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New results for deformed defects
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We extend a deformation prescription recently introduced and present some new soluble nonlinear problems
for kinks and lumps. In particular, we show how to generate models that present the basic ingredients needed
to give rise to dimension bubbles. Also, we show how to deform models that possess lumplike solutions to get
to new models that support kinklike solutions.
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. INTRODUCTION two minima. In this case the solutions aggx)= +tanh().
A situation where nontopologicdlumplike) solutions exist
Defects play an important role in high energy physics—is the “inverted ¢* model,” with potential given by ,;(¢)
see, e.g., Ref§1-1(Q and references therein. In models de- = ¢2(1— ¢?)/2. In this case the lumplike defects aggx)
scribed by real scalar fields, defect solutions are usually to= +sechf). One notes that the potential need not be non-
pological (kinklike) or nontopological (lumplike). In the  negative for all values ofp but the solution must be such
present work we deal with models described by a single reahat V(¢ (x))=0 for the whole range- o <x< +.
scalar field, and our goal is to extend the deformation proce- Both topological and nontopological solutions can be de-
dure introduced in Refl1] to new models, which support formed, according to the prescription introduced in R&f,
kinklike or lumplike solutions. To do this, in Sec. Il we first tg generate infinitely many new soluble problems. This
consider the standard procedure. There we make the defafethod can be described in general form via the following
mation prescription as general as possible, and we introducgtatement. Lef = f(¢) be a bijective function having a con-
new examples. Next, in Sec. Il we implement two distinCttinuous nonvanishing derivative. For each potentigkb)
tehxtensions, 0?;—‘ gi\éing rise tOHa Sﬁ_mri]VaCUUm|essthm0de|dafr19earing solutions satisfying conditior{4), the f-deformed
e corresponding domain wall, which serves as the see . Sy ' 2 )
generation of dimension bubbles, as proposed in R2{s4]. %gdel, d_eflned~bW(¢) _Y[f(¢)]/[f (&)1, p_ossesseg S0
In the other extension we show how to implement deformalutions given byg(x) =~ (¢(x)), where¢(x) is a solution
tions using nonbijective functions to deform models having®f the static equation of motion for the original potential

lumplike solutions to generate new models that suppory(qs)' . . . . .
kinklike solutions. We prove this assertion by noting that the static equation

of motion of the new theory is written in terms of the old

Il. STANDARD PROCEDURE potential as
We begin with a theory of a single real scalar field 1) d’¢ 1 ()

space-time dimensions. The Lagrangian density is as usual, hE f’(d))v [f(¢)]—2V[f(¢)][f,(¢)]3_ )

and we us&/=V(¢) to represent the potential that identifies

the model. We also use the metri¢ (—), and we work with On the other hand, taking the second derivative with respect

dimensionless fields and coordinates. The equation of mOtiO{b x of the deformed defed(x). one finds

for static fields isd>¢/dx?*=V'(¢), where the prime stands ().

for the derivative with respect to the argument. We consider d%% 1 d2¢ (%) (dp\2
the broad class of potentials having at least one critical point — ==~ /—”3<d_ (3
& [that is, V'($)=0], for which V(#)=0. In this case, dx® () dx=  [f'(¢)]71 OX

solutions satisfying the conditions ) ) ~
It follows from the equation of motion and fromd(x) that

. = d¢ d2p/dxe=V'[f($)] and dp/dx)2=2V[f($)] so thatd

Xln:'oc P(X)= ¢, Xﬂn_qw& =0 (1) satisfies Eq(2), as stated. The ratio between the energy den-
sity of the solutiong(x) of the undeformed model and the

obey the first order equatiof first integral of the equation solution ¢(x) of the f-deformed potential is &/

of motion) (d¢/dx)?=2V[¢(x)]. For these solutions, the =(df/d¢)>.

energy densities split into two equal parts of the gradient and Naturally, the deformation procedure heavily depends on

potential energy densities. the deformation functionf(¢). Assume thatf: R—R is

Many important examples can be presented. Tt  bijective. In this case, thedeformation(and the deformation
model, withV,($) = (1— ¢?)?/2, is the prototype of theories implemented by its inverst 1) can be applied successively
having topological solitongkinklike solutiong connecting and one can define equivalence classes of potentials related
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to each other by repeated applications of tHer the f 1) conversely, one has well-established potentials for which
deformation. Each of such classes possesses an enumerabditonic solutions exist but are not expressible in terms of
number of elements which correspond to smooth deformaknown functions.

tions of a representative one, all having the same topological The procedure can also be applied to potentials presenting
characteristics. The generation sequence of new theories i@ntopological, lumplike, solutions which are of direct inter-
depicted in the diagram below. est to tachyon$5]. Take, for example, the Lorentzian lump
¢(x)=1/(x?>+1) which solves the equation of motion for
the potentiaV(¢)=2(4°— ¢*) and satisfies conditiond).

B i 1 i Vo . : : 2 L
l l l l l Unlike the topological solitons, this kind of solution is not
¥ b i A stable. In fact, the “secondary potential,” which appears in
By 7 ba 7 ba Femal 2 éq the linearized Schuinger-like equation satisfied by the

small perturbations around,(x) [6], is given by

As an example not considered in Rgf], take theg® modezl. 2,

This model, for which the potential Vg()=¢ o s X

(1— @222 has three degenerate F;ninima atG(O )a:lnd, Ux)=Vv (¢'(X))_12(X2+1)2' ®

is important since it allows the discussion of first-order

transitions. It possesses kinklike solutions This potential is a symmetric volcanolike potential. It has
#(x)==[1=tanh§)])/2, connecting the central vacuum zero mode given bypo(x)~ ¢| (x) = — 2x/(x>+1)?, which

with the lateral ones. Tak& ¢)=sinh($) as the deforming does not correspond to the lowest energy state since it has a

function. The sinh-deformeg?® potential is node. DeformingV(¢)=2(¢—¢*) with f(¢)=sinh(gp)
leads to the potential/(¢) =2 tantf(¢)[sinh(p)—sint(¢)]
V()= Etanf?(q&)[l—sinf?(q’a)]z (4) Wwhich  possesses the lumplike solution ¢, (x)

2 =arcsinfi1/(x?+1)].

and the sinh-deformed defects are Il EXTENDED PROCEDURES
$(x)=*arcsinh/[1*tanh(x)]/2. (5) The deformation prescription is powerful. The conditions
under which our proceduréee Ref[1]) holds are main-
Notice that, sincef’(¢)>1 for the sinh deformation, the tained if we consider a function for which the contradomain
energy of the deformed solutions is diminished with respects an interval ofR, that is, if we takef: R—I1CR. In this
to the undeformed kinks. The reverse situation emerges ifase, however, the inverse transformati@mgendered by
one takes the inverse deformation implementedt by( ¢) f~1: 1-R) can be applied only for models where the values
=arcsinh(). of ¢ are restricted td CR. We illustrate this possibility by
Interesting situations arise if one takes polynomial func-asking for a deformation that leads to a model of the form
tions implementing the deformations. Consides,; 1(¢) needed in Refl3], described by a “semivacuumless” poten-
:E?:ocj #A+1 with ¢;>0 for all 0<j=<n. These are bijec- tial, in contrast with the vacuumless potential studied in
tive functions fromR into R possessing positive derivatives. Refs. [7,8]. Consider the new deformation functidif¢)
Fixing n=0 corresponds to a trivial rescaling of the field. =1—1/sinh€?), acting on the potential V,(¢)=(1

For n=1, taking co=c,;=1, one hasf(¢)=pas(¢)=d — ¢?)?/2. The deformed potential is
+¢% with the inverse given by f (¢) 1
=4(2/\/§)sinr[arcs.inh(3/§¢/2)/3].. Thus, the ps-deformed V($)= =e 2% sech(e?)[ 2 sinHe?) — 172, ©)
¢“ model, for which the potential has the form 2
5 1[1- ¢?—24%— ¢° 2 which is depicted in Fig. 1. The kinklike solution is
V(d)== 6
(&) 2( 15347 ) (6)

$(x)=1In . (10)

_ 1
arcsm?(—l_tannx))

The deformed potentidb) engenders the required profile: it

B.(0= i—sim{larcsin){ﬁtanr(x)) has a minimum ai=In[arcsinh(1/2] and another one at

J3 3 2 ¢—oo. It is similar to the potential required in Rdf3] for

the existence of dimension bubbles. The bubble can be gen-

Naturally, the inverse deformation can be implemented, leaderated from the aboveleformed model, after removing the
ing to another new soluble problem. But if one takes2,  degeneracy betwee# and ¢—, in a way similar to the
the inverse op,,. ; cannot in general be expressed analyti-standard situation, which is usually implemented with ¢ife
cally in terms of known functions. This leads to circum- potential, the undeformed potential that we used to generate
stances where one knows analytically solutions of potential&q. (9). An issue here is that such a bubble is unstable
which cannot be expressed in terms of known functions andagainst collapse, unless a mechanism is found to balance the

supports topological solitons given by

2
.
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FIG. 1. The deformed potential(¢) of Eq. (9), plotted as a FIG. 2. The deformed potentisls(¢) and the undeformeeh®
function of the scalar fielgh; the dashed line shows the potential of mogel(dashed ling plotted as functions oé.

the undeformeds* model.

corresponding to kinks connecting neighboring minitioa
inward pressure due to the surface tension in the bubble. Ipated at-1, —1/,/2, 0, 142, and 2 of the potential, which
Ref.[3], the mechanism used to stabilize the bubble requirefs jllustrated in Fig. 2. We can repeat the procedure for the
f’mc.’th?r S(I’\.?Iar field, n alway S|m|la(; to tgegca?ehpf notntOpobotentialT/G(QS), to obtain a sequence of soluble polynomial
ogical solitons previously proposed In ¢@]. This natu- otentials, all having exact kinklike solutions. This result
rally leads to another scenario, which involves at least tw hould be contrasted with Ré.0], which shows that it is in

real scalar flelds_. eneral hard to find solutions when the model includes
The deformation procedure can be extended even furtheﬂigher—order powers in the scalar field

by relaxing the requirement dfbeing a bijective function, : . .
under certain conditions. Suppose that not bijective butit _ 2T(;12e_ gefco;rr:w E;t;gg tl)r;p;%rgl? :(;e?o bay p)tgtzn?;;cggrs(ggssin g
. . . _1 . . . -
e s e e F oM lumplke soluions. Consider the invened potena
y V,4i( )= ¢?(1— ¢?)/2, which has the lump solutiong(x)

defined in the same intervbCR. If the domain of definition ™" L . T
of f =1 contains the interval where the values of the solutions *sech). The deformed potential, in this case, is given

~ VR - a2\ 42 2 . . )
¢(x) of the original potential vary, thegh(x)="f1(4(x)) _bsy ;/lgé¢3nb(c)1ﬁzj(eld 157:0?1(1¢be|01\5\/2 ) \;a'lr']?;]é)sot;a n:ﬂ,lv/v\?zlch
are solutions of the new model obtained by implementing thé ' BF= = '

. : +1, has an absolute maximum &t=0, and local minima
deformation withf. However, one has to check whether the ~— ™’ ’
~ ' ima for+1/y2 +4 ively. Fi
deformed potentialV(&) =V[f($)/[f'(4)]2 is well de- and maxima for=1/y/2 and +/5/6, respectively. Figure 3

fined he critical points of In f his d h shows a plot of this potential. Again, the number of solutions
fined on the critical points df. In fact, this does not happen duplicates using such a deformation: there are two solutions,
in general but occurs for some interesting cases.

Consider, for example, the functidif¢) =24%—1: it is Z;(x)l(i): ++[1+sechk)]/2, which correspond to lumps
defined for all values ofp and its inverse is the,double running between the local minima and the lateral zeros of the

valued real functiorf ~1(¢) =+ \(1+ ¢)/2, defined in the potential, and also

interval[ —1,%). If we deform theg* model with this func- - m, x<0,
tion we end up with the potenti&l( ¢) = $2(1— ¢2)%/2. The ()= + I sedtdlZ, x>0
deformed kink solutions are given by ¢(x) - T
== [1+¢(x)])/2 with ¢(x) replaced by the solutions which correspond to kinklike solutions connecting the
[+tanh§)] of the ¢* model, which reproduce the known minima + 1/\2. This is a very unusual example where non-

solutions of the¢>6 theory. The important aspect, in the topological or lumplike solutions are deformed into topologi-
present case, is that the tanh kink corresponds to field valuggy or kinklike solutions.

restricted to the interval< 1,+ 1) which is contained within
the domain of definition of the two branchesfof(¢). The v
fact that theg® model can be obtained from thg potential

in this way is interesting, since these models have distinct
characteristics. Notice that the critical pointfaft =0 does

not disturb the deformation in this case; this always occurs
for potentials having a factor (1¢?), since the denomina-

tor of V(&) is canceled out. One can go on and apply this
deformation to thep® model; now, one finds the deformed
potential Vg( ) = (1/2)p%(1— $?)%(1—2¢43)2, with solu-
tions given by

(12

~ FIG. 3. The deformed potentid¥;,(¢) and the undeformed
d(x)==+ 1/2\/1i V[1=tanhx)]/2, (11 inverted ¢* model (dashed ling plotted as functions o.
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Potentials that have a factor {l$?) can also be de- pears if one considers the invertéd model, which presents
formed using the functiofi( ¢) = sin(¢), producing many in- lumplike solutions. The sine deformation of the potential
teresting situations. In fact, suppose the potential can be writy(¢) = $2(1— ¢?)/2 leads to the potential V()
ten in the form V(¢)=(1-¢*)U(4). This is always —sir¥(¢)/2. In this case, the lump solutions of(¢),
possible for all well-behaved potentials that vanish at bOtrhamely H(x)=+sechk), are deformed into B(x)
values ¢=+1, as shown by Taylor expansion. Then, the:i(—,l)karcsirﬁseché()]ikw. Consider the £) solution

sine deformation leads to the potentM(¢)=U[sin(¢)],  and take initiallyk=0. As x varies from— to 0, sech)
which is a periodic potential, the critical points of sff(not goes from 0 to 1, and arc$isech&)]=2 arctan€*) changes
causing any problem to the deformation process. The inversgom 0 to #/2. If one continuously makes go from 0 to
of the sine function is the infinitely valued functidn ( ¢) + o, then the deformed solution passes to kivel branch
=(—1)"arcsin@) + k, with ke Z and arcsing) being the  of arcsing), —arcsifisechk)]+ = [=2 arctan¢”) for 0
first determination of arcsid) (which varies from— /2, <x< +], which varies from/2 to 7 asx goes from 0 to
for ¢=—1, to+ /2, wheng= +1), defined in the interval 1 o Thus, in this case, the lump solutionsechk) of the
(=1,+1). So for each solution of the original potential, inverted ¢* model is deformed into the kink of the sine-
whose field values range in the intervat {,+ 1), one finds  Gordon model connecting the mininga=0 and¢= 7. Un-
infinitely many solutions of the deformed, periodic, poten-der reversed conditiongaking thek=1 branch before the
tial. _ _ _ k=0 one, the lump solution-sechk) leads to the antikink
Consider first thep* model. Applying the sine deforma-  solution of the sine-Gordon model running from the mini-
tion to it, one getsV(¢)=cog(¢)/2, which is one of the mum ¢= = to 0. The other topological solutions of the sine-
forms of the sine-Gordon potential. The deformed solutionGordon model are obtained by considering the other adjacent
thus obtained is given byh(x)=(—1)arcsifi=tanh§)] branches of arcsik).
+kar, which correspond to all the kink solutioisonnecting
neighboring minima of this sine-Gordon model. For ex-
ample, the kink solutions*tanhx, which connect the IV. COMMENTS AND CONCLUSIONS
minima ¢=*+1 of the ¢* model in both directions, are de-
formed into the kinks *arcsiritanh§)]=2 arctang™>)
— /2 (which run between- /2 and 7/2) if one takesk

In previous work on deformed defecf4], we stressed
that the deformation procedure strongly depends on a func-
B . B . . tion f=f(¢), the deformation function, and there we con-
=0 while, for k=1, the resulting solutions connect the sidered only bijective functions that obdy R—R. In the

m"mgg)i zn?nl(::- i’;ﬁ tg); :22 d(?lef(é;rpeen%ggt; n(t)'flhlér ol nomiaPresem work, we have extended the deformation procedure
P y poly ith the inclusion of two new possibilities. First, we have

potentials, leading to a large class of sine-Gordon type Olonsidered deformation functions such tHatR—1 with

e s e o ptenl R, W e s tonw ol such as th one e
' y ' P cently considered in Ref.3], requiring a semivacuumless

tial V(¢),:(1/2)C°§(¢)[1_C°52(¢)]' which has kinklike so-  hotential. Furthermore, we have shown how to deal with
lutions given by nonbijective functions to build new models. This last case
~ K . leads to very interesting possibilities for deforming models
(x)==(—1) arcsin[1+tanh(x)}/2+km. (13 that support nontopological defects, to give rise to models

On the other hand, if one consideXq ¢)=(1— ¢?)%2, that support topological defects.

which is unbounded below and supports kinklike solutions
connecting the two inflection points at1, one gets the
potential V()= (1/2)cod(#), which is solved byd(x)
=+ (—1)Xarcsink/ 1+ x?) + k. We would like to thank W. Freire for comments, and

Another particularly interesting situation where nontopo-CAPES, CNPg, PROCAD, and PRONEX for financial sup-
logical solutions are deformed into topological solutions ap-port. C.A.A. thanks FUNCAP for financial support.
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