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Inflationary cosmologies from compactification?

Mattias N. R. Wohlfarth*
Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge

Wilberforce Road, Cambridge CB3 0WA, United Kingdom
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We consider the compactification of (d1n)-dimensional pure gravity and of superstring or M-theory on an
n-dimensional internal space to ad-dimensional Friedmann-Lemaıˆtre-Robertson-Walker~FLRW! cosmology,
with a spatial curvaturek50,61, in the Einstein conformal frame. The internal space is taken to be a product
of Einstein spaces, each of which is allowed to have arbitrary curvature and a time-dependent volume. By
investigating the effectived-dimensional scalar potential, which is a sum of exponentials, it is shown that such
compactifications, in thek50,11 cases, do not lead to large amounts of accelerating expansion of the scale
factor of the resulting FLRW universe, and, in particular, do not lead to inflation. The casek521 admits
solutions with eternal accelerating expansion for which the acceleration, however, tends to zero at late times.
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I. INTRODUCTION

The relationship between cosmology and superstring o
theory is, at least, twofold. On the one hand, cosmolo
greatly benefits from the existence of an underlying, a
consistent, unified theory of fundamental particle interactio
and gravity. The hope may be expressed that the cosmo
of our Universe will one day become derivable from high
dimensions. On the other hand, it is well known that hi
energy phenomena near the Planck scale, which are
scribed by string or M theory, are almost inaccessible to lo
observations. Therefore, cosmological observations, in
enced by physics on an enormous range of scales, bec
probably the most important testing ground for these th
ries.

One particular aspect of cosmology, based on recent
servations of supernovae and the microwave backgroun
the emerging evidence for an accelerating expansion of
Universe. Not only a present epoch of accelerating expan
is indicated, but also an inflationary epoch in the distant p
Much attention has been paid recently to the construction
cosmological solutions, from compactifications of string
M theory, which exhibit such behavior. The possibility
having at least one period of accelerating expansion of
Friedmann-Lemaıˆtre-Robertson-Walker~FLRW! scale factor
has first been demonstrated in@1#, thereby contradicting the
general belief that this was impossible, which was motiva
by the difficulties in finding maximally symmetric de Sitte
solutions from compactifications of supergravity theories a
by a no-go theorem for such compactifications@2#.

The work of @1# was done in the context of pure gravit
Subsequently, it was generalized to include fluxes, as
necessary to consider in string or M-theory compactifi
tions, and, furthermore, a connection toS-branes was estab
lished @3# ~see references to theS-brane literature therein!.
The original solution~in eleven dimensions!, in fact, turns
out to be the zero flux limit of an electrically charged SM
brane solution. An investigation into the properties of t
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phase of accelerating expansion in these solutions,
formed in @4#, revealed the fact that this phase is very sh
in the sense that it only allows a fixed amount of expans
of the Universe, independent of the parameters. The exp
sion factor turned out to be about two, i.e., of an order
magnitudeO(1), and asimilar analysis suggests that this
not improved in other examples@5#. So the known solutions
do not apply to inflationary scenarios. They might, howev
according to@6#, turn out to be useful for describing prese
day acceleration.

An intuitive explanation for the short accelerating pha
and the resulting smallness of the expansion factor was g
in @7# from the four-dimensional point of view~we consider
d1n dimensions here!. The compactification produces scal
fields as moduli of the metric of the internal space. The
fective lower-,d-dimensional theory, written down for th
case of a single scalarf, is of the generic form

S5E A2gF1

2
R2~¹f!222V~f!G . ~1!

Considering FLRW solutions for the metric, i.e.,

ds252dt21a~ t !2dSk
2 , ~2!

where k50,61 denotes the curvature of th
(d21)-dimensional spatial sections, it now follows from th
equations of motion of the above action that the scale fa
can exhibit accelerating expansion only if the potential of
scalar field is larger than its kinetic energy and satisfies,

V.
d22

2
ḟ2. ~3!

In the cosmological compactifications discussed above,
scalar field starts out at infinite value but with high kine
energy. It runs into a positive and steep exponential poten
turns around and falls back. At the turning point, the so
tions are dominated by potential energy and, conseque
the scale factor accelerates. But this phase cannot last
because of the steepness of the exponential potential.
©2004 The American Physical Society02-1
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MATTIAS N. R. WOHLFARTH PHYSICAL REVIEW D 69, 066002 ~2004!
The acceleration condition~3! is easily extended to the
case of several scalar fields by summing their kinetic en
gies on the right hand side. It presents a very simple crite
that has to be satisfied in order to find solutions with acc
erating expansion. Note that a necessary requirement for
purpose is to have positive potentials.

An almost too easy way to satisfy the acceleration con
tion, which we do not further discuss here, is opened up
so called phantom scalar fields, see, e.g.,@8#, motivated per-
haps from the starred string theories that are obtained f
the conventional ones by timelike T-duality@9#. These phan-
tom fields have a different sign in their kinetic energy ter
and, replacingḟ2°2ḟ2, one finds that the acceleratio
condition is always satisfied when the potential is posit
and possibly also when it is negative.

Another way of extending the known results on accel
ating cosmologies has been followed in@10,11#, where the
authors find new solutions by considering compactificatio
on product spaces, in which each factor is provided with
own volume modulus. They do not find improved propert
of the accelerating phase, but they make an important ob
vation. So far the discussion has assumedk50. If negative
curvature is introduced on the spatial sections of the cosm
ogy, a solution with critical scale factor, i.e., witha;t, can
be found and a perturbation around this solution may lea
eternal acceleration.

The plan of this paper is to embed all the results a
observations on accelerating cosmologies obtained f
compactifications of string or M theory into a single cohere
point of view. To achieve such an understanding, we cons
the effective lower-dimensional theories and investigate
generic properties of the resulting potential for the sca
fields. We do not have to solve equations of motion, and
not present any new solutions, but our discussion will sh
clearly which types of solutions may exist. Highlighting e
amples are taken from previous papers. A question of
ticular interest will be whether there are solutions with infl
tionary behavior.

Section II considers attractor solutions for the scale fac
of an FLRW cosmology in the system of gravity coupled to
single scalar field moving in an exponential potential. The
are related to the characteristic exponent of the potential.
argue that the case of many scalar fields can effectively
reduced to the single scalar case and calculate the chara
istic exponents for more complicated potentials. The ba
dimensional reduction of (d1n)-dimensional gravity is per-
formed in Sec. III. The potential for the scalar fields is d
termined, and its consequences for possible cosmologie
discussed. Section IV extends this discussion to string
M-theory compactifications by including relevant fluxes a
the dilaton field. Section V presents the mechanism of c
sistent truncation which reduces the number of scalar fie
and might possibly improve on our results. We conclude w
a discussion in Sec. VI.

II. ATTRACTOR SOLUTIONS

Before compactifying (d1n)-dimensional pure gravity o
string or M theory on product spaces down tod dimensions,
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as we will do in Secs. III and IV, let us first discuss a fe
features of the arising lower-dimensional theory. For the s
lar fields we will find potentials that are sums of exponent
terms. It will, however, turn out that, in order to understa
the case of many scalar fields, it is sufficient to understa
the case of a single scalar field. So let us for now restrict
attention to the action~1! and consider an exponential pote
tial

V~f!5Le22af. ~4!

When the potential is positive withL.0, the system of
gravity coupled to such a scalar field exhibits cosmologi
late-time attractor solutions, see, e.g.,@12#. For the metric
assume the familiard-dimensional FLRW cosmologies as i
Eq. ~2!. The evolution of the scale factora(t) then ap-
proaches a power law behaviora(t);tg, where the exponen
g is related to the characteristic exponenta appearing in the
potential. Combining the four-dimensional classification
@13# with the d-dimensional analysis of@14# ~for k50), one
finds the attractor solutions given in Table I. The differe
ranges ofa2 are divided by the ‘‘critical’’ and ‘‘hypercriti-
cal’’ characteristic exponents

ac
25

2

d22
, ~5a!

ah
25

2~d21!

d22
, ~5b!

respectively. The phase space analysis of@13# also shows
that thek50 solutions are unstable against perturbations
the spatial curvature of the Universe.

Arbitrary amounts of accelerating expansion, or inflatio
of the scale factora(t);tg, can only be obtained in two
cases. In the standard case, the exponent isg.1 ~or equiva-
lently, a2,ac

2): the scale factor approaches an inflating
tractor. The second case is the critical one whereg51,
which is realized fora25ac

2 when k50 and for a2>ac
2

whenk521. Here, accelerating expansion can be achie
by choosing initial conditions such that the scalar fields s
slowly rolling off the exponential potential. Later, the sol
tion approaches the critical attractor, and, although tendin
zero, the acceleration never stops. If, however, the attract
a decelerating one, as fora2.ac

2 and k50, then the ap-
proach of an actual solution, even setting initial conditio

TABLE I. The scale factor for attractor solutions in exponent
scalar potentials fork50,61 and various ranges ofa2. The k
511 cases marked with an asterisk undergo recollapse at
times and do not have attractor solutions. Before that, they m
however, behave very much like thek50 solutions.
2-2
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INFLATIONARY COSMOLOGIES FROM COMPACTIFICATION? PHYSICAL REVIEW D69, 066002 ~2004!
such that it starts off to be accelerating, to this attractor
produce only a short phase of accelerating expansion. It
quickly turn into decelerating expansion.

Now return to the case of many scalar fieldsQi moving in
a potential that is a sum of positive exponential terms, i
given by

V~Qi !5(
i

L ie
22(

j
a i j Qj ~6!

whereL i.0. Consider the fieldsQi to depend on time only
for an application to cosmological scenarios. Their time e
lution is governed by their equations of motion and t
Friedmann constraint which follows from the Einstein equ
tions,

Q̈i1~d21!HQ̇i1
]V

]Qi
50, ~7a!

ac
2(

i
Q̇i

212ac
2V~Q!2kah

2a225~d21!H2, ~7b!

where the quantityH5ȧ/a denotes the Hubble constan
This time evolution generically moves the scalar fields
away from the origin (Qi50) in field space, at least whe
they are not trapped in a local minimum of the potential. T
fact allows us to reformulate the problem of many sca
fields effectively in terms of a single one. At large nor
squared in field space, i.e., for(Qi

2@0, it is only a single
exponential term that dominates the potentialV(Qi). To this
dominating term, labeled byi, say, corresponds a direction o
steepest descent of the potential, given by the vectorq( i ) with
componentsq( i ) j5a i j , and the fields will approximately
evolve into this gradient direction at late times. So going
infinity in field space along this direction, precisely asQ
5uQu(q( i ) /uq( i )u) with uQu→`, provides effective character
istic exponents for an exponential potential of multiple sca
fields. Substituting the above relations,

L ie
22(

j
a j i Qj;L ie

22uq( i )uuQu, ~8!

one finds their values to be

a i
25uq( i )u25(

j
a i j

2 . ~9!

This argument will be very useful later in discussing t
possible types of attractor solutions occurring in prod
space compactifications.

This discussion of characteristic exponents for com
cated scalar potentials also nicely complements the ph
space analyses that have been done previously, albei
simpler potentials. Special cases include, for instance,
‘‘cross-coupling’’ exponential potential, investigated in@15#,
where further references may be found.
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III. COMPACTIFICATIONS ON PRODUCT SPACES

We set out, in this section, to study compactifications
(d1n)-dimensional gravity on product spaces. Extensions
include fluxes and dilaton fields appropriate to compactifi
tions of string or M theory will be studied in the following
Sec. IV, where a part of the material produced here will
needed.

A. Dimensional reduction

The action of (d1n)-dimensional pure Einstein gravit
on a spacetime with metricgMN is completely determined by
the Ricci scalarR of gMN ,

S(d1n)5E
(d1n)

A2gR. ~10!

The metric is split into its d-dimensional and its
n-dimensional internal part according to

ds25g̃mn~x!dxmdxn1ĝmn~x,y!dymdyn, ~11!

where the internal metric may also depend on
d-dimensional coordinates. This coordinate-dependen
however, is realized in a particular way. The internal spac
taken to be a product of Einstein spacesEp(L), character-
ized by their dimensionp and a constant curvatureL that can
have either sign or be zero. Each factor space is multip
by an x-dependent function, so that its volume becom
x-dependent. These are the only moduli fields kept of
internal space metric. Otherwise, the factor Einstein spa
are assumed to be arbitrary butd-spacetime-independen
The sum of all dimensions adds to(pi5n. Then the internal
space metric and the Ricci tensor are block-diagonal and
suitable conventions, they are given by

dŝ25(
i

e2Fi (x)v̂ ( i )ab~y!dy( i )
a dy( i )

b , ~12a!

R̂( i )ab5L i~pi21!v̂ ( i )ab . ~12b!

One clear advantage of such a configuration is that the E
stein equations with mixed indices in thed- and
n-dimensional spacetime parts,Rmm50, are automatically
satisfied. This is the case becauseRmm can be expressed in
terms ofx-derivatives of the internal space Christoffel sym
bols Ĝmn

p , but these turn out to bex-independent.
Substituting the metric ansatz ~11! into the

(d1n)-dimensional action~10! causes a reduction down tod
dimensions~which is consistent as will be explained below!,

Sd5E
d
A2g̃eSF R̃22h̃S2~¹̃S!2

2( pi~¹̃Fi !
21R̂G , ~13!

where S(x) is defined as the sum of the volume modu
weighted by the dimension of their respective factor spac
2-3
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MATTIAS N. R. WOHLFARTH PHYSICAL REVIEW D 69, 066002 ~2004!
S~x!5( piFi~x!. ~14!

Due to the special form of the internal space, its Ricci sca
depends only onx, as

R̂5( e22FiL i pi~pi21!. ~15!

Note also that thex-independent integral over the volume
the internal space,

E
n
) Av̂ ( i ), ~16!

has been removed by an appropriate redefinition of
d-dimensional Newton constant. After dimensional redu
tion, however, the gravity part ofSd is not in the standard
Einstein-Hilbert form:R̃ is multiplied by an additional func-
tion eS. So in order to avoid possible interpretational pro
lems with a spacetime-varying Newton constant, one ha
removeeS. This transformation into the Einstein frame
achieved by a conformal transformation of the metricg̃mn .
Note that such a conformal transformation leaves the ca
structure of a spacetime unchanged but changes phy
properties otherwise, as for example the acceleration of
scale factor, see also@1#. The Einstein frame metricgEmn is
defined by

gEmn~x!5e[2/(d22)]S(x)g̃mn~x!, ~17!

and transforming all terms of the actionSd leads to the Ein-
stein frame action

SE5E
d
A2gEFRE1

2

d22
hES2

1

d22
~¹ES!2

2( pi~¹EFi !
21R̂e2[2/(d22)]SG , ~18!

whereS andR̂ are given by Eqs.~14! and~15!, respectively.
The surface termhES can now be dropped. This would no
have been allowed before, in Eq.~13!, since additional non-
surface terms arise from it in the conformal transformatio

This compactification of the original (d1n)-dimensional
action on then-dimensional product space is consistent. T
means that any solution of the equations of motion deri
from SE ~i.e., any solution of the Einstein equations with t
appropriate scalar energy-momentum and of the equation
motion for the volume scalarsFi) also solves the Einstein
equations derived fromS(d1n) . Hence, any four-dimensiona
solution obtained can be lifted directly to higher dimensio

B. The scalar potential

As shown in the previous subsection, the product sp
compactification~12! produces the four-dimensional actio
SE ~18! in Einstein frame where gravity is coupled to th
volume scalarsFi . In this action, however, the kinetic term
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of the scalar fields are not in standard form, which, in o
conventions, means that the system of gravity coupled t
single scalarf should have the action~1!. With an obviously
unproblematic change of the overall normalization,SE can
be rewritten as

SE5E
d
A2gEF1

2
RE2¹EFTP¹EF

1
1

2
e2[2/(d22)]S( e22FiL i pi~pi21!G , ~19!

whereF is the column vector formed from the fieldsFi and
the matrixP is defined by its components

Pi j 5
1

2~d22!
pipj1

1

2
pid i j . ~20!

As P is symmetric, it can be diagonalized by an orthogon
matrix S, satisfying SST5S TS51, such that SPST

5diag(Pi) wherePi are the eigenvalues ofP. Several prop-
erties ofP are needed for later calculations. The most imp
tant ones are

detP522(M21)S 11
1

d22 ( pi D) pj , ~21a!

~P 21! i i 5
2

pi
2

2

d1n22
, ~21b!

whereM is the number of scalar fieldsFi , i.e., the number of
factor spaces of the internal product space. Defining n
scalarsQi from the old onesFi by the invertible relation

Qi[(
j

APiSi j F j , ~22!

the action is cast into the canonical form~henceforth the
index E denoting the Einstein frame will be dropped!

S5E
d
A2gF1

2
R2¹QT¹Q22V~Q!G . ~23!

Expressed in the fieldsQi , the scalar potential is given by

V~Q!52
1

4 (
i

L i pi~pi21!e22(2/pi )(
j

APjSj i Qj . ~24!

Positive contributions to the potential arise from negativ
curved Einstein~factor! spaces whereL i,0 and vice versa.

Now assume the existence of an extremum of the po
tial at a pointQ0 in field space where]V/]Qi50 for all
values ofi. A short calculation shows

(
i , j

APiSi j

]V

]Qi
522S 11

n

d22DV. ~25!

Hence, if there is an extremum of the potential~24!, then it
can only be at pointsQ0 whereV(Q0)50. This implies, in
2-4
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INFLATIONARY COSMOLOGIES FROM COMPACTIFICATION? PHYSICAL REVIEW D69, 066002 ~2004!
particular, that there is no positive extremum, and this f
will be of importance below. The nonexistence of a posit
extremum of the scalar potential in a supergravity compa
fication is also the essence of the no-go theorem@2#.

C. Effective attractor solutions

Now that we have the precise form~24! of the potential of
the canonically normalized scalar fieldsQi , we can make
use of the general discussion of Sec. II and calculate
corresponding characteristic exponents and effective att
tor solutions.

Let all N internal factors be Einstein spaces of zero
negative curvature. ThenV(Q)>0 everywhere. This restric
tion serves a dual purpose. On the one hand, it excludes
scenarios with a big crunch that occurs whenever the
hand side in the Friedmann constraint~7b! becomes negative
such that the evolution equations for the scalar fields br
down ~there still may be big crunches for thek511 cos-
mologies!. On the other hand, this implies that the domin
ing terms in the potential are positive and then the ab
arguments for attractor solutions can be applied: a poten
which is unbounded below does not allow for cosmologi
attractor solutions~as in the single scalar case!.

If V(Q)Þ0 initially, then time evolution will always
move the scalar fields to a large norm in field space, beca
the potential has no positive extremum, as we have s
There exist up toM directions$q( i )uk51,2, . . .% of steepest
descent of the potential, corresponding to the domination
a single exponential term far from the field space orig
These directions are read off fromV(Q) as

q( i ) j5
2

pi
APjSj i , ~26!

compare Eq.~6!, and they determine the cosmological attra
tor solutions. According to Eq.~9!, the characteristic expo
nents are given by

a i
25(

j
S 2

pi
APjSj i D 2

. ~27!

The question of whether one gets large amounts of acce
ating expansion, or inflation, from the product space co
pactification presented above, now reduces to a calcula
of these characteristic exponentsa i . From the definition of
the matrixP in Eq. ~20! and using the fact that it is positiv
definite, one finds

Pi i 5(
j

~APjSj i !
25

pi

2 S pi

d22
11D , ~28!

which can be rewritten to give the following simple formul

a i
25ac

2 pi1d22

pi
. ~29!

Note that the characteristic exponents always lie in the ra
between the critical one and the hypercritical one,ac,a i
,ah for d.2. The relevant attractor solutions in the pote
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tial V(Q) ~there are as many as there are internal Eins
spaces of strictly negative curvature! can be read off from
Table I to bea(t);t for k521 and a(t);t (ac /a i )

2
for k

50. None of them is accelerating. So fork50 one can at
most obtain a short phase of accelerating expansion
choosing suitable initial conditions as explained in Sec.
This is the same mechanism as in most of the previou
discussed exact solutions. In thek521 case, choosing the
right initial conditions can lead to eternal acceleration.

We emphasize that the important case of power law in
tion, which would be implied by the existence of acceler
ing attractor solutions witha i

2<ac
2 , is not realized in simple

product space compactifications of pure gravity.

IV. STRING OR M-THEORY COMPACTIFICATIONS

To extend the application of the above results to prod
space compactifications of the various superstring theorie
M theory, one has to include the fields appearing in the c
responding low energy effective actions, as given by the
and eleven-dimensional supergravities: antisymmetric fi
strengthsFp with, possibly, dilaton couplings and the dilato
scalar fieldf itself.

A. Four cases

The new starting point is the (d1n)-dimensional bosonic
action

S(d1n)5E
(d1n)

A2gFR2
1

2
~¹f!22

1

2p!
eafFp

2

2
1

2
m2e2(5/2)fG , ~30!

where one might also want to include the mass term of m
sive type IIA supergravity@16# by havingmÞ0. We do not
consider possible Chern-Simons terms for the fluxes
their potentials here, as we will realize the fluxes by volum
forms on certain subspaces below, which makes these te
irrelevant. After dimensional reduction down tod dimen-
sions, only a few different cases have to be considered. C
patible with the symmetries of the FLRW cosmologies, i.
with the symmetries of a space with the topologyR3Sk ,
there can exist the following field strength forms after co
pactification:~i! F0 and ~ii ! Fd , ~iii ! F1 with nonzero com-
ponents only along the real time direction, and~iv! Fd21
with nonzero components only on the spatial sectionsSk .

All other fluxes with non-negligible effects on cosmolog
cal scales are excluded~of course, this reasoning does n
apply to local fields, for instance, electromagnetic fields
d54).

In the dual cases~i! and ~ii !, an analysis of the
d-dimensional equations of motion for gravity, the fie
strengths, and the scalars arising from the compactifica
process, shows that the field strengthsF0 andFd act as, and
thus can be replaced by, genuine potentials for the sc
fields. They effectively become time-dependent cosmolo
2-5
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cal constants. This becomes apparent, for example, in@4#,
where anF4 arising from an M-theory compactification t
four dimensions violates the four-dimensional strong ene
condition by providing a positive scalar potential.~i! More
explicitly, forms F0 in d dimensions arise fromFp having
components only in the internal space. We realize suchFp as
06600
y

volume forms with field strength parameterb0, i.e., we set
Fp5b0vold,d11 . . . , and denote this type of reduction by

Fp~d,d11 . . . ! F0~ !. ~31!

The reduced action in thed-dimensional Einstein frame the
becomes
nal

e applied.
tential.
S5E
d
A2gF1

2
R2~¹f!22¹QT¹Q22V~f,Q!G , ~32!

and the scalar potential is given by

V~f,Q!5V~Q!1
1

4
b0

2e2af2[2/(d22)]S(Q)22p1F1(Q)1
1

8
m2e25f2[2/(d22)]S(Q), p15p, ~33!

where previous definitions~14!, ~22! and ~24! have been used forS, the scalarsFi(Q) and the potential termV(Q),
respectively. The original dilaton fieldf has been canonically normalized by rescalingf°2f. The volume scalarsFi should
not be confused with field strengths.~ii ! The reduction

Fp~01 . . .d21ud, . . . ! Fd~01 . . .d21! ~34!

gives the potential

V~f,Q!5V~Q!1
1

4
b0

2e22af2[2(d21)/(d22)]S(Q)12p1F1(Q)1
1

8
m2e25f2[2/(d22)]S(Q), p15p2d. ~35!

The cases~iii ! and~iv! are also dual. Each field strengthF1 aligned along the time direction is equivalent to an additio
scalar fieldc via the relationF15dc, and spatial (d21)-forms give rise to scalars via!Fd215F15dc. The reduced action
takes the form

S5E
d
A2gF1

2
R2~¹f!22¹QT¹Q2eC(f,Q)~¹c!222V~f,Q!G ~36!

~after normalizingf andc), where the functionC appears as ad-dimensional ‘‘dilaton coupling.’’~iii ! For the reduction

Fp~0ud,d11 . . . ! F1~0! ~37!

one finds

C~f,Q!52af22p1F1~Q!, p15p21, ~38a!

V~f,Q!5V~Q!1
1

8
m2e25f2[2/(d22)]S(Q). ~38b!

In case~iv! where

Fp~1 . . .d21ud . . . ! Fd21~1 . . .d21!, ~39!

one obtains

C~f,Q!522af2
4

d22
S~Q!12p1F1~Q!, p15p2d11, ~40a!

V~f,Q!5V~Q!1
1

8
m2e25f2[2/(d22)]S(Q). ~40b!

To answer the question whether inflation can be obtained, the same arguments as in the preceding sections can b
Note that Eq.~25! can easily be generalized. It is also true here that there do not exist any positive extrema of the po
2-6
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So we may look at dominant terms in the potential far from the origin in field space. Consider first the term arisin
massive supergravity which is proportional toe22[5f/21S/(d22)]. Without even taking theQ-dependence into account, one se
that the characteristic exponentam is larger than the critical one,am. 5

2 .ac for d.2.
In cases~i! and~ii !, there is another term in the potential, arising from the field strength. The respective field space

of the exponents can be calculated from

aF
25a21

z2

4 (
i

S (
j

pj

APi

Si j ~11jd j 1!D 2

~41!

where the parameters are given by (z,j)5(ac
2,2/ac

2) in case~i! and (z,j)5(ah
2 ,22/ah

2) in case~ii !, respectively. The
derivation uses the expression for the inverse ofP in terms of its determinant and its adjoint. One finds

aF
25a21

z2$2j2p1
21@~d1n22!j12~d22!#jp11n~d22!%

2~d1n22!
. ~42!
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As an important example, look at string theory compact
cations withd54 andn56. The value of the dilaton cou
pling is given bya5 1

2 (52p) where the degreep of the field
strength form isp5p1 in case~i! andp5p124 in case~ii !.
An evaluation of the above expression then givesaF

257
independent ofp1, and for both cases. This is greater th
the critical exponentac51. The conclusion, therefore, i
that there are no accelerating attractor solutions fork50,
11. For k521, one finds again the critical attractor wit
zero acceleration.

In cases~iii ! and~iv! there are no further contributions t
the potential. The difference here is a nonstandard struc
of the kinetic term of the fieldc, including a dilaton-
coupling. ~Such a coupling cannot be removed by simp
field redefinitions.! Here, the above arguments might not
applicable in a straightforward way. It can be shown th
actions with such nonstandard scalar fields may ad
power-law solutions quite different from those obtain
when there are only scalars with standard kinetic terms. T
happens, for example, in the model

S5E A2gF1

2
R2~¹f!22~¹Q!2

2e22(a0f1a1Q)~¹c!222Le22af2
1

4
M2e22(a2f1a3Q)G

~43!

that arises as a special case of both~iii ! and~iv!. But, in these
cases, the scale factora(t);tg never has a solution withg
.1. So the nonstandard coupling of the scalar fields d
not make it easier to find accelerated expansion. This is
-

re

t
it

is

s
in

fact, to be expected because these terms provide additi
kinetic energy and make it harder to satisfy the accelera
condition ~3!.

B. Scale invariance

The supergravity actions including a dilaton field have
scale invariance which survives the compactification proce
As was noted in@17#, the scalar potentialV(f,Qi) in the
compactified theory can then be written as a product. Id
tify Q0[f. We expect that

V~Qm!5V~Q0!V~Qi ! ~44!

and that the dependence ofV(Q0) on Q0 is purely exponen-
tial. To see that this is the case, note that the (M11) scalar
fieldsQm , arising from the original higher-dimensional dila
ton and from the volume moduli of the internal space, a
only defined up to anSO(M11) rotation, since this leave
their kinetic terms invariant. To achieve a product decom
sition of the potential, one generically has to perform suc
rotation.

We will now construct this rotation explicitly for
the Fp(d,d11 . . . ) F0() and Fp(01 . . .d
21ud . . . ) Fd(01 . . .d21) reductions, respectively~set-
ting the mass parameterm to zero!. We define new fieldsQ̃n ,
rotating by a matrixTPSO(M11), as

Qm[(
v

TmnQ̃n . ~45!

The scalar potential is given from Eq.~33! or, respectively,
Eq. ~35! as
V~Q̃n!52
1

4
(

k
Lkpk~pk21!e22(

n

[(
j

(2/pk)APjSjkTj n] Q̃n1
1

4
b0

2e22(
n

[ 7aT0n1z(
i j

(pi /2APj )Sj i (11jd i1)Tj n] Q̃n, ~46!

066002-7
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where we use the parameters (z,j)5(ac
2,2/ac

2) and the up-
per sign for Fp(d,d11 . . . ) F0(), and (z,j)5(ah

2 ,
22/ah

2) and the lower sign, for the potential from th
Fp(01 . . .d21ud . . . ) Fd(01 . . .d21) reduction. To
split off, from the potential, a common factor of the for
e22( . . . )Q̃0, the condition

6aT005(
j

S z(
i

pi

2APj

Sj i ~11jd i1!

2
2

pk
APjSjkD Tj 0 ~47!

has to be satisfied for all values ofk51, . . . ,M21. This can
be done by setting

T0056
~z2ac

2!n1zjp122

2a
g, ~48a!

Tj 05(
l

APjSj l g. ~48b!

The normalization constantg ensures thatTm0 are compo-
nents of anSO(M11)-matrix. The condition is(mT m0

2

51 and is satisfied for

g254a2$@~z2ac
2!n1zjp122#2

1a2ac
2n~d1n22!%21. ~49!

Now that we have shown that the potential can be writ
in product form, it is interesting to check the characteris
exponent of the factorV(Q̃0). It is a05@(d1n22)/(d
22)#g and will be subcritical,a0

2<ac
2 , if, and only if,

@~z2ac
2!n1zjp122#2

>a2ac
2~d1n22!S 22n

d24

d22D . ~50!

For string theory compactifications withd54 andn56, the
value of the dilaton coupling isa5 1

2 (52p) where the de-
greep of the field strength form isp5p1 in the first case and
p5p124 in the second. One checks that the exponen
subcritical for p5p1.2 or, in the second case, forp24
5p1<3 ~exactly critical forp57).

This is potentially interesting because one might imag
the potential having a flat direction, becoming constant n
infinity, in the M-dimensional field space of theQ̃i . Then
choosing initial conditions such that all fields start at rest
this region, they would evolve towards an accelerating
tractor in the direction ofQ̃0, while at the same time rolling
very slowly off the almost flat potential in the other dire
tions. This might yield a large amount of inflation and wou
at the same time provide a mechanism to stop the inflat
ary epoch. To look for such flat directions note that, by
same argument as employed above, a single exponential
of the potential factorV(Q̃i) dominates at largeuQ̃u. It is of
06600
n
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e
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e
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the form e22ã•Q̃ and constant if, and only if,uãu250. The
expressionV(Q̃i) is given by Eq.~46! with the only differ-
ence that, in the exponents, one has to sum only overi, i.e.,
overnÞ0. We calculate the characteristic exponentsuãu2 for
all exponential terms in turn. For those in the sum over
curvaturesLk of the internal space factors, we find

ãk
25

2

d22
1

2

pk
2g2

~d1n22!2

~d22!2
. ~51!

For the term arising from the field strength, usingaF
2 from

Eq. ~42!, one obtains

ãF
25aF

22
1

4
g2~ac

2n12!2. ~52!

For string theory compactifications down to four dimensio
these expressions never become zero. Thus the potential
not have flat directions inQ̃i-space.

The arguments of this section also hold if one includes
mass term of type IIA supergravity but sets the field stren
to zero. The calculation proceeds as before. For the par
eters one has to substitutea52 5

2 and (z,j)5(1,0). Ford
54 and n56, this case also allows a factorization of th
potential into a pure exponential with characteristic expon
a0.1, and into another factor that does not have any
directions either.

V. CONSISTENT TRUNCATIONS

We have seen that the product space compactification
duces characteristic exponents that are always above
critical valueac . As discussed above, this results in the no
existence of solutions with genuine power-law inflation. Th
section presents a mechanism of reducing the characte
exponents by truncating the number of scalar fields.

Suppose the compactification produces two scalar fieldf
and Q. In certain circumstances, it is then possible to tru
cate the compactified theory consistently, such that only
scalar fieldc is left. This is performed by choosing a certa
direction in the originally two-dimensional field space. Se

f5
s

A11l2
c and Q5

l

A11l2
c ~53!

with s251 and an at first arbitrary parameterl to be deter-
mined later.~This procedure can be generalized to a high
number of fields but becomes increasingly messy.! To see
that such a truncation is interesting and reduces the cha
teristic exponent in a contribution to the potential, conside
typical term proportional toe22(af1bQ). The characteristic
exponent, before the truncation, isa0

25a21b2. After the
truncation, one finds

a trunc
2 5

a21b2l212absl

11l2
. ~54!
2-8



is
lpf

ly

th
lta

uc
W

te
a
a

or

ty
o
or

e
th
c

n
an
di
a
h
e

in
rin-
m
e
an-

ul-
f a
ut,
he
re-
, it
ctly
tor
le
ase.

po-

tain
the

n

the
ny
nly
via

here
ace,
nds

e of
e to

This
int

ap-
stop
ified
ve
it
r a
y

om-
rios

cel-

ion,
to
r,

ink
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This expression is smaller thana0
2, unlessasl2b50. So,

generically, a consistent truncation reduces the character
exponents, and thus it presents another, possibly he
mechanism of generating accelerating expansion.

To demonstrate this concept, we consider a reduction
the type

F4~0123! F4~0123! ~55!

in a (41n)-dimensional theory. The internal space shall on
have a single factor and we setm50. In terms of the fields
f andQ, the potential~35! becomes

V~f,Q!52
1

4
Ln~n21!e22A(n12)/nQ

1
1

4
b0

2e22af26An/(n12)Q. ~56!

The consistency condition for the truncation is that bo
equations of motion for the scalar fields are solved simu
neously when substituting Eq.~53!. This determines

sl52
aAn~n12!

2~n21!
~57!

and

1

2
L~n21!5

1

2
b0

2S a2

2~n21!
1

3

n12D . ~58!

Calculating the characteristic exponenta trunc
2 , using Eq.~54!

with a50 and b5A(n12)/n, one finds that it is in fact
smaller thanac51 ~for n56 and a5 1

2 , appropriate to a
compactification of type IIA superstring theory!. But the po-
tential of the truncated theory turns out to be negative, s
that there cannot be accelerating attractor solutions.
would have needed a positive potential.

So far no example has been found, where a consis
truncation leads to a theory that admits solutions with
arbitrary amount of accelerating expansion, by providing
accelerating power-law attractor for the FLRW scale fact

VI. DISCUSSION

Starting from the Einstein-Hilbert action for pure gravi
in (d1n) dimensions, and also from the bosonic part
various supergravity actions that describe string or M the
in the low energy limit, a dimensional reduction down tod
dimensions has been performed. Then-dimensional internal
space was realized as a product space, and the moduli fi
kept in this reduction determined the volume of each of
factor spaces. Otherwise these factor spaces have been
sidered to be arbitrary but fixedd-independent Einstein
spaces. The effectived-dimensional field theory has bee
studied in Einstein conformal frame in order to facilitate
easy interpretation of the gravity results from the lower
mensional point of view. The main focus of this paper w
the investigation of the potential for the scalar fields, t
volume moduli, resulting from the compactification. W
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were interested in cosmological applications, not so much
phenomenological aspects but rather in a question of p
ciple: whether it is possible to find FLRW solutions, fro
gravity or string or M-theory compactifications, in which th
scale factor exhibits arbitrary amounts of accelerating exp
sion, or inflation.

We have argued that the discussion for the case of m
tiple scalar fields can be understood effectively in terms o
single scalar field. The time evolution essentially picks o
far from the origin in field space, a dominant direction of t
potential. The sum of various exponentials thereby is
duced to a single effective exponential term. For this term
is possible to calculate a characteristic exponent that dire
classifies the existing attractor solutions for the scale fac
according to Table I. In this way, the intuition from the sing
scalar case can be carried over to the more complicated c

The calculation of the characteristic exponents for the
tentials, arising from then-dimensional geometry and from
various fluxes that were realized as volume forms on cer
subspaces, revealed that they are always greater than
critical exponent ind-dimensions. The conclusions draw
from this fact depend on the possible valuesk50,61 of the
curvature of the spatial sections in the final cosmology. In
flat case withk50, this means that there do not exist a
accelerating attractor solutions for the scale factor. The o
way in which accelerating expansion can be obtained is
the mechanism in the original solutions~subsequent to@1#,
see the Introduction! as identified in@7#. Any such solution
can only have a short phase of accelerating expansion, w
the scalar fields are nearly at rest at some point in field sp
around which the potential dominates. But this phase e
soon as the decelerating attractor is approached.@Note that
we do not claim that there is no way to improve on theO(1)
expansion in these scenarios. But the generic existenc
decelerating attractors does make it extremely implausibl
achieve sixty e-foldings.# For hyperbolic spatial curvaturek
521, characteristic exponents greater thanac mean that the
attractors are exactly critical and nonaccelerating,a(t);t. In
this case one can obtain eternal accelerating expansion.
happens in solutions in which trajectories exist with a po
where the scalar fields are approximately at rest~as above!.
Then the scale factor starts off accelerating and, as it
proaches the critical attractor, this acceleration does not
although it tends to zero. Such a scenario has been ident
in @11# by perturbing around the attractor solution. We ha
not considered the casek511 because it does not adm
attractor solutions. At best, solutions may behave, fo
while, in a similar way as do thek50 ones, as suggested b
the analysis of@13#, but they all end in a big crunch.

In summary, it has been shown that product space c
pactifications do not lead to standard inflationary scena
~with power-law inflation of the scale factor!. Cosmological
solutions in this setup do only admit a short phase of ac
erating expansion fork50 ~and k511). For k521, the
generic solution can lead to eternal accelerating expans
but the acceleration quickly tends to zero. Thus, in order
obtain inflation from higher dimensions and, in particula
from string or M theory, it seems to be necessary to th
2-9



io
er
c
o
e
rn
e

s-
He

tes
m-
to

MATTIAS N. R. WOHLFARTH PHYSICAL REVIEW D 69, 066002 ~2004!
about more complex scenarios of dimensional reduct
Possibilities of improvement are the inclusion of furth
warp factors, possibly the mechanism of consistent trun
tion presented in the preceding section, or generically m
complicated internal space geometries. It might also be n
essary to consider nontrivial contributions due to Che
Simons terms in the supergravity actions. We leave th
avenues for future research.
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