM1(p2). I consider a
constantM1, which allows the analytical computation of th
integral in Eq.~5!, with the techniques used in Sec. III. Th
produces the next mass in the iterative series

M1→M2~p2!5
4p

~2p!4 M1I ~p2!, ~25!

where the integralI (p2) is defined in Eq.~21!. To find an
exact solution to the mass gap equation, one would then n
to continue this iterative process, computing again the in
gral with the functionM2(p2)→M3(p2) and so on until the
method converges. However these further iterative st
would probably need a numerical computation, since
function M2(p2) is already a complicated one. Therefore,
this analytical approach, I choose to stop at the second
of the iteration. To minimize the error of this one loop com
putation, I demand that the massM2(p2) coincides with the
mass M1 at the mass shell momentumM2(p2)5p2,

FIG. 2. The initial massM1, the one loop massM2(p2), and
Ap2 are illustrated. They all coincide at 0.3 GeV, and the para
eters anda152a2536 are adjusted accordingly. The paramet
arel150.055 GeV andl250.105 GeV. This case also includes
second solution of the mass gap equationM25p25(0.18 GeV)2.
07400
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M15M2~p2!5p2. ~26!

This is equivalent to assume that the mass dependence o
integral in Eq.~5! is dominated by the pole neighborhoo
The quark mass, dynamically generated in the mass
equation, is expected to coincide with the constituent qu
mass. The constituent quark mass is estimated in the q
model, where it is a crucial parameter to produce the h
ronic spectrum, and where it is of the order of 0.3 Ge
Therefore the coupling constantsa i of the quark interaction
~2! are adjusted to reproduceM250.3 GeV. An example of
this is illustrated in Fig. 2.

I now discuss the different scenarios for the parameterl i
of the potential. I start with the case with three Yukaw
terms. In the particular case of in Eq.~3!, this corresponds to
the linear potential, which vanishes in the infrared limit.
occurs that in this case the generated quark massM2(p2) is
quite small close to the originp2.0. It is then very difficult
to arrive at a quark mass of 0.3 GeV. This may be related
the infrared cancellation

E d3k

~2p!3 S 4p

k21l1
2

22
4p

k21l2
2

1
4p

k21l3
2D 50 ~27!

which occurs when thel i are equally spaced,l32l25l2
2l1. Moreover the structure of the potential is quite com
plicated above threshold, with large cusps. Therefore
class of models is abandoned.

Next the simpler case of two Yukawa terms is studie
This is related to the first derivative of Eq.~4!. In this case it
is easy to adjust the strength parametersa152a2 to pro-
duce a quark mass of 0.3 GeV at the pole position ofp2

50.3 GeV2. This seems to agree with the infrared finite r
sult

E d3k

~2p!3 S 4p

k21l1
2

2
4p

k21l2
2D 5

l12l2

4p
. ~28!

Nevertheless, in this simple case of two Yukawa terms, th
are two different scenarios. Depending on the steepnes

-
s

FIG. 3. Phases with one and two solutions of the mass
equation~5!.
3-5
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the functionM2(p2), it intercepts the functionp2 either at a
single point or in two points. From a numerical explorati
one concludes that the two scenarios are separated by the
l1(l22l1).0.2 GeV2. This line is depicted in Fig. 3, in
the parameter spacel2l1. There is a single solution when

l1~l22l1!>0.2 GeV2. ~29!

For instance, this includes the case of a largel2, which acts
as an ultraviolet Pauli-Villars cutoff, sayl150.3 GeV, l2
53 GeV. Whenl1 and l2 are quite large, the solution
M (p2) of the mass gap equation is very smooth, and
instantaneous or the Euclidean approaches constitute
good approximations to the actual Minkowski solution. It
also clear that in the case of a Pauli-Villars regularizat
A.1 is not acceptable.A would need to be computed, nev
ertheless its computation could be performed with the te
niques presented in this paper.

One also concludes that there is a double solution wh

l1~l22l1!<0.2 GeV2. ~30!

This includes the case of small and similarl i . This case is
related to the first derivative of Eq.~4!. In the limit of van-
ishing parametersl i , Eq. ~4! corresponds to a linear poten
tial with a negative and infinite constant shift

2
s

l
e2lur u.

2s

l
1sr . ~31!

Comparing with the potential defined in Eq.~2! the string
tension iss5a1(l2

22l1
2)/2. Assuming a string constant o

the order of 0.14 GeV2 estimated from the quark spectrum
one arrives at the following parameters:

a~l22l1!51.8 GeV,

l11l2

2
50.08 GeV, ~32!

and this implies that the potential also includes a nega
constant shift of the order of21.7 GeV. An example of the
generated masses is depicted in Fig. 2.

To proceed iterating Eq.~5!, say at two loop order or
more, or to compute the quark condensate^c̄c&, the analyti-
cal integral becomes quite complicated. A numerical stud
probably necessary and this is not addressed in this pa
Nevertheless the qualitative changes to the one loop com
tation can be anticipated. In what concerns the positivep2, it
is expected that new channels will open wheneverp2.(M
1nl11ml2)2, wherem and n are positive integers. This
will affect the imaginary part of the mass. In what concer
the behavior of the massM (p2) for very large positive or
negativep2, an inspection of Eq.~5! shows that
07400
line

e
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M ~p2!→ 4p

g

a1l22a2l1

~p2!2 ^c̄c&,

^c̄c&5gE
2`

` id4q

~2p!4

M ~q2!

q22M2~q2!1 i e
, ~33!

and therefore the mass should vanish proportionally
1/(p2)2. In the one loop approximation the mass only va
ishes as 1/p2, see Fig. 1. Therefore the large momentu
behavior of the generated quark mass is expected to imp
in the next iterations.

V. RESULTS AND CONCLUSION

I address the technically challenging problem of solvi
the nonlinear integral Schwinger-Dyson equation in f
Minkowski space. An analytical approach is followed, a
approximate but analytical expressions for the quark m
are obtained.

I find that the quark mass exhibits a branch cut above
threshold for boson creation, including an imaginary comp
nent. In the case of a linear potential the mass gap equatio
expected to have at least two solutions, and this agrees
Ref. @7#.

The analytical continuation of a the numerical Euclide
space solution~with negativep2) into the full Minkowski
has been studied in the literature@5#. Here I verify that this
analytical continuation is not uniquely defined, even whe
dense set of points is known in the spacelikep2,0 sector. In
particular, Eq.~5! includes at least three vanishing imagina
numbers2 i e, summed, respectively, to the massesl1 ,l2,
andM. For external spacelike momentap2,0, thesei e are
irrelevant. However for timelike momentap2.0 there are
possible branch cuts both above thresholdp2.(M1l i)

2

and below the pseudothreshold 0,p2,(M2l i)
2, and the

integral depends on the sign of each of the three vanishine.
Only one integral, with all the threee.0 is causally correct
@8#. For instance, in Fig. 1 the correct imaginary part of t
mass is negative, but a continuation with a positive ima
nary would also be analytically possible. As another e
ample, a naive extension of the Euclidean Eq.~25! to p2

.0 fails to coincides with the full Minkowski solution~21!
for some timelike momenta.

The next step of this study will consist in applying n
merical methods to proceed with the study of the mass
equation. A numerical integration seems to be necessar
compute the quark condensate^c̄c&. Moreover the exact
numerical solution of the mass gap equation~5! may also be
attempted. With the analytical method of this paper, it m
be possible to subtract the poles from the integrand an
compute their contribution analytically. Another interestin
method may be the fully numerical MonteCarlo method@9#.
These numerical methods will be applied elsewhere.
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