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Electric charge and magnetic moment of a massive neutrino
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We consider the massive Dirac neutrino electric charge and magnetic moment within the context of the
standard model supplied with an &)singlet right-handed neutrino in an arbitraRg gauge. Using the
dimensional-regularization scheme we start with the calculations of the one-loop contributions to the neutrino
electromagnetic vertex function exactly accounting for the neutrino mass. We examine the decomposition of
the massive neutrino electromagnetic vertex function. It is found by means of direct calculations that the
massive neutrino vertex function contains only the four form factors. Then we derive the closed integral
expressions for different contributions to the neutrino electric form factor, electric charge, and magnetic
moment. For several one-loop contributions to the neutrino charge and magnetic moment that were calculated
previously with mistakes by the other authors, we find the correct results. We show that the electric charge for
the massive neutrino is a gauge independent and vanishing parameter in the first two orders of the expansion
over the neutrino mass parametes (m,/M)2. From the obtained closed two-integral expression for a
massive neutrino electric form factor it is also possible to derive the neutrino charge radius. In the particular
choice of the 't Hooft—Feynman gauge we also demonstrate that the neutrino charge is zero in all orders of
expansion oveb, i.e., for an arbitrary mass of neutrino. For each of the diagrams contributing to the neutrino
magnetic moment, we obtain the expressions accounting for the le@Bngth and next-to-leadindfirst)
order inb, where the gauge dependence is shown explicitly. Each of the contributions is finite and the sum of
all contributions turns out to be gauge independent. Our calculations also enable us to obtain the neutrino
magnetic moment in theoretical models that differ from each other by the values of particles’ masses, including
the case of a very heavy neutrino. The general expression for the massive neutrino magnetic form factor is
presented.

DOI: 10.1103/PhysRevD.69.073001 PACS nunider13.40.Gp, 13.40.Dk, 14.60.Pq, 14.60.St

[. INTRODUCTION tion and, in particular, its representation in terms of form
factors in the case of off-shell external photon has been con-
The recent experimental studies of the astrophysical andidered in Refs[2,3] within various gauge theories.
terrestrial neutrino fluxes provide convincing evidence for a To the best of our knowledge, however, there are no direct
nonvanishing neutrino mass and neutrino mixjdgy These one-loop calculations of the neutrino electromagnetic vertex
properties of the neutrino are attributes of physics beyond ther of the neutrino charge and magnetic moment which are
scope of the standard model. Important information on theperformed within the context of the standard model in the
structure of the future model of interaction can be obtainedenormalizableR; gauge and which explicitly take into ac-
in the investigation of radiative corrections to the propertiescount the neutrino mass. It is worth noting here that the
of the neutrino that in principle can be also verified in ex-massive Majorana neutrino can have neither magnetic nor
periments. A critical test of a theoretical model is providedelectric dipole moment. Because of the lepton flavor noncon-
by the direct calculation of such characteristics of the neuservation that has been confirmed in the neutrino experi-
trino as its electric charge and magnetic moment. In thisnents, a neutrino could have flavor-off-diagonal transition
respect it is interesting to examine the gauge and neutrinmagnetic moment, which is also allowable for the Majorana
mass dependence of these quantities. neutrino. The differences between the Dirac and Majorana
The electric charge and magnetic moment are the moslectromagnetic properties are explained in detail in Rgf.
important static electromagnetic properties of a particle. The neutrino vertex function in the limit of small neutrino
Their values are determined by corresponding form factors ifnass was considered in Réb]. There are several works
the external photon is on a mass shell. In spite of the fact thatthere the neutrino charge is calculated within the standard
the electromagnetic form factors are not measurable propemodel using the unitary, lineaR;, and 't Hooft—Feynman
ties of a particle at nonzero momentum transfer, there argauges[6—9]. The one-loop contributions to the neutrino
processes where the off-shell external photons are importantagnetic moment in the standard model have been also con-
The example is the radiative corrections to the fermion-sidered previously5,10—13. The vanishing of the massless
fermion scattering. The fermion electromagnetic vertex funcneutrino charge emerges from the unbroken electromagnetic
gauge invariance. The corresponding Ward identity has been
derived in Refs[13,14] using the background field method.
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calculations of the neutrino charge have been performed uriFhen for each of the diagrams we perform an integration and
der the assumption of a vanishing neutrino mass. With reebtain the explicitly gauge-dependent contributions to the
spect to the neutrino magnetic moment, an according treatieutrino magnetic moment accounting for the leading-
ment of this quantity was also performed to the leading orderoth) and next-to-leadingfirst) order in the expansion over

in the neutrino mass that is valid for the case of neutrinoneutrino mass parametbr The sum of all the contributions
being much lighter than the corresponding charged leptorturns out to be gauge parameter independent. However, our
m,,<mg. In addition, the results presented in Rgff4] for  results for several contributions to the neutrino magnetic mo-

the gauge-fixing parameter dependence of several one-|0$'{Eent in the leading order in the neutrino mass disagree with

contributions to the neutrino charge and magnetic momerfose of Ref.[14] for the corresponding contributions. In
are incorrect. particular, contrary to the results of Rdfl4], not all the

In this paper we consider the massive Dirac neutring=ontributions are gauge independent. Our calculations enable
charge and magnetic form factors in the context of the stanPne to reproduce the correct value for the neutrino magnetic
dard model supplied with the SB)-singlet right-handed Moment in any gauge including also the unitary gauge for
neutrino. Using the dimensional-regularization scheme, wavhich the results of Ref.14] are incorrect. In this section we
start(Sec. 1) with the calculations of the one-loop Feynman 9€t final expressions for the massive neutrino magnetic mo-
diagrams that contribute to the neutrino electromagnetic verMent in the various ranges of neutrino, charged lepton, and
tex function A () in the generaR, gauge. It should be W boson massesn,<m,<My, m;<m,<M, andm,
noted that, contrary to the previous studies, we explicitly<Mw<m, . The last case amounts to a very heavy neutrino
account for nonvanishing neutrino mass. In Sec. Il A we exihat is not excluded by the CER&l"e™ collider (LEP) data
amine the structure of the massive neutrino electromagneti¢ee, €.9., Ref15])). We also discuss the general formulas
vertex function. The decomposition of a fermion vertex func-for the massive neutrino magnetic form factor at nonzero
tion in terms of the four well-known electromagnetic form momentum transfer. _ _ _
factors (presented, for instance, in Ref&,3]) has been es- The conclusions are mad(=T in Sec. V. We a]so include a list
tablished using general principles such as the Lorentz anglf the Feynman ruleAppendix A) and the typical Feynman
CP invariance and the Hermiticity. We analyze this decom-integrals(Appendix B used in our calculations.
position and verify it by means of direct calculations in the

case of the massive neutrino within the standard model sup- |I. VERTEX FUNCTION OF MASSIVE NEUTRINO
plied with the SUW2)-singlet right-handed neutrino. Such di- . )
rect calculations were never undertaken previously. The matrix element of the electromagnetic current be-

We present the general expressions for the contribution®/€€n neutrino states can be presented in the form
to neutrino electric form factor in Sec. Ill. Then in Sec. Il A o
we study the neutrino electric charge and analyze neutrino (v(p"H1IZMw(p)y=1(p")A (@) u(p), 21
mass and gauge dependence of corresponding contributions
arising from different Feynman diagrams. Although there iswhere the most general expression for the electromagnetic
no doubt that the neutrino electric charge within the standaratertex functionA ,(q) reads
model is a gauge independent and vanishing quantity, how-
ever, this fact has not been yet actually demonstrated in the A ,(q)=fq(d%) v, +fu(g?)io,,q"—fe(d®)0o,,0" s
case of a massive neutrino. Our calculations allow us to de- o, 2
termine the neutrino mass and gauge parameter dependence +EA(A) (47, 0u8) 7s- 22
of the one-loop contributions to the neutrino charge. We also )
obtain a correct gauge dependence for the contributions dfere fo(d”), fu(a?), fe(a?), andfa(q®) are, respectively,
several diagrams to the neutrino charge that have been cdhe electric, dipole electric, dipole magnetic, and anapole
culated in Ref[14] with mistakes. Within the one-loop level neutrino form factors,d,=p,—p,, 0.,=(/2)[v,,7.],
we show that the neutrino electric charge is gauge indeperys=—i7°y*»*¥%. Their values atg°=0 determine the
dent and vanishing in the “zeroth” and first order of the static electromagnetic properties of the neutrino. In the case
expansion over the neutrino mass parametér Of Dirac neutrinos, which is considered in this paper, the
:(mV/MW)Z_ Moreover, for the particu|ar choice of the 't assumption ofZP invariance combined with the Hermiticity
Hooft—Feynman gauge we also demonstrate that the neutrir@f the electromagnetic curredf implies that the electric
charge is zero for arbitrary neutrino mass, i.e., in all orders oflipole form factor vanishes. At zero-momentum transfer
the expansion over the parameterThe obtained formulas only f4(0) andfy(0), which are called the electric charge
can be used for studying the massive neutrino charge radiand the magnetic moment, respectively, contribute to the
(Sec. 1 O). Hamiltonian H;,~JEVA# that describes the neutrino inter-

In Sec. IV we consider the neutrino magnetic form factoraction with external electromagnetic fieid".
using the one-loop contributions to the neutrino electromag- There is an important difference between the electromag-
netic vertex derived in Sec. Il. For each of the contributionsnetic vertex function representations in the cases of massive
to the neutrino magnetic moment we derive the integral repand massless neutrino, respectively. If we consider a mass-
resentations that exactly account for the gauge-fixing paranmiess particle, from Eq2.2) it follows that the matrix element
eters as well as for the neutrino mass and correspondingf electromagnetic current can be expressed in terms of only
charged lepton mass parametdls and a=(m,/M)?]. one form factor(see, for example, Ref16]),
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u(p)A L(@u(p)=fp(a*)u(p’) y,(1+ ys)u(p). K
(2.3
i 14
Thus the electric charge and anapole form factors are related” v
to the functionf(q?) by the trivial identities
(a) (b)
fo(@)=fo(a®), fa(@®=fp(@/d> (24 E )
X /N X 14% w

However, in the case of a massive particle, there is no such _ RN
simple relation between the electric and anapole form factors ¥

since we cannot neglect tigg,dys-matrix term in the ana-

pole form factor. Moreover, the direct calculation of the mas- )

sive neutrino electromagnetic form factors shows that, be-
sides the ordinary electric charge and magnetic moment,
each of the Feynman diagrams gives a nonzero contribution
to the term proportional to the,, ys matrix. These contribu-
tions does not vanish even @t=0. This problem is related

to the decomposition of the massive neutrino electromag- 7
netic vertex function. Taking into account the importance of
this problem, we present the direct calculation that verifies {e) ()
the decomposition given by E@2.2). Using the technique
developed in the next section for studying the neutrino elec-
tric charge, we find that the sum of contributions of the com-
plete set of Feynman diagrams to this additional *form fac-Appendix A to find the contributions to the neutrino vertex

tor” is zero atq”=0. The vanishing of the considered form function A ,(q). In the dimensional-regularization scheme
factor atq®+0 for the particular choice of the gauge is also the contrlbutlons of the proper vertices diagrdiffigs. 1(a)—

v v 14

FIG. 1. (a)—(f) Proper vertices.

demonstrated in the next subsection of this paper. (f)] can be written as

We present below the one-loop calculation of the electric N N
charge and magnetic moment of the massive neutrino within AL ﬁ dk g —(1-a) kk
the context of the standard model supplied with the(3U M (2am)N k2—aM2,
singlet right-handed neutrino in the geneRy gauge. The
one-loop contributions to the neutrino electromagnetic vertex yk(p "—K+mg)y,(p—K+m) y)I:

A ,(q) are given by the two types of Feynman diagrams: the X 2 22 2]
pr%per vertice§Figs. Aa)—(f)] and they— Z self-energy dia- [(p" =K"= me][(p— k)= miJ[k" = Miy]
grams[Figs. 4a)—(h)]. We use the Feynman rules given in (2.5

A egzj dk (m,PL—mPr)(B’—K+m,)y,(p—K+m,)(mP.—m,Pg) 06
“ o omg ) (2w [(p'—k)2—mZ][(p—k)2—mZ][k?®— aM§] ’ '
A eng LI ) (m,Py—m(Pg) (K+m)(m P, —m,Pg) 07
v oz ) e B PTG  aME (P M '

e d"k (P =K)*(p' —k)g (p—k)Mp—k)
(4) _; K_ (1 _ N_q_ oy Y
M=i5 | Gt mont| == o ka7 e
85(2p' —p—k)7+gP"(2k—p—p’) .+ 8L(2p—p' k)P
(2.8

[(p'—k)2—MEI[(p—k)2—ME][K2—m?]
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w w The contributions of the/— Z self-energy diagramig=igs.
2(a)—(h)] to the vertexA ,(q) are given by
Y Z ¥ ] Z
Mgl AV = — 110 () ———
W X u (d) 2 costy, (@) M2
8 ® { G
X19"=(1=az) 57— Ya:
zg‘ W qz_aZN@
'\\ ) & i=7,..14, (2.10
Y AnANATANAAAA Z ¥ VA
where
(c) (d)
o . D) dk 1
¢, & IT,,(q)=—iegcosé f
g Y @mN [(k-g)2-ME K- m2)]
T s T, s o PN Gl LU 2
9y (Lma)————"—7>
¢, 9 e, ® ’ (k_Q)z_aM\z/v
k gky
(e) (f) X —(1— ﬁ—
I~ (1-a) K2 aM?,
X f
PENy X[(k+a)?85+(q—2Kk) 0%+ (k—20)#57]
7 ~nd P~z " O z X[(k+a)?8,+(q-2k),g™ + (k—20)*57],
N 2.1
X f ( i
Sir? 6
® w %)= ~2ieg "M,
FIG. 2. (8—(h) The y—Z self-energy diagramf denotes the CcoStw
electron, muon, and lepton as well asi, c, t, d, s andb quarks. f dNk 1
N 2 2
e 1 dV (2m" [(k—=a)*— aMyI[K*—M§]
2 J (2m) X[ 8= (1=a) s, (2.12
-
Yp(k—m)(m;P —m,Pg) "
X ’ 2 2 2 2 2~2
[(p' =K =Myl (p—k)*—aMy ][k m¢] © cog Oy—sirf 6y  d¥k g,
IT =ie f ,
; (p' —kK)A(p'—k), w(@)=leg cosfy, (2m)N k2= aM?,
X|0,~(1=a)————— 2 (2.13
(p'—kK)*—aMy,
(m,PL—mPR)(K—my) v dk 888+ shsu—29Fg,,
T 2 2 2_ M2 k2_ 2 Y (q)= _iegCOSQWf N 2
[(p" —K)*=aM[(p—k)*— M I[k"—mg] . (27) [k*=M§]
x| 88— (1 )(p_k)ﬁ(p_k)“ (2.9 (1-a) Kaks (2.14
-1-a)———| ¢, . X| gpg— (1—a) —|, .
" (p—k)?—aM3, 9o ¢ k2—aM3,
wherem,, My, andm, are the masses of neutring/bo-  I1\,’"*?(q)
son, and the charged isodoublet partner of the neutrino, re- i
spectively,e is the proton chargey is the coupling constant =2legcosby
of the standard modeb)y is the Weinberg anglex=1/¢ is dNk k,(k—q),
the gauge parameter of thW boson,P| g=(1*ys)/2 are f , (219
2m"N [(k—a)?— aM{[k*~ aM{)]

the projection operators.
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13 sinzaw—coszawf dk )
1 —i ok—
av (Q)=ieg 2 cost, (277)“‘( Ay
1
X (2k— ’
( q)v[(k—q)z—aM\zN][kz—aMsv]
(2.16
ieg dVk
1D () = j
oL C) Zcosawg Q) Gan
1
X Tr| y, (K+mg)y,
[P —meqpk—mgy | 7m0
1 1
X tE—ZQfsin2 Hwia'ys K—¢+my)|.
(2.17)
|
7 2 . 2 2= 14
A (@,q?)=2 cos Oy sinfyMGMSGe7| w ~ g taltg
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Here M, and a; are, respectively, the mass and gauge pa-
rameter ofZ boson. In Eq(2.17), “ =" and “ +" stand for
the “upper” (u, ¢ andt quarkg and “lower” (electron,
muon, 7 lepton as well asl, s andb quarkg components of
an isodoubletm; andQ; are the mass and electric chafge
the units ofe) of a fermion circulating within the loop.

It is convenient to decompose each of the-Z self-
energy contributions at arbitrag? and explicitly extract the
transversal term:

9,0,

Hﬁli(q)=A‘”(a,q2)( 9~ 7 | * B (@,09)9,,,

(2.18

Using Egs.(2.11)—(2.17) for the contributions of they—Z
self-energy diagrams in the form of the Feynman integrals as
well as Eq.(2.18), it is possible to present the functions
AD(a,9%) andBY(a,q?) (j=7....,14) in the explicit form

i=7,..,14.

1 «o 1
+ =+ E—er dx(1—x?)In[1——x(1—a)]-In(1- )}

0

+2Jldx(5x2—5x—1)ln(1—g’)—Zfldx(4x2—3){[1—g—x(l—a)]ln[l—g—x(l—a)]—(l—{)ln(l—g)}
0 0

T 1
t35 fo dX{Z[l—é—X(l—a)]ln[l—§—X(1—a)]—(l—é“)ln(l—é)—(a—@ln(a—é)}},

- 1
A®(a,q?) = —4 cosbyy sin® HyMZM %GFTJ dx>?
0

X{IN[1-¢{—x(1—a)]=In(a— )}, (2.20
A®(a,q?)=0, (2.21)
A19(q,g%)=0, (2.22

(2.19
[
AV g?)=2 coS Oy Sin OyMIM G
w 1
X —+2f dxx(1—=x)In(a—2) |,
3 0
(2.23

A3 (@,q?) = (sir? y,— cog Hy)Ccosbyy

X Sin awM \2/\/M %éFT

w 1
x| — 3 fo dx(2x—1)2ln(a—§)}

(2.29

~ w 8
A1 (a,0%) =8 cosb,y sin 0WM\2NM§GFT[—< —3— §Si¥ 9\/\/)

6

1
+ Ef Qf( 5= 2Q; sir? 0W>

1I ms
6\ M

2 1
+f dxx(l—x)ln[l—(M/mf)Zg]”,
0

(2.2
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B (a,q?) =2 coS 6y, sinhyM3M 3G

7 12+ 3a(l+a)
“\27 2

+3[2+a(1+a)]— (25+3a)
1

—34 dx(2x—1)%In(1—¢)
0
1

—Qfodx(l—g)ln(l—g“)

1
—3Tf dx{[1-¢—x(1—a)]

0
XIN[1-¢=x(1-a)]—-(1-)In(1- )}

9 (1
-2 [Capr--xa-wr?

Xln[l—Z—X(l—a)]—(l—é)z|n(1—§)}},

(2.26

3+«
-—w—

B®)(a,q%) =2 cosfy sir® M3 M2GE >

———ZJ dxIn[1—¢—x(1—a)]

1
+f dx{[1—{—x(1—a)]

0
XIN[1-{—x(1-a)]-(a—{)In(a—{)}

+27-fldxx2{ln[1—§—x(1—a)]
0

—In(a—@}} (2.27

B®(a,q?)=2(cog Oy— sir? 6)cosby, sin by

XM\ZNI\/IgéF[a(w—l)-i—a Ina], (2.28

- 3+a® 1
B19(«,q?)=6 cos 6y sin yMIM2Ge 07
5a? a2|n a -

22 | (2.29
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e

T 1
—a+ €+ fo dx(a—)In(a—)

B+ (12 (¢,q?) =2 coS 6y sin M3 MG

1
—27[0 dxx(l—x)ln(a—g’)}, (2.30

B9 (a,q?) = 2(sir? 6y,— cos 6by)

r
a(w—1)+ 5

X c0Sby Sin ByyMFM 3G
1

+ j dx(a—)In(a—{)
0

T (1 5
+§f0 dx(2x—=1)°In(a—2) |, (2.31

B (a,q%) =0, (2.32

where

_ Ge 1 A2
Ge= . w=———In(47%)+C~In| —|,
47V2 € My

andGg is the Fermi constan,=x(1—Xx)7, 7= qle\zN.

In the derivation of Eqs(2.19—(2.32 we have used the
properties of they matrix algebra inN-dimensional space
and the expressions for the characteristic loop integrals pre-
sented in Appendix B.

Decomposition of massive neutrino electromagnetic
vertex function

In the direct calculations of the massive neutrino electro-
magnetic vertex function, taking into accounting the com-
plete set of the Feynman diagrams, one reveals that, besides
the well-known four terms, in Eq2.2) appears an additional
term proportional to they,ys matrix. Therefore we intro-
duce the additional form factdrs(qz) In this subsection we
analyze this form factor and show by explicit calculations
that f5(q?)=0 for arbitraryq? and for particular choices of
the particles’ masses and gauge-fixing parameters.

Let us first consider the value dfs(g?) at g°=0: ¢
=f5(q2=0). The contributions to the “charge® of the
proper vertices diagrani§igs. Aa)—(f)] have the form
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oM(a,b,a)

1 1 1
+ fo dz(1—z)InD— fo dz(l—z)(a—bzz)a

1 1
D, D

1 (1
—EJ dz(1-z)[a—b+6bz(1-2)][InD,—InD]
0

b (1
+5 fo dz(1-2z)3(a—b2)

1
+3f dz(l—z)[DaInDa—DInD]], (2.33
0
eGr
(2) a’b, = 2
e ) an2yy W
(3P, 1 fldl InD
T §+§+ o Z( z)n a
111
—Efodz(l—z)
1
><(a2—ab22+b222—ab)D—}, (2.39
eGe a—-b ® 1
G)(a,b,a)= M2 —— ———J' dzzinD,|,
@ ( a) 47]_2‘/2 W 2 2 0 «
(2.35
¢¥(a,b,a)
_ eGe
_4772wa —w— (1+a) 1- 3] dzzinD

+bf dz Z(1— z)———f dzf dy

X{[D,+y(1—a@)]In[D,+y(1l—a)]-DInD}

1 z
) _ 52 ) —
b fodzfody(l 2)[z(1—2)—2y]

y 1 1
D,+y(l1—-a) D

b (1 z
——f dzf dy(7—18z+117?)
2 Jo 0

X[IN[D,+y(1—a)]—In D]], (2.3
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0®* O (ab,a)= e_GFM\ZN fldzfzdy(a—bz)
4727 0 0

1 a—bfld
“Daryi-a) 2 Jo¥*

X J'Zdy{ln[Da+y(l_ a)]_ln Da}] ’
0

(2.37

where

(2.38

are the charged lepton and neutrino mass parameters, respec-
tively, D,=a+(a—a)z—bz(1-z) andD=D_,_;=a+(1
—a)z—bz(1-7z).

In Egs. (2.33—(2.37) we assume the mass parametars
andb as well as the gauge parameteto be arbitrary. We
have calculated the integrals in E¢®.33—(2.37), however,
the results, being expressed in elementary functions, are
rather cumbersome. Therefore we also perform correspond-
ing integrations in the first two terms of expansion over the
neutrino mass parameteffor arbitrary values of the charged
lepton mass parameterand the gauge-fixing parameter
In this case the sum of the proper vertices’ diagrams contrib-
uted to the charge can be written as

(p(prop. vert)(a,b,a,) —

WE {_(') (a,@)

+bol)(a,a)+O(b?)}. (2.39

The contributions of the/— Z self-energy diagramg=igs.
2(a)—(hy] to the chargev coincides with those to the neutrino
electric chargeQ(?~? and thus are given by E¢3.26 (the
details of the neutrino electric charge calculations can be
found in Sec. IlIA. We have calculated the functions
o8)(a,a) and¢{)(a,@) and found that the sum of all the
contnbuuonsE(')(a @) exactly cancels the contribution of
the y—Z self-energy diagrams. Thus our result corresponds
to the case of a massless particle. Therefore the chaafe
a massless neutrino is zero. Then, summing the contributions
E(l')(a,a) we reveal that the value of the chargeis also
zero in the next order of the expansion over the neutrino
mass parametds.

Now let us consider the value of the form facfg(q?) at
nonzero momentum transfer. In the subsequent calculations
we have to fix the gauge in order to simplify the formulas.
We seta,=o and a=1 that corresponds to the unitary
gauge for theZ boson and the 't Hooft—Feynman gauge for
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the W boson. However, we do not restrict ourselves considExpanding In(:¢) in the formal series,
ering either the light neutrino or the light charged lepton: the
mass parameteesandb are arbitrary in all our calculations.

In this case the functioB(qg?) in the decomposition of the ©
vy—Z self-energy diagramisee Eq.(2.18] takes the form In(1—¢)=— >, %xk(l—x)",
k=0
14 ) ) . )
B(g2)= BU)(g?)= 2 cosbu sin OuM2M2G and performing the integration with the help of the formula
(9%) 27 (9%) w SInOWwM M 7Ge
X[ —2w+gc(7)c0F O+ s 7)SIrF ], ) (141 (s+ 1)1
I(s !
Y\  ~
(2.40 fodx%(l X) (T2 (2.41)
where
7 7- (1 we receive thag(7)=0 for any value ofr. Thus the expres-
ge(7)=— 57 2 dx(6x2—6x+1)In(1—¢) sion forB(g?) can be represented in the form
0

1
_910 dxin(1-=2), B(q?) =2 COSby Sin ByyMZM2Ge] — 20+ ge( 7).

It is interesting to note that, in contrast to .40, in this
9(N=5%3 f dx(6x*—6x+1)In(1-{) expression the dependence on’aggand sirt 6, is absent.
We have also verified that the analogous property of the
1 function B(g?) remains valid in the case of an arbitrary
_fo dxIn(1-9). gauge.
The y—Z self-energy diagrams contribute to tfig(g?)
We note thaig(0)=g.(0)=0. To show thaig.(7)=g.(7) form factor according to the formula
for any value ofr we consider their differencg(7)=g4(7)
—0.(7). The functiong(r) can be represented as follows:
g\ = - —___~ 2
4 ) f&" “(a%) 4|\/@COSQHWB(q)-
g(n)= §r+8fo dxIn(1-¢)

Now we turn to the contributions of the proper vertices’

+4rjldx(6x2—6x+1)ln(1—g). diagrams[shgwn in Figs. (a)—(f)] to thefs(g?) form factor
0 at arbitraryq“:

6
fl(sprop. vert)(q2) _ izl f(sl)(qZ)

_ eGF 2] 1 z L 3 3 1 z B 3
_4772{2MW[ w+f0 dzfodyln[D TY(z—Y)] 3JO dzfodyln[D Y(Z—Y)]
— 1 z 1 z 1
— jodzfodyln[D —ry(z—y)]—JO dzfodyln[D—ry(z—y)]+§
1
i - 2
1+ fdzJ dyD, Z=y) —[a—b(1-2)7]+ 7 z(l 2)+y(z— y)”

a—bZ+r

+fldJZd ! 3y(z— —1—12+1 . —-b)z*+ (a—Db)y(z— )
92 Yoy =y y(z=y) = gz= 577+ 5y— ga=b)z+(a=by(z=y) | |1,

(2.42
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whereD'=1+(a—1)z—bz(1-2). Equation(2.42 can be fs(qz):f(57_z)(q2)+ffspmp- Ve (g2)=0
analyzed in the same manner as we have treated the function
g(r).. For ins;ance, let us present the calculations of one ofg, any value ofg? and for arbitrary charged leptom and
the integrals in Eq(2.42, neutrinob mass parameters. It should be noted that the de-
1 , composition of the fermion electromagnetic vertex function
I(T):f dzf dy(a—bz?) . (2.43  interms of the four form factors was established previously
o Jo D—1y(z—y) with the use of only general principles such as the Lorentz
, i i i invariance and Hermiticity of the electromagnetic current op-
We again expand the integrand in E@.43 in the formal o a0r We have demonstrated the validity of this decompo-
series sition by means of the direct calculations of the correspond-
1 1o [7\¥ ing Feynman diagrams.
= (—) y(z—y)~.
D—-7y(z—y) D= \D
IIl. NEUTRINO ELECTRIC FORM FACTOR
Then, we carry out the integration over the variaplasing

Eq. (2.41). The obtained result should be transformed ac- N this section we study the massive neutrino electric form
cording to the identity factor. Using the results of the previous section for different

contributions to the neutrino vertex, (q) we extract in Egs.

1 7 1 k—Il-1( 2 (2.9—(2.17) the coefficients proportional to the, matrix
fo dZ_k_D +1(a_b22):E+—k f Zpk: that are, according to the decompositith?2), the corre-
sponding contributions to the neutrino electric form factor
k=1, 1=0, fQ(qZ)_

First of all we consider the contributions of the one-loop
proper verticegFigs. 1a)—(f)] to the neutrino electric form
factor. Using the well-known mass shell identity

which can be proven by means of partial integration. Finally,
we get the following expression for the functibfr):

- : k' 2 TN ’ TN H
I(T):gl%% U(p )(pM+pﬂ)U(p):U(p )(va’y”,_lo-,uvqy)u(p)
“ k+2 (K2 1 g2kl and carrying out an integration over the virtual momenta

k

- - 7 within the dimensional-regularization schertier more de-
& Tk (kD) T . dz—k—D . (249

tails see Appendix Bwe derive the exact expressions for the
contributions from the considered diagrams to the massive

Note that the first term in Eq2.44) does not depend on the peytring electric form factor in terms of the definite integrals
charged lepton and neutrino mass parameteasd b. It is

this term that cancels the corresponding contribution of the

6
y—Z self-energy diagrams. The subsequent analysis of the f%ﬁfop- ver(g?) = e—(stM\%vE ?g)(qz),
remaining contributions of the proper vertices’ diagrams can 47V2 i=1
be performed in the same manner as we have done it for the
function I (7). Finally, we obtain that where

1), .2 @ -« 1 z 1 z ’ 1
fo'(q ):w§+1+T+jo dzJOdyIn’Dl— JOdZJOdy{a+b(1—z) +1-[1—z+y(z—y)]}®—l

111 z
- 2 — 52 _
+ 5 fo dzfody{bz [a+b(1-2)]+ary(z—y)

1 1
+br{2zy(z—y)(1-2)+5y(z—y)—22(1-2)]+ ?y(z—y)(1—z+ yz—yz)}{gl(a)— 51}

1 r1 z
_EJ dzJ dy{a+b+6bz(1-2z)+ 74 1-3z+6y(z—y)]}[InD1(@)—InD,], (3.1
0 0
atb/lw 1 1 z 11 z 1
F(2) N2 —_ 4= _ 2 2,2 _ .
f5'(a%) 5|3 + 2+fodzfodyln©1(a)> > fodzfody[a +abZ+b dabz+ab+(a+b)7ry(z y)]gl(a),
(3.2
a+b D) 1 z 1 z 1
T2y = — | _ — — -
fo'(a%) 5 5 fo dzjodylnﬁz(a) +bf0 dzfody[?)az azZ—2a+bz(1 Z)]’Dz(a)’ (3.3
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3 1 z 1 z 1 9 (1 z
Fé)(q2)=—w—(1+a)—1—3f dzJ dyln’Dﬁ—J dzf dy{3bz(1—z)—T[z—y(z—y)]}———f dzf dy
4 o Jo o Jo D, 2Jo Jo

1 z
X{[Da(a) +y(1=a)]IN[Dy(a) +y(l—a)] =D, I Dy}~ fo dZJOdy{2b2(1—2)2[2(1—2)—y]—br[y(z—y)

1 i}
Dy(a)ty(l-a) D,

><(52—322—3y)+2(1—z)2—y(2—y—y2)]—fzy(z—y)(l—2+y2+y+y2)}{
1 (1 z
+ > Jo dzjody{Sb(l—ZZH— 714—-6(z—y)+1ly(z—y)H{IN[Dy(a)+y(1l—a)]—InD,}

1,1 2
Dy Dyla) Dy(a)ty(l-a)

b z

- —TJldzf dy[bz(1—3z+22+z3)—Ty(z—y)(z+22—2y)]{
2 Jo Jo
T 1 z

+Zf0dzfody[b(9—132+422)—27y(z—y)]{ln©2+ln Do(a)=2IN[Dy(a)+y(l—a)]}

+ ?;—T f:dzf:dy{@z IND,+D5(a)INDy(a) —2[Dy(a) +Y(1—a) [IN[Dy(a) +y(1—a)]}, (3.9

1 z 1 1 z
f7Q5>+<6>(q2):fodzfody(a—bz) ) Ty (i—a) bfodzfody(l—z)[(l—z)(a—bz)—Ty(z—y)]

X[ 1 3 1
Dy(a)+y(l—a) Dy(a)

- EJ‘ldzfzdy(a+5b—6bz){|n[i)2(a)+y(1—a)]—ln Do(a)}. (3.5
2Jo Jo

Here tributions of they—Z self-energy diagrams at arbitrary val-

ues of the gauge parameterand g+ 0.
Di(a)=a+(a—a)z—bz(1-2)+ 1y(z—Y),

D:=904(a=1) A. Neutrino electric charge in arbitrary gauge
=1+(@-1)z=bz1-2)+7y(z=y), In this section we consider the neutrino electric charge. At
zero-momentum transfer the sum of the contributions to the
electric form factor determines the neutrino charge,
D,=D,(a=1) fQ(O)':Q. Our goal is to find its total value for the massive
neutrino,

Do(a)=at(a—a)z—bz(1-2z)+7y(z—vy),

=a+t(l—-a)z—bz(1-2)+7y(z—Yy).
6 14
Note that the values of the mass parameters of the charged _ (i) )
lepton (a) and neutrina(b) are taken into account explicitly Q ;1 Q (a’b’a)+j27 QPab.a),
in Egs.(3.1)—(3.5). The gauge parameterandq? are arbi-
trary in these formulas.
The contributions of the/— Z self-energy diagramig=igs.  and to study the magsa andb) and gauge-fixinga and a7)
2(a)—(h)] to the electric form factor can be obtained usingparameters dependence of the contributions from the

Egs.(2.10 and(2.18. Thus one obtains different Feynman diagrams depicted in Figsa)%(f) and
AD(a,q?)+ B . 2@~(h). | o
()(q2) = — (@) (a,97) - First we consider the one-loop contributions to the neu-
4 cosfy q*—M3 trino charge which arise from the proper vertices diagrams in

(3.6) Figs. 1a)—(f). Using the more general formulas for the elec-
. tric neutrino form factor, Eq9.3.1)—(3.5), we obtain the ex-
Using explicit form of the functionsA)(a,q?) [Egs. act expressions for the contributions from the considered dia-
(2.19—(2.25] and B4 («,q?) [Egs. (2.26—(2.32] as well  grams to the massive neutrino charge in terms of the definite
as Eq.(3.6), one can also derive the expressions for the conintegrals:
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eGF o
Q(l)(a,b,a)=4W2ﬁM\2N w2+1+—+f dz(1-z)inD— fdzl z)(a+bzz) fdzl 2)%(a+b?)
1 1 11 1
X D_a_B —Efodz(l—z)[a+b+6bz(1—z)][|n D,—In D]+3f0dz(1—z)[Daln D,—DInD];,
3.7
Q(2>(a,b,a)=4if;2 M3, a;b >+ ;+f1dz(1—z)|n Da)—;foldz(l—z)(a2+abzz+b2 2—4abz+ab)DiJ,
(3.8
_eG . fath 1) 1 1 1
Q(3)(a,b,a)—4W2ﬁMW 5 —E—fodz zinD, +bJOdzz[3az—a22—2a+bz(1—z)]D—J, (3.9
B eG 3 1 1
Q(4)(a’b-“)_4w—z‘f2MW[_“’Z(1+a)_1_3fodzZInD+3bf0dZ22(1 2) ———f dzf dy
1 z
x{[Da+y(1—a)]ln[Da+y(1—a)]—DInD}—ZbZLdzfody(l—z)z[z(l—z)—y]
! 1+3bJ1dJZd12ID+1 InD 3.1
XI5 +yi-a) D| 2 OZOY(—Z){n[QY(—a)]—n}, (3.10
(5)+(6) eCr _ 2 11
Q (a,b,a)= PRy M fdzJ dy(a— bz)D Tyi-a) fdzf dy(1-2z)“(a— bz)D Ty(i-a) D,
_%fldzfzdy(a+ 5b—6bz){In[D,+y(1-a)]—In Da}}. (3.1)
0 0

The integral expressions of Eq8.7)—(3.11) for different a 1
proper vertices’ contributions to the neutrino charge exactly q(l)(a a)=w > 5 (= 3a%+4a’alna
account for the charged lepton and neutrino mass parameters 2 4(1-a)(a—a)
a andb, and alsp for the gauge-fixing parameteWe have —5a2a+2a3+3a%—3a%Ina—2a3In a
calculated the integrals in Eg$3.7)—(3.11), however, the
results, being expressed in elementary functions, are rather +a?aln a+2a%a—3a’e’+ aa’+ 6a%ae?

cumbersome. Therefore we also perform corresponding inte-

_ 2__ 354 __ 3 3
grations in the first two terms of expansion over the neutrino t6aa—3a’~4a’a-2a%at4a"alna

mass parametds for arbitrary values of the charged lepton —2a*aIna—2a%a%Ina+4aa®lina
mass parametex and the gauge-fixing parameter In this ) 2 3 2 2
case the sum of the proper vertices diagrams to the neutrino —6a‘a“Inata‘a’lna—2a"a’Ina
electric charge can be written as +3a3%?Ina) (3.13
a a
(2)(a a)=w-— —Z(Za2 Ina+4aa—4aalna
Q(prop. vert)(a’b'a,)_ WE {q(')(a,a) 4 8(a—a)
—a’+2a’lna—3a?), (3.149
+bq<'>(a,a)+(9(b2)}. (3.12 a a
qg?’)(a,a) =—w-—— —2(2a2 Ina+4aa
4 8(a—a)

For q(')(a’a) we obtain —4acaln a—a2+2a2|n a_3a2), (313
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3 the neutrino mass, it follows that the neutrino charge term
qg‘”(a,a): —w—(1+a) proportional to the neutrino mass parameigs zero.
4 Now let us turn to they—Z self-energy contributions to
1 the neutrino electric charge. The corresponding Feynman
- 5 (ala—4a? diagrams are depicted in Figs(ak-(h). Using Eq.(2.18,
8(l-a)Y(e—a)(l-a) which presents the decomposition of the functioi§(q),
603 Ina—6a3Ina— 11a2a+ 5ad+ 523 as well as the explicit form of the functiods? (a,q?) [Egs.

(2.19—-(2.29], we find that
+5a%a—5a%a?+ 10a’a?+ 10aa—6a _
A(J)(a,q2:0):0_
—10a’a—6a’a’Ina—12a°a”Ina _
Therefore only the terms proportional &1 («,0) are re-

2 3
+12Z aina+122"alna sponsible for the neutrino electric charge in the Z self-

+6ale?lna+a—a), (3.1  energy Feynman diagrams and we have
14 14
)" ®(a,@)= 4(a_a)2(1a_ S (2aainata’a QV(@)=2, QUe)=- m; BY(a,0).
—a®+4aalna—a’a’—aa+a’+a’a For each of the contribution®)(a) (j=7,...,14) from Eq.

3.6) we obtain
—3a?lna+ad?Iina+2a%alna 3.

eGe
47%V2

+4a2aln a—a?a?lna—4aa?ina

3
3+ Za(l-i— )

QM (a)= M2, cog 0W[ ®
—2a’alna—3a’lna). (3.17

5¢ 5a° 3a® Ina
Each of the coefﬁmentq(')(a,a), if considered separately, -1- B 8 4 (1= a)], (3.19
depends on the gauge-fixing parameterand all of them

[except forg{®(a,a) and q{®'(a,a)] are divergent. Note

; G 3+a 5+a
that, according to the expansion given by Ej12), the sum B)( )= F - - - -
Q' () Py MWSIH2 O\ w 2 8
6
2 (I)(a a) a a\ Ina
= 5 +§ —(1—61’) , (3.20

determines the proper vertex contribution to the charge in the

limit of the massless neutrino. Q9 (a)= eGr
It should also be noted that the two diagrams of Fige) 1 A72

and (f) are convergent for every value of the gauge-fixing

M?Z,(coS Oy — Sir? Oy)

parametere. One can check this statement using E219). 1
Indeed, these diagrams have the superficial degree of diver- X5{-wata—alnaj, (3.21
gence equal to-1 and hence converdd7]. Therefore the
according contributions to the electric charge must be finite e 3
as it is also shown by Eg$3.11) and(3.17). Here we find a Q0(a)= 2F M3, cog 9\,\,{ ——w(3+a?)
discrepancy with the corresponding results of Rf4] 472 4
where the massless neutrino charge is calculated and the con- 3 542 3
tributions of these two diagrams contain the ultraviolet diver- + = 8 + 5 2% 2|n a] (3.22
gencies.
The next order over the neutrino mass paramietef the
proper vertex diagrams’ contributions to the neutrino charge _ 14,12,  _ eGe 2 1
can be obtained if one expands the integrands in 38— Q (@)= ey Miyco 0W§
(3.11), keeps the terms proportional lipand then carries out
the integration. Taking into account that the functi@hand X{—wa+a—alna}l, (3.23
D, also depend ob, we find that
6 N QW ()= e(ZBF MZ[sir? 6y — coS aw]%
> qi(a,a)=0. (3.18 4m*V2
X{—wa+a—alnal, (3.29
Thus, due to the fact that, as it is shown below in this sec-
tion, the y—Z self-energy contribution does not depend on Q¥ (a)=0. (3.25
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It is worthwhile to mention that each of the contributions

; eG 11
QW(a) turns out to be independent on the neutrimo, Y Q(a,b,a=1)= ZF M\ZN[EJ dz{a[—(a+2)
and charged leptonnf,) masses. There is also no depen- 4mV2 0
dence on the masses of the virtual fermions that circulate +z(a+4)]+ab(—1+z+z2—2%)

in the y—Z self-energy diagrams because of the properties
of the y-matrix algebra specified in Appendix B. The depen-
dence on the gauge-fixing parametey also cancels out
within each of the contributions. Note that prior to the inte- 1
grations in Eqs(2.11)—(2.17) being carried out ther; de- +f dz(1—4z)InD
pendence drops out of each of the electric form factor con- 0

tributions to the vertex function at arbitrary momentum

+2bzz(1—22)+b222(1—z)}%

2 atb/1 1
tran§ferq . o +— —+f dz(1-2z)InD | ;.
Finally, for the sum of ally—Z self-energy contributions 2 12 Jo
to the neutrino electric charge we have (3.29

To analyze Eq(3.28 we use the formulas

eGe 3+ta 5+«
(y=2) = 2 — 1 1 1
Q (@) an2va V| 4 “" g fdzInD=—1+f dz(a—bzz)B,
0 0
alna 1+ a)} (3.26 11 L
- ~ . . l l
2(1-a) 2 fdzzInD=——+—J dzzZa—b7) =,
0 4 2 0 D

(3.29

Some remarks should be made with respect to the dlVer(‘:’e?lliat can be proven by means of partial integration. Substitut-

parts in Eqs(3.13—(3.1 and (3.26. The sum of all the ing Eqg. (3.29 into Eq. (3.28 we obtain that the neutrino

coefficients inw terms is zero, i.e., the electric charge of a . . . . .
massive neutrino vanishes for every number of din?ensionelecmc charge vanishes for arbitrary neutrino mass in the
y 2onsidered gauge.

N. The same property of the electric charge of a massless
neutrino was determined in RgB].

Now we can complete investigation of the neutrino charge
in the zeroth order of the expansion over the neutrino mass Using the closed expressions for the contributions to the
parameterb summing together the contributions from the neutrino electric form factor obtained above in this section, it
proper vertices given by Eq3.12—(3.17), is possible also to derive the neutrino charge radius. Ac-

counting for the next-to-leading term in tlyg expansion of
the contributions in Eq93.1)—(3.5) and(3.6),

C. Neutrino charge radius

eGr .
(prop. vert) a,0,a)= |\/|2 (i) a,a), df
Q ( ) 4772‘5 WIZEJ. o ( ) fQ(qz):fQ(0)+q2_§(0)+"',
(3.27) dq
one can obtain the value of the massive neutrino charge ra-
andQ("~?(a) given by Eq.(3.26). dius as
As a result we obtain that the neutrino electric charge in dfg
the zeroth order in the neutrino mass vanishes for every (ry=-6-—(0)
gauge in agreement with the final results of R¢f14], dg

where the calculations of the neutrino electric charge have(de study its dependengies on the gauge and mass param
n performed in the limit of vanishing neutrino mass. ) )
been performed © O vanishing heutrind mass eters. Here we should like to note that the problem of the

massless neutrino charge radius has been discussed in detail

B. Neutrino electric charge in the 't Hooft—Feynman gauge in Refs.[18,19.

V\_/it_hin the 't Hooft—Feynman gauge it is possi_ble to shoyv IV. NEUTRINO MAGNETIC MOMENT
explicitly that at the one-loop level the neutrino electric
charge is zero for an arbitrary mass of neutrino. The gauge- According to the general decomposition of the neutrino
fixing parametere=1 in this gauge. Summing up the con- electromagnetic vertex function ,(q) given by Eq.(2.2),
tributions of all relevant diagramgEgs. (3.7)—(3.11) and  the neutrino dipole magnetic form factby(q?) is the coef-
(3.26] we receive the exact expression for the neutrindficient in the term proportional too,,q". In this section we
charge at arbitrary values of the charged lepton and neutrinfirst determinef,(q?) and then calculate af?=0 the neu-
mass parametemsandb, while a=1: trino magnetic moment accounting for the two mass param-
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eters(a and b) and for the gauge-fixing parametér) as
well,

,u(a,b,a) = fM(qZZO)-
Note that the Feynman diagrams in Figga)2(h) do not

contribute to the neutrino magnetic moment. Thus the total
one-loop value for the neutrino magnetic moment is given by

4.1

PHYSICAL REVIEW D 69, 073001 (2004
w®*+O)(ab,a)

_ eGe
4722

1 z 1
mV[ fodzfodnya*'Y(l_a)

6

M(a,b,a)z_Z1 uD(a,b,a), (4.2)

wheren()(a,b,a) are the contributions to the magnetic mo-
ment from the corresponding diagrams shown in Figa)-1

(f).

1 r1 z
h —2(q—
+zfodzfody(1 Z2)°(a—hz)

! [aef e

X(2—-3z){In[D,+y(1-a)]—In Da}] . 4.

1
“Dary(l-a) D_a

We treat the neutrino magnetic moment in a similar way
as we have analyzed the neutrino electric charge. Using Eq#t. should be noted that these formulas exactly account for
(2.5—(2.9) for each of the contributions to the neutrino mag- dependencies on the neutrino and charged lepton mass pa-

netic moment we receive

1 1
F N
mv[fodzz(l z)D

eG
Da,b,a)=
m( ) 22

101
D, D

1 (1
5 fo dz(1-2)(1-32)[InD_,—In D]],

1 (1
_Z —A\3(q—
2fodz(l z)°(a—bz)

4.3
,u(z)(a,b,a)— eGF fdz(l 2)
1
><[—3az+a22+2a—bz(1—z)]D—,
(4.4
,u(3>(a,b,a)— EGF fdzz[ 3az
1
+a22+2a—bz(1—z)]D—, (4.5

3

eG

w®(ab,a)= ———m, 1Jldz 22(1+22)i
4722 V|2 )o D

b (1 z
— — )2 —7)—
+2 Jodzfody(l 2)(z(1-2)—2y]

1 1
“D.iy(i-a D

11 z
+—f dzf dz(—2+9z—472—6y)
2Jo Jo

x{In[D,+y(1—a)]—In D}], (4.6)

rameterga andb) and the gauge-fixing parameter).

To proceed further with the analytical calculations we ex-
pand the contributions to the neutrino magnetic moment
[Egs. (4.3—(4.7)] over the neutrino mass parameterand
consider the first two terms. Then from Eg.2) we obtain

"(a a)

m(a,b,a)=

ﬁ(l”(a,a)+(’)(b2)}. (4.9

For each of the coefficienta ')(a a) we have found the
exact expressions in terms of algebraic functions, however,
they are again rather cumbersome. Therefore let us consider
more compact expressions fa (a,a) that can be obtained

in expansion over the charged lepton mass pararaeféius
accounting for the terms up to the second ordemiwe
derive for the coefficientg ')(a a)

2 10—3a+6Ina—6Ina

wi(a,a)= = 3t ” a+0(a?), (4.9
5+3Ina—31In
22 (a,a)=— 3—aaa+ 0(a2), 4.10
—(3) oa 2
(a a)— —2a+(’)(a ) (41])
—) 2—7a—3alna+5a?
a,a)=
,LLO ( CL’) 6(1_C¥)2
9—12a+Ina+5alna+3a?
- 5 a+0(a?),
12(1-«)
(4.12
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546 l—-at+alna tions. The sum of the coefficient4.9—(4.13 is found to be
ﬁé) ©®(a,a)= —2—2(1_ ) independent on the gauge parametehe straightforward
calculation of the neutrino magnetic moment in the lifmit
5-16a—aln a+11e®—50%Ina —0 yields
12a(1—a)? a
+0(a?). (4.13 eGe 3
po(a,@)=——m, ;(2—7a+6a’
Equations(4.9—(4.13 together with Eq(4.8) yield a value 47?2 4l-a)

of the magnetic moment in the limit— O that corresponds
to_ the case of a light neutrino. We may compare our

w$)(a,a) calculations with the results of Ref14]. Our
results for the contributionsu$?(a,a), u{’(a,e), and thatis in agreement with Ref14].

(6)(a «) disagree with those of the above-cited paper. The Considering the next order over the neutrino mass param-
Feynman diagrams corresponding to the contributions eterb contribution to the magnetic moment, we find out that
=5,6 contain the unphysical charged scalar boson. This bdhe sum of the corresponding contributions of EG&3)—
son contributions should disappear in the unitary gauge whef#.7) to the coefficienfu;(a, «) is given by
the gauge parameter=cc. Thus the contributions to the
magnetic moment from these two diagrams must vanish in
the limit «— . This is exactly what we get from E¢4.13. 6
However, the similar expression from Rgt4] does not de- #Tl(a,a)z > wi(a,a)
pend on the gauge parameter at all. An argument in favor o i=
our results can be also obtained if one considers the value of

—2a’lna—ad) (4.16

. . . . 1
the neutrino magnetic moment within the unitary gauge. In- _ B a2 AAa2
deed, it is easy to show that using the results of Ref] it B 12(1—a)5(5 26a+balna-36a”—60a’ina
is not possible to get the right value for the neutrino mag- 5 . .

netic moment within this gauge. In the unitary gauge, only +58a°—18a°Ina—a”). (4.17

the diagrams shown in Figs(d) and (d) contribute to the
neutrino magnetic moment. The results for these two contn
butions, that can be obtained using the corresponding formu-
las presented in Ref14], are

Thus we explicitly show by Eqg4.16) and(4.17) that in the
one-loop level and to the second order in the expansion over
the neutrino mass parametethe neutrino magnetic moment
is a gauge-independent quantity.

1 eGe 5 The obta_ined Eq94.3—(4.7) also enable us tp consider
Ko =M 372 +(’)(a ) (s (414 the magnetic moment of a rather heavy neutrino since the
mass parameteesandb are arbitrary in these equations. Let
the neutrino masm, be much greater than the charged lep-
eGe 7 ton massm, (this case amounts to>a). Approaching the
S 2‘[ +(’)(a2)] (415  limit a—0 in Eqgs.(4.16—(4.17), while keepingb constant,

for the neutrino magnetic moment we receive

The sum of the leading terms in Eq4.14) and(4.15) differs
from the well-known result for the neutrino magnetic mo-

ment calculatior(see, for example, Ref5]): 3eGe 5
w= m,{ 1+ —=b+---|. (4.18
87%V2 18
B 3eGgm,
" 872

The recent LEP data require that the number of light neu-

This fact points out that the contributions of the three dia-trinos coupled to th& boson is exactly 3. Any additional
grams shown in Figs. ()—(f) are calculated in Refl14] neutrinos must be heavier than 80 Geée, e.g., Ref.15)).
with incorrect gauge-fixing parameter dependence. Our Using our formulas Eqg4.3)—(4.7) for a massive Dirac neu-
calculation shows that to the leading ordernm, each of trino magnetic moment we can also examine the case of a
these three contributions of the diagrams in Figd)4(f) are  very heavy neutrino. Let us consider the case of the neutrino
gauge-fixing parameter dependent. Note that calculationgsiass being even greater than iNdoson mass. To examine
performed in Ref[14] provide the correct results only within this situation we should fix the gauge parametein Eqgs.
the 't Hooft—Feynman gauge. (4.3 —(4.7) for simplicity of the computations. In what fol-

Let us now consider the value of the neutrino magnetidows we setw=1 that corresponds to the 't Hooft—Feynman
moment in the “zeroth” order in the expansion over the neu-gauge. Thus for the sum of all the contributions to the mag-
trino mass parametdr taking into account all the contribu- netic moment we obtain the expression
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. 1 1 111 1 either exact formula$t.3)—(4.7) or the expansions given by
M=5(f dz5—(1-28w+ 35e)§f dz z5 Egs. (4.9—(4.13, we find out that the contributions of the

0 0 diagrams depicted in Figs(H), (c), (€), and (f), which in-
volve the scalar boson, vanish in the linait— oo,

+(1+28y+ 8 1fld 221
( w ()2 0 z D’
Neutrino magnetic form factor at nonzero momentum transfer
D=272—2(1— 6w+ ;) + 6,, (4.19
In this subsection we study the neutrino magnetic form
_ . factor at nonzero momentum transfer in arbitr&y gauge
where we redefined our mass parameters and introduced tlag well as for arbitrary charged lepton and neutrino mass
wo new guantities: ow=1b=(My/m,)° and §;=a/b  parameterga andb). The y—Z self-energy diagrams shown
=(m,/m,)°. The case of the super heavy neutrino corre-in Figs. 2a)—(h) also do not contribute to the magnetic form

sponds to the values of the new mass parameters in the rangigstor atq?+0. Therefore the total one-loop value for the

Sp<ow<1l. neutrino magnetic form factor is given by
One can prove by means of the direct calculation that

6
eGe ,
lim 8yJ,=0, fu(9?) = m,>, (g,
o wn m(a%) ey 21 m ()
and _
_ Whereﬂ\},)(qz) are the contributions to the magnetic moment
;Imo 0(3,=0, n=0,.., 2, (420 from the corresponding diagrams shown in Fig&)Z(f).
o For the coefficients{?(q?) we have
where

1 z 1
?(,\,P(qz):f dzf dy(2—3z+2%) —
0 0 Dl

1 1

jn:f dz7'—. (42]) 1 (1 z

0 b —Ef dzJ dy[aZZ—bZ(1-2)
o Jo

Using Eqgs.(4.20 and(4.21), we find that the functione in
Eq. (4.19 is equal to3 that corresponding to the magnetic —ty(z—y)(2—2)]
moment,

1 i}
Di(a) D;

111 z
+—J' dzf dy(2—3z)[InD1(a)—InD4],

2J)o Jo
eGe
8m7%V2

n= m, . (4.22 (4.23

Equation(4.22 presents the magnetic moment of a heavy

1
neutrino with the mass much greater thanWe&oson mass. t2(g?) = Ef dzfzdyz[a+ az—b(1-2)] 1 ,
At the end of this section let us compare the calculation of 2 Jo 0 Di(a)
the neutrino magnetic moment in the unitary ddgauges. (4.24

The calculations performed within these gauges, as it was

mentioned in Ref[20], are formally equivalent, i.e., the two

Feynman amplitudes become equal if we approach the limit 111 ,
a—oo prior to corresponding loop integrals being carried ?(N?)(qz):_f dzf dy
out. The diagrams involving unphysical scalar bosons must 2Jo 0
disappear in the unitary gauge. Therefore in such diagrams

the limit a—o and the integration over virtual momenta 1

must be commuting procedures. We directly verified this ><[2a—3az+a22—bz(1—z)]m,
statement for the particular case of the calculation of the

massive neutrino magnetic moment. Indeed, on the basis of (4.2
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() == fdzJ dyz(1+22)—+ szf dy{b(1—2)[z(1—2)—2y]—ty(z—y)(2y—3z+7%)— 2ty}

1 1 1 z
|+ — 272 )=
[Dz(a)-l-y(l—a) D, +2j0dzJody( 2+9z—4z°—-6y){In[D,(a)+y(1l—a)]—InDy}
——f dzf dy[bz(1—3z+ 22+ 2%) —ty(z—y)(2—z— 22)] ! 2
Y ey Da(@) Dy(a)+y(1-a)
t 1 z
+§f dzf dy(8—13z+3z%){InD,+InDy(a)—2 IN[Dy(a)+y(1—a)]}, (4.26
0 0
|
—15)4(6), .2 1 z 1 In Eq. (4.30 we dropped the terms liketland (Int)/t which
fm 7 (d )=f dzf dyys @+y(l—a) are negligible for large positive The remaining integrals are
0 0 2 evaluated in a similar way. Finally, we find that
171 z
+§J dzf dy[(a—bz)(1—2)2+ty(z—y) 6
0 0

2 I)('[)—>0 if t— +oo,
1 1 =

Dy(a)+y(l—a) Dy(a)

X(1-2)]

1 (1 , The behavior of the magnetic form factor at large negative
+ —J dzf dy(2—-3z){In[Dy(a) g?, described above, is consistent with the general Weinberg
2Jo 0 theorem[21]. However, the case of the massive neutrino
o magnetic form factor has never been discussed previously.
Ty(1=a)]=InDay(a)} (4.27 It should be noted that in derivation of Eq4.28—(4.30
where we assumed that<<cc. Therefore our result thdt, (t)—0
att— + oo is valid in any gauge except the unitary one. The
Di(e@)=a+(a—a)z—bz(1-2)+ty(z—y), value of f,(t— +%) may not be equal to zero if we at first
seta=o0 and then approach the limit> +o. The analysis
D1=Di(a=1) of the large negativel?> behavior of magnetic form factor
_ Ao _ _ within the Weinberg-Salam model in the unitary gauge is
=1+(a-1)z=bx1-2)+ty(z-y), given, for instance, in Ref20].
Using the explicit formulas for the massive neutrino mag-
netic form factor for arbitrary gauge parameter[Egs.
(4.23—(4.27] we present in Fig. 3 the behavior of the func-

Dy(a)=a+(a—a)z—bz(1-2z)+ty(z—y),
D,=Dy(a=1)=a+(l-a)z—bz(1-2z)+ty(z—y),

andt=—g?/M3,. 1.5000
We discuss below the large positivéehavior of the in-
tegrals in the expressions of the proper vertices’ contribu-
tions tof\(g?). For example, let us consider the following

integral att— +:

1.4998

£, () 1.4995

) J’ z q y f z q y
J(t)=t ——= —_—,
0 yDz(a) 0 y(V‘Yz)(h—)’) 1.4994]
(4.28
where 1.4992
0 1 2 3 4 5
D D 7 Y
=74+ —+- =— %4 . x 10
yl z zt ’ y2 zt (4 29)
FIG. 3. The massive neutrino magnetic form factor versus
Performing the integrations we readily find that squared transverse momentum in different gauges. The dashed line
corresponds tax=100, the solid line to the 't Hooft—Feynman
J(t)—Int—InD. (4.30 gauge @¢=1), and the dash-dotted line to=0.1.
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From the obtained closed two-integral expression for the
massive neutrino electric form factor it is also possible to
derive the neutrino charge radius.

tion f_M(t) for different gauges and a wide range tof 0
<t=<5x10"%. It can be seen that the magnetic form factor

becomes gauge independentat0 that amounts to the case . . .
The structure of the massive neutrino electromagnetic ver-

of the on-shell photon. The valug,(t=0) is equal to the . X ) ) .
neutrino magnetic moment, and Fig. 3 shows gauge indepeﬁgx functl_o_n has been exa”?'.”ed in this WOT"- We have di-
dence of this quantity in agreement with our exact Calcula_rectly verified the decomposition of the neutrino vertex func-
tions performed above tion. It has been found out that the value of the additional

form factor f5(g?), which is proportional to they,, ys ma-
trix, at q2=0 is zero in the first two orders of the expansion
over the neutrino mass parameteand for arbitrary gauge

We have considered the massive neutrino electric chargearametere. The vanishing of the additional form factor
and magnetic moment within the context of the standardfs(q%) in the particular gaugea; = and ay,=1) but for
model supplied with the S(@)-singlet right-handed neutrino the arbitrary charged leptoa and neutrinob mass param-
in generalR, gauge. Using the dimensional-regularization eters as well as for arbitrany’ has also been demonstrated.
scheme, we have calculated the one-loop contributions to theuch direct calculations have never been carried out before.
neutrino electromagnetic vertex function taking exactly into For each of the diagrams contributing to the neutrino
account the neutrino mass. We have presented the results @@gnetic moment, we have obtained the expressions ac-
our calculations of different contributions to the neutrino counting for the leadingzeroth) and next-to-leadingfirst)
electric charge and magnetic moment as the closed integr@rders in the neutrino mass parametewith the gauge de-
expressions. It has allowed us to determine the dependencig§ndence shown explicitly. Each of the contributions is finite
of these contributions on the neutrino and correspondingnd the sum of all contributions turns out to be gauge inde-
charged lepton masses as well as on the gauge-fixing pararendent. Our calculations also enable us to get the neutrino
eters. The integral expressions for the neutrino electrignagnetic moment in the following ranges of the neutrino,
charge and magnetic moment obtained in this work contaigharged lepton, andlV boson massesn,<m;<My, m,
at most two definite integrals which, in principle, can be <m,<M,y, andm;<M,y<m,, which span almost all the
performed and expressed in terms of elementary functiong:ases presently discussed within different theoretical models.
However, the results are quite cumbersome and therefore w&e have also presented the general formulas for the massive
have presented them as the expansion over the neutrino ma@gutrino magnetic form factor at arbitragy.
parameteb. For several diagrams, which contribute to the ~As for the behavior of the neutrino magnetic form factor
neutrino charge and magnetic moment and which have beeat g2+ 0, we have found that the functidiy(g?) essentially
calculated in Ref[14] with mistakes, we have found the depends on the gauge fixing parameteat g°+ 0. The mag-
correct results. netic form factor may depend on the gauge parameter at

We have found the general expressions for the contribu#0 since it is not a measurable property of a particle and
tions to neutrino electric form factor. These formulas havetherefore may not be invariant under the gauge group trans-
been derived in gener&®; gauge and at arbitrary value of formations. The consideration of the gauge parameter depen-
g?. We have shown that the electric charge of a massivelence of the neutrino magnetic form factor as well as its
neutrino is a gauge independent and vanishing parameter @symptotic behavior at large negatigé in the limit b—0
the first two orders of the expansion over the neutrino maswithin the Weinberg-Salam model is presented in RR2@).
parameterb. In the particular choice of the 't Hooft— The transition magnetic moment of the Dirac neutrinos
Feynman gauge we have also demonstrated that the neutrigoupled with the light fermio (m;=~m,) and with the light
charge is zero in all orders of expansion owgii.e., for an  scalar bosonp (m,<m,—my) through the Yukawa interac-
arbitrary mass of neutrino. In the previously published workstion vT ¢ is discussed in Ref.26]. The transition magnetic
devoted to the calculation of the neutrino electric charge thenoment dependence o is also considered there. The
case of the massless neutrino was studied within the Georganalysis of the neutrino magnetic moment is presented in
Glashow (see Ref.[20]) and Weinberg-Salanfsee Refs. Ref. [27] for various versions of the left-right symmetric
[6—-9]) models. However, it is clear that the massless particlenodels. The results of our massive neutrino magnetic mo-
must be electrically neutral. There is no doubt that the masment calculations can be applied to the treatment of the mag-
sive neutrino electric charge must be also zero, however, ietic moment(including the transitional magnetic momgnt
has not been yet shown how it actually happens for correwithin the left-right symmetric model.
sponding Feynman diagrams. Although we have not studied the neutrino anapole form

There are other reasons to prove by the direct calculationfactor in this paper, this particular problefwhich we dis-
that the value of the massive neutrino electric charge is zer@uss in Ref[28]) is also important since, for instance, the
For example, this problem is important in consideration ofanapole momenthe value of the anapole form factor gt
the neutrino spin oscillations. In the series of our wd&—  =0) is the only static electromagnetic property of a Majo-
25] we have elaborated the quasiclassical approach for theana neutrino(see, for instance, Ref$4,29)). It should be
description of the neutrino spin oscillations in arbitrary ex-noted that even a massless particle can possess the anapole
ternal electromagnetic field. An essential point in these studmoment, unlike the magnetic moment. Some recent papers
ies has been the zero charge of the massive neutrino. In tha&ge worth mentioning in this respeee Refs[16,30, and
paper we have substantiated this assumption. references therein However, the investigation of the neu-

V. CONCLUSION

073001-18



ELECTRIC CHARGE AND MAGNETIC MOMENT OF A.. .. PHYSICAL REVIEW D69, 073001 (2004

A Wi W.
k
1% = + . -
’ We~p oW, br " b vr
(8) gcosbw{(k—p)79>? (®) e{(k —p)7g>? (a) ﬂ%g (b) -\%75
+ (- 9% + (g - k)Pg} + (p —0)%9%" + (¢ — k)Pg™}
FIG. 4. (a), (b) Vector boson triplex vertices. A,

trino anapole moment faces serious difficulties such as its
observability and gauge dependence.
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APPENDIX A: FEYNMAN RULES ~Qrsin? 6w + 1vs)

In this appendix we present the full list of the Feynman
rules[31] necessary for the calculation of the massive neu- FIG. 6. (a)—(e) One vector boson and two fermions vertices.
trino electromagnetic vertex. In the; gauge the propagators
for the vector boson®/ andZ, an unphysical charged scalar B 1
bosony, as well as charged ghostsaandc are presented in D©(k)=D© (k)= NE

o

the following form: —k?—ie’

1 k k The fermion propagator has the standard form
D} (0= g 9= (1) e,
—M3+ ke—aMytie S K+m,
k k mﬁ— k2_ ie ,
D= | 9= (I=ag) g,
2-M32+ig| k?—a,M3+ie wheren denotes the type of a fermion.
All vertices can be divided into several classes. We ap-
1 pend below the corresponding graphs and Feynman rules for
DW(k)= ——5———, each of these class¢Bigs. 4—11.
aMy,—k"—ie All the momenta of particles associated with vertices are
taken to flow in.Q; | represent electromagnetic charges of
wit As
Za Aq
Wy z -~ T~ A’E‘\\
¢ ! X~ - ~x" X ~x*
(a)
eg cos fw (a) mﬁ’o;(smz fw — (b) —e(p—9)a
x{g%7g+ g20 P cos® 0w) (P — Q)a
-zgaﬁg'ys}
FIG. 7. (@) and (b): One vector boson and two scalar bosons
FIG. 5. (a) Vector boson quadruple vertex. vertices.
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X~ X
"j’/“\'\'\’\ ,‘I"f}\’\'\'\_ o,p g o @, p g &
W; Zg W; Aﬁ ‘ ‘ ‘ ‘

et c” ¢ et
(a) igi‘c‘,‘:;’v”: Mwgap (b) —ieMwgap (a) —gcosOwpa (b) gcosbwpa
+ +
! ’ Ad Aq
,_f‘/\’\'\‘\,\‘ B m o,p % = &, p g &
w, Zs Wy Ag i ~ P -
¢t c” ¢ ct
(c) —z‘gsci;': 2% My gap (d) ieMwgas
’ (c) —epa (d) epa
FIG. 8. (a)—(d) Two vector bosons and one scalar boson verti-
ces. FIG. 10. (a)—(d) One vector boson and two charged ghosts ver-
tices.

the fieldsy; | in the units ofe. ;| representing the three . _ _
generations of leptons and quarks correspond to usual “upwhereQ(N)=217N’2/F(N/2) is the area of a unit spherefn
(all types of neutrinos as well as, ¢ andt quarks; dimensions. The dependence of an arbitrary positive param-
l,=+1) and “down” (all types of leptons as well as, s  €ter\, which has the mass dimensionality, is introduced to
andb quarks;l 3= — 1) components of an isodoublet, respec- Provide the total dimensionality of an integral. The general
tively: | is the third component of the isospin. technique for calculation of various loop integrals in the di-
The arrow on a line indicates the direction of the flow of Mensional regularization scheme can be found, for example,
a certain quantum number: the charge Wét, x*, the fer- I Ref.[32]. It should_ be, however, rather _heIpfuI to include
mion number fory, the ghost number far, T. The symbok her_e some of _the typical loop mtegrz_ils which one encounters
or © at the charged ghost lines stands for the sign of thavhile calculating the electromagnetic vertex function,
charge carried by the arrow.

i
APPENDIX B: FEYNMAN INTEGRALS I:l(_o): _j d"k
- s (K2+X)-
In our calculation of Feynman integrals over virtual mo- 2:2\ &
. . I . Nic\eI(L—2+e) 1
menta we use the dimensional-regularization scheme with -
the following natural properties of-matrix algebra: T r(L)  xt—2+e

{‘yi,u‘yS}:O! {yMIYV}:Zg/UH gluvg,uv:N!

1 X
whereN=4-2¢ is the number of dimensions. Fi¥=X ;"”( Nz —C+1],
The dimensional regularization of the loop integrals in the
Euclidian space is performed in the following way: L X
v
1 1 FP=——+In| - —|+C,
f d*k— f dNk € N
(2m)* (2m"
\Ze - o__ 2 ) !
= dﬂf kN~ 1dk, Fs'=—2o, Fa=——23,
(2m)N f(l(N) 0 2X 6X?
X+ X Xt X~
i \\ ///
1;[ /‘\ s U vy A, Z,
(a) _i_g_\/EMw (miPr — (b) _iﬁ;\’m(mIPR - (a)
mrPr) miPr) eggwgaﬂ

FIG. 9. (a) and(b): One scalar boson and two fermions vertices.  FIG. 11. (a) Two vector bosons and two scalar bosons vertex.
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(0) L
FO=_
> 12x3
__f (k2+X)L
N2\ *T(L—3+e) e—2
- T F(L) XL—3+8’
1 X 1
FoV=2X|——In| - —| - C+ |,
e A 2
1 X 1
F=——+In +C+ =,
e 2
(1) ! (1) .
FV=——, Fd= ,
4 3x' 0 ° 12%2
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k2)2
:_f (K+X)t
NZi2\*T(L—4+e) (e—2)(e—3)
o T F(L) XL—4+s !
X 1
FP=3X|——In = —C+—|,
6
1 X
FiP=——+In| - —|+C+ -,
&
(2) !
F&'=——,
° 4X

whereC~0.577 2157 is the Euler constant.
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