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Analytical solution of the Gross-Neveu model at finite density
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Recent numerical calculations have shown that the ground state of the Gross-Neveu model at finite density
is a crystal. Here, we present the analytical solution of this problem in terms of elliptic functions. The scalar
potential is the superpotential of the nonrelativistic Lakt@miltonian. This model can also serve as an
analytically solvable toy model for a relativistic superconductor in the Larkin-Ovchinnikov-Fulde-Ferrell

phase.
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In this paper we reconsider the simplest variant of the 9

Gross-NeveuGN) model, a(1+1)-dimensional relativistic Flox T 5) P=wds, (4)
field theory withN species of fermions interacting via a quar-
tic self-interaction/1] which can be decoupled by squaring,

L=y, 00+ GO 1) ” S 2

M 2 ) —ﬁ—ka‘f‘s d)i:w ¢i- (5)

In a previous work2], we found that the widely accepted Note that Eqs(4), (5) fall precisely into the pattern of su-

phase diagram of this model in the lartydimit [3] needed persymmetridSUSY) quantum mechanics. Let us now make

some revision. The dynamically generated scalar mean fielf, onqat, foS(x) based on the superpotential of the well-
becomes inhomogeneous in a certain region of temperatuig,ouun | aniepotential[5.6]

and chemical potential, a fact which had been overlooked so

far. The four-fermion interaction then does not merely lead to 2 2
mass generation but to formation of a kink-antikink crystal. S(x)=Ax? SAX k) en(Ax|«%) EA"Q(AX)_ (6)
This in turn reflects the presence of bound baryons in the GN dn(Ax|«?)

model as can be most clearly seen in the low-density limit.
The approach used [i2] was a humerical implementation of Here, three types of Jacobi elliptic functions with modudus
the Dirac-Hartree-Fock methotequivalent to the saddle appearf7]. The spatial period o8(AX) is
point method in the functional integral approach

Here, we repeat the same calculation in an analytical man- {=2K, (7)
ner. We focus on th& =0 case and explain how to construct
the crystal ground state at any density in closed, analyticavhereK is the complete elliptic integral of the first kind,
form. The finite temperature calculation along similar lineskK («x?) [7]. We shall choose the parameteiin such a way
will be the subject of a forthcoming work. Since the resultsthat S(x) has the periodx determined by the mean density
of Ref.[2] are fully confirmed by our new method we refer [2],
to this paper for more details, figures and a discussion of the

underlying physics. For a more general introduction into the B E_ Kl 8

field of (1+1)-dimensional toy models for hot and dense a= p Pt (8)
matter, see the review articld].

We start from the Hartree-Fock Dirac equation hence
19 ¢ 2pK

5 — 440 = A=—= . 9

(7 T T S(X))eb(X) wP(X), ®) 2 ©

choosing they matrices as follows: The resulting potential still has one free parametewhich

determines both its shape and its size; the period is now fixed
3) by the mean density. Denotinix by &, Eq. (5) for ¢, can
then be converted into

0_ 0,1_

Y=—0oy, y'=ios, yY=y"y'=-0,.

In terms of the upper and lower spinor componedts the 2
Dirac equation consists of two coupled equations: _ F+ZK2 SP(EK?) | ¢ =Ep. (10)
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a® A2 02
E= —w?+ K2, (11 E,=——+ 4E+(k’—2)K
7z ) 1=~ g T o AET (E-2)K)
which is recognized as the simplest case of the Lauea- €2 ) aA
tion [5]. The corresponding equation fgr_ differs only by a + 27TKa2(2E+(K —2)K)in{ =] (19

translation of the potential through half a period and thus

yields an identical spectrui]. We can now simply use all g tgrm~ A2 can be eliminated by subtracting the energy
the well-known results for the Lameotential. For our pur- ¢ the trivial vacuum. Now consider the double counting

pose we found Ref.8] particularly well suited. correctionE,, Eq.(12), in the form
In order to determine the yet unknown parametewe S
shall minimize the ground state energy density ¢ p
E =—f dési(¢). (20)

A2dp 2 2Ng?a?Jo

Ege=—2| -+

pp 27 2Ng’a

f dxS(x)=E;+E,.
(12) InsertingS from Eq. (6) and transforming to the integration
variables=sn &, the integration can be carried out as fol-

E, is the sum over single particle energies over all filledlows:

negative energy states regularized by a cut@far simplic-

ity, we consider antimatter by leaving the valence band in the ¢ SIPE eré
Dirac sea unoccupig®].) E, is the standard correction term Jo d dre¢
for double counting of the interaction energy. Consiégr

first, transforming the Bloch momenmmand single particle  The coupling constant is related to the cutoff via the
energiesw to the corresponding quantities from the Lame(vacuun) gap equatiori2,9] which reads(in units where the

2
=——(2E+(«K*=2)K). (21
K

equation, vacuum fermion mass is)1
(?2 kmaxdk an
-9 — .2 2_
E, 2a2fkmin ZW\/S K (13 Ng T (22
where Combining Eqs(20)—(22), we find
T aA ¢
Kmin=7  Kmax=5, - (14 E,=— ——(2E+(k?>—2)K)InA. (23)
€ 2¢ a2

It is actually more convenient to integrate ovgrusing[8] Upon addingE, and E, and recalling Eq(7), the logarith-

mically divergent terms cancel and we obtain the finite,

ﬂ( _ E/K+12-€ (15) renormalized ground state energy density,
dE  2\(1-&) (- kD) (1+K2-€) 2
Pt

_ 2_
Here,E is the complete elliptic integral of the second kind, Eren= w3 (4E+ (k"= 2)K)

E(«?). We thus have to evaluate
2

2pr 2 aw
02 [Enaxd€ |dk + 5 (QE+(«"=2)K)In| 5 —]. (24
Ei=— Z—J —|VE—K? (16) Pix
a gmin27T d&
o Let us minimize this expression with respect to the modulus
where now the lower limit is the band edge, «, our variational parameter. This yields the simple condition
Emin=1+ sz 17 a T
T K (25
whereas the upper limit can be inferred from Ef) to be Pr
E a transcendental equation fat Eliminating p; from E.,
Ema= kfnax+2 1— E) (18)  with the help of this relation, we finally get the following

parametric representation of the ground state energy as a

with Kpax given in Eq.(14). It is necessary to keep the sub- function of density(parameterc),

leading term here, since the integral owkf is linearly di- 1 1 (E 1
vergent and the divergent part will be subtracted. Performing Ero= — + _(_ _ _) , (26)
the integration in Eq(16) yields Am g2\K 2
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pr 1 Upon using Eq.(16) on p. 912 of Gradshteyn-Ryzhik.0]
T oK (27 and correcting a misprint#? should reads on the right
hand sidg we find the following closed expressidionly

We also give the scalar potenti&{x) corresponding to the ©ddn’s appeay,

optimal value of the modulus,

T (32)
S,-(i Kz)cn(i Kz) sinh(n7rK '/K)
S(X) =k - ” ZK 28 where
dn(; K ,
K'=K(1—«?). (33

S(x) interpolates smoothly between widely spaced kinks and

antikinks (~ *tanhx) at k—1 (low-density limi§ and the ) s
function (k/2)sin(2dx) for k—0 (high-density limi. density can also serve as a solvable model for a relativistic,
All we have done may be viewed as a variational Ca|Cu_inhomogeneous superconductor. Along the lines described in

lation of the ground state of baryonic matter in the GNRef' [11]_' one can map the GN Lagrangian onto a “dual
Lagrangian which has quark-quark rather than quark-

model. Comparing the results f&(x) or E,., with the nu- 4 o . . .
merical results of Ref.2], we find excellent agreement. This antiquark pairing. All one has to do is redefine quarks into
f anti-quarks for left-handed quarks only. If one works at non-

suggests that the scalar potenti@{x) is actually self- . X . ) =
consistent. One can indeed prove the self-consistency an ero chemical potential, a baryonl‘f: c_he"mlcal poter)ztnah .
the GN model corresponds to an “axial” chemical potential

lytically, using the detailed form of the Lanveave functions 4s in the dual BCS-type model. Left-handed and right-

[5] and a number of identities for elliptic functions. This handed fermi h ite chemical ials. b
proof is given in the Appendix. anded fermions have opposite chemical potentials, hence

Let us now make use of the closed formulas derived”s in 1+1 dimensions acts like a magnetic field in-3

above to illustrate certain features of the GN crystal. If we godlmensmns. This favors the appearance of the Larkin-

to the low-or high-density limit, it becomes possible to sys-OVchinnikov-Fulde-Ferrell (LOFF) phase with spatially

icall | h | ; lati varying Cooper pair condensdt&2,13. It is then natural to
;enrgit'ca y resolve the transcendental equation relaing . 5uer i kink-antikink crystal of the GN model with the

LOFF phase of the dual BCS-type model. In this sense, the
present study may also be of some use for model studies of
relativistic superconductors.

Finally, we wish to point out that the GN model at finite

+
i ~ 1—ge-pry SATEPY o,
ps—0 Pt

APPENDIX: ANALYTICAL PROOF OF SELF-

1 1 3
O 29 CONSISTENCY OF S(x)

K .

We would like to show that

For the energy as a function of density, one finds occ

1 2p 8p, 800 ==NG* 2 u(X)#a(x), (AD)
Eren =~ — 4_+ — —— e 7Pt
ps—0 T m ™ .
where the sum runs over all negative energy levels corre-
5 sponding to the “upper band” of the Lanmspectrum(we are
E,on ~ P 1 3 (30) again considering antimatberFirst, we have to construct

— St . . . . . .
- 2 267Tp§ 21477p§3 normalized spinor solutions of the Dirac equati@y out of
the known solutions of the Lamequation(10). We write

In the low-density limit, the three terms correspond to the
vacuum energy density, the contribution from the baryon _ fon, A2
mass (-pMg with Mg=2/7) and a term describing the re- ¥= b (A2)

pulsive baryon-baryon interaction. At high densities, we can

identify the free massless Fermi gas piece, the leading pegnd choose forp. a solution of the 2nd order differential

turbative correction already given 2] and the next term  equation(10). We recall that the relations between Dirac
coming from higher order effects, suggesting fast converygariables and Lamgariables are

gence. It is also possible to determine the Fourier coefficients

S, of S(x) (the variational parameters used[R]), E=k¥(w?+1), x=«k& p=Kklk, (A3)
S(x) = gizn¥a (g gy, 31 where we have used conditig®5). Onceg ., is choseng _
(x) ; S (S-n=%%) S follows from Eq.(4),

067703-3



BRIEF REPORTS PHYSICAL REVIEW D59, 067703 (2004

consider the scalar density. In our representation of the Dirac
b-=-= ag +S(8) | b . (A4)  matrices, Eq(3),
Let us first compute the normalization factaf. In a con- i 20 1% * M2 T 2
, mpu . o Ypp=—|MA(pL -+ P )= ——(9:+29)[¢,|%
tinuum normalization, théspatially averagedfermion den- Kw
sity is normalized to 1 for each level, (A11)

1 ra 1 ¢ In the 2nd equation, we have used E44). Inserting the
=—f dx:,/ﬁ(//=2|/\/lzzf dé| ., |? (A5)  expression Eq(A9) and performing some straightforward
alo 0 calculations yields

(l¢+|? and| ¢_|? give the same contributionWe now insert 2 2
the solution¢ . taken from the literature in terms of Jacobi b= 2AIM? dr(al« )”_ (A12)
functions[5,6,8] o  cré(a|k?
. . . 2 .
.= Hg(;)a) o 2 ﬂlév(:w,)q) e 2@ (ap) With the normalization factof/\V|* determined above,
ato.q J 1 dr¥(a| k?) Sx) (A13)
: =— X).
with o dré(a| k2)— E/IK
- % W= %, 4= nomé x). (A7) In view of the relationgsee[8] and Eq.(11)]

drif(a|k?)=E—Kk?, ko= E—K? (A14)
For the upper bandg=izn. There is a 2nd solutiong? , _
which will simply be accounted for by a factor of 2 below. We get, for negative energy states,

For the definitions of the various Jacobi functions, Fée N
Using the following addition theorem fal; [14] W= -« &K S(x) (A15)
E-Kk*—EIK

95(0) D1 (X+Y) F1(X—y) = ¥5(X) 95(y) — 95(X) ¥5(y)

(A8) Finally we sum over all filled states. As in the calculation of
the ground state energy, we convert the integration over crys-
]Eoge:her V;"th st?ngard relations between different Jacolyy y,omenta into an integration ovér include a factor of 2
unctions[7], we fin for the twofold degeneracy of the orbits and employ the in-

tegration limits Eqs(17), (18),

crP(€«%) B5(w,q)
=4l 1 =———_ (A9
-] cnz(a|:<2) 92(0,9) (A9) - — Emaxd€ | dk|— 1
2 wa - 3mldE V= IS,
Now thed¢ integration in Eq.(A5) can be performed with “ mn (A16)
the result

5 We have dropped terms of orderA® and higher, but of
_ 2[MFA dre(al 2)_5 (AL0)  course no finite terms. Inserting the relation between cou-
k% cr(a|x?) K/’ pling constant and cutoff from the gap equation, E2p),
then reproduces E@A1) and proves the self-consistency of
This determines the normalization facto¥]?. Let us now the scalar potential28).
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