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We consider the compactification ad { n)-dimensional pure gravity and of superstring or M-theory on an
n-dimensional internal space todadimensional Friedmann-Lentes-Robertson-WalkefFLRW) cosmology,
with a spatial curvatur&=0,*1, in the Einstein conformal frame. The internal space is taken to be a product
of Einstein spaces, each of which is allowed to have arbitrary curvature and a time-dependent volume. By
investigating the effective-dimensional scalar potential, which is a sum of exponentials, it is shown that such
compactifications, in th&=0,+1 cases, do not lead to large amounts of accelerating expansion of the scale
factor of the resulting FLRW universe, and, in particular, do not lead to inflation. Thekcasel admits
solutions with eternal accelerating expansion for which the acceleration, however, tends to zero at late times.
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[. INTRODUCTION phase of accelerating expansion in these solutions, per-
formed in[4], revealed the fact that this phase is very short
The relationship between cosmology and superstring or Mn the sense that it only allows a fixed amount of expansion
theory is, at least, twofold. On the one hand, cosmologyf the Universe, independent of the parameters. The expan-
greatly benefits from the existence of an underlying, andsion factor turned out to be about two, i.e., of an order of
consistent, unified theory of fundamental particle interactiongnagnitudeO(1), and asimilar analysis suggests that this is
and gravity. The hope may be expressed that the cosmolod}ot improved in other examplg§]. So the known solutions
of our Universe will one day become derivable from higherdo not apply to inflationary scenarios. They might, however,
dimensions. On the other hand, it is well known that highaccording td6], turn out to be useful for describing present
energy phenomena near the Planck scale, which are déay acceleration.
scribed by string or M theory, are almost inaccessible to local An intuitive explanation for the short accelerating phase
observations. Therefore, cosmological observations, influand the resulting smallness of the expansion factor was given
enced by physics on an enormous range of scales, becorife[7] from the four-dimensional point of viewwe consider
probably the most important testing ground for these theod+n dimensions hepe The compactification produces scalar
ries. fields as moduli of the metric of the internal space. The ef-
One particular aspect of cosmology, based on recent olfective lower-, d-dimensional theory, written down for the
servations of supernovae and the microwave background, gase of a single scalap, is of the generic form
the emerging evidence for an accelerating expansion of the
Universe. Not only a present epoch of accelerating expansion S= j \/—_g
is indicated, but also an inflationary epoch in the distant past.
Much attention has been paid recently to the construction of
cosmological solutions, from compactifications of string orConsidering FLRW solutions for the metric, i.e.,
M theory, which exhibit such behavior. The possibility of
having at least one period of accelerating expansion of the ds?=—dt*+a(t)?d3, 2
Friedmann-Lemane-Robertson-WalkefFLRW) scale factor
has first been demonstrated|[it], thereby contradicting the Where k=0,=1 denotes the curvature of the
general belief that this was impossible, which was motivated d— 1)-dimensional spatial sections, it now follows from the
by the difficulties in finding maximally symmetric de Sitter equations of motion of the above action that the scale factor
solutions from compactifications of supergravity theories andan exhibit accelerating expansion only if the potential of the

1
SR=(Vh)?=2V(4)|. @

by a no-go theorem for such compactificatid@s scalar field is larger than its kinetic energy and satisfies,
The work of[1] was done in the context of pure gravity.
Subsequently, it was generalized to include fluxes, as are d-2.,
; ) ) oo V>——¢°. 3
necessary to consider in string or M-theory compactifica- 2

tions, and, furthermore, a connection3dranes was estab-

lished [3] (see references to th&brane literature therein  In the cosmological compactifications discussed above, the

The original solution(in eleven dimensionsin fact, turns  scalar field starts out at infinite value but with high kinetic

out to be the zero flux limit of an electrically charged SM2- energy. It runs into a positive and steep exponential potential,

brane solution. An investigation into the properties of theturns around and falls back. At the turning point, the solu-
tions are dominated by potential energy and, consequently,
the scale factor accelerates. But this phase cannot last long

*Electronic address: M.N.R.Wohlfarth@damtp.cam.ac.uk because of the steepness of the exponential potential.
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The acceleration conditiofB) is easily extended to the TABLE |. The scale factor for attractor solutions in exponential
case of several scalar fields by summing their kinetic enerscalar potentials fok=0,+1 and various ranges af’. The k
gies on the right hand side. It presents a very simple criteriorr +1 cases marked with an asterisk undergo recollapse at late
that has to be satisfied in order to find solutions with accelfimes and do not have attractor solutions. Before that, they may,
erating expansion. Note that a necessary requirement for thfgwever, behave very much like the=0 solutions.
purpose is to have positive potentials.

An almost too easy way to satisfy the acceleration condi:
tion, which we do not further discuss here, is opened up by _; A fa)? ; ; ;
so called phantom scalar fields, see, 48),, motivated per-
haps from the starred string theories that are obtained fror
the conventional ones by timelike T-dual{t9]. These phan-
tom fields have a different sign in their kinetic energy term,
and, replacingg¢®—— @2, one finds that the acceleration
condition is always satisfied when the potential is positiv
and possibly also when it is negative.

kha? 0<a’<a’ o?=a? a’<a’<aj ar<a?

Hacfa)? r Hacfa)? Haclap?

T(a‘ a)? * * *

as we will do in Secs. Ill and 1V, let us first discuss a few
Steatures of the arising lower-dimensional theory. For the sca-

Anoth t extending the k it | lar fields we will find potentials that are sums of exponential
nother way of eéxtending theé kKnown resulls on acCelerya g 1t will, however, turn out that, in order to understand

ating co;molog|es has_ been foIIow.ed [m’lﬂ' wher(.e.thef the case of many scalar fields, it is sufficient to understand
authors find new solutions by considering compact|f|cat|on§he case of a single scalar field. So let us for now restrict our

on product spaces, in which each fa}ctor is provided W'th. 'S ttention to the actiofil) and consider an exponential poten-
own volume modulus. They do not find improved properties,;

of the accelerating phase, but they make an important obser-
vation. So far the discussion has assurked. If negative V(g)=Ae 224, (4)
curvature is introduced on the spatial sections of the cosmol-

ogy, a solution with critical scale factor, i.e., with~t, can  when the potential is positive witth>0, the system of
be found and a perturbation around this solution may lead tgravity coupled to such a scalar field exhibits cosmological
eternal acceleration. late-time attractor solutions, see, e.fl2]. For the metric
The plan of this paper is to embed all the results antassume the familiad-dimensional FLRW cosmologies as in
observations on accelerating cosmologies obtained frorEq. (2). The evolution of the scale facta(t) then ap-
compactifications of string or M theory into a single coherentproaches a power law behaviaft) ~t”, where the exponent
point of view. To achieve such an understanding, we conside, js related to the characteristic exponenappearing in the
the effective lower-dimensional theories and investigate thgyotential. Combining the four-dimensional classification of
generic properties of the resulting p_otential for_the scalar13] with the d-dimensional analysis dfL4] (for k=0), one
fields. We do not have to solve equations of motion, and dgings the attractor solutions given in Table I. The different

not present any new solutions, but our discussion will showanges ofa? are divided by the “critical” and “hypercriti-
clearly which types of solutions may exist. Highlighting ex- 5| characteristic exponents

amples are taken from previous papers. A question of par-
ticular interest will be whether there are solutions with infla- 2
tionary behavior. =g (59)
Section Il considers attractor solutions for the scale factor
of an FLRW cosmology in the system of gravity coupled to a
single scalar field moving in an exponential potential. These 2_
are related to the characteristic exponent of the potential. We
argue that the case of many scalar fields can effectively be ] ]
reduced to the single scalar case and calculate the characté@spectively. The phase space analysidid] also shows
istic exponents for more complicated potentials. The basi¢hat thek=0 solutions are unstable against perturbations in
dimensional reduction ofd+ n)-dimensional gravity is per- the spatial curvature of the Universe. . o
formed in Sec. Ill. The potential for the scalar fields is de- Arbitrary amounts of accelerating expansion, or inflation,
termined, and its consequences for possible cosmologies apé the scale factom(t)~t”, can only be obtained in two
discussed. Section IV extends this discussion to string ofases. In the standard case, the exponeptid (or equiva-
M-theory compactifications by including relevant fluxes andlently, ?<a?): the scale factor approaches an inflating at-
the dilaton field. Section V presents the mechanism of contractor. The second case is the critical one wherel,
sistent truncation which reduces the number of scalar fieldwhich is realized fora?= a2 when k=0 and for &*=
and might possibly improve on our results. We conclude withwhenk= —1. Here, accelerating expansion can be achieved
a discussion in Sec. VL. by choosing initial conditions such that the scalar fields start
slowly rolling off the exponential potential. Later, the solu-
tion approaches the critical attractor, and, although tending to
zero, the acceleration never stops. If, however, the attractor is
Before compactifying @+ n)-dimensional pure gravity or a decelerating one, as far>> ag and k=0, then the ap-
string or M theory on product spaces downdtdimensions, proach of an actual solution, even setting initial conditions

(5b)

Il. ATTRACTOR SOLUTIONS
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such that it starts off to be accelerating, to this attractor can Ill. COMPACTIFICATIONS ON PRODUCT SPACES
produce only a short phase of accelerating expansion. It will
quickly turn into decelerating expansion.

Now return to the case of many scalar fie@smoving in
a potential that is a sum of positive exponential terms, i.e.
given by

We set out, in this section, to study compactifications of
(d+n)-dimensional gravity on product spaces. Extensions to
include fluxes and dilaton fields appropriate to compactifica-
tions of string or M theory will be studied in the following
Sec. IV, where a part of the material produced here will be
needed.
V(Q)=3 Aje 22 @i, ®)
i ! A. Dimensional reduction
The action of ¢l+n)-dimensional pure Einstein gravity

WhereAi>Q. C_0n5|der the f'equi to dep?‘”d on time only, on a spacetime with metrig,y is completely determined by
for an application to cosmological scenarios. Their time evo-

e . : . the Ricci scalaR of ,
lution is governed by their equations of motion and the gun

Friedmann constraint which follows from the Einstein equa-
tions, S(d+n)=f V—gR. (10
(d+n)
. : Vv The metric is split into its d-dimensional and its
Qi (d=DHQ+ aQ; 0, (78 1 dimensional internal part according to

ds?=7,,(X)dX*dX"+ gma(x,y)dy™dy",  (11)

2 ~2 2 —2_ 2
a c+2atV —kara c=(d—1)H*%, 7b

Czi: Q MQ " ( ) (7b) where the internal metric may also depend on the
d-dimensional coordinates. This coordinate-dependence,
where the quantitH=a/a denotes the Hubble constant. however, is realized in a particular way. The internal space is
This time evolution generically moves the scalar fields fari@ken to be a product of Einstein spadggA), character-
away from the origin Q;=0) in field space, at least when ized by their dimensiop and a constant curvaturethat can
they are not trapped in a local minimum of the potential. This"@ve €ither sign or be zero. Each factor space is multiplied
fact allows us to reformulate the problem of many scala®y an x-dependent function, so that its volume becomes

fields effectively in terms of a single one. At large norm X"dependent. These are the only moduli fields kept of the
squared in field space, i.e., faQ?=0, it is only a single internal space metric. Otherwise, the factor Einstein spaces
y Iy I ’

exponential term that dominates the potent&Q;). To this are assumed to be arbltrary bdtspiacetlme—mdependent.
dominating term, labeled by say, corresponds a direction of The sum of_aII d|men3|o_ns_addsm)i =n. Then fche internal .
steepest descent of the potential, given by the vegfowith space metric anc_j the Ricci tensor are block-diagonal and, in
componentsq;);=«;;, and the fields will approximately suitable conventions, they are given by

evolve into this gradient direction at late times. So going to

infinity in field space along this direction, precisely @s ds?=2 e p(y)dyg,dyf) (129
=[Ql(aqi/|agl) with |Q|—<, provides effective character- !

istic exponents for an exponential potential of multiple scalar

fields. Substituting the above relations, Riyap=Ai(Pi— 1) 0 i)ap - (12b
_22 . One clear advantage of such a configuration is that the Ein-
Aje “< 4iQ~ Ao~ 20l (8)  stein equations with mixed indices in the- and
n-dimensional spacetime partR,,,=0, are automatically
one finds their values to be satisfied. This is the case becal®g, can be expressed in

terms ofx-derivatives of the internal space Christoffel sym-

bolsT'P, ., but these turn out to beindependent.
a?=qp|?=> of . 9) Substituting the metric ansatz(11l) into the
! (d+n)-dimensional actionf10) causes a reduction down do

dimensiongwhich is consistent as will be explained below
This argument will be very useful later in discussing the

possible types of attractor solutions occurring in product - \/—~ s

space compactifications. Su= fd —ge
This discussion of characteristic exponents for compli-

cated scalar potentials also nicely complements the phase e o, &

space analyses that have been done previously, albeit for _E PiI(VF)"+R|, (13

simpler potentials. Special cases include, for instance, the

“cross-coupling” exponential potential, investigated[it], = where 2.(x) is defined as the sum of the volume moduli

where further references may be found. weighted by the dimension of their respective factor spaces,

R-203—(Vy)?
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of the scalar fields are not in standard form, which, in our
3(x)=2 piFi(x). (14 conventions, means that the system of gravity coupled to a
single scalak) should have the actiofi). With an obviously
Due to the special form of the internal space, its Ricci scalaunproblematic change of the overall normalizati®, can
depends only o, as be rewritten as

1
SRe- VeFTPVeF

R=> e ZFiApi(p;—1). (15) Sg= fdv—gE

Note also that the-independent integral over the volume of 1 a2 _oF

the internal space, t5e 2 e FAp(pi-1)|, (19

j H \/A_ (16) whereF is the column vector formed from the fielés and
n @iy the matrixP is defined by its components

has been removed by an appropriate redefinition of the - 1 _ _+E 5 (20)
d-dimensional Newton constant. After dimensional reduc- 1 2(d-2) PiP; ™ 5 Pidij -

tion, however, the gravity part dd; is not in the standard _ o ' '

Einstein-Hilbert form®R is multiplied by an additional func- S 7 is symmetric, it can be diagonalized by an orthogonal

. S L° iado J
tion €*. So in order to avoid possible interpretational prob-Mairix S, satisfying S§'=5'5=1, such that SPS

lems with a spacetime-varying Newton constant, one has to 4129(Pi) whereP; are the eigenvalues @1. Several prop-

removee>. This transformation into the Einstein frame is erties of P are needed for later calculations. The most impor-

i - = nt ones ar
achieved by a conformal transformation of the megjg, . tant ones are

Note that such a conformal transformation leaves the causal 1
structure of a spacetime unchanged but changes physical detp=2-MM-1) 1+m 2 pi>H I (219
properties otherwise, as for example the acceleration of the
scale factor, see aldd]. The Einstein frame metrigg,,, is 2 2
defined b Bt Y

y P 9= 0~ gz (21b

— al2/(d=2)]2(x)q
Geum(X) =€ Gps(X), (@7 whereM is the number of scalar fields , i.e., the number of

factor spaces of the internal product space. Defining new

and transforming all terms of the acti&@ leads to the Ein- . : ,
scalarsQ; from the old ones; by the invertible relation

stein frame action

2 1 = S E.
S= [ V70e Ret g5 03 - 75 (V3 Q=2 PisiFy, (2
d d-2 d—2 I
R the action is cast into the canonical forthenceforth the
— > pi(VeF,)2+ Re [2(d-2)]2 | (18)  index g denoting the Einstein frame will be dropped
N 1
where, andR are given by Eqs(14) and(15), respectively. S= L\/—g[ER—VQTVQ—ZV(Q) . (23

The surface term]g2 can now be dropped. This would not

have been allowed before, in EQ.3), since additional non-

surface terms arise from it in the conformal transformation.
This compactification of the originad@ n)-dimensional 1

action on then-dimensional product space is consistent. This ~ V(Q)=—~ > A;pi(pi— 1)e 22m 2 PiSiQ (24

means that any solution of the equations of motion derived 45 :

from St (i.e., any solution of the Einstein equations with the

appropriate scalar energy-momentum and of the equations ; : _ .
motion for the volume scalars;) also solves the Einstein curved Einsteirfacton Spaces wherd,; <0 and vice versa.
Now assume the existence of an extremum of the poten-

equations derived fror§ 4 ). Hence, any four-dimensional tial at a pointQy in field space whergVv/dQ, =0 for all

solution obtained can be lifted directly to higher dlmenS|ons.Values ofi. A short calculation shows

Expressed in the field®;, the scalar potential is given by

gfositive contributions to the potential arise from negatively

B. The scalar potential oV
i -2

& P~

n
As shown in the previous subsection, the product space 1 d—Z)V (25
compactification(12) produces the four-dimensional action

Se (18) in Einstein frame where gravity is coupled to the Hence, if there is an extremum of the potenti2d), then it

volume scalar§; . In this action, however, the kinetic terms can only be at point§, whereV(Qy)=0. This implies, in
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particular, that there is no positive extremum, and this factial V(Q) (there are as many as there are internal Einstein
will be of importance below. The nonexistence of a positivespaces of strictly negative curvatirean be read off from
extremum of the scalar potential in a supergravity compactitgpie | to bea(t)~t for k=—1 anda(t)~t(@/®)* for k
fication is also the essence of the no-go theof2n =0. None of them is accelerating. So flor=0 one can at

most obtain a short phase of accelerating expansion by
C. Effective attractor solutions choosing suitable initial conditions as explained in Sec. II.
Now that we have the precise fort24) of the potential of ~ This is the same mechanism as in most of the previously
the canonically normalized scalar fiel@, we can make discussed exact solutions. In thes — 1 case, choosing the
use of the general discussion of Sec. Il and calculate th&ght initial conditions can lead to eternal acceleration.
corresponding characteristic exponents and effective attrac- We emphasize that the important case of power law infla-
tor solutions. tion, which would be implied by the existence of accelerat-
Let all N internal factors be Einstein spaces of zero oring attractor solutions wita<a?, is not realized in simple
negative curvature. Thevi(Q)=0 everywhere. This restric- product space compactifications of pure gravity.
tion serves a dual purpose. On the one hand, it excludes most
scenarios with a big crunch that occurs whenever the left
hand side in the Friedmann constraiib) becomes negative
such that the evolution equations for the scalar fields break To extend the application of the above results to product
down (there still may be big crunches for the=+1 cos-  space compacitifications of the various superstring theories or
mologies. On the other hand, this implies that the dominat-M theory, one has to include the fields appearing in the cor-
ing terms in the potential are positive and then the aboveesponding low energy effective actions, as given by the ten
arguments for attractor solutions can be applied: a potentiaind eleven-dimensional supergravities: antisymmetric field
which is unbounded below does not allow for cosmoIogicalstrengthg:p with, possibly, dilaton couplings and the dilaton
attractor solutiongas in the single scalar cgse scalar fieldg itself.
If V(Q)#0 initially, then time evolution will always
move the scalar fields to a large norm in field space, because
the potential has no positive extremum, as we have seen.
There exist up tov directions{q,|k=1,2, .. .} of steepest The new starting point is thed n)-dimensional bosonic
descent of the potential, corresponding to the domination ofction
a single exponential term far from the field space origin.
These directions are read off frox{Q) as

IV. STRING OR M-THEORY COMPACTIFICATIONS

A. Four cases

1 1
= [— _ 2_ T jagpE2
2
Q(i)j:a\/ﬁjsji : (26) 1

i - EmZe‘“’Z)‘ﬁ}, (30)
compare Eq(6), and they determine the cosmological attrac-

tor solutions. According to Eq9), the characteristic expo- ) )
nents are given by where one might also want to include the mass term of mas-

sive type IIA supergravity16] by havingm+0. We do not
consider possible Chern-Simons terms for the fluxes and
2D their potentials here, as we will realize the fluxes by volume
forms on certain subspaces below, which makes these terms
The question of whether one gets large amounts of accelefrelevant. After dimensional reduction down tbdimen-
ating expansion, or inflation, from the product space comsions, only a few different cases have to be considered. Com-
pactification presented above, now reduces to a calculatiopatible with the symmetries of the FLRW cosmologies, i.e.,
of these characteristic exponents. From the definition of ~with the symmetries of a space with the topoloB) 3,
the matrix? in Eq. (20) and using the fact that it is positive there can exist the following field strength forms after com-
definite, one finds pactification:(i) Fo and (ii) Fq4, (iii) F; with nonzero com-
ponents only along the real time direction, atd) Fy_;
with nonzero components only on the spatial sect®ps
All other fluxes with non-negligible effects on cosmologi-
cal scales are excludg@f course, this reasoning does not
which can be rewritten to give the following simple formula: apply to local fields, for instance, electromagnetic fields in

2

af=2 (éﬁ-sﬂ

i

Pi[ Pi
Pii=; (\/Eiji)2=§(ﬁ+l ' (28)

d=4).
a?:azLd_Z (29 In the dual cases(i) and (i), an analysis of the
i ¢ p ' d-dimensional equations of motion for gravity, the field

strengths, and the scalars arising from the compactification
Note that the characteristic exponents always lie in the rangprocess, shows that the field strengthsandF4 act as, and
between the critical one and the hypercritical one< «; thus can be replaced by, genuine potentials for the scalar
<ayp for d>2. The relevant attractor solutions in the poten-fields. They effectively become time-dependent cosmologi-
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cal constants. This becomes apparent, for exampl¢4fin  volume forms with field strength parameteg, i.e., we set
where anF, arising from an M-theory compactification to F,=bgvolg 41 ..., and denote this type of reduction by
four dimensions violates the four-dimensional strong energy

condition by providing a positive scalar potentiél. More Fp(d,d+1...)~Fo(). (31)
explicitly, forms F in d dimensions arise fronfr, having  The reduced action in thétdimensional Einstein frame then
components only in the internal space. We realize $ychs  becomes

1
S= fd\/—Q[ER—(V¢)2—VQTVQ—2V(¢.Q) , (32)
and the scalar potential is given by
1 1
V(4,Q)=V(Q)+ ZrbgeZw’*[2/(d*2)]2(Q)*2131F1(Q) 4 §m2e*5¢*[2/(d*2)]2(Q), P1=p, (33

where previous definition$l4), (22) and (24) have been used fot, the scalarsF;(Q) and the potential ternv(Q),
respectively. The original dilaton field has been canonically normalized by rescaliftgr2¢. The volume scalars; should
not be confused with field strength@.) The reduction

Fp(0L1...d—1d, ...)~F401...d=1) (34)

gives the potential
L 2a—2a¢—[2(d—-1)/(d=2)]Z(Q) +2p;1F1(Q) L 2a—5¢—[2/(d-2)]2(Q)
V(4,Q)=V(Q)+ zbje PO+ ZmPe . p=p-d. (35

The casegiii ) and(iv) are also dual. Each field strendgf aligned along the time direction is equivalent to an additional
scalar fieldys via the relationF;=d, and spatial § — 1)-forms give rise to scalars vieF,_;=F;=dy. The reduced action
takes the form

1
S=f v—g[gR—(Vqﬁ)z—VQTVQ—ec(¢”Q’(V¢)2—2V(¢,Q) (36)
d
(after normalizing¢ and ¢), where the functiorC appears as d-dimensional “dilaton coupling.’(iii) For the reduction
Fp(0[d,d+1...)~F(0) (37)
one finds
C(¢.Q)=2a¢—2p;F1(Q), p1=p—1, (383
1
V($,.Q)=V(Q)+ gmPe ¢ a2, (38b)
In case(iv) where
Fp(l...d=1|d...)~»Fg_4(1...d=1), (39
one obtains
4
C($.Q)=—2ad— 5—52(Q+2p:F1(Q), Ppy=p-d+1, (409
1
V($,Q)=V(Q)+ gm?e ¢ =212, (40b)

To answer the question whether inflation can be obtained, the same arguments as in the preceding sections can be applied
Note that Eq(25) can easily be generalized. It is also true here that there do not exist any positive extrema of the potential.
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So we may look at dominant terms in the potential far from the origin in field space. Consider first the term arising from
massive supergravity which is proportionalgo?[>#/2**/(d=2)1 Wjithout even taking th€-dependence into account, one sees
that the characteristic exponemt, is larger than the critical oney,,> 2> a, for d>2.

In caseq(i) and(ii), there is another term in the potential, arising from the field strength. The respective field space norms
of the exponents can be calculated from

[ J

2 . 2
af=a’+ > (2 \%@1(1%511)) @D

where the parameters are given b, 4) = (a?,2/a?) in case(i) and (,£)=(af,—2/af) in case(ii), respectively. The
derivation uses the expression for the inversg?ah terms of its determinant and its adjoint. One finds

s, = Epi+[(d+n—2)é+2(d—2)]éps+n(d—2)}
ap=a + .
2(d+n—2)

(42)

As an important example, look at string theory compactifi-fact, to be expected because these terms provide additional
cations withd=4 andn=6. The value of the dilaton cou- kinetic energy and make it harder to satisfy the acceleration
pling is given bya=3(5— p) where the degrep of the field  condition(3).

strength form igp=p; in case(i) andp=p;—4 in case(ii).

An evaluation of the above expression then gives=7 B. Scale invariance

independent op,, and for both cases. This is greater than The supergravity actions including a dilaton field have a

tEe c;:tlcal exponen'rach. .The conclusmnl, therelzfor%, IS" scale invariance which survives the compactification process.
t it tFerek_arelno accf(_a ((ajraUng_attLactor_ _solut|ons o, h As was noted in17], the scalar potentia¥/(,Q;) in the
+1. Fork=—1, one finds again the critical atiractor wit compactified theory can then be written as a product. Iden-

zero acceleration. .
. _— ti =¢. We expect that
In casediii) and(iv) there are no further contributions to y Qo=¢ P

the potential. The difference here is a nonstandard structure

of the kinetic term of the fieldy, including a dilaton- V(Qu) =V(Qo)V(Qi) (44)
coupling. (Such a coupling cannot be removed by simple

field redefinitions. Here, the above arguments might not beand that the dependence\¥(Q,) on Qg is purely exponen-
applicable in a straightforward way. It can be shown thattial. To see that this is the case, note that the+1) scalar
actions with such nonstandard scalar fields may admitieldsQ,, arising from the original higher-dimensional dila-
power-law solutions quite different from those obtainedton and from the volume moduli of the internal space, are
when there are only scalars with standard kinetic terms. Thisnly defined up to alsO(M + 1) rotation, since this leaves

happens, for example, in the model their kinetic terms invariant. To achieve a product decompo-
sition of the potential, one generically has to perform such a
1 rotation.
_ — s 2 2 We will now construct this rotation explicitly for
S f v g[zR (Vé)"~(VQ) the  Fy(dd+1...)wFo)  and  Fu(0l...d

—1|d...)~F4O1...d—1) reductions, respectivelfset-

— e 2@+ a1Q)(y )22\ e 20¢ E M 2e~2(@2¢+2a3Q) ting the mass parameterto zerg. We define new field®, ,
4 rotating by a matrixte SO(M +1), as

(43
Q.= 7,,Q,. (45)

that arises as a special case of b@ih and(iv). But, in these
cases, the scale factaft) ~t” never has a solution witly
>1. So the nonstandard coupling of the scalar fields doe¥he scalar potential is given from E3) or, respectively,
not make it easier to find accelerated expansion. This is, ilkq. (35) as

- 1 _ 1 B 3
V@)=~ % APl Pr— 1)9—22 [Zj @) VPISKT},IQ, 4 Zbge—zzv [+aTou+§iEj (Pii2\P)S;(L+E50TIQ, (46)
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where we use the parameteis &) = (a?2,2/a2) and the up-
per S|gn for Fp(d,d+1...)»Fo(), and (&)= (ah,
—Z/ah) and the lower S|gn for the potential from the
Fp(01...d—1[d...)~F401...d=1) reduction. To
split off, from the potential, a common factor of the form

e~2(---Qo_ the condition

+aToo—2 (42 F Sji(1+&5,)
2
= 5o VPiSi | Tio (47
has to be satisfied for all valueskf1, ... M—1. This can
be done by setting
({—ad)n+{ép,—
To=2 \PiSv. (48b)

The normalization constant ensures that,, are compo—
nents of anSO(M + 1)-matrix. The cond|t|on s, T
=1 and is satisfied for

y?=4a%{[({— af)n+(£p,—2]°

+a2a?n(d+n-2)} "L (49)

PHYSICAL REVIEW D 69, 066002 (2004

the forme 2%Q and constant if, and only ifa|?=0. The
expressionV(Q,) is given by Eq.(46) with the only differ-
ence that, in the exponents, one has to sum only pues.,
overv+0. We calculate the characteristic expondat$ for

all exponential terms in turn. For those in the sum over the
curvaturesA . of the internal space factors, we find

- 2 2

22 (d+n-2p
“%Td=2 " p,

(51)
(d=2)?

For the term arising from the field strength, usiag from
Eq. (42), one obtains

~2 2

1
aF=a yz(a§n+2)2.

- — 2
For string theory compactifications down to four dimensions,
these expressions never become zero. Thus the potential does

not have flat directions iQ;-space.

The arguments of this section also hold if one includes the
mass term of type IIA supergravity but sets the field strength
to zero. The calculation proceeds as before. For the param-
eters one has to substituée= —3 and (,&)=(1,0). Ford
=4 andn=6, this case also allows a factorization of the
potential into a pure exponential with characteristic exponent
ap>1, and into another factor that does not have any flat
directions either.

V. CONSISTENT TRUNCATIONS

Now that we have shown that the potential can be written

in product form, it is interesting to check the characteristic

exponent of the factoN(QO). It is ag=[(d+n—2)/(d
—2)]y and will be subcritical @3< o2, if, and only if,

[({—a?)n+Ep;—2]2

d—4
2—n—). (50)

;azaﬁ(d+n—2)( i
For string theory compactifications with=4 andn=6, the

value of the dilaton coupling ia=3(5—p) where the de-
greep of the field strength form ip=p; in the first case and
pP=pi—
subcritical forp=p,;>2 or, in the second case, f@—4
=p;=<3 (exactly critical forp=7).

4 in the second. One checks that the exponent is

We have seen that the product space compactification pro-
duces characteristic exponents that are always above the
critical valuea, . As discussed above, this results in the non-
existence of solutions with genuine power-law inflation. This
section presents a mechanism of reducing the characteristic
exponents by truncating the number of scalar fields.

Suppose the compactification produces two scalar figlds
and Q. In certain circumstances, it is then possible to trun-
cate the compactified theory consistently, such that only one
scalar fieldy is left. This is performed by choosing a certain
direction in the originally two-dimensional field space. Set

= (53

¢ and

s N
J1+22 Q= v

This is potentially interesting because one might imagine
the potential having a flat direction, becoming constant neaith s’=1 and an at first arbitrary parameterto be deter-

infinity, in the M-dimensional field space of th®;. Then

choosing initial conditions such that all fields start at rest in
this region, they would evolve towards an accelerating at-

tractor in the direction of),, while at the same time rolling

very slowly off the almost flat potential in the other direc-
tions. This might yield a large amount of inflation and would

mined later.(This procedure can be generalized to a higher
number of fields but becomes increasingly mes3yp. see

that such a truncation is interesting and reduces the charac-
teristic exponent in a contribution to the potential, consider a
typical term proportional te@™2(“¢*£)_ The characteristic
exponent, before the truncation, ig= o+ B2. After the
truncation, one finds

at the same time provide a mechanism to stop the inflation-

ary epoch. To look for such flat directions note that, by the
same argument as employed above, a single exponential term 2

of the potential factoW(Q;) dominates at larggQ|. It is of

a@?+ BN+ 2aBsh
1+\?

(54)

atrunc
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This expression is smaller thar, unlessasn —B=0. So,  were interested in cosmological applications, not so much in
generically, a consistent truncation reduces the characteristigthenomenological aspects but rather in a question of prin-
exponents, and thus it presents another, possibly helpfudiple: whether it is possible to find FLRW solutions, from

mechanism of generating accelerating expansion. gravity or string or M-theory compactifications, in which the
To demonstrate this concept, we consider a reduction ofcale factor exhibits arbitrary amounts of accelerating expan-
the type sion, or inflation.
We have argued that the discussion for the case of mul-
F,(0123~+F (0123 (55) g

tiple scalar fields can be understood effectively in terms of a

in a (4+ n)-dimensional theory. The internal space shall Or”ysingle scalar field. The time evolution essentially picks out,
have a single factor and we set=0. In terms of the fields far from the origin in field space, a dominant direction of the
¢ andQ, the potential35) becomes potential. The sum of various exponentials thereby is re-

duced to a single effective exponential term. For this term, it

1 B ez T is possible to calculate a characteristic exponent that directly
V(¢.Q)=—zAn(n—1)e classifies the existing attractor solutions for the scale factor
according to Table I. In this way, the intuition from the single
T lbgefzawe\smql (56) scalar case can be carried over to th more complicated case.
4 The calculation of the characteristic exponents for the po-

) - o tentials, arising from the-dimensional geometry and from
The consistency condition for the truncation is that bothyarious fluxes that were realized as volume forms on certain
equations of motion for the scalar fields are solved smulta—subSpaces revealed that they are always greater than the

neously when substituting E¢53). This determines critical exponent ind-dimensions. The conclusions drawn
from this fact depend on the possible vallkes0,= 1 of the
yn(n+2 - - . . ’
SA=— M (57) curvature of the spatial sections in the final cosmology. In the
2(n—1) flat case withk=0, this means that there do not exist any

accelerating attractor solutions for the scale factor. The only
way in which accelerating expansion can be obtained is via
the mechanism in the original solutiofisubsequent td1],
: (58)  see the Introductionas identified in[7]. Any such solution
can only have a short phase of accelerating expansion, where
Calculating the characteristic exponerf,tunc, using Eq.(54) the scalar f_ields are nearly at rest_ at some poinf[ in field space,
with @=0 and 8= \(n+2)/n, one finds that it is in fact around which the potential dominates. But this phase ends
smaller thana,=1 (for n=6 anda=3, appropriate to a S00N as the decelerating attractor is approac[the that
compactification of type IIA superstring theanBut the po- W€ do not claim that there is no way to improve on &gl)
tential of the truncated theory turns out to be negative, suc§XPansion in these scenarios. But the generic existence of
that there cannot be accelerating attractor solutions. Weecelerating attractors does make it extremely implausible to
would have needed a positive potential. achieve sixty e-f_olqllng$.For hyperbolic spatial curvatute
So far no example has been found, where a consisterit —1, characteristic exponents greater tagmmean that the
truncation leads to a theory that admits solutions with arpttractors are exactly critical and nonaccelerata(@) ~t. In -~
arbitrary amount of accelerating expansion, by providing arfhis case one can obtain eternal accelerating expansion. This

accelerating power-law attractor for the FLRW scale factor.happens in solutions in which trajectories exist with a point
where the scalar fields are approximately at fastabove

Then the scale factor starts off accelerating and, as it ap-
proaches the critical attractor, this acceleration does not stop
Starting from the Einstein-Hilbert action for pure gravity although it tends to zero. Such a scenario has been identified
in (d+n) dimensions, and also from the bosonic part ofin [11] by perturbing around the attractor solution. We have
various supergravity actions that describe string or M theorynot considered the cade=+1 because it does not admit
in the low energy limit, a dimensional reduction downdo attractor solutions. At best, solutions may behave, for a
dimensions has been performed. Tidimensional internal while, in a similar way as do the=0 ones, as suggested by
space was realized as a product space, and the moduli fieltlse analysis of13], but they all end in a big crunch.
kept in this reduction determined the volume of each of the In summary, it has been shown that product space com-
factor spaces. Otherwise these factor spaces have been cqactifications do not lead to standard inflationary scenarios
sidered to be arbitrary but fixed-independent Einstein (with power-law inflation of the scale facjorCosmological
spaces. The effective-dimensional field theory has been solutions in this setup do only admit a short phase of accel-
studied in Einstein conformal frame in order to facilitate anerating expansion fok=0 (andk=+1). Fork=-1, the
easy interpretation of the gravity results from the lower di-generic solution can lead to eternal accelerating expansion,
mensional point of view. The main focus of this paper wasbut the acceleration quickly tends to zero. Thus, in order to
the investigation of the potential for the scalar fields, theobtain inflation from higher dimensions and, in particular,
volume moduli, resulting from the compactification. We from string or M theory, it seems to be necessary to think

and

a2

2n—1) n+2

L A(n—1)=1p2
2Mnm D=3

VI. DISCUSSION
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