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Analytical solution of the Gross-Neveu model at finite density
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Recent numerical calculations have shown that the ground state of the Gross-Neveu model at finite density
is a crystal. Here, we present the analytical solution of this problem in terms of elliptic functions. The scalar
potential is the superpotential of the nonrelativistic Lame´ Hamiltonian. This model can also serve as an
analytically solvable toy model for a relativistic superconductor in the Larkin-Ovchinnikov-Fulde-Ferrell
phase.
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In this paper we reconsider the simplest variant of
Gross-Neveu~GN! model, a~111!-dimensional relativistic
field theory withN species of fermions interacting via a qua
tic self-interaction@1#

L5c̄ ( i )igm]mc ( i )1
1

2
g2~ c̄ ( i )c ( i )!2. ~1!

In a previous work@2#, we found that the widely accepte
phase diagram of this model in the largeN limit @3# needed
some revision. The dynamically generated scalar mean
becomes inhomogeneous in a certain region of tempera
and chemical potential, a fact which had been overlooked
far. The four-fermion interaction then does not merely lead
mass generation but to formation of a kink-antikink cryst
This in turn reflects the presence of bound baryons in the
model as can be most clearly seen in the low-density lim
The approach used in@2# was a numerical implementation o
the Dirac-Hartree-Fock method~equivalent to the saddle
point method in the functional integral approach!.

Here, we repeat the same calculation in an analytical m
ner. We focus on theT50 case and explain how to constru
the crystal ground state at any density in closed, analyt
form. The finite temperature calculation along similar lin
will be the subject of a forthcoming work. Since the resu
of Ref. @2# are fully confirmed by our new method we ref
to this paper for more details, figures and a discussion of
underlying physics. For a more general introduction into
field of ~111!-dimensional toy models for hot and den
matter, see the review article@4#.

We start from the Hartree-Fock Dirac equation

S g5
1

i

]

]x
1g0S~x! Dc~x!5vc~x!, ~2!

choosing theg matrices as follows:

g052s1 , g15 is3 , g55g0g152s2 . ~3!

In terms of the upper and lower spinor componentsf6 the
Dirac equation consists of two coupled equations:
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6SDf65vf7 , ~4!

which can be decoupled by squaring,

S 2
]2

]x2
7

]S

]x
1S2D f65v2f6 . ~5!

Note that Eqs.~4!, ~5! fall precisely into the pattern of su
persymmetric~SUSY! quantum mechanics. Let us now mak
an ansatz forS(x) based on the superpotential of the we
known Lamépotential@5,6#

S~x!5Ak2
sn~Axuk2!cn~Axuk2!

dn~Axuk2!
[AS̃~Ax!. ~6!

Here, three types of Jacobi elliptic functions with modulusk

appear@7#. The spatial period ofS̃(Ax) is

,52K , ~7!

where K is the complete elliptic integral of the first kind
K (k2) @7#. We shall choose the parameterA in such a way
that S(x) has the perioda determined by the mean densi
@2#,

a5
1

r
5

p

pf
, ~8!

hence

A5
,

a
5

2pfK

p
. ~9!

The resulting potential still has one free parameter,k, which
determines both its shape and its size; the period is now fi
by the mean density. DenotingAx by j, Eq. ~5! for f1 can
then be converted into

S 2
]2

]j2
12k2 sn2~juk2!D f15Ef1 ~10!

with
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E5
a2

,2
v21k2, ~11!

which is recognized as the simplest case of the Lame´ equa-
tion @5#. The corresponding equation forf2 differs only by a
translation of the potential through half a period and th
yields an identical spectrum@6#. We can now simply use al
the well-known results for the Lame´ potential. For our pur-
pose we found Ref.@8# particularly well suited.

In order to determine the yet unknown parameterk we
shall minimize the ground state energy density

Eg.s.522E
pf

L/2dp

2p
v1

1

2Ng2a
E

0

a

dxS2~x![E11E2 .

~12!

E1 is the sum over single particle energies over all fill
negative energy states regularized by a cutoff.~For simplic-
ity, we consider antimatter by leaving the valence band in
Dirac sea unoccupied@2#.! E2 is the standard correction term
for double counting of the interaction energy. ConsiderE1
first, transforming the Bloch momentap and single particle
energiesv to the corresponding quantities from the Lam´
equation,

E1522
,2

a2Ekmin

kmaxdk

2p
AE2k2 ~13!

where

kmin5
p

,
, kmax5

aL

2,
. ~14!

It is actually more convenient to integrate overE, using@8#

dk

dE 5
E/K1k22E

2A~12E!~E2k2!~11k22E!
. ~15!

Here,E is the complete elliptic integral of the second kin
E(k2). We thus have to evaluate

E1522
,2

a2EE min

EmaxdE
2p Udk

dEUAE2k2 ~16!

where now the lower limit is the band edge,

Emin511k2, ~17!

whereas the upper limit can be inferred from Eq.~15! to be

Emax5kmax
2 12S 12

E

K D ~18!

with kmax given in Eq.~14!. It is necessary to keep the su
leading term here, since the integral overdE is linearly di-
vergent and the divergent part will be subtracted. Perform
the integration in Eq.~16! yields
06770
s

e

g

E152
L2

8p
1

,2

4pKa2
~4E1~k222!K !

1
,2

2pKa2
~2E1~k222!K !lnS aL

,k D . ~19!

The term;L2 can be eliminated by subtracting the ener
of the trivial vacuum. Now consider the double countin
correctionE2, Eq. ~12!, in the form

E25
,

2Ng2a2E0

,

djS̃2~j!. ~20!

InsertingS̃ from Eq. ~6! and transforming to the integratio
variables5sn j, the integration can be carried out as fo
lows:

E
0

,

dj
sn2j cn2j

dn2j
52

2

k4
~2E1~k222!K !. ~21!

The coupling constant is related to the cutoff via t
~vacuum! gap equation@2,9# which reads~in units where the
vacuum fermion mass is 1!

Ng25
p

ln L
. ~22!

Combining Eqs.~20!–~22!, we find

E252
,

pa2
~2E1~k222!K !ln L. ~23!

Upon addingE1 andE2 and recalling Eq.~7!, the logarith-
mically divergent terms cancel and we obtain the fini
renormalized ground state energy density,

Eren5
pf

2K

p3
~4E1~k222!K !

1
2pf

2K

p3
~2E1~k222!K !lnS p

2pfkK D . ~24!

Let us minimize this expression with respect to the modu
k, our variational parameter. This yields the simple condit

k5
a

,
5

p

2pfK
, ~25!

a transcendental equation fork. Eliminating pf from Eren
with the help of this relation, we finally get the followin
parametric representation of the ground state energy a
function of density~parameterk),

Eren5
1

4p
1

1

pk2 S E

K
2

1

2D , ~26!
3-2
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pf

p
5

1

2kK
. ~27!

We also give the scalar potentialS(x) corresponding to the
optimal value of the modulusk,

S~x!5k

snS x

k Uk2D cnS x

k Uk2D
dnS x

k Uk2D . ~28!

S(x) interpolates smoothly between widely spaced kinks a
antikinks (;6tanhx) at k→1 ~low-density limit! and the
function (k/2)sin(2x/k) for k→0 ~high-density limit!.

All we have done may be viewed as a variational cal
lation of the ground state of baryonic matter in the G
model. Comparing the results forS(x) or Eren with the nu-
merical results of Ref.@2#, we find excellent agreement. Th
suggests that the scalar potentialS(x) is actually self-
consistent. One can indeed prove the self-consistency
lytically, using the detailed form of the Lame´ wave functions
@5# and a number of identities for elliptic functions. Th
proof is given in the Appendix.

Let us now make use of the closed formulas deriv
above to illustrate certain features of the GN crystal. If we
to the low-or high-density limit, it becomes possible to sy
tematically resolve the transcendental equation relatingpf
andk,

k '
pf→0

128e2p/pf1
32~p1pf !

pf
e22p/pf

k '
pf→`

1

pf
2

1

4pf
3

1
3

64pf
5

. ~29!

For the energy as a function of density, one finds

Eren '
pf→0

2
1

4p
1

2pf

p2
1

8pf

p2
e2p/pf

Eren '
pf→`

pf
2

2p
2

1

26ppf
2

1
3

214ppf
6

. ~30!

In the low-density limit, the three terms correspond to t
vacuum energy density, the contribution from the bary
mass (;rMB with MB52/p) and a term describing the re
pulsive baryon-baryon interaction. At high densities, we c
identify the free massless Fermi gas piece, the leading
turbative correction already given in@2# and the next term
coming from higher order effects, suggesting fast conv
gence. It is also possible to determine the Fourier coefficie
Sn of S(x) ~the variational parameters used in@2#!,

S~x!5(
n

Snei2pnx/a, ~S2n5Sn* !. ~31!
06770
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Upon using Eq.~16! on p. 912 of Gradshteyn-Ryzhik@10#
and correcting a misprint (p2 should readp on the right
hand side!, we find the following closed expression~only
odd n’s appear!,

iSn5
2pf

sinh~npK 8/K !
, ~32!

where

K 85K ~12k2!. ~33!

Finally, we wish to point out that the GN model at finit
density can also serve as a solvable model for a relativis
inhomogeneous superconductor. Along the lines describe
Ref. @11#, one can map the GN Lagrangian onto a ‘‘dua
Lagrangian which has quark-quark rather than qua
antiquark pairing. All one has to do is redefine quarks in
anti-quarks for left-handed quarks only. If one works at no
zero chemical potential, a baryonic chemical potentialm in
the GN model corresponds to an ‘‘axial’’ chemical potent
m5 in the dual BCS-type model. Left-handed and righ
handed fermions have opposite chemical potentials, he
m5 in 111 dimensions acts like a magnetic field in 311
dimensions. This favors the appearance of the Lark
Ovchinnikov-Fulde-Ferrell ~LOFF! phase with spatially
varying Cooper pair condensate@12,13#. It is then natural to
identify the kink-antikink crystal of the GN model with th
LOFF phase of the dual BCS-type model. In this sense,
present study may also be of some use for model studie
relativistic superconductors.

APPENDIX: ANALYTICAL PROOF OF SELF-
CONSISTENCY OF S„x…

We would like to show that

S~x!52Ng2(
a

occ

c̄a~x!ca~x!, ~A1!

where the sum runs over all negative energy levels co
sponding to the ‘‘upper band’’ of the Lame´ spectrum~we are
again considering antimatter!. First, we have to construc
normalized spinor solutions of the Dirac equation~2! out of
the known solutions of the Lame´ equation~10!. We write

c5NS f1

f2
D ~A2!

and choose forf1 a solution of the 2nd order differentia
equation ~10!. We recall that the relations between Dira
variables and Lame´ variables are

E5k2~v211!, x5kj, p5k/k, ~A3!

where we have used condition~25!. Oncef1 is chosen,f2

follows from Eq.~4!,
3-3
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f252
1

kv S ]

]j
1S̃~j! Df1 . ~A4!

Let us first compute the normalization factorN. In a con-
tinuum normalization, the~spatially averaged! fermion den-
sity is normalized to 1 for each level,

15
1

aE0

a

dxc†c52uNu2
1

,E0

,

djuf1u2 ~A5!

(uf1u2 anduf2u2 give the same contribution!. We now insert
the solutionf1 taken from the literature in terms of Jaco
functions@5,6,8#

f15
H~j1a!

Q~j!
e2jZ(a)5

q1~v1w,q!

q4~v,q!
e2jZ(a) ~A6!

with

v5
pj

2K
, w5

pa

2K
, q5nome~k!. ~A7!

For the upper band,a5 ih. There is a 2nd solution,f1* ,
which will simply be accounted for by a factor of 2 below
For the definitions of the various Jacobi functions, see@7#.
Using the following addition theorem forq1 @14#

q3
2~0!q1~x1y!q1~x2y!5q4

2~x!q2
2~y!2q2

2~x!q4
2~y!

~A8!

together with standard relations between different Jac
functions@7#, we find

uf1u25AS 12
cn2~juk2!

cn2~auk2!
D , A5

q2
2~w,q!

q3
2~0,q!

. ~A9!

Now the dj integration in Eq.~A5! can be performed with
the result

15
2uNu2A

k2 cn2~auk2!
S dn2~auk2!2

E

K D . ~A10!

This determines the normalization factoruNu2. Let us now
-

0

06770
bi

consider the scalar density. In our representation of the D
matrices, Eq.~3!,

c̄c52uNu2~f1* f21f2* f1!5
uNu2

kv
~]j12S̃!uf1u2.

~A11!

In the 2nd equation, we have used Eq.~A4!. Inserting the
expression Eq.~A9! and performing some straightforwar
calculations yields

c̄c5
2AuNu2

k3v

dn2~auk2!

cn2~auk2!
S̃. ~A12!

With the normalization factoruNu2 determined above,

c̄c5
1

v

dn2~a u k 2!

dn2~a u k 2!2E/K
S~x!. ~A13!

In view of the relations@see@8# and Eq.~11!#

dn2~auk2!5E2k2, kv56AE2k2, ~A14!

we get, for negative energy states,

c̄c52k
AE2k2

E2k22E/K
S~x!. ~A15!

Finally we sum over all filled states. As in the calculation
the ground state energy, we convert the integration over c
tal momenta into an integration overE, include a factor of 2
for the twofold degeneracy of the orbits and employ the
tegration limits Eqs.~17!, ~18!,

(
a

occ

c̄aca5
2

kEEmin

EmaxdE
2p Udk

dEUc̄c52
1

p
ln~L!S~x!.

~A16!

We have dropped terms of order 1/L2 and higher, but of
course no finite terms. Inserting the relation between c
pling constant and cutoff from the gap equation, Eq.~22!,
then reproduces Eq.~A1! and proves the self-consistency
the scalar potential~28!.
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